WO2012153419A1 - 車両の制御装置 - Google Patents

車両の制御装置 Download PDF

Info

Publication number
WO2012153419A1
WO2012153419A1 PCT/JP2011/060965 JP2011060965W WO2012153419A1 WO 2012153419 A1 WO2012153419 A1 WO 2012153419A1 JP 2011060965 W JP2011060965 W JP 2011060965W WO 2012153419 A1 WO2012153419 A1 WO 2012153419A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
vehicle
engine
clutch
shift
Prior art date
Application number
PCT/JP2011/060965
Other languages
English (en)
French (fr)
Inventor
大坪 正明
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP11864928.4A priority Critical patent/EP2713030A4/en
Priority to PCT/JP2011/060965 priority patent/WO2012153419A1/ja
Priority to JP2013513866A priority patent/JP5757327B2/ja
Priority to CN201180070730.3A priority patent/CN103534466A/zh
Publication of WO2012153419A1 publication Critical patent/WO2012153419A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0215Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
    • F02D41/023Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission in relation with the gear ratio shifting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/002Electric control of rotation speed controlling air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • F16H63/502Signals to an engine or motor for smoothing gear shifts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D2011/101Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the means for actuating the throttles
    • F02D2011/102Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the means for actuating the throttles at least one throttle being moved only by an electric actuator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • F02D2200/501Vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • F02D2200/602Pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2306/00Shifting
    • F16H2306/40Shifting activities
    • F16H2306/54Synchronizing engine speed to transmission input speed

