WO2012150205A1 - Neue substituierte benzylalkoholester der cyclopropancarbonsäure als schädlingsbekämpfungsmittel - Google Patents

Neue substituierte benzylalkoholester der cyclopropancarbonsäure als schädlingsbekämpfungsmittel Download PDF

Info

Publication number
WO2012150205A1
WO2012150205A1 PCT/EP2012/057885 EP2012057885W WO2012150205A1 WO 2012150205 A1 WO2012150205 A1 WO 2012150205A1 EP 2012057885 W EP2012057885 W EP 2012057885W WO 2012150205 A1 WO2012150205 A1 WO 2012150205A1
Authority
WO
WIPO (PCT)
Prior art keywords
spp
compounds
haloalkyl
formula
methyl
Prior art date
Application number
PCT/EP2012/057885
Other languages
English (en)
French (fr)
Inventor
Peter Jeschke
Arnd Voerste
Neil Berry
Naomi DYER
Weiqian David HONG
Zeynab HYDER
Louise LA PENSEE
Paul O´NEILL
Sunil SABBANI
Stephen Ward
Original Assignee
Bayer Cropscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Cropscience Ag filed Critical Bayer Cropscience Ag
Publication of WO2012150205A1 publication Critical patent/WO2012150205A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/14Radicals substituted by singly bound hetero atoms other than halogen
    • C07D333/16Radicals substituted by singly bound hetero atoms other than halogen by oxygen atoms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N53/00Biocides, pest repellants or attractants, or plant growth regulators containing cyclopropane carboxylic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/74Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C69/743Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring of acids with a three-membered ring and with unsaturation outside the ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/02Systems containing only non-condensed rings with a three-membered ring

Definitions

  • the present application relates to novel substituted benzyl alcohol esters of cyclopropanecarboxylic acid, processes for their preparation and use for controlling animal pests, especially arthropods and in particular of insects, arachnids and nematodes.
  • Ri is CH3, when R 2 and X are H, R 2 is OH, when R 1 and X are H and X is OH, when R 1 and R 2 are H, they are already known as insecticidally active compounds have become known (Pest, Manag, Science, 2007, 63 (6), 569-575; Pest, Sci 1995, 44 (3), 269-75; Special Publication-Royal Society of Chem., 1994, 147 (Advance in The Chemistry of Insect Control III), 117-26, J. Agric. Food Chem., 1992, 40 (8), 1432-6 and Agric. Chem. Group, FMC Corp., Princeton, NJ, USA; 1983, 14 (6), 560-70, J.
  • the object of the present invention was to provide compounds which broaden the spectrum of pesticides from various aspects.
  • Z is alkyl, alkoxy, haloalkyl, alkylthio, alkylsulfoxyl, alkylsulfonyl, haloalkoxy, haloalkylthio, haloalkylsulfoxyl, haloalkylsulfonyl, alkylamino, dialkylamino, cyano, halogen or hydroxy and p is a number from 0 to 2,
  • Ri is optionally substituted hetaryl, preferably pyridin-2-yl or pyridin-3-yl, or one of the radicals from the series
  • Xi, ⁇ ', Xi are independently alkyl, haloalkyl, cycloalkyl, halogenocycloalkyl, alkenyl, haloalkenyl, alkynyl, alkoxy, haloalkoxy, alkoxycarbonyl, alkoxyalkyl, haloalkoxyalkyl, alkylthio, haloalkylthio, alkylsulfinyl, haloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl, fluoro, Bromine, chlorine, iodine, nitro, cyano, amino, alkylamino, dialkylamino and
  • Y 1 and Y 2 independently of one another are halogen or haloalkyl, preferably halogen is selected from the series bromine or chlorine, preferably haloalkyl is trifluoromethyl.
  • the compounds of the formula (I) can also be present in different compositions as optical isomers or mixtures of isomers, which can optionally be separated in a customary manner.
  • the compounds of the formulas (I-a) to (I-d) can be present both as mixtures and in the form of their pure isomers. If desired, mixtures of the compounds of the formulas (I-a), (I-b), (I-c) and (I-d) can be separated by physical methods, for example by chromatographic methods.
  • Yi and Y 2 are each independently halogen or haloalkyl, preferably halogen is selected from the group of bromine or chlorine, preferably haloalkyl is trifluoromethyl and
  • LG for an in situ generated nucleofuge leaving group is, a) in a first reaction step with compounds of the general formula (III-A)
  • Hal is halogen, such as iodine or bromine, preferably iodine,
  • Z is alkyl, alkoxy, haloalkyl, alkylthio, alkylsulfoxyl, alkylsulfonyl, haloalkoxy, haloalkylthio, haloalkylsulfoxyl, haloalkylsulfonyl, alkylamino, dialkylamino, cyano, halo or hydroxy and p is a number from 0 to 2, optionally in the presence of a suitable acid binder and optionally in the presence of a suitable diluent to give compounds of the general formula (IA)
  • Hal is halogen, such as iodine or bromine, preferably iodine,
  • R is hydrogen or alkylene
  • Ri is optionally substituted hetaryl, preferably pyridin-2-yl or pyridin-3-yl, or one of the radicals from the series
  • Xi, ⁇ ', Xi are independently alkyl, haloalkyl, cycloalkyl, halogenocycloalkyl, alkenyl, haloalkenyl, alkynyl, alkoxy, haloalkoxy, alkoxycarbonyl, alkoxyalkyl, haloalkoxyalkyl, alkylthio, haloalkylthio, alkylsulfinyl, haloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl, fluoro, Bromine, chlorine, iodine, nitro, cyano, amino, alkylamino, dialkylamino are optionally reacted in the presence of a suitable transition metal catalyst and if appropriate in the presence of a suitable diluent, or b) with compounds of the general formula (III-B)
  • Z, p and 1 have the meaning given above, optionally in the presence of a suitable acid binder and optionally in the presence of a suitable diluent.
  • novel compounds of the formula (I) have pronounced biological properties and, above all, for controlling animal pests, in particular insects, arachnids and nematodes, which are used in agriculture, in forestry, in the protection of stored products and materials, and on the hygiene sector are suitable.
  • the compounds of the invention are generally defined by the formula (I).
  • the compound has the general formula (1.2)
  • Z represents alkyl, alkoxy, haloalkyl, alkylthio, alkylsulfoxyl, alkylsulfonyl, haloalkoxy, haloalkylthio, haloalkylsulfoxyl, haloalkylsulfonyl, alkylamino, dialkylamino, cyano, halogen or hydroxyl and p is a number from 0 to 2,
  • R 1 represents one of the radicals selected from the group (A), (B), (C), (D), (F), (G), (H), (M) and (S) stands and
  • Xi, ⁇ ', Xi are independently alkyl, haloalkyl, cycloalkyl, halogenocycloalkyl, alkenyl, haloalkenyl, alkynyl, alkoxy, haloalkoxy, alkoxycarbonyl, alkoxyalkyl, haloalkoxyalkyl, alkylthio, haloalkylthio, alkylsulfinyl, haloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl, fluoro, Bromine, chlorine, iodine, nitro, cyano, amino, alkylamino, dialkylamino and
  • Yi and Y 2 are bromine, chlorine or trifluoromethyl.
  • the compounds have the general formula (1.3) or (1.4):
  • R 1 represents one of the radicals selected from the group (A), (B), (C), (D), (F), (G), (H), (M) and (S) and 'Xi' are each independently alkyl, haloalkyl, cycloalkyl, halocycloalkyl, alkenyl, haloalkenyl, alkynyl, alkoxy, haloalkoxy, alkoxycarbonyl, alkoxyalkyl, haloalkoxyalkyl, alkylthio, haloalkylthio, alkylsulfmyl, haloalkylsulfinyl, Alkylsulfonyl, haloalkylsulfonyl, fluoro, bromo, chloro, iodo, nitro, cyano, amino, alkylamino, dialkylamino.
  • the compounds have
  • R 1 represents one of the radicals selected from the group (A), (B), (C), (D), (F), (G), (H), (M) and (S) stands and
  • Xi, ⁇ ', Xi are independently alkyl, haloalkyl, cycloalkyl, halogenocycloalkyl, alkenyl, haloalkenyl, alkynyl, alkoxy, haloalkoxy, alkoxycarbonyl, alkoxyalkyl, haloalkoxyalkyl, alkylthio, haloalkylthio, alkylsulfmyl, haloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl, Fluorine, bromine, chlorine, iodine, nitro, cyano, amino, alkylamino, dialkylamino.
  • the compound has the general formula (1.7)
  • Xi, ⁇ ', Xi are independently alkyl, haloalkyl, cycloalkyl, halogenocycloalkyl, alkenyl, haloalkenyl, alkynyl, alkoxy, haloalkoxy, alkoxycarbonyl, alkoxyalkyl, haloalkoxyalkyl, alkylthio, haloalkylthio, alkylsulfmyl, haloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl, fluoro, Bromine, chlorine, iodine, nitro, cyano, amino, alkylamino, dialkylamino and
  • Yi and Y 2 are bromine, chlorine or trifluoromethyl.
  • the compounds have the general formula (1.8) and (1.9), in which
  • Ri preferably represents one of the radicals selected from the group consisting of (A), (B), (C), (D), (F), (G), (H), (M) and (S), in which the arrow marks the binding to the adjacent ring and
  • Xi, ⁇ ', Xi are independently alkyl, haloalkyl, cycloalkyl, halogenocycloalkyl, alkenyl, haloalkenyl, alkynyl, alkoxy, haloalkoxy, alkoxycarbonyl, alkoxyalkyl, haloalkoxyalkyl, alkylthio, haloalkylthio, alkylsulfinyl, haloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl, fluoro, Bromine, chlorine, iodine, nitro, cyano, amino, alkylamino, dialkylamino, preferably stand for fluorine.
  • the compounds of the formula (I) according to the invention can be prepared by customary methods known to the person skilled in the art. If Yi, Y2, Z, p and Ri have the meanings given above, then the compounds of the formula (I) according to the invention can be prepared according to the reaction steps A to D according to Methods I and II shown in Reaction Scheme I.
  • stage D, E The compounds required as starting materials for preparing the process according to the invention (stage D, E) are generally defined by the formulas (II) and (III-B) / (III-A).
  • the compounds of formula (II) may, for. T. commercially or by literature methods according to the reaction scheme I (step C, method I, II) are obtained from the corresponding 2,2-dimethyl-cyclopropanecarboxylic acids (A-l) (see also Preparation Example 1, step D).
  • Examples of compounds of the formula (II) having a nucleofugic leaving group LG are known;
  • reaction of compounds of the formula (II) with the compounds of the formula (III-B) / (III-A) can also be carried out in the presence of a coupling agent for the carboxylic acid and, if appropriate, in the presence of a basic reaction auxiliary in one of the dilution methods given below. done medium.
  • Suitable coupling agents for carrying out the preparation process are all those which are suitable for the preparation of an amide bond (cf., for example, Houben-Weyl, Methoden der Organischen Chemie, Volume 15/2; Bodansky et al., Peptide Synthesis 2 nd ed. (Wiley & Sons, New York 1976) or Gross, Meienhofer, The Peptides: Analysis, Synthesis, Biology (Academic Press, New York 1979).
  • the compounds of the formula (III-B) / (III-A) are partly known or can be obtained by methods known from the literature in accordance with Reaction Scheme I (Steps A and B, see Preparation Example 1 or Steps A, E and B, see Preparation Example 24).
  • R 1 is aryl or hetaryl and Z and p have the meaning mentioned above, these are correspondingly substituted 2-methylbenzyl alcohols.
  • the compounds of the formula (III-B) / (III-A) can be obtained by known preparation methods, for example by reduction of the ester function from optionally substituted benzenecarboxylic acid esters (A-5) or from optionally substituted 3-halo-2-methylbenzoic acids (A -3).
  • Suitable reducing agents for the reduction of a carbonyl group are a wide variety of hydrogenating reagents, such as alkali metal hydrides, in particular sodium borohydride (NaBH i), lithium borohydride (L1BH4), lithium aluminum hydride (L1AIH4), lithium triethylborohydride (Li [Et3BH]), lithium tricarboxylic (Li [, yeoBu3BH], sodium bis (2-methoxyethoxy) aluminum hydride, alkylaluminum hydrides, in particular diisobutylaluminum hydride (DIBAL-H), or tetramethylammonium triacetoxyborohydride, inter alia, in question (see H.
  • alkali metal hydrides in particular sodium borohydride (NaBH i), lithium borohydride (L1BH4), lithium aluminum hydride (L1AIH4), lithium triethylborohydride (Li [Et3BH]),
  • borohydride resin for example "borohydride on Amberlite ® IRA-406", are used for the hydrogenation (cf.. AR Sande et al. Tetrahedron Lett. 1984, 25, 3501).
  • alkali metal hydrides in particular sodium borohydride (NaBH4) or lithium borohydride (L1BH4) (compare Preparation Example 1, Stage A).
  • the radical R 1 is aryl or hetaryl and / or in the compounds (A-3) Z and p have the meaning mentioned above, these are correspondingly substituted 2-methylbenzoic acid esters which can be obtained by known production methods.
  • 2-methyl-6- (methylsulfonyl) [l, 1'-biphenyl] -3-carboxylic acid methyl ester (JP 11193259) or 2-methyl-4- (methylsulfonyl) -3- (2-thienyl) are known. benzoic acid methyl ester (WO 96/26193).
  • the preparation of 3'5'-difluoro-2-methyl- [l, -biphenyl] -3-carboxylic acid methyl ester in Preparation Example 24 is described.
  • a suitable coupling reaction eg Suzuki coupling in the presence of suitable transition metal catalysts, see Reaction Scheme I, Stefe E
  • a known compound of the formula (IA) is, for example, ci ' s-3- (2-chloro-3,3,3-trifluoro-1-propenyl) -2,2-dimethylcyclopropanecarboxylic acid (3-iodo-2, 6-dimethylphenyl) methyl ester (US 4,375,476).
  • halogenated benzoic acid esters of the formula (A-3) are, for example: methyl 3-iodo-2-methylbenzoate (WO 2008/016184; also see Preparation Example 1, Stage A), 3-iodo-2-methyl-5-nitrobenzene methyl benzoate (WO 2008/016184) or methyl 6-fluoro-3-iodo-2-methylbenzoate (WO 2009/058237).
  • halogenated benzoic acid esters of the formula (A-3) is prepared by known procedures from optionally substituted 3-amino-benzoic acid ester of the general formula (A-2), for example by means of the known Sandmeyer reaction (cf., for example, Houben-Weyl , Methods of Organic Chemistry, Volume VIII, page 31 1) possible (see also Preparation Example 1, step A).
  • diluents are advantageous in such an amount used that the reaction mixture remains easy to stir throughout the process.
  • Suitable diluents for carrying out the process according to the invention are all inert organic solvents.
  • halogenated hydrocarbons especially chlorinated hydrocarbons such as tetraethylene, tetrachloroethane, dichloropropane, methylene chloride, dichlorobutane, chloroform, carbon tetrachloride, trichloroethane, trichlorethylene, pentachloroethane, difluorobenzene, 1, 2-dichloroethane, chlorobenzene, bromobenzene, dichlorobenzene, chlorotoluene, trichlorobenzene; Alcohols such as methanol, ethanol, isopropanol, butanol; Ethers, such as ethyl propyl ether, methyl tert-butyl ether, n-butyl ether, anisole, phenothio, cyclohexyl methyl ether, dimethyl ether, diethyl ether, dipropyl ether, diisopropy
  • Preferred diluents for carrying out the process according to the invention are halogenated hydrocarbons, in particular chlorohydrocarbons, such as tetraethylene, tetrachloroethane, dichloropropane, methylene chloride, dichlorobutane or chloroform, in particular methylene chloride.
  • the preparation of compounds of the formula (I) according to the preparation processes is carried out by reacting compounds of the formula (II) in the presence of compounds of the formula (IA) [Method I] or of the formula (III-B) [Method II], if appropriate in the presence of an acid binder and if appropriate in one of the diluents mentioned.
  • the reaction time is generally 10 minutes to 48 hours.
  • the reaction takes place at temperatures between -10 ° C and + 200 ° C, preferably between + 10 ° C and 120 ° C, more preferably at room temperature.
  • acid binders such as amines, in particular tertiary amines and also alkali metal and alkaline earth metal compounds.
  • hydroxides, hydrides, oxides and carbonates of lithium, sodium, potassium, magnesium, calcium and barium as well as further basic compounds such as amidine bases or guanidine salts such as 7-methyl-l, 5,7-triaza-bicyclo ( 4.4.0) dec-5-en (MTBD); Diazabicyclo (4.3.0) nonene (DBN), diazabicyclo (2.2.2) octane (DABCO), 1,8-diazabicyclo (5.4.0) undecene (DBU), cyclohexyltetrabutyl-guanidine (CyTBG), cyclohexyltetramethylguanidine (CyTMG) , ⁇ , ⁇ , ⁇ -tetramethyl-l, 8-naphthalenediamine, pentamethylpiperidine, tertiary amines such as triethylamine, trimethylamine, tribenzylamine, triiso
  • tertiary amines such as trimethylamine, triethylamine, N-ethyl-N, N-diisopropylamine or aromatic amines such as pyridine, 4-pyrrolidinopyridine, 4-dimethylamino-pyridine, quinoline, a-picoline, ß-picoline, in particular pyridine use.
  • Step E The preparation of compounds of the formula (I) according to Preparation Method I (Step E) is carried out by reacting compounds of the formula (IA) in the presence of compounds of the formula (A-4) by means of a palladium-catalyzed cross-coupling reaction (Suzuki coupling), in the presence of suitable transition metal catalysts and in the presence of one of the specified diluents.
  • a palladium-catalyzed cross-coupling reaction Sudzuki coupling
  • the reaction time is generally 10 minutes to 48 hours.
  • the reaction takes place at temperatures between -10 ° C and + 200 ° C, preferably between + 10 ° C and 150 ° C, more preferably 60 ° C to 120 ° C.
  • palladium catalysts for example palladium (II) acetate [Pd (ac) 2] or [1,1-bis (diphenylphosphino) ferrocenes] dichloropalladium (II) [PdCk (dppf)].
  • the compounds according to the invention can be used as geometric and / or as optically active isomers or corresponding isomer mixtures in different be present composition.
  • These stereoisomers are, for example, enantiomers, diastereomers, atropisomers or geometric isomers.
  • the invention thus comprises pure stereoisomers as well as any mixtures of these isomers.
  • the compounds of the invention may optionally be present in different polymorphic forms or as a mixture of different polymorphic forms. Both the pure polymorphs and the polymorph mixtures are the subject of the invention and can be used according to the invention.
  • the active compounds according to the invention are suitable for plant protection, favorable warm-blooded toxicity and good environmental compatibility for the protection of plants and plant organs, for increasing crop yields, improving the quality of the crop and for controlling animal pests, in particular insects, arachnids, helminths, nematodes and molluscs found in agriculture, horticulture, livestock, forests, gardens and recreational facilities, in supplies and materials, and in the hygiene sector. They can preferably be used as crop protection agents. They are effective against normally sensitive and resistant species as well as against all or individual stages of development.
  • the above mentioned pests include:
  • Pests of the Arthropoda strain in particular of the class Arachnida, e.g. Acarus spp., Aceria sheldoni, Aculops spp., Aculus spp., Amblyomma spp., Amphitetranychus viennensis, Argas spp., Boophilus spp., Brevipalpus spp., Bryobia graminum, Bryobia praetiosa, Centruroides spp., Chorioptes spp.
  • From the class Diplopoda eg Blaniulus guttulatus.
  • From the class of the Insecta eg from the order of the Blattodea eg Blattella asahinai, Blattella germanica, Blatta orientalis, Leucophaea maderae, Panchlora spp., Parcoblatta spp., Periplaneta spp., Supella longipalpa.
  • Curculio spp. Cryptolestes ferruginus, Cryptorhynchus lapathi, Cylindrocopturus spp., Dermestes spp., Diabrotica spp., Dichocrocis spp., Dicladispa armigera, Diloboderus spp., Epilachna spp., Epitrix spp., Faustinus spp., Gibbium psylloides, Gnathocerus cornutus , Hellula and alis, Heterronychus arator, Heteronyx spp., Hylamorpha elegans, Hylotrupes bajulus, Hypera postica, Hypomeces squamosus, Hypothenemus spp., Lachnosterna consanguinea, Lasioderma serricorne, Latheticus oryzae, Lathridi spp., Lema spp., Leptinotarsa decem
  • Lucilla spp. Lutzomyia spp., Mansonia spp., Musca spp., Oestrus spp., Oscinella frit, Paratanytarsus spp., Paralauter - borniella subcincta, Pegomyia spp., Phlebotomus spp., Phorbia spp., Phormia spp., Piophila casei, Prodiplosis spp., Psila rosae, Rhagoletis spp., Sarcophaga spp., Simulium spp, Stomoxys spp., Tabanus spp., Tetanops spp., Tipula spp ..
  • Brevicoryne brassicae Cacopsylla spp., Calligypona marginata, Carneocephala fulgida, Ceratovacuna lanigera, Cercopidae, Ceroplastes spp., Chaetosiphon fragaefolii, Chionaspis tegalensis, Chlorita onukii, Chondracris rosea, Chromaphis juglandicola, Chrysomphalus ficus, Cicadulina mbila, Coccomytilus halli, Coccus spp.
  • Hymenoptera e.g. Acromyrmex spp., Athalia spp., Atta spp., Diprion spp., Hoplo- campa spp., Lasius spp., Monomorium pharaonis, Sirex spp., Solenopsis invicta, Tapinoma spp., Uracus spp., Vespa spp., Xeris spp ..
  • Coptotermes spp. From the order of the Isoptera, for example Coptotermes spp., Cornitermes cumulans, Cryptotermes spp., Incisperses spp., Microtermes obesi, Odontotermes spp., Reticulitermes spp.
