WO2012150206A2 - Neue cyclopropansäureeesterderivate als schädlingsbekämpfungsmittel - Google Patents

Neue cyclopropansäureeesterderivate als schädlingsbekämpfungsmittel Download PDF

Info

Publication number
WO2012150206A2
WO2012150206A2 PCT/EP2012/057886 EP2012057886W WO2012150206A2 WO 2012150206 A2 WO2012150206 A2 WO 2012150206A2 EP 2012057886 W EP2012057886 W EP 2012057886W WO 2012150206 A2 WO2012150206 A2 WO 2012150206A2
Authority
WO
WIPO (PCT)
Prior art keywords
spp
cyano
compounds
haloalkyl
alkynyl
Prior art date
Application number
PCT/EP2012/057886
Other languages
English (en)
French (fr)
Other versions
WO2012150206A3 (de
Inventor
Peter Jeschke
Arnd Voerste
Neil Berry
Naomi DYER
Ian HALE
Weiqian David HONG
Chinyere OKPARA
Paul O´NEILL
Chandrakala Pidathala
Stephen Ward
Original Assignee
Bayer Cropscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Cropscience Ag filed Critical Bayer Cropscience Ag
Publication of WO2012150206A2 publication Critical patent/WO2012150206A2/de
Publication of WO2012150206A3 publication Critical patent/WO2012150206A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N53/00Biocides, pest repellants or attractants, or plant growth regulators containing cyclopropane carboxylic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/32Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring
    • C07C255/38Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring the carbon skeleton being further substituted by esterified hydroxy groups
    • C07C255/39Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring the carbon skeleton being further substituted by esterified hydroxy groups with hydroxy groups esterified by derivatives of 2,2-dimethylcyclopropane carboxylic acids, e.g. of chrysanthemumic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/24Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals

Definitions

  • the present application relates to novel derivatives of Cyclopropancarbonklaeester, processes for their preparation and use for controlling animal pests, especially of arthropods and in particular of insects, arachnids and nematodes.
  • the object of the present invention was to provide compounds which broaden the spectrum of pesticides from various aspects.
  • Ri is cyano, alkenyl or alkynyl
  • Q is a radical of the formula (LI)
  • M is oxygen, sulfur, methylene or oxymethylene
  • R 2 represents optionally substituted hetaryl, preferably pyridin-2-yl or pyridin-3-yl, or one of the radicals from the series
  • R2 is (A) alkyl, haloalkyl, cycloalkyl, halocycloalkyl, alkenyl, haloalkenyl, alkynyl, alkoxy, haloalkoxy, alkoxycarbonyl, alkoxyalkyl, haloalkoxyalkyl, alkylthio, haloalkylthio , Alkylsulfonyl, haloalkylsulfinyl, haloalkylsulfonyl, iodo, nitro, cyano, amino, alkylamino, dialkylamino and in the case of R2 is (B) or (C) alkyl, haloalkyl, cycloalkyl, halogenocycloalkyl, alkenyl, haloalkenyl, alkynyl, Alkoxy, haloalkoxy
  • R 2 is the same (D), (E), (F), (G), (H), (J), (K), (L), ( ⁇ '), (N ), (O), (P), (R) and (S) are independently alkyl, haloalkyl, cycloalkyl, halocycloalkyl, alkenyl, haloalkenyl, alkynyl, alkoxy, haloalkoxy, alkoxycarbonyl, alkoxyalkyl, haloalkoxyalkyl, alkylthio, haloalkylthio, alkylsulfmyl, Haloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl, halogen, nitro, cyano, amino, alkylamino, dialkylamino, and Yi and Y2 are each independently halogen or haloalkyl, preferably halogen is
  • Ri is cyano, alkenyl or alkynyl
  • Q ' is a radical of the formula (II.1)
  • M is oxygen, sulfur, methylene or oxymethylene
  • Z is halogen and n is 1, 2 or 3
  • R 2 represents optionally substituted hetaryl, preferably pyridin-2-yl, pyridin-3-yl, pyrimid-2-yl, 4-chloropyrimid-2-yl, quinolin-2-yl or one of the radicals from the series
  • R 2 is (A) alkyl, haloalkyl, cycloalkyl, halogenocycloalkyl, alkenyl, haloalkenyl, alkynyl, alkoxy, haloalkoxy, alkoxycarbonyl, alkoxyalkyl, haloalkoxyalkyl, alkylthio, haloalkylthio, Alkylsulfmyl, haloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl, fluorine, bromine, iodine, nitro, cyano, amino, alkylamino, dialkylamino and in the case of R2 is (B) or (C) is alkyl, haloalkyl, cycloalkyl, halocycloalkyl, alkenyl, haloalkenyl, alkynyl, alkoxy, haloalkoxy,
  • R 2 is the same as (D), (E), (F), (G), (H), (J), (K), (L), ( ⁇ '), ( N), (O), (P), (R) and (S) are independently alkyl, haloalkyl, cycloalkyl, halocycloalkyl, alkenyl, haloalkenyl, alkynyl, alkoxy, haloalkoxy, alkoxycarbonyl, alkoxyalkyl, haloalkoxyalkyl, alkylthio, haloalkylthio, alkylsulfmyl , Haloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl, halogen, nitro, cyano, amino, alkylamino, dialkylamino, and Y 1 and Y 2 independently of one another are halogen or haloalkyl
  • the compounds of the formula (I) can also be present in different compositions as optical isomers or mixtures of isomers, which can optionally be separated in a customary manner.
  • the compounds of the formulas (Ia), (Ib), (Ic) or (Id) can be present both as mixtures and in the form of their pure isomers. If appropriate, mixtures of the compounds of the formulas (Ia), (Ib), (Ic) or (Id) can be separated by physical methods, for example by chromatographic methods.
  • the compounds of the formulas (II-a), (II-b), (II-c) or (II-d) can be present both as mixtures and in the form of their pure isomers. If appropriate, mixtures of the compounds of the formulas (II-a), (II-b), (II-c) or (II-d) can be separated by physical methods, for example by chromatographic methods. Furthermore, the compounds of the formula (II) can be present in the two isomeric forms of the formulas ( ⁇ - ⁇ ) or (II-B), depending on the position of the substituent Ri:
  • LG for an optionally in situ generated nucleofuge leaving group is, with compounds of general formula (IV) or (V)
  • R 1, R 2, M, Z and n have the abovementioned meaning, if appropriate in the presence of a suitable acid binder and if appropriate in the presence of a suitable diluent.
  • the compounds of the invention are generally defined by the formula (I) or (II).
  • the compounds of formula (I) have the general formula
  • Xi in the case of R 2 is (A) alkyl, haloalkyl, cycloalkyl, halogenocycloalkyl, alkenyl, haloalkenyl, alkynyl, alkoxy, haloalkoxy, alkoxycarbonyl, alkoxyalkyl, haloalkoxyalkyl, alkylthio, haloalkylthio, alkylsulfinyl, haloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl, Iodine, nitro, cyano, amino, alkylamino, dialkylamino and
  • Xi in the case of R2 is (B) or (C) alkyl, haloalkyl, cycloalkyl, halogenocycloalkyl, alkenyl, haloalkenyl, alkynyl, alkoxy, haloalkoxy, alkoxycarbonyl, alkoxyalkyl, haloalkoxyalkyl, alkylthio, haloalkylthio, alkylsulfinyl, haloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl , Chlorine, bromine, iodine, nitro, cyano, amino, alkylamino, dialkylamino and
  • Xi, Xf, X "in the case of R 2 is (D), (E), (F), (G), (H), (J), (K), (L), ( ⁇ '), ( N), (O), (P), (R) and (S) are independently alkyl, haloalkyl, cycloalkyl, halocycloalkyl, alkenyl, haloalkenyl, alkynyl, alkoxy, haloalkoxy, alkoxycarbonyl, alkoxyalkyl, haloalkoxyalkyl, alkylthio, haloalkylthio, alkylsulfinyl , Haloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl, halogen, nitro, cyano, amino, alkylamino, dialkylamino, and
  • Yi and Y2 are bromine, chlorine or trifluoromethyl.
  • the compound has the general formula ( ⁇ .2)
  • R 2 is (A) alkyl, haloalkyl, cycloalkyl, halocycloalkyl, alkenyl, haloalkenyl, alkynyl, alkoxy, haloalkoxy, alkoxycarbonyl, alkoxyalkyl, haloalkoxyalkyl, alkylthio, haloalkylthio, alkylsulfmyl Haloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl, fluoro, bromo, iodo, nitro, cyano, amino, alkylamino, dialkylamino and in the case of R2 is (B) or (C) alkyl, haloalkyl, cycloalkyl, halocycloalkyl, alkenyl, haloalkenyl, Alkyn
  • Z is fluorine, n is 1 or 2 and
  • Yi and Y 2 are bromine, chlorine or trifluoromethyl.
  • the compounds have the general formula (1.3) or (1.4):
  • Xi F in al l of R 2 is (A) for Ci-C4-alkyl, Ci-C4-haloalkyl, Ci-C4 alkoxy, C1-C4 haloalkoxy, Ci-C4-haloalkylthio, Ci-C4- Haloalkylsulfinyl, C 1 -C 4 -haloalkylsulfonyl,
  • Xi in the case R 2 is (B) or (C) for Ci-C4-alkyl, Ci-C4-haloalkyl, Ci-C4 alkoxy, C1-C4 haloalkoxy, Ci-C4-haloalkylthio, Ci- C 4 haloalkylsulfinyl, C 1 -C 4 -haloalkylsulfonyl, chlorine, bromine, iodine, and cyano and Xi, Xi ', Xi " in the case of R 2 is the same as (D), (E), (F), (G) , (H), (J), (K), (L), ( ⁇ '), (N), (O), (P), (R) and (S) independently of one another are C 1 -C 4 -alkyl, Ci-C4-haloalkyl, Ci-C4-alkoxy, C1-C4 haloalkoxy, Ci-C4-haloalkylthi
  • Z is hydrogen or fluorine, n is 1,
  • X 2 , X 2 ', X 2 "in the case of R 2 is the same as (D), (E), (F), (G), (H), (J), (K), (L), ( ⁇ ' ), (N), (O) and (P) independently of one another are C 1 -C 4 -alkyl, C 1 -C 4 -haloalkyl, C 1 -C 4 -alkoxy, C 1 -C 4 -haloalkoxy, C 1 -C 4 -haloalkylthio, C 1 -C 4 -alkyl Halogenoalkylsulfinyl, Ci-C4-Halogenalkylsulfonyl, fluorine, chlorine, bromine, iodine or cyano, preferably trifluoromethyl, trifluoromethoxy, fluorine or chlorine, particularly preferably fluorine and chlorine.
  • R 1 is cyano, alkenyl or alkynyl, preferably cyano, Z is fluorine, chlorine, bromine or iodine, preferably fluorine,
  • R 2 is optionally substituted hetaryl, preferably pyridin-2-yl or pyridin-3-yl, or one of the radicals from the series
  • X 2 in the case of R 2 is (A) alkyl, haloalkyl, cycloalkyl, halogenocycloalkyl, alkenyl, haloalkenyl, alkynyl, alkoxy, haloalkoxy, alkoxycarbonyl, alkoxyalkyl, haloalkoxyalkyl, alkylthio, haloalkylthio, alkylsulfmyl, haloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl, fluoro, Bromine, iodine, nitro, cyano, amino, alkylamino, dialkylamino and
  • X 2 in the case of R 2 is (B) or (C) alkyl, haloalkyl, cycloalkyl, halogenocycloalkyl, alkenyl, haloalkenyl, alkynyl, alkoxy, haloalkoxy, alkoxycarbonyl, alkoxyalkyl, haloalkoxyalkyl, alkylthio, haloalkylthio, alkylsulfmyl, haloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl , Halogen, nitro, cyano, amino, alkylamino, dialkylamino and
  • Yi and Y2 are each independently halogen or haloalkyl, preferably halogen is selected from the group of bromine or chlorine, preferably haloalkyl is trifluoromethyl.
  • R2 for one of the radicals (A) or (C)
  • the determination of the absolute configuration can be made by X-ray structure analysis.
  • the determination of the absolute configuration of the (1R, 3R) -3- (2,2-dibromethenyl) -2,2-dimethyl-cyclopropanecarboxylic acid (S) -cyano [3- (3-fluorophenoxy) phenyl] methyl ester by means of anomalous Dispersion described (see HelfellungsbeiInstitut, Example 2b).
  • the compounds which are required as starting materials for preparing the process (stage D) according to the invention are generally defined by the formulas (III), (IV) and (V).
  • Y 1, Y 2, Z n , R 1 and R 2 are preferably those radicals which have already been mentioned as preferred substituents in connection with the description of the compounds of general formula (I) according to the invention become.
  • the compounds of formula (III) may, for. T. commercially or by literature methods according to the reaction scheme I (step C) are obtained from the corresponding 2,2-dimethyl-cyclopropanecarboxylic acids (A-l) (see also Preparation Example 1, step C).
  • LG stands for an in situ generated nucleofuge leaving group ("Leaving Group").
  • Examples of compounds of the formula (III) having a nucleofugic leaving group LG are known;
  • the compounds of formula (Va-1) are prepared from optionally Z-substituted 3-aryl (hetaryl) oxybenzaldehydes (A-4) obtainable by step A / method I or step A / method II, and the compounds of the formula (A-7a) by means of a suitable carbonyl reaction (see Reaction Scheme I, step B).
  • cyanohydrins 2-hydroxy-acetonitriles
  • IVa-1 substituted 2-hydroxy-acetonitriles
  • Va-1 substituted 2-hydroxy-acetonitriles
  • Cyanohydrin formation can be carried out in the presence of alkali metal cyanides (eg sodium cyanide, see K. Ozawa et al, Nippon Noyaku Gakkaishi 1986, 11, 169-174) or trimethylsilylcyamd (TMS-CN, see LH McKendry, J. Chem Labeled Comp. Radiopharm., 1984, 21, 401-408, US 4,221,799, see Preparation Example 1, Step B).
  • alkali metal cyanides eg sodium cyanide, see K. Ozawa et al, Nippon Noyaku Gakkaishi 1986, 11, 169-174
  • TMS-CN trimethylsilylcyamd
  • the radical R 1 is ethynyl
  • they are corresponding substituted 2-ethynyl-methanols (IVa-2) or (Va-2), which are known in the art
  • Preparation methods from optionally Z-substituted 3-aryl (hetaryl) oxy benzaldehydes (A-4) and the compounds of formula (A-7b) by means of suitable carbonyl reaction can be obtained.
  • a-ethynyl-3- (4-fluorophenoxy) -benzenemethanol (DE-OS 2,621,433) or a-ethynyl-4-fluoro-3-phenoxy) -benzenemethanol (WO 9408931) are known.
  • the optionally Z-substituted 3-aryl (hetaryl) oxybenzaldehydes (A-4) are either from optionally Z-substituted 3-formyl-phenylboronic acid derivatives of the formula (A-2) and (hetero) aromatic hydroxy compounds of the formula (A -3) (compare step A, method I) or from optionally Z-substituted 3-hydroxybenzaldehydes of the formula (A-5) and boronic acid derivatives of the formula (A-6) (compare step A, method II).
  • the optionally Z-substituted 3-formyl-phenylboronic acid derivatives of the formula (A-2) are known from the literature or accessible by methods known from the literature.
  • 4-ethoxy-3-formylphenylboronic acid WO 2008/057497
  • 4-fluoro-3-formylphenylboronic acid WO 2003/097576
  • the (hetero) aromatic hydroxy compounds of the formula (A-3) are known from the literature or can be obtained by methods known from the literature (for example preparation of phenols: see Houben-Weyl, Methoden der Organischen Chemie, Volume VI / 1c).
  • the optionally Z-substituted 3-hydroxybenzaldehydes of the formula (A-5) are known from the literature or can be obtained by methods known from the literature (for example preparation of aldehydes: see Houben-Weyl, Methoden der Organischen Chemie, Volume VII / 1, 2 Edition, p. 413).
  • the boronic acid derivatives of the formula (A-6) are known from the literature or accessible by methods known from the literature (cf., Coupling Reactions with Boronic Acid Derivatives: Chem. Rev. 1995, 95, 2457-2483; Tetrahedron 2002, 58, 9633-9695, Metal-Catalyzed Cross- Coupling Reactions (Eds .: A. de Meijere, F. Diederich), 2 nd ed., Wiley-VCH, Weinheim, 2004).
  • the compounds required as starting materials for the preparation of the process (step D) according to the invention are generally defined by the formulas (III), (IV) and (V).
  • Y 1, Y 2, Z n , R 1 and R 2 are preferably those radicals which have already been mentioned as preferred substituents in connection with the description of the compounds of general formula (I) according to the invention become.
  • Some of the compounds of the formulas (IVb-1) and (Vb-1) are known or can be obtained by literature methods according to Reaction Scheme IV (see Preparation Example 27, Method IV, Step A).
  • the compounds of the formula (Vb-1) are prepared from optionally Z-substituted 3-aryl (hetaryl) methylbenzaldehydes (A-9) which are obtainable by stage A / method IV, and the compounds of the formula (A-7a ) by means of a suitable carbonyl reaction (compare Reaction Scheme IV, step B).
  • cyanohydrins 3- [hetaryl (aryl) methyl] -a-hydroxy-benzeneacetonitriles (cyanohydrins) (IVb-1) or (Vb-1), which can be obtained by known production methods.
  • the cyanohydrin formation can be carried out in the presence of alkali metal cyanides (for example sodium cyanide, see K. Ozawa et al, Nippon Noyaku Gakkaishi 1986, 11, 169-174) or trimethylsilyl cyanide (TMS-CN, see LH McKendry , J. Labeled Comp. Ratiopharm., 1984, 21, 401-408; U.S. Pat. No.
  • the (hetero) aromatic hydroxy compounds of the formula (A-2) are known from the literature or can be obtained according to the methods known from the literature described above.
  • halomethyl compounds of the formula (A-8) in which halogen can be chlorine, bromine or iodine are commercially available or obtainable by methods known from the literature (for example bromomethylation: see Houben-Weyl, Methoden der Chemische Chemie, Vol. V / 4, p. 784; chloromethylation of non-activated arenes: see H. Suzuki Bull. Chem. Soc., Japan 1910, 43, 3299).
  • the compounds required as starting materials for the preparation of the process (step D) according to the invention are generally defined by the formulas (II) and (III).
  • Y 1, Y 2, Z n , R 1 and R 2 are preferably those radicals which have already been mentioned as preferred substituents in connection with the description of the compounds of general formula (I) according to the invention become.
  • the compounds of formula (Vc-1) are prepared from optionally Z-substituted 3-hydroxybenzaldehydes (A-5), which are accessible by step A / method V, and the compounds of formula (A-7a) by means of a suitable carbonyl reaction obtained (see Reaction Scheme V, step B).