Definitions

  • the present invention relates to a vehicle control device including a manual transmission in which a gear position is selected by a driver's manual operation.
  • the present invention relates to a measure for suppressing adverse effects on the power transmission system when the clutch device is engaged.
  • the shift speed selection operation of the manual transmission by the driver is referred to as “manual shift operation”
  • the operation of the clutch device by the driver is referred to as “clutch operation”.
  • a series of operations of “clutch operation” will be referred to as “shift operation”.
  • a gear position is selected by a shift lever operation (manual shift operation) by a driver (driver).
  • a shift lever is movably disposed in a shift gate formed with a gate groove extending in a direction (sometimes referred to as a shift operation direction). Then, after a select operation that operates the shift lever in the select operation direction along the gate groove, a desired gear position is established in the transmission mechanism of the manual transmission by performing a shift operation that operates in one direction of the shift operation direction.
  • the manual transmission has a feature that a manual shift operation to an arbitrary shift stage intended by the driver is possible. That is, it can be said that the manual transmission has a great feature that the degree of freedom in selecting the shift speed is high (the selection of the shift speed depends on the driver's intention).
  • the shift operation to the first speed stage is erroneously performed.
  • the driver will upshift while operating the shift lever at a relatively high operating speed. If the shift operation to the first speed is mistakenly performed in such a case, excessive deceleration torque is input to the clutch device when the clutch device is engaged, which adversely affects the power transmission system including the clutch device. There is a possibility of giving.
  • Patent Document 2 the shift to a gear stage where the expected rotation speed after the shift operation (for example, the input shaft rotation speed of the transmission) is equal to or higher than a predetermined rotation speed is limited. I have to. Specifically, by extending a gate stopper to a gear position where over-rotation can occur, shifting to that gear position (operation of the shift lever) is mechanically prevented.
  • a control for increasing the engine speed to the synchronous speed on the low gear side before the clutch engagement (so-called blipping) control is performed. It is possible to do it.
  • the manual shift operation is upshift instead of downshift, the engine speed before clutch engagement is significantly higher than the input shaft speed of the transmission, and the above control (blipping) On the contrary, the control) will adversely affect the power transmission system.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a vehicle control device capable of suppressing adverse effects on the power transmission system when the clutch device is engaged. It is in.
  • the solution principle of the present invention devised to achieve the above object is to maintain the engine speed at the time of a shift operation (the rotation speed of the drive source) at the engine speed before the start of the shift operation or at the start of the shift operation. Keep it.
  • the manual shift operation is a downshift or an upshift
  • the deviation between the input shaft speed of the manual transmission and the engine speed when the shift stage is established (when the shift stage is established in the clutch disengaged state). Is prevented, and the adverse effect on the power transmission system when the clutch device is engaged can be suppressed.
  • the present invention relates to a clutch device that can be switched between a connected state and a released state so that the driving force is transmitted and disconnected from a driving source, and a driver when the clutch device is in a released state.
  • the control device for a vehicle includes a manual transmission in which any one of a plurality of shift speeds can be selected by a manual shift operation.
  • the shift operation start time or before the shift operation start Rotation speed control means for performing speed change speed control for controlling the drive source with the rotation speed of the drive source as a target rotation speed is provided.
  • the rotational speed of the drive source at the time of the start of the shift operation or before the start of the shift operation is set as the target rotational speed, and at least the clutch device in the disengaged state is set to the engaged state.
  • the drive source rotation speed control (shift speed control) is performed so that the rotation speed of the drive source matches the target rotation speed.
  • the rotational speed of the drive source is between the synchronous rotational speed after shifting when the manual shift operation is a downshift operation and the synchronous rotational speed after shifting when the manual shift operation is an upshift operation.
  • the rotation speed is maintained at a substantially intermediate rotation speed, the input shaft rotation speed of the manual transmission and the rotation speed of the drive source after the manual shift operation are performed regardless of whether the manual shift operation is a downshift operation or an upshift operation. A large deviation does not occur between the two, and adverse effects on the power transmission system when the clutch device is engaged can be suppressed.
  • the specific configuration of the rotation speed control means includes the following.
  • the rotational speed of the drive source before the start of the speed change operation or before the start of the speed change operation is set as the target speed.
  • the drive source is configured to be controlled.
  • the rotational speed of the drive source is continuously maintained at the target rotational speed from the start of the shifting operation. That is, as compared with the case where the rotational speed is changed only when the clutch device is engaged (for example, the rotational speed of the drive source once decreased during the manual shift operation is increased when the clutch device is engaged) Since there are few changes in engine sound and engine torque, the vehicle driver and other passengers can be prevented from feeling uncomfortable, and drivability can be prevented from deteriorating.
  • the output of the drive source necessary for maintaining the rotational speed of the drive source at the target rotational speed is compared with the output of the drive source requested by the driver, and the higher output is compared with the output of the drive source. It is set as the structure controlled so that it may become. In other words, if the required output to the drive source increases due to an increase in the amount of depression of the accelerator pedal by the driver, the driver requests it without performing the speed control at the time of shifting by the speed control means. Control is performed so as to obtain the output of the driving source. Thereby, output control of the drive source according to a driver
  • correcting the target rotational speed is also within the scope of the technical idea of the present invention.
  • the driving is performed.
  • the target rotational speed of the drive source can be appropriately adjusted following changes in the output shaft rotational speed and vehicle speed of the manual transmission. For example, even if the output shaft rotation speed or vehicle speed of the manual transmission changes greatly during manual shift operation, the input shaft rotation speed of the manual transmission after the manual shift operation and the rotation speed of the drive source A large deviation does not occur and adverse effects on the power transmission system when the clutch device is engaged can be suppressed.
  • the above-described rotation speed control is executed only when a shift operation is performed from a state where a gear stage having the second highest gear ratio is selected from among a plurality of gear stages of the manual transmission. Yes.
  • the execution conditions of the above-mentioned speed control at the time of shifting include that the vehicle is warmed up and that the vehicle speed is equal to or higher than a predetermined value. Since the controllability of the rotational speed of the internal combustion engine may be deteriorated when the vehicle is not in the warm-up completion state, the time after the completion of the warm-up of the vehicle is set as the execution condition of the rotational speed control during shifting. In addition, when the vehicle is stopped or at a relatively low vehicle speed, it is unlikely that the power transmission system will be adversely affected when the clutch device is engaged. This is an execution condition for the rotational speed control during shifting.
  • the drive source is controlled with the rotation speed of the drive source at the start of the shift operation or before the start of the shift operation as the target rotation speed during the shift operation. Therefore, regardless of whether the manual shift operation is a downshift or an upshift, the deviation between the input shaft rotation speed of the manual transmission and the engine rotation speed when the shift speed is established is prevented, and the clutch device The adverse effect on the power transmission system at the time of joining can be suppressed.
  • FIG. 1 is a diagram illustrating a schematic configuration of a power train mounted on a vehicle according to the embodiment.
  • FIG. 2 is a diagram showing a schematic configuration of the engine and its intake / exhaust system.
  • FIG. 3 is a diagram illustrating a schematic configuration of the clutch device.
  • FIG. 4 is a diagram showing an outline of the shift pattern of the 6-speed manual transmission.
  • FIG. 5 is a block diagram illustrating a configuration of a control system such as an ECU.
  • FIG. 6 is a flowchart showing a procedure for engine control during shifting.
  • FIG. 7 is a diagram illustrating changes in the input shaft rotation speed and the engine rotation speed when the engine control during shifting is performed during the shift operation from the second speed stage.
  • FIG. 1 is a diagram illustrating a schematic configuration of a power train mounted on a vehicle according to the embodiment.
  • FIG. 2 is a diagram showing a schematic configuration of the engine and its intake / exhaust system.
  • FIG. 3 is a diagram illustrating a schematic configuration
  • FIG. 8 is a diagram illustrating an example of changes in the input shaft rotation speed and the engine rotation speed when downshifting from the second speed to the first speed in the related art.
  • FIG. 9 is a diagram showing an example of changes in the input shaft rotational speed and the engine rotational speed when upshifting from the second speed to the third speed is performed in the prior art in which blipping is automatically performed at the time of shifting. It is.
  • FIG. 1 shows a schematic configuration of a power train mounted on a vehicle according to the present embodiment.
  • 1 is an engine (drive source)
  • MT is a manual transmission
  • 6 is a clutch device
  • 9 is an ECU (Electronic Control Unit).
  • the rotational driving force (torque) generated by the engine 1 is input to the manual transmission MT via the clutch device 6, and an appropriate gear ratio (driver shift) is input by the manual transmission MT.
  • the gears are shifted by a gear ratio selected by lever operation and transmitted to the left and right rear wheels (drive wheels) T, T via the propeller shaft PS and the differential gear DF.
  • the manual transmission MT mounted on the vehicle according to the present embodiment is a synchronous mesh type manual transmission with six forward speeds and one reverse speed.
  • FIG. 2 is a diagram showing a schematic configuration of the engine 1 and its intake and exhaust system. In FIG. 2, only the configuration of one cylinder of the engine 1 is shown.
  • the engine 1 in this embodiment is, for example, a four-cylinder gasoline engine, and includes a piston 12 that forms a combustion chamber 11 and a crankshaft 13 that is an output shaft.
  • the piston 12 is connected to the crankshaft 13 via a connecting rod 14, and the reciprocating motion of the piston 12 is converted into rotation of the crankshaft 13 by the connecting rod 14.
  • a signal rotor 15 having a plurality of protrusions (teeth) 16 on the outer peripheral surface is attached to the crankshaft 13.
  • a crank position sensor (engine speed sensor) 81 is disposed near the side of the signal rotor 15.
  • the crank position sensor 81 is, for example, an electromagnetic pickup, and generates a pulse-shaped signal (output pulse) corresponding to the protrusion 16 of the signal rotor 15 when the crankshaft 13 rotates.
  • the cylinder block 17 of the engine 1 is provided with a water temperature sensor 82 for detecting the engine water temperature (cooling water temperature).
  • a spark plug 2 is disposed in the combustion chamber 11 of the engine 1.
  • the ignition timing of the spark plug 2 is adjusted by the igniter 21.
  • the igniter 21 is controlled by the ECU 9.
  • An intake passage 3 and an exhaust passage 4 are connected to the combustion chamber 11 of the engine 1.
  • An intake valve 31 is provided between the intake passage 3 and the combustion chamber 11. By opening and closing the intake valve 31, the intake passage 3 and the combustion chamber 11 are communicated or blocked.
  • An exhaust valve 41 is provided between the exhaust passage 4 and the combustion chamber 11. By opening and closing the exhaust valve 41, the exhaust passage 4 and the combustion chamber 11 are communicated or blocked. The opening / closing drive of the intake valve 31 and the exhaust valve 41 is performed by each rotation of the intake camshaft and the exhaust camshaft 41a to which the rotation of the crankshaft 13 is transmitted.
  • An air cleaner 32, a hot-wire air flow meter 83, an intake air temperature sensor 84 (built in the air flow meter 83), and an electronically controlled throttle valve 33 that adjusts the intake air amount of the engine 1 are disposed in the intake passage 3. ing.
  • the throttle valve 33 is driven by a throttle motor 34.
  • the opening degree of the throttle valve 33 is detected by a throttle opening degree sensor 85.
  • an injector 35 for fuel injection is disposed in the intake passage 3.
  • Fuel of a predetermined pressure is supplied from the fuel tank to the injector 35 by a fuel pump, and the fuel is injected into the intake passage 3.
  • This injected fuel is mixed with intake air to form an air-fuel mixture and introduced into the combustion chamber 11 of the engine 1.
  • the air-fuel mixture (fuel + air) introduced into the combustion chamber 11 passes through the compression stroke of the engine 1 and is then ignited and burned by the spark plug 2.
  • the combustion of the air-fuel mixture in the combustion chamber 11 causes the piston 12 to reciprocate and the crankshaft 13 to rotate.
  • Two three-way catalysts 42 and 43 are disposed in the exhaust passage 4 of the engine 1. These three-way catalysts 42 and 43 have an O 2 storage function (oxygen storage function) for storing (storing) oxygen, and it is assumed that the air-fuel ratio has deviated from the stoichiometric air-fuel ratio to some extent by this oxygen storage function. In addition, HC, CO and NOx can be purified.
  • O 2 storage function oxygen storage function
  • HC, CO and NOx can be purified.
  • An air-fuel ratio sensor (A / F sensor) 86 is provided upstream of the upstream side three-way catalyst 42 in the exhaust passage 4, and an oxygen sensor (O 2 sensor) 87 is provided upstream of the downstream side three-way catalyst 43. Each is arranged.
  • FIG. 3 shows a schematic configuration of the clutch device 6.
  • the clutch device 6 includes a clutch mechanism 60, a clutch pedal 70, a clutch master cylinder 71, and a clutch release cylinder 61.
  • the clutch mechanism 60 is provided so as to be interposed between the crankshaft 13 and the input shaft (input shaft) IS of the manual transmission MT (see FIG. 1), and is driven from the crankshaft 13 to the input shaft IS. Transmits or cuts off the force, or changes the transmission state of the driving force.
  • the clutch mechanism 60 is configured as a dry single-plate friction clutch. Note that other configurations may be adopted as the configuration of the clutch mechanism portion 60.
  • a flywheel 62 and a clutch cover 63 are attached to a crankshaft 13 that is an input shaft of the clutch mechanism 60 so as to be integrally rotatable.
  • a clutch disk 64 is splined to an input shaft IS that is an output shaft of the clutch mechanism 60. Therefore, the clutch disk 64 can slide along the axial direction (left and right direction in FIG. 3) while rotating integrally with the input shaft IS.
  • a pressure plate 65 is disposed between the clutch disk 64 and the clutch cover 63. The pressure plate 65 is in contact with the outer end of the diaphragm spring 66 and is urged toward the flywheel 62 by the diaphragm spring 66.
  • a release bearing 67 is slidably mounted on the input shaft IS along the axial direction.
  • a release fork 68 is rotatably supported by a shaft 68a, and one end (the lower end in FIG. 3) is in contact with the release bearing 67.
  • one end portion (the right end portion in FIG. 3) of the rod 61a of the clutch release cylinder 61 is connected to the other end portion (the upper end portion in FIG. 3) of the release fork 68.
  • the clutch mechanism 60 is engaged and disengaged.
  • the clutch pedal 70 is configured by integrally forming a pedal portion 72a as a stepping portion at a lower end portion of a pedal lever 72.
  • a position near the upper end of the pedal lever 72 is rotatably supported about a horizontal axis by a clutch pedal bracket (not shown) attached to a dash panel that partitions the vehicle compartment and the engine compartment.
  • the pedal lever 72 is applied with a biasing force in a turning direction toward the near side (driver side) by a pedal return spring (not shown).
  • a pedal return spring not shown.
  • the clutch master cylinder 71 has a configuration in which a piston 74 and the like are incorporated in a cylinder body 73.
  • the piston 74 is connected to one end portion of the rod 75 (left end portion in FIG. 3), and the other end portion (right end portion in FIG. 3) of the rod 75 is connected to the intermediate portion of the pedal lever 72. Yes.
  • a reserve tank 76 for supplying clutch fluid (oil) as a working fluid into the cylinder body 73 is provided on the upper portion of the cylinder body 73.
  • the clutch master cylinder 71 is adapted to generate hydraulic pressure when the piston 74 moves in the cylinder body 73 by receiving an operation force generated by the driver depressing the clutch pedal 70. At this time, the driver's stepping operation force is transmitted from the intermediate portion of the pedal lever 72 to the rod 75, and hydraulic pressure is generated in the cylinder body 73. The hydraulic pressure generated in the clutch master cylinder 71 is changed according to the stroke position of the piston 74 in the cylinder body 73.
  • the hydraulic pressure generated by the clutch master cylinder 71 is transmitted to the clutch release cylinder 61 by the oil in the hydraulic pipe 77.
  • the clutch release cylinder 61 has a structure in which a piston 61c and the like are incorporated in a cylinder body 61b.
  • the other end portion (the left end portion in FIG. 3) of the rod 61a is connected to the piston 61c.
  • the stroke position of the piston 61c is changed according to the hydraulic pressure received by the piston 61c.
  • the release fork 68 is operated according to the hydraulic pressure in the clutch release cylinder 61, so that the clutch mechanism 60 is engaged and released.
  • the clutch engagement force (clutch transmission capacity) of the clutch mechanism unit 60 is changed in accordance with the depression amount of the clutch pedal 70.
  • the clutch mechanism 60 When the clutch engagement force increases, the clutch mechanism 60 is engaged, and the pressure plate 65, the clutch disk 64, and the flywheel 62 rotate together. Thereby, the engine 1 and the manual transmission MT are directly connected. In this case, when the operation amount of the clutch pedal 70 is less than a predetermined amount, the clutch mechanism 60 is completely engaged (the clutch transmission capacity is 100%).
  • a clutch switch 8B is disposed in the vicinity of the pedal lever 72.
  • the clutch switch 8B detects that the amount of depression of the pedal lever 72 by the driver has reached a predetermined amount. In other words, when the driver starts the shifting operation and the depression amount of the pedal lever 72 reaches a predetermined amount, the clutch switch 8B transmits an ON signal, the driver completes the operation of the shift lever L, and the pedal lever The clutch switch 8B stops transmitting the ON signal when the stepping amount of 72 is returned to the predetermined amount. That is, the start and completion of the shifting operation can be detected by transmitting and stopping the transmission of the ON signal from the clutch switch 8B.
  • two clutch switches may be provided in order to improve the detection accuracy of the start and completion of these gear shifting operations. That is, a clutch switch that transmits an ON signal when the pedal lever 72 is depressed to a position where the clutch mechanism 60 is fully released, and a depression of the pedal lever 72 to a position where the clutch mechanism 60 is fully engaged. And a clutch switch for transmitting an ON signal when the release is released, so that the start and completion of the shift operation can be detected by these signals.
  • an input rotational speed sensor 8A is disposed in the vicinity of the input shaft IS.
  • the input rotational speed sensor 8A detects the rotational speed (input shaft rotational speed, input shaft rotational speed) of the input shaft IS and outputs a rotational speed signal to the ECU 9 (see FIG. 1).
  • an output speed sensor 8C (see FIG. 1) is disposed in the vicinity of the output shaft (shaft connected to the propeller shaft PS) of the manual transmission MT.
  • the output rotational speed sensor 8C detects the rotational speed (output shaft rotational speed, output shaft rotational speed) of the output shaft and outputs a rotational speed signal to the ECU 9.
  • the rotation speed of the rear wheel T is obtained by dividing the rotation speed of the output shaft detected by the output rotation speed sensor 8C by the gear ratio (final reduction ratio) of the differential gear DF, thereby calculating the vehicle speed. It is possible to do.
  • FIG. 4 shows an outline of the shift pattern of the 6-speed manual transmission MT in the present embodiment.
  • the shift lever L indicated by a two-dot chain line in the figure is configured to be able to perform a selection operation in the direction indicated by an arrow X in FIG. 4 and a shift operation in a direction indicated by an arrow Y orthogonal to the selection operation direction.
  • the 1st-2nd speed select position P1, the 3rd-4th speed select position P2, the 5th-6th speed select position P3 and the reverse select position P4 are arranged in a line.
  • the shift lever L can be moved to the first speed position 1st or the second speed position 2nd by the shift operation (operation in the arrow Y direction) at the first speed-2 speed select position P1.
  • the shift lever L When the shift lever L is operated to the first speed position 1st, the first synchromesh mechanism provided in the transmission mechanism of the manual transmission MT operates to the first speed establishment side, and the first speed stage is established.