  • Phthiraptera e.g. Damalinia spp., Haematopinus spp., Linognathus spp., Pediculus spp., Phylloera vastatrix, Phtirus pubis, Trichodectes spp.
  • siphonaptera e.g. Ceratophyllus spp., Ctenocephalides spp., Pulex irritans, Tunga penetrans, Xenopsylla cheopsis.
  • Symphyla e.g. Scutigerella spp ..
  • Pests of the Mollusca strain in particular of the bivalve class, e.g. Dreissena spp., As well as from the class Gastropoda e.g. Arion spp., Biomphalaria spp., Bulinus spp., Deroceras spp., Galba spp., Lymnaea spp., Oncomelania spp., Pomacea spp., Succinea spp.
  • Gastropoda e.g. Arion spp., Biomphalaria spp., Bulinus spp., Deroceras spp., Galba spp., Lymnaea spp., Oncomelania spp., Pomacea spp., Succinea spp.
  • Animal parasites from the strains of Plathelminthes and Nematoda e.g. Ancylostoma duodenale, Ancylostoma ceylanicum, Acylostoma braziliensis, Ancylostoma spp., Ascaris spp., Brugia malayi, Brugia timori, Bunostomum spp., Chabertia spp., Clonorchis spp., Cooperia spp., Dicrocoelium spp, Dictyocollus filaria, Diphyllobothrium latum, Dracunculus medinensis, Echinococcus granulosus, Echinococcus multilocularis, Enterobius vermicularis, Faciola spp., Haemonchus spp., Heterakis spp., Hymenolepis nana, Hyostrongulus spp., Loa Loa
  • Plant pests from the strain of Nematoda i. plant parasitic nematodes, in particular Aphelenchoides spp., Bursaphelenchus spp., Ditylenchus spp., Globodera spp., Heterodera spp., Longidorus spp., Meloidogyne spp., Pratylenchus spp., Radopholus spp., Trichodorus spp., Tylenchulus spp, Xiphinema Spp., Hehcotylenchus spp., Tylenchorhynchus spp., Scutellonema spp., Paratrichodorus spp., Meloinema spp., Paraphelenchus spp., Aglenchus spp., Belonolaimus spp., Nacobbus spp, Rotylenchus spp., Rotyle
  • the order of coccidia can be determined, e.g. Fight Eimeria spp.
  • the compounds according to the invention can also be used in certain concentrations or application rates as herbicides, safeners, growth regulators or agents for improving the properties of plants, or as microbicides, for example as fungicides, antimycotics, bactericides, viricides (including anti-viral agents) or as anti-MLO agents (Mycoplasma-like-organism) and RLO (Rickettsia-like-organism) are used. They can also be used as intermediates or precursors for the synthesis of other active ingredients.
  • the active compounds can be converted into the customary formulations, such as solutions, emulsions, wettable powders, water- and oil-based suspensions, powders, dusts, pastes, soluble powders, soluble granules, scattering granules, suspension-emulsion concentrates, active substance-impregnated natural products, active ingredient Impregnated synthetic materials, fertilizers and Feinstverkapselitch in polymeric materials.
  • solutions emulsions, wettable powders, water- and oil-based suspensions, powders, dusts, pastes, soluble powders, soluble granules, scattering granules, suspension-emulsion concentrates, active substance-impregnated natural products, active ingredient Impregnated synthetic materials, fertilizers and Feinstverkapselitch in polymeric materials.
  • formulations are prepared in a known manner, e.g. by mixing the active compounds with extenders, ie liquid solvents and / or solid carriers, if appropriate using surface-active agents, ie emulsifiers and / or dispersants and / or foam-forming agents.
  • extenders ie liquid solvents and / or solid carriers
  • surface-active agents ie emulsifiers and / or dispersants and / or foam-forming agents.
  • the formulations are prepared either in suitable systems or else before or during use.
  • Excipients which can be used are those which are suitable for imparting special properties to the composition itself and / or preparations derived therefrom (for example spray liquor, seed dressing), such as certain technical properties and / or specific biological properties.
  • Typical auxiliaries are: extenders, solvents and carriers.
  • extender e.g. Water, polar and non-polar organic chemical liquids e.g.
  • aromatic and non-aromatic hydrocarbons such as paraffins, alkylbenzenes, alkylnaphthalenes, chlorobenzenes
  • alcohols and polyols which may also be substituted, etherified and / or esterified
  • ketones such as acetone , Cyclohexanone
  • esters including fats and oils
  • poly ethers the simple and substituted amines, amides, lactams (such as N-alkylpyrrolidones) and lactones, the sulfones and sulfoxides (such as dimethyl sulfoxide).
  • Suitable liquid solvents are essentially: aromatics, such as xylene, toluene, or alkylnaphthalenes, chlorinated aromatics and chlorinated aliphatic hydrocarbons, such as chlorobenzenes, chloroethylenes or methylene chloride, aliphatic hydrocarbons, such as cyclohexane or paraffins, e.g.
  • Petroleum fractions mineral and vegetable oils, alcohols, such as butanol or glycol, and their ethers and esters, ketones, such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents, such as dimethyl sulfoxide, and water.
  • alcohols such as butanol or glycol
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone
  • strongly polar solvents such as dimethyl sulfoxide, and water.
  • Suitable solid carriers are: for example, ammonium salts and ground natural minerals, such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, and ground synthetic minerals, such as finely divided silica, alumina and silicates, as solid carriers for granules: eg broken and fractionated natural rocks such as calcite, marble, pumice, sepiolite, dolomite and synthetic granules of inorganic and organic flours and granules of organic material such as paper, sawdust, coconut shells, corn cobs and tobacco stalks; as emulsifying and / or Foaming agents are suitable: for example nonionic and anionic emulsifiers, such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, for example alkylaryl polyglycol ethers, alkylsulfonates, alkyl sulfates, arylsulf
  • oligomers or polymers for example starting from vinylic monomers, from acrylic acid, from EO and / or PO alone or in combination with, for example, (poly) alcohols or (poly) amine.
  • lignin and its sulfonic acid derivatives simple and modified celluloses, aromatic and / or aliphatic sulfonic acids and their adducts with formaldehyde.
  • Adhesives such as carboxymethylcellulose, natural and synthetic powdery, granular or latex-like polymers can be used in the formulations, such as gum arabic, polyvinyl alcohol, polyvinyl acetate, as well as natural phospholipids such as cephalins and lecithins and synthetic phospholipids.
  • Dyes such as inorganic pigments, e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
  • inorganic pigments e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
  • additives may be fragrances, mineral or vegetable optionally modified oils, waxes and nutrients (also trace nutrients), such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
  • Stabilizers such as cold stabilizers, preservatives, antioxidants, light stabilizers or other agents which improve the chemical and / or physical stability can also be present.
  • the formulations generally contain between 0.01 and 98% by weight of active ingredient, preferably between 0.5 and 90%.
  • the active substance according to the invention can be present in its commercially available formulations and in the formulations prepared from these formulations in admixture with other active ingredients such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth-regulating substances, herbicides, safeners, fertilizers or semiochemicals.
  • active ingredients such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth-regulating substances, herbicides, safeners, fertilizers or semiochemicals.
  • a mixture with other known active ingredients, such as herbicides, fertilizers, growth regulators, safeners, semiochemicals, or with agents for improving the plant properties is possible.
  • the active compounds according to the invention can furthermore be present in the form of insecticides in their commercial formulations and in the formulations prepared from these formulations in admixture with synergists. Synergists are compounds which increase the effect of the active ingredients without the added synergist itself having to be active.
  • the active compounds according to the invention can also be used as insecticides in their commercial formulations as well as in the formulations prepared from these formulations in mixtures with inhibitors which are a degradation of the active ingredient after application in the environment of the plant, on the surface of plant parts or in plant tissues Reduce.
  • the active ingredient content of the application forms prepared from the commercial formulations can vary widely.
  • the active ingredient concentration of the application forms can be from 0.00000001 up to 95% by weight of active compound, preferably between 0.00001 and 1% by weight.
  • the application is done in a custom forms adapted to the application.
  • plants are understood as meaning all plants and plant populations, such as desired and undesired wild plants or crop plants (including naturally occurring crop plants).
  • Crop plants can be plants that can be obtained by conventional breeding and optimization methods or by biotechnological and genetic engineering methods or combinations of these methods, including the transgenic plants and including the plant protectable or non-protectable plant varieties.
  • Plant parts are to be understood as meaning all aboveground and subterranean parts and organs of the plants, such as shoot, leaf, flower and root, examples of which include leaves, needles, stems, stems, flowers, fruiting bodies, fruits and seeds, and roots, tubers and rhizomes become.
  • the plant parts also include crops and vegetative and generative propagation material, such as cuttings, tubers, rhizomes, offshoots and seeds.
  • the treatment according to the invention of the plants and parts of plants with the active ingredients takes place directly or by acting on their environment, habitat or storage space according to the usual treatment methods, eg by dipping, spraying, evaporating, atomizing, spreading, brushing, injecting and in propagation material, in particular in seed, furthermore by single or multi-layer wrapping.
  • all plants and their parts can be treated.
  • wild-type or plant species obtained by conventional biological breeding methods such as crossing or protoplast fusion, and plant cultivars and their parts are treated.
  • transgenic plants and plant cultivars which may be obtained by genetic engineering, optionally in combination with conventional methods have been obtained (Genetically Modified Organisms) and their parts treated.
  • Genetic Engineering optionally in combination with conventional methods
  • parts have been explained above.
  • Plant varieties are plants with new traits that have been bred either by conventional breeding, by mutagenesis or by recombinant DNA techniques. These can be varieties, biotypes and genotypes.
  • the treatment according to the invention may also give rise to superadditive ("synergistic") effects.
  • superadditive for example, reduced application rates and / or extensions of the activity spectrum and / or an increase in the effect of the substances and agents that can be used according to the invention, better plant growth, increased tolerance to high or low temperatures, increased tolerance to drought or to water or soil salt content, increased flowering efficiency, easier harvesting, acceleration of ripeness, higher crop yields, higher quality and / or higher nutritional value of the harvested products, higher shelf life and / or machinability of the harvested products possible, which go beyond the actual expected effects.
  • the preferred plants or plant varieties to be treated according to the invention to be treated include all plants which, as a result of the genetic engineering modification, obtained genetic material which gives these plants particularly advantageous valuable properties ("traits").
  • traits are better plant growth, increased tolerance to high or low temperatures, increased tolerance to dryness or to bottoms, increased flowering efficiency, easier harvesting, acceleration of ripeness, higher crop yields, higher quality and / or higher nutritional value the harvested products, higher shelf life and / or workability of the harvested products.
  • Further and particularly emphasized examples of such properties are an increased defense of the plants against animal and microbial pests, such as against insects, mites, phytopathogenic fungi, bacteria and / or viruses as well as an increased tolerance of the plants to certain herbicidal active substances.
  • transgenic plants are the important crops such as cereals (wheat, rice), corn, soybeans, potatoes, sugar beets, tomatoes, peas and other vegetables, cotton, tobacco, oilseed rape and fruit plants (with the fruits apples, pears, citrus fruits and Grapes, with particular emphasis on maize, soya, potato, cotton, tobacco and oilseed rape.
  • Bt plants Traits which are particularly emphasized are the increased defense of the plants against insects, arachnids, nematodes and snails by toxins produced in the plants, in particular those produced by the genetic material from Bacillus thuringiensis (eg by the genes CrylA (a) , CrylA (b), CrylA (c), CryllA, Cryll-IA, CryIIIB2, Cry9c Cry2Ab, Cry3Bb and CrylF and combinations thereof) in the plants (hereinafter "Bt plants”).
  • the increased defense of plants against fungi, bacteria and viruses by systemic acquired are also particularly emphasized Resistance (SAR), systemin, phytoalexins, elicitors and resistance genes and correspondingly expressed proteins and toxins.
  • SAR Resistance
  • Traits which are furthermore particularly emphasized are the increased tolerance of the plants to certain herbicidal active compounds, for example imidazolines, sulfonylureas, glyphosate or phosphinotricin (eg "PAT" gene).
  • the genes conferring the desired properties (“traits”) can also occur in combinations with one another in the transgenic plants.
  • Bt plants maize varieties, cotton varieties, soybean and potato places are known under the trade names YIELD GARD® (eg corn, cotton, soy), KnockOut® (eg corn), StarLink® (eg corn), Bollgard® (Cotton), Nucotn® (cotton) and NewLeaf® (potato).
  • YIELD GARD® eg corn, cotton, soy
  • KnockOut® eg corn
  • StarLink® eg corn
  • Bollgard® Cotton
  • Nucotn® cotton
  • NewLeaf® potato
  • herbicide-tolerant plants are maize varieties, cotton varieties and soybean varieties which are sold under the trade names Roundup Ready® (tolerance to glyphosate eg corn, cotton, soy), Liberty Link® (tolerance to phosphinotricin, eg rapeseed), IMI® (tolerance against imidazolinone) and STS® (tolerance to sulfonylureas eg corn).
  • Roundup Ready® tolerance to glyphosate eg corn, cotton, soy
  • Liberty Link® tolerance to phosphinotricin, eg rapeseed
  • IMI® tolerance against imidazolinone
  • STS® tolerance to sulfonylureas eg corn.
  • Clearfield® eg corn
  • the listed plants can be treated particularly advantageously according to the invention with the compounds of the general formula (I) or the active substance mixtures according to the invention.
  • the preferred ranges given above for the active compounds or mixtures also apply to the treatment of these plants. Particularly emphasized is the plant treatment with the compounds or mixtures specifically mentioned in the present text.
  • step A To a solution stirred solution of 4.29 g (15.5 mmol) of 3-iodo-2-methyl-benzoic acid methyl ester (step A) in 50 mL toluene at room temperature under a protective gas atmosphere (nitrogen) 7.8 mL (15.5 mmol ) of a 2.0 M solution of lithium borohydride in tetrahydrofuran (THF). Subsequently, the entire reaction mixture was stirred at 100 ° C for 30 minutes. Thereafter, 10 mL of a 1M hydrochloric acid solution was added and the solvents were separated.
  • Step C (method I. II): (1R, 3R) -3- (2,2-dibromethenyl) -2,2-dimethylcyclopropanecarb
  • Step D (Method I): (1R, 3R) -3- (2,2-dibromethenyl) -2,2-dimethyl-cyclopropanecarboxylic acid
  • step C The (1R, 3R) -3- (2,2-dibromethenyl) -2,2-dimethyl-cyclopropanecarboxylic acid chloride obtained in step C was stirred in 40 ml of dichloromethane and 3.16 g (40 mmol) of pyridine were added. Subsequently, the reaction mixture was further stirred for one hour at room temperature and then treated with a solution of 4.49 g (18.1 mmol) of (3-iodo-2-methylphenyl) methanol (step C) in 20 ml of dichloromethane. Thereafter, the reaction mixture was stirred for about 18 hours at room temperature. Subsequently, the solvent and excess pyridine were removed in vacuo.
  • the (1R, 3R) -3- (2-chloro-2-trifluoromethenyl) -2,2-dimethyl-cyclopropane-carboxylic acid 3-iodo-2-methylbenzyl ester was prepared in an analogous manner from (1R, 3R) -3 - (2-chloro-2-trifluoromethenyl) -2,2-dimethyl-cyclopropanecarboxylic acid chloride (3-iodo-2-methylphenyl) methanol.
  • Step E (Method I): (1R, 3R) -3- (2,2-dibromethenyl) -2,2-dimethyl-cyclopropanecarboxylic acid (2-methyl-4'-trifluoromethyl- [1, ⁇ -biphenyl] 3 -yl) methyl ester
  • Example 9 was obtained at a reaction time of 12 hours at 70 ° C. by means of the Suzuki coupling (stage E, method I).
  • Example 18 was obtained.
  • Example 18 (1R, 3R) -3- (2,2-dibromethenyl) -2,2-dimethyl-cyclopropanecarboxylic acid (2-methyl- (3 ', 4'-difluoro) - [1, 1'-biphenyl] - 3 -yl) methyl ester
  • Step A (Method II): 3-iodo-2-methyl-benzoic acid methyl ester (known from
  • Step A Method I b
  • Step E Method II: Methyl 3 ', 5'-difluoro-2-methyl- [1, ⁇ -biphenyl] -3-carboxylate
  • Step B (Method II): (3 ', 5'-Difluoro-2-methyl- [1, 1'-biphenyl] methanol, see Step B, Method
  • Step D (Method II): (1R, 3R) -3- (2,2-dibromethenyl) -2,2-dimethyl-cyclopropanecarboxylic acid (3 ', 5'- difluoro-2-methyl- [l, 1'-biphenyl] -3-yl) methyl ester; see. Stage D, Method I
  • examples 25 and 26 were obtained by means of stage D, method II (compare also stage D, method I).
  • Step A Methyl 3-iodo-2-methylbenzoate (known from Step A, Method
  • Step B (Method II): 2-methyl-3-thien-3-yl) benzyl alcohol; see. Stage B, Method I; obtained
  • Step D (Method II): (1R, 3R) -3- (2,2-dibromethenyl) -2,2-dimethylcyclopropanecarb
  • Step A (Method II): 6-fluoro-3-iodo-2-methyl-benzoic acid methyl ester (known from
  • Step D (Method II): (1R, 3R) -3- (2,2-dibromethenyl) -2,2-dimethyl-cyclopropanecarboxylic acid (6-fluoro-2-one) methyl [1,1'-biphenyl] -3-yl) methyl ester; see. Stage D, Method I
  • Emulsifier 0.5 part by weight of alkylaryl polyglycol ether
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier and the concentrate is diluted with emulsifier-containing water to the desired concentration.
  • Chinese cabbage leaf discs (Brassica pekinensis) are sprayed with a preparation of active compound of the desired concentration and, after drying, are populated with larvae of the horseradish leaf beetle (Phaedon cochleariae).
  • Emulsifier 0.5 part by weight of alkylaryl polyglycol ether
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier and the concentrate is diluted with emulsifier-containing water to the desired concentration.
  • Maize leaf discs (Zea mays) are sprayed with an active compound preparation of the desired concentration and, after drying, are infested with caterpillars of the armyworm ⁇ Spodoptera frugiperda).
  • Emulsifier 0.5 part by weight of alkylaryl polyglycol ether To prepare a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted to the desired concentration with emulsifier-containing water.
  • Chinese cabbage leaf discs (Brassica pekinensis) infested with all stages of the green peach aphid (Myzus persicae) are sprayed with an active compound preparation of the desired concentration. After 6 days, the effect is determined in%. 100% means that all aphids have been killed; 0% means that no aphids have been killed.
  • dimethylformamide emulsifier 1.5 parts by weight of dimethylformamide emulsifier: 0.5 part by weight of alkylaryl polyglycol ether
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier and the concentrate is diluted with emulsifier-containing water to the desired concentration.
  • Bean leaf disks Phaseolus vulgaris
  • which are infected by all stages of the common spider mite Tetranychus urticae
  • the effect is determined in%. 100% means that all spider mites have been killed; 0% means that no spider mites have been killed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Die vorliegende Anmeldung betrifft neue substituierte Benzylalkoholester der Cyclopropancarbonsäure, Verfahren zu deren Herstellung und Verwendung zur Bekämpfung von tierischen Schädlingen, vor allem von Arthropoden und insbesondere von Insekten, Spinnentieren und Nematoden.