  • cyanohydrins a-hydroxy-3- (phenylmethoxy) -benzenacetonitrile
  • IVc-1 a-hydroxy-3- (phenylmethoxy) -benzenacetonitrile
  • Vc- 1 a-hydroxy-3- (phenylmethoxy) -benzenacetonitrile
  • the cyanohydrin formation can be carried out in the presence of alkali metal cyanides (eg sodium cyanide, see K. Ozawa et al, Nippon Noyaku Gakkaishi 1986, 11, 169-174) or trimethylsilyl cyanide (TMS-CN; see LH McKendry, J. Labeled Comp. Radiopharm., 1984, 21, 401-408, U.S. Patent 4,221,799, see Preparation Example 1, Step B). respectively.
  • alkali metal cyanides eg sodium cyanide, see K. Ozawa et al, Nippon Noyaku Gakkaishi 1986, 11, 169-174
  • halomethyl compounds of the formula (A-8), in which halogen may be chlorine, bromine or iodine are commercially available or obtainable in accordance with the methods described above and known from the literature.
  • reaction of compounds of the formula (IV) or (V) with the compounds of the formula (III) can also be carried out in the presence of a coupling agent for the carboxylic acid and optionally in the presence of a basic reaction auxiliary in one of the diluents given below.
  • Suitable coupling agents for carrying out the preparation process are all those which are suitable for the preparation of an amide bond (cf., for example, Houben-Weyl, Methods of Organic Chemistry, Volume 15/2; Bodansky et al., Peptide Synthesis 2nd ed.
  • Suitable diluents for carrying out the process according to the invention are all inert organic solvents, examples being: halogenated hydrocarbons, in particular chlorohydrocarbons, such as tetraethylene, tetrachloroethane, dichloropropane, methylene chloride, dichlorobutane , Chloroform, tetrachloro carbon, trichloroethane, trichlorethylene, pentachloroethane, difluorobenzene, 1,2-dichloroethane, chlorobenzene, bromobenzene, dichlorobenzene, chlorotoluene, trichlorobenzene; Alcohols, such as
  • Mixtures of the solvents and diluents mentioned can also be used for the process according to the invention.
  • Preferred diluents for carrying out the process according to the invention are ethers, such as methyl tert-butyl ether, tetrahydrofuran or dioxane, in particular tetrahydrofuran.
  • the preparation of compounds of the formula (I) according to the preparation process is carried out by reacting compounds of the formula (IV) or (V) in the presence of compounds of the formula (III), if appropriate in the presence of an acid binder and, if appropriate, in one of the diluents mentioned ,
  • the reaction time is generally 10 minutes to 48 hours.
  • the reaction takes place at temperatures between -10.degree. C. and + 200.degree. C., preferably between + 10.degree. C. and 120.degree. C., more preferably at room temperature.
  • acid binders such as amines, in particular tertiary amines and also alkali metal and alkaline earth metal compounds.
  • hydroxides, hydrides, oxides and carbonates of lithium, sodium, potassium, magnesium, calcium and barium and also other basic compounds such as amidine bases or guanidine salts such as 7-methyl-1,5,7-triaza-bicyclo (4.4.0) dec-5-en (MTBD); Diazabicyclo (4.3.0) nonene (DBN), diazabicyclo (2.2.2) octane (DABCO), 1,8-diazabicyclo (5.4.0) undecene (DBU), cyclohexyltetrabutyl-guanidine (CyTBG), cyclohexyltetramethylguanidine (CyTMG) , ⁇ , ⁇ , ⁇ -tetramethyl-l, 8-naphthalenediamine, pentamethylpiperidine, tertiary amines such as triethylamine, trimethylamine, tribenzylamine, triisopropy
  • Tertiary amines such as trimethylamine, triethylamine or N-ethyl-N, N-diisopropylamine are preferably used.
  • the compounds according to the invention can be present as geometrical and / or as optically active isomers or corresponding isomer mixtures in different compositions.
  • These stereoisomers are, for example, enantiomers, diastereomers, atropisomers or geometric isomers.
  • the invention thus comprises pure stereoisomers as well as any mixtures of these isomers.
  • the compounds of the invention may optionally be present in different polymorphic forms or as a mixture of different polymorphic forms. Both the pure polymorphs and the polymorph mixtures are the subject of the invention and can be used according to the invention.
  • the active compounds according to the invention are suitable for plant tolerance, favorable warm-blooded toxicity and good environmental compatibility for protecting plants and plant organs, for increasing crop yields, improving the quality of the crop and for controlling animal pests, in particular insects, arachnids, helminths, nematodes and molluscs which are found in agriculture, horticulture, livestock, forestry, gardens and recreational facilities, supplies and materials, and sanitation. They can preferably be used as crop protection agents. They are effective against normally sensitive and resistant species as well as against all or individual stages of development.
  • the above mentioned pests include:
  • Pests of the Arthropoda strain in particular of the class Arachnida, e.g. Acarus spp., Aceria sheldoni, Aculops spp., Aculus spp., Amblyomma spp., Amphitetranychus viennensis, Argas spp., Boophilus spp., Brevipalpus spp., Bryobia graminum, Bryobia praetiosa, Centruroides spp., Chorioptes spp., Dermanyssus gallinae , Dermatophagoides pteronyssinus, Dermatophagoides farinae, Dermacentor spp., Eotetranychus spp., Epitrimerus pyri, Eutetranychus spp., Eriophyes spp., Glycyphagus domesticus, Halotydeus destructor, Hemitarsonemus s
  • Insecta e.g. from the order of the Blattodea e.g. Blattella asahinai, Blattella germanica, Blatta orientalis, Leucophaea maderae, Panchlora spp., Parcoblatta spp., Periplaneta spp., Supella longipalpa.
  • the order of the Blattodea e.g. Blattella asahinai, Blattella germanica, Blatta orientalis, Leucophaea maderae, Panchlora spp., Parcoblatta spp., Periplaneta spp., Supella longipalpa.
  • Apogonia spp. Atomaria spp., Attagenus spp., Bruchidius obtectus, Bruchus spp., Cassida spp., Cerotoma trifurcata, Ceutorrhynchus spp., Chaetocnema spp., Cleonus mendicus, Conoderus spp., Cosmopolites spp., Costelytra zealandica, Cte- nicera spp., Curculio spp., Cryptolestes ferruginus, Cryptorhynchus lapathi, Cylindrocopturus spp., Dermestes spp., Diabrotica spp., Dichocrocis spp., Dicladispa armigera, Diloboderus spp., Epilachna spp., Epitrix spp., Faustinus spp., Gibbium psylloides, G
  • Rhizobius ventralis Rhizopertha dominica, Sitophilus spp., Sitophilus oryzae, Sphenophorus spp., Stegobium paniceum, Starchus spp., Symphyletes spp., Tanymecus spp., Tenebrio molitor, Tenebrioides mauretanicus, Tribolium spp., Trogoderma spp., Tychius spp., Xylotrechus spp., Zabrus spp.
  • Diptera e.g. Aedes spp., Agromyza spp., Anastrepha spp., Anopheles spp., Asphondylia spp., Bactrocera spp., Bibio hortulanus, Calliphora erythrocephala, Calliphora vicina, Ceratitis capitata, Chironomus spp., Chrysomyia spp., Chrysops spp.
  • Chrysozona pluvialis Cochliomyia spp., Contarinia spp., Cordylobia anthropophaga, Cricotopus sylvestris, Culex spp., Culicoides spp., Culiseta spp., Cuterebra spp., Dacus oleae, Dasyneura spp., Delia spp., Dermatobia hominis, Drosophila spp.
  • Echinocnemus spp. Echinocnemus spp., Fannia spp., Gasterophilus spp., Glossina spp., Haematopota spp., Hydrellia spp., Hydrellia griseola, Hylemya spp., Hippobosca spp., Hypoderma spp., Liriomyza spp. Lucilla spp.
  • Oebalus spp. Pentomidae, Piesma quadrata, Piezodorus spp., Psallus spp., Pseudacysta persea, Rhodnius spp., Sahlbergella singularis, Scaptocoris castanea, Scotinophora spp., Stephanitis nashi, Tibraca spp., Triatoma spp.
  • Euphyllura spp. Euscelis bilobatus, Ferrisia spp., Geococcus coffeae, Glycaspis spp., Heteropsylla cubana, Heteropsylla spinulosa, Homalodisca coagulata, Hyalopterus arundinis, Icerya spp., Idiocerus spp., Idioscopus spp., Laodelphax striatellus, Lecanium spp., Lepidosaphes spp., Lipaphis erysimi, Macrosiphum spp., Macrosteies facifrons, Mahanarva spp., Melanaphis sacchari, Metcalfiella spp., Metopolophium dirhodum, Monellia costalis, Monelliopsis pecanis, Myzus spp , Nasonovia ribisigri, Nephotettix s
  • Quadraspidiotus spp. Quesada gigas, Rastrococcus spp., Rhopalosiphum spp., Saissetia spp., Scaphoideus titanus, Schizaphis graminum, Selenaspidus articulatus, Sogata spp., Sogatella furcifera, Sogatodes spp., Stictocephala festina, Siphoninus phillyreae, Tenalaphara malayensis, Tetragonocephela Spp., Tinocallis caryaefoliae, Tomaspis spp., Toxoptera spp., Trialeurodes vaporariorum Trioza spp., Typhlocyba spp., Unaspis spp., Viteus vitifolii, Zygina spp.
  • Hymenoptera e.g. Acromyrmex spp., Athalia spp., Atta spp., Diprion spp., Hoplo- campa spp., Lasius spp., Monomorium pharaonis, Sirex spp., Solenopsis invicta, Tapinoma spp., Uracus spp., Vespa spp., Xeris spp ..
  • Epinotia spp. Epiphyas postvittana, Etiella spp., Eulia spp., Eu- poecilia ambiguella, Euproctis spp., Euxoa spp., Feltia spp., Galleria mellonella, Gracillaria spp., Grapholitha spp., Hedylepta spp., Helicoverpa spp., Heliothis spp., Hofmannophila pseudospretella, Homoeosoma spp., Homona spp.
  • Pectinophora spp. Perileucoptera spp., Phthorimaea spp., Phyllocnistis citrella, Phyllonorcter spp., Pieris spp., Platynota stultana, Plodia interpunctella, Plusia spp., Plutella xylostella, Prays spp., Prodenia spp., Protoparce spp.
  • Pseudaletia spp., Pseudaletia unip Uncta, Pseudoplusia includens, Pyrausta nubilalis, Rachiplusia nu, Schoenobius spp., Scirpophaga spp., Scirpophaga innotata, Ontario segetum, Sesamia spp., Sesamia inferens, Sparganothis spp., Spodoptera spp., Spodoptera praefica, Stathmopoda spp., Stomopteryx subsecivella, Synanthedon spp., Tecia solanivora, Thermesia gemmallis, Tinea cloacella, Tinea pellionella, Tineola bisselliella, Tortrix spp., Trichophaga tapetzella, Trichoplusia spp., Tryporyza incertulas, Tuta absoluta,
  • Phthiraptera e.g. Damalinia spp., Haematopinus spp., Linognathus spp., Pediculus spp., Phylloera vastatrix, Phtirus pubis, Trichodectes spp ..
  • Psocoptera e.g. Lepinotus spp., Liposcelis spp.
  • siphonaptera e.g. Ceratophyllus spp., Ctenocephalides spp., Pulex irritans, Tunga penetrans, Xenopsylla cheopsis.
  • Thysanoptera e.g. Anaphothrips obscurus, Baliothrips biformis, Drepanothrips reuteri, Enneothrips flavens, Frankliniella spp., Heliothrips spp., Hercinothrips femoralis, Rhipiphorothrips cruentatus, Scirtothrips spp., Taeniothrips cardamomi, Thrips spp.
  • Anaphothrips obscurus e.g. Anaphothrips obscurus, Baliothrips biformis, Drepanothrips reuteri, Enneothrips flavens, Frankliniella spp., Heliothrips spp., Hercinothrips femoralis, Rhipiphorothrips cruentatus, Scirtothrips spp., Taeniothrips cardamomi, Thrips spp.
  • Symphyla e.g. Scutigerella spp ..
  • Pests from the strain of Mollusca in particular from the class of bivalvia, eg Dreissena spp., And from the class of Gastropoda eg Arion spp., Biomphalaria spp., Bulinus spp., Deroceras spp., Galba spp., Lymnaea spp., Oncomelania spp., Pomacea spp., Succinea spp.
  • Animal parasites from the strains of Plathelminthes and Nematoda eg Ancylostoma duodenale, Ancylostoma ceylanicum, Acylostoma braziliensis, Ancylostoma spp., Ascaris spp., Brugia malayi, Brugia timori, Bunostomum spp., Chabertia spp., Clonorchis spp., Cooperia spp.
  • Dicrocoelium spp Dicrocoelium spp, Dictyocollus filaria, Diphyllobothrium latum, Dracunculus medinensis, Echinococcus granulosus, Echinococcus multilocularis, Enterobius vermicularis, Faciola spp., Haemonchus spp., Heterakis spp., Hymenolepis nana, Hyostrongulus spp., Loa Loa, Nematodirus spp.
  • Plant pests from the strain of Nematoda i. plant parasitic nematodes, in particular Aphelenchoides spp., Bursaphelenchus spp., Ditylenchus spp., Globodera spp., Heterodera spp., Longidorus spp., Meloidogyne spp., Pratylenchus spp., Radopholus spp., Trichodorus spp., Tylenchulus spp, Xiphinema Spp., Helicotylenchus spp., Tylenchorhynchus spp., Scutellonema spp., Paratrichodorus spp., Meloinema spp., Paraphelenchus spp., Aglenchus spp., Belonolaimus spp., Nacobbus spp, Rotylenchulus spp., Rotyle
  • Paraphelenchus spp. Dolichodorus spp., Hoplolaimus spp., Punctodera spp., Criconemella spp., Quinisulcius spp., Hemicycliophora spp., Anguina spp., Subanguina spp., Hemicriconemoides spp., Psilenchus spp., Pseudohalenchus spp., Criconemoides spp ., Cacopaurus spp. Furthermore, the order of coccidia can be determined from the sub-kingdom of protozoa Fight Eimeria spp.
  • the compounds according to the invention can also be used in certain concentrations or application rates as herbicides, safeners, growth regulators or agents for improving plant properties, or as microbicides, for example as fungicides, antimycotics, bactericides, viricides (including agents against viroids) or as anti-MLO agents (Mycoplasma-like-organism) and RLO (Rickettsia-like-organism) are used. They can also be used as intermediates or precursors for the synthesis of other active ingredients.
  • the active compounds can be converted into the customary formulations, such as solutions, emulsions, wettable powders, water- and oil-based suspensions, powders, dusts, pastes, soluble powders, soluble granules, scattering granules, suspension-emulsion concentrates, active substance-impregnated natural products, active ingredient Impregnated synthetic materials, fertilizers and Feinstverkapselitch in polymeric materials.
  • solutions emulsions, wettable powders, water- and oil-based suspensions, powders, dusts, pastes, soluble powders, soluble granules, scattering granules, suspension-emulsion concentrates, active substance-impregnated natural products, active ingredient Impregnated synthetic materials, fertilizers and Feinstverkapselitch in polymeric materials.
  • formulations are prepared in a known manner, for example by mixing the active compounds with extenders, ie liquid solvents and / or solid carriers, optionally with use of surface-active agents, ie emulsifiers and / or dispersants and / or foam-forming agents.
  • extenders ie liquid solvents and / or solid carriers
  • surface-active agents ie emulsifiers and / or dispersants and / or foam-forming agents.
  • Excipients which can be used are those which are suitable for imparting special properties to the composition itself and / or preparations derived therefrom (for example spray liquor, seed dressing), such as certain technical properties and / or specific biological properties.
  • Typical auxiliaries are: extenders, solvents and carriers.
  • polar and non-polar organic chemical liquids e.g. from the classes of aromatic and non-aromatic hydrocarbons (such as paraffins, alkylbenzenes, alkylnaphthalenes, chlorobenzenes), alcohols and polyols (which may also be substituted, etherified and / or esterified), ketones (such as acetone, cyclohexanone ), Esters (including fats and oils) and (poly) ethers, simple and substituted amines, amides, lactams (such as N-alkylpyrrolidones) and lactones, sulfones and sulfoxides (such as dimethyl sulfoxide).
  • aromatic and non-aromatic hydrocarbons such as paraffins, alkylbenzenes, alkylnaphthalenes, chlorobenzenes
  • alcohols and polyols which may also be substituted, etherified and / or esterified
  • ketones
  • Suitable liquid solvents are essentially: aromatics, such as xylene, toluene, or alkylnaphthalenes, chlorinated aromatics and chlorinated aliphatic hydrocarbons, such as chlorobenzenes, chloroethylenes or methylene chloride, aliphatic hydrocarbons, such as cyclohexane or paraffins, e.g.
  • Petroleum fractions mineral and vegetable oils, alcohols, such as butanol or glycol, and their ethers and esters, ketones, such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents, such as dimethyl sulfoxide, and water.
  • alcohols such as butanol or glycol
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone
  • strongly polar solvents such as dimethyl sulfoxide, and water.
  • Suitable solid carriers are: for example, ammonium salts and ground natural minerals, such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, and ground synthetic minerals, such as finely divided silica, alumina and silicates, as solid carriers for granules: eg broken and fractionated natural rocks such as calcite, marble, pumice, sepiolite, dolomite and synthetic granules of inorganic and organic flours and granules of organic material such as paper, sawdust, coconut shells, corn cobs and tobacco stalks; suitable emulsifiers and / or foam formers are: for example nonionic and anionic emulsifiers, such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, for example alkylaryl polyglycol ethers, alkylsulfonates, alkyl sulfates, arylsulfon
  • oligomers or polymers for example starting from vinylic monomers, from acrylic acid, from EO and / or PO alone or in combination with, for example, (poly) alcohols or (poly) amines.
  • lignin and its sulfonic acid derivatives simple and modified celluloses, aromatic and / or aliphatic sulfonic acids and their adducts with formaldehyde.
  • Adhesives such as carboxymethylcellulose, natural and synthetic powdery, granular or latex-like polymers can be used in the formulations, such as gum arabic, polyvinyl alcohol, polyvinyl acetate, as well as natural phospholipids such as cephalins and lecithins and synthetic phospholipids.
  • Dyes such as inorganic pigments, e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
  • inorganic pigments e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
  • additives may be fragrances, mineral or vegetable optionally modified oils, waxes and nutrients (also trace nutrients), such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
  • Stabilizers such as cold stabilizers, preservatives, antioxidants, light stabilizers or other agents which improve the chemical and / or physical stability can also be present.