  • the shift lever L When the shift lever L is operated to the 2nd speed position 2nd, the first synchromesh mechanism is operated to the 2nd speed establishment side to establish the 2nd speed stage.
  • the shift lever L can be moved to the third gear position 3rd or the fourth gear position 4th by a shift operation at the third gear-4th gear select position P2.
  • the second synchromesh mechanism provided in the transmission mechanism of the manual transmission MT operates to the 3rd speed establishment side to establish the 3rd speed stage.
  • the second synchromesh mechanism is operated to the 4th speed establishment side and the 4th speed stage is established.
  • the shift lever L can be moved to the fifth speed position 5th or the sixth speed position 6th by a shift operation at the fifth speed-6th speed select position P3.
  • the third synchromesh mechanism provided in the transmission mechanism of the manual transmission MT operates to the fifth speed establishment side to establish the fifth speed stage.
  • the third synchromesh mechanism operates to the sixth speed establishment side and the sixth speed stage is established.
  • the shift lever L can be moved to the reverse position REV by a shift operation at the reverse select position P4.
  • the reverse position REV When the reverse position REV is operated, all the synchromesh mechanisms are in a neutral state, and the reverse idler gear provided in the transmission mechanism of the manual transmission MT is operated to establish a reverse gear.
  • the ECU 9 includes a CPU (Central Processing Unit) 91, a ROM (Read Only Memory) 92, a RAM (Random Access Memory) 93, a backup RAM 94, and the like.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the ROM 92 stores various control programs, maps that are referred to when the various control programs are executed, and the like.
  • the CPU 91 executes arithmetic processing based on various control programs and maps stored in the ROM 92.
  • the RAM 93 is a memory that temporarily stores calculation results in the CPU 91, data input from each sensor, and the like.
  • the backup RAM 94 is a non-volatile memory that stores data to be saved when the engine 1 is stopped.
  • the ROM 92, CPU 91, RAM 93, and backup RAM 94 are connected to each other via a bus 97, and are also connected to an external input circuit 95 and an external output circuit 96.
  • the external input circuit 95 is operated by the driver in addition to the crank position sensor 81, the water temperature sensor 82, the air flow meter 83, the intake air temperature sensor 84, the throttle opening sensor 85, the air-fuel ratio sensor 86, and the oxygen sensor 87.
  • An accelerator opening sensor 88 that detects the opening of the accelerator pedal, a cam angle sensor 89 that detects the rotation position of the camshaft, the input rotation speed sensor 8A, the clutch switch 8B, the output rotation speed sensor 8C, and the like are connected. Has been. Since the configuration and function of each sensor are well known, description thereof is omitted here.
  • the external output circuit 96 is connected to a throttle motor 34 for driving the throttle valve 33, the injector 35, the igniter 21 and the like.
  • the ECU 9 executes various controls of the engine 1 based on the detection signals of the various sensors. For example, known ignition timing control of the spark plug 2, fuel injection control of the injector 35 (air-fuel ratio feedback control based on the outputs of the air-fuel ratio sensor 86 and the oxygen sensor 87), drive control of the throttle motor 34, and the like are executed. . In addition, the ECU 9 executes “engine control during shifting”, which will be described later, and controls the throttle motor 34 and the like so that the engine speed at the time of shifting matches a predetermined target speed.
  • engine control during shifting (rotational speed control during shifting referred to in the present invention), which is an operation characteristic of the present embodiment, will be described.
  • This engine control at the time of shifting is to control the engine speed when a shifting operation is performed by the driver.
  • the engine speed at the time when the shift operation is started (for example, when the depression operation of the clutch pedal 70 is started) is set as the target engine speed.
  • the target engine speed is maintained until the speed change operation is completed (until the clutch device 6 is engaged) (speed change speed control executed by the speed control means).
  • the shifting operation by the driver includes a releasing operation of the clutch device 6 (depressing operation of the clutch pedal 70), a manual shifting operation of the shift lever L (the above selection operation and shifting operation), and a joint operation of the clutch device 6.
  • the joint operation (depressing release operation of the clutch pedal 70) is sequentially performed. Then, the engine speed at the time when the release operation of the clutch device 6 is started (the engine speed calculated based on the output signal of the crank position sensor 81) is stored, and the manual shift of the shift lever L is stored.
  • the opening degree of the throttle valve 33 is adjusted so as to maintain the stored engine speed.
  • the opening degree of the throttle valve 33 is adjusted by the control of the throttle motor 34, and the fuel from the injector 35 corresponding to the adjusted opening degree (intake air amount) of the throttle valve 33 by the air-fuel ratio feedback control described above.
  • the engine speed is maintained at the speed at the time when the shifting operation is started (when the release operation of the clutch device 6 is performed).
  • the target engine speed may be the engine speed immediately before the gear shifting operation is started. That is, the engine speed immediately before the start of the depression of the clutch pedal 70 accompanying the start of the shifting operation is stored, and this speed is set as the target engine speed to adjust the opening of the throttle valve 33, etc. Is to do.
  • the execution conditions of the engine control at the time of shifting are as follows: “the vehicle (especially the engine) is in a warm-up completion state”, “the vehicle is running There are “something” and “the clutch device 6 is being operated”. That is, when the vehicle is not in the warm-up completion state, the controllability of the engine speed due to the opening of the throttle valve 33 is deteriorated. It is an execution condition. Further, when the vehicle is stopped, it is unlikely that the power transmission system will be adversely affected when the clutch device 6 is engaged when the vehicle starts. It is an execution condition for engine control. Further, if the engine speed is changed when no speed change operation is performed, the driver may feel uncomfortable or drivability may be deteriorated. Therefore, “the clutch device 6 is being operated. "Is an execution condition for engine control during shifting.
  • FIG. 6 is a flowchart showing a procedure for engine control during shifting.
  • the flowchart shown in FIG. 6 is executed every several milliseconds or every predetermined rotation angle of the crankshaft 13 after the ignition switch is turned on.
  • step ST1 it is determined whether or not the engine 1 has been warmed up. This determination is made based on the engine water temperature detected by the water temperature sensor 82. The reason for making this determination is as described above.
  • step ST2 the engine output corresponds to the current accelerator pedal depression amount (hereinafter referred to as "accelerator pedal support").
  • the throttle motor 34 and the injector 35 are controlled. That is, the throttle motor 34 is driven to increase the opening degree of the throttle valve 33 as the accelerator opening degree (depressed amount of the accelerator pedal) detected by the accelerator opening sensor 88 is increased. The amount of fuel injection is increased. That is, the engine output required by the driver is obtained.
  • step ST1 determines whether or not the vehicle is running. This determination is made based on the output of the output rotation speed sensor 8C. The reason for making this determination is also as described above.
  • step ST3 If the vehicle is not running, that is, the vehicle is stopped and NO is determined in step ST3, the process proceeds to step ST2, and the throttle motor 34 is controlled so that the engine output is the accelerator pedal-compatible output. For example, when the accelerator pedal opening is “0”, the throttle motor 34 is controlled so that the throttle opening is substantially “0”.
  • step ST4 it is determined whether or not a gear shifting operation has been started. That is, it is determined whether or not the clutch device 6 has been released. More specifically, it is determined whether or not the clutch device 6 has been released based on an output signal from the clutch switch 8B (whether or not the clutch mechanism 60 has been released by the depression of the pedal lever 72 by the driver). When the ON signal is transmitted from the clutch switch 8B, it is determined that the clutch device 6 is in the released state and the shift operation is started.
  • step ST4 If the speed change operation has not been started and NO is determined in step ST4, the process proceeds to step ST2 where the throttle motor 34 is controlled so that the engine output is the accelerator pedal output.
  • step ST4 the process proceeds to step ST5, where the pre-shift Ne (pre-shift engine speed) holding output and the accelerator pedal corresponding output (drive source requested by the driver).
  • the Ne holding output before shifting is an engine output for holding the engine speed at the time when the shifting operation is started (when YES is determined in Step ST4).
  • This Ne holding output before shifting is obtained by calculation or referring to an engine required output map created in advance by experiments, simulations, or the like according to the displacement of the engine 1 or the number of cylinders.
  • step ST5 If the pre-shift Ne holding output is greater than the accelerator pedal-corresponding output and a YES determination is made in step ST5, the routine proceeds to step ST6, where the control of the throttle motor 34, etc. is performed so that the engine output becomes the pre-shift Ne holding output. Do. That is, even if the amount of depression of the accelerator pedal (accelerator opening) by the driver is reduced due to the shifting operation, the opening of the throttle valve 33 and the fuel injection amount from the injector 35 are held or corrected, The output is held or adjusted, thereby maintaining the engine speed (maintaining the engine speed at the time when the speed change operation is started). After starting such control, the process moves to step ST7, and the Ne holding flag stored in advance in the ECU 9 is set to ON.
  • step ST8 the throttle motor 34 and the engine output are adjusted to the accelerator pedal-corresponding output.
  • the injector 35 is controlled.
  • the driver intends to perform a downshift operation, and an accelerator pedal depression operation (blipping) for making the engine speed coincide with the synchronous speed after the downshift operation is performed. The case where the number of rotations is increased is assumed.
  • step ST9 After starting the control for setting the engine output to the accelerator pedal output in this way, the process proceeds to step ST9, and the Ne holding flag is reset to OFF.
  • step ST10 It is determined whether or not the speed change operation is completed. That is, it is determined whether or not the clutch device 6 is engaged. Specifically, it is determined whether or not the clutch device 6 has been engaged based on the output signal from the clutch switch 8B (whether or not the clutch mechanism 60 has been engaged by the driver depressing operation of the pedal lever 72). When the transmission of the ON signal from the clutch switch 8B is stopped, it is determined that the clutch device 6 is in the engaged state and the shift is completed.
  • step ST10 If the shift has not been completed and NO is determined in step ST10, the process returns to step ST5, and the above-described Ne holding output before shift and the accelerator pedal-corresponding output are compared. At this time, even if the pre-shift Ne holding output is larger than the accelerator pedal-corresponding output and the engine output is controlled to be the pre-shift Ne holding output in the determination at the previous step ST5, When the accelerator pedal depression amount by the driver increases and the accelerator pedal-corresponding output becomes equal to or greater than the Ne holding output before shifting, the determination in step ST5 is NO, and the process proceeds to step ST8, where the engine output is The throttle motor 34 and the injector 35 are controlled so that the accelerator pedal-compatible output is obtained.
  • step ST10 When the shift is completed and YES is determined in step ST10, the process proceeds to step ST11, in which whether the Ne holding flag is set to ON, that is, the current engine output is the Ne holding output before shifting. It is determined whether or not it is controlled.
  • step ST11 When the Ne holding flag is set to ON and YES is determined in step ST11, the process proceeds to step ST12, and the throttle motor 34 and the injector 35 are controlled so that the engine output becomes the accelerator pedal-corresponding output, Thereafter, in step ST13, the Ne holding flag is reset to OFF. That is, the control for changing the engine output to the Ne holding output before shifting is canceled and the engine output is returned to the normal engine output control such that the engine output corresponding to the depression amount of the accelerator pedal is obtained.
  • step ST11 determines whether the current engine output is controlled as the accelerator pedal-corresponding output. If NO is determined in step ST11, that is, if the current engine output is controlled as the accelerator pedal-corresponding output, the process returns as it is.
  • the above control operation is executed every time a shift operation is performed.
  • FIG. 7 is a diagram showing changes in the input shaft rotation speed and the engine rotation speed when the above-described shift engine control is performed during the shift operation from the second speed stage.
  • the solid line in the figure shows the change in the input shaft speed at the time of downshift (downshift from the second speed to the first speed), and the two-dot chain line in the figure shows the change at the time of upshift (from the second speed)
  • the change in the input shaft speed at the time of upshift to the third speed is shown, and the alternate long and short dash line in the figure shows the change in the engine speed when the engine output is controlled to be the Ne holding output before the shift.
  • timing T1 in the figure is the time when the shifting operation is started
  • timing T2 is the time when the manual shifting operation (manual shifting operation of the manual transmission MT) is completed (the clutch device 6 is still in the released state). Each is shown.
  • FIG. 8 is a diagram showing an example of changes in the input shaft rotation speed and the engine rotation speed when downshifting from the second gear to the first gear in the prior art.
  • the solid line in the figure indicates the change in the input shaft speed
  • the alternate long and short dash line in the figure indicates the change in the engine speed.
  • timing T1 in the figure is the time when the shifting operation is started
  • timing T2 is the time when the manual shifting operation (manual shifting operation of the manual transmission MT) is completed
  • T3 is the shifting operation is completed (the clutch device 6 is Each time point of complete joining) is shown.
  • FIG. 9 shows an example of changes in the input shaft rotational speed and the engine rotational speed when up-shifting from the second speed to the third speed in the conventional technology in which blipping is automatically performed at the time of shifting.
  • FIG. The solid line in the figure indicates the change in the input shaft speed
  • the alternate long and short dash line in the figure indicates the change in the engine speed.
  • timing T1 in the figure is the time when the shifting operation is started
  • timing T2 is the time when the manual shifting operation (manual shifting operation of the manual transmission MT) is completed
  • T3 is the shifting operation is completed (the clutch device 6 is Each time point of complete joining) is shown.
  • the deviation between the input shaft rotation speed and the engine rotation speed when the first speed is established in the transmission mechanism is shown in FIG. N1 inside. Further, during the upshift, the deviation between the input shaft rotation speed and the engine rotation speed when the third speed is established in the transmission mechanism is N2 in the figure. In this case, although there is a deviation between the input shaft rotation speed and the engine rotation speed in any of the downshift and the upshift, the deviation is relatively small, and the clutch device 6 is engaged. The adverse effect on the power transmission system at the time is small.
  • the second speed is increased to the third speed.
  • the deviation between the input shaft rotational speed and the engine rotational speed at the time when the third speed stage is established in the transmission mechanism is N4 in the figure, and a very large rotational speed difference is generated.
  • the clutch device 6 is engaged from this state, an excessive acceleration torque is input to the clutch device 6, and in this case, the power transmission system including the clutch device 6 may be adversely affected. is there.
  • the rotational speed of the input shaft IS and the engine rotation after the manual shifting operation are performed regardless of whether the manual shifting operation is a downshift operation or an upshift operation.
  • a large deviation does not occur between the numbers, and adverse effects on the power transmission system when the clutch device 6 is engaged can be suppressed.
  • Modification 1 Next, Modification 1 will be described.
  • the engine speed (target engine speed) adjusted by the Ne holding output before shifting in the engine control during shifting is corrected.
  • the input shaft when the manual shifting operation is completed along with the change or when the clutch device 6 is engaged the input shaft when the manual shifting operation is completed along with the change or when the clutch device 6 is engaged.
  • the rotational speed of IS also changes with respect to the rotational speed when the vehicle speed does not change.
  • the rotational speed of the input shaft is also reduced (compared to the case where the manual speed change operation is completed while the vehicle speed is constant). For this reason, with respect to the target engine speed (engine speed at the start of the speed change operation) in the engine control during the speed change, the deviation between the input shaft speed and the engine speed after completion of the manual speed change operation is reduced. To correct the final target engine speed.
  • a correction amount is determined such that the engine speed when the current vehicle speed (the vehicle speed after the decrease) is assumed at the gear position before the start of the shift operation is set as the target engine speed, The engine speed corrected with this correction amount is set as the final target engine speed.
  • a correction amount is calculated such that the engine speed when the current vehicle speed (the vehicle speed after increasing) is assumed to be the target engine speed at the shift stage before the start of the shift operation,
  • the engine speed corrected with this correction amount is set as the final target engine speed.
  • the change in the vehicle speed is calculated based on the output of the output rotational speed sensor 8C.
  • the target engine speed can be adjusted appropriately following the change in the vehicle speed. For this reason, even when the vehicle speed changes greatly during the manual shift operation, there is no significant deviation between the input shaft speed and the engine speed after the manual shift operation, and the clutch device 6 is joined. The adverse effect on the power transmission system during the operation can be suppressed.
  • Modification 2 Next, Modification 2 will be described. This modification is limited to the case where a shift operation from a specific shift stage is performed as the execution condition of the engine control during shift.
  • the engine at the time of shifting is only when the second speed (the gear having the second highest gear ratio among the plurality of gears) is selected and the gear shifting operation is performed. Control is executed. In other words, when the speed change operation is performed from the state where the third speed to the fifth speed are selected, the engine control during shifting is not executed.
  • Whether or not the manual transmission MT is in the second speed is determined based on the engine speed calculated based on the output signal of the crank position sensor 81 when the clutch device 6 is in the engaged state. And the ratio of the rotation speed of the output shaft detected by the output rotation speed sensor 8C.
  • the present invention is applied to a synchronous mesh type manual transmission that is mounted on an FR type vehicle and that is 6 forward speed and 1 reverse speed gear has been described.
  • the present invention is not limited to this, and can also be applied to a manual transmission mounted on other types of vehicles such as FF (front engine / front drive) vehicles. Further, the present invention can also be applied to a transmission having a different number of stages from the above (for example, a forward fifth speed stage).
  • the present invention is not limited to this, and can also be applied to a vehicle equipped with a diesel engine or a hybrid vehicle equipped with an engine (internal combustion engine) and an electric motor (for example, a traveling motor or a motor generator).
  • the clutch switch 8B is used as a sensor for determining whether or not the clutch device 6 is released.
  • the present invention is not limited to this, and a neutral switch that determines whether or not the shift lever L has been moved to the neutral position, a shift stroke sensor that detects the operation position of the shift lever L, and the position of the clutch pedal 70 can be detected.
  • a simple clutch stroke sensor or a stroke sensor that can detect the slide position of the release bearing 67 can also be employed.
  • the vehicle is traveling is one of the execution conditions of the engine control at the time of shifting, but “the vehicle speed is a predetermined value (for example, 20 km / h) or more. It may be said that. That is, when the vehicle speed is less than the predetermined value, it is unlikely that the power transmission system will be adversely affected when the clutch device 6 is engaged. Execution conditions.
  • the engine speed is set to the target value during the releasing operation of the clutch device 6, the manual shifting operation of the shift lever L, and the engaging operation of the clutch device 6. It was made to correspond to the rotation speed.
  • the present invention is not limited to this. If the engine speed is made to coincide with the target speed during the engagement operation of the clutch device 6, adverse effects on the power transmission system can be suppressed.
  • the engine speed may be made to coincide with the target speed only during the engagement operation of the clutch device 6.
  • the present invention is applicable to engine speed control when a clutch device is engaged in a vehicle equipped with a manual transmission and a clutch device.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