Description

Neue substituierte Benzylalkoholester der Cyclopropancarbonsäure als Schädlingsbekämpfungsmittel
Die vorliegende Anmeldung betrifft neue substituierte Benzylalkoholester der Cyclopropancarbonsäure, Verfahren zu deren Herstellung und Verwendung zur Bekämpfung von tierischen Schädlingen, vor al- lern von Arthropoden und insbesondere von Insekten, Spinnentieren und Nematoden.
Bestimmte Biphenylcarbo
Figure imgf000002_0001
wobei in Formel (2) Ri für CH3 steht, wenn R2 und X für H stehen, R2 für OH steht, wenn Ri und X für H stehen und X für OH steht, wenn Ri und R2 für H stehen, sind bereits als insektizid wirksame Verbindungen bekannt geworden (Pest Manag. Science 2007, 63(6), 569-575; Pest. Sei. 1995, 44(3), 269-75; Special Publication-Royal Society of Chem. 1994, 147 (Advance in the Chemistry of Insect Control III), 117-26; J. Agric. Food Chem. 1992, 40(8), 1432-6 sowie Agric. Chem. Group, FMC Corp., Princeton, NJ, USA; Pest. Sei. 1983, 14(6), 560-70, J. Agric. Food Chem. 1994, 42(8), 1779-82; J. Econ, Entomol- ogy 1988, 81 (5), 1295-303; J. Agric. Food Chem. 1988, 36(5), 1040-3; J. Agric. Food Chem. 1984, 32(5), 1116-21 ; US 4,332,815, US 4,238,505, US 4,235,927, DE-A 3108203, US 4,341,796).
In der US 4,426,524 werden en,
Figure imgf000002_0002
in welcher Yi und Y2 für Br stehen oder Yi für Cl und Y2 für CF3 steht. Weiterhin sind die Verbindungen der Formel (4) aus der WO 82/01368 bekannt,
Figure imgf000002_0003
in welcher Yi und Y2 für Br stehen oder Yi für Cl und Y2 für CF3 steht.
Moderne Planzenschutzmittel müssen vielen Anforderungen genügen, beispielsweise in Bezug auf Höhe, Dauer und Breite ihrer Wirkung und möglichen Verwendung. Es spielen Fragen der Toxizität, der Kombinierbarkeit mit anderen Wirkstoffen oder Formulierhilfsmitteln eine Rolle sowie die Frage des Aufwands, der für die Synthese eines Wirkstoffs betrieben werden muss. Ferner können Resistenzen auftreten. Aus all diesen Gründen kann die Suche nach neuen Pflanzenschutzmitteln nicht als abgeschlossen betrachtet werden und es besteht ständig Bedarf an neuen Verbindungen mit gegenüber den bekannten Verbindungen zumindest in Bezug auf einzelne Aspekte verbesserten Eigenschaften.
Aufgabe der vorliegenden Erfindung war es, Verbindungen bereitzustellen, durch die das Spektrum der Schädlingsbekämpfungsmittel unter verschiedenen Aspekten verbreitert wird.
Gelöst wird die Aufgabe, sowie weitere nicht explizit genannte Aufgaben, die aus den hierin diskutierten Zusammenhängen ableitbar oder erschließbar sind, durch neue Verbindungen der Formel (I),
Figure imgf000003_0001
worin
Q einen Rest der Formel (L I)
steht, in welcher
Figure imgf000003_0002
Z für Alkyl, Alkoxy, Halogenalkyl, Alkylthio, Alkylsulfoxyl, Alkylsulfonyl, Halogenalkoxy, Halogenalkylthio, Halogenalkylsulfoxyl, Halogenalkylsulfonyl, Alkylamino, Dialkylamino, Cyan, Halogen oder Hydroxy steht und p eine Zahl von 0 bis 2 ist,
Ri für gegebenenfalls substituiertes Hetaryl, bevorzugt für Pyridin-2-yl oder Pyridin-3-yl, oder für einen der Reste aus der Reihe
Figure imgf000004_0001
steht, worin der Pfeil die Bindung zum benachbarten Ring markiert,
Xi, Χι ', Xi" unabhängig voneinander für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Alkenyl, Halogenalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Halogenalkoxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfinyl, Halogenalkylsulfinyl, Al- kylsulfonyl, Halogenalkylsulfonyl, Fluor, Brom, Chlor, Iod, Nitro, Cyano, Amino, Alkyla- mino, Dialkylamino stehen und
Yi und Y2 unabhängig voneinander für Halogen oder Halogenalkyl stehen, bevorzugt ist Halogen ausgewählt aus der Reihe Brom oder Chlor, bevorzugt steht Halogenalkyl für Trifluorme- thyl.
Die Verbindungen der Formel (I) können, auch in Abhängigkeit von der Art der Substituenten, als optische Isomere oder Isomerengemische, in unterschiedlicher Zusammensetzung vorliegen, die gegebenenfalls in üblicher Art und Weise getrennt werden können.
Mögliche Konfiguration der Verbindungen der Formel (I) werden durch die nachfolgend dargestellten Formeln (I-a) bis (I-d) beschrieben:
Figure imgf000005_0001
Figure imgf000005_0002
in welcher die Reste Yi, Y2 und Q die vorgenannte Bedeutungen haben.
Die Verbindungen der Formeln (I-a) bis (I-d) können sowohl als Gemische als auch in Form ihrer reinen Isomeren vorliegen. Gemische der Verbindungen der Formeln (I-a), (I-b), (I-c) und (I-d) lassen sich gegebenenfalls durch physikalische Methoden trennen, beispielsweise durch chromatographische Methoden.
Aus Gründen der besseren Übersichtlichkeit wird im folgenden jeweils nur die Strukturformel (I) ohne die oben beschriebene Stereochemie dargestellt. Das schließt jedoch ein, dass die betreffende Verbindung gegebenenfalls als Isomerengemisch (I-a) bis (I-d) oder in der jeweils anderen isomeren Form vorliegen kann.
Weiterhin wurde gefunden, dass die neuen Verbindungen der Formel (I) erhalten werden können, wenn Verbindungen der allgemeinen Formel
Figure imgf000005_0003
in welcher
Yi und Y2 unabhängig voneinander für Halogen oder Halogenalkyl stehen, bevorzugt ist Halogen ausgewählt aus der Reihe Brom oder Chlor, bevorzugt steht Halogenalkyl für Trifluormethyl und
LG für eine gegebenenfalls in-situ erzeugte nucleofuge Abgangsgruppe („Leaving Group"), steht, a) in einem ersten Reaktions schritt mit Verbindungen der allg emeinen F orme l (III-A)
Figure imgf000006_0001
(III-A) in welcher
Hai für Halogen wie Iod oder Brom, bevorzugt für Iod steht,
Z für Alkyl, Alkoxy, Halogenalkyl, Alkylthio, Alkylsulfoxyl, Alkylsulfonyl, Halogenalkoxy, Halogenalkylthio, Halogenalkylsulfoxyl, Halogenalkylsulfonyl, Alkylamino, Dialkylamino, Cyan, Halogen oder Hydroxy steht und p eine Zahl von 0 bis 2 ist, gegebenenfalls in Gegenwart eines geeigneten Säurebindemittels und gegebenenfalls in Gegenwart eines geeigneten Verdünnungsmittels zu Verbindungen der allgemeinen Formel (I-A)
Figure imgf000006_0002
(I-A)
in welcher
Hai für Halogen wie Iod oder Brom, bevorzugt für Iod steht,
Z und p die weiter oben angegebene Bedeutung haben, umgesetzt werden, die dann in einem zweiten Reaktionsschritt in einer Kupplungsreaktion mit ro)arylboronsäuren (R = H) oder deren Derivate (R = Alkylen) der allgemeinen Formel (IV)
Figure imgf000006_0003
in welcher
R für Wasserstoff oder Alkylen steht und
Ri für gegebenenfalls substituiertes Hetaryl, bevorzugt für Pyridin-2-yl oder Pyridin-3-yl, oder für einen der Reste aus der Reihe
Figure imgf000007_0001
steht, worin der Pfeil die Bindung zum benachbarten Ring markiert,
Xi, Χι ', Xi" unabhängig voneinander für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Alkenyl, Halogenalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Halogenalkoxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfinyl, Halogenalkylsulfinyl, Al- kylsulfonyl, Halogenalkylsulfonyl, Fluor, Brom, Chlor, Iod, Nitro, Cyano, Amino, Alkyla- mino, Dialkylamino stehen gegebenenfalls in Gegenwart eines geeigneten Übergangsmetallkatalysators und gegebenenfalls in Gegenwart eines geeigneten Verdünnungsmittels umgesetzt werden, oder b) mit Verbindungen der allgemeinen Formel (III-B)
Figure imgf000007_0002
in welcher
Z, p und 1 die weiter oben angegebene Bedeutung haben, gegebenenfalls in Gegenwart eines geeigneten Säurebindemittels und gegebenenfalls in Gegenwart eines geeigneten Verdünnungsmittels umgesetzt werden.
Schließlich wurde gefunden, das die neuen Verbindungen der Formel (I) stark ausgeprägte biologische Eigenschaften besitzen und vor allem zur Bekämpfung von tierischen Schädlingen, insbesondere von Insekten, Spinnentieren und Nematoden, die in der Landwirtschaft, in den Forsten, im Vorrats- und Materialschutz sowie auf dem Hygienesektor vorkommen, geeignet sind.
Die erfindungsgemäßen Verbindungen sind durch die Formel (I) allgemein definiert.
Bevorzugte Substituenten bzw. Bereiche der in den oben und nachstehend erwähnten Formeln aufgeführten Reste werden im Folgenden erläutert. In einer bevorzugten Ausführungsform haben die Verbindung die allgemeine Formel (1.2)
Figure imgf000008_0001
in welcher Z für Alkyl, Alkoxy, Halogenalkyl, Alkylthio, Alkylsulfoxyl, Alkylsulfonyl, Halogenalkoxy, Halo- genalkylthio, Halogenalkylsulfoxyl, Halogenalkylsulfonyl, Alkylamino, Dialkylamino, Cyan, Halogen oder Hydroxy steht und p eine Zahl von 0 bis 2 ist,
für einen der Reste aus der Reihe
Figure imgf000009_0001
steht, worin der Pfeil die Bindung zum benachbarten Ring markiert, bevorzugt Ri für einen der Reste ausgewählt aus der Gruppe (A), (B), (C), (D), (F), (G), (H), (M) und (S) steht und
Xi, Χι ', Xi" unabhängig voneinander für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Alkenyl, Halogenalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Halogenalkoxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfinyl, Halogenalkylsulfinyl, Al- kylsulfonyl, Halogenalkylsulfonyl, Fluor, Brom, Chlor, Iod, Nitro, Cyano, Amino, Alkyla- mino, Dialkylamino stehen und
Yi und Y2 für Brom, Chlor oder für Trifluormethyl steht.
In einer besonders bevorzugten Ausführungsform haben die Verbindungen die allgemeine Formel (1.3) oder (1.4):
Figure imgf000009_0002
in welcher für Alkyl, Alkoxy, Halogenalkyl, Alkylthio, Alkylsulfoxyl, Alkylsulfonyl, Halogenalkoxy, Halo- genalkylthio, Halogenalkylsulfoxyl, Halogenalkylsulfonyl, Alkylamino, Dialkylamino, Cyan, Halogen oder Hydroxy steht und p eine Zahl von 0 bis 2 ist, für einen der Reste aus der Reihe
Figure imgf000010_0001
steht, worin der Pfeil die Bindung zum benachbarten Ring markiert, bevorzugt Ri für einen der Reste ausgewählt aus der Gruppe (A), (B), (C), (D), (F), (G), (H), (M) und (S) steht und ', Xi" unabhängig voneinander für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Alkenyl, Halogenalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Halogenal- koxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfmyl, Halogenalkylsulfinyl, Alkylsulfonyl, Halogenalkylsulfonyl, Fluor, Brom, Chlor, Iod, Nitro, Cyano, Amino, Alkylamino, Dialkylamino stehen. In einer ganz besonders bevorzugten Ausführungsform haben die Verbindungen die allgemeine Formel (1.5) oder (1.6):
Figure imgf000011_0001
in welcher
Ri für einen der Reste aus der Reihe
Figure imgf000011_0002
steht, worin der Pfeil die Bindung zum benachbarten Ring markiert, bevorzugt Ri für einen der Reste ausgewählt aus der Gruppe (A), (B), (C), (D), (F), (G), (H), (M) und (S) steht und
Xi, Χι', Xi" unabhängig voneinander für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Alkenyl, Halogenalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Halogenal- koxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfmyl, Halogenalkylsulfinyl, Alkylsulfonyl, Ha- logenalkylsulfonyl, Fluor, Brom, Chlor, Iod, Nitro, Cyano, Amino, Alkylamino, Dialkylamino stehen.
In einer weiteren bevorzugten Ausführungsform haben die Verbindung die allgemeine Formel (1.7)
Figure imgf000012_0001
in welcher
Ri für einen der Reste aus der Reihe
Figure imgf000012_0002
steht, worin der Pfeil die Bindung zum benachbarten Ring markiert und
Xi, Χι ', Xi" unabhängig voneinander für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Alkenyl, Halogenalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Halogenalkoxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfmyl, Halogenalkylsulfinyl, Al- kylsulfonyl, Halogenalkylsulfonyl, Fluor, Brom, Chlor, lod, Nitro, Cyano, Amino, Alkyla- mino, Dialkylamino stehen und
Yi und Y2 für Brom, Chlor oder für Trifluormethyl steht.
In einer besonders bevorzugten Ausführungsform haben die Verbindungen die allgemeine Formel (1.8) und (1.9),
Figure imgf000013_0001
in welchen
Ri für einen der Reste aus der Reihe
Figure imgf000013_0002
steht, bevorzugt Ri für einen der Reste ausgewählt aus der Gruppe (A), (B), (C), (D), (F), (G), (H), (M) und (S) steht, worin der Pfeil die Bindung zum benachbarten Ring markiert und
Xi, Χι ', Xi" unabhängig voneinander für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Alkenyl, Halogenalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Halogenalkoxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfinyl, Halogenalkylsulfinyl, Al- kylsulfonyl, Halogenalkylsulfonyl, Fluor, Brom, Chlor, Iod, Nitro, Cyano, Amino, Alkyla- mino, Dialkylamino stehen, bevorzugt für Fluor stehen.
Weitere ganz besonders bevorzugte Substituenten der in den Verbindungen der Formel (I) aufgeführten Reste werden in Tabelle 1 erläutert. Tabelle 1 : Ganz besonders bevorzugte Verbindungen der Formel (I)
Figure imgf000014_0001
Erfindungsgemäß besonders bevorzugt werden Verbindungen der Formel (I), in welchen eine Kombination der vorstehend als besonders bevorzugt aufgeführten Bedeutungen vorliegt. . .
Erfindungsgemäß ganz besonders bevorzugt werden Verbindungen der Formel (I), in welchen eine Kombination der vorstehend als ganz besonders bevorzugt aufgeführten Bedeutungen vorliegt.
Die erfindungsgemäßen Verbindungen der Formel (I) können nach üblichen, dem Fachmann bekannten Methoden hergestellt werden. Wenn Yi, Y2, Z, p und Ri die weiter oben angegebenen Bedeutungen haben, dann können die erfindungsgemäßen Verbindungen der Formel (I) nach den in dem Reaktionsschema I dargestellten Reaktionsstufen A bis D gemäss der Methoden I und II hergestellt werden.
Reaktionsschema I
Figure imgf000015_0001
Figure imgf000015_0002
Figure imgf000015_0003
Wird bei dem erfindungsgemäßen Verfahren zur Herstellung der neuen Verbindungen der Formel (I) nach Methode I als Verbindung der Formel (II) das (lR,3R)-3-(2,2-Dibromethyl)-2,2-dimethyl- cyclopropancarbonsäurechlorid und als Verbindung der Formel (III-A; Hai = I, p = 1 , Z = H), beispielsweise (3-Iod-2-methyl-phenyl)methanol eingesetzt, so entsteht nach dem Herstellungsverfahren (Stufe D) zunächst eine Verbindung der Formal (I-A; Hai = I, p = 1 , Z = H), beispielsweise der (lR,3R)-3-(2,2- Dibromethyl)-2,2-dimethyl-cyclopropancarbonsäure-3-iod-2-methyl-benzylester (vgl. Reaktionsschema II). - -
Reaktionsschema II
Figure imgf000016_0001
Der nachfolgende zweite Reaktionsschritt mit dem (lR,3R)-3-(2,2-Dibromethyl)-2,2-dimethyl- cyclopropancarbonsäure-3-iod-2-methyl-benzylester unter Verwendung einer Verbindungen der Formel (A-4), beispielsweise 4-Trifluormethylphenyl-boronsäure, nach dem Herstellungsverfahren (Stufe E) wird durch das weiter unten genannte das Reaktionsschema IV wiedergeben (vgl. Herstellungsbeispiele, Beispiel 1).
Wird hingegen bei dem erfindungsgemäßen Verfahren zur Herstellung der neuen Verbindungen der Formel (I) nach Methode II als Verbindung der Formel (II) das (lR,3R)-3-(2,2-Dibromethyl)-2,2- dimethyl-cyclopropancarbonsäurechlorid und als Verbindung der Formel (III-B; p = 1, Z = H; Ri = 3,5- Difluormethylphenyl), beispielsweise (3',5'-Difluor-2-methyl-[l, -biphenyl]methanol eingesetzt, so lässt sich das Herstellungsverfahren (Stufe D) durch das Reaktionsschema III wiedergeben (vgl. Herstellungsbeispiele, Beispiel 24).
Reaktionsschema III
Figure imgf000016_0002
Die zur Herstellung des erfindungsgemäßen Verfahrens (Stufe D, E) als Ausgangsstoffe benötigten Verbindungen sind durch die Formeln (II) und (III-B)/(III-A) allgemein definiert.
In diesen Formeln (II) und (III-B)/(III-A) stehen Yi, Y2, M, p und Ri bevorzugt für diejenigen Reste, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der allgemeinen Formel (I) als bevorzugte Substituenten genannt werden.
Die Verbindungen der Formel (II) können z. T. kommerziell oder nach literaturbekannten Methoden gemäss dem Reaktionsschema I (Stufe C; Methode I, II) aus den entsprechenden 2,2-Dimethyl- cyclopropancarbonsäuren (A-l) erhalten werden (vgl. auch Herstellungsbeispiel 1, Stufe D).
Bekannt sind beispielsweise die Cyclopropancarbon säuren (A-l): für Yi,Y2 = Br, 3-(2,2- Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure (DE-OS 2544150), (lR,3R)-3-(2,2-Dibrom- ethenyl)-2,2-dimethyl-cyclopropancarbonsäure (M. Elliott et al, Pestic. Sei. 1975, 6, 537-542), (1R,3S)- 3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure (GB 1,446,304), (lS,3S)-3-(2,2- Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure (DE-OS 2544150), für Yi = CF3; Y2 = Cl, 3-(2- chlor-3,3,3-trifluor-l-propen-l-yl)-2,2-dimethyl-cyclopropancarbonsäure (GB-Pat. 2085000), (1R,3R)- 3-[(lZ)-2-chlor-3,3,3-trifluor-l-propen-l-yl]-2,2-dimethyl-cyclopropan-carbonsäure, trans-3-(2-chlor- 3,3,3-trifluor-l-propen-l-yl)-2,2-dimethyl-cyclopropan-carbonsäure and (lS,3S)-3-(2-Chlor-3,3,3- trifluor- 1 -propen- 1 -yl)-2,2-dimethyl-cyclopropan-carbonsäure, (DE-OS 2802962). In der Formeln (II) und steht LG für für eine gegebenenfalls in-situ erzeugte nucleofuge Abgangsgruppe („Leaving Group").
Beispiele für Verbindungen der Formel (II) mit einer nucleofuge Abgangsgruppe LG sind bekannt; beispielsweise die Cyclopropancarbonsäurehalogenide (II): mit LG = Cl und Yi, Y2 = Br, 3-(2,2- Dibromethenyl)-2,2-dimethyl-cyclopropansäurechlorid (DE-OS 2544150), (lR,3R)-3-(2,2- Dibromethenyl)-2,2-dimethyl-cyclopropansäurechlorid (US 4,342,770); mit LG = Br und Yi, Y2 = Br, (lR-cw)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropansäurebromid (FR 2407200); mit LG = F und Yi, Y2 = Br, (lR-di')-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropan-säurefluorid (FR 2407200); mit LG = Cl und Yi = CF3; Y2 = Cl, 3-(2-Chlor-3,3,3-trifluor-l-propen-l-yl)-2,2-dimethyl- cyclopropancarbonsäurechlorid (S.-J. Xue et al. Yingyong Huaxue 2004, 21, 319-321 ; ref. CAS 131 :190516, 2004), (lR,3R)-3-[(lZ)-2-Chlor-3,3,3-trifluor-l-propen-l-yl]-2,2-dimethyl- cyclopropancarbonsäurechlorid (WO 2003/053905).
Alternativ kann die Umsetzung von Verbindungen der Formel (II) mit den Verbindungen der Formel (III-B)/(III-A) auch in Gegenwart eines Kupplungsagenz für die Carbonsäure und gegebenenfalls in Gegenwart eines basischen Reaktionshilfsmittels in einem der weiter unten angegebenen Verdünnungs- mittel erfolgen.
Als Kupplungsagenzien zur Durchführung des Herstellungsverfahrens finden alle, die zur Herstellung einer Amidbindung geeignet sind (vgl. z.B. Houben-Weyl, Methoden der Organischen Chemie, Band 15/2; Bodansky et al., Peptide Synthesis 2nd ed. (Wiley & Sons, New York 1976) oder Gross, Meienho- fer, The Peptides: Analysis, Synthesis, Biology (Academic Press, New York 1979), Verwendung. Die Verbindungen der Formel (III-B)/(III-A) sind teilweise vorbekannt bzw. können nach literaturbekannten Methoden gemäss dem Reaktionsschema I (Stufen A und B; vgl. Herstellungsbeispiel 1 oder Stufen A, E und B; vgl. Herstellungsbeispiel 24) erhalten werden.
Wenn beispielsweise in den Verbindungen der Formel (III-B) der Rest Ri für Aryl oder Hetaryl steht und Z und p die weiter oben genannte Bedeutung haben, handelt es sich um entsprechend substituierte 2-Methyl-benzylalkohole.
Wenn beispielsweise in den Verbindungen der Formel (ΙΠ-Α) Z und p die weiter oben genannte Bedeutung haben, handelt es sich entsprechend um substituierte 3-Halogen-2-methyl-benzylalkohole. Bekannt sind beispielsweise als Verbindungen der allgemeinen Formel (III-B): 2,4-Dimethyl-[l,l '- biphenyl]-3-methanol (US 4,402,973) oder (3'5'-Difluor-2-methyl-[l,l '-biphenyl]methanol (vgl. Herstellungsbeispiel 24, Metode II, Stufe B).
Darüber hinaus sind als Verbindungen der allgemeinen Formel (ΠΙ-Α) bekannt: (6-Fluor-3-iod-2- methylphenyl)methanol (WO 2009/058237) und 3-Iod-2-methylphenyl)methanol (vgl. Herstellungsbeispiel 1, Methode I, Stufe B).