  • the formulations generally contain between 0.01 and 98% by weight of active ingredient, preferably between 0.5 and 90%.
  • the active ingredient according to the invention may be present in its commercial formulations as well as in the formulations prepared from these formulations in admixture with other active ingredients such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators, herbicides, safeners, fertilizers or semiochemicals.
  • a mixture with other known active ingredients, such as herbicides, fertilizers, growth regulators, safeners, semiochemicals, or with agents for improving the plant properties is possible.
  • the active compounds according to the invention may also be present in the form of insecticides in their commercial formulations and in the forms prepared from these formulations in admixture with synergists.
  • Synergists are compounds which increase the effect of the active ingredients without the added synergist itself having to be active.
  • the active compounds according to the invention may furthermore, when used as insecticides in their commercial formulations and in the forms of use prepared from these formulations, be present in mixtures with inhibitors which reduce degradation of the active ingredient after application in the environment of the plant, on the surface of plant parts or in plant tissues ,
  • the active ingredient content of the application forms prepared from the commercial formulations can vary widely.
  • the active ingredient concentration of the application forms can be from 0.00000001 up to 95% by weight of active compound, preferably between 0.00001 and 1% by weight.
  • the application is done in a custom forms adapted to the application.
  • plants are understood as meaning all plants and plant populations, such as desired and unwanted wild plants or crop plants (including naturally occurring crop plants).
  • Crop plants can be plants which can be obtained by conventional breeding and optimization methods or by biotechnological and genetic engineering methods or combinations of these methods, including the transgenic plants and including the plant varieties which can or can not be protected by plant breeders' rights.
  • Plant parts are to be understood as meaning all aboveground and underground parts and organs of the plants, such as shoot, leaf, flower and root, by way of example leaves, needles, stems, stems, flowers, fruiting bodies, fruits and seeds and roots, tubers and rhizomes.
  • the plant parts also include crops and vegetative and generative propagation material, such as cuttings, tubers, rhizomes, offshoots and seeds.
  • the treatment according to the invention of the plants and plant parts with the active ingredients is carried out directly or by acting on their environment, habitat or storage space according to the usual treatment methods, e.g. by dipping, spraying, evaporating, atomizing, spreading, brushing, injecting and in propagating material, in particular in seeds, further by single or multilayer coating.
  • all plants and their parts can be treated.
  • wild-type or plant species obtained by conventional biological breeding methods such as crossing or protoplast fusion, and plant cultivars and their parts are treated.
  • transgenic plants and plant cultivars obtained by genetic engineering if appropriate in combination with conventional methods (Genetically Modified Organisms), and parts thereof are treated.
  • the terms “parts” or “parts of plants” or “plant parts” have been explained above.
  • Plant varieties are understood to mean plants with new traits that have been bred either by conventional breeding, by mutagenesis or by recombinant DNA techniques. These can be varieties, biotypes and genotypes.
  • the treatment according to the invention may also give rise to superadditive ("synergistic") effects.
  • superadditive for example, reduced application rates and / or extensions of the spectrum of action and / or an increase in the effect of the substances and agents usable in the invention, better plant growth, increased tolerance to high or low temperatures, increased tolerance to drought or to water or soil salt content, increased flowering power facilitated harvest, acceleration of ripeness, higher crop yields, higher quality and / or higher nutritional value of the harvested products, higher shelf life and / or machinability of the harvested products, which exceed the actual expected effects.
  • the preferred plants or plant varieties to be treated according to the invention to be treated include all plants which, as a result of the genetic engineering modification, obtained genetic material which gives these plants particularly advantageous valuable properties ("traits").
  • traits are better plant growth, increased tolerance to high or low temperatures, increased tolerance to dryness or to bottoms salt, increased flowering, easier harvesting, acceleration of ripeness, higher crop yields, higher quality and / or higher nutritional value of the harvested products , higher shelf life and / or workability of the harvested products.
  • Further and particularly emphasized examples of such properties are an increased defense of the plants against animal and microbial pests, such as against insects, mites, phytopathogenic fungi, bacteria and / or viruses and an increased tolerance of the plants to certain herbicidal active compounds.
  • transgenic plants are the important crops, such as cereals (wheat, rice), corn, soybeans, potatoes, sugar beets, tomatoes, peas and other vegetables, cotton, tobacco, rapeseed, and fruit plants (with the fruits apples, pears, Citrus fruits and grapes), with special emphasis on maize, soya, potato, cotton, tobacco and oilseed rape.
  • Traits which are particularly emphasized are the increased defense of the plants against insects, arachnids, nematodes and snails by toxins formed in the plants, in particular those which are produced by the genetic material from Bacillus thuringiensis (for example by the genes CrylA (cf.
  • Bt plants are produced in the plants (hereinafter "Bt plants”. Traits also highlight the increased resistance of plants to fungi, bacteria and viruses by systemic acquired resistance (SAR), systemin, phytoalexins, elicitors and resistance genes and correspondingly expressed proteins and toxins. Traits that are also particularly emphasized are the increased tolerance of the plants to certain herbicidal active compounds, for example imidazolinones, sulfonylureas, glyphosate or phosphinotricin (eg "PAT" gene).
  • SAR systemic acquired resistance
  • PAT phosphinotricin
  • Traits may also occur in combinations with each other in the transgenic plants.
  • “Bt plants” maize varieties, cotton varieties, soybean varieties and potato locations are mentioned, under the trade names YIELD GARD ® (eg corn, cotton, soy), KnockOut ® (eg corn), StarLink ® (eg maize), Bollgard ® (cotton), NuCOTN ® (cotton) and NewLeaf ® (potato).
  • herbicide-tolerant plants are maize varieties, cotton varieties and soybean varieties may be mentioned, under the trade names Roundup Ready ® (tolerance to Gly phosate example maize, cotton, soya bean), Liberty Link ® (tolerance to phosphinotricin, for example oilseed rape), IMI ® (Tolerance to imidazolinone) and STS ® (tolerance to sulfonylureas eg corn).
  • Roundup Ready ® to Gly phosate example maize, cotton, soya bean
  • Liberty Link ® tolerance to phosphinotricin, for example oilseed rape
  • IMI ® Tolerance to imidazolinone
  • STS ® tolerance to sulfonylureas eg corn
  • Clearfield ® varieties eg corn
  • the listed plants can be treated particularly advantageously according to the invention with the compounds of the general formula (I) or the active substance mixtures according to the invention.
  • the preferred ranges given above for the active compounds or mixtures also apply to the treatment of these plants. Particularly emphasized is the plant treatment with the compounds or mixtures specifically mentioned in the present text.
  • Step A (Method I): 3- (4-fluorophenoxy) benzaldehyde (cf also DE-OS 2 615 435)
  • Step B 2- (3- (4-fluorophenoxy) p
  • step A 0.19 g (0.9 mmol) of 3- (4-fluorophenoxy) benzaldehyde (step A) were stirred in 5 ml of dry dichloromethane under an inert gas atmosphere (nitrogen). Thereafter, 0.34 ml (2.7 mmol) of trimethylsilyl cyanide and 0.013 ml (0.09 mmol) of triethylamine were added, and the reaction mixture was stirred at room temperature for 2 hours. Subsequently, the reaction mixture was dissolved in 2 ml of THF. After addition of 2 ml of 2N hydrochloric acid was stirred for a further two hours at room temperature. The THF was distilled off in vacuo and the remaining residue was diluted with water.
  • Step D (1R, 3R) -3- (2,2-Dibromoethenyl) -2,2-dimethylcyclopropanecarboxylic acid cyano [3- (4-fluorophenoxy) phenyl] methyl ester
  • the (1: 1) mixture of diastereomers can be separated by means of preparative HPLC (column Knauer, normal phase, dimension: 250 ⁇ 20 mm, filling: Eurosper 100-5 Si, detection of the wavelength at 254 nm).
  • the column was eluted with 8% ethyl acetate / hexane at a flow rate of 5 mL / min.
  • Example 2b The X-ray structure determination of a suitable single crystal of example 2b was carried out with a Bruker D8 diffractometer with APEX CCD detector and a 1.5 kW graphite monochromatic Mo radiation. Structure resolution was performed using X-SEED (Barbour, LJ "X-Seed - A Software tool for supramolecular crystallography" J. Supramol. Chem., 2001, 1, 189-191), a graphical interface to SHELX97 (G. Sheldrick, SHELX 97 Programs for Solving and Refining Crystal Structures, Institute of Inorganic Chemistry, University of Tammanstrasse 4, D-3400 Göttingen, Germany, 1997). The value of the absolute structure parameters (0.01 (1)) confirms the absolute configuration of Example 2b. Crystal data:
  • Example 12 a (1R, 3R) -3- (2-chloro-2-trifluoromethenyl) -2,2-dimethyl-cyclopropanecarboxylic acid (R) -cyan [3- (3-fluorophenoxy) phenyl] methyl ester
  • Step A 4-fluoro-3- (4- also DE-OS 2,739,854)
  • Example 20a (1R, 3R) -3- (2-chloro-2-trifluoromethenyl) -2,2-dimethyl-cyclopropanecarboxylic acid (R) -cyano [4-flu -3- (4-fluorophenoxy) phenyl] methyl ester
  • Example 22a (1R, 3R) -3- (2-chloro-2-trifluoromethenyl) -2,2-dimethyl-cyclopropanecarboxylic acid (R) -cyan [4-flu -3- (4-chlorophenoxy) phenyl] methyl ester
  • Step A 4-Fluoro-3- (4-fluorophenoxy) benzaldehyde (see also German Offenlegungsschrift 2,739,854) is obtained in accordance with Example 14, Step A (Method II).
  • Step B (Method III): 3- (4-Fluoroemethanol
  • Step A 0.59 g (2.53 mmol) of 3- (fluorophenoxy) benzaldehyde (Step A, Method II) were stirred in 10 ml of dry tetrahydrofuran under an inert gas atmosphere (nitrogen). Thereafter, with stirring, 7.6 ml (3.8 mmol) of lithium tetramethylsilyl-acetylene (as a 0.5 M solution in THF) was added at a temperature of -78 ° C and heated to 0 ° C within 3 hours. Subsequently, the reaction mixture was treated with a saturated ammonium chloride solution and extracted with ethyl acetate. The organic phase was dried over magnesium sulfate and concentrated in vacuo.
  • Example 26 was obtained.
  • reaction mixture is mixed with 50 ml of 1N hydrochloric acid and extracted three times with 30 ml of ethyl acetate.
  • the combined organic phases are dried over magnesium sulfate, filtered and concentrated in vacuo.
  • the remaining crude product was purified by flash chromatography (silica gel, eluent: 10% ethyl acetate: hexane). This gives 0.5 g (80% of theory) of pure 3 - [(4-fluorophenyl) methyl] benzaldehyde which can be reacted further in accordance with Example 1 (see stages B-D).
  • Example 28 (1R, 3R) -3- (2-Chloro-2-trifluoromethenyl) -2,2-dimethylcyclopropanecarboxylic acid cyano [4-fluoro-3- (4-fluorobenzyl) phenyl] methyl ester
  • Step A 4-Fluoro-3- (4-fluorophenylmethoxy) -benzaldehyde
  • Example 34 was obtained.
  • dimethylformamide emulsifier 1.5 parts by weight of dimethylformamide emulsifier: 0.5 part by weight of alkylaryl polyglycol ether
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier and the concentrate is diluted with emulsifier-containing water to the desired concentration.
  • Chinese cabbage leaf discs (Brassica pekinensis) are sprayed with a preparation of active compound of the desired concentration and, after drying, are populated with larvae of the horseradish leaf beetle (Phaedon cochleariae).
  • Emulsifier 0.5 part by weight of alkylaryl polyglycol ether To prepare a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted to the desired concentration with emulsifier-containing water. Corn-leaf disks (Zea mays) are sprayed with an active-substance preparation of the desired concentration and, after drying, are infested with caterpillars of the armyworm ⁇ Spodoptera frugiperda). After 7 days, the effect is determined in%. 100% means that all caterpillars have been killed; 0% means that no caterpillar has been killed.
  • Emulsifier 0.5 part by weight of alkylaryl polyglycol ether To prepare a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted to the desired concentration with emulsifier-containing water.
  • Chinese cabbage leaf discs (Brassica pekinensis) infested with all stages of the green peach aphid (Myzus persicae) are sprayed with an active compound preparation of the desired concentration. After 6 days, the effect is determined in%. 100% means that all aphids have been killed; 0% means that no aphids have been killed.
  • Emulsifier 0.5 part by weight of alkylaryl polyglycol ether To prepare a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted to the desired concentration with emulsifier-containing water. Bean leaf discs (Phaseolus vulgaris) infected by all stages of the common spider mite (Tetranychus urticae) are sprayed with an active compound preparation of the desired concentration. After 6 days, the effect is determined in%. 100% means that all spider mites have been killed; 0% means that no spider mites have been killed.
  • Example the following compounds of the preparation examples an effect of 90% at an application rate of 100g / ha: 9b, 10b, I Ia, 12a, 16, 19, 21b, 23, 28, 33, 30, 31.
  • the following compounds of the preparation examples have an effect of 100% at an application rate of 100 g / ha: Ib, 5, Ib, 12b, 13b, 14, 14b, 15b, 17, 18b, 20b, 22, 22b, 25, 26 , 27, 29, 34.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Die vorliegende Anmeldung betrifft neue Derivate der Cyclopropancarbonsäureeester, Verfahren zu deren Herstellung und Verwendung zur Bekämpfung von tierischen Schädlingen, vor allem von Arthropoden und insbesondere von Insekten, Spinnentieren und Nematoden.

Description

Neue Cyclopropansäureeesterderivate als Schädlingsbekämpfungsmittel
Die vorliegende Anmeldung betrifft neue Derivate der Cyclopropancarbonsäureeester, Verfahren zu deren Herstellung und Verwendung zur Bekämpfung von tierischen Schädlingen, vor allem von Arthropoden und insbesondere von Insekten, Spinnentieren und Nematoden.
Die Cyclopropancarbonsäureester der Formeln (1) und (2)
Figure imgf000002_0001
X = F, Cl
(1)
Figure imgf000002_0002
sind bereits als insektizid wirksame Verbindungen bekannt geworden (DE-A 2 54 75 34, DE-A 2 61 54 35 und DE 2 621 433 sowie JP-A 571 12354, JP-A 55073649). In den genannten Dokumenten werden die Verbindungen (1) und (2) als racemisches Gemisch offenbart.
In der DE-A 2 54 75 34 wird ebenfalls die Verbindung der Formel (3) beschrieben:
Figure imgf000002_0003
Weiterhin sind die Verbindungen der Formel (4) aus der EP-A 091 208 bekannt, in welcher die Insektizide Aktivität der Verbindung beschrieben wird:
Figure imgf000002_0004
X = F, Cl, Br (4)
Für die Verbindungen der Formel (4) mit F- oder Br-substituierten Phenylring ist aus der EP-A 0921 208 jeweils das racemische Gemisch bekannt, für die Cl-substituierte Variante ist das (S)-Enantiomer beschrieben worden. Verbindungen der Formel (5)
Figure imgf000003_0001
(5)
Sind aus der WO-A 88/06151 bekannt, in welcher die Herstellung der Verbindung (5) beschrieben wird.
Moderne Planzenschutzmittel müssen vielen Anforderungen genügen, beispielsweise in Bezug auf Höhe, Dauer und Breite ihrer Wirkung und möglichen Verwendung. Es spielen Fragen der Toxizität, der Kom- binierbarkeit mit anderen Wirkstoffen oder Formulierhilfsmitteln eine Rolle sowie die Frage des Aufwands, der für die Synthese eines Wirkstoffs betrieben werden muss. Ferner können Resistenzen auftreten. Aus all diesen Gründen kann die Suche nach neuen Pflanzenschutzmitteln nicht als abgeschlossen betrachtet werden und es besteht ständig Bedarf an neuen Verbindungen mit gegenüber den bekannten Verbindungen zumindest in Bezug auf einzelne Aspekte verbesserten Eigenschaften.
Aufgabe der vorliegenden Erfindung war es, Verbindungen bereitzustellen, durch die das Spektrum der Schädlingsbekämpfungsmittel unter verschiedenen Aspekten verbreitert wird.
Gelöst wird die Aufgabe, sowie weitere nicht explizit genannte Aufgaben, die aus den hierin diskutierten Zusammenhängen ableitbar oder erschließbar sind, durch neue Verbindungen der Formel (I),
Figure imgf000003_0002
worin
Ri für Cyano, Alkenyl oder Alkinyl steht, Q für einen Rest der Formel (L I)
Figure imgf000003_0003
steht, in welcher
M für Sauerstoff, Schwefel, Methylen oder Oxymethylen steht,
R2 für gegebenenfalls substituiertes Hetaryl, bevorzugt für Pyridin-2-yl oder Pyridin-3-yl, oder für einen der Reste aus der Reihe
Figure imgf000004_0001
steht, worin der Pfeil die Bindung zum benachbarten Ring markiert, im Fall von R2 gleich (A) für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Alkenyl, Halo- genalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Halogenalkoxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfmyl, Halogenalkylsulfinyl, Alkylsulfonyl, Halogenalkylsul- fonyl, Iod, Nitro, Cyano, Amino, Alkylamino, Dialkylamino steht und im Fall R2 gleich (B) oder (C) für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Alkenyl, Halogenalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Halogenalkoxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfmyl, Halogenalkylsulfinyl, Alkylsulfonyl, Halo- genalkylsulfonyl, Chlor, Brom, Iod, Nitro, Cyano, Amino, Alkylamino, Dialkylamino steht und
Χι', X" im Fall von R2 gleich (D), (E), (F), (G), (H), (J), (K), (L), (Μ'), (N), (O), (P), (R) und (S) unabhängig voneinander für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Alkenyl, Halogenalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Halogenalkoxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfmyl, Halogenalkylsulfinyl, Alkylsulfonyl, Halogenalkylsul- fonyl, Halogen, Nitro, Cyano, Amino, Alkylamino, Dialkylamino, stehen und Yi und Y2 unabhängig voneinander für Halogen oder Halogenalkyl stehen, bevorzugt ist Halogen ausgewählt aus der Reihe Brom oder Chlor, bevorzugt steht Halogenalkyl für Trifluormethyl.