手動変速機(MT)及びクラッチ装置(6)を搭載した車両において、変速操作時、変速操作開始時点におけるエンジン回転数を、クラッチ装置(6)の継合操作が行われるまでの間、維持する。これにより、エンジン回転数が、手動変速操作がダウンシフト操作である場合の変速後の同期回転数と、手動変速操作がアップシフト操作である場合の変速後の同期回転数との間の略中間の回転数として維持されることになり、手動変速操作がダウンシフト操作及びアップシフト操作の何れであっても、インプットシャフト(IS)の回転数とエンジン回転数との間の偏差を小さくでき、クラッチ装置(6)を継合させる際における動力伝達系への悪影響を小さくすることができる。

Description

車両の制御装置
 本発明は、運転者の手動操作によって変速段が選択される手動変速機を備えた車両の制御装置に係る。特に、本発明は、クラッチ装置を継合させる際における動力伝達系への悪影響を抑制するための対策に関する。尚、本明細書では、運転者による手動変速機の変速段選択操作を「手動変速操作」と呼び、運転者によるクラッチ装置の操作を「クラッチ操作」と呼び、これら「手動変速操作」及び「クラッチ操作」の一連の操作を「変速操作」と呼ぶこととする。
 従来より、例えば特許文献1及び特許文献2に開示されているような車両用の手動変速機では、運転者(ドライバ)によるシフトレバーの操作(手動変速操作)によって変速段の選択が行われる。
 例えば車室内のフロアにシフトレバーが配設されたフロアシフト式の手動変速機では、左右方向(車幅方向:以下、セレクト操作方向と呼ぶ場合もある)及び前後方向(車体前後方向:以下、シフト操作方向と呼ぶ場合もある)に延びるゲート溝が形成されたシフトゲート内にシフトレバーが移動操作可能に配設されている。そして、このゲート溝に沿ってシフトレバーをセレクト操作方向に操作するセレクト操作の後、シフト操作方向の一方向に操作するシフト操作を行うことによって手動変速機の変速機構に所望の変速段を成立させる。そして、この変速段が成立した状態で、クラッチ装置を継合させるクラッチ操作(クラッチペダルの踏み込み解除操作)を行うことで、エンジンと変速機構とを連結させ、上記成立している変速段の変速比でエンジン回転数を変速して変速機構から駆動輪に向けて回転駆動力を出力するようになっている。
 また、特に手動変速機は、運転者が意図する任意の変速段への手動変速操作が可能であるといった特徴がある。つまり、変速段の選択の自由度が高い(変速段の選択が運転者の意思に依存する)ことが手動変速機の大きな特徴であると言える。
特開2009-103268号公報 特開2007-230271号公報
 ところが、上述したように運転者がシフトレバーを操作して変速機構の変速段を切り換える際において、そのシフト操作を誤り、運転者の意図しない変速段に切り換わった場合、クラッチ装置を含む動力伝達系に悪影響を与えてしまう可能性がある。
 上記運転者の意図しない変速段に切り換わる状況としては、例えば、第2速段から第3速段にアップシフトさせようとした場合に誤って第1速段へのシフト操作を行ってしまうことが挙げられる。例えば車両が発進して加速していく状況においては、運転者は比較的早い操作速度でシフトレバーを操作しながらアップシフトしていくことになるが、この際、第3速段にアップシフトさせようとした場合に誤って第1速段へのシフト操作を行ってしまうと、クラッチ装置を継合させる際に過大な減速トルクがクラッチ装置に入力され、クラッチ装置を含む動力伝達系に悪影響を与えてしまう可能性がある。
 特に、近年では、エンジンの燃料消費率の改善を図るべく、変速機のワイドギヤ比化やハイギヤ比化が進んでおり、上述したような動力伝達系への悪影響を招きやすくなっている。
 このような状況を回避するための対策として、特許文献2では、シフト操作後の予想回転数(例えば変速機の入力軸回転数)が所定回転数以上となる変速段への変速を制限するようにしている。具体的には、過回転が発生し得るギアポジションにゲートストッパーを延出しておくことで、そのギアポジションへの変速(シフトレバーの操作)を機械的に阻止するようにしている。
 しかし、これでは、変速段の選択の自由度が高いといった手動変速機の特徴を活かすことができず、また、運転者の意図する変速段に切り換わらないことで違和感を招いてしまうことになる。
 また、上述した減速トルクによる動力伝達系への悪影響を防止する技術として、クラッチ継合前に、エンジン回転数を低変速段側の同期回転数にまで上昇させておく(所謂ブリッピング)制御を行うことも考えられる。ところが、手動変速操作がダウンシフトではなくアップシフトであった場合には、クラッチ継合前のエンジン回転数が変速機の入力軸回転数に対して大幅に高くなってしまい、上記制御(ブリッピング制御)を行ったことが却って動力伝達系に悪影響を与えることになってしまう。
 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、クラッチ装置を継合させる際における動力伝達系への悪影響を抑制することができる車両の制御装置を提供することにある。
 -課題の解決原理-
 上記の目的を達成するために講じられた本発明の解決原理は、変速操作時におけるエンジン回転数(駆動源の回転数)を、変速操作開始前または変速操作開始時点のエンジン回転数に保持しておく。これにより、手動変速操作がダウンシフト及びアップシフトの何れであっても、変速段成立時(クラッチ解放状態での変速段成立時)における手動変速機の入力軸回転数とエンジン回転数との偏差が過大になることを防止し、クラッチ装置を継合させる際における動力伝達系への悪影響を抑制できるようにしている。
 -解決手段-
 具体的に、本発明は、駆動源からの駆動力の伝達及び遮断が行われるように継合状態と解放状態とが切り換え可能なクラッチ装置と、このクラッチ装置が解放状態にある際の運転者による手動変速操作によって複数の変速段のうち何れかが選択可能とされた手動変速機とを備えた車両の制御装置を前提とする。この車両の制御装置に対し、上記クラッチ装置及び上記手動変速機の操作期間のうち、少なくとも解放状態にあるクラッチ装置を継合状態に向けて操作する期間中、変速操作開始時点または変速操作開始前の駆動源の回転数を目標回転数として上記駆動源を制御する変速時回転数制御を行う回転数制御手段を備えさせている。
 この特定事項により、運転者による変速操作が行われる際、その変速操作開始時点または変速操作開始前の駆動源の回転数が目標回転数とされ、少なくとも解放状態にあるクラッチ装置を継合状態に向けて操作する期間中、上記駆動源の回転数を上記目標回転数に一致させるように駆動源の回転数制御(変速時回転数制御)が行われる。この場合、駆動源の回転数は、手動変速操作がダウンシフト操作である場合の変速後の同期回転数と、手動変速操作がアップシフト操作である場合の変速後の同期回転数との間の略中間の回転数として維持されることになるので、手動変速操作がダウンシフト操作及びアップシフト操作の何れであっても手動変速操作後の手動変速機の入力軸回転数と駆動源の回転数との間に大きな偏差が生じることはなく、クラッチ装置を継合させる際における動力伝達系への悪影響を抑制することができる。
 上記回転数制御手段の具体構成としては以下のものが挙げられる。つまり、上記クラッチ装置が解放状態とされた変速操作の開始時点からクラッチ装置が継合状態となるまでの期間中、変速操作開始時点または変速操作開始前の駆動源の回転数を目標回転数として上記駆動源を制御する構成としたものである。
 この構成によれば、変速操作の開始時点から継続的に駆動源の回転数が目標回転数に維持されることになる。つまり、クラッチ装置を継合させる際にのみ回転数を変更する(例えば、手動変速操作中に一旦低下した駆動源の回転数を、クラッチ装置を継合させる際に上昇させる)場合に比べて、エンジン音の変化やエンジントルクの変化が少ないため、車両の運転者やその他の乗員に違和感を与えることが抑制され、ドライバビリティの悪化を防止できる。
 また、上記駆動源の回転数を上記目標回転数に保持するために必要な駆動源の出力と、運転者が要求する駆動源の出力とを比較し、高い方の出力が駆動源の出力となるように制御される構成とされている。つまり、運転者によるアクセルペダルの踏み込み量が大きくなるなどして、駆動源に対する要求出力が大きくなった場合には、上記回転数制御手段による変速時回転数制御を行うことなく、運転者が要求する駆動源の出力が得られるように制御する。これにより、運転者の要求に応じた駆動源の出力制御が行われることになる。
 また、上記目標回転数を補正することも本発明の技術的思想の範疇である。つまり、上記クラッチ装置が解放状態とされた変速操作の開始時点からクラッチ装置が継合状態となるまでの期間中に、上記手動変速機の出力軸回転数または車速が低下した場合には上記駆動源の目標回転数を低下側に補正する一方、上記期間中に、上記手動変速機の出力軸回転数または車速が上昇した場合には上記駆動源の目標回転数を上昇側に補正する構成としたものである。
 これによれば、手動変速機の出力軸回転数や車速の変化に追従して駆動源の目標回転数を適切に調整することができる。例えば、手動変速操作中に手動変速機の出力軸回転数や車速が大きく変化した場合であっても、手動変速操作後の手動変速機の入力軸回転数と駆動源の回転数との間に大きな偏差が生じることはなく、クラッチ装置を継合させる際における動力伝達系への悪影響を抑制することができる。
 また、上記手動変速機の複数の変速段のうち第2番目に変速比が高い変速段が選択されている状態から変速操作が行われる際にのみ、上記変速時回転数制御を実行する構成としている。
 これは、クラッチ装置を継合させる際における動力伝達系への悪影響が特に大きくなりやすい状況を考慮したものである。つまり、手動変速機を第2速段から第3速段にアップシフトさせようとした場合に誤って第1速段へのシフト操作を行ってしまった場合、クラッチ継合時に過大な減速トルクがクラッチ装置に入力され、クラッチ装置を含む動力伝達系に悪影響を与えてしまうことになる。これは、第1速段と第2速段とのギヤ比の差が他の隣り合う変速段同士のギヤ比の差よりも大きいためである。このように、第2速段(第2番目に変速比が高い変速段)から変速操作が行われる際にのみ変速時回転数制御を実行し、その他の変速段では変速時回転数制御を非実行とすることで、第2速段以外の変速段から変速操作が行われる際の違和感(駆動源の回転数がアクセルペダルの踏み込み量に対応していないことによる違和感)を回避しながらも、第2速段から変速操作が行われる際の動力伝達系への悪影響を抑制することができる。
 また、上記変速時回転数制御の実行条件としては、車両の暖機完了後であることや、車両速度が所定値以上であることが挙げられる。車両が暖機完了状態でない場合には内燃機関の回転数の制御性が悪化する可能性があるため、車両の暖機完了後であることを変速時回転数制御の実行条件としている。また、車両が停車中であったり比較的低車速である場合には、クラッチ装置を継合させる際に動力伝達系に悪影響を与える可能性は低いため、車両速度が所定値以上であることを変速時回転数制御の実行条件としている。
 本発明では、変速操作時、変速操作開始時点または変速操作開始前の駆動源の回転数を目標回転数として駆動源を制御するようにしている。このため、手動変速操作がダウンシフト及びアップシフトの何れであっても、変速段成立時における手動変速機の入力軸回転数とエンジン回転数との偏差が過大になることを防止し、クラッチ装置を継合させる際における動力伝達系への悪影響を抑制することができる。
図1は、実施形態に係る車両に搭載されたパワートレーンの概略構成を示す図である。 図2は、エンジン及びその吸排気系の概略構成を示す図である。 図3は、クラッチ装置の概略構成を示す図である。 図4は、6速手動変速機のシフトパターンの概略を示す図である。 図5は、ECU等の制御系の構成を示すブロック図である。 図6は、変速時エンジン制御の手順を示すフローチャート図である。 図7は、第2速段からの変速操作時に変速時エンジン制御が行われた場合におけるインプットシャフト回転数及びエンジン回転数の変化を示す図である。 図8は、従来技術において、第2速段から第1速段へダウンシフトする場合におけるインプットシャフト回転数及びエンジン回転数の変化の一例を示す図である。 図9は、変速時に自動的にブリッピングを行うようにした従来技術において、第2速段から第3速段へアップシフトする場合におけるインプットシャフト回転数及びエンジン回転数の変化の一例を示す図である。
 以下、本発明の実施の形態を図面に基づいて説明する。本実施形態は、FR(フロントエンジン・リアドライブ)型車両に本発明を適用した場合について説明する。
 図1は、本実施形態に係る車両に搭載されたパワートレーンの概略構成を示している。この図1において、1はエンジン(駆動源)、MTは手動変速機、6はクラッチ装置、9はECU(Electronic Control Unit)である。
 図1に示すパワートレーンでは、エンジン1で発生した回転駆動力(トルク)が、クラッチ装置6を介して手動変速機MTに入力され、この手動変速機MTで適宜の変速比(運転者のシフトレバー操作によって選択された変速段での変速比)により変速されて、プロペラシャフトPS及びデファレンシャルギヤDFを介して左右の後輪(駆動輪)T,Tに伝達されるようになっている。尚、本実施形態に係る車両に搭載されている手動変速機MTは、前進6速段、後進1速段の同期噛み合い式手動変速機である。
 以下、エンジン1の全体構成、クラッチ装置6及び制御系について説明する。
 -エンジン1の全体構成-
 図2はエンジン1、及び、その吸排気系の概略構成を示す図である。尚、この図2ではエンジン1の1気筒の構成のみを示している。