Die Verbindungen der Formel (III-B)/(III-A) können bekannten Herstellungsmethoden erhalten werden, beispielsweise mittels Reduktion der Esterfunktion aus gegebenenfalls substituierten Benzencarbonsäureestern (A-5) oder aus gegebenenfalls substituierten 3-Halogen-2-methyl-benzoesäuren (A-3). Als geeignete Reduktionsmittel zur Reduktion einer Carbonylgruppe kommen die verschiedensten Hydrierungsreagenzien, wie beispielsweise Alkalimetallhydride, insbesondere Natriumborhydrid (NaBH i), Lithiumborhydrid (L1BH4), Lithiumaluminiumhydrid (L1AIH4), Lithiumtriethylborhydrid (Li[Et3BH]), Lithium-tri- ec-borhydrid (Li[,yeoBu3BH], Natrium-bis(2-methoxyethoxy) aluminiumhydrid, Alkylalu- minium-hydride, insbesondere Diisobutylaluminiumhydrid (DIBAL-H), oder Tetramethylammonium- triacetoxyborhydrid u. a., in Frage (vgl. H. de Koning, W.N. Houben-Weyl E 21 , S. 1953 sowie dort zitierte Literatur). Selbstverständlich kann auch ein„Borhydrid-Harz" beispielsweise„Borohydride on Amberlite® IRA-406", zur Hydrierung verwendet werden (vgl. A. R. Sande et al. Tetrahedron Lett. 1984, 25, 3501).
Bevorzugt werden jedoch Alkalimetallhydride, insbesondere Natriumborhydrid (NaBH4) oder Lithium- borhydrid (L1BH4) verwendet (vgl. Herstellungsbeispiel 1, Stufe A).
Wenn beispielsweise in den Verbindungen (A-5) der Rest Ri für Aryl oder Hetaryl steht und/oder in den Verbindungen (A-3) Z und p die weiter oben genannte Bedeutung haben, handelt es sich um entsprechend substituierte 2-Methyl-benzoesäureester, die nach bekannten Herstellungsmethoden erhalten werden können. Bekannt sind beispielsweise: 2-Methyl-6-(methylsulfonyl)-[l,l'-Biphenyl]-3-carbonsäuremethyl- ester (JP 11193259) oder 2-Methyl-4-(methylsulfonyl)-3-(2-thienyl)-benzoesäuremethyl-ester (WO 96/26193). Darüber hinaus ist die Darstellung des 3'5'-Difluor-2-methyl-[l, -biphenyl]-3- carbonsäuremethylesters im Herstellungsbeispiel 24 beschrieben.
Die gegebenenfalls substituierte 2-Methyl-benzoesäureester (A-5) sind aus den halogenierten Benzoe- säureestern der Formel (A-3, Hai = I) und den (Hetero)arylboronsäuren (R = H) oder deren Derivate (R = Alkylen) der Formel (A-4), beispielsweise mittels einer geeigneten Kupplungsreaktion, beispielsweise der Palladium-katalysierten Kreuzkupplung (Suzuki Kupplung; H.-J. Wang et al., Tetrahedron Lett. _ _
2005, 46, 2631-2634 und darin zitierte Literatur), in Gegenwart von geeigneten Übergangsmetallkatalysatoren darstellbar (vgl. Herstellungsbeispiel 24, Methode II, Stufe E).
In analoger Weise und unter Verwendung einer geeigneten Kupplungsreaktion (z. B. Suzuki-Kupplung in Gegenwart von geeigneten Übergangsmetallkatalysatoren; vgl. Reaktionsschema I, Stefe E) können auch die Verbindungen der allgemeinen Formel (I) aus den Verbindungen der allgemeinen Formel (Ia) und den (Hetero)arylboronsäuren (R = H) oder deren Derivate (R = Alkylen) der Formel (A-4) erhalten werden.
Eine bekannte Verbindung der Formel (I-A) ist beispielsweise der ci's-3-(2-Chlor-3,3,3-trifluor-l- propenyl)-2,2-dimethyl-cyclopropancarbpnsäure-(3-iod-2,6-dimethylphenyl)methylester (US 4,375,476).
Wird bei dem erfindungsgemäßen Verfahren zur Herstellung der neuen Verbindungen der Formel (I) nach Methode I als Verbindung der Formel (I-A) der (lR,3R)-3-(2,2-Dibromethyl)-2,2-dimethyl- cyclopropancarbonsäure-3-iod-2-methyl-benzylester (vgl. Reaktionsschema II) und als Verbindung der Formel (A-4) 4-Trifluormethylphenyl-boronsäure eingesetzt, so entsteht gemäss der Stufe E der (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(2-methyl-4'-trifluormethyl- [l,l '-biphenyl]-3-yl)methylester (vgl. Reaktionsschema IV und Herstellungsbeispiele, Beispiel 1).
Figure imgf000019_0001
Die verwendeten (Hetero)arylboronsäuren (R = H) oder deren Derivate (R = Alkylen) der Formel (A-4) sind kommerziell erhältlich oder können nach bekannten Herstellungsmethoden erhalten werden.
Bekannte halogenierte Benzoesäureester der Formel (A-3) sind beispielsweise: 3-Iod-2-methyl- benzoesäuremethylester (WO 2008/016184; vgl. auch Herstellungsbeispiel 1, Stufe A), 3-Iod-2-methyl- 5-nitro-benzoesäuremethylester (WO 2008/016184) oder 6-Fluor-3-iod-2-methyl- benzoesäuremethylester (WO 2009/058237).
Die Herstellung der halogenierten Benzoesäureester der Formel (A-3) ist nach bekannten Verfahrensweisen aus gegebenenfalls substituierten 3-Amino-benzoesäureesters der allgemeinen Formel (A-2), beispielsweise mittels der bekannten Sandmeyer-Reaktion (vgl. z. B. Houben-Weyl, Methoden der Organischen Chemie, Band VIII, S. 31 1) möglich (vgl. auch Herstellungsbeispiel 1, Stufe A).
Im Allgemeinen ist es vorteilhaft, die erfindungsgemäßen Herstellungsmethoden I und II in Gegenwart von Verdünnungsmitteln durchzuführen. Verdünnungsmittel werden vorteilhaft in einer solchen Menge eingesetzt, dass das Reaktionsgemisch während des ganzen Verfahrens gut rührbar bleibt. Als Verdünnungsmittel zur Durchführung des erfindungsgemäßen Verfahrens kommen alle inerten organischen Lösungsmittel in Frage. Als Beispiele sind zu nennen: Halogenkohlenwasserstoffe, insbesondere Chlorkohlenwasserstoffe, wie Tetraethylen, Tetrachlorethan, Dichlorpropan, Methylenchlorid, Dichlorbutan, Chloroform, Tetrachlorkohlenstoff, Trichlorethan, Trichlorethylen, Pentachlorethan, Difluorbenzol, 1 ,2-Dichlorethan, Chlorbenzol, Brombenzol, Dichlorbenzol, Chlortoluol, Trichlorbenzol; Alkohole wie Methanol, Ethanol, Isopropanol, Butanol; Ether wie Ethylpropylether, Methyl-tert-butylether, n-Butylether, Anisol, Phene- toi, Cyclohexylmethylether, Dimethylether, Diethylether, Dipropylether, Diisopropylether, Di-n- butylether, Diisobutylether, Diisoamylether, Ethylenglycoldimethylether, Tetrahydrofuran, Dioxan, Dichlordiethylether und Polyether des Ethylenoxids und/oder Propylenoxids; Amine wie Trimethyl-, Triethyl-, Tripropyl-, Tributylamin, N-Methylmorpholin, Pyridin und Tetramethylendiamin; Nitrokoh- lenwasserstoffe wie Nitromethan, Nitroethan, Nitropropan, Nitrobenzol, Chlornitrobenzol, o- Nitrotoluol; Nitrile wie Acetonitril, Propionitril, Butyronitril, Isobutyronitril, Benzonitril, m- Chlorbenzonitril sowie Verbindungen wie Tetrahydrothiophendioxid und Dimethylsulfoxid, Tetrame- thylensulfoxid, Dipropylsulfoxid, Benzylmethylsulfoxid, Diisobutylsulfoxid, Dibutylsulfoxid, Diiso- amylsulfoxid; Sulfone wie dimethyl-, Diethyl-, Dipropyl-, Dibutyl-, Diphenyl-, Dihexyl-, Methylethyl-, Ethylpropyl-, Ethylisobutyl- und Pentamethylensulfon; aliphatische, cycloaliphatische oder aromatische Kohlenwasserstoffe wie Pentan, Hexan, Heptan, Oktan, Nonan und technische Kohlenwasserstoffe; beispielsweise sogenannte White Spirits mit Komponenten mit Siedepunkten im Bereich beispielsweise von 40°C bis 250°C, Cymol, Benzinfraktionen innerhalb eines siedeintervalles von 70°C bis 190°C, Cyclohexan, Methylcyclohexan, Petrolether, Ligroin, Octan, Benzol, Toluol, Chlorbenzol, Brombenzol, Nitrobenzol, Xylol; Ester wie Methyl-, Ethyl-, Butyl-, Isobutylacetat, sowie Dimethyl-, Dibutyl-, Ethyl- encarbonat; Amide wie Hexamethylenphosphorsäuretriamid, Formamid, N-Methyl-formamid, N,N- Dimethyl-formamid, NN-Dipropyl-formamid, NN-Dibutyl-formamid, N-Methyl-pyrrolidin, N-Methyl- caprolactam, l,3-Dimethyl-3,4,5,6-tetrahydro-2(lH)-pyrimidin, Octylpyrrolidon, Octylcaprolactam, 1,3- Dimethyl-2-imidazolindion, N-Formyl-piperidin, NN'-l,4-Diformyl-piperazin; Ketone wie Aceton, Acetophenon, Methylethylketon, Methylbutylketon. Für die erfindungsgemäße Verfahren können auch Gemische der genannten Lösungs- und Verdünnungsmittel eingesetzt werden.
Bevorzugte Verdünnungsmittel zur Durchführung des erfindungsgemäßen Verfahrens sind Halogenkohlenwasserstoffe, insbesondere Chlorkohlenwasserstoffe, wie Tetraethylen, Tetrachlorethan, Dichlorpropan, Methylenchlorid, Dichlorbutan oder Chloroform insbesondere Methylenchlorid. Die Herstellung von Verbindungen der Formel (I) nach den Herstellungsverfahren wird durchgeführt, indem Verbindungen der Formel (II) in Gegenwart von Verbindungen der Formel (I-A) [Methode I] oder der Formel (III-B) [Methode II], gegebenenfalls in Gegenwart eines Säurebindemittels und gegebenenfalls in einem der angegebenen Verdünnungsmittel umgesetzt werden.
Die Reaktionsdauer beträgt im Allgemeinen 10 Minuten bis 48 Stunden. Die Umsetzung erfolgt bei Temperaturen zwischen -10°C und +200°C, bevorzugt zwischen +10°C und 120°C, besonders bevor- zugt bei Raumtemperatur.
Es kann grundsätzlich unter Normaldruck gearbeitet werden. Vorzugsweise arbeitet man bei Normaldruck oder bei Drucken bis zu 15 bar und gegebenenfalls unter Schutzgasatmosphäre (Stickstoff, Helium oder Argon).
Zur Durchführung des erfindungsgemäßen Verfahrens werden pro Mol Verbindung der allgemeinen Formel (II) im Allgemeinen 0,5 bis 4,0 Mol, bevorzugt 0,7 bis 3,0 Mol, besonders bevorzugt 1,0 bis 2,0 Mol an Verbindungen der Formel (I-A) [Methode I] oder der Formel (III-B) [Methode II] eingesetzt.
Desweiteren ist es vorteilhaft, das Herstellungsverfahren in Gegenwart von basischen Reaktionshilfsmitteln (Säurebindemittel) durchzuführen.
Als basische Reaktionshilfsmittel zur Durchführung des erfindungsgemäßen Verfahrens können alle geeigneten Säurebindemittel eingesetzt werden wie Amine, insbesondere tertiäre Amine sowie Alkali- und Erdalkaliverbindungen.
Beispielhaft seien dafür erwähnt die Hydroxide, Hydride, Oxide und Carbonate des Lithiums, Natriums, Kaliums, Magnesiums, Calciums und Bariums, ferner weitere basische Verbindungen wie Amidinbasen o der Guanidinb asen wie 7-Methyl-l,5,7-triaza-bicyclo(4.4.0)dec-5-en (MTBD); Diazabicyc- lo(4.3.0)nonen (DBN), Diazabicyclo (2.2.2)octan (DABCO), 1,8-Diazabicyclo(5.4.0)undecen (DBU), Cyclohexyltetrabutyl-guanidin (CyTBG), Cyclohexyltetramethylguanidin (CyTMG), Ν,Ν,Ν,Ν- Tetramethyl-l,8-naphthalindiamin, Pentamethylpiperidin, tertiäre Amine wie Triethylamin, Trimethyl- amin, Tribenzylamin, Triisopropylamin, Tributylamin, Tricyclohexylamin, Triamylamin, Trihexylamin, N,N-Dimethylanilin, Ν,Ν-Dimethyl-toluidin, N,N-Dimethyl-p-aminopyridin, N-Methyl-pyrrolidin, N- Methyl-piperidin, N-Methyl-imidazol, N-Methyl-pyrazol, N-Methyl-morpholin, N-Methyl- hexamethylendiamin, Pyridin, 4-Pyrrolidinopyridin, 4-Dimethylamino-pyridin, chinolin, α-Picolin, ß- Picolin, Isochinolin, Pyrimidin, Acridin, Ν,Ν,Ν',Ν'-Tetramethylendiamin, Ν,Ν',Ν'-Tetraethylendiamin, Chinoxalin, N-Propyl-diisopropylamin, N-Ethyl-diisopropylamin, N,N'-Dimethyl-cyclohexylamin, 2,6- Lutidin, 2,4-Lutidin oder Triethyldiamin. Vorzugsweise finden tertiäre Amine wie Trimethylamin, Triethylamin, N-Ethyl-N,N-diisopropylamin oder aromatische Amine wie Pyridin, 4-Pyrrolidinopyridin, 4-Dimethylamino-pyridin, chinolin, a- Picolin, ß-Picolin insbesondere Pyridin Verwendung. Die Herstellung von Verbindungen der Formel (I) nach der Herstellungsmethode I (Stufe E) wird durchgeführt, indem Verbindungen der Formel (I-A) in Gegenwart von Verbindungen der Formel (A-4) mit Hilfe einer Palladium-katalysierten Kreuzkupplung (Suzuki Kupplung), in Gegenwart von geeigneten Übergangsmetallkatalysatoren und in Gegenwart eines der angegebenen Verdünnungsmittel umgesetzt werden.
Die Reaktionsdauer beträgt im Allgemeinen 10 Minuten bis 48 Stunden. Die Umsetzung erfolgt bei Temperaturen zwischen -10°C und +200°C, bevorzugt zwischen +10°C und 150°C, besonders bevorzugt 60°C bis 120 °C.
Es kann grundsätzlich unter Normaldruck gearbeitet werden. Vorzugsweise arbeitet man bei Normal- druck oder bei Drucken bis zu 15 bar und gegebenenfalls unter Schutzgasatmosphäre (Stickstoff, Helium oder Argon).
Zur Durchführung des erfindungsgemäßen Verfahrens werden pro Mol Verbindung der allgemeinen Formel (I-A) im Allgemeinen 0,5 bis 4,0 Mol, bevorzugt 0,7 bis 3,0 Mol, besonders bevorzugt 1,0 bis 2,0 Mol an Verbindungen der Formel (A-4) eingesetzt. Desweiteren werden zu Durchführung des erfindungsgemäßen Verfahrens pro Mol Verbindung der allgemeinen Formel (I-A) im Allgemeinen 0,01 bis 0,04 Mol, bevorzugt 0,01 bis 0,03 Mol, besonders bevorzugt 0,02 Mol an Übergangsmetallkatalysator eingesetzt.
Besonders bevorzugt werden dafür geeignete Palladiumkatalysatoren wie beispielsweise Palladium(II)- acetat [Pd(ac)2] oder [l,l-Bis(diphenylphosphino)ferrocene]dichlorpalladium(II) [PdCk (dppf)] einge- setzt.
Bei der Palladium-katalysierten Kreuzkupplung (Suzuki Kupplung) mit Palladium(II)-acetat [Pd(ac)2] ist es vorteilhaft, diese in Gegenwart von Triarylphosphinen, beispielsweise Triphenylphosphin, durchzuführen. Vorzugsweise verwendet man pro Mol Verbindung der allgemeinen Formel (I-A) im Allgemeinen 0,01 bis 0,07 Mol, bevorzugt 0,02 bis 0,06 Mol, besonders bevorzugt 0,04 bis 0,05 Mol an Triphe- nylphosphin.
Desweiteren ist es vorteilhaft, die Palladium-katalysierten Kreuzkupplung (Suzuki Kupplung) in Gegenwart von geeigneten Alkalimetallsalzen, beispielsweise Kaliumphosphat, durchzuführen.
Nach vollendeter Umsetzung wird der gesamte Reaktionsansatz eingeengt. Die nach Aufarbeitung anfallenden Produkte lassen sich in üblicher Weise durch Umkristallisieren, Vakuumdestillation oder Säulen- Chromatographie reinigen (vgl. auch die Herstellungsbeispiele).
Die erfindungsgemäßen Verbindungen können in Abhängigkeit von der Art der Substituenten als geometrische und/oder als optisch aktive Isomere oder entsprechende Isomerengemische in unterschiedli- cher Zusammensetzung vorliegen. Diese Stereoisomere sind beispielsweise Enantiomere, Diastereome- re, Atropisomere oder geometrische Isomere. Die Erfindung umfasst somit reine Stereoisomere als auch beliebige Gemische dieser Isomere.
Die erfindungsgemäßen Verbindungen können gegebenenfalls in verschiedenen polymorphen Formen oder als Mischung verschiedener polymorpher Formen vorliegen. Sowohl die reinen Polymorphe als auch die Polymorphgemische sind Gegenstand der Erfindung und können erfindungsgemäß verwendet werden.
Die erfindungsgemäßen Wirkstoffe eignen sich bei guter Pflanzenverträglichkeit, günstiger Warmblüter- toxizität und guter Umweltverträglichkeit zum Schutz von Pflanzen und Pflanzenorganen, zur Steige- rung der Ernteerträge, Verbesserung der Qualität des Erntegutes und zur Bekämpfung von tierischen Schädlingen, insbesondere Insekten, Spinnentieren, Helminthen, Nematoden und Mollusken, die in der Landwirtschaft, im Gartenbau, bei der Tierzucht, in Forsten, in Gärten und Freizeiteinrichtungen, im Vorrats- und Materialschutz sowie auf dem Hygienesektor vorkommen. Sie können vorzugsweise als Pflanzenschutzmittel eingesetzt werden. Sie sind gegen normal sensible und resistente Arten sowie ge- gen alle oder einzelne Entwicklungs Stadien wirksam. Zu den oben erwähnten Schädlingen gehören:
Schädlinge aus dem Stamm der Arthropoda, insbesondere aus der Klasse der Arachnida z.B. Acarus spp., Aceria sheldoni, Aculops spp., Aculus spp., Amblyomma spp., Amphitetranychus viennensis, Ar- gas spp., Boophilus spp., Brevipalpus spp., Bryobia graminum, Bryobia praetiosa, Centruroides spp., Chorioptes spp., Dermanyssus gallinae, Dermatophagoides pteronyssinus, Dermatophagoides farinae, Dermacentor spp., Eotetranychus spp., Epitrimerus pyri, Eutetranychus spp., Eriophyes spp., Glycy- phagus domesticus, Halotydeus destructor, Hemitarsonemus spp., Hyalomma spp., Ixodes spp., Latro- dectus spp., Loxosceles spp., Metatetranychus spp., Neutrombicula autumnalis, Nuphersa spp., Oli- gonychus spp., Ornithodorus spp., Ornithonyssus spp., Panonychus spp., Phyllocoptruta oleivora, Poly- phagotarsonemus latus, Psoroptes spp., Rhipicephalus spp., Rhizoglyphus spp., Sarcoptes spp., Scorpio maurus, Steneotarsonemus spp., Steneotarsonemus spinki, Tarsonemus spp., Tetranychus spp., Trombi- cula alfreddugesi, Vaejovis spp., Vasates lycopersici.
Aus der Klasse der Chilopoda z.B. Geophilus spp., Scutigera spp..
Aus der Ordnung oder der Klasse der Collembola z.B. Onychiurus armatus.
Aus der Klasse der Diplopoda z.B. Blaniulus guttulatus. Aus der Klasse der Insecta, z.B. aus der Ordnung der Blattodea z.B. Blattella asahinai, Blattella germanica, Blatta orientalis, Leucophaea maderae, Panchlora spp., Parcoblatta spp., Periplaneta spp., Supella longipalpa. Aus der Ordnung der Coleoptera z.B. Acalymma vittatum, Acanthoscelides obtectus, Adoretus spp., Agelastica alni, Agriotes spp., Alphitobius diaperinus, Amphimallon solstitialis, Anobium punctatum, Anoplophora spp., Anthonomus spp., Anthrenus spp., Apion spp., Apogonia spp., Atomaria spp., Attagenus spp., Bruchidius obtectus, Bruchus spp., Cassida spp., Cerotoma trifurcata, Ceutorrhynchus spp., Chaetocnema spp., Cleonus mendicus, Conoderus spp., Cosmopolites spp., Costelytra zealandica, Ctenicera spp., Curculio spp., Cryptolestes ferrugineus, Cryptorhynchus lapathi, Cylindrocopturus spp., Dermestes spp., Diabrotica spp., Dichocrocis spp., Dicladispa armigera, Diloboderus spp., Epilachna spp., Epitrix spp., Faustinus spp., Gibbium psylloides, Gnathocerus cornutus, Hellula undalis, Hete- ronychus arator, Heteronyx spp., Hylamorpha elegans, Hylotrupes bajulus, Hypera postica, Hypomeces squamosus, Hypothenemus spp., Lachnosterna consanguinea, Lasioderma serricorne, Latheticus oryzae, Lathridius spp., Lema spp., Leptinotarsa decemlineata, Leucoptera spp., Lissorhoptrus oryzophilus, Li- xus spp., Luperodes spp., Lyctus spp., Megascelis spp., Melanotus spp., Meligethes aeneus, Melolontha spp., Migdolus spp., Monochamus spp., Naupactus xanthographus, Necrobia spp., Niptus hololeucus, Oryctes rhinoceros, Oryzaephilus surinamensis, Oryzaphagus oryzae, Otiorrhynchus spp., Oxycetonia jucunda, Phaedon cochleariae, Phyllophaga spp., Phyllophaga helleri, Phyllotreta spp., Popillia japonica, Premnotrypes spp., Prostephanus truncatus, Psylliodes spp., Ptinus spp., Rhizobius ventralis, Rhizo- pertha dominica, Sitophilus spp., Sitophilus oryzae, Sphenophorus spp., Stegobium paniceum, Ster- nechus spp., Symphyletes spp., Tanymecus spp., Tenebrio molitor, Tenebrioides mauretanicus, Triboli- um spp., Trogoderma spp., Tychius spp., Xylotrechus spp., Zabrus spp.. Aus der Ordnung der Diptera z.B. Aedes spp., Agromyza spp., Anastrepha spp., Anopheles spp., As- phondylia spp., Bactrocera spp., Bibio hortulanus, Calliphora erythrocephala, Calliphora vicina, Cerati- tis capitata, Chironomus spp., Chrysomyia spp., Chrysops spp., Chrysozona pluvialis, Cochliomyia spp., Contarinia spp., Cordylobia anthropophaga, Cricotopus sylvestris, Culex spp., Culicoides spp., Culiseta spp., Cuterebra spp., Dacus oleae, Dasyneura spp., Delia spp., Dermatobia hominis, Drosophila spp., Echinocnemus spp., Fannia spp., Gasterophilus spp., Glossina spp., Haematopota spp., Hydrellia spp., Hydrellia griseola, Hylemya spp., Hippobosca spp., Hypoderma spp., Liriomyza spp.. Lucilla spp., Lut- zomyia spp., Mansonia spp., Musca spp., Oestrus spp., Oscinella frit, Paratanytarsus spp., Paralauter- borniella subcincta, Pegomyia spp., Phlebotomus spp., Phorbia spp., Phormia spp., Piophila casei, Prodiplosis spp., Psila rosae, Rhagoletis spp., Sarcophaga spp., Simulium spp, Stomoxys spp., Tabanus spp., Tetanops spp., Tipula spp..
Aus der Ordnung der Heteroptera z.B. Anasa tristis, Antestiopsis spp., Boisea spp., Blissus spp., Caloco- ris spp., Campylomma livida, Cavelerius spp., Cimex spp., Collaria spp., Creontiades dilutus, Dasynus piperis, Dichelops furcatus, Diconocoris hewetti, Dysdercus spp., Euschistus spp., Eurygaster spp., He- liopeltis spp., Horcias nobilellus, Leptocorisa spp., Leptocorisa varicornis, Leptoglossus phyllopus, Ly- gus spp., Macropes excavatus, Miridae, Monaionion atratum, Nezara spp., Oebalus spp., Pentomidae, Piesma quadrata, Piezodorus spp., Psallus spp., Pseudacysta persea, Rhodnius spp., Sahlbergella singu- laris, Scaptocoris castanea, Scotinophora spp., Stephanitis nashi, Tibraca spp., Triatoma spp.