Ebenfalls Gegenstand der vorliegenden Erfindung sind Verbindungen der allgemeinen Formel (II),
Figure imgf000005_0001
worin
Ri für Cyano, Alkenyl oder Alkinyl steht, Q' für einen Rest der Formel (II.1)
Figure imgf000005_0002
steht, in welcher
M für Sauerstoff, Schwefel, Methylen oder Oxymethylen steht, Z für Halogen und n für 1, 2 oder 3 steht,
R2 für gegebenenfalls substituiertes Hetaryl, bevorzugt für Pyridin-2-yl, Pyridin-3-yl, Pyrimid-2-yl, 4- Chlor-pyrimid-2-yl, Chinolin-2-yl oder für einen der Reste aus der Reihe
Figure imgf000006_0001
, worin der Pfeil die Bindung zum benachbarten Ring markiert, im Fall von R2 gleich (A) für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Alkenyl, Halo- genalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Halogenalkoxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfmyl, Halogenalkylsulfinyl, Alkylsulfonyl, Halogenalkylsul- fonyl, Fluor, Brom, Iod, Nitro, Cyano, Amino, Alkylamino, Dialkylamino steht und im Fall R2 gleich (B) oder (C) für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Alkenyl, Halogenalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Halogenalkoxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfmyl, Halogenalkylsulfinyl, Alkylsulfonyl, Halo- genalkylsulfonyl, Halogen, Nitro, Cyano, Amino, Alkylamino, Dialkylamino steht und
Χ2', X2" im Fall von R2 gleich (D), (E), (F), (G), (H), (J), (K), (L), (Μ'), (N), (O), (P), (R) und (S) unabhängig voneinander für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Alkenyl, Halogenalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Halogenalkoxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfmyl, Halogenalkylsulfinyl, Alkylsulfonyl, Halogenalkylsul- fonyl, Halogen, Nitro, Cyano, Amino, Alkylamino, Dialkylamino, stehen und Yi und Y2 unabhängig voneinander für Halogen oder Halogenalkyl stehen, bevorzugt ist Halogen ausgewählt aus der Reihe Brom oder Chlor, bevorzugt steht Halogenalkyl für Trifluormethyl.
Die Verbindungen der Formel (I) können, auch in Abhängigkeit von der Art der Substituenten, als optische Isomere oder Isomerengemische, in unterschiedlicher Zusammensetzung vorliegen, die gegebenen- falls in üblicher Art und Weise getrennt werden können.
Mögliche Konfiguration der Verbindungen der Formel (I) werden durch die nachfolgend dargestellten Formeln (I-a) bis (I-d) beschrieben:
Figure imgf000007_0001
(I-c) (I-d) in welcher die Reste Yi, Y2, Ri und Q die vorgenannte Bedeutungen haben.
Die Verbindungen der Formeln (I-a), (I-b), (I-c) bzw. (I-d) können sowohl als Gemische als auch in Form ihrer reinen Isomeren vorliegen. Gemische der Verbindungen der Formeln (I-a), (I-b), (I-c) bzw. (I-d) lassen sich gegebenenfalls durch physikalische Methoden trennen, beispielsweise durch chromato- graphische Methoden.
Desweiteren können die Verbindungen der Formel (I) in Abhängigkeit von der Stellung des Substituenten Ri in den zwei isomeren Formen der Formeln (I-A) bzw. (I-B) vorliegen:
(I-A) (I-B)
Figure imgf000008_0001
Mögliche Konfiguration der Verbindungen der Formel (II) werden durch die nachfolgend dargestellten Formeln (Il-a) bis (II-d) beschrieben:
Figure imgf000008_0002
(Il-a) (Il-b)
Figure imgf000008_0003
(II-c) (II-d)
in welcher die Reste Yi, Y2, Ri und Q' die vorgenannte Bedeutungen haben.
Die Verbindungen der Formeln (Il-a), (ΙΙ-b), (II-c) bzw. (II-d) können sowohl als Gemische als auch in Form ihrer reinen Isomeren vorliegen. Gemische der Verbindungen der Formeln (Il-a), (II-b), (II-c) bzw. (II-d) lassen sich gegebenenfalls durch physikalische Methoden trennen, beispielsweise durch chromatographische Methoden. Desweiteren können die Verbindungen der Formel (II) in Abhängigkeit von der Stellung des Substituen- ten Ri in den zwei isomeren Formen der Formeln (Π-Α) bzw. (II-B) vorliegen:
(II-A) (II-B)
Figure imgf000009_0001
Aus Gründen der besseren Übersichtlichkeit wird im folgenden jeweils nur die Strukturformel (I) oder (II) ohne die oben beschriebene Stereochemie dargestellt. Das schließt jedoch ein, dass die betreffende Verbindung gegebenenfalls als Isomerengemisch (I-a), (I-b), (I-c) bzw. (I-d) oder (Il-a), (ΙΙ-b), (II-c) bzw. (ΙΙ-d) oder in der jeweils anderen isomeren Form vorliegen kann.
Weiterhin wurde gefunden, dass die neuen Verbindungen der Formel (I) oder (II) erhalten werden können, wenn Verbindungen der allgemeinen Formel (III)
Figure imgf000009_0002
in welcher
Yi und Y2 die weiter obene angegebene Bedeutung haben, und
LG für eine gegebenenfalls in-situ erzeugte nucleofuge Abgangsgruppe („Leaving Group"), steht, mit Verbindungen der allgemeinen Formel (IV) oder (V)
(IV) (V)
in welcher
Ri, R2, M, Z und n die weiter oben angegebene Bedeutung haben, gegebenenfalls in Gegenwart eines geeigneten Säurebindemittels und gegebenenfalls in Gegenwart eines geeigneten Verdünnungsmittels umgesetzt werden. Schließlich wurde gefunden, das die neuen Verbindungen der Formel (I) oder (II) stark ausgeprägte biologische Eigenschaften besitzen und vor allem zur Bekämpfung von tierischen Schädlingen, insbesondere von Insekten, Spinnentieren und Nematoden, die in der Landwirtschaft, in den Forsten, im Vorrats- und Materialschutz sowie auf dem Hygienesektor vorkommen, geeignet sind.
Die erfindungsgemäßen Verbindungen sind durch die Formel (I) oder (II) allgemein definiert.
Bevorzugte Substituenten bzw. Bereiche der in den oben und nachstehend erwähnten Formeln aufgeführten Reste werden im Folgenden erläutert.
In einer bevorzugten Ausführungsform haben die Verbindungen der Formel (I) die allgemeine Formel
(1.2)
Figure imgf000010_0001
in welcher
für einen d
Figure imgf000011_0001
steht, worin der Pfeil die Bindung zum benachbarten Ring markiert,
Xi im Fall von R2 gleich (A) für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Alkenyl, Halo- genalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Halogenalkoxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfinyl, Halogenalkylsulfinyl, Alkylsulfonyl, Halogenalkylsul- fonyl, Iod, Nitro, Cyano, Amino, Alkylamino, Dialkylamino steht und
Xi im Fall R2 gleich (B) oder (C) für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Alkenyl, Halogenalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Halogenalkoxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfinyl, Halogenalkylsulfinyl, Alkylsulfonyl, Halo- genalkylsulfonyl, Chlor, Brom, Iod, Nitro, Cyano, Amino, Alkylamino, Dialkylamino steht und
Xi, Xf, X" im Fall von R2 gleich (D), (E), (F), (G), (H), (J), (K), (L), (Μ'), (N), (O), (P), (R) und (S) unabhängig voneinander für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Alkenyl, Halogenalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Halogenalkoxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfinyl, Halogenalkylsulfinyl, Alkylsulfonyl, Halogenalkylsul- fonyl, Halogen, Nitro, Cyano, Amino, Alkylamino, Dialkylamino, stehen und
Yi und Y2 für Brom, Chlor oder für Trifluormethyl steht.
In einer bevorzugten Ausführungsform haben die Verbindung die allgemeine Formel (Π.2)
Figure imgf000012_0001
Figure imgf000012_0002
stellt, worin der Pfeil die Bindung zum benachbarten Ring markiert, im Fall von R2 gleich (A) für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Alkenyl, Halogenalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Halogenalkoxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfmyl, Halogenalkylsulfinyl, Alkylsulfonyl, Halogenalkylsul- fonyl, Fluor, Brom, Iod, Nitro, Cyano, Amino, Alkylamino, Dialkylamino steht und im Fall R2 gleich (B) oder (C) für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Alkenyl, Halogenalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Halogenalkoxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfmyl, Halogenalkylsulfinyl, Alkylsulfonyl, Halo- genalkylsulfonyl, Halogen, Nitro, Cyano, Amino, Alkylamino, Dialkylamino steht und X2, X2\ X2" im Fall von R2 gleich (D), (E), (F), (G), (H), (J), (K), (L), (Μ'), (N), (O), (P), (R) und (S) unabhängig voneinander für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Alkenyl, Halo- genalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Halogenalkoxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfmyl, Halogenalkylsulfinyl, Alkylsulfonyl, Halogenalkylsul- fonyl, Halogen, Nitro, Cyano, Amino, Alkylamino, Dialkylamino, stehen,
Z für Fluor steht, n für 1 oder 2 steht und
Yi und Y2 für Brom, Chlor oder für Trifluormethyl steht.
In einer besonders bevorzugten Ausführungsform haben die Verbindungen die allgemeine Formel (1.3) oder (1.4):
Figure imgf000013_0001
(1.3) (1.4)
in welcher
P2 für einen d
Figure imgf000014_0001
steht, worin der Pfeil die Bindung zum benachbarten Ring markiert,
Xi im F al l von R2 gleich (A) für Ci-C4-Alkyl, Ci-C4-Halogenalkyl, Ci-C4-Alkoxy, C1-C4- Halogenalkoxy, Ci-C4-Halogenalkylthio, Ci-C4-Halogenalkylsulfinyl, Ci-C4-Halogenalkylsulfonyl,
Iod und Cyano steht und
Xi im Fall R2 gleich (B) oder (C) für Ci-C4-Alkyl, Ci-C4-Halogenalkyl, Ci-C4-Alkoxy, C1-C4- Halogenalkoxy, Ci-C4-Halogenalkylthio, Ci-C4-Halogenalkylsulfinyl, Ci-C4-Halogenalkylsulfonyl, Chlor, Brom, Iod, und Cyano steht und Xi, Xi', Xi" im Fall von R2 gleich (D), (E), (F), (G), (H), (J), (K), (L), (Μ'), (N), (O), (P), (R) und (S) unabhängig voneinander für Ci-C4-Alkyl, Ci-C4-Halogenalkyl, Ci-C4-Alkoxy, C1-C4- Halogenalkoxy, Ci-C4-Halogenalkylthio, Ci-C4-Halogenalkylsulfinyl, Ci-C4-Halogenalkylsulfonyl, Fluor, Chlor, Brom, Iod und Cyano stehen. In einer besonders bevorzugten Ausführungsform haben die Verbindungen die allgemeine Formel (Π.3) oder (II.4):
Figure imgf000015_0001
(II.3)
in welchen
Z für Wasserstoff oder Fluor steht, n für 1 steht,
R2 für einen der Reste aus der Reihe
Figure imgf000015_0002
Halogenalkoxy, Ci-C4-Halogenalkylthio, Ci-C4-Halogenalkylsulfmyl, Ci-C4-Halogenalkylsulfonyl, Fluor, Brom, lod, oder Cyano steht, bevorzugt für Fluor, Trifluormethyl oder Trifluormethoxy steht und X2 im Fall R2 gleich (B) oder (C) für Ci-C4-Alkyl, Ci-C4-Halogenalkyl, Ci-C4-Alkoxy, C1-C4- Halogenalkoxy, Ci-C4-Halogenalkylthio, Ci-C4-Halogenalkylsulfinyl, Ci-C4-Halogenalkylsulfonyl, Fluor, Chlor, Brom, Iod oder Cyano steht, bevorzugt für Trifluormethyl, Trifluormethoxy, Fluor oder Chlor steht und
X2, X2', X2" im Fall von R2 gleich (D), (E), (F), (G), (H), (J), (K), (L), (Μ'), (N), (O) und (P) unabhängig voneinander für Ci-C4-Alkyl, Ci-C4-Halogenalkyl, Ci-C4-Alkoxy, Ci-C4-Halogenalkoxy, C1-C4- Halogenalkylthio, Ci-C4-Halogenalkylsulfinyl, Ci-C4-Halogenalkylsulfonyl, Fluor, Chlor, Brom, Iod oder Cyano stehen, bevorzugt für Trifluormethyl, Trifluormethoxy, Fluor oder Chlor stehen, besonders bevorzugt für Fluor und Chlor stehen.
In einer bevorzugten Aus Formel (Π.5),
Figure imgf000016_0001
worin
Ri für Cyano, Alkenyl oder Akinyl, bevorzugt für Cyano steht, Z für Fluor, Clor, Brom oder Iod, bevorzugt für Fluor steht,
R2 für gegebenenfalls substituiertes Hetaryl, bevorzugt für Pyridin-2-yl oder Pyridin-3-yl, oder für einen der Reste aus der Reihe
Figure imgf000017_0001
steht, worin der Pfeil die Bindung zum benachbarten Ring markiert,
X2 im Fall von R2 gleich (A) für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Alkenyl, Halogenalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Halogenalkoxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfmyl, Halogenalkylsulfinyl, Alkylsulfonyl, Halogenalkylsul- fonyl, Fluor, Brom, Iod, Nitro, Cyano, Amino, Alkylamino, Dialkylamino steht und
X2 im Fall R2 gleich (B) oder (C) für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Alkenyl, Halogenalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Halogenalkoxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfmyl, Halogenalkylsulfinyl, Alkylsulfonyl, Halo- genalkylsulfonyl, Halogen, Nitro, Cyano, Amino, Alkylamino, Dialkylamino steht und
X2, Χ2', X2" im Fall von R2 gleich (D), (E), (F), (G), (H), (J), (K), (L), (Μ'), (N), (O) und (P) unabhängig voneinander für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Alkenyl, Halogenalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Halogenalkoxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfmyl, Halogenalkylsulfinyl, Alkylsulfonyl, Halogenalkylsulfonyl, Halogen, Nitro, Cyano, Amino, Alkylamino, Dialkylamino, stehen und
Yi und Y2 unabhängig voneinander für Halogen oder Halogenalkyl stehen, bevorzugt ist Halogen ausgewählt aus der Reihe Brom oder Chlor, bevorzugt steht Halogenalkyl für Trifluormethyl.
Ebenfalls Gegenstand der vorliegenden Erfindung sind die folgenden enantiomeren-reine Verbindungen der allgemeinen Formel (VI) und (VII):
Figure imgf000018_0001
(VI) (VII)
in welchen
R2 für einen der Reste (A) oder (C)
Figure imgf000018_0002
steht, worin der Pfeil die Bindung zum benachbarten Ring markiert und im Fall von R2 gleich (A), Xi für Cl oder F steht und die Reste Yi und Y2 für Br stehen oder Yi für CF3 und Y2 für Cl steht und im Fall von R2 gleich (C), Xi für F steht und die Reste Yi und Y2 für Br stehen oder Yi für CF3 und Y2 für Cl steht.
Bevorzugte Verbindungen der allgemienen Formeln (VI) und (VII) sind die im Folgenden dargestellten Verbindungen:
Figure imgf000018_0003
Figure imgf000019_0001
Weitere ganz besonders bevorzugte Substituenten der in den Verbindungen der Formel (I) aufgeführten Reste werden in Tabelle 1 erläutert.
Tabelle 1 : Ganz besonders bevorzugte Verbindungen der Formel (I)
Figure imgf000020_0001
Weitere ganz besonders bevorzugte Substituenten der in den Verbindungen der Formel (II) aufgeführten Reste werden in Tabelle 2 erläutert. Tabelle 2: Ganz besonders bevorzugte Verbindungen der Formel (II)
Figure imgf000021_0001
Erfindungsgemäß besonders bevorzugt werden Verbindungen der Formel (I), in welchen eine Kombination der vorstehend als besonders bevorzugt aufgeführten Bedeutungen vorliegt.
Erfindungsgemäß ganz besonders bevorzugt werden Verbindungen der Formel (II), in welchen eine Kombination der vorstehend als ganz besonders bevorzugt aufgeführten Bedeutungen vorliegt.
Die erfindungsgemäßen Verbindungen der Formel (I) oder (II) können nach üblichen, dem Fachmann bekannten Methoden hergestellt werden.
Wenn Yi, Y2, Zn, Ri und R2 die weiter oben angegebenen Bedeutungen haben und M für Sauerstoff (M = -0-) steht sowie n für 0, 1 oder 2, dann können die erfindungsgemäßen Verbindungen der Formel (Ia) oder (IIa) nach den in dem Reaktionsschema I dargestellten Reaktionsstufen A bis D hergestellt werden. eaktionsschema I
Figure imgf000022_0001
Figure imgf000022_0002
Wird bei dem erfindungsgemäßen Verfahren zur Herstellung der neuen Verbindungen der Formel (Ia) als Verbindung der Formel (IVa-1 ; n = 0) beispielsweise 2-(3-(4-Fluorphenoxy)phenyl)-2-hydroxy- acetonitril eingesetzt und als Verbindung der Formel (III) das (lR,3R)-3-(2,2-Dibromethyl)-2,2-dimethyl- cyclopropancarbonsäurechlorid eingesetzt, so lässt sich das Herstellungsverfahren (Stufe D) durch das Reaktionsschema II wiedergeben:
Reaktionsschema II
Figure imgf000022_0003
Die Bestimmung der absoluten Konfiguratiuon kann mittels Röntgenstrukturanalyse erfolgen. Beispielhaft ist die Bestimmung der absoluten Konfiguration des (lR,3R)-3-(2,2-Dibromethenyl)-2,2- dimethyl-cyclopropancarbonsäure-(S)-cyan[3-(3-fluorphenoxy)phenyl]methylester mittels anomaler Dispersion beschrieben (vgl. Hestellungsbeispiele, Beispiel 2b).
Die zur Herstellung des erfindungsgemäßen Verfahrens (Stufe D) als Ausgangsstoffe benötigten Verbin- düngen sind durch die Formeln (III), (IV) und (V) allgemein definiert.
In diesen Formeln (III), (IV) und (V) stehen Yi, Y2, Zn, Ri und R2 bevorzugt für diejenigen Reste, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der allgemeinen Formel (I) als bevorzugte Substituenten genannt werden.
Die Verbindungen der Formel (III) können z. T. kommerziell oder nach literaturbekannten Methoden gemäss dem Reaktionsschema I (Stufe C) aus den entsprechenden 2,2-Dimethyl- cyclopropancarbonsäuren (A-l) erhalten werden (vgl. auch Herstellungsbeispiel 1, Stufe C).