 本実施形態におけるエンジン1は、例えば4気筒ガソリンエンジンであって、燃焼室11を形成するピストン12及び出力軸であるクランクシャフト13を備えている。上記ピストン12はコネクティングロッド14を介してクランクシャフト13に連結されており、ピストン12の往復運動がコネクティングロッド14によってクランクシャフト13の回転へと変換されるようになっている。
 上記クランクシャフト13には、外周面に複数の突起(歯)16を有するシグナルロータ15が取り付けられている。このシグナルロータ15の側方近傍にはクランクポジションセンサ(エンジン回転数センサ)81が配置されている。このクランクポジションセンサ81は、例えば電磁ピックアップであって、クランクシャフト13が回転する際にシグナルロータ15の突起16に対応するパルス状の信号(出力パルス)を発生する。
 エンジン1のシリンダブロック17には、エンジン水温(冷却水温)を検出する水温センサ82が配置されている。
 エンジン1の燃焼室11には点火プラグ2が配置されている。この点火プラグ2の点火タイミングはイグナイタ21によって調整される。このイグナイタ21はECU9によって制御される。
 エンジン1の燃焼室11には吸気通路3と排気通路4とが接続されている。吸気通路3と燃焼室11との間には吸気バルブ31が設けられている。この吸気バルブ31を開閉駆動することにより、吸気通路3と燃焼室11とが連通または遮断される。また、排気通路4と燃焼室11との間には排気バルブ41が設けられている。この排気バルブ41を開閉駆動することにより、排気通路4と燃焼室11とが連通または遮断される。これら吸気バルブ31及び排気バルブ41の開閉駆動は、クランクシャフト13の回転が伝達される吸気カムシャフト及び排気カムシャフト41aの各回転によって行われる。
 上記吸気通路3には、エアクリーナ32、熱線式のエアフローメータ83、吸気温センサ84(エアフローメータ83に内蔵)、及び、エンジン1の吸入空気量を調整する電子制御式のスロットルバルブ33が配置されている。このスロットルバルブ33はスロットルモータ34によって駆動される。スロットルバルブ33の開度はスロットル開度センサ85によって検出される。
 また、上記吸気通路3には燃料噴射用のインジェクタ35が配置されている。このインジェクタ35には、燃料タンクから燃料ポンプによって所定圧力の燃料が供給され、吸気通路3に燃料が噴射される。この噴射燃料は吸入空気と混合されて混合気となってエンジン1の燃焼室11に導入される。燃焼室11に導入された混合気(燃料+空気)は、エンジン1の圧縮行程を経た後、点火プラグ2にて点火されて燃焼する。この混合気の燃焼室11内での燃焼によりピストン12が往復運動してクランクシャフト13が回転する。
 エンジン1の排気通路4には2つの三元触媒42,43が配設されている。これら三元触媒42,43は、酸素を貯蔵(吸蔵)するO2ストレージ機能(酸素貯蔵機能)を有しており、この酸素貯蔵機能により、空燃比が理論空燃比からある程度まで偏移したとしても、HC,CO及びNOxを浄化することが可能となっている。
 上記排気通路4における上流側の三元触媒42の上流側には空燃比センサ(A/Fセンサ)86が、下流側の三元触媒43の上流側には酸素センサ(O2センサ)87がそれぞれ配置されている。
 -クラッチ装置6-
 図3はクラッチ装置6の概略構成を示している。この図3に示すように、クラッチ装置6は、クラッチ機構部60と、クラッチペダル70と、クラッチマスタシリンダ71と、クラッチレリーズシリンダ61とを備えている。
 クラッチ機構部60は、上記クランクシャフト13と、手動変速機MT(図1参照)のインプットシャフト(入力軸)ISとの間に介在するように設けられ、クランクシャフト13からインプットシャフトISへの駆動力を伝達・遮断したり、その駆動力の伝達状態を変更する。ここでは、クラッチ機構部60は、乾式単板式の摩擦クラッチとして構成されている。なお、クラッチ機構部60の構成として、それ以外の構成を採用してもよい。
 具体的に、クラッチ機構部60の入力軸であるクランクシャフト13には、フライホイール62とクラッチカバー63とが一体回転可能に取り付けられている。一方、クラッチ機構部60の出力軸であるインプットシャフトISには、クラッチディスク64がスプライン結合されている。このため、クラッチディスク64は、インプットシャフトISと一体回転しつつ、軸方向(図3の左右方向)に沿ってスライド可能となっている。クラッチディスク64とクラッチカバー63との間には、プレッシャプレート65が配設されている。このプレッシャプレート65は、ダイヤフラムスプリング66の外端部に当接され、このダイヤフラムスプリング66によってフライホイール62側へ付勢されている。
 また、インプットシャフトISには、レリーズベアリング67が軸方向に沿ってスライド可能に装着されている。このレリーズベアリング67の近傍には、レリーズフォーク68が軸68aにより回動可能に支持されており、その一端部(図3の下端部)がレリーズベアリング67に当接している。そして、レリーズフォーク68の他端部(図3の上端部)には、クラッチレリーズシリンダ61のロッド61aの一端部(図3の右端部)が連結されている。そして、レリーズフォーク68が作動されることによって、クラッチ機構部60の継合・解放動作が行われるようになっている。
 クラッチペダル70は、ペダルレバー72の下端部に踏み込み部であるペダル部72aが一体形成されて構成されている。そして、車室内とエンジンルーム内とを区画するダッシュパネルに取り付けられた図示しないクラッチペダルブラケットによってペダルレバー72の上端近傍位置が水平軸回りに回動自在に支持されている。ペダルレバー72には、図示しないペダルリターンスプリングによって手前側(運転者側)に向かう回動方向への付勢力が付与されている。このペダルリターンスプリングの付勢力に抗して運転者がペダル部72aの踏み込み操作を行うことにより、クラッチ機構部60の解放動作が行われるようになっている。また、運転者がペダル部72aの踏み込み操作を解除することにより、クラッチ機構部60の継合動作が行われるようになっている(これら解放・継合動作については後述する)。
 クラッチマスタシリンダ71は、シリンダボディ73の内部にピストン74などが組み込まれた構成となっている。そして、ピストン74には、ロッド75の一端部(図3の左端部)が連結されており、このロッド75の他端部(図3の右端部)がペダルレバー72の中間部に接続されている。シリンダボディ73の上部には、このシリンダボディ73内へ動作流体であるクラッチフルード(オイル)を供給するリザーブタンク76が設けられている。
 クラッチマスタシリンダ71は、運転者によるクラッチペダル70の踏み込み操作による操作力を受けることで、シリンダボディ73内でピストン74が移動することにより油圧を発生するようになっている。このとき、運転者の踏み込み操作力がペダルレバー72の中間部からロッド75に伝達されてシリンダボディ73内で油圧が発生する。クラッチマスタシリンダ71で発生する油圧は、シリンダボディ73内のピストン74のストローク位置に応じて変更されるようになっている。
 クラッチマスタシリンダ71によって発生する油圧は、油圧配管77内のオイルによってクラッチレリーズシリンダ61へ伝達される。
 クラッチレリーズシリンダ61は、クラッチマスタシリンダ71と同様に、シリンダボディ61bの内部にピストン61cなどが組み込まれた構成となっている。そして、ピストン61cには、ロッド61aの他端部(図3の左端部)が連結されている。ピストン61cのストローク位置は、このピストン61cが受ける油圧に応じて変更されるようになっている。
 クラッチ装置6では、クラッチレリーズシリンダ61内の油圧に応じてレリーズフォーク68が作動されることによって、クラッチ機構部60の継合・解放動作が行われるようになっている。この場合、クラッチペダル70の踏み込み操作量に応じてクラッチ機構部60のクラッチ継合力(クラッチ伝達容量)が変更されるようになっている。
 具体的には、クラッチペダル70の踏み込み操作量が大きくなり、クラッチマスタシリンダ71からクラッチレリーズシリンダ61へオイルが供給されて、クラッチレリーズシリンダ61内の油圧が高まると、ピストン61c及びロッド61aが図3中右方向へ移動され、ロッド61aと連結されたレリーズフォーク68が回動されて、レリーズベアリング67がフライホイール62側へ押される。さらに、同方向へのレリーズベアリング67の移動により、ダイヤフラムスプリング66の内端部が同方向へ弾性変形する。これにともない、ダイヤフラムスプリング66におけるプレッシャプレート65への付勢力が弱まる。このため、プレッシャプレート65、クラッチディスク64、及び、フライホイール62が滑りながら継合される半クラッチ状態となる。そして、さらに、付勢力が弱まると、プレッシャプレート65、クラッチディスク64、及び、フライホイール62が離間されて、クラッチ機構部60が解放状態になる。これにより、エンジン1から手動変速機MTへの動力伝達が遮断される。この場合、クラッチペダル70の踏み込み操作量が所定量を超えると、クラッチ機構部60が完全に切り離される完全解放状態(クラッチ伝達容量が0%の状態)になる。
 一方、クラッチペダル70の踏み込み操作量が小さくなり、クラッチレリーズシリンダ61からクラッチマスタシリンダ71へオイルが戻されて、クラッチレリーズシリンダ61内の油圧が低くなると、ピストン61c及びロッド61aは図3中左方向へ移動される。これにより、レリーズフォーク68が回動させられ、レリーズベアリング67がフライホイール62から離間される側へ移動される。これにともない、ダイヤフラムスプリング66の外端部によるプレッシャプレート65への付勢力が増大していく。このとき、プレッシャプレート65とクラッチディスク64との間、及び、クラッチディスク64とフライホイール62との間でそれぞれ摩擦力、すなわちクラッチ継合力が発生する。このクラッチ継合力が大きくなると、クラッチ機構部60が継合され、プレッシャプレート65、クラッチディスク64、及び、フライホイール62が一体となって回転する。これにより、エンジン1と手動変速機MTとが直結される。この場合、クラッチペダル70の踏み込み操作量が所定量を下回ると、クラッチ機構部60が完全に継合される完全継合状態(クラッチ伝達容量が100%の状態)になる。
 また、上記ペダルレバー72に近接してクラッチスイッチ8Bが配設されている。このクラッチスイッチ8Bは、運転者によるペダルレバー72の踏み込み量が所定量に達したことを検出する。つまり、運転者が変速操作を開始してペダルレバー72の踏み込み量が所定量に達した時点で、クラッチスイッチ8BはON信号を発信し、運転者がシフトレバーLの操作を完了してペダルレバー72の踏み込み量を所定量まで戻した時点で、クラッチスイッチ8BはON信号の発信を停止する。つまり、このクラッチスイッチ8BからのON信号の発信及び発信停止によって、変速操作の開始及び完了が検出可能となっている。
 尚、これら変速操作の開始及び完了の検出精度を高めるために、2つのクラッチスイッチを備えさせるようにしてもよい。つまり、クラッチ機構部60が完全解放状態となる位置までペダルレバー72が踏み込まれた場合にON信号を発信するクラッチスイッチと、クラッチ機構部60が完全継合状態となる位置までペダルレバー72の踏み込みが解除された場合にON信号を発信するクラッチスイッチとを備えさせ、これら信号によって変速操作の開始及び完了を検出可能とするものである。
 更に、上記インプットシャフトISに近接してインプット回転数センサ8Aが配設されている。このインプット回転数センサ8AはインプットシャフトISの回転数(入力軸回転数、入力軸回転速度)を検出して回転速度信号をECU9に出力する(図1を参照)。
 また、上記手動変速機MTのアウトプットシャフト(プロペラシャフトPSに繋がるシャフト)に近接してアウトプット回転数センサ8C(図1を参照)が配設されている。このアウトプット回転数センサ8Cは上記アウトプットシャフトの回転数(出力軸回転数、出力軸回転速度)を検出して回転速度信号をECU9に出力する。尚、このアウトプット回転数センサ8Cによって検出されたアウトプットシャフトの回転数を上記デファレンシャルギヤDFのギヤ比(最終減速比)で除算することで後輪Tの回転数を求め、これによって車速を算出することが可能となっている。
 -シフトパターン-
 次に、車室内のフロアに配設され、シフトレバーの移動をガイドするシフトゲートのシフトパターン(シフトゲート形状)について説明する。
 図4は、本実施形態における6速手動変速機MTのシフトパターンの概略を示している。図中2点鎖線で示すシフトレバーLは、図4に矢印Xで示す方向のセレクト操作と、このセレクト操作方向に直交する矢印Yで示す方向のシフト操作とが行い得る構成とされている。
 セレクト操作方向には、1速-2速セレクト位置P1,3速-4速セレクト位置P2,5速-6速セレクト位置P3及びリバースセレクト位置P4が一列に並んでいる。
 上記1速-2速セレクト位置P1でのシフト操作(矢印Y方向の操作)により、シフトレバーLを1速位置1stまたは2速位置2ndに動かすことができる。シフトレバーLが1速位置1stに操作された場合、上記手動変速機MTの変速機構に備えられた第1のシンクロメッシュ機構が1速成立側に作動して第1速段が成立する。また、シフトレバーLが2速位置2ndに操作された場合、上記第1のシンクロメッシュ機構が2速成立側に作動して第2速段が成立する。