Aus der Ordnung der Homoptera z.B. Acizzia acaciaebaileyanae, Acizzia dodonaeae, Acizzia uncatoi- des, Acrida turrita, Acyrthosipon spp., Acrogonia spp., Aeneolamia spp., Agonoscena spp., Aleyrodes proletella, Aleurolobus barodensis, Aleurothrixus floccosus, Allocaridara malayensis, Amrasca spp., Anuraphis cardui, Aonidiella spp., Aphanostigma piri, Aphis spp., Arboridia apicalis, Arytainilla spp., Aspidiella spp., Aspidiotus spp., Atanus spp., Aulacorthum solani, Bemisia tabaci, Blastopsylla occiden- talis, Boreioglycaspis melaleucae, Brachycaudus helichrysi, Brachycolus spp., Brevicoryne brassicae, Cacopsylla spp., Calligypona marginata, Carneocephala fulgida, Ceratovacuna lanigera, Cercopidae, Ceroplastes spp., Chaetosiphon fragaefolii, Chionaspis tegalensis, Chlorita onukii, Chondracris rosea, Chromaphis juglandicola, Chrysomphalus ficus, Cicadulina mbila, Coccomytilus halli, Coccus spp., Cryptomyzus ribis, Cryptoneossa spp., Ctenarytaina spp., Dalbulus spp., Dialeurodes citri, Diaphorina citri,, Diaspis spp., Drosicha spp., Dysaphis spp., Dysmicoccus spp., Empoasca spp., Eriosoma spp., Erythroneura spp., Eucalyptolyma spp., Euphyllura spp., Euscelis bilobatus, Ferrisia spp., Geococcus coffeae, Glycaspis spp., Heteropsylla cubana, Heteropsylla spinulosa, Homalodisca coagulata, Hyalopte- rus arundinis, Icerya spp., Idiocerus spp., Idioscopus spp., Laodelphax striatellus, Lecanium spp., Lepi- dosaphes spp., Lipaphis erysimi, Macrosiphum spp., Macrosteies facifrons, Mahanarva spp., Melanaphis sacchari, Metcalfiella spp., Metopolophium dirhodum, Monellia costalis, Monelliopsis pecanis, Myzus spp., Nasonovia ribisnigri, Nephotettix spp., Nettigoniclla spectra, Nilaparvata lugens, Oncometopia spp., Orthezia praelonga, Oxya chinensis, Pachypsylla spp., Parabemisia myricae, Paratrioza spp., Parla- toria spp., Pemphigus spp., Peregrinus maidis, Phenacoccus spp., Phloeomyzus passerinii, Phorodon humuli, Phylloxera spp., Pinnaspis aspidistrae, Planococcus spp., Prosopidopsylla flava, Protopulvinaria pyriformis, Pseudaulacaspis pentagona, Pseudococcus spp., Psyllopsis spp., Psylla spp., Pteromalus spp., Pyrilla spp., Quadraspidiotus spp., Quesada gigas, Rastrococcus spp., Rhopalosiphum spp., Saissetia spp., Scaphoideus titanus, Schizaphis graminum, Selenaspidus articulatus, Sogata spp., Sogatella fur- cifera, Sogatodes spp., Stictocephala festina, Siphoninus phillyreae, Tenalaphara malayensis, Tetrago- nocephela spp., Tinocallis caryaefoliae, Tomaspis spp., Toxoptera spp., Trialeurodes vaporariorum Trioza spp., Typhlocyba spp., Unaspis spp., Viteus vitifolii, Zygina spp..
Aus der Ordnung der Hymenoptera z.B. Acromyrmex spp., Athalia spp., Atta spp., Diprion spp., Hoplo- campa spp., Lasius spp., Monomorium pharaonis, Sirex spp., Solenopsis invicta, Tapinoma spp., Uroce- rus spp., Vespa spp., Xeris spp..
Aus der Ordnung der Isopoda z.B. Armadillidium vulgare, Oniscus asellus, Porcellio scaber.
Aus der Ordnung der Isoptera z.B. Coptotermes spp., Cornitermes cumulans, Cryptotermes spp., Incisi- termes spp., Microtermes obesi, Odontotermes spp., Reticulitermes spp.. Aus der Ordnung der Lepidoptera z.B. Achroia grisella, Acronicta major, Adoxophyes spp., Aedia leu- comelas, Agrotis spp., Alabama spp., Amyelois transitella, Anarsia spp., Anticarsia spp., Argyroploce spp., Barathra brassicae, Borbo cinnara, Bucculatrix thurberiella, Bupalus piniarius, Busseola spp., Ca- coecia spp., Caloptilia theivora, Capua reticulana, Carpocapsa pomonella, Carposina niponensis, Chei- matobia brumata, Chilo spp., Choristoneura spp., Clysia ambiguella, Cnaphalocerus spp., Cnaphalocro- cis medinalis, Cnephasia spp., Conopomorpha spp., Conotrachelus spp., Copitarsia spp., Cydia spp., Dalaca noctuides, Diaphania spp., Diatraea saccharalis, Earias spp., Ecdytolopha aurantium, Elasmo- palpus lignosellus, Eidana saccharina, Ephestia spp., Epinotia spp., Epiphyas postvittana, Etiella spp., Eulia spp., Eupoecilia ambiguella, Euproctis spp., Euxoa spp., Feltia spp., Galleria mellonella, Gracilla- ria spp., Grapholitha spp., Hedylepta spp., Helicoverpa spp., Heliothis spp., Hofmannophila pseudos- pretella, Homoeosoma spp., Homona spp., Hyponomeuta padella, Kakivoria flavofasciata, Laphygma spp., Laspeyresia molesta, Leucinodes orbonalis, Leucoptera spp., Lithocolletis spp., Lithophane anten- nata, Lobesia spp., Loxagrotis albicosta, Lymantria spp., Lyonetia spp., Malacosoma neustria, Maruca testulalis, Mamstra brassicae, Melanitis leda, Mocis spp., Monopis obviella, Mythimna separata, Nema- pogon cloacellus, Nymphula spp., Oiketicus spp., Oria spp., Orthaga spp., Ostrinia spp., Oulema oryzae, Panolis flammea, Parnara spp., Pectinophora spp., Perileucoptera spp., Phthorimaea spp., Phyllocnistis citrella, Phyllonorycter spp., Pieris spp., Platynota stultana, Plodia interpunctella, Plusia spp., Plutella xylostella, Prays spp., Prodenia spp., Protoparce spp., Pseudaletia spp., Pseudaletia unipuncta, Pseu- doplusia includens, Pyrausta nubilalis, Rachiplusia nu, Schoenobius spp., Scirpophaga spp., Scirpophaga innotata, Scotia segetum, Sesamia spp., Sesamia inferens, Sparganothis spp., Spodoptera spp., Spodopte- ra praefica, Stathmopoda spp., Stomopteryx subsecivella, Synanthedon spp., Tecia solanivora, Thermesia gemmatalis, Tinea cloacella, Tinea pellionella, Tineola bisselliella, Tortrix spp., Trichophaga tapetzella, Trichoplusia spp., Tryporyza incertulas, Tuta absoluta, Virachola spp..
Aus der Ordnung der Orthoptera oder Saltatoria z.B. Acheta domesticus, Dichroplus spp., Gryllotalpa spp., Hieroglyphus spp., Locusta spp., Melanoplus spp., Schistocerca gregaria.
Aus der Ordnung der Phthiraptera z.B. Damalinia spp., Haematopinus spp., Linognathus spp., Pediculus spp., Phylloera vastatrix, Phtirus pubis, Trichodectes spp..
Aus der Ordnung der Psocoptera z.B. Lepinotus spp., Liposcelis spp.
Aus der Ordnung der Siphonaptera z.B. Ceratophyllus spp., Ctenocephalides spp., Pulex irritans, Tunga penetrans, Xenopsylla cheopsis.
Aus der Ordnung der Thysanoptera z.B. Anaphothrips obscurus, Baliothrips biformis, Drepanothrips reuteri, Enneothrips Hävens, Frankliniella spp., Heliothrips spp., Hercinothrips femoralis, Rhi- piphorothrips cruentatus, Scirtothrips spp., Taeniothrips cardamomi, Thrips spp.. Aus der Ordnung der Zygentoma (= Thysanura), z. B. Ctenolepisma spp., Lepisma saccharina, Lepismodes inquilinus, Thermobia domestica.
Aus der Klasse der Symphyla z.B. Scutigerella spp..
Schädlinge aus dem Stamm der Mollusca, insbesondere aus der Klasse der Bivalvia, z.B. Dreissena spp., sowie aus der Klasse der Gastropoda z.B. Arion spp., Biomphalaria spp., Bulinus spp., Deroceras spp., Galba spp., Lymnaea spp., Oncomelania spp., Pomacea spp., Succinea spp..
Tierparasiten aus den Stämmen der Plathelminthes und Nematoda, z.B. Ancylostoma duodenale, Ancy- lostoma ceylanicum, Acylostoma braziliensis, Ancylostoma spp., Ascaris spp., Brugia malayi, Brugia timori, Bunostomum spp., Chabertia spp., Clonorchis spp., Cooperia spp., Dicrocoelium spp, Dictyocau- lus filaria, Diphyllobothrium latum, Dracunculus medinensis, Echinococcus granulosus, Echinococcus multilocularis, Enterobius vermicularis, Faciola spp., Haemonchus spp., Heterakis spp., Hymenolepis nana, Hyostrongulus spp., Loa Loa, Nematodirus spp., Oesophagostomum spp., Opisthorchis spp., On- chocerca volvulus, Ostertagia spp., Paragonimus spp., Schistosomen spp, Strongyloides fuelleborni, Strongyloides stercoralis, Stronyloides spp., Taenia saginata, Taenia solium, Trichinella spiralis, Trichi- nella nativa, Trichinella britovi, Trichinella nelsoni, Trichinella pseudopsiralis, Trichostrongulus spp., Trichuris trichuria, Wuchereria bancrofti.
Pflanzenschädlinge aus dem Stamm der Nematoda, d.h. pflanzenparasitäre Nematoden, insbesondere Aphelenchoides spp., Bursaphelenchus spp., Ditylenchus spp., Globodera spp., Heterodera spp., Lon- gidorus spp., Meloidogyne spp., Pratylenchus spp., Radopholus spp., Trichodorus spp., Tylenchulus spp, Xiphinema spp., Hehcotylenchus spp., Tylenchorhynchus spp., Scutellonema spp., Paratrichodorus spp., Meloinema spp., Paraphelenchus spp., Aglenchus spp., Belonolaimus spp., Nacobbus spp, Rotylenchu- lus spp., Rotylenchus spp., Neotylenchus spp., Paraphelenchus spp., Dolichodorus spp., Hoplolaimus spp., Punctodera spp., Criconemella spp., Quinisulcius spp., Hemicycliophora spp., Anguina spp., Sub- anguina spp., Hemicriconemoides spp., Psilenchus spp., Pseudohalenchus spp., Criconemoides spp., Cacopaurus spp..
Weiterhin lässt sich aus dem Unterreich der Protozoa die Ordnung der Coccidia z.B. Eimeria spp.. bekämpfen.
Die erfindungsgemäßen Verbindungen können in bestimmten Konzentrationen bzw. Aufwandmengen auch als Herbizide, Safener, Wachstumsregulatoren oder Mittel zur Verbesserung der Pflanzeneigen- Schäften, oder als Mikrobizide, beispielsweise als Fungizide, Antimykotika, Bakterizide, Virizide (einschließlich Mittel gegen Viroide) oder als Mittel gegen MLO (Mycoplasma-like-organism) und RLO (Rickettsia- like-organism) verwendet werden. Sie lassen sich auch als Zwischen- oder Vorprodukte für die Synthese weiterer Wirkstoffe einsetzen. Die Wirkstoffe können in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Spritzpulver, wasser- und ölbasierte Suspensionen, Pulver, Stäubemittel, Pasten, lösliche Pulver, lösliche Granulate, Streugranulate, Suspensions-Emulsions-Konzentrate, Wirkstoff-imprägnierte Naturstoffe, Wirkstoff-imprägnierte synthetische Stoffe, Düngemittel sowie Feinstverkapselungen in polymeren Stoffen.
Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln. Die Herstellung der Formulierungen erfolgt entweder in geeigneten Anla- gen oder auch vor oder während der Anwendung.
Als Hilfsstoffe können solche Stoffe Verwendung finden, die geeignet sind, dem Mittel selbst oder und/oder davon abgeleitete Zubereitungen (z.B. Spritzbrühen, Saatgutbeizen) besondere Eigenschaften zu verleihen, wie bestimmte technische Eigenschaften und/oder auch besondere biologische Eigenschaften. Als typische Hilfsmittel kommen in Frage: Streckmittel, Lösemittel und Trägerstoffe. Als Streckmittel eignen sich z.B. Wasser, polare und unpolare organische chemische Flüssigkeiten z.B. aus den Klassen der aromatischen und nicht-aromatischen Kohlenwasserstoffe (wie Paraffine, Al- kylbenzole, Alkylnaphthaline, Chlorbenzole), der Alkohole und Polyole (die ggf. auch substituiert, ve- rethert und/oder verestert sein können), der Ketone (wie Aceton, Cyclohexanon), Ester (auch Fette und Öle) und (poly-)Ether, der einfachen und substituierten Amine, Amide, Lactame (wie N- Alkylpyrrolidone) und Lactone, der Sulfone und Sulfoxide (wie Dimethylsysulfoxid).
Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösemittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösemittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol, oder Alkylnaphthaline, chlorierte Aromaten und chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, mineralische und pflanzliche Öle, Alkohole, wie Butanol oder Glykol sowie deren Ether und Ester, Ketone wie Aceton, Methylethylketon, Methyl- isobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylsulfoxid, sowie Wasser.
Als feste Trägerstoffe kommen in Frage: z.B. Ammoniumsalze und natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate, als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Papier, Sägemehl, Kokosnußschalen, Maiskolben und Tabakstengeln; als Emulgier- und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Po- lyoxyethylen-Fettsäure-Ester, Polyoxyethylen-Fettalkohol-Ether, z.B. Alkylaryl-polyglykolether, Al- kylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate; als Dispergiermittel kommen in Frage nicht-ionische und/oder ionische Stoffe, z.B. aus den Klassen der Alkohol-POE- und/oder POP- Ether, Säure- und/oder POP- POE-Ester, Alkyl-Aryl- und/oder POP- POE-Ether, Fett- und/oder POP- POE-Addukte, POE- und/oder POP-Polyol Derivate, POE- und/oder POP-Sorbitan- oder-Zucker- Addukte, Alky- oder Aryl-Sulfate, Sulfonate und Phosphate oder die entsprechenden PO-Ether- Addukte. Ferner geeignete Oligo- oder Polymere, z.B. ausgehend von vinylischen Monomeren, von Acrylsäure, aus EO und/oder PO allein oder in Verbindung mit z.B. (poly-) Alkoholen oder (poly-) A- minen. Ferner können Einsatz finden Lignin und seine Sulfonsäure-Derivate, einfache und modifizierte Cellulosen, aromatische und/oder aliphatische Sulfonsäuren sowie deren Addukte mit Formaldehyd.
Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulvrige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalko- hol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine und synthetische Phospholipide.
Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurennährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.
Weitere Additive können Duftstoffe, mineralische oder vegetabile gegebenenfalls modifizierte Öle, Wachse und Nährstoffe (auch Spurennährstoffe), wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink sein.
Weiterhin enthalten sein können Stabilisatoren wie Kältestabilisatoren, Konservierungsmittel, Oxidati- onsschutzmittel, Lichtschutzmittel oder andere die chemische und / oder physikalische Stabilität verbessernde Mittel. Die Formulierungen enthalten im Allgemeinen zwischen 0,01 und 98 Gew.-% Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.
Der erfindungsgemäße Wirkstoff kann in seinen handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit anderen Wirkstoffen wie Insektiziden, Lockstoffen, Sterilantien, Bakteriziden, Akariziden, Nematiziden, Fungiziden, wachstumsregulie- renden Stoffen, Herbiziden, Safenern, Düngemitteln oder Semiochemicals vorliegen.
Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Herbiziden, Düngemitteln, Wachstumsregulatoren, Safenern, Semiochemicals, oder auch mit Mitteln zur Verbesserung der Pflanzeneigenschaften ist möglich. Die erfindungsgemäßen Wirkstoffe können ferner beim Einsatz als Insektizide in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit Synergisten vorliegen. Synergisten sind Verbindungen, durch die die Wirkung der Wirkstoffe gesteigert wird, ohne daß der zugesetzte Synergist selbst aktiv wirksam sein muß. Die erfindungsgemäßen Wirkstoffe können ferner beim Einsatz als Insektizide in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungs formen in Mischungen mit Hemmstoffen vorliegen, die einen Abbau des Wirkstoffes nach Anwendung in der Umgebung der Pflanze, auf der Oberfläche von Pflanzenteilen oder in pflanzlichen Geweben vermindern.
Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungs formen kann in weiten Bereichen variieren. Die Wirkstoffkonzentration der Anwendungs formen kann von 0,00000001 bis zu 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,00001 und 1 Gew.-% liegen.
Die Anwendung geschieht in einer den Anwendungsformen angepaßten üblichen Weise.
Erfindungsgemäß können alle Pflanzen und Pflanzenteile behandelt werden. Unter Pflanzen werden hierbei alle Pflanzen und Pflanzenpopulationen verstanden, wie erwünschte und unerwünschte Wild- pflanzen oder Kulturpflanzen (einschließlich natürlich vorkommender Kulturpflanzen). Kulturpflanzen können Pflanzen sein, die durch konventionelle Züchtungs- und Optimierungsmethoden oder durch biotechnologische und gentechnologische Methoden oder Kombinationen dieser Methoden erhalten werden können, einschließlich der transgenen Pflanzen und einschließlich der durch Sortenschutzr echte schützbaren oder nicht schützbaren Pflanzensorten. Unter Pflanzenteilen sollen alle oberirdischen und unterir- dischen Teile und Organe der Pflanzen, wie Sproß, Blatt, Blüte und Wurzel verstanden werden, wobei beispielhaft Blätter, Nadeln, Stengel, Stämme, Blüten, Fruchtkörper, Früchte und Saatgut sowie Wurzeln, Knollen und Rhizome aufgeführt werden. Zu den Pflanzenteilen gehört auch Erntegut sowie vegetatives und generatives Vermehrungsmaterial, beispielsweise Stecklinge, Knollen, Rhizome, Ableger und Saatgut. Die erfindungsgemäße Behandlung der Pflanzen und Pflanzenteile mit den Wirkstoffen erfolgt direkt oder durch Einwirkung auf deren Umgebung, Lebensraum oder Lagerraum nach den üblichen Behandlungsmethoden, z.B. durch Tauchen, Sprühen, Verdampfen, Vernebeln, Streuen, Aufstreichen, Injizieren und bei Vermehrungsmaterial, insbesondere bei Saatgut, weiterhin durch ein- oder mehrschichtiges Umhüllen. Wie bereits oben erwähnt, können erfindungsgemäß alle Pflanzen und deren Teile behandelt werden. In einer bevorzugten Ausführungsform werden wild vorkommende oder durch konventionelle biologische Zuchtmethoden, wie Kreuzung oder Protoplastenfusion erhaltenen Pflanzenarten und Pflanzensorten sowie deren Teile behandelt. In einer weiteren bevorzugten Ausführungsform werden transgene Pflanzen und Pflanzensorten, die durch gentechnologische Methoden gegebenenfalls in Kombination mit konventionellen Methoden erhalten wurden (Genetically Modified Organisms) und deren Teile behandelt. Die Begriffe "Teile" bzw. "Teile von Pflanzen" oder "Pflanzenteile" wurden oben erläutert.
Besonders bevorzugt werden erfindungsgemäß Pflanzen der jeweils handelsüblichen oder in Gebrauch befindlichen Pflanzensorten behandelt. Unter Pflanzensorten versteht man Pflanzen mit neuen Eigen- schaften ("Traits"), die sowohl durch konventionelle Züchtung, durch Mutagenese oder durch rekombi- nante DNA-Techniken gezüchtet worden sind. Dies können Sorten, Bio- und Genotypen sein.
Je nach Pflanzenarten bzw. Pflanzensorten, deren Standort und Wachstumsbedingungen (Böden, Klima, Vegetationsperiode, Ernährung) können durch die erfindungsgemäße Behandlung auch überadditive ("synergistische") Effekte auftreten. So sind beispielsweise erniedrigte Aufwandmengen und/oder Er- Weiterungen des Wirkungsspektrums und/oder eine Verstärkung der Wirkung der erfindungsgemäß verwendbaren Stoffe und Mittel, besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte möglich, die über die eigentlich zu erwartenden Effekte hinausgehen.