Bekannt sind beispielsweise die Cyclopropancarbonsäuren (A-l): für Υ',Υ2 = Br, 3-(2,2-Dibromethenyl)- 2,2-dimethyl-cyclopropancarbonsäure (DE-OS 2544150), (lR,3R)-3-(2,2-Dibrom-ethenyl)-2,2-dimethyl- cyclopropancarbonsäure (M. Elliott et al, Pestic. Sei. 1975, 6, 537-542), (lR,3S)-3-(2,2-Dibromethenyl)- 2,2-dimethyl-cyclopropancarbonsäure (GB-Pat. 1,446,304), (lS,3S)-3-(2,2-Dibromethenyl)-2,2-dimethyl- cyclopropancarbonsäure (DE-OS 2544150), für Y1 = CF3; Y2 = Cl, 3-(2-chlor-3,3,3-trifluor-l-propen-l- yl)-2,2-dimethyl-cyclopropancarbonsäure (GB-Pat. 2085000), (lR,3R)-3-[(lZ)-2-chlor-3,3,3-trifluor-l- propen-l-yl]-2,2-dimethyl-cyclopropan-carbonsäure, ira«i'-3-(2-chlor-3,3,3-trifluor-l-propen-l-yl)-2,2- dimethyl-cyclopropan-carbonsäure and ( 1 S,3S)-3 -(2-Chlor-3 ,3 ,3 -trifluor- 1 -propen- 1 -yl)-2,2-dimethyl- cyclopropan-carbonsäure, (DE-OS 2802962).
In der Formeln (III) und steht LG für für eine gegebenenfalls in-situ erzeugte nucleofuge Abgangsgruppe („Leaving Group").
Beispiele für Verbindungen der Formel (III) mit einer nucleofuge Abgangsgruppe LG sind bekannt; beispielsweise die Cyclopropancarbonsäurehalogenide (II): mit LG = Cl und Yi, Y2 = Br, 3-(2,2- Dibromethenyl)-2,2-dimethyl-cyclopropansäurechlorid (DE-OS 2544150), (lR,3R)-3-(2,2- Dibromethenyl)-2,2-dimethyl-cyclopropansäurechlorid (US 4,342,770); mit LG = Br und Yi, Y2 = Br, (lR-cw)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropansäurebromid (FR 2407200); mit LG = F und Yi, Y2 = Br, (lR-di')-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropan-säurefluorid (FR 2407200); mit LG = Cl und Yi = CF3; Y2 = Cl, 3-(2-Chlor-3,3,3-trifluor-l-propen-l -yl)-2,2-dimethyl- cyclopropancarbonsäurechlorid (S.-J. Xue et al. Yingyong Huaxue 2004, 21, 319-321 ; ref. CAS 1 3 1 : 1 9 0 5 1 6 , 2 0 0 4 ) , ( lR,3R)-3-[(lZ)-2-Chlor-3,3,3-trifluor-l-propen-l -yl]-2,2-dimethyl- cyclopropancarbonsäurechlorid (WO 2003/053905). Die Verbindungen der Formel (IV, n = 0) und (V) sind teilweise vorbekannt bzw. können nach literaturbekannten Methoden gemäss dem Reaktionsschema I (vgl. Herstellungsbeispiel 1, Stufen A und B) erhalten werden.
Beispielsweise werden die Verbindungen der Formel (Va-1) aus gegebenenfalls Z-substituierten 3- Aryl(hetaryl)oxy-benzaldehyden (A-4), die nach Stufe A / Methode I oder Stufe A / Methode II zugänglich sind, und den Verbindungen der Formel (A-7a) mittels geeigneter Carbonylreaktion erhalten (vgl. Reaktionsschema I, Stufe B).
Wenn beispielsweise in den Verbindungen der der Rest Ri für Cyan steht, handelt es sich um entsprechende substituierte 2-Hydroxy-acetonitrile (Cyanhydrine) (IVa-1) oder (Va-1), die nach bekannten Her- Stellungsmethoden erhalten werden können. Dabei kann die Cyanhydrinbildung in Gegenwart von Alka- limetallcyaniden (z. B. Natriumcyanid; vgl. K. Ozawa et al, Nippon Noyaku Gakkaishi 1986, 1 1 , 169- 174) oder Trimethylsilylcyamd (TMS-CN; vgl. L. H. McKendry, J. Labelled Comp. Radiopharm. 1984, 21, 401-408; US 4,221,799; vgl. Herstellungsbeispiel 1, Stufe B) erfolgen.
Bekannt sind beispielsweise: 3-(4-Bromphenoxy)-a-hydroxy-benzenacetonitril und 3-(3-Fluorphenoxy)- α-hydroxy-benzenacetonitril (DE-OS 2 621 433), 4-Fluor-3-(4-fluorphenoxy)-a-hydroxy- benzenacetonitril und 4-Fluor-3-(3-fluorphenoxy)-a-hydroxy-benzenacetonitril (DE-OS 2 739 854) oder 3-(4-Chlorphenoxy)-a-hydroxy-benzenacetonitril (EP-A 91208).
Wenn darüber hinaus beispielsweise in den Verbindungen der Formeln (IV) oder (V) der Rest R1 für Ethinyl steht, handelt es sich um entsprechende substituierte 2-Ethinyl-methanole (IVa-2) oder (Va-2), die nach bekannten Herstellungsmethoden aus gegebenenfalls Z-substituierten 3-Aryl(hetaryl)oxy- benzaldehyden (A-4) und den Verbindungen der Formel (A-7b) mittels geeigneter Carbonylreaktion (vgl. gemäss Reaktionsschema III, Stufe B / Methode III) erhalten werden können.
Figure imgf000025_0001
STUFE B TMS-R, (A-7b)
(Methode III)
Li
Figure imgf000025_0002
wenn n = 0
Dabei kann die Bildung des 2-Ethinyl-methanols (IVa-2) oder (Va-2) in Gegenwart von Alkalimetall (Trimethylsilyl)acetyliden (z. B. Lithium (trimethylsilyl)acetylid, US-A 2010227841 ; vgl. Methode III im Herstellungsbeispiel 25, Stufe B) erfolgen.
Bekannt sind beispielsweise: a-Ethynyl-3-(4-fluorphenoxy)-benzenmethanol (DE-OS 2 621 433) oder a- Ethynyl-4-fluor-3-phenoxy)-benzenmethanol (WO 9408931).
Die gegebenenfalls Z-substituierten 3-Aryl(hetaryl)oxy-benzaldehyden (A-4) sind entweder aus gegebenenfalls Z-substituierten 3-Formyl-phenylboronsäurederivaten der Formel (A-2) und (hete- ro)aromatischen Hydroxyverbindungen der Formel (A-3) (vgl. Stufe A, Methode I) oder aus gegebenenfalls Z-substituierten 3-Hydroxybenzaldehyden der Formel (A-5) und Boronsäurederivaten der Formel (A-6) (vgl. Stufe A, Methode II) darstellbar.
Die gegebenenfalls Z-substituierten 3-Formyl-phenylboronsäurederivaten der Formel (A-2) sind literaturbekannt oder gemäss literaturbekannter Methoden zugänglich. Bekannt sind beispielsweise: 4-Ethoxy-3- formylphenyl-boronsäure (WO 2008/057497) oder 4-Fluor-3-formylphenyl-boronsäure (WO 2003/097576).
Die (hetero)aromatischen Hydroxyverbindungen der Formel (A-3) sind literaturbekannt oder gemäss literaturbekannter Methoden zugänglich (z. B. Herstellung von Phenolen: vgl. Houben-Weyl, Methoden der Organischen Chemie, Band VI/lc).
Darüber hinaus sind die gegebenenfalls Z-substituierten 3-Hydroxybenzaldehyde der Formel (A-5) literaturbekannt oder gemäss literaturbekannter Methoden zugänglich (z. B. Herstellung von Aldehyden: vg. Houben-Weyl, Methoden der Organischen Chemie, Band VII/ 1, 2. Auflage, S. 413). Desweiteren sind die Boronsäurederivate der Formel (A-6) literaturbekannt oder gemäss literaturbekannter Methoden zugänglich (vgl. Kupplungsreaktionen mit Boronsäurederivaten: Chem. Rev. 1995, 95, 2457-2483; Tetrahedron 2002, 58, 9633-9695; Metal-Catalyzed Cross-Coupling Reactions (Eds.: A. de Meijere, F. Diederich), 2nd ed., Wiley-VCH, Weinheim, 2004).
Wenn Yi, Y2, Zn, Ri und R2 die weiter oben angegebenen Bedeutungen haben und M für eine Methylengruppe (M = -CH2-) und n für 0, 1, 2 oder 3 steht, dann können die erfindungsgemäßen Verbindungen der Formel (Ib) nach den in dem Reaktionsschema IV dargestellten Reaktionsstufen A bis D hergestellt werden.
Reaktionsschema IV
Figure imgf000026_0001
(lb)/(llb)
Die zur Herstellung des erfindungsgemäßen Verfahrens (Stufe D) als Ausgangsstoffe benötigten Verbindungen sind durch die Formeln (III), (IV) und (V) allgemein definiert.
In diesen Formeln (III), (IV) und (V) stehen Yi, Y2, Zn, Ri und R2 bevorzugt für diejenigen Reste, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der allgemeinen Formel (I) als bevorzugte Substituenten genannt werden. Die Verbindungen der Formeln (IVb-1) und (Vb-1) sind teilweise vorbekannt bzw. können nach literaturbekannten Methoden gemäss dem Reaktionsschema IV (vgl. Herstellungsbeispiel 27, Methode IV, Stufe A) erhalten werden.
Beispielsweise werden die Verbindungen der Formel (Vb-1) aus gegebenenfalls Z-substituierten 3- Aryl(hetaryl)methyl-benzaldehyden (A-9), die nach Stufe A / Methode IV zugänglich sind, und den Verbindungen der Formel (A-7a) mittels geeigneter Carbonylreaktion erhalten (vgl. Reaktionsschema IV, Stufe B).
Wenn beispielsweise in den Verbindungen der der Rest R1 für Cyan steht, handelt es sich um entsprechende substituierte 3-[Hetaryl(aryl)methyl]-a-hydroxy-benzenacetonitrile (Cyanhydrine) (IVb-1 ) oder (Vb-1), die nach bekannten Herstellungsmethoden erhalten werden können. Dabei kann die Cyanhydrin- bildung in Gegenwart von Alkalimetallcyaniden (z. B. Natriumcyanid; vgl. K. Ozawa et al, Nippon No- yaku Gakkaishi 1986, 1 1, 169-174) oder Trimethylsilylcyanid (TMS-CN; vgl. L. H. McKendry, J. Labelled Comp. Ratiopharm. 1984, 21, 401-408; US-Pat. 4,221,799; vgl. Herstellungsbeispiel 1 , Stufe B) erfolgen. Bekannt sind beispielsweise: 3-[(4-Fluorphenyl)methyl]-a-hydroxy-benzenacetonitril (EP-A 18 315) oder das 4-Fluor-a-hydroxy-3-(phenylmethyl)-benzenacetonitril (EP-A 227 415, EP-A 253 536).
Die (hetero)aromatischen Hydroxyverbindungen der Formel (A-2) sind literaturbekannt oder gemäss den weiter oben beschriebenen, literaturbekannter Methoden zugänglich.
Darüber hinaus sind die gegebenenfalls Z-substituierten Halogenmethylverbindungen der Formel (A-8), worin Halogen für Chlor, Brom oder Iod stehen kann, kommerziell erhältlich oder gemäss literaturbekannter Methoden zugänglich (z. B. Brommethylierung: vgl. Houben-Weyl, Methoden der Organischen Chemie, Band V/4, S. 784; Chlormethylierung von nicht-aktivierten Arenen: vgl. H. Suzuki Bull. Chem. Soc. Japan 1910, 43, 3299).
Wenn Yi, Y2, Zn, Ri und R2 die weiter oben angegebenen Bedeutungen haben und M für eine Oxymethy- lengruppe (M = -O-CH2-) und n für 0, 1, 2 oder 3 steht, dann können die erfindungsgemäßen Verbindungen der Formel (Ic) nach den in dem Reaktionsschema V dargestellten Reaktionsstufen A bis D hergestellt werden.
Figure imgf000028_0001
(lc)/(llc)
Die zur Herstellung des erfindungsgemäßen Verfahrens (Stufe D) als Ausgangsstoffe benötigten Verbindungen sind durch die Formeln (II) und (III) allgemein definiert.
In diesen Formeln (III), (IV) und (V) stehen Yi, Y2, Zn, Ri und R2 bevorzugt für diejenigen Reste, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der allgemeinen Formel (I) als bevorzugte Substituenten genannt werden.
Die Verbindungen der Formel (Vc-1) sind teilweise vorbekannt bzw. können nach literaturbekannten Methoden gemäss dem Reaktionsschema V (vgl. Herstellungsbeispiel 33, Methode V, Stufe A) erhalten werden.
Beispielsweise werden die Verbindungen der Formel (Vc-1) aus gegebenenfalls Z-substituierten 3- Hadroxy-benzaldehyden (A-5), die nach Stufe A / Methode V zugänglich sind, und den Verbindungen der Formel (A-7a) mittels geeigneter Carbonylreaktion erhalten (vgl. Reaktionsschema V, Stufe B).
Wenn beispielsweise in den Verbindungen der der Rest R1 für Cyan steht, handelt es sich um entsprechende substituierte a-Hydroxy-3-(phenylmethoxy)-benzenacetonitrile (Cyanhydrine) (IVc-1) oder (Vc- 1), die nach bekannten Herstellungsmethoden erhalten werden können. Dabei kann die Cyanhydrinbil- dung in Gegenwart von Alkalimetallcyaniden (z. B. Natriumcyanid; vgl. K. Ozawa et al, Nippon Noyaku Gakkaishi 1986, 11, 169-174) oder Trimethylsilylcyanid (TMS-CN; vgl. L. H. McKendry, J. Labelled Comp. Radiopharm. 1984, 21, 401-408; US-Pat. 4,221,799; vgl. Herstellungsbeispiel 1, Stufe B) erfolgen.
Bekannt sind beispielsweise: a-Hydroxy-4-methoxy-3-(phenylmethoxy)-benzenacetonitril (EP-A 18 315) oder das a-Hydroxy-3-methoxy-5-(phenylmethoxy)-benzenacetonitril (S. Weist et al., J. Amer. Chem. Soc. 2004, 126, 5942-5943).
Die gegebenenfalls Z-substituierten 3-Hydroxybenzaldehyde der Formel (A-5) sind literaturbekannt oder gemäss den weiter oben beschriebenen, literaturbekannten Methoden zugänglich.
Darüber hinaus sind die gegebenenfalls Z-substituierten Halogenmethylverbindungen der Formel (A-8), worin Halogen für Chlor, Brom oder Iod stehen kann, kommerziell erhältlich oder gemäss gemäss den weiter oben beschriebenen, literaturbekannten Methoden zugänglich.
Alternativ kann die Umsetzung von Verbindungen der Formeln (IV) oder (V) mit den Verbindungen der Formel (III) auch in Gegenwart eines Kupplungsagenz für die Carbonsäure und gegebenenfalls in Gegenwart eines basischen Reaktionshilfsmittels in einem der weiter unten angegebenen Verdünnungsmittel erfolgen.
Als Kupplungsagenzien zur Durchführung des Herstellungsverfahrens finden alle, die zur Herstellung einer Amidbindung geeignet sind (vgl. z.B. Houben-Weyl, Methoden der Organischen Chemie, Band 15/2; Bodansky et al., Peptide Synthesis 2nd ed. (Wiley & Sons, New York 1976) oder Gross, Meienho- fer, The Peptides: Analysis, Synthesis, Biology (Academic Press, New York 1979), Verwendung. Im Allgemeinen ist es vorteilhaft, das erfindungsgemäße Herstellungsverfahren in Gegenwart von Verdünnungsmitteln durchzuführen. Verdünnungsmittel werden vorteilhaft in einer solchen Menge eingesetzt, dass das Reaktionsgemisch während des ganzen Verfahrens gut rührbar bleibt. Als Verdünnungsmittel zur Durchführung des erfindungsgemäßen Verfahrens kommen alle inerten organischen Lösungsmittel in Frage. Als Beispiele sind zu nennen: Halogenkohlenwasserstoffe, insbesondere Chlorkohlenwasserstoffe, wie Tetraethylen, Tetrachlorethan, Dichlorpropan, Methylenchlorid, Dichlorbutan, Chloroform, Tetrachlorkohlenstoff, Trichlorethan, Trichlorethylen, Pentachlorethan, Difluorbenzol, 1,2-Dichlorethan, Chlorbenzol, Brombenzol, Dichlorbenzol, Chlortoluol, Trichlorbenzol; Alkohole wie Methanol, Ethanol, Isopro- panol, Butanol; Ether wie Ethylpropylether, Methyl-tert-butylether, n-Butylether, Anisol, Phenetol, Cyc- lohexylmethylether, Dimethylether, Diethylether, Dipropylether, Diisopropylether, Di-n-butylether, Diisobutylether, Diisoamylether, Ethylenglycoldimethy lether, Tetrahydrofuran, Dioxan, Dichlordiethyl- ether und Polyether des Ethylenoxids und/oder Propylenoxids; Amine wie Trimethyl-, Triethyl-, Tripro- pyl-, Tributylamin, N-Methylmorpholin, Pyridin und Tetramethylendiamin; Nitrokohlenwasserstoffe wie Nitromethan, Nitroethan, Nitropropan, Nitrobenzol, Chlornitrobenzol, o-Nitrotoluol; Nitrile wie Aceto- nitril, Propionitril, Butyronitril, Isobutyronitril, Benzonitril, m-Chlorbenzonitril sowie Verbindungen wie Tetrahydrothiophendioxid und Dimethylsulfoxid, Tetramethylensulfoxid, Dipropylsulfoxid, Benzylme- thylsulfoxid, Diisobutylsulfoxid, Dibutylsulfoxid, Diisoamylsulfoxid; Sulfone wie dimethyl-, Diethyl-, Dipropyl-, Dibutyl-, Diphenyl-, Dihexyl-, Methylethyl-, Ethylpropyl-, Ethylisobutyl- und Pentamethylen- sulfon; aliphatische, cycloaliphatische oder aromatische Kohlenwasserstoffe wie Pentan, Hexan, Heptan, Oktan, Nonan und technische Kohlenwasserstoffe; beispielsweise sogenannte White Spirits mit Komponenten mit Siedepunkten im Bereich beispielsweise von 40°C bis 250°C, Cymol, Benzinfraktionen inner- halb eines siedeintervalles von 70°C bis 190°C, Cyclohexan, Methylcyclohexan, Petrolether, Ligroin, Octan, Benzol, Toluol, Chlorbenzol, Brombenzol, Nitrobenzol, Xylol; Ester wie Methyl-, Ethyl-, Butyl-, Isobutylacetat, sowie Dimethyl-, Dibutyl-, Ethylencarbonat; Amide wie Hexamethylenphosphorsäuret- riamid, Formamid, N-Methyl-formamid, Ν,Ν-Dimethyl-formamid, NN-Dipropyl-formamid, NN- Dibutyl-formamid, N-Methyl-pyrrolidin, N-Methyl-caprolactam, l,3-Dimethyl-3,4,5,6-tetrahydro-2(lH)- pyrimidin, Octylpyrrolidon, Octylcaprolactam, l,3-Dimethyl-2-imidazolindion, N-Formyl-piperidin, NN'-l,4-Diformyl-piperazin; Ketone wie Aceton, Acetophenon, Methylethylketon, Methylbutylketon.