 同様に、3速-4速セレクト位置P2でのシフト操作により、シフトレバーLを3速位置3rdまたは4速位置4thに動かすことができる。シフトレバーLが3速位置3rdに操作された場合、上記手動変速機MTの変速機構に備えられた第2のシンクロメッシュ機構が3速成立側に作動して第3速段が成立する。また、シフトレバーLが4速位置4thに操作された場合、上記第2のシンクロメッシュ機構が4速成立側に作動して第4速段が成立する。
 また、5速-6速セレクト位置P3でのシフト操作により、シフトレバーLを5速位置5thまたは6速位置6thに動かすことができる。シフトレバーLが5速位置5thに操作された場合、上記手動変速機MTの変速機構に備えられた第3のシンクロメッシュ機構が5速成立側に作動して第5速段が成立する。また、シフトレバーLが6速位置6thに操作された場合、上記第3のシンクロメッシュ機構が6速成立側に作動して第6速段が成立する。
 更に、リバースセレクト位置P4でのシフト操作により、シフトレバーLをリバース位置REVに動かすことができる。このリバース位置REVに操作された場合、上記全てのシンクロメッシュ機構が中立状態となると共に、上記手動変速機MTの変速機構に備えられたリバースアイドラギヤが作動することにより後進段が成立する。
 -制御系-
 上述したエンジン1の運転状態等の各種制御は上記ECU9によって制御される。このECU9は、図5に示すように、CPU(Central Processing Unit)91、ROM(Read Only Memory)92、RAM(Random Access Memory)93及びバックアップRAM94などを備えている。
 ROM92は、各種制御プログラムや、それら各種制御プログラムを実行する際に参照されるマップ等が記憶されている。CPU91は、ROM92に記憶された各種制御プログラムやマップに基づいて演算処理を実行する。RAM93は、CPU91での演算結果や各センサから入力されたデータ等を一時的に記憶するメモリである。バックアップRAM94は、エンジン1の停止時にその保存すべきデータ等を記憶する不揮発性のメモリである。
 これらROM92、CPU91、RAM93及びバックアップRAM94は、バス97を介して互いに接続されるとともに、外部入力回路95及び外部出力回路96と接続されている。
 外部入力回路95には、上記クランクポジションセンサ81、水温センサ82、エアフローメータ83、吸気温センサ84、スロットル開度センサ85、空燃比センサ86、酸素センサ87の他に、運転者によって操作されるアクセルペダルの開度を検出するアクセル開度センサ88、上記カムシャフトの回転位置を検出するカム角センサ89、上記インプット回転数センサ8A、上記クラッチスイッチ8B、上記アウトプット回転数センサ8C等が接続されている。各センサの構成及び機能は周知であるため、ここでの説明は省略する。
 一方、外部出力回路96には、上記スロットルバルブ33を駆動するスロットルモータ34、上記インジェクタ35、イグナイタ21等が接続されている。
 上記ECU9は、上記各種センサの検出信号に基づいて、エンジン1の各種制御を実行する。例えば、周知の点火プラグ2の点火タイミング制御、インジェクタ35の燃料噴射制御(空燃比センサ86及び酸素センサ87の各出力に基づいた空燃比フィードバック制御)、スロットルモータ34の駆動制御等が実行される。また、上記ECU9は、後述する「変速時エンジン制御」を実行し、変速時におけるエンジン回転数が所定の目標回転数に一致するように上記スロットルモータ34等の制御を行うようになっている。
 -変速時エンジン制御-
 次に、本実施形態の特徴とする動作である変速時エンジン制御(本発明でいう変速時回転数制御)について説明する。この変速時エンジン制御は、運転者による変速操作が行われる際のエンジン回転数を制御するものである。その概略について説明すると、運転者による変速操作が開始された際、その変速操作が開始された時点(例えばクラッチペダル70の踏み込み操作が開始された時点)のエンジン回転数を目標エンジン回転数として設定し、変速操作が終了するまで(クラッチ装置6の継合が行われるまで)、その目標エンジン回転数を維持するようにしている(回転数制御手段により実行される変速時回転数制御)。
 より具体的には、運転者による変速操作としては、クラッチ装置6の解放操作(クラッチペダル70の踏み込み操作)、シフトレバーLの手動変速操作(上記セレクト操作及びシフト操作)、クラッチ装置6の継合操作(クラッチペダル70の踏み込み解除操作)が順に行われる。そして、上記クラッチ装置6の解放操作が開始された時点でのエンジン回転数(上記クランクポジションセンサ81の出力信号に基づいて算出されるエンジン回転数)を記憶しておき、シフトレバーLの手動変速操作中、及び、クラッチ装置6の継合操作中において、上記記憶したエンジン回転数を維持するように上記スロットルバルブ33の開度を調整する。つまり、スロットルモータ34の制御によってスロットルバルブ33の開度を調整し、また、上述した空燃比フィードバック制御によりこの調整後のスロットルバルブ33の開度(吸入空気量)に応じたインジェクタ35からの燃料噴射量が得られるように制御することで、エンジン回転数を、変速操作が開始された時点(クラッチ装置6の解放操作が行われた時点)での回転数に保持する。
 尚、上記目標エンジン回転数としては、変速操作が開始される直前のエンジン回転数であってもよい。つまり、変速操作の開始に伴うクラッチペダル70の踏み込み操作が開始される直前のエンジン回転数を記憶しておき、この回転数を目標エンジン回転数として設定して、スロットルバルブ33の開度調整等を行うものである。
 尚、エンジン回転数制御の信頼性を高めることなどを目的として、この変速時エンジン制御の実行条件としては、「車両(特にエンジン)が暖機完了状態であること」、「車両が走行中であること」、「クラッチ装置6の操作がなされていること」が挙げられる。つまり、車両が暖機完了状態でない場合には、スロットルバルブ33の開度によるエンジン回転数の制御性が悪化してしまうため、「車両が暖機完了状態であること」を変速時エンジン制御の実行条件としている。また、車両が停車中である場合には、車両発進に伴うクラッチ装置6を継合させる際に動力伝達系に悪影響を与える可能性は低いため、「車両が走行中であること」を変速時エンジン制御の実行条件としている。更に、変速操作が行われていない場合にエンジン回転数を変化させてしまうと運転者に違和感を与えたりドライバビリティの悪化を招く可能性があるため、「クラッチ装置6の操作がなされていること」を変速時エンジン制御の実行条件としている。
 以下、この変速時エンジン制御の具体的な制御手順について説明する。図6は、変速時エンジン制御の手順を示すフローチャート図である。図6に示すフローチャートは、イグニッションスイッチのON操作後、数msec毎またはクランクシャフト13の所定回転角度毎に実行される。
 先ず、ステップST1において、エンジン1の暖機が完了しているか否かを判定する。この判定は、上記水温センサ82により検出されるエンジン水温に基づいて行われる。また、この判定を行う理由は上述のとおりである。
 エンジン1の暖機が完了しておらず、ステップST1でNO判定された場合には、ステップST2に移り、エンジン出力が、現在のアクセルペダルの踏み込み量に対応した出力(以下、「アクセルペダル対応出力」と呼ぶ)として得られるように、上記スロットルモータ34の制御及びそれに伴うインジェクタ35の制御を行う。つまり、上記アクセル開度センサ88によって検出されるアクセル開度(アクセルペダルの踏み込み量)が大きいほどスロットルバルブ33の開度を大きくするようにスロットルモータ34を駆動し、それに伴って上記インジェクタ35からの燃料噴射量が増量される。つまり、運転者の要求するエンジン出力が得られるようにする。
 一方、エンジン1の暖機が完了しており、ステップST1でYES判定された場合には、ステップST3に移り、車両が走行中であるか否かを判定する。この判定は、上記アウトプット回転数センサ8Cの出力に基づいて判定される。また、この判定を行う理由も上述のとおりである。
 車両が走行中でない、つまり停車中であり、ステップST3でNO判定された場合には、ステップST2に移り、エンジン出力を上記アクセルペダル対応出力とするようにスロットルモータ34の制御等を行う。例えば、アクセルペダル開度が「0」であった場合にはスロットル開度が略「0」とされるようにスロットルモータ34の制御等を行う。
 一方、車両が走行中であり、ステップST3でYES判定された場合には、ステップST4に移り、変速操作が開始されたか否かを判定する。つまり、上記クラッチ装置6が解放されたか否かを判定する。具体的には、上記クラッチスイッチ8Bからの出力信号によってクラッチ装置6が解放されたか否か(運転者によるペダルレバー72の踏み込み操作によってクラッチ機構部60が解放されたか否か)を判定するものであって、このクラッチスイッチ8BからON信号が発信された場合に、クラッチ装置6が解放状態になり変速操作が開始されたと判定するようにしている。
 変速操作が開始されておらず、ステップST4でNO判定された場合には、ステップST2に移り、エンジン出力を上記アクセルペダル対応出力とするようにスロットルモータ34の制御等を行う。
 一方、変速操作が開始され、ステップST4でYES判定された場合には、ステップST5に移り、変速前Ne(変速前エンジン回転数)保持出力と、アクセルペダル対応出力(運転者が要求する駆動源の出力)とを比較し、変速前Ne保持出力がアクセルペダル対応出力よりも大きいか否かを判定する。ここで、変速前Ne保持出力とは、上記変速操作が開始された時点(上記ステップST4でYES判定された時点)でのエンジン回転数を保持するためのエンジン出力である。この変速前Ne保持出力は、エンジン1の排気量や気筒数等に応じ、演算、または、予め実験やシミュレーション等によって作成されたエンジン要求出力マップを参照するなどして求められる。
 変速前Ne保持出力がアクセルペダル対応出力よりも大きく、ステップST5でYES判定された場合には、ステップST6に移り、エンジン出力を上記変速前Ne保持出力とするようにスロットルモータ34の制御等を行う。つまり、変速操作に伴って運転者によるアクセルペダルの踏み込み量(アクセル開度)が小さくなったとしても、スロットルバルブ33の開度やインジェクタ35からの燃料噴射量を保持または補正することで、エンジン出力を保持または調整し、これによってエンジン回転数を維持(変速操作が開始された時点でのエンジン回転数を維持)するようにしている。このような制御を開始した後、ステップST7に移り、予めECU9に記憶されているNe保持フラグをONにセットする。
 一方、アクセルペダル対応出力が変速前Ne保持出力以上となっており、ステップST5でNO判定された場合には、ステップST8に移り、エンジン出力を上記アクセルペダル対応出力とするようにスロットルモータ34及びインジェクタ35の制御を行う。つまり、運転者によるアクセルペダルの踏み込み量(アクセル開度)が大きいことで、アクセルペダル対応出力が変速前Ne保持出力以上となっている場合には、このアクセルペダルの踏み込み量に応じたエンジン出力が得られるようにスロットルモータ34及びインジェクタ35の制御を行う。このような状況としては、例えば運転者にダウンシフト操作の意思があり、エンジン回転数をダウンシフト操作後の同期回転数に一致させるためのアクセルペダルの踏み込み操作(ブリッピング)が行われてエンジン回転数を上昇させた場合等が想定される。
 このようにしてエンジン出力をアクセルペダル対応出力とする制御を開始した後、ステップST9に移り、上記Ne保持フラグをOFFにリセットする。
 以上の如くエンジン出力の制御(ステップST6においてエンジン出力を変速前Ne保持出力とする制御、または、ステップST8においてエンジン出力をアクセルペダル対応出力とする制御)を行った状態で、ステップST10に移り、変速操作が完了したか否かを判定する。つまり、上記クラッチ装置6が継合されたか否かを判定する。具体的には、上記クラッチスイッチ8Bからの出力信号によってクラッチ装置6が継合されたか否か(運転者によるペダルレバー72の踏み込み解除操作によってクラッチ機構部60が継合されたか否か)を判定するものであって、このクラッチスイッチ8BからのON信号の発信が停止された場合に、クラッチ装置6が継合状態になり変速が完了したと判定するようにしている。
 変速が完了しておらず、ステップST10でNO判定された場合にはステップST5に戻り、上述した変速前Ne保持出力とアクセルペダル対応出力との比較を行う。この際、前回のステップST5での判定において、変速前Ne保持出力がアクセルペダル対応出力よりも大きく、エンジン出力が変速前Ne保持出力となるように制御されていた場合であっても、変速途中で運転者によるアクセルペダルの踏み込み量が大きくなって、アクセルペダル対応出力が変速前Ne保持出力以上となった場合には、ステップST5でNO判定されることによりステップST8に移り、エンジン出力を上記アクセルペダル対応出力とするようにスロットルモータ34及びインジェクタ35の制御が行われることになる。
 そして、変速が完了し、ステップST10でYES判定された場合にはステップST11に移り、上記Ne保持フラグがONにセットされているか否か、つまり、現在のエンジン出力は上記変速前Ne保持出力として制御されているか否かを判定する。
 上記Ne保持フラグがONにセットされており、ステップST11でYES判定された場合にはステップST12に移り、エンジン出力を上記アクセルペダル対応出力とするようにスロットルモータ34及びインジェクタ35の制御を行い、その後、ステップST13において上記Ne保持フラグをOFFにリセットする。つまり、エンジン出力を変速前Ne保持出力とする制御を解除し、アクセルペダルの踏み込み量に応じたエンジン出力を得るといった通常のエンジン出力制御に戻す。