Zu den bevorzugten erfindungsgemäß zu behandelnden transgenen (gentechnologisch erhaltenen) Pflanzen bzw. Pflanzensorten gehören alle Pflanzen, die durch die gentechnologische Modifikation genetisches Material erhielten, welches diesen Pflanzen besondere vorteilhafte wertvolle Eigenschaften ("Traits") verleiht. Beispiele für solche Eigenschaften sind besseres Pflanzenwachstum, erhöhte Tole- ranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte. Weitere und besonders hervorgehobene Beispiele für solche Eigenschaften sind eine erhöhte Abwehr der Pflanzen gegen tierische und mikrobielle Schäd- linge, wie gegenüber Insekten, Milben, pflanzenpathogenen Pilzen, Bakterien und/oder Viren sowie eine erhöhte Toleranz der Pflanzen gegen bestimmte herbizide Wirkstoffe. Als Beispiele transgener Pflanzen werden die wichtigen Kulturpflanzen, wie Getreide (Weizen, Reis), Mais, Soja, Kartoffel, Zuckerrüben, Tomaten, Erbsen und andere Gemüsesorten, Baumwolle, Tabak, Raps, sowie Obstpflanzen (mit den Früchten Äpfel, Birnen, Zitrusfrüchten und Weintrauben) erwähnt, wobei Mais, Soja, Kartoffel, Baum- wolle, Tabak und Raps besonders hervorgehoben werden. Als Eigenschaften ("Traits") werden besonders hervorgehoben die erhöhte Abwehr der Pflanzen gegen Insekten, Spinnentiere, Nematoden und Schnecken durch in den Pflanzen entstehende Toxine, insbesondere solche, die durch das genetische Material aus Bacillus Thuringiensis (z.B. durch die Gene CrylA(a), CrylA(b), CrylA(c), CryllA, Cryll- IA, CryIIIB2, Cry9c Cry2Ab, Cry3Bb und CrylF sowie deren Kombinationen) in den Pflanzen erzeugt werden (im folgenden "Bt Pflanzen"). Als Eigenschaften ("Traits") werden auch besonders hervorgehoben die erhöhte Abwehr von Pflanzen gegen Pilze, Bakterien und Viren durch Systemische Akquirierte Resistenz (SAR), Systemin, Phytoalexine, Elicitoren sowie Resistenzgene und entsprechend exprimierte Proteine und Toxine. Als Eigenschaften ("Traits") werden weiterhin besonders hervorgehoben die erhöhte Toleranz der Pflanzen gegenüber bestimmten herbiziden Wirkstoffen, beispielsweise Imidazo- linonen, Sulfonylharnstoffen, Glyphosate oder Phosphinotricin (z.B. "PAT"-Gen). Die jeweils die ge- wünschten Eigenschaften ("Traits") verleihenden Gene können auch in Kombinationen miteinander in den transgenen Pflanzen vorkommen. Als Beispiele für "Bt Pflanzen" seien Maissorten, Baumwollsorten, Sojasorten und Kartoffels orten genannt, die unter den Handelsbezeichnungen YIELD GARD® (z.B. Mais, Baumwolle, Soja), KnockOut® (z.B. Mais), StarLink® (z.B. Mais), Bollgard® (Baumwolle), Nucotn® (Baumwolle) und NewLeaf® (Kartoffel) vertrieben werden. Als Beispiele für Herbizid- tolerante Pflanzen seien Maissorten, Baumwollsorten und Sojasorten genannt, die unter den Handelsbezeichnungen Roundup Ready® (Toleranz gegen Glyphosate z.B. Mais, Baumwolle, Soja), Liberty Link® (Toleranz gegen Phosphinotricin, z.B. Raps), IMI® (Toleranz gegen Imidazolinone) und STS® (Toleranz gegen Sulfonylharnstoffe z.B. Mais) vertrieben werden. Als Herbizid- resistente (konventionell auf Herbizid-Toleranz gezüchtete) Pflanzen seien auch die unter der Bezeichnung Clearfield® ver- triebenen Sorten (z.B. Mais) erwähnt. Selbstverständlich gelten diese Aussagen auch für in der Zukunft entwickelte bzw. zukünftig auf den Markt kommende Pflanzensorten mit diesen oder zukünftig entwickelten genetischen Eigenschaften ("Traits").
Die aufgeführten Pflanzen können besonders vorteilhaft erfindungsgemäß mit den Verbindungen der allgemeinen Formel (I) bzw. den erfindungsgemäßen Wirkstoffmischungen behandelt werden. Die bei den Wirkstoffen bzw. Mischungen oben angegebenen Vorzugsbereiche gelten auch für die Behandlung dieser Pflanzen. Besonders hervorgehoben sei die Pflanzenbehandlung mit den im vorliegenden Text speziell aufgeführten Verbindungen bzw. Mischungen.
Herstellungsbeispiele
Beispiel 1 (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(2-methyl-4'- trifluormethyl- [ 1 , Γ -biphenyl] -3 -yl)methylester
a) Stufe A (Methode I, II): ch WO 2008/016184)
Figure imgf000033_0001
Zu einem Gemisch aus 4,13 g (3,6 ml; 25,0 mmol) 3-Amino-2-methyl-benzoesäuremethylester in 25 mL Wasser wurde eine Lösung aus 5,0 mL Schwefelsäure und 25,0 mL Wasser gegeben. Danach wurde das Reaktionsgemisch auf 0 °C abgekühlt und tropfenweise mit einer Lösung aus 1,81 g (26,5 mmol) Natriumnitrit in 25 mL Wasser versetzt. Nach einer Stunde Rühren wurde eine Lösung aus 6,23 g (37,5 mmol) Kaliumiodid in 25 mL Wasser tropfenweise hinzugegeben. Anschliessend wurden noch eine Stunde bei 0°C weitergerührt. Dann wurde das gesamte Reaktionsgemisch dreimal mit 50 mL Dichlor- methan extrahiert. Die vereinigten organischen Phasen wurden mit 25 mL gesättigter Natriumthiosulfat- Lösung gewaschen und über Magnesiumsulfat getrocknet. Danach wurde die organische Phase im Vakuum abgetrennt und das verbleibende Rohprodukt mittels Flash Chromatographie (Kieselgel; Eluent: 3-5% Essigsäureethylester in n-Hexan) gereinigt. Man erhält 6,37 g (92 % der Theorie) 3-Iod-2-methyl- benzoesäuremethylester. b) Stufe B (Methode I): (3-Iod-2-methylphenyl)methanol (vgl. auch WO 2008/131368)
Figure imgf000033_0002
Zu einer Lösung gerührten Lösung aus 4,29 g (15,5 mmol) 3-Iod-2-methyl-benzoesäuremethylester (Stufe A) in 50 mL Toluol wurden bei Raumtemperatur unter Schutzgasatmosphäre (Stickstoff) 7,8 mL (15,5 mmol) einer 2,0 M Lösung Lithiumborhydrid in Tetrahydrofuran (THF) gegeben. Anschliessend wurde das gesamte Reaktionsgemisch 30 Minuten bei 100 °C gerührt. Danach wurden 10 mL einer IM Salzsäure-Lösung hinzugegeben und die Lösungsmittel abgetrennt. Der verbleibende Rückstand wurde in 50 mL Diethylether gelöst und nacheinander mit 20 mL gesättigter Natriumthiosulfat-Lösung, 20 mL gesättigter Natriumhydrogencarbonat-Lösung und Salzlösung gewaschen. Die organische Phase wurde über Natriumsulfat getrocknet, abfiltriert und im Vakuum eingeengt.
Man erhält 3,62 g (95 % der Theorie) (3-Iod-2-methylphenyl)methanol als farblosen Feststoff, der ohne weitere Reinigung für die Folgereaktion verwendet werden kann. c) Stufe C (Methode I. II): (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarb
Chlorid (vgl. auch US 4,342,770)
Figure imgf000034_0001
6,20 g (20,0 mmol) (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure (vgl. auch M. Eliott et al., Pesticide Sei. 6, 537-542, 1975) wurden in 100 ml trockenem Dichlormethan und unter Inertgasatmosphäre (Stickstoff) mit 2,67 g (21,0 mmol) Oxalylchlorid und einer katalytischen Menge (2 Tropfen) DMF versetzt. Nach drei Stunden Rühren bei Raumtemperatur wurde das Lösungs- mitt e l i m V a kuum entfernt und das rohe (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl- cyclopropancarbonsäurechlorid (gelbliches Öl) für den nächsten Reaktionsschritt (Stufe E) verwendet. d-1) Stufe D (Methode I): (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-
3-iod-2-methyl-benzylester
Figure imgf000034_0002
Das in Stufe C erhaltene (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-chlorid wurde in 40 ml Dichlormethan verrührt und mit 3,16 g (40 mmol) Pyridin versetzt. Anschliessend wurde das Reaktionsgemisch eine Stunde bei Raumtemperatur weitergerührt und dann mit einer Lösung aus 4,49 g (18,1 mmol) (3-Iod-2-methylphenyl)methanol (Stufe C) in 20 ml Dichlormethan versetzt. Danach wurde das Reaktionsgemisch noch ca. 18 Stunden bei Raumtemperatur gerührt. Anschliessend wurden das Lösungsmittel und überschüssiges Pyridin im Vakuum entfernt. Der verbleibende Rückstand wurde in 100 ml Diethylether gelöst, und nacheinander mit 50 ml Wasser, 50 ml gesättigter Natriumhydrogen- carbonat-Lösung und gesättigter Salzlösung gewaschen. Die organische Phase wurde über Natriumsulfat getrocknet und nach Filtration im Vakuum eingeengt. Das verbleibende Rohprodukt wurde mittels Flash Chromatographie (Kieselgel Eluent: 2% Essigsäureethylester in n-Hexan) gereinigt. Man erhält 9,07 g (95 % der Theorie) (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-3-iod-2- methyl-benzylester als farbloses Öl.
ES HRMS: m/z gefunden: 550.8530. Cl6Hi70223Na79Br81Br127I [M+Na]+ berechnet: 550.8517. lH NMR (400 MHz, CDC13) δ 7.83 (dd, J = 7.9, 1.0 Hz, 1H), 7.31 (dd, J = 7.5, 0.7 Hz, 1H), 6.90 (t, J = 7.7 Hz, 1H), 6.76 (d, J = 8.5 Hz, 1H), 5.14 (d, J = 4.9 Hz, 2H), 2.47 (s, 3H), 1.97 (t, J = 8.5 Hz, 1H), 1.89 (d, J = 8.5 Hz, 1H), 1.27 (s, 3H), 1.25 (s, 3H) ppm. 13C NMR (101 MHz, CDCI3) δ 170.56, 140.40, 140.05, 135.41 , 133.75, 129.90, 127.97, 103.57, 89.95, 65.96, 36.15, 32.17, 28.75, 28.09, 24.96, 15.48 ppm. d-2 Stufe D (Methode I): (lR,3R)-3-(2-Chlor-2-trifluormethenyl)-2,2-dimethyl- cyclopropancarbonsäure-3-iod-2-methyl-benzylester
Figure imgf000035_0001
Der (lR,3R)-3-(2-Chlor-2-trifluormethenyl)-2,2-dimethyl-cyclopropan-carbonsäure-3-iod-2-methyl- benzylester wurde in analoger Weise aus (lR,3R)-3-(2-Chlor-2-trifluormethenyl)-2,2-dimethyl-cyclo- propancarbonsäure-chlorid (3 -Iod-2-methylphenyl)methanol erhalten.
ES HRMS: m/z gefunden: 494.9792. CnHi702F3 23Na35Cl127I [M+Na]+ berechnet: 494.9812. lH NMR (400 MHz, CDCI3) δ 7.84 (dd, J = 8.0, 1.1 Hz, 1H), 7.30 (d, J = 7.1 Hz, 1H), 6.94 - 6.86 (m, 2H), 5.15 (d, J = 6.6 Hz, 2H), 2.46 (s, 3H), 2.18 (t, J = 8.9 Hz, 1H), 2.02 (d, J = 8.4 Hz, 1H), 1.30 (s, 6H) ppm.
13C NMR (101 MHz, CDCI3) δ 170.36, 140.42, 140.14, 135.20, 130.31, 130.27, 129.95, 127.98, 122.46, 122.15, 122.08, 119.45, 103.57, 66.13, 33.19, 31.40, 29.22, 28.75, 24.95, 15.33 ppm.
e) Stufe E (Methode I): (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(2- methyl-4 ' -trifluormethyl- [ 1 , Γ -biphenyl] -3 -yl)methylester
Zu einer Lösung aus 528 mg (1,0 mmol) (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl- cyclopropancarbonsäure-3-iod-2-methyl-benzylester in 20 mL Toluol wurden 4,5 mg (0,02 mmol) Palladium(II)-acetat, 13,1 mg (0,05 mmol) Triphenylphosphin, 0,85 g (4,0 mmol) Kaliumphosphat und 235 mg (1 ,2 mmol) 4-Trifluormethylphenylboronsäure gegeben. Danach wurde das Reaktionsgemisch entgast und 6 Stunden bei 70 °C gerührt. Anschliessend wurde das resultierende Reaktionsgemisch durch einen mit Kieselgel beladenen Filter gedrückt, um den Palladiumkatalysator und die anorganischen Salze zu entfernen. Das als schwach gelbes Öl erhaltene Rohprodukt wurde mittels Flash Chroma- tographie (Kieselgel Eluent: 3% Essigsäureethylester in n-Hexan) gereinigt. Man erhält 386 mg (71 % d e r T h eorie) (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropan-carbonsäure-(2-methyl-4'- trifluormethyl)-[l,r-biphenyl]-3-yl)methylester als farbloses Öl.
ES HRMS: m/z gefunden: 568.9739.
C23H2i02F3 23Na79Br81Br [M+Na]+ berechnet: 568.9738. lH NMR (400 MHz, CDC13) δ 7.68 (d, J = 8.5 Hz, 2H), 7.46 - 7.37 (m, 3H), 7.29 (t, J = 7.6 Hz, 1H), 7.21 (dd, J = 7.6, 1.5 Hz, 1H), 6.80 (d, J = 8.3 Hz, 1H), 5.20 (s, 2H), 2.21 (s, 3H), 1.99 (t, J = 8.4 Hz, 1H), 1.93 (d, J = 8.4 Hz, 1H), 1.29 (s, 3H), 1.26 (s, 3H) ppm.
13C NMR (101 MHz, CDCI3) δ 170.73, 145.93, 141.93, 135.15, 134.66, 133.84, 130.43, 130.13, 129.77, 129.45, 129.36, 126.27, 125.49, 89.87, 65.40, 36.14, 32.23, 28.78, 28.07, 16.59, 15.50 ppm. In analoger Weise wurden mittels Suzuki Kupplung (Stufe E, Methode I) die Beispiele 2 bis 8 erhalten.
Beispiel 2 (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(2-methyl-3'- trifluormethyl- [ 1 , Γ -biphenyl] -3 -yl)methylester
Figure imgf000036_0001
Ausb.: 68 % (d. Theorie)
ES HRMS: m/z gefunden: 568.9734.
C23H2i02F3 23Na79Br81Br [M+Na]+ berechnet: 568.9738.
lH NMR (400 MHz, CDCI3) δ 7.65 - 7.47 (m, 4H), 7.39 (dd, J = 7.5, 1.4 Hz, 1H), 7.29 (t, J = 7.6 Hz, 1H), 7.22 (dd, J = 7.6, 1.5 Hz, 1H), 6.80 (d, J = 8.3 Hz, 1H), 5.20 (s, 2H), 2.21 (s, 3H), 1.99 (t, J = 8.4 Hz, 1H), 1.93 (d, J = 8.5 Hz, 1H), 1.29 (s, 3H), 1.26 (s, 3H) ppm. 13C NMR (101 MHz, CDC13) δ 170.73, 142.98, 141.82, 135.15, 134.76, 133.86, 133.11, 131.15, 130.84, 130.57, 129.38, 129.02, 126.51, 126.28, 124.17, 89.86, 65.43, 36.14, 32.24, 28.78, 28.06, 16.57, 15.51 ppm. Beispiel 3 (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(2-methyl-4'- fluor- [ 1 , 1 ' -biphenyl] -3 -yl)methylester
Figure imgf000037_0001
Ausb.: 88 % (d. Theorie) ES HRMS: m/z gefunden: 518.9752.
C22H2i02F23Na79Br81Br [M+Na]+ berechnet: 518.9770. lH NMR (400 MHz, CDCI3) δ 7.35 (dd, J = 7.5, 1.6 Hz, 1H), 7.29 - 7.23 (m, 3H), 7.20 (dd, J = 7.6, 1.6 Hz, 1H), 7.10 (t, J = 8.7 Hz, 2H), 6.80 (d, J = 8.3 Hz, 1H), 5.19 (d, J = 1.4 Hz, 2H), 2.21 (s, 3H), 1.98 (t, J = 8.4 Hz, 1H), 1.93 (d, J = 8.5 Hz, 1H), 1.29 (s, 3H), 1.25 (s, 3H) ppm.
13C NMR (101 MHz, CDCI3) δ 170.75, 163.61, 161.16, 142.32, 138.13, 134.93, 133.88, 131.26, 130.73, 128.90, 126.09, 115.53, 115.31, 89.83, 65.54, 36.12, 32.25, 28.79, 28.04, 16.59, 15.51 ppm.
Beispiel 4 (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(2-methyl-4'- trifluormethoxy- [ 1 , Γ -biphenyl] -3 -yl)methylester
Figure imgf000037_0002
Ausb.: 55 % (d. Theorie)
ES HRMS: m/z gefunden: 584.9678.
C23H2i03F3 23Na79Br81Br [M+Na]+ berechnet: 584.9687. lH NMR (400 MHz, CDCI3) δ 7.37 (dd, J = 7.5, 1.4 Hz, 1H), 7.34 - 7.24 (m, 5H), 7.21 (dd, J = 7.6, 1.5 Hz, 1H), 6.80 (d, J = 8.3 Hz, 1H), 5.19 (d, J = 1.5 Hz, 2H), 2.21 (s, 3H), 1.98 (t, J = 8.4 Hz, 1H), 1.93 (d, J = 8.5 Hz, 1H), 1.29 (s, 3H), 1.25 (s, 3H) ppm. 13C NMR (101 MHz, CDC13) δ 170.74, 148.67, 141.94, 140.90, 135.03, 134.80, 133.85, 131.13, 130.61, 129.11, 126.17, 122.21, 121.01, 89.85, 65.47, 36.13, 32.23, 28.78, 28.06, 16.60, 15.50 ppm.
Beispiel 5 (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(2-methyl-3'- trifluormethoxy- [ 1 , Γ -biphenyl] -3 -yl)methylester
Figure imgf000038_0001
Ausb.: 75 % (d. Theorie)
ES HRMS: m/z gefunden: 584.9672.
C23H2i03F3 23Na79Br81Br [M+Na]+ berechnet: 584.9687. lH NMR (400 MHz, CDC13) δ 7.44 (t, J = 7.9 Hz, 1H), 7.38 (dd, J = 7.5, 1.5 Hz, 1H), 7.30 - 7.15 (m, 5H), 6.80 (d, J = 8.3 Hz, 1H), 5.19 (d, J = 1.3 Hz, 2H), 2.22 (s, 3H), 1.98 (t, J = 8.4 Hz, 1H), 1.93 (d, J = 8.5 Hz, 1H), 1.29 (s, 3H), 1.26 (s, 3H) ppm.
13C NMR (101 MHz, CDCI3) δ 170.72, 149.42, 144.23, 141.76, 135.13, 134.73, 133.86, 130.49, 129.88, 129.29, 128.19, 126.22, 122.35, 122.21 , 119.76, 89.87, 65.43, 36.13, 32.24, 28.77, 28.03, 16.51, 15.50 ppm. Beispiel 6 (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(2-methyl-4'- chlor- [ 1 , 1 ' -biphenyl] -3 -yl)methylester
Figure imgf000038_0002
Ausb.: 80 % (d. Theorie)
ES HRMS: m/z gefunden: 534.9435. C22H2i02 23Na35Cl79Br81Br [M+Na]+ berechnet: 534.9474.
'H NMR (400 MHz, CDCI3) δ 7.48 - 7.31 (m, 3H), 7.30 - 7.16 (m, 4H), 6.80 (d, J = 8.3 Hz, 1H), 5.18 (s, 2H), 2.21 (s, 3H), 1.98 (t, J = 8.4 Hz, 1H), 1.92 (d, J = 8.4 Hz, 1H), 1.29 (s, 3H), 1.25 (s, 3H) ppm. 13C NMR (101 MHz, CDC13) δ 170.74, 142.10, 140.65, 135.01, 134.78, 133.86, 133.41, 131.10, 130.56, 129.06, 128.72, 126.16, 89.84, 65.49, 36.13, 32.24, 28.78, 28.04, 16.58, 15.51 ppm.
Beispiel 7 (lR,3R)-3-(2-Chlor-2-trifluormethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(2- methyl-4 ' -fluor- [ 1 , Γ -biphenyl] -3 -yl)methylester
Figure imgf000039_0001
Ausb.: 79 % (d. Theorie)
ES HRMS: m/z gefunden: 463.1072. C23H2i02F4 23Na35Cl [M+Na]+ berechnet: 463.1064. lH NMR (400 MHz, CDCI3) δ 7.35 (dd, J = 7.3, 1.5 Hz, 1H), 7.23 (tdd, J = 9.3, 7.0, 2.0 Hz, 4H), 7.14 - 7.06 (m, 2H), 6.96 (dd, J = 9.4, 1.0 Hz, 1H), 5.20 (d, J = 4.2 Hz, 2H), 2.23 - 2.16 (m, 4H), 2.06 (d, J = 11.6 Hz, 1H), 1.32 (s, 3H), 1.30 (s, 3H) ppm.
13C NMR (101 MHz, CDC13) δ 170.56, 163.62, 161.18, 142.37, 138.13, 134.75, 131.25, 130.82, 130.43, 128.96, 126.11, 122.19, 119.49, 115.54, 115.33, 65.73, 33.31, 31.37, 29.18, 28.77, 16.56, 15.36 ppm.
Beispiel 8 (lR,3R)-3-(2-Chlor-2-trifluormethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(2- methyl-4'-ethynyl-[l,l '-biphenyl]-3-yl)methylester
Figure imgf000039_0002
Ausb.: 22 % (d. Theorie)
ES HRMS: m/z gefunden: 469.1173.
C25H2202F3 23Na35Cl [M+Na]+ berechnet: 469.1158. lH NMR (400 MHz, CDCI3) δ 7.59 - 7.52 (m, 2H), 7.35 (dd, J = 7.4, 1.5 Hz, 1H), 7.26 (dq, J = 9.0, 2.4 Hz, 3H), 7.21 (dd, J = 7.6, 1.6 Hz, 1H), 6.95 (dd, J = 9.4, 0.9 Hz, 1H), 5.19 (d, J = 4.3 Hz, 2H), 3.12 (s, 1H), 2.28 - 2.13 (m, 4H), 2.06 (d, J = 8.3 Hz, 1H), 1.31 (s, 3H), 1.30 (s, 3H) ppm. 13C NMR (101 MHz, CDC13) δ 170.55, 142.78, 142.57, 134.81, 134.74, 132.33, 130.58, 130.44, 129.79, 129.12, 126.18, 122.17, 121.15, 119.47, 83.89, 77.91, 65.68, 33.29, 31.37, 29.18, 28.79, 16.58, 15.37 ppm.
In analoger Weise wurde bei 12 Stunden Reaktionszeit bei 70 °C mittels Suzuki Kupplung (Stufe E, Methode I) das Beispiel 9 erhalten.
Beispiel 9 (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(2-methyl-3',4'- difluor- [ 1 , 1 ' -biphenyl] -3 -yl)methylester
Figure imgf000040_0001
Ausb.: 77 % (d. Theorie) ES HRMS: m/z gefunden: 536.9667.
C22H2o02F2 23Na79Br81Br [M+Na]+ berechnet: 536.9675. lH NMR (400 MHz, CDCI3) δ 7.37 (dd, J = 7.5, 1.4 Hz, 1H), 7.29 - 7.23 (m, 1H), 7.22 - 7.16 (m, 2H), 7.11 (ddd, J = 11.1, 7.6, 2.1 Hz, 1H), 7.03 - 6.98 (m, 1H), 6.80 (d, J = 8.4 Hz, 1H), 5.18 (s, 2H), 2.21 (s, 3H), 1.99 (t, J = 8.4 Hz, 1H), 1.92 (d, J = 8.5 Hz, 1H), 1.29 (s, 3H), 1.26 (s, 3H) ppm. 13C NMR (101 MHz, CDCI3) δ 170.72, 161.68, 160.97, 159.57, 156.13, 141.26, 139.10, 135.11, 134.78, 133.84, 130.52, 129.28, 126.21, 125.87, 118.86, 117.28, 89.87, 65.42, 36.14, 32.22, 28.78, 28.07, 16.55, 15.50 ppm.
Unter Verwendung von 2 mol% [l,l-Bis(diphenylphosphino)ferrocene]dichlorpalladium(II) (PdCl2(dppf)) und 4 Stunden Reaktionszeit bei 70 °C wurden mittels Suzuki Kupplung (Stufe E, Metho- de I) die Beispiele 10 bis 12 erhalten. Beispiel 10 (lR,3R)-3-(2-Chlor-2-trifluormethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(2- methyl-3 ' -fluor- [ 1 , Γ -biphenyl] -3 -yl)methylester
Figure imgf000041_0001
Ausb.: 84 % (d. Theorie)
ES HRMS: m/z gefunden: 463.1072.
C23H2i02F4 23Na35Cl [M+Na]+ berechnet: 463.1064. lH NMR (400 MHz, CDC13) δ 7.41 - 7.34 (m, 2H), 7.26 (t, J = 7.5 Hz, 1H), 7.22 (dd, J = 7.6, 1.7 Hz, 1H), 7.09 - 7.04 (m, 2H), 7.01 (ddd, J = 9.8, 4.7, 2.6 Hz, 1H), 6.95 (dd, J = 9.4, 0.9 Hz, 1H), 5.20 (d, J = 4.7 Hz, 2H), 2.23 - 2.16 (m, 4H), 2.06 (d, J = 8.4 Hz, 1H), 1.31 (s, 3H), 1.30 (s, 3H) ppm.
13C NMR (101 MHz, CDCI3) δ 170.54, 164.14, 161.69, 144.43, 142.16, 134.81, 130.56, 130.44, 130.06, 129.18, 126.15, 125.54, 122.17, 1 19.48, 1 16.66, 1 14.37, 1 14.16, 65.65, 33.29, 31.37, 29.17, 28.78, 16.53, 15.36 ppm.
Beispiel 11 (lR,3R)-3-(2-Chlor-2-trifluormethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(2- methyl-4 ' -trifluormethyl- [ 1 , Γ -biphenyl] -3 -yl)methylester
Figure imgf000041_0002
Ausb.: 96 % (d. Theorie)
ES HRMS: m/z berechnet: 513.1056.
C24H2i02F6 23Na35Cl [M+Na]+ gefunden: 513.1032 lH NMR (400 MHz, CDCI3) δ 7.68 (d, J = 8.0 Hz, 2H), 7.42 (d, J = 7.9 Hz, 2H), 7.39 (dd, J = 7.6, 1.4 Hz, 1H), 7.28 (t, J = 7.6 Hz, 1H), 7.21 (dd, J = 7.6, 1.5 Hz, 1H), 6.95 (dd, J = 9.4, 1.0 Hz, 1H), 5.20 (d, J = 3.1 Hz, 2H), 2.23 - 2.16 (m, 4H), 2.06 (d, J = 10.7 Hz, 1H), 1.32 (s, 3H), 1.31 (s, 3H) ppm.
13C NMR (101 MHz, CDCI3) δ 170.52, 145.90, 141.97, 134.96, 134.68, 130.51, 130.36, 130.11, 129.80, 129.40, 126.27, 125.50, 122.42, 122.16, 119.47, 65.56, 33.28, 31.38, 29.17, 28.77, 16.54, 15.36 ppm. Beispiel 12 (lR,3R)-3-(2-Chlor-2-trifluormethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(2- methyl-4 ' -chlor- [ 1 , Γ -biphenyl] -3 -yl)methylester
Figure imgf000042_0001
Ausb.: 95 % (d. Theorie) ES HRMS: m/z gefunden: 479.0750.
C23H2i02F3 23Na35Cl2 [M+Na]+ berechnet: 479.0768. lH NMR (400 MHz, CDC13) δ 7.44 - 7.31 (m, 3H), 7.29 - 7.17 (m, 4H), 6.95 (dd, J = 9.3, 0.9 Hz, 1H), 5.19 (d, J = 3.4 Hz, 2H), 2.26 - 2.14 (m, 4H), 2.06 (d, J = 8.4 Hz, 1H), 1.31 (s, 3H), 1.30 (s, 3H) ppm.
13C NMR (101 MHz, CDCI3) δ 170.55, 142.14, 140.59, 134.81, 133.43, 131.09, 130.67, 130.39, 129.66, 129.11, 128.74, 126.18, 121.98, 119.47, 65.68, 33.29, 31.38, 29.20, 28.79, 16.58, 15.37 ppm.
Unter V erw endung v on 2 mo l% [l,l-Bis(diphenylphosphino)ferrocene]dichlorpalladium(II) (PdCl2(dppf)) und 6 Stunden Reaktionszeit bei 70 °C wurde mittels Suzuki Kupplung (Stufe E, Methode I) das Beispiel 13 erhalten.
Beispiel 13 (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(2-methyl-3'- fluor- [ 1 , 1 ' -biphenyl] -3 -yl)methylester
Figure imgf000042_0002
Ausb.: 54 % (d. Theorie)
ES HRMS: m/z gefunden: 518.9758.
C22H2i02F23Na79Br81Br [M+Na]+ berechnet: 518.9770. lH NMR (400 MHz, CDCI3) δ 7.41 - 7.34 (m, 2H), 7.26 (t, J = 7.6 Hz, 1H), 7.21 (dd, J = 7.6, 1.7 Hz, 1H), 7.09 - 6.98 (m, 3H), 6.80 (d, J = 8.3 Hz, 1H), 5.19 (d, J = 2.0 Hz, 2H), 2.22 (s, 3H), 1.98 (t, J = 8.4 Hz, 1H), 1.93 (d, J = 8.4 Hz, 1H), 1.29 (s, 3H), 1.25 (s, 3H) ppm. 13C NMR (101 MHz, CDC13) δ 170.74, 164.14, 161.69, 144.40, 142.10, 134.75, 133.87, 130.48, 130.05, 129.14, 126.14, 125.56, 116.89, 114.14, 99.99, 89.84, 65.48, 36.13, 32.24, 28.79, 28.05, 16.56, 15.51 ppm.