Für das erfindungsgemäße Verfahren können auch Gemische der genannten Lösungs- und Verdünnungsmittel eingesetzt werden.
Bevorzugte Verdünnungsmittel zur Durchführung des erfindungsgemäßen Verfahrens sind Ether wie Methyl-tert-butylether, Tetrahydrofuran oder Dioxan insbesondere Tetrahydrofuran.
Die Herstellung von Verbindungen der Formel (I) nach dem Herstellungsverfahren wird durchgeführt, indem Verbindungen der Formeln (IV) oder (V) in Gegenwart von Verbindungen der Formel (III), gegebenenfalls in Gegenwart eines Säurebindemittels und gegebenenfalls in einem der angegebenen Verdünnungsmittel umgesetzt werden. Die Reaktionsdauer beträgt im allgemeinen 10 Minuten bis 48 Stunden. Die Umsetzung erfolgt bei Temperaturen zwischen -10°C und +200°C, bevorzugt zwischen +10°C und 120°C, besonders bevorzugt bei Raumtemp eratur.
Es kann grundsätzlich unter Normaldruck gearbeitet werden. Bevorzugt arbeitet man bei Normaldruck oder bei Drucken bis zu 15 bar und gegebenenfalls unter Schutzgasatmosphäre (Stickstoff, Helium oder Argon).
Zur Durchführung des erfindungsgemäßen Verfahrens werden pro Mol Verbindung der allgemeinen Formeln (IV) oder (V) im allgemeinen 0,5 bis 4,0 Mol, bevorzugt 0,7 bis 3,0 Mol, besonders bevorzugt 1,0 bis 2,0 Mol an Verbindung der Formel (III) eingesetzt. Desweiteren ist es vorteilhaft, das Herstellungsverfahren in Gegenwart von basischen Reaktionshilfsmitteln (Säurebindemittel) durchzuführen.
Als basische Reaktionshilfsmittel zur Durchführung des erfindungsgemäßen Verfahrens können alle geeigneten Säurebindemittel eingesetzt werden wie Amine, insbesondere tertiäre Amine sowie Alkali- und Erdalkaliverbindungen.
Beispielhaft seien dafür erwähnt die Hydroxide, Hydride, Oxide und Carbonate des Lithiums, Natriums, Kaliums, Magnesiums, Calciums und Bariums, ferner weitere basische Verbindungen wie Amidinbasen o der Guanidinb as en wie 7-Methyl-l,5,7-triaza-bicyclo(4.4.0)dec-5-en (MTBD); Diazabicyc- lo(4.3.0)nonen (DBN), Diazabicyclo (2.2.2)octan (DABCO), 1 , 8-Diazabicyclo(5.4.0)undecen (DBU), Cyclohexyltetrabutyl-guanidin (CyTBG), Cyclohexyltetramethylguanidin (CyTMG), Ν,Ν,Ν,Ν- Tetramethyl-l,8-naphthalindiamin, Pentamethylpiperidin, tertiäre Amine wie Triethylamin, Trimethyla- min, Tribenzylamin, Triisopropylamin, Tributylamin, Tricyclohexylamin, Triamylamin, Trihexylamin, N,N-Dimethylanilin, Ν,Ν-Dimethyl-toluidin, N,N-Dimethyl-p-aminopyridin, N-Methyl-pyrrolidin, N- Methyl-piperidin, N-Methyl-imidazol, N-Methyl-pyrazol, N-Methyl-morpholin, N-Methyl- hexamethylendiamin, Pyridin, 4-Pyrrolidinopyridin, 4-Dimethylamino-pyridin, chinolin, α-Picolin, ß- Picolin, Isochinolin, Pyrimidin, Acridin, Ν,Ν,Ν',Ν'-Tetramethylendiamin, Ν,Ν',Ν'-Tetraethylendiamin, Chinoxalin, N-Propyl-diisopropylamin, N-Ethyl-diisopropylamin, N,N'-Dimethyl-cyclohexylamin, 2,6- Lutidin, 2,4-Lutidin oder Triethyldiamin.
Bevorzugt finden tertiäre Amine wie Trimethylamin, Triethylamin oder N-Ethyl-N,N-diisopropylamin Verwendung.
Nach vollendeter Umsetzung wird der gesamte Reaktionsansatz eingeengt. Die nach Aufarbeitung anfallenden Produkte lassen sich in üblicher Weise durch Umkristallisieren, Vakuumdestillation oder Säulenchromatographie reinigen (vgl. auch die Herstellungsbeispiele).
Die erfindungsgemäßen Verbindungen können in Abhängigkeit von der Art der Substituenten als geomet- rische und/oder als optisch aktive Isomere oder entsprechende Isomerengemische in unterschiedlicher Zusammensetzung vorliegen. Diese Stereoisomere sind beispielsweise Enantiomere, Diastereomere, Atropisomere oder geometrische Isomere. Die Erfindung umfasst somit reine Stereoisomere als auch beliebige Gemische dieser Isomere.
Die erfindungsgemäßen Verbindungen können gegebenenfalls in verschiedenen polymorphen Formen oder als Mischung verschiedener polymorpher Formen vorliegen. Sowohl die reinen Polymorphe als auch die Polymorphgemische sind Gegenstand der Erfindung und können erfindungsgemäß verwendet werden. Die erfindungsgemäßen Wirkstoffe eignen sich bei guter Pflanzenverträglichkeit, günstiger Warmblüter- toxizität und guter Umweltverträglichkeit zum Schutz von Pflanzen und Pflanzenorganen, zur Steigerung der Ernteerträge, Verbesserung der Qualität des Erntegutes und zur Bekämpfung von tierischen Schädlingen, insbesondere Insekten, Spinnentieren, Helminthen, Nematoden und Mollusken, die in der Land- Wirtschaft, im Gartenbau, bei der Tierzucht, in Forsten, in Gärten und Freizeiteinrichtungen, im Vorratsund Materialschutz sowie auf dem Hygienesektor vorkommen. Sie können vorzugsweise als Pflanzenschutzmittel eingesetzt werden. Sie sind gegen normal sensible und resistente Arten sowie gegen alle oder einzelne Entwicklungs Stadien wirksam. Zu den oben erwähnten Schädlingen gehören:
Schädlinge aus dem Stamm der Arthropoda, insbesondere aus der Klasse der Arachnida z.B. Acarus spp., Aceria sheldoni, Aculops spp., Aculus spp., Amblyomma spp., Amphitetranychus viennensis, Argas spp., Boophilus spp., Brevipalpus spp., Bryobia graminum, Bryobia praetiosa, Centruroides spp., Chorioptes spp., Dermanyssus gallinae, Dermatophagoides pteronyssinus, Dermatophagoides farinae, Dermacentor spp., Eotetranychus spp., Epitrimerus pyri, Eutetranychus spp., Eriophyes spp., Glycyphagus domesticus, Halotydeus destructor, Hemitarsonemus spp., Hyalomma spp., Ixodes spp., Latrodectus spp., Loxosceles spp., Metatetranychus spp., Neutrombicula autumnalis, Nuphersa spp., Oligonychus spp., Ornithodorus spp., Ornithonyssus spp., Panonychus spp., Phyllocoptruta oleivora, Polyphagotarsonemus latus, Psorop- tes spp., Rhipicephalus spp., Rhizoglyphus spp., Sarcoptes spp., Scorpio maurus, Steneotarsonemus spp., Steneotarsonemus spinki, Tarsonemus spp., Tetranychus spp., Trombicula alfreddugesi, Vaejovis spp., Vasates lycopersici. Aus der Klasse der Chilopoda z.B. Geophilus spp., Scutigera spp..
Aus der Ordnung oder der Klasse der Collembola z.B. Onychiurus armatus.
Aus der Klasse der Diplopoda z.B. Blaniulus guttulatus.
Aus der Klasse der Insecta, z.B. aus der Ordnung der Blattodea z.B. Blattella asahinai, Blattella germanica, Blatta orientalis, Leucophaea maderae, Panchlora spp., Parcoblatta spp., Periplaneta spp., Supella longipalpa.
Aus der Ordnung der Coleoptera z.B. Acalymma vittatum, Acanthoscelides obtectus, Adoretus spp., Age- lastica alni, Agriotes spp., Alphitobius diaperinus, Amphimallon solstitialis, Anobium punctatum, Anoplophora spp., Anthonomus spp., Anthrenus spp., Apion spp., Apogonia spp., Atomaria spp., Attagenus spp., Bruchidius obtectus, Bruchus spp., Cassida spp., Cerotoma trifurcata, Ceutorrhynchus spp., Chaetocnema spp., Cleonus mendicus, Conoderus spp., Cosmopolites spp., Costelytra zealandica, Cte- nicera spp., Curculio spp., Cryptolestes ferrugineus, Cryptorhynchus lapathi, Cylindrocopturus spp., Dermestes spp., Diabrotica spp., Dichocrocis spp., Dicladispa armigera, Diloboderus spp., Epilachna spp., Epitrix spp., Faustinus spp., Gibbium psylloides, Gnathocerus cornutus, Hellula undalis, Heteronychus arator, Heteronyx spp., Hylamorpha elegans, Hylotrupes bajulus, Hypera postica, Hypomeces squamosus, Hypothenemus spp., Lachnosterna consanguinea, Lasioderma serricorne, Latheticus oryzae, Lathridius spp., Lema spp., Leptinotarsa decemlineata, Leucoptera spp., Lissorhoptrus oryzophilus, Lixus spp., Lu- perodes spp., Lyctus spp., Megascelis spp., Melanotus spp., Meligethes aeneus, Melolontha spp., Migdo- lus spp., Monochamus spp., Naupactus xanthographus, Necrobia spp., Niptus hololeucus, Oryctes rhi- noceros, Oryzaephilus surinamensis, Oryzaphagus oryzae, Otiorrhynchus spp., Oxycetonia jucunda, Pha- edon cochleariae, Phyllophaga spp., Phyllophaga helleri, Phyllotreta spp., Popillia japonica, Premnotrypes spp., Prostephanus truncatus, Psylliodes spp., Ptinus spp., Rhizobius ventralis, Rhizopertha dominica, Sitophilus spp., Sitophilus oryzae, Sphenophorus spp., Stegobium paniceum, Sternechus spp., Symphyle- tes spp., Tanymecus spp., Tenebrio molitor, Tenebrioides mauretanicus, Tribolium spp., Trogoderma spp., Tychius spp., Xylotrechus spp., Zabrus spp..
Aus der Ordnung der Diptera z.B. Aedes spp., Agromyza spp., Anastrepha spp., Anopheles spp., As- phondylia spp., Bactrocera spp., Bibio hortulanus, Calliphora erythrocephala, Calliphora vicina, Ceratitis capitata, Chironomus spp., Chrysomyia spp., Chrysops spp., Chrysozona pluvialis, Cochliomyia spp., Contarinia spp., Cordylobia anthropophaga, Cricotopus sylvestris, Culex spp., Culicoides spp., Culiseta spp., Cuterebra spp., Dacus oleae, Dasyneura spp., Delia spp., Dermatobia hominis, Drosophila spp., Echinocnemus spp., Fannia spp., Gasterophilus spp., Glossina spp., Haematopota spp., Hydrellia spp., Hydrellia griseola, Hylemya spp., Hippobosca spp., Hypoderma spp., Liriomyza spp.. Lucilla spp., Lut- zomyia spp., Mansonia spp., Musca spp., Oestrus spp., Oscinella frit, Paratanytarsus spp., Paralauterbor- niella subcincta, Pegomyia spp., Phlebotomus spp., Phorbia spp., Phormia spp., Piophila casei, Prodiplo- sis spp., Psila rosae, Rhagoletis spp., Sarcophaga spp., Simulium spp, Stomoxys spp., Tabanus spp., Te- tanops spp., Tipula spp..
Aus der Ordnung der Heteroptera z.B. Anasa tristis, Antestiopsis spp., Boisea spp., Blissus spp., Caloco- ris spp., Campylomma livida, Cavelerius spp., Cimex spp., Collaria spp., Creontiades dilutus, Dasynus piperis, Dichelops furcatus, Diconocoris hewetti, Dysdercus spp., Euschistus spp., Eurygaster spp., Heli- opeltis spp., Horcias nobilellus, Leptocorisa spp., Leptocorisa varicornis, Leptoglossus phyllopus, Lygus spp., Macropes excavatus, Miridae, Monaionion atratum, Nezara spp., Oebalus spp., Pentomidae, Piesma quadrata, Piezodorus spp., Psallus spp., Pseudacysta persea, Rhodnius spp., Sahlbergella singularis, Scap- tocoris castanea, Scotinophora spp., Stephanitis nashi, Tibraca spp., Triatoma spp. Aus der Ordnung der Homoptera z.B. Acizzia acaciaebaileyanae, Acizzia dodonaeae, Acizzia uncatoides, Acrida turrita, Acyrthosipon spp., Acrogonia spp., Aeneolamia spp., Agonoscena spp., Aleyrodes prole- tella, Aleurolobus barodensis, Aleurothrixus floccosus, Allocaridara malayensis, Amrasca spp., Anura- phis cardui, Aonidiella spp., Aphanostigma piri, Aphis spp., Arboridia apicalis, Arytainilla spp., Aspidiel- la spp., Aspidiotus spp., Atanus spp., Aulacorthum solani, Bemisia tabaci, Blastopsylla occidentalis, Bo- reioglycaspis melaleucae, Brachycaudus helichrysi, Brachycolus spp., Brevicoryne brassicae, Cacopsylla spp., Calligypona marginata, Carneocephala fülgida, Ceratovacuna lanigera, Cercopidae, Ceroplastes spp., Chaetosiphon fragaefolii, Chionaspis tegalensis, Chlorita onukii, Chondracris rosea, Chromaphis juglandicola, Chrysomphalus ficus, Cicadulina mbila, Coccomytilus halli, Coccus spp., Cryptomyzus ribis, Cryptoneossa spp., Ctenarytaina spp., Dalbulus spp., Dialeurodes citri, Diaphorina citri,, Diaspis spp., Drosicha spp., Dysaphis spp., Dysmicoccus spp., Empoasca spp., Eriosoma spp., Erythroneura spp., Eucalyptolyma spp., Euphyllura spp., Euscelis bilobatus, Ferrisia spp., Geococcus coffeae, Glycaspis spp., Heteropsylla cubana, Heteropsylla spinulosa, Homalodisca coagulata, Hyalopterus arundinis, Icerya spp., Idiocerus spp., Idioscopus spp., Laodelphax striatellus, Lecanium spp., Lepidosaphes spp., Lipaphis erysimi, Macrosiphum spp., Macrosteies facifrons, Mahanarva spp., Melanaphis sacchari, Metcalfiella spp., Metopolophium dirhodum, Monellia costalis, Monelliopsis pecanis, Myzus spp., Nasonovia ribis- nigri, Nephotettix spp., Nettigoniclla spectra, Nilaparvata lugens, Oncometopia spp., Orthezia praelonga, Oxya chinensis, Pachypsylla spp., Parabemisia myricae, Paratrioza spp., Parlatoria spp., Pemphigus spp., Peregrinus maidis, Phenacoccus spp., Phloeomyzus passerinii, Phorodon humuli, Phylloxera spp., Pinnaspis aspidistrae, Planococcus spp., Prosopidopsylla flava, Protopulvinaria pyriformis, Pseu- daulacaspis pentagona, Pseudococcus spp., Psyllopsis spp., Psylla spp., Pteromalus spp., Pyrilla spp., Quadraspidiotus spp., Quesada gigas, Rastrococcus spp., Rhopalosiphum spp., Saissetia spp., Scaphoideus titanus, Schizaphis graminum, Selenaspidus articulatus, Sogata spp., Sogatella furcifera, Sogatodes spp., Stictocephala festina, Siphoninus phillyreae, Tenalaphara malayensis, Tetragonocephela spp., Tinocallis caryaefoliae, Tomaspis spp., Toxoptera spp., Trialeurodes vaporariorum Trioza spp., Typhlocyba spp., Unaspis spp., Viteus vitifolii, Zygina spp..
Aus der Ordnung der Hymenoptera z.B. Acromyrmex spp., Athalia spp., Atta spp., Diprion spp., Hoplo- campa spp., Lasius spp., Monomorium pharaonis, Sirex spp., Solenopsis invicta, Tapinoma spp., Uroce- rus spp., Vespa spp., Xeris spp..
Aus der Ordnung der Isopoda z.B. Armadillidium vulgare, Oniscus asellus, Porcellio scaber. Aus der Ordnung der Isoptera z.B. Coptotermes spp., Cornitermes cumulans, Cryptotermes spp., Incisi- termes spp., Microtermes obesi, Odontotermes spp., Reticulitermes spp..
Aus der Ordnung der Lepidoptera z.B. Achroia grisella, Acronicta major, Adoxophyes spp., Aedia leu- comelas, Agrotis spp., Alabama spp., Amyelois transitella, Anarsia spp., Anticarsia spp., Argyroploce spp., Barathra brassicae, Borbo cinnara, Bucculatrix thurberiella, Bupalus piniarius, Busseola spp., Ca- coecia spp., Caloptilia theivora, Capua reticulana, Carpocapsa pomonella, Carposina niponensis, Cheima- tobia brumata, Chilo spp., Choristoneura spp., Clysia ambiguella, Cnaphalocerus spp., Cnaphalocrocis medinalis, Cnephasia spp., Conopomorpha spp., Conotrachelus spp., Copitarsia spp., Cydia spp., Dalaca noctuides, Diaphania spp., Diatraea saccharalis, Earias spp., Ecdytolopha aurantium, Elasmopalpus ligno- sellus, Eidana saccharina, Ephestia spp., Epinotia spp., Epiphyas postvittana, Etiella spp., Eulia spp., Eu- poecilia ambiguella, Euproctis spp., Euxoa spp., Feltia spp., Galleria mellonella, Gracillaria spp., Grapho- litha spp., Hedylepta spp., Helicoverpa spp., Heliothis spp., Hofmannophila pseudospretella, Homoeosoma spp., Homona spp., Hyponomeuta padella, Kakivoria flavofasciata, Laphygma spp., Laspeyresia mo- lesta, Leucinodes orbonalis, Leucoptera spp., Lithocolletis spp., Lithophane antennata, Lobesia spp., Loxagrotis albicosta, Lymantria spp., Lyonetia spp., Malacosoma neustria, Maruca testulalis, Mamstra brassicae, Melanitis leda, Mocis spp., Monopis obviella, Mythimna separata, Nemapogon cloacellus, Nymphula spp., Oiketicus spp., Oria spp., Orthaga spp., Ostrinia spp., Oulema oryzae, Panolis flammea, Parnara spp., Pectinophora spp., Perileucoptera spp., Phthorimaea spp., Phyllocnistis citrella, Phyllono- rycter spp., Pieris spp., Platynota stultana, Plodia interpunctella, Plusia spp., Plutella xylostella, Prays spp., Prodenia spp., Protoparce spp., Pseudaletia spp., Pseudaletia unipuncta, Pseudoplusia includens, Pyrausta nubilalis, Rachiplusia nu, Schoenobius spp., Scirpophaga spp., Scirpophaga innotata, Scotia segetum, Sesamia spp., Sesamia inferens, Sparganothis spp., Spodoptera spp., Spodoptera praefica, Stathmopoda spp., Stomopteryx subsecivella, Synanthedon spp., Tecia solanivora, Thermesia gemmata- lis, Tinea cloacella, Tinea pellionella, Tineola bisselliella, Tortrix spp., Trichophaga tapetzella, Tri- choplusia spp., Tryporyza incertulas, Tuta absoluta, Virachola spp..