 一方、ステップST11でNO判定された場合、つまり、現在のエンジン出力が上記アクセルペダル対応出力として制御されている場合には、そのままリターンされる。
 以上の制御動作が、変速操作が行われる度に実行される。
 以下、上記変速時エンジン制御が実行される場合におけるインプットシャフト回転数及びエンジン回転数の変化と、従来技術におけるインプットシャフト回転数及びエンジン回転数の変化との比較について説明する。
 図7は、第2速段からの変速操作時に上記変速時エンジン制御が行われた場合におけるインプットシャフト回転数及びエンジン回転数の変化を示す図である。図中の実線はダウンシフト時(第2速段から第1速段へのダウンシフト時)のインプットシャフト回転数の変化を示し、図中の二点鎖線はアップシフト時(第2速段から第3速段へのアップシフト時)のインプットシャフト回転数の変化を示し、図中の一点鎖線はエンジン出力が変速前Ne保持出力となるように制御された場合のエンジン回転数の変化を示している。また、図中のタイミングT1は変速操作が開始された時点を、タイミングT2は手動変速操作(手動変速機MTの手動変速操作)が完了した時点(クラッチ装置6は未だ解放状態にある状態)をそれぞれ示している。
 一方、図8は、従来技術において、第2速段から第1速段へダウンシフトする場合におけるインプットシャフト回転数及びエンジン回転数の変化の一例を示す図である。図中の実線はインプットシャフト回転数の変化を示し、図中の一点鎖線はエンジン回転数の変化を示している。また、図中のタイミングT1は変速操作が開始された時点を、タイミングT2は手動変速操作(手動変速機MTの手動変速操作)が完了した時点を、T3は変速操作が完了(クラッチ装置6が完全継合)した時点をそれぞれ示している。
 更に、図9は、変速時に自動的にブリッピングを行うようにした従来技術において、第2速段から第3速段へアップシフトする場合におけるインプットシャフト回転数及びエンジン回転数の変化の一例を示す図である。図中の実線はインプットシャフト回転数の変化を示し、図中の一点鎖線はエンジン回転数の変化を示している。また、図中のタイミングT1は変速操作が開始された時点を、タイミングT2は手動変速操作(手動変速機MTの手動変速操作)が完了した時点を、T3は変速操作が完了(クラッチ装置6が完全継合)した時点をそれぞれ示している。
 上記変速時エンジン制御が行われる場合、図7に示すように、ダウンシフト時にあっては、変速機構において第1速段が成立した時点でのインプットシャフト回転数とエンジン回転数との偏差は図中のN1となっている。また、アップシフト時にあっては、変速機構において第3速段が成立した時点でのインプットシャフト回転数とエンジン回転数との偏差は図中のN2となっている。この場合、ダウンシフト時及びアップシフト時の何れにあっても、インプットシャフト回転数とエンジン回転数との間には偏差が生じているもののその偏差は比較的小さく、クラッチ装置6を継合させる際における動力伝達系への悪影響は小さくなっている。
 これに対し、図8に示すように、従来技術において第2速段から第1速段へダウンシフトする場合、運転者によるアクセルペダルの踏み込み解除操作に伴い、手動変速操作中にエンジン回転数がアイドリング回転数に向かって低下していくため、変速機構において第1速段が成立した時点でのインプットシャフト回転数とエンジン回転数との偏差は図中のN3となっており、非常に大きな回転数差を生じている。このため、この状態からクラッチ装置6を係合させていく際、クラッチ装置6に過大な減速トルクが入力され、クラッチ装置6を含む動力伝達系に悪影響を与えてしまう可能性がある。
 また、図9に示すように、変速時に自動的にブリッピングを行うようにした従来技術(アップシフト時であってもブリッピングを行うもの)において、第2速段から第3速段へアップシフトする場合、変速機構において第3速段が成立した時点でのインプットシャフト回転数とエンジン回転数との偏差は図中のN4となっており、非常に大きな回転数差を生じている。このため、この状態からクラッチ装置6を係合させていく際、クラッチ装置6に過大な加速トルクが入力され、この場合にもクラッチ装置6を含む動力伝達系に悪影響を与えてしまう可能性がある。
 以上のように、本実施形態に係る変速時エンジン制御にあっては、手動変速操作がダウンシフト操作及びアップシフト操作の何れであっても手動変速操作後のインプットシャフトISの回転数とエンジン回転数との間に大きな偏差が生じることはなく、クラッチ装置6を継合させる際における動力伝達系への悪影響を抑制することができる。
 また、図9に示した変速時に自動的にブリッピングを行うものにおいて、アップシフト時にブリッピングを行わないようにしてインプットシャフト回転数とエンジン回転数との偏差を小さくしようとする場合には、手動変速操作がダウンシフト操作であるのかアップシフト操作であるのかを判断する必要があり、それを判別するためのシフト位置センサ等の特別なセンサが必要となる。これに対し、本実施形態に係る変速時エンジン制御では、手動変速操作がダウンシフト操作であるのかアップシフト操作であるのかを判断する必要がないため、シフトレバーLの操作位置を検出するためのセンサ(シフト位置センサ)を設けておく必要がなく、コストの低廉化を図ることができる。
 (変形例1)
 次に、変形例1について説明する。この変形例は、上記変速時エンジン制御における変速前Ne保持出力によって調整するエンジン回転数(目標エンジン回転数)を補正するものである。
 変速操作が開始されてからクラッチ装置6が継合されるまでの期間中に、車速が変化した場合、それに伴って手動変速操作が完了した時点や、クラッチ装置6の継合動作中におけるインプットシャフトISの回転数も、車速が変化しない場合の回転数に対して変化することになる。
 例えば、変速操作が開始されてからクラッチ装置6が継合されるまでの期間中に、車速が低下した場合(例えば、手動変速操作に比較的長い時間を要した場合や、登坂路の走行によって車速が低下した場合など)、それに伴って手動変速操作が完了した時点でのインプットシャフト回転数も低くなる(車速が一定のまま手動変速操作が完了した場合に比べて低くなる)。このため、手動変速操作完了後のインプットシャフト回転数とエンジン回転数との偏差を小さくするように、上記変速時エンジン制御における目標エンジン回転数(変速操作の開始時点でのエンジン回転数)に対して補正を行って、最終目標エンジン回転数を低く設定する。そして、その補正量としては、変速操作開始前の変速段において現在の車速(低下した後の車速)であると仮定した場合のエンジン回転数を目標エンジン回転数とするような補正量を求め、この補正量で補正したエンジン回転数を最終目標エンジン回転数として設定することになる。
 一方、変速操作が開始されてからクラッチ装置6が継合されるまでの期間中に、車速が上昇した場合(例えば、降坂路の走行によって車速が上昇した場合など)、それに伴って手動変速操作が完了した時点でのインプットシャフト回転数も高くなる(車速が一定のまま手動変速操作が完了した場合に比べて高くなる)。このため、手動変速操作完了後のインプットシャフト回転数とエンジン回転数との偏差を小さくするように、上記変速時エンジン制御における目標エンジン回転数(変速操作の開始時点でのエンジン回転数)に対して補正を行って、最終目標エンジン回転数を高く設定する。そして、その補正量としては、変速操作開始前の変速段において現在の車速(上昇した後の車速)であると仮定した場合のエンジン回転数を目標エンジン回転数とするような補正量を求め、この補正量で補正したエンジン回転数を最終目標エンジン回転数として設定することになる。
 尚、車速の変化は、上記アウトプット回転数センサ8Cの出力に基づいて算出される。
 本変形例によれば、車速の変化に追従して目標エンジン回転数を適切に調整することができる。このため、手動変速操作中に車速が大きく変化した場合であっても、手動変速操作後のインプットシャフト回転数とエンジン回転数との間に大きな偏差が生じることはなく、クラッチ装置6を継合させる際における動力伝達系への悪影響を抑制することができる。
 (変形例2)
 次に、変形例2について説明する。この変形例は、上記変速時エンジン制御の実行条件として特定の変速段からの変速操作が行われる場合に限定するものである。
 具体的には上記第2速段(複数の変速段のうち第2番目に変速比が高い変速段)が選択されて走行している状態から変速操作が行われる際にのみ、上記変速時エンジン制御を実行するようにしている。つまり、第3速段~第5速段が選択されて走行している状態から変速操作が行われる際には上記変速時エンジン制御を非実行とするようにしている。
 これは、クラッチ装置6を継合させる際における動力伝達系への悪影響が特に大きくなりやすい状況を考慮したものである。つまり、手動変速機MTを第2速段から第3速段にアップシフトさせようとした場合に誤って第1速段へのシフト操作を行ってしまった場合、クラッチ装置6を継合させる際に過大な減速トルクがクラッチ装置6に入力され、動力伝達系に悪影響を与えてしまうことになる。これは、第1速段と第2速段とのギヤ比の差が他の隣り合う変速段同士のギヤ比の差よりも大きいためである。このように、第2速段から変速操作が行われる際にのみ上記変速時エンジン制御を実行し、その他の変速段では変速時エンジン制御を非実行とすることで、第2速段以外の変速段から変速操作が行われる際の違和感(エンジン回転数がアクセルペダルの踏み込み量に対応しないことによる違和感)を回避しながらも、第2速段から変速操作が行われる際の動力伝達系への悪影響(特に、第2速段から第1速段へダウンシフトされる際の悪影響)を抑制することができる。
 尚、第1速段(複数の変速段のうち最も変速比が高い変速段)が選択されて走行している状態では、手動変速操作としてはアップシフト操作しか行われず、第6速段(複数の変速段のうち最も変速比が低い変速段)が選択されて走行している状態では、手動変速操作としてはダウンシフト操作しか行われないため、上記変速時エンジン制御は必ずしも実行する必要はない。例えば、第1速段が選択されて走行している状態から変速操作が行われる場合には上記変速時エンジン制御を非実行としてエンジン回転数を低下させ、第2速段の同期回転数に近付けることが好ましい。また、第6速段が選択されて走行している状態から変速操作が行われる場合には上記変速時エンジン制御を非実行としてエンジン回転数を上昇させ、第5速段の同期回転数に近付けることが好ましい。
 尚、手動変速機MTが第2速段となっているか否かの判定は、クラッチ装置6が継合状態である場合に、上記クランクポジションセンサ81の出力信号に基づいて算出されるエンジン回転数と、アウトプット回転数センサ8Cによって検出されるアウトプットシャフトの回転数との比によって判定することが可能である。
 -他の実施形態-
 以上説明した実施形態及び各変形例では、FR型車両に搭載され、前進6速段、後進1速段の同期噛み合い式手動変速機に本発明を適用した場合について説明した。本発明はこれに限らず、FF(フロントエンジン・フロントドライブ)車両等、その他の形態の車両に搭載された手動変速機にも適用可能である。また、上記とは段数の異なる変速機(例えば前進5速段のもの)に対しても適用可能である。
 また、上記実施形態及び各変形例では、駆動源としてガソリンエンジン1を搭載した車両に本発明を適用した場合について説明した。本発明はこれに限られることなく、ディーゼルエンジンを搭載した車両や、エンジン(内燃機関)と電動機(例えば走行用モータまたはモータジェネレータ等)を搭載したハイブリッド車にも適用することができる。
 更に、上記実施形態及び各変形例では、クラッチ装置6が解放されているか否かを判定するセンサとしてクラッチスイッチ8Bを使用していた。本発明はこれに限らず、シフトレバーLが中立位置に移動操作されたか否かを判定するニュートラルスイッチや、シフトレバーLの操作位置を検出するシフトストロークセンサや、クラッチペダル70の位置を検出可能なクラッチストロークセンサや、レリーズベアリング67のスライド位置を検出可能なストロークセンサを採用することも可能である。
 また、上記実施形態及び各変形例では、変速時エンジン制御の実行条件の一つとして「車両が走行中であること」としていたが、「車両速度が所定値(例えば20km/h)以上であること」としてもよい。つまり、車両速度が所定値未満である場合には、クラッチ装置6を継合させる際に動力伝達系に悪影響を与える可能性は低いため、車両速度が所定値以上であることを変速時エンジン制御の実行条件とすることが可能である。
 また、上記実施形態及び各変形例における変速時エンジン制御では、クラッチ装置6の解放操作中、シフトレバーLの手動変速操作中、クラッチ装置6の継合操作中に亘ってエンジン回転数を上記目標回転数に一致させるようにしていた。本発明はこれに限らず、上記クラッチ装置6の継合操作中にエンジン回転数を上記目標回転数に一致させるようにしておれば、動力伝達系への悪影響を抑制することができるため、このクラッチ装置6の継合操作中にのみエンジン回転数を上記目標回転数に一致させるようにしてもよい。
 本発明は、手動変速機及びクラッチ装置を搭載した車両において、クラッチ装置を継合させる際のエンジン回転数制御に適用可能である。
1    エンジン(駆動源)
33   スロットルバルブ
34   スロットルモータ
35   インジェクタ
6    クラッチ装置
8A   インプット回転数センサ
8B   クラッチスイッチ
8C   アウトプット回転数センサ
9    ECU
MT   手動変速機
L    シフトレバー