Unter V erw endung v on 2 mo l% [l,l-Bis(diphenylphosphino)ferrocene]dichlorpalladium(II) (PdCkCdppf)) und 7 Stunden Reaktionszeit bei 70 °C wurde mittels Suzuki-Kupplung (Stufe E, Methode I) das Beispiel 14 erhalten.
Beispiel 14 (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(2-methyl-2'- fluor- [ 1 , 1 ' -biphenyl] -3 -yl)methylester
Figure imgf000043_0001
Ausb.: 57 % (d. Theorie)
ES HRMS: m/z gefunden: 518.9767. C22H2i02F23Na79Br81Br [M+Na]+ berechnet: 518.9770.
'H NMR (400 MHz, CDCI3) δ 7.41 - 7.32 (m, 2H), 7.30 - 7.18 (m, 4H), 7.14 (ddd, J = 9.5, 8.2, 1.1 Hz, 1H), 6.81 (d, J = 8.1 Hz, 1H), 5.20 (d, J = 4.8 Hz, 2H), 2.17 (d, J = 1.4 Hz, 3H), 1.97 (t, J = 8.3 Hz, 1H), 1.93 (d, J = 8.4 Hz, 1H), 1.28 (s, 3H), 1.25 (s, 3H) ppm.
13C NMR (101 MHz, CDCI3) δ 170.76, 161.26, 158.82, 137.04, 136.06, 134.69, 133.92, 132.03, 130.92, 129.58, 129.40, 126.06, 124.46, 116.03, 115.81, 89.80, 65.44, 36.10, 32.27, 28.77, 28.00, 15.50 ppm.
Unter Verwendung von 2 mol% [l,l-Bis(diphenylphosphino)ferrocene]dichlorpalladium(II) (PdCl2(dppf)) und 12 Stunden Reaktionszeit bei 70 °C wurde mittels Suzuki-Kupplung (Stufe E, Metho- de I) das Beispiel 15 erhalten.
Beispiel 15 (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(2-methyl-2'- trifluormethoxy- [ 1 , Γ -biphenyl] -3 -yl)methylester
Figure imgf000043_0002
Ausb.: 41 % (d. Theorie) ES HRMS: m/z gefunden
C23H2i03F3 23Na79Br81Br [M+Na]+ berechnet: 584.9687. lH NMR (400 MHz, CDC13) δ 7.44 - 7.32 (m, 4H), 7.30 - 7.23 (m, 2H), 7.17 (dd, J = 7.6, 1.3 Hz, 1H), 6.81 (d, J = 8.3 Hz, 1H), 5.19 (dd, J = 11.1 , 9.0 Hz, 2H), 2.09 (d, J = 1.8 Hz, 3H), 1.98 (td, J = 8.4, 2.2 Hz, 1H), 1.92 (dd, J = 8.4, 3.0 Hz, 1H), 1.27 (d, J = 7.5 Hz, 3H), 1.25 (d, J = 0.8 Hz, 3H) ppm.
13C NMR (101 MHz, CDCI3) δ 170.77, 146.99, 137.77, 135.62, 135.40, 134.57, 133.91, 132.29, 130.76, 129.27, 127.08, 125.85, 122.05, 121.14, 119.48, 89.74, 65.48, 36.10, 32.28, 28.76, 28.01, 16.21, 15.48 ppm.
Unter Verwendung von 2 mol% [l,l-Bis(diphenylphosphino)ferrocene]dichlorpalladium(II) (PdCl2(dppf)) und 15 Stunden Reaktionszeit bei 70 °C wurden mittels Suzuki Kupplung (Stufe E, Methode I) die Beispiele 16 und 17 erhalten.
Beispiel 16 (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(2-methyl-(2',3'- difluor)- [ 1 , 1 ' -biphenyl] -3 -yl)methylester
Figure imgf000044_0001
Ausb.: 20 % (d. Theorie)
ES HRMS: m z gefunden: 536.9654. C22H2o02F2 23Na79Br81Br [M+Na]+ berechnet: 536.9675.
Beispiel 17 (lR,3R)-3-(2-Chlor-2-trifluormethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(2- methyl-2 ' -fluor- [ 1 , Γ -biphenyl] -3 -yl)methylester
Figure imgf000044_0002
Ausb.: 82 % (d. Theorie)
ES HRMS: m/z gefunden: 463.1084.
C23H2i02F4 23Na35Cl [M+Na]+ berechnet: 463.1064. lH NMR (400 MHz, CDC13) δ 7.40 - 7.33 (m, 2H), 7.30 - 7.18 (m, 4H), 7.17 - 7.11 (m, 1H), 6.96 (dd, J = 9.4, 1.0 Hz, 1H), 5.21 (d, J = 6.9 Hz, 2H), 2.18 (dd, J = 12.7, 4.9 Hz, 4H), 2.06 (d, J = 11.1 Hz, 1H), 1.31 (s, 3H), 1.30 (s, 3H) ppm.
13C NMR (101 MHz, CDCI3) δ 170.57, 161.25, 158.81, 137.08, 136.10, 134.49, 132.01, 131.02, 130.49, 129.62, 129.46, 126.08, 124.48, 122.18, 1 19.49, 1 16.04, 1 15.82, 65.63, 33.32, 31.35, 29.16, 28.77, 16.26, 15.36 ppm.
Unter V erw endung v on 2 mo l% [l,l-Bis(diphenylphosphino)ferrocene]dichlorpalladium(II) (PdCl2(dppf)) und 18 Stunden Reaktionszeit bei 70 °C wurde mittels Suzuki Kupplung (Stufe E, Methode I) das Beispiel 18 erhalten. Beispiel 18 (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(2-methyl-(3 ',4'- difluor)- [ 1 , 1 ' -biphenyl] -3 -yl)methylester
Figure imgf000045_0001
Ausb.: 60 % (d. Theorie)
ES HRMS: m/z gefunden: 536.9665. C22H2o02F223Na79Br81Br [M+Na]+ berechnet: 536.9675. lH NMR (400 MHz, CDCI3) δ 7.39 (dd, J = 7.6, 1.4 Hz, 1H), 7.27 (t, J = 7.7 Hz, 1H), 7.25 - 7.17 (m, 2H), 6.98 - 6.86 (m, 2H), 6.80 (d, J = 8.2 Hz, 1H), 5.19 (d, J = 2.7 Hz, 2H), 2.15 (d, J = 1.4 Hz, 3H), 1.98 (t, J = 8.4 Hz, 1H), 1.93 (d, J = 8.4 Hz, 1H), 1.28 (s, 3H), 1.25 (s, 3H) ppm.
13C NMR (101 MHz, CDCI3) δ 170.74, 164.04, 161.69, 161.33, 158.74, 136.10, 134.83, 133.88, 132.58, 131.01, 129.57, 126.15, 125.72, 111.74, 111.53, 104.29, 89.83, 65.37, 36.11, 32.25, 28.77, 28.04, 16.24, 15.49 ppm.
Unter V erw endung v on 2 mo l% [l,l-Bis(diphenylphosphino)ferrocene]dichlorpalladium(II) (PdCl2(dppf)) und 20 Stunden Reaktionszeit bei 70 °C wurden mittels Suzuki-Kupplung (Stufe E, Methode I) die Beispiele 19 und 20 erhalten. Beispiel 19 (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(2-methyl- (3 ' ,4 ' ,5 ' -trifluor)- [1,1 ' -biphenyl] -3 -yl)methylester
Figure imgf000046_0001
Ausb.: 50 % (d. Theorie) ES HRMS: m/z gefunden: 554.9577.
C22Hi902F3 23Na79Br81Br [M+Na]+ berechnet: 554.9581. lH NMR (400 MHz, CDC13) δ 7.38 (dd, J = 7.6, 1.3 Hz, 1H), 7.26 (t, J = 7.6 Hz, 1H), 7.16 (dd, J = 7.7, 1.4 Hz, 1H), 6.96 - 6.87 (m, 2H), 6.79 (d, J = 8.4 Hz, 1H), 5.18 (s, 2H), 2.21 (s, 3H), 1.99 (t, J = 8.4 Hz, 1H), 1.92 (d, J = 8.5 Hz, 1H), 1.29 (s, 3H), 1.26 (s, 3H) ppm. 13C NMR (101 MHz, CDCI3) δ 170.67, 161.20, 158.99, 152.50, 149.91, 140.40, 138.15, 135.32, 134.63, 133.81, 130.26, 129.65, 126.34, 113.88, 89.92, 65.28, 36.16, 32.21, 28.77, 28.08, 16.51, 15.49 ppm.
Beispiel 20 (lR,3R)-3-(2-Chlor-2-trifluormethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(2- methyl-(2',4'-difluor)-[l , 1 '-biphenyl] -3 -yl)methylester
Figure imgf000046_0002
Ausb.: 98 % (d. Theorie)
ES HRMS: m/z gefunden: 481.0993. C23H2o02F5 23Na35Cl [M+Na]+ berechnet: 481.0970.
'H NMR (400 MHz, CDCI3) δ 7.39 (dd, J = 7.6, 1.3 Hz, 1H), 7.31 - 7.17 (m, 3H), 7.00 - 6.86 (m, 3H), 5.20 (d, J = 4.7 Hz, 2H), 2.23 - 2.13 (m, 4H), 2.06 (d, J = 8.5 Hz, 1H), 1.31 (s, 3H), 1.30 (s, 3H) ppm. 13C NMR (101 MHz, CDCI3) δ 170.53, 161.69, 161.20, 158.85, 157.76, 139.96, 136.14, 134.62, 132.50, 131.10, 130.39, 129.63, 126.17, 125.63, 122.17, 1 19.47, 1 1 1.55, 104.30, 65.56, 33.30, 31.36, 29.16, 28.77, 16.24, 15.35 ppm. Unter V erw endung v on 2 mo l% [l,l-Bis(diphenylphosphino)ferrocene]dichlorpalladium(II) (PdCkCdppf)) und 22 Stunden Reaktionszeit bei 70 °C wurde mittels Suzuki Kupplung (Stufe E, Methode I) das Beispiel 21 erhalten.
Beispiel 21 (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(2-methyl-(2'- trifluormethyl) - [ 1 , Γ -biphenyl] -3 -yl)methylester
Figure imgf000047_0001
Ausb.: 48 % (d. Theorie)
ES HRMS: m/z gefunden: 568.9759.
C23H2i02F3 23Na79Br81Br [M+Na]+ berechnet: 568.9738. lH NMR (400 MHz, CDC13) δ 7.76 (d, J = 7.6 Hz, 1H), 7.57 (t, J = 7.2 Hz, 1H), 7.49 (t, J = 7.5 Hz, 1H), 7.39 (d, J = 7.3 Hz, 1H), 7.23 (t, J = 7.8 Hz, 2H), 7.14 (d, J = 7.3 Hz, 1H), 6.81 (dd, J = 8.2, 1.7 Hz, 1H), 5.18 (dd, J = 15.2, 4.4 Hz, 2H), 1.99 (d, J = 1.7 Hz, 3H), 1.98 - 1.90 (m, 2H), 1.27 (d, J = 7.2 Hz, 3H), 1.25 (s, 3H) ppm.
13C NMR (101 MHz, CDCI3) δ 168.44, 138.69, 137.80, 133.07, 132.06, 131.62, 129.70, 129.46, 127.96, 127.05, 126.82, 125.55, 124.06, 122.93, 120.69, 87.48, 63.12, 33.78, 29.97, 29.94, 26.46, 25.71, 14.26, 13.17 ppm.
Unter V erw endung v on 2 mo l% [l,l-Bis(diphenylphosphino)ferrocene]dichlorpalladium(II) (PdCl2(dppf)) und 24 Stunden Reaktionszeit bei 70 °C wurden mittels Suzuki Kupplung (Stufe E, Methode I) die Beispiele 22 und 23 erhalten. Beispiel 22 (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(2-methyl-(2',
5 ' -difluor)- [ 1,1 ' -biphenyl] -3 -yl)methylester
Figure imgf000047_0002
Ausb.: 37 % (d. Theorie)
ES HRMS: m/z gefunden: 536.9676. C22H2o02F2 23Na79Br81Br [M+Na]+ berechnet: 536.9675. lH NMR (400 MHz, CDC13) δ 7.41 (dd, J = 7.5, 1.2 Hz, 1H), 7.28 (t, J = 7.6 Hz, 1H), 7.21 (dd, J = 7.6, 1.3 Hz, 1H), 7.14 - 7.01 (m, 2H), 6.96 (ddd, J = 8.7, 5.7, 3.1 Hz, 1H), 6.80 (d, J = 8.3 Hz, 1H), 5.19 (d, J = 2.8 Hz, 2H), 2.18 (d, J = 1.2 Hz, 3H), 1.98 (t, J = 8.4 Hz, 1H), 1.93 (d, J = 8.4 Hz, 1H), 1.28 (s, 3H), 1.25 (s, 3H) ppm.
13C NMR (101 MHz, CDCI3) δ 170.76, 164.60, 160.05, 157.61, 157.26, 135.94, 134.87, 133.87, 130.69, 129.78, 126.22, 118.42, 118.19, 117.11, 116.85, 116.12, 89.82, 65.33, 36.13, 32.23, 28.78, 28.09, 16.30, 15.49 ppm.
Beispiel 23 (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(2-methyl-4'- ethynyl- [ 1 , Γ -biphenyl] -3 -yl)methylester
Figure imgf000048_0001
Ausb.: 25 % (d. Theorie)
ES HRMS: m/z gefunden: 524.9877.
C24H2202 23Na79Br81Br [M+Na]+ berechnet: 524.9864. lH NMR (400 MHz, CDCI3) δ 7.55 (d, J = 8.2 Hz, 2H), 7.38 - 7.34 (m, 1H), 7.31 - 7.24 (m, 3H), 7.21 (dd, J = 7.6, 1.5 Hz, 1H), 6.80 (d, J = 8.3 Hz, 1H), 5.19 (d, J = 1.4 Hz, 2H), 3.12 (s, 1H), 2.21 (s, 3H), 1.98 (t, J = 8.4 Hz, 1H), 1.92 (d, J = 8.5 Hz, 1H), 1.29 (s, 3H), 1.25 (s, 3H) ppm.
13C NMR (101 MHz, CDCI3) δ 170.74, 142.84, 142.53, 135.01, 134.71, 133.87, 132.32, 130.48, 129.80, 129.08, 126.16, 121.14, 89.84, 83.91, 77.88, 65.50, 36.12, 32.25, 28.78, 28.04, 16.59, 15.51 ppm. Beispiel 24 (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(2-methyl-(3', 5 ' -difluor)- [ 1,1 ' -biphenyl] -3 -yl)methylester
Figure imgf000049_0001
a) Stufe A (Methode II): 3-Iod-2-methyl-benzoesäuremethylester (bekannt aus
WO 2008/016184); vgl. Stufe A, Methode I b) Stufe E (Methode II): 3 ' ,5 ' -Difluor-2-methyl- [ 1 , Γ -biphenyl] -3 -carbonsäuremethylester
Figure imgf000049_0002
Zu einer Lösung aus 552 mg (2,0 mmol) 3-Iod-2-methyl-benzoesäuremethylester in 20 mL Toluol wurden 36,6 mg (0,05 mmol) [l,l-Bis(diphenylphosphino)ferrocene]dichlorpalladium(II) (PdCl2(dppf)), 1,70 g (8,0 mmol) Kaliumphosphat und 488 mg (3,0 mmol) 3, 5-Difluor-phenyl-boronsäure gegeben. Anschliessend wurde das Reaktionsgemisch entgast und 24 Stunden bei 100 °C gerührt. Danach wurde das resultierende Reaktionsgemisch durch einen mit Kieselgel beladenen Filter gedrückt, um den Palladiumkatalysator und die anorganischen Salze zu entfernen. Das als schwach gelbes Öl erhaltene Rohprodukt wurde mittels Flash Chromatographie (Kieselgel Eluent: 3% Essigsäureethylester in Hexane) gereinigt. Man erhält 500 mg (95 % der Theorie) 3',5'-Difluor-2-methyl-[l,l '-biphenyl]-3- carbonsäuremethylester. c) Stufe B (Methode II): (3',5'-Difluor-2-methyl-[l,l '-biphenyl]methanol; vgl. Stufe B, Methode
I; erhaltene Ausbeute: 88 % (d. Theorie) d) Stufe D (Methode II): (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure- (3',5'-difluor-2-methyl-[l,l '-biphenyl]-3-yl)methylester; vgl. Stufe D, Methode I
Ausb.: 95 % (d. Theorie)
ES HRMS: m/z gefunden: 536.9656.
C22H2o02F2 23Na79Br81Br [M+Na]+ berechnet: 536.9675. lH NMR (400 MHz, CDC13) δ 7.38 (dd, J = 7.5, 1.3 Hz, 1H), 7.27 (t, J = 7.6 Hz, 1H), 7.19 (dd, J = 7.6, 1.4 Hz, 1H), 6.86 - 6.77 (m, 4H), 5.18 (s, 2H), 2.22 (s, 3H), 1.99 (t, J = 8.4 Hz, 1H), 1.93 (d, J = 8.5 Hz, 1H), 1.29 (s, 3H), 1.26 (s, 3H) ppm.
13C NMR (101 MHz, CDCI3) δ 170.71, 164.23, 161.76, 145.50, 141.14, 135.19, 134.61, 133.83, 130.20, 129.52, 126.26, 112.71, 102.84, 89.88, 65.35, 36.15, 32.22, 28.78, 28.08, 16.52, 15.50 ppm.
In analoger Weise wurden mittels Stufe D, Methode II (vgl. auch Stufe D, Methode I) die Beispiele 25 und 26 erhalten.
Beispiel 25 (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-[2-methyl-3-
(thien-3-yl)]b
Figure imgf000050_0001
a) Stufe A (Methode II): 3-Iod-2-methyl-benzoesäuremethylester (bekannt aus Stufe A, Methode
I) b) Stufe E (Methode II): 2-Methyl-3-thien-3-yl-benzoesäuremethylester; vgl. Stufe E, Methode
II; Beis iel 24; erhaltene Ausbeute: 87 % (d. Theorie)
Figure imgf000050_0002
c) Stufe B (Methode II): 2-Methyl-3-thien-3-yl)benzylalkohol; vgl. Stufe B, Methode I; erhaltene
Ausbeute: 98 % d. Theorie)
Figure imgf000050_0003
d) Stufe D (Methode II): (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarb
[2-methyl-3-(thien-3-yl)]benzylester; vgl. Stufe D, Methode I
Ausb.: 92 % (d. Theorie)
ES HRMS: m/z gefunden: 506.9449.
C2oH2o02 23NaS79Br81Br [M+Na]+ berechnet: 506.94283. lH NMR (400 MHz, CDC13) δ 7.37 (dd, J = 4.9, 3.0 Hz, 1H), 7.33 (dd, J = 7.3, 1.3 Hz, 1H), 7.31 - 7.28 (m, 1H), 7.26 - 7.21 (m, 1H), 7.19 (dd, J = 3.0, 1.2 Hz, 1H), 7.11 (dd, J = 4.9, 1.2 Hz, 1H), 6.80 (d, J = 8.3 Hz, 1H), 5.18 (d, J = 3.3 Hz, 2H), 2.28 (s, 3H), 1.98 (t, J = 8.4 Hz, 1H), 1.92 (d, J = 8.4 Hz, 1H), 1.29 (s, 3H), 1.25 (s, 3H) ppm. 13C NMR (101 MHz, CDCI3) δ 170.76, 142.49, 138.13, 135.35, 134.93, 133.90, 130.77, 129.54, 128.91, 126.08, 125.44, 123.29, 89.81, 65.57, 36.11, 32.26, 28.78, 28.02, 16.66, 15.52 ppm.
Beispiel 26 (lR,3R)-3-(2-Chlor-2-trifluormethenyl)-2,2-dimethyl-cyclopropancarbonsäure-[2- methyl-3 -(thie -3 -yl)]benzylester
Figure imgf000051_0001
Ausb.: 93 % (d. Theorie)
ES HRMS: m/z gefunden: 451.0715.
C2iH2o02F3 23NaS35Cl [M+Na]+ berechnet: 451.0722. lH NMR (400 MHz, CDCI3) δ 7.37 (dd, J = 4.9, 3.0 Hz, 1H), 7.34 - 7.28 (m, 2H), 7.23 (t, J = 7.5 Hz, 1H), 7.18 (dd, J = 3.0, 1.3 Hz, 1H), 7.11 (dd, J = 4.9, 1.3 Hz, 1H), 6.95 (dd, J = 9.4, 0.9 Hz, 1H), 5.19 (d, J = 5.9 Hz, 2H), 2.28 (s, 3H), 2.18 (t, J = 8.9 Hz, 1H), 2.05 (d, J = 8.3 Hz, 1H), 1.31 (s, 3H), 1.30 (s, 3H) ppm.
13C NMR (101 MHz, CDCI3) δ 170.54, 142.44, 138.17, 135.37, 134.75, 130.86, 130.46, 129.51, 128.95, 126.08, 125.46, 123.29, 122.17, 122.02, 119.48, 65.74, 33.31, 31.35, 29.13, 28.78, 16.62, 15.37 ppm.
Beispiel 27 (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(6-fluor-2- methyl- [ 1 , Γ -biphenyl] -3 -yl)methylester
Figure imgf000052_0001
a) Stufe A (Methode II): 6-Fluor-3-iod-2-methyl-benzoesäuremethylester (bekannt aus
WO 2009/058237) b) Stufe E (Methode II): 6-F ] -3 -carbonsäuremethylester
Figure imgf000052_0002
Die Herstellung erfolgt aus 6-Fluor-3-iod-2-methyl-benzoesäuremethylester und Phenyl-boronsäure (vgl. Beispiel 24b, Stufe E, Methode II) in Gegenwart von Palladium(II)-acetat, Triphenylphosphin und Kaliumphosphat bei 6 stündiger Reaktion in Toluol bei 70 °C. Man erhält den 6-Fluor-2-methyl-[l,l '- biphenyl] -3 -carbonsäuremethylester in 82 %iger Ausbeute. c) Stufe B (Methode II): 6-Fluor-2-methyl-[l,l '-biphenyl]methanol; vgl. Stufe B, Methode I;
erhaltene Ausbeute: 89 % (d. Theorie) d) Stufe D (Methode II): (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure- (6-fluor-2-methyl- [1,1 '-biphenyl] -3 -yl)methylester; vgl. Stufe D, Methode I
Ausb.: 67 % (d. Theorie)
ES HRMS: m/z gefunden: 516.9787.
C22H2i02F23Na79Br2 gefunden: 516.9790. lU NMR (400MHz, CDC13): δ 7.43-7.22 (6H, m), 7.01 (1H, d, J = 10.6 Hz), 6.80 (1H, d, J = 8.5 Hz), 5.16 (2H, s), 2.25 (3H,s), 1.97 (1H, t, J= 8.5 Hz), 1.89 (1H, d, J= 8.5 Hz), 1.26 (3H, s), 1.22 (3H, s) ppm.
13C NMR (100 MHz, CDCI3) δ 170.6, 161.6, 159.2, 141.0, 138.7, 138.6, 138.5, 133.9, 132.4, 129.8, 128.7, 127.5, 120.7, 120.5, 117.5, 117.3, 89.9, 60.5, 36.2, 32.2, 28.8, 28.1, 20.9, 15.5 ppm.
Beispiel 28 (lR,3R)-3-(2-Chlor-2-trifluormethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(6-fluor- 2-methyl- [ 1 , Γ -biphenyl] -3 -yl)methylester
Figure imgf000053_0001
Ausb.:40%(d. Theorie)
ES HRMS: m/z gefunden: 463.1048.
C23H2i02F4 23Na35Cl berechnet: 463.1064. lH NMR (400MHz, CDC13): δ 7.35-7.14 (6H, m), 6.93 (1H, d, J= 10.7 Hz), 6.86 (1H, d, J= 9.3 Hz), 5.12 (2H, s), 2.17 (3H, s), 2.10 (1H, t,J= 8.8 Hz), 1.95 (1H, d, J= 8.4 Hz), 1.21 (3H, s), 1.19 (3H, s) ppm.
13C NMR (100 MHz, CDCI3) δ 170.4, 161.7, 159.2, 141.0, 138.9, 138.6, 132.4, 130.5, 128.6, 128.6, 127.5, 122.3, 122.2, 122.0, 120.4, 120.3, 119.5, 117.5, 117.3, 60.7, 33.3, 31.4, 29.2, 28.8, 20.8, 15.3 ppm.
Anwendungsbeispiele
Phaedon -Test (PHAECO Spritzbehandlung)
Lösungsmittel: 78,0 Gewichtsteile Aceton
1,5 Gewichtsteile Dimethylformamid
Emulgator: 0,5 Gewichtsteile Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhal- tigem Wasser auf die gewünschte Konzentration. Chinakohlblattscheiben (Brassica pekinensis) werden mit einer Wirkstoffzubereitung der gewünschten Konzentration gespritzt und nach dem Abtrocknen mit Larven des Meerrettichblattkäfers (Phaedon cochleariae) besetzt.
Nach 7 Tagen wird die Wirkung in % bestimmt. Dabei bedeutet 100 %, dass alle Käferlarven abgetötet wurden; 0 % bedeutet, dass keine Käferlarven abgetötet wurden.
Bei diesem Test zeigen z. B. die folgenden Verbindungen der Herstellungsbeispiele Wirkung von
83 % bei einer Aufwandmenge von 100 g/ha: 7, 8
Bei diesem Test zeigen z. B. die folgenden Verbindungen der Herstellungsbeispiele Wirkung von 100
% bei einer Aufwandmenge von 100 g/ha: 1, l d-1 , l d-2, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28
Spodoptera frugiperda -Test (SPODFR Spritzbehandlung)
Lösungsmittel: 78,0 Gewichtsteile Aceton
1,5 Gewichtsteile Dimethylformamid
Emulgator: 0,5 Gewichtsteile Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhal- tigem Wasser auf die gewünschte Konzentration. Maisblattscheiben (Zea mays) werden mit einer Wirkstoffzubereitung der gewünschten Konzentration gespritzt und nach dem Abtrocknen mit Raupen des Heerwurms {Spodoptera frugiperda) besetzt.
Nach 7 Tagen wird die Wirkung in % bestimmt. Dabei bedeutet 100 %, dass alle Raupen abgetötet wurden; 0 % bedeutet, dass keine Raupe abgetötet wurde. Bei diesem Test zeigen z. B. die folgenden Verbindungen der Herstellungsbeispiele Wirkung von 83 % bei einer Aufwandmenge von 100 g/ha : 21
Bei diesem Test zeigen z. B. die folgenden Verbindungen der Herstellungsbeispiele Wirkung von 100 % bei einer Aufwandmenge von 100 g/ha : 1, ld-1, ld-2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 22, 24, 20, 23, 25, 26, 27, 28
Myzus-Test (MYZUPE Spritzbehandlung)
Lösungsmittel: 78 Gewichtsteile Aceton
1,5 Gewichtsteile Dimethylformamid
Emulgator: 0,5 Gewichtsteile Alkylarylpolyglykolether Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhal- tigem Wasser auf die gewünschte Konzentration. Chinakohlblattscheiben {Brassica pekinensis), die von allen Stadien der Grünen Pfirsichblattlaus (Myzus persicae) befallen sind, werden mit einer Wirkstoffzubereitung der gewünschten Konzentration gespritzt. Nach 6 Tagen wird die Wirkung in % bestimmt. Dabei bedeutet 100 %, dass alle Blattläuse abgetötet wurden; 0 % bedeutet, dass keine Blattläuse abgetötet wurden.
Bei diesem Test zeigen z. B. die folgenden Verbindungen der Herstellungsbeispiele Wirkung von 90 % bei einer Aufwandmenge von 100 g/ha: 1, 19
Bei diesem Test zeigen z. B. die folgenden Verbindungen der Herstellungsbeispiele Wirkung von
100 % bei einer Aufwandmenge von 100 g/ha: ld-1, ld-2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28
Tetranychus - test, OP-resistent (TETRUR Spritzbehandlung)
Lösungsmittel: 78,0 Gewichtsteile Aceton
1,5 Gewichtsteile Dimethylformamid Emulgator : 0,5 Gewichtsteile Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhal- tigem Wasser auf die gewünschte Konzentration. Bohnenblattscheiben (Phaseolus vulgaris), die von allen Stadien der Gemeinen Spinnmilbe (Tetranychus urticae) befallen sind, werden mit einer Wirk- Stoffzubereitung der gewünschten Konzentration gespritzt. Nach 6 Tagen wird die Wirkung in % bestimmt. Dabei bedeutet 100 %, dass alle Spinnmilben abgetötet wurden; 0 % bedeutet, dass keine Spinnmilben abgetötet wurden.
Bei diesem Test zeigen z. B. die folgenden Verbindungen der Herstellungsbeispiele eine Wirkung von 80 % bei einer Aufwandmenge von 100 g/ha: 4 Bei diesem Test zeigen z. B. die folgenden Verbindungen der Herstellungsbeispiele eine Wirkung von 90 % bei einer Aufwandmenge von 100 g/ha: 3, 18, 22, 17, 25, 26
Bei diesem Test zeigen z. B. die folgenden Verbindungen der Herstellungsbeispiele eine Wirkung von 100 % bei einer Aufwandmenge von 100 g/ha: 9, 16, 20, 10, 12, 28