Aus der Ordnung der Orthoptera oder Saltatoria z.B. Acheta domesticus, Dichroplus spp., Gryllotalpa spp., Hieroglyphus spp., Locusta spp., Melanoplus spp., Schistocerca gregaria.
Aus der Ordnung der Phthiraptera z.B. Damalinia spp., Haematopinus spp., Linognathus spp., Pediculus spp., Phylloera vastatrix, Phtirus pubis, Trichodectes spp.. Aus der Ordnung der Psocoptera z.B. Lepinotus spp., Liposcelis spp.
Aus der Ordnung der Siphonaptera z.B. Ceratophyllus spp., Ctenocephalides spp., Pulex irritans, Tunga penetrans, Xenopsylla cheopsis.
Aus der Ordnung der Thysanoptera z.B. Anaphothrips obscurus, Baliothrips biformis, Drepanothrips reu- teri, Enneothrips flavens, Frankliniella spp., Heliothrips spp., Hercinothrips femoralis, Rhipiphorothrips cruentatus, Scirtothrips spp., Taeniothrips cardamomi, Thrips spp..
Aus der Ordnung der Zygentoma (= Thysanura), z. B. Ctenolepisma spp., Lepisma saccharina, Lepismodes inquilinus, Thermobia domestica.
Aus der Klasse der Symphyla z.B. Scutigerella spp..
Schädlinge aus dem Stamm der Mollusca, insbesondere aus der Klasse der Bivalvia, z.B. Dreissena spp., sowie aus der Klasse der Gastropoda z.B. Arion spp., Biomphalaria spp., Bulinus spp., Deroceras spp., Galba spp., Lymnaea spp., Oncomelania spp., Pomacea spp., Succinea spp.. Tierparasiten aus den Stämmen der Plathelminthes und Nematoda, z.B. Ancylostoma duodenale, Ancy- lostoma ceylanicum, Acylostoma braziliensis, Ancylostoma spp., Ascaris spp., Brugia malayi, Brugia timori, Bunostomum spp., Chabertia spp., Clonorchis spp., Cooperia spp., Dicrocoelium spp, Dictyocau- lus filaria, Diphyllobothrium latum, Dracunculus medinensis, Echinococcus granulosus, Echinococcus multilocularis, Enterobius vermicularis, Faciola spp., Haemonchus spp., Heterakis spp., Hymenolepis nana, Hyostrongulus spp., Loa Loa, Nematodirus spp., Oesophagostomum spp., Opisthorchis spp., On- chocerca volvulus, Ostertagia spp., Paragonimus spp., Schistosomen spp, Strongyloides fuelleborni, Strongyloides stercoralis, Stronyloides spp., Taenia saginata, Taenia solium, Trichinella spiralis, Trichinella nativa, Trichinella britovi, Trichinella nelsoni, Trichinella pseudopsiralis, Trichostrongulus spp., Trichuris trichuria, Wuchereria bancrofti.
Pflanzenschädlinge aus dem Stamm der Nematoda, d.h. pflanzenparasitäre Nematoden, insbesondere Aphelenchoides spp., Bursaphelenchus spp., Ditylenchus spp., Globodera spp., Heterodera spp., Lon- gidorus spp., Meloidogyne spp., Pratylenchus spp., Radopholus spp., Trichodorus spp., Tylenchulus spp, Xiphinema spp., Helicotylenchus spp., Tylenchorhynchus spp., Scutellonema spp., Paratrichodorus spp., Meloinema spp., Paraphelenchus spp., Aglenchus spp., Belonolaimus spp., Nacobbus spp, Rotylenchulus spp., Rotylenchus spp., Neotylenchus spp., Paraphelenchus spp., Dolichodorus spp., Hoplolaimus spp., Punctodera spp., Criconemella spp., Quinisulcius spp., Hemicycliophora spp., Anguina spp., Subanguina spp., Hemicriconemoides spp., Psilenchus spp., Pseudohalenchus spp., Criconemoides spp., Cacopaurus spp.. Weiterhin lässt sich aus dem Unterreich der Protozoa die Ordnung der Coccidia z.B. Eimeria spp.. bekämpfen.
Die erfindungsgemäßen Verbindungen können in bestimmten Konzentrationen bzw. Aufwandmengen auch als Herbizide, Safener, Wachstumsregulatoren oder Mittel zur Verbesserung der Pflanzeneigenschaften, oder als Mikrobizide, beispielsweise als Fungizide, Antimykotika, Bakterizide, Virizide (ein- schließlich Mittel gegen Viroide) oder als Mittel gegen MLO (Mycoplasma-like-organism) und RLO (Rickettsia- like-organism) verwendet werden. Sie lassen sich auch als Zwischen- oder Vorprodukte für die Synthese weiterer Wirkstoffe einsetzen.
Die Wirkstoffe können in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Spritzpulver, wasser- und ölbasierte Suspensionen, Pulver, Stäubemittel, Pasten, lösliche Pulver, lösliche Granulate, Streugranulate, Suspensions-Emulsions-Konzentrate, Wirkstoff-imprägnierte Naturstoffe, Wirkstoff-imprägnierte synthetische Stoffe, Düngemittel sowie Feinstverkapselungen in polymeren Stoffen.
Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln und/oder festen Trägerstoffen, gegebenenfalls unter Ver- wendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln. Die Herstellung der Formulierungen erfolgt entweder in geeigneten Anlagen oder auch vor oder während der Anwendung.
Als Hilfsstoffe können solche Stoffe Verwendung finden, die geeignet sind, dem Mittel selbst oder und/oder davon abgeleitete Zubereitungen (z.B. Spritzbrühen, Saatgutbeizen) besondere Eigenschaften zu verleihen, wie bestimmte technische Eigenschaften und/oder auch besondere biologische Eigenschaften. Als typische Hilfsmittel kommen in Frage: Streckmittel, Lösemittel und Trägerstoffe.
Als Streckmittel eignen sich z.B. Wasser, polare und unpolare organische chemische Flüssigkeiten z.B. aus den Klassen der aromatischen und nicht-aromatischen Kohlenwasserstoffe (wie Paraffine, Alkylben- zole, Alkylnaphthaline, Chlorbenzole), der Alkohole und Polyole (die ggf. auch substituiert, verethert und/oder verestert sein können), der Ketone (wie Aceton, Cyclohexanon), Ester (auch Fette und Öle) und (poly-)Ether, der einfachen und substituierten Amine, Amide, Lactame (wie N-Alkylpyrrolidone) und Lactone, der Sulfone und Sulfoxide (wie Dimethylsysulfoxid).
Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösemittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösemittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol, oder Alkylnaphthaline, chlorierte Aromaten und chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, mineralische und pflanzliche Öle, Alkohole, wie Buta- nol oder Glykol sowie deren Ether und Ester, Ketone wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylsulfoxid, sowie Wasser.
Als feste Trägerstoffe kommen in Frage: z.B. Ammoniumsalze und natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate, als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Papier, Sägemehl, Kokosnußschalen, Maiskolben und Tabakstengeln; als Emulgier- und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Po- lyoxyethylen-Fettsäure-Ester, Polyoxyethylen-Fettalkohol-Ether, z.B. Alkylaryl-polyglykolether, Al- kylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate; als Dispergiermittel kommen in Frage nicht-ionische und/oder ionische Stoffe, z.B. aus den Klassen der Alkohol-POE- und/oder POP-Ether, Säure- und/oder POP- POE-Ester, Alkyl-Aryl- und/oder POP- POE-Ether, Fett- und/oder POP- POE- Addukte, POE- und/oder POP-Polyol Derivate, POE- und/oder POP-Sorbitan- oder-Zucker-Addukte, Alky- oder Aryl-Sulfate, Sulfonate und Phosphate oder die entsprechenden PO-Ether-Addukte. Ferner geeignete Oligo- oder Polymere, z.B. ausgehend von vinylischen Monomeren, von Acrylsäure, aus EO und/oder PO allein oder in Verbindung mit z.B. (poly-) Alkoholen oder (poly-) Aminen. Ferner können Einsatz finden Lignin und seine Sulfonsäure-Derivate, einfache und modifizierte Cellulosen, aromatische und/oder aliphatische Sulfonsäuren sowie deren Addukte mit Formaldehyd. Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulvrige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalko- hol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine und synthetische Phospholipide.
Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organi- sehe Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurennährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.
Weitere Additive können Duftstoffe, mineralische oder vegetabile gegebenenfalls modifizierte Öle, Wachse und Nährstoffe (auch Spurennährstoffe), wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink sein. Weiterhin enthalten sein können Stabilisatoren wie Kältestabilisatoren, Konservierungsmittel, Oxidati- onsschutzmittel, Lichtschutzmittel oder andere die chemische und / oder physikalische Stabilität verbessernde Mittel.
Die Formulierungen enthalten im allgemeinen zwischen 0,01 und 98 Gew.-% Wirkstoff, vorzugsweise zwischen 0,5 und 90 %. Der erfindungsgemäße Wirkstoff kann in seinen handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit anderen Wirkstoffen wie Insektiziden, Lockstoffen, Sterilantien, Bakteriziden, Akariziden, Nematiziden, Fungiziden, wachstumsregulierenden Stoffen, Herbiziden, Safenern, Düngemitteln oder Semiochemicals vorliegen.
Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Herbiziden, Düngemitteln, Wachstumsregulatoren, Safenern, Semiochemicals, oder auch mit Mitteln zur Verbesserung der Pflanzeneigenschaften ist möglich.
Die erfindungsgemäßen Wirkstoffe können ferner beim Einsatz als Insektizide in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungs formen in Mischung mit Synergisten vorliegen. Synergisten sind Verbindungen, durch die die Wirkung der Wirkstoffe gesteigert wird, ohne daß der zugesetzte Synergist selbst aktiv wirksam sein muß. Die erfindungsgemäßen Wirkstoffe können ferner beim Einsatz als Insektizide in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischungen mit Hemmstoffen vorliegen, die einen Abbau des Wirkstoffes nach Anwendung in der Umgebung der Pflanze, auf der Oberfläche von Pflanzenteilen oder in pflanzlichen Geweben vermindern. Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungs formen kann in weiten Bereichen variieren. Die Wirkstoffkonzentration der Anwendungs formen kann von 0,00000001 bis zu 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,00001 und 1 Gew.-% liegen.
Die Anwendung geschieht in einer den Anwendungsformen angepaßten üblichen Weise.
Erfindungsgemäß können alle Pflanzen und Pflanzenteile behandelt werden. Unter Pflanzen werden hier- bei alle Pflanzen und Pflanzenpopulationen verstanden, wie erwünschte und unerwünschte Wildpflanzen oder Kulturpflanzen (einschließlich natürlich vorkommender Kulturpflanzen). Kulturpflanzen können Pflanzen sein, die durch konventionelle Züchtungs- und Optimierungsmethoden oder durch biotechnologische und gentechnologische Methoden oder Kombinationen dieser Methoden erhalten werden können, einschließlich der transgenen Pflanzen und einschließlich der durch Sortenschutzrechte schützbaren oder nicht schützbaren Pflanzensorten. Unter Pflanzenteilen sollen alle oberirdischen und unterirdischen Teile und Organe der Pflanzen, wie Sproß, Blatt, Blüte und Wurzel verstanden werden, wobei beispielhaft Blätter, Nadeln, Stengel, Stämme, Blüten, Fruchtkörper, Früchte und Saatgut sowie Wurzeln, Knollen und Rhizome aufgeführt werden. Zu den Pflanzenteilen gehört auch Erntegut sowie vegetatives und generatives Vermehrungsmaterial, beispielsweise Stecklinge, Knollen, Rhizome, Ableger und Saatgut. Die erfindungsgemäße Behandlung der Pflanzen und Pflanzenteile mit den Wirkstoffen erfolgt direkt oder durch Einwirkung auf deren Umgebung, Lebensraum oder Lagerraum nach den üblichen Behandlungsmethoden, z.B. durch Tauchen, Sprühen, Verdampfen, Vernebeln, Streuen, Aufstreichen, Injizieren und bei Vermehrungsmaterial, insbesondere bei Saatgut, weiterhin durch ein- oder mehrschichtiges Umhüllen. Wie bereits oben erwähnt, können erfindungsgemäß alle Pflanzen und deren Teile behandelt werden. In einer bevorzugten Ausführungsform werden wild vorkommende oder durch konventionelle biologische Zuchtmethoden, wie Kreuzung oder Protoplastenfusion erhaltenen Pflanzenarten und Pflanzensorten sowie deren Teile behandelt. In einer weiteren bevorzugten Ausführungsform werden transgene Pflanzen und Pflanzensorten, die durch gentechnologische Methoden gegebenenfalls in Kombination mit konven- tionellen Methoden erhalten wurden (Genetically Modified Organisms) und deren Teile behandelt. Die Begriffe "Teile" bzw. "Teile von Pflanzen" oder "Pflanzenteile" wurden oben erläutert.
Besonders bevorzugt werden erfindungsgemäß Pflanzen der jeweils handelsüblichen oder in Gebrauch befindlichen Pflanzensorten behandelt. Unter Pflanzensorten versteht man Pflanzen mit neuen Eigen- schaften ("Traits"), die sowohl durch konventionelle Züchtung, durch Mutagenese oder durch rekombi- nante DNA-Techniken gezüchtet worden sind. Dies können Sorten, Bio- und Genotypen sein.
Je nach Pflanzenarten bzw. Pflanzensorten, deren Standort und Wachstumsbedingungen (Böden, Klima, Vegetationsperiode, Ernährung) können durch die erfindungsgemäße Behandlung auch überadditive ("sy- nergistische") Effekte auftreten. So sind beispielsweise erniedrigte Aufwandmengen und/oder Erweiterungen des Wirkungsspektrums und/oder eine Verstärkung der Wirkung der erfindungsgemäß verwendbaren Stoffe und Mittel, besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte möglich, die über die eigentlich zu erwartenden Effekte hinausgehen.
Zu den bevorzugten erfindungsgemäß zu behandelnden transgenen (gentechnologisch erhaltenen) Pflanzen bzw. Pflanzensorten gehören alle Pflanzen, die durch die gentechnologische Modifikation genetisches Material erhielten, welches diesen Pflanzen besondere vorteilhafte wertvolle Eigenschaften ("Traits") verleiht. Beispiele für solche Eigenschaften sind besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte. Weitere und besonders hervorgehobene Beispiele für solche Eigen- schaften sind eine erhöhte Abwehr der Pflanzen gegen tierische und mikrobielle Schädlinge, wie gegenüber Insekten, Milben, pflanzenpathogenen Pilzen, Bakterien und/oder Viren sowie eine erhöhte Toleranz der Pflanzen gegen bestimmte herbizide Wirkstoffe. Als Beispiele transgener Pflanzen werden die wichtigen Kulturpflanzen, wie Getreide (Weizen, Reis), Mais, Soja, Kartoffel, Zuckerrüben, Tomaten, Erbsen und andere Gemüsesorten, Baumwolle, Tabak, Raps, sowie Obstpflanzen (mit den Früchten Äpfel, Bir- nen, Zitrusfrüchten und Weintrauben) erwähnt, wobei Mais, Soja, Kartoffel, Baumwolle, Tabak und Raps besonders hervorgehoben werden. Als Eigenschaften ("Traits") werden besonders hervorgehoben die erhöhte Abwehr der Pflanzen gegen Insekten, Spinnentiere, Nematoden und Schnecken durch in den Pflanzen entstehende Toxine, insbesondere solche, die durch das genetische Material aus Bacillus Thuringien- sis (z.B. durch die Gene CrylA(a), CrylA(b), CrylA(c), CryllA, CrylllA, CryIIIB2, Cry9c Cry2Ab, Cry3Bb und CrylF sowie deren Kombinationen) in den Pflanzen erzeugt werden (im folgenden "Bt Pflanzen"). Als Eigenschaften ("Traits") werden auch besonders hervorgehoben die erhöhte Abwehr von Pflanzen gegen Pilze, Bakterien und Viren durch Systemische Akquirierte Resistenz (SAR), Systemin, Phytoalexine, Elicitoren sowie Resistenzgene und entsprechend exprimierte Proteine und Toxine. Als Eigenschaften ("Traits") werden weiterhin besonders hervorgehoben die erhöhte Toleranz der Pflanzen gegenüber bestimmten herbiziden Wirkstoffen, beispielsweise Imidazolinonen, Sulfonylharnstoffen, Gly- phosate oder Phosphinotricin (z.B. "PAT"-Gen). Die jeweils die gewünschten Eigenschaften ("Traits") verleihenden Gene können auch in Kombinationen miteinander in den transgenen Pflanzen vorkommen. Als Beispiele für "Bt Pflanzen" seien Maissorten, Baumwollsorten, Sojasorten und Kartoffels orten genannt, die unter den Handelsbezeichnungen YIELD GARD® (z.B. Mais, Baumwolle, Soja), KnockOut® (z.B. Mais), StarLink® (z.B. Mais), Bollgard® (Baumwolle), Nucotn® (Baumwolle) und NewLeaf® (Kartoffel) vertrieben werden. Als Beispiele für Herbizid-tolerante Pflanzen seien Maissorten, Baumwollsorten und Sojasorten genannt, die unter den Handelsbezeichnungen Roundup Ready® (Toleranz gegen Gly- phosate z.B. Mais, Baumwolle, Soja), Liberty Link® (Toleranz gegen Phosphinotricin, z.B. Raps), IMI® (Toleranz gegen Imidazolinone) und STS® (Toleranz gegen Sulfonylharnstoffe z.B. Mais) vertrieben werden. Als Herbizid- resistente (konventionell auf Herbizid-Toleranz gezüchtete) Pflanzen seien auch die unter der Bezeichnung Clearfield® vertriebenen Sorten (z.B. Mais) erwähnt. Selbstverständlich gelten diese Aussagen auch für in der Zukunft entwickelte bzw. zukünftig auf den Markt kommende Pflanzensorten mit diesen oder zukünftig entwickelten genetischen Eigenschaften ("Traits").