Claims (7)

  1.  駆動源からの駆動力の伝達及び遮断が行われるように継合状態と解放状態とが切り換え可能なクラッチ装置と、このクラッチ装置が解放状態にある際の運転者による手動変速操作によって複数の変速段のうち何れかが選択可能とされた手動変速機とを備えた車両の制御装置において、
     上記クラッチ装置及び上記手動変速機の操作期間のうち、少なくとも解放状態にあるクラッチ装置を継合状態に向けて操作する期間中、変速操作開始時点または変速操作開始前の駆動源の回転数を目標回転数として上記駆動源を制御する変速時回転数制御を行う回転数制御手段を備えていることを特徴とする車両の制御装置。
  2.  請求項1記載の車両の制御装置において、
     上記回転数制御手段は、上記クラッチ装置が解放状態とされた変速操作の開始時点からクラッチ装置が継合状態となるまでの期間中、変速操作開始時点または変速操作開始前の駆動源の回転数を目標回転数として上記駆動源を制御するよう構成されていることを特徴とする車両の制御装置。
  3.  請求項1記載の車両の制御装置において、
     上記駆動源の回転数を上記目標回転数に保持するために必要な駆動源の出力と、運転者が要求する駆動源の出力とを比較し、高い方の出力が駆動源の出力となるように制御される構成とされていることを特徴とする車両の制御装置。
  4.  請求項1記載の車両の制御装置において、
     上記回転数制御手段は、上記クラッチ装置が解放状態とされた変速操作の開始時点からクラッチ装置が継合状態となるまでの期間中に、上記手動変速機の出力軸回転数または車速が低下した場合には上記駆動源の目標回転数を低下側に補正する一方、上記期間中に、上記手動変速機の出力軸回転数または車速が上昇した場合には上記駆動源の目標回転数を上昇側に補正するよう構成されていることを特徴とする車両の制御装置。
  5.  請求項1~4のうち何れか一つに記載の車両の制御装置において、
     上記回転数制御手段は、上記手動変速機の複数の変速段のうち第2番目に変速比が高い変速段が選択されている状態から変速操作が行われる際にのみ、上記変速時回転数制御を実行するよう構成されていることを特徴とする車両の制御装置。
  6.  請求項1~5のうち何れか一つに記載の車両の制御装置において、
     上記回転数制御手段は、車両の暖機完了後に上記変速時回転数制御を行うよう構成されていることを特徴とする車両の制御装置。
  7.  請求項1~6のうち何れか一つに記載の車両の制御装置において、
     上記回転数制御手段は、車両速度が所定値以上である場合に上記変速時回転数制御を行うよう構成されていることを特徴とする車両の制御装置。
PCT/JP2011/060965 2011-05-12 2011-05-12 車両の制御装置 WO2012153419A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11864928.4A EP2713030A4 (en) 2011-05-12 2011-05-12 CONTROL DEVICE FOR A VEHICLE
PCT/JP2011/060965 WO2012153419A1 (ja) 2011-05-12 2011-05-12 車両の制御装置
JP2013513866A JP5757327B2 (ja) 2011-05-12 2011-05-12 車両の制御装置
CN201180070730.3A CN103534466A (zh) 2011-05-12 2011-05-12 车辆的控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/060965 WO2012153419A1 (ja) 2011-05-12 2011-05-12 車両の制御装置

Publications (1)

Publication Number Publication Date
WO2012153419A1 true WO2012153419A1 (ja) 2012-11-15

Family

ID=47138917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060965 WO2012153419A1 (ja) 2011-05-12 2011-05-12 車両の制御装置

Country Status (4)

Country Link
EP (1) EP2713030A4 (ja)
JP (1) JP5757327B2 (ja)
CN (1) CN103534466A (ja)
WO (1) WO2012153419A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103847518A (zh) * 2012-12-04 2014-06-11 上海汽车集团股份有限公司 一种用于手动挡车辆的发动机重启控制系统和方法
JP2016089669A (ja) * 2014-10-31 2016-05-23 スズキ株式会社 車両の表示制御装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6237448B2 (ja) * 2014-04-28 2017-11-29 スズキ株式会社 内燃機関停止制御装置
CN108343738B (zh) * 2017-01-22 2022-09-16 微宏动力系统(湖州)有限公司 一种车辆手动变速箱的换挡控制方法
CN108343740A (zh) * 2017-01-22 2018-07-31 微宏动力系统(湖州)有限公司 手动变速箱的换档控制方法
CN110230691B (zh) * 2018-03-05 2021-05-18 上海汽车集团股份有限公司 一种车辆、电子离合器的换挡控制方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005163763A (ja) * 2003-12-05 2005-06-23 Nissan Motor Co Ltd エンジンの制御装置
JP2007046674A (ja) * 2005-08-09 2007-02-22 Nissan Motor Co Ltd 車両のシフト位置検出装置
JP2008267186A (ja) * 2007-04-17 2008-11-06 Nissan Motor Co Ltd 車両の変速時の制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58200052A (ja) * 1982-05-18 1983-11-21 Nissan Motor Co Ltd 手動変速式車両のエンジン回転数調整装置
DE10102016A1 (de) * 2001-01-18 2002-07-25 Daimler Chrysler Ag Verfahren zur Regelung des Schaltvorganges eines Kraftfahrzeuges
DE10139558A1 (de) * 2001-08-10 2003-02-20 Zahnradfabrik Friedrichshafen Antriebsanordnung
US7285073B2 (en) * 2003-12-05 2007-10-23 Nissan Motor Co., Ltd. Engine fuel supply control device
JP3724491B2 (ja) * 2004-02-06 2005-12-07 いすゞ自動車株式会社 車両用動力伝達装置のエンジン制御装置
JP3893395B2 (ja) * 2005-01-28 2007-03-14 モトール自動車株式会社 ハイブリッド電気自動車の駆動制御装置
JP4496201B2 (ja) * 2006-11-27 2010-07-07 いすゞ自動車株式会社 車両用動力伝達装置の変速時制御装置
JP4661823B2 (ja) * 2007-04-16 2011-03-30 日産自動車株式会社 エンジン制御装置
JP4793331B2 (ja) * 2007-06-13 2011-10-12 日産自動車株式会社 車両変速時の制御装置
DE102010040455A1 (de) * 2010-09-09 2012-03-15 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Antriebsstrangs

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005163763A (ja) * 2003-12-05 2005-06-23 Nissan Motor Co Ltd エンジンの制御装置
JP2007046674A (ja) * 2005-08-09 2007-02-22 Nissan Motor Co Ltd 車両のシフト位置検出装置
JP2008267186A (ja) * 2007-04-17 2008-11-06 Nissan Motor Co Ltd 車両の変速時の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2713030A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103847518A (zh) * 2012-12-04 2014-06-11 上海汽车集团股份有限公司 一种用于手动挡车辆的发动机重启控制系统和方法
JP2016089669A (ja) * 2014-10-31 2016-05-23 スズキ株式会社 車両の表示制御装置

Also Published As

Publication number Publication date
EP2713030A4 (en) 2015-03-25
JPWO2012153419A1 (ja) 2014-07-28
EP2713030A1 (en) 2014-04-02
CN103534466A (zh) 2014-01-22
JP5757327B2 (ja) 2015-07-29

Similar Documents

Publication Publication Date Title
JP5316693B2 (ja) 車両の制御装置
US9014927B2 (en) Shift control system and shift control method
JP5757327B2 (ja) 車両の制御装置
US20150291174A1 (en) Control apparatus for vehicle
JP5737394B2 (ja) 車両の制御装置
JP4591601B2 (ja) 車両の制御装置
JP5505532B2 (ja) 車両の制御装置
JP5263449B2 (ja) 手動変速機のシフト判定装置
JP5494857B2 (ja) 車両の制御装置
JP5273309B1 (ja) 車両の制御装置
JP4770363B2 (ja) 複数クラッチ式変速機の制御装置
US7926375B2 (en) Transmission control apparatus
JP5299585B1 (ja) 手動変速機を備えた車両の制御装置
JP5494856B2 (ja) 車両の制御装置
JP2008215198A (ja) 内燃機関の制御装置および制御方法
US10099698B2 (en) Control apparatus for vehicle and control method
JP5348335B2 (ja) 手動変速機を備えた車両の制御装置
JP6052047B2 (ja) 車両の制御装置
JP2013079604A (ja) 手動変速機を備えた車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864928

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013513866

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011864928

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011864928

Country of ref document: EP