Claims

Patentansprüche
1. Verbindungen der Formel (I),
Figure imgf000057_0001
worin einen Rest der Formel (L I
Figure imgf000057_0002
steht, in welcher für Alkyl, Alkoxy, Halogenalkyl, Alkylthio, Alkylsulfoxyl, Alkylsulfonyl, Halogenalkoxy, Halogenalkylthio, Halogenalkylsulfoxyl, Halogenalkylsulfonyl, Alkylamino, Dialkylamino, Cyan, Halogen oder Hydroxy steht und p eine Zahl von 0 bis 2 ist, für gegebenenfalls substituiertes Hetaryl oder für einen der Reste aus der Reihe
Figure imgf000057_0003
steht, worin der Pfeil die Bindung zum benachbarten Ring markiert, Xi, Χι ', Xi" unabhängig voneinander für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Alkenyl, Halogenalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Halogenalkoxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfmyl, Halogenalkylsulfinyl, Alkylsulfonyl, Halogenalkylsulfonyl, Fluor, Brom, Chlor, Iod, Nitro, Cyano, Amino, Alkyla- mino, Dialkylamino stehen und
Yi und Y2 unabhängig voneinander für Halogen oder Halogenalkyl stehen.
2. Verbindung gemäß Anspruch 1, dadurch gekennzeichnet, dass diese die allgemeine Formel (1.2)
Figure imgf000058_0001
aufweisen, in welcher
Z für Alkyl, Alkoxy, Halogenalkyl, Alkylthio, Alkylsulfoxyl, Alkylsulfonyl, Halogenalkoxy, Halogenalkylthio, Halogenalkylsulfoxyl, Halogenalkylsulfonyl, Alkylamino, Dialkylamino, Cyan, Halogen oder Hydroxy steht und p eine Zahl von 0 bis 2 ist,
Ri für einen der Reste aus der Reihe
Figure imgf000058_0002
steht, worin der Pfeil die Bindung zum benachbarten Ring markiert und Xi, Χι ', Xi" unabhängig voneinander für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Alkenyl, Halogenalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Halogenalkoxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfmyl, Halogenalkylsulfinyl, Alkylsulfonyl, Halogenalkylsulfonyl, Fluor, Brom, Chlor, Iod, Nitro, Cyano, Amino, Alkyla- mino, Dialkylamino stehen und
Yi und Y2 für Brom, Chlor oder für Trifluormethyl steht.
Verbindungen gemäß Anspruch 1, dadurch gekennzeichnet, dass diese die allgemeine Formel (1.
3) oder (1.4)
Figure imgf000059_0001
aufweisen, in welcher
Z für Alkyl, Alkoxy, Halogenalkyl, Alkylthio, Alkylsulfoxyl, Alkylsulfonyl, Halogenalkoxy, Halogenalkylthio, Halogenalkylsulfoxyl, Halogenalkylsulfonyl, Alkylamino, Dialkylamino, Cyan, Halogen oder Hydroxy steht und p eine Zahl von 0 bis 2 ist,
Ri für einen der Reste aus der Reihe
Figure imgf000060_0001
steht, worin der Pfeil die Bindung zum benachbarten Ring markiert und
Xi, Χι ', Xi" unabhängig voneinander für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Alkenyl, Halogenalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Halogenalkoxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfinyl, Halogenalkylsulfinyl, Al- kylsulfonyl, Halogenalkylsulfonyl, Fluor, Brom, Chlor, lod, Nitro, Cyano, Amino, Alkyla- mino, Dialkylamino stehen.
4. Verfahren zur Herstellung der Verbindungen gemäß Anspruch 1 , dadurch gekennezichnet, dass Verbindungen der allgemeinen Formel (II)
Figure imgf000060_0002
in welcher
Yi und Y2 unabhängig voneinander für Halogen oder Halogenalkyl stehen
LG für eine gegebenenfalls in-situ erzeugte nucleofuge Abgangsgruppe („Leaving Group") steht, a) in einem ersten Reaktionsschritt mit Verbindun en der allgemeinen Formel (ΠΙ-Α)
Figure imgf000061_0001
(III-A) in welcher
Hai für Halogen wie Iod oder Brom steht,
Z für Alkyl, Alkoxy, Halogenalkyl, Alkylthio, Alkylsulfoxyl, Alkylsulfonyl, Halogenalkoxy, Halogenalkylthio, Halogenalkylsulfoxyl, Halogenalkylsulfonyl, Alkylamino, Dialkylamino, Cyan, Halogen oder Hydroxy steht und p eine Zahl von 0 bis 2 ist, gegebenenfalls in Gegenwart eines geeigneten Säurebindemittels und gegebenenfalls in Gegenwart eines geeigneten Verdünnungsmittels zu Verbindungen der allgemeinen Formel (I-A)
Figure imgf000061_0002
in welcher
Hai für Halogen wie Iod oder Brom,
Z und p die weiter oben angegebene Bedeutung haben, umgesetzt werden, die dann in einem zweiten Reaktionsschritt in einer Kupplungsreaktion mit (Hetero)arylboronsäuren (R = H) oder deren Derivate (R = Alkylen) der allgemeinen Formel (IV)
Figure imgf000061_0003
in welcher
R für Wasserstoff oder Alkylen steht und
Ri für gegebenenfalls substituiertes Hetaryl oder für einen der Reste aus der Reihe
Figure imgf000062_0001
steht, worin der Pfeil die Bindung zum benachbarten Ring markiert,
Xi, Χι ', Xi" unabhängig voneinander für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Alkenyl, Halogenalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Halogenalkoxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfmyl, Halogenalkylsulfinyl, Al- kylsulfonyl, Halogenalkylsulfonyl, Fluor, Brom, Chlor, Iod, Nitro, Cyano, Amino, Alkyla- mino, Dialkylamino stehen gegebenenfalls in Gegenwart eines geeigneten Übergangsmetallkatalysators und gegebenenfalls in Gegenwart eines geeigneten Verdünnungsmittels umgesetzt werden,
oder b) mit Verbindungen der allgemeinen Formel (III-B)
Figure imgf000063_0001
in welcher
Z, p und 1 die weiter oben angegebene Bedeutung haben, gegebenenfalls in Gegenwart eines geeigneten Säurebindemittels und gegebenenfalls in Gegenwart eines geeigneten Verdünnungsmittels umgesetzt werden.
5. Mittel, gekennzeichnet durch einen Gehalt von mindestens einer Verbindung der Formel (I) gemäß Anspruch 1 und üblichen Streckmitteln und/oder oberflächenaktiven Substanzen.
6. Verfahren zum Bekämpfen von Schädlingen dadurch gekennzeichnet, dass man eine Verbindung der Formel (I) gemäß Anspruch 1 oder ein Mittel gemäß Anspruch 2 auf die Schädlinge und/oder ihren Lebensraum einwirken lässt.
7. Verwendung von Verbindungen der Formel (I) gemäß Anspruch 1 oder von Mitteln gemäß Anspruch 5 zum Bekämpfen von Schädlingen.
PCT/EP2012/057885 2011-05-04 2012-04-30 Neue substituierte benzylalkoholester der cyclopropancarbonsäure als schädlingsbekämpfungsmittel WO2012150205A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11164739.2 2011-05-04
EP11164739 2011-05-04

Publications (1)

Publication Number Publication Date
WO2012150205A1 true WO2012150205A1 (de) 2012-11-08

Family

ID=46044679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/057885 WO2012150205A1 (de) 2011-05-04 2012-04-30 Neue substituierte benzylalkoholester der cyclopropancarbonsäure als schädlingsbekämpfungsmittel

Country Status (1)

Country Link
WO (1) WO2012150205A1 (de)

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2544150A1 (de) 1974-10-03 1976-04-15 Kuraray Co Verfahren zur herstellung von substituierten cyclopropancarbonsaeuren und ihren estern
GB1446304A (en) 1972-05-25 1976-08-18 Nat Res Dev 3-substituted cyclopropane carboxylic acids and derivatives thereof
DE2802962A1 (de) 1977-01-24 1978-07-27 Ici Ltd Halogenierte ester, verfahren zu ihrer herstellung und sie enthaltende insektizide zusammensetzungen
FR2407200A1 (fr) 1977-10-27 1979-05-25 Roussel Uclaf Procede de preparation d'esters d'alcools a-cyanes
US4235927A (en) 1978-01-20 1980-11-25 Fmc Corporation Insecticidal benzylfurylmethyl perhaloalkylvinylcyclopropanecarboxylates
US4238505A (en) 1978-01-20 1980-12-09 Fmc Corporation Insecticidal biphenylmethyl perhaloalkylvinylcyclopropanecarboxylates
GB2085000A (en) 1980-10-08 1982-04-21 Ici Plc An improved process for the preparation of certain cyclopropane pyrethroid intermediates having a high cis-content
WO1982001368A1 (en) * 1980-10-20 1982-04-29 Corp Fmc 3-(pyrrol-1-yl)phenylmethyl esters and intermediates
US4332815A (en) 1979-06-25 1982-06-01 Fmc Corporation Insecticidal perhaloalkylvinylcyclopropanecarboxylates
US4341796A (en) 1979-06-25 1982-07-27 Fmc Corporation Control of acarids with biphenylmethyl perhaloalkylvinylcyclopropanecarboxylates
US4342770A (en) 1980-06-20 1982-08-03 Dow Chemical Company Limited Optically active isomers of substituted pyridine methyl esters of cyclopropane carboxylic acid and their use as insecticides
DE3108203A1 (de) 1981-02-24 1982-09-16 FMC Corp., 19103 Philadelphia, Pa. "4-substituierte-2-indanole, deren insektizide esterderivate, diese enthaltende zusammensetzungen und deren verwendung"
US4375476A (en) 1980-10-14 1983-03-01 Fmc Corporation Insecticidal (2,6-dimethyl-3-substituted phenyl)methyl cyclopropanecarboxylates
US4402973A (en) 1980-10-02 1983-09-06 Fmc Corporation Insecticidal (1,1'-biphenyl)-3-ylmethyl esters
US4426524A (en) 1980-09-02 1984-01-17 Fmc Corporation Heterocyclic substituted benzyl alcohol, insecticidal ester derivatives, and intermediates
WO1996026193A1 (de) 1995-02-24 1996-08-29 Basf Aktiengesellschaft Phenyldiketon-derivate
JPH11193259A (ja) 1997-04-09 1999-07-21 Nippon Soda Co Ltd 新規なフェニル基で置換されたベンゼン誘導体及び除草剤
WO2003053905A1 (en) 2001-12-20 2003-07-03 Syngenta Limited A process for the production of 1r pyrethroid esters
WO2008016184A1 (en) 2006-08-02 2008-02-07 Takeda Pharmaceutical Company Limited Alpha-carboline derivatives and methods for preparation thereof
WO2009058237A1 (en) 2007-10-29 2009-05-07 Merck & Co., Inc. Antidiabetic tricyclic compounds

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1446304A (en) 1972-05-25 1976-08-18 Nat Res Dev 3-substituted cyclopropane carboxylic acids and derivatives thereof
DE2544150A1 (de) 1974-10-03 1976-04-15 Kuraray Co Verfahren zur herstellung von substituierten cyclopropancarbonsaeuren und ihren estern
DE2802962A1 (de) 1977-01-24 1978-07-27 Ici Ltd Halogenierte ester, verfahren zu ihrer herstellung und sie enthaltende insektizide zusammensetzungen
FR2407200A1 (fr) 1977-10-27 1979-05-25 Roussel Uclaf Procede de preparation d'esters d'alcools a-cyanes
US4235927A (en) 1978-01-20 1980-11-25 Fmc Corporation Insecticidal benzylfurylmethyl perhaloalkylvinylcyclopropanecarboxylates
US4238505A (en) 1978-01-20 1980-12-09 Fmc Corporation Insecticidal biphenylmethyl perhaloalkylvinylcyclopropanecarboxylates
US4332815A (en) 1979-06-25 1982-06-01 Fmc Corporation Insecticidal perhaloalkylvinylcyclopropanecarboxylates
US4341796A (en) 1979-06-25 1982-07-27 Fmc Corporation Control of acarids with biphenylmethyl perhaloalkylvinylcyclopropanecarboxylates
US4342770A (en) 1980-06-20 1982-08-03 Dow Chemical Company Limited Optically active isomers of substituted pyridine methyl esters of cyclopropane carboxylic acid and their use as insecticides
US4426524A (en) 1980-09-02 1984-01-17 Fmc Corporation Heterocyclic substituted benzyl alcohol, insecticidal ester derivatives, and intermediates
US4402973A (en) 1980-10-02 1983-09-06 Fmc Corporation Insecticidal (1,1'-biphenyl)-3-ylmethyl esters
GB2085000A (en) 1980-10-08 1982-04-21 Ici Plc An improved process for the preparation of certain cyclopropane pyrethroid intermediates having a high cis-content
US4375476A (en) 1980-10-14 1983-03-01 Fmc Corporation Insecticidal (2,6-dimethyl-3-substituted phenyl)methyl cyclopropanecarboxylates
WO1982001368A1 (en) * 1980-10-20 1982-04-29 Corp Fmc 3-(pyrrol-1-yl)phenylmethyl esters and intermediates
DE3108203A1 (de) 1981-02-24 1982-09-16 FMC Corp., 19103 Philadelphia, Pa. "4-substituierte-2-indanole, deren insektizide esterderivate, diese enthaltende zusammensetzungen und deren verwendung"
WO1996026193A1 (de) 1995-02-24 1996-08-29 Basf Aktiengesellschaft Phenyldiketon-derivate
JPH11193259A (ja) 1997-04-09 1999-07-21 Nippon Soda Co Ltd 新規なフェニル基で置換されたベンゼン誘導体及び除草剤
WO2003053905A1 (en) 2001-12-20 2003-07-03 Syngenta Limited A process for the production of 1r pyrethroid esters
WO2008016184A1 (en) 2006-08-02 2008-02-07 Takeda Pharmaceutical Company Limited Alpha-carboline derivatives and methods for preparation thereof
WO2009058237A1 (en) 2007-10-29 2009-05-07 Merck & Co., Inc. Antidiabetic tricyclic compounds

Non-Patent Citations (22)

* Cited by examiner, † Cited by third party
Title
A. R. SANDE ET AL., TETRAHEDRON LETT., vol. 25, 1984, pages 3501
ADVANCE IN THE CHEMISTRY OF INSECT CONTROL III, pages 117 - 26
BODANSKY ET AL.: "Peptide Synthesis", 1976, WILEY & SONS
CAS, vol. 131, 2004, pages 190516
ERNEST L PLUMMER ET AL: "Pyrethroid Insecticides Derived from Substituted Biphenyl-3-ylmethanols", PESTICIDE SCIENCE,, vol. 14, no. 6, 1 December 1983 (1983-12-01), pages 560 - 570, XP001464859 *
GROSS; MEIENHOFER: "The Peptides: Analysis, Synthesis, Biology", 1979, ACADEMIC PRESS
H.-J. WANG ET AL., TETRAHEDRON LETT., vol. 46, 2005, pages 2631 - 2634
HOUBEN-WEYL: "Methoden der Organischen Chemie", vol. 15-2
HOUBEN-WEYL: "Methoden der Organischen Chemie", vol. VIII, pages: 311
J. AGRIC. FOOD CHEM., vol. 32, no. 5, 1984, pages 1116 - 21
J. AGRIC. FOOD CHEM., vol. 36, no. 5, 1988, pages 1040 - 3
J. AGRIC. FOOD CHEM., vol. 40, no. 8, 1992, pages 1432 - 6
J. AGRIC. FOOD CHEM., vol. 42, no. 8, 1994, pages 1779 - 82
J. ECON, ENTOMOLOGY, vol. 81, no. 5, 1988, pages 1295 - 303
M. ELIOTT ET AL., PESTICIDE SEI., vol. 6, 1975, pages 53 7 - 542
M. ELLIOTT ET AL., PESTIC. SEI., vol. 6, 1975, pages 537 - 542
PEST MANAG. SCIENCE, vol. 63, no. 6, 2007, pages 569 - 575
PEST. SCI., vol. 14, no. 6, 1983, pages 560 - 70
PEST. SCI., vol. 44, no. 3, 1995, pages 269 - 75
PLUMMER E L ET AL: "HETEROCYCLIC ANALOGUES OF SUBSTITUTED (1,1 -BIPHENYL)-3- METHYLPYRETHROID INSECTICIDES", JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 32, no. 5, 1 September 1984 (1984-09-01), pages 1116 - 1121, XP000653215, ISSN: 0021-8561, DOI: 10.1021/JF00125A047 *
S.-J. XUE ET AL., YINGYONG HUAXUE, vol. 21, 2004, pages 319 - 321
SPECIAL PUBLICATION-ROYAL SOEIETY OF CHEM., 1994, pages 147

Similar Documents

Publication Publication Date Title
KR101865578B1 (ko) 살해충성 아릴피롤리딘
EP2582242B1 (de) Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften
TWI640507B (zh) 用於控制節肢動物的新穎化合物(三)
EP2488510B1 (de) Amide und Thioamide als Schädlingsbekämpfungsmittel
EP3544978B1 (de) 2-[3-(alkylsulfonyl)-2h-indazol-2-yl]-3h-imidazo[4,5-b]pyridin-derivate und ähnliche verbindungen als schädlingsbekämpfungsmittel
KR20160104065A (ko) 농약으로서의 신규 피라졸릴헤테로아릴아미드
EP3146841B1 (de) Wirkstoffkombinationen enthaltend penflufen und sulfoxaflor
KR20160078974A (ko) 절지동물 방제용 신규 화합물
CN102573478A (zh) 作为杀虫剂的1-(吡啶-3-基)-吡唑和1-(嘧啶-5-基)-吡唑
CN104277032A (zh) 杀虫用芳基吡咯烷
WO2021068179A1 (en) Novel heteroaryl-substituted pyrazine derivatives as pesticides
EP2533641B1 (de) Hydrazin-substituierte anthranilsäurederivate
EP2595486A2 (de) Verwendung von anthranilsäureamidderivaten zur bekämpfung von insekten und spinnmilben durch angiessen, bodenmischung, furchenbehandlung, tröpfchenapplikation, boden-, stamm- oder blüteninjektion, in hydroponischen systemen, durch pflanzlochbehandlung oder tauchapplikation, floating- oder saatboxapplikation oder durch behandlung von saatgut, sowie zur steigerung der stresstoleranz in pflanzen gegenüber abiotischem stress
WO2012152741A1 (de) Bicyclische (thio)carbonylamidine
EP3125691A1 (de) VERWENDUNG VON N-ARYLAMIDIN-SUBSTITUIERTEN TRIFLUOROETHYLSULFOXID-DERIVATEN ZUR BEKÄMPFUNG VON SCHÄDLINGEN DURCH ANGIEßEN, TRÖPFCHENAPPLIKATION, TAUCHAPPLIKATION, BODENINJEKTION ODER DURCH DIE BEHANDLUNG VON SAATGUT
WO2012150208A1 (de) Verwendung von substituierten benzylalkoholestern der cyclopropancarbonsäure zur bekämpfung von insektizid-resistenten insekten
KR20120089839A (ko) 살해충성 카복사미드
EP2499130A1 (de) Neue diazinyl-pyrazolylverbindungen
WO2012150206A2 (de) Neue cyclopropansäureeesterderivate als schädlingsbekämpfungsmittel
WO2012150221A2 (de) Neue halogenierte benzylalkoholester der cyclopropancarbonsäure als schädlingsbekämpfungsmittel
WO2012150207A1 (de) Verwendung von cyclopropancarbonsäureeesterderivaten zur bekämpfung von insektizid-resistenten insekten
WO2012150205A1 (de) Neue substituierte benzylalkoholester der cyclopropancarbonsäure als schädlingsbekämpfungsmittel
WO2012150223A1 (de) Neue pyridinmethylester der cyclopropancarbonsäure als schädlingsbekämpfungsmittel
CN104321317B (zh) 杀虫的芳基吡咯烷
WO2020078839A1 (de) Wirkstoffkombinationen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12719347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12719347

Country of ref document: EP

Kind code of ref document: A1