Die aufgeführten Pflanzen können besonders vorteilhaft erfindungsgemäß mit den Verbindungen der allgemeinen Formel (I) bzw. den erfindungsgemäßen Wirkstoffmischungen behandelt werden. Die bei den Wirkstoffen bzw. Mischungen oben angegebenen Vorzugsbereiche gelten auch für die Behandlung dieser Pflanzen. Besonders hervorgehoben sei die Pflanzenbehandlung mit den im vorliegenden Text speziell aufgeführten Verbindungen bzw. Mischungen.
Herstellungsbeispiele
Beispiel 1 (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-cyan[3-(4- fluorph
Figure imgf000042_0001
Stufe A (Methode I): 3-(4-Fluorphenoxy)benzaldehyd (vgl. auch DE-OS 2 615 435)
Figure imgf000042_0002
Zu einem Gemisch aus 2,25 g (15 mmol) 3-Formylphenyl-boronsäure (vgl. auch EP 1 167 371 A2) and 1,12 g (10 mmol) 4-Fluorophenol in 100 mL wasserfreiem Dichlormethan wurden nacheinander frisch getrocknetes 4Ä Molsieb, 1,81 g (10 mmol) Kupfer(II)-acetat und 7, 0 mL (50 mmol) Triethylamin gege- ben. Anschließend wurde das Reaktionsgemisch 24 Stunden bei Raumtemperatur gerührt und über Kieselgel filtriert. Danach wurde die organische Phase im Vakuum abgetrennt und das verbleibende Rohprodukt mittels Flash Chromatographie (Kieselgel; Eluent: 10% Essigsäureethylester : Hexane) gereinigt. Man erhält 1,25 g (58 % der Theorie) 3-(4-Fluorphenoxy)benzaldehyd als reines Produkt.
Stufe B: 2-(3-(4-Fluorphenoxy)p
Figure imgf000042_0003
0,19 g (0,9 mmol) 3-(4-Fluorphenoxy)benzaldehyd (Stufe A) wurden in 5 ml trockenem Dichlormethan unter Inertgasatmosphäre (Stickstoff) verrührt. Danach wurden 0,34 ml (2,7 mmol) Trimethylsilylcyanid sowie 0,013 ml (0,09 mmol) Triethylamin hinzugegeben und das Reaktionsgemisch wurde 2 Stunden bei Raumtemperatur gerührt. Anschliessend wurde das Reaktionsgemisch in 2 ml THF gelöst. Nach Zugabe von 2 ml 2N Salzsäure wurde noch zwei weitere Stunden bei Raumtemperatur gerührt. Das THF wurde im Vakuum abdestilliert und der verbleibende Rückstand wurde mit Wasser verdünnt. Nach Extraktion mit Essigsäureethylester wurden die vereinigten organischen Phasen über Magnesiumsulfat getrocknet und im Vakuum eingeengt. Das verbleibende Rohprodukt wurde mittels Flash Chromatographie (Kieselgel Eluent: 30% Essigsäureethylester : Hexane) gereinigt. Man erhält 208 mg (95 % der Theorie) reines 2-(3-(4-Fluorphenoxy)phenyl)-2-hydroxy-acetonitril. Stufe C: (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäurechlorid (vgl. auch
US-Pat. 4,342,770)
Figure imgf000043_0001
1,19 g (4,0 mmol) (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure (vgl. auch M. Eliott et al., Pesticide Sei. 6, 537-542, 1975) wurden in 10 ml trockenem Dichlormethan gelöst und unter Inertgasatmosphäre (Stickstoff) mit 4,0 ml (8,0 mmol) Oxalylchlorid und einer katalytischen Menge (2 Tropfen) DMF versetzt. Nach zwei Stunden Rühren bei Raumtemperatur wurde das Lösungsmittel im Vakuum entfernt und das rohe (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl- cyclopropancarbonsäurechlorid für den nächsten Reaktionsschritt (Stufe D) verwendet. Stufe D: (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-cyan[3-(4- fluorphenoxy)phenyl]methylester
327 mg ( 1 , 1 mmo l) de s in Stufe C erhaltenen (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl- cyclopropancarbonsäurechlorids wurde unter Inertgasatmosphäre in 2 ml THF verrührt und bei 0 °C tropfenweise mit einer Lösung aus 243 mg (1,0 mmol) 2-(3-(4-Fluorphenoxy)phenyl)-2-hydroxy-acetonitril in 3 mL wasserfreien THF and anschließend mit 153 mL (1,1 mmol) Triethylamin versetzt. Danach wurde das Reaktionsgemisch 2 Stunden bei Raumtemperatur gerührt, anschließend mit gesättigter Salzlösung versetzt und mit Essigsäureethylester extrahiert. Die organischen Extrakte wurden vereinigt und nacheinander mit 1 N Salzsäure, gesättigter Natriumhydrogencarbonat-Lösung und gesättigter Salzlösung gewaschen. Anschliessend wurde die abgetrennte organische Phase über Magnesiumsulfat getrocknet, und nach dem Abfiltrieren im Vakuum eingeengt. Man erhält ein gelbes Öl, das mittels Säulenchromatographie (Kieselgel; Eluent: 5% Essigsäureethylester : Hexane) 460 mg (80 % der Theorie) (lR,3R)-3-(2,2- Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-cyan[3-(4-fluor-phenoxy)phenyl]methylester als farbloses Öl ergibt.
Gemisch der Diastereomeren I und II
ES HRMS: m/z gefunden: 543.9561, 545.9510, 547.9536 (MNa+). C22Hi8FN03Br2 (MNa+) berechnet: 543.9535, 545.9515, 547.9494. lH NMR (400 MHz, CDC13) δ 7.29 (t, J= 8.0 Hz, 1H), 7.14 (d, J= 7.8 Hz, 1H), 7.02 (dt, J= 8.4 Hz, 1H), 6.99 - 6.86 (m, 5H), 6.61 (d, J= 6.3 Hz, 1H), 6.59 (d, J= 6.4 Hz, 1H), 6.28 (s, 1H), 6.23 (s, 1H), 1.98 (t, J = 8.4 Hz, 1H),1.95 (t, J = 8.4 Hz, 1H), ( 1.82 (d, J = 8.4 Hz, 1H), 1.21 (s, 3H), 1.19 (s, 3H), 1.15 (s, 3H), 1.10 (s, 3H) ppm.
13C NMR (100 MHz, CDCI3) δ 168.91 , 168.87, 160.85, 158.96, 158.92, 158.44, 152.36, 152.34, 152.32, 134.24, 133.97, 132.94, 132.79, 131.16, 122.56, 122.47, 121.57, 121.55, 121.49, 121.46, 119.98, 119.95, 117.63, 1 17.50, 117.17, 1 16.94, 116.46, 1 16.32, 91.32, 91.10, 62.79, 62.72, 36.89, 36.85, 31.49, 31.42, 29.38, 29.19, 28.55, 28.53, 15.38, 15.36 ppm.
Das (1 : 1)-Gemisch der Diastereomeren lässt sich mittels präparativer HPLC (Säule Knauer; Normalphase; Dimension: 250 x 20 mm; Füllung: Eurosper 100-5 Si; Detektion der Wellenlänge bei 254 nm) auftrennen. Die Säule wurde mit 8% Essigsäureethylester / Hexan mit einer Durchflussrate von 5 mL/min eluiert.
Beispiel la (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(R)-cyan[3-(4- fluorphenoxy)phenyl] methylester
Figure imgf000044_0001
Retentionszeit (präp- HPLC): 35-38 min. ES HRMS: m/z gefunden: 543.9561, 545.9510, 547.9536 (MNa+) C22Hi8FN03Br2 (MNa+) berechnet: 543.9535, 545.9515, 547.9494. lH NMR (400 MHz, CDCI3) δ 7.41 (t, J= 8.0 Hz, 2H), 7.29 - 7.21 (m, 1H), 7.16 - 6.96 (m, 5H), 6.68 (d, J= 8.4 Hz), 6.32 (s, 1H), 2.05 (t, J= 8.4 Hz, 1H), 1.91 (d, J= 8.4 Hz, 1H), 1.31 (s, 3H), 1.29 (s, 3H) ppm.
13C NMR (100 MHz, CDCI3) δ 168.89, 160.86, 158.94, 158.45, 152.30, 133.92, 132.86, 131.13, 122.52, 121.54, 119.96, 117.60, 117.16, 116.93, 116.43, 91.07, 62.74, 36.86, 31.48, 29.39, 28.57, 15.34 ppm. Beispiel lb (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(S)-cyan[3-(4- fluorph
Figure imgf000045_0001
Retentionszeit (präp- HPLC): 40-42 min.
ES HRMS: m/z gefunden: 543.9561, 545.9510, 547.9536 (MNa+). C22Hi8FN03Br2 (MNa+) berechnet: 543.9535, 545.9515, 547.9494.
'H NMR (400 MHz, CDC13) δ 7.27 (t, J= 8.0 Hz, 1H), 7.11 (t, J= 5.6 Hz, 1H), 7.01 - 6.84 (m, 6H), 6.57 (d, J = 8.3 Hz, 1H), 6.24 (s, 1H), 1.95 (t, J = 8.4 Hz, 1H), 1.78 (d, J = 8.4 Hz, 1H), 1.12 (s, 3H), 1.07 (s, 3H) ppm.
13C NMR (100 MHz, CDCI3) δ 168.87, 160.88, 158.97, 158.46, 152.30, 152.28, 134.19, 132.70, 131.15, 122.44, 121.56, 121.48, 119.93, 117.47, 117.16, 116.93, 116.30, 91.33, 62.68, 36.90, 31.40, 29.20, 28.55, 15.37 ppm.
In analoger Weise wurden die Beispiele 2 bis 13 erhalten.
Beispiel 2b (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(S)-cyan[3-(3- fluorph
Figure imgf000045_0002
ES HRMS: m/z gefunden: 543.9561, 545.9510, 547.9536 (MNa+). C22Hi8FN03Br2 (MNa+) berechnet: 543.9535, 545.9515, 547.9494. lH NMR (400 MHz, CDCI3) δ 7.44 (t, J = 8.0 Hz, 1H, Ar-H), 7.32-7.29 (m, 2H, Ar-H), 7.18 (t, J = 2.0 Hz, 1H, Ar-H), 7.10 (d, J= 8.1 Hz, 1H, Ar-H), 6.85 (td, J= 8.3, 2.4 Hz, 1H, Ar-H), 6.80 (dd, J= 8.2, 2.3 Hz, 1H, Ar-H), 6.74 (t, J = 2.4 Hz, 1H, Ar-H), 6.70 (d, J = 8.4 Hz, 1H, -CH=CCBr2), 6.40 (s, 1H, -CH- CN), 2.08 (t, J = 8.4 Hz, 1H, CH), 1.92 (d, J = 8.4 Hz, 1H, CH), 1.25 (s, 3H, CH3), 1.21 (s, 3H, CH3) ppm.
13C NMR (100 MHz, CDCI3) δ 168.85, 165.17, 162.71, 158.28, 158.18, 157.65, 134.35, 132.67, 131.26, 131.15, 123.32, 121.19, 1 18.71, 116.23, 1 14.91, 114.88, 1 11.30, 11 1.09, 107.18, 106.94, 91.35, 62.62, 36.92, 31.40, 29.22, 28.54, 15.35 ppm. Bestimmung der absoluten Konfiguratiuon mittels anomaler Dispersion (Röntgenstruktur-bestimmung):
Die Röntgenstrukturbestimmung eines geeigneten Einkristalls von Beispiel 2b wurde mit einem Bruker D8 Diffraktometer mit APEX CCD Detektor und einer 1.5 kW Graphit monochromaten Mo Strahlung durchgeführt. Die Strukturauflösung erfolgte mit Hilfe X-SEED (Barbour, L. J. "X-Seed - A Software tool for supramolecular crystallography" J. Supramol. Chem. 2001, 1, 189-191), einer graphischen Schnittstelle zu SHELX97 (G. Sheldrick, SHELX-97 Programs for Solving and Refming Crystal Struc- tures, Institüt für Anorganische Chemie der Universität, Tammanstrasse 4, D-3400 Göttingen, Germany, 1997). Der Wert der absoluten Strukturparameter (0.01(1)) bestätigt die absolute Konfiguration des Beispiels 2b. Kristalldaten:
C22Hi803Br2FN (523.19 g/mol) farblose Plättchen, 0.50 x 0.3 x 0.3 mnr
Raumgruppe: orthorhombisch, 2i2i2i (No. 12549 Reflektionen gesammelt, 4452 unique a = 6.2327 (19) Ä Rmt = 0.0216 b = 12.196 (4) Ä Final GooF = 1.011 c = 12.460 (3) Ä Rl = 0.0256
V = 2054.1 (11) Ä; wR2 = 0.0634
Z = 4 279 Parameter, 2 restraints μ = 3.979 mm"
1.692 g/cm;
T = 100 (2) K Beispiel 3 (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-cyan[3-(2- fluorphenoxy)phenyl]methylester
Figure imgf000046_0001
Beispiel 3a (Diastereomer I)
ES HRMS: m/z gefunden: 543.9516, 545.9514, 547.9490 (MNa+). C22Hi8FN03Br2 (MNa+) berechnet: 543.9535, 545.9515, 547.9494. lH NMR (400 MHz, CDC13) δ 7.27 (t, J= 8.0 Hz, 1H), 7.13 (d, J= 7.9 Hz, 1H), 7.11 - 6.94 (m, 5H), 6.90 (d, J = 8.2 Hz, 1H), 6.61 (d, J = 5.7 Hz, 1H), 6.59 (d, J = 5.7 Hz, 1H), 6.27 (s, 1H), 6.21 (s, 1H), 1.98- 1.91 (m, 1H), 1.81 (d, J= 8.4 Hz, 1H), 1.19 (s, 3H), 1.17 (s, 3H), 1.13 (s, 3H), 1.08 (s, 3H) ppm.
13C NMR (100 MHz, CDCI3) δ 168.95, 168.88, 158.60, 158.56, 156.08, 153.60, 143.17, 143.13, 143.05, 143.02, 134.16, 133.85, 132.98, 132.86, 131.10, 126.29, 126.25, 126.22, 126.19, 125.48, 125.44, 122.94, 122.89, 122.59, 122.53, 1 18.90, 1 17.86, 117.68, 1 16.72, 1 16.56, 116.45, 1 16.33, 91.27, 91.11 , 62.80, 62.72, 36.87, 36.83, 31.49, 31.43, 29.38, 29.21, 28.54, 28.52, 15.37 ppm.
Beispiel 3b (Diastereomer II)
ES HRMS: m/z gefunden: 543.9561, 545.9510, 547.9536 (MNa+). C22Hi8FN03Br2 (MNa+) berechnet: 543.9535, 545.9515, 547.9494.
'H NMR (400 MHz, CDCI3): δ 7.34 (t, J= 8.0 Ηζ,ΙΗ), 7.23-7.18 (m, 2H), 7.10 (d, J= 8.5, 1H), 7.00 (d, J = 8.2, 1H), 6.79 - 6.66 (m, 2H), 6.67 - 6.55 (m, 2H), 6.30 (s, 1H), 6.25 (s, 1H), 2.03 - 1.92 (m, 1H), 1.83 (d, J= 8.4 Hz, 1H), 1.21 (s, 3H), 1.19 (s, 3H), 1.15 (s, 3H), 1.11 (s, 3H) ppm.
13C NMR (100 MHz, CDCI3) δ 168.91, 168.87, 165.17, 162.71, 158.32, 158.22, 157.63, 157.62, 134.40, 134.11, 132.89, 132.76, 131.28, 131.19, 123.40, 123.35, 121.20, 118.83, 118.74, 116.40, 116.27, 114.93, 1 14.89, 1 14.86, 1 11.29, 1 1 1.27, 1 11.08, 1 1 1.06, 107.20, 107.18, 106.96, 106.94, 91.34, 91.14, 62.71, 62.66, 36.91, 36.87, 32.00, 31.49, 31.41, 29.40, 29.22, 28.55, 28.53, 23.09, 15.36, 14.59 ppm.
Beispiel 4 -3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-cyan[3-(2,4-
Figure imgf000047_0001
Gemisch der Diastereomeren I und II
ES HRMS: m/z gefunden: 561.9422, 563.9424, 565.9349 (MNa+). C22Hi7F2N03Br2 (MNa+) berechnet: 561.9441, 563.9420, 565.9349. lH NMR (400 MHz, CDC13) δ 7.29 (t, J= 8.0 Hz, 1H), 7.14 (d, J= 8.0 Hz, 1H), 7.01 (td, J= 8.9, 5.6 Hz, 2H), 6.88 (d, J= 8.3 Hz, 1H), 6.85 - 6.74 (m, 2H), 6.61 (d, J= 5.8 Hz, 1H), 6.59 (d, J= 5.9 Hz, 1H), 6.28 (s, 1H), 6.23 (s, 1H), 2.04 - 1.91 (m, 1H), 1.82 (d, J = 8.4 Hz, 1H), 1.20 (s, 3H), 1.18 (s, 3H), 1.15 (s, 3H), 1.10 (s, 3H) ppm.
13C NMR (100 MHz, CDCI3) δ 168.92, 168.87, 158.70, 158.66, 158.50, 158.48, 158.40, 158.37, 156.15, 156.03, 156.03, 153.65, 153.64, 153.53, 153.52, 134.24, 133.94, 132.94, 132.80, 131.14, 122.64, 122.57, 118.45, 118.42, 116.40, 116.32, 116.16, 112.31, 112.27, 112.08, 112.04, 106.37, 106.15, 106.10, 105.88, 91.27, 91.07, 62.74, 62.67, 36.88, 36.84, 31.48, 31.41, 29.38, 29.20, 28.52, 28.50, 23.08, 15.33 ppm.
Beispiel 5 -3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-cyan[3
Figure imgf000048_0001
Gemisch der Diastereomeren I und II
ES HRMS: m/z gefunden: 561.9456, 563.9414, 565.9396 (MNa+). C22Hi7F2N03Br2 (MNa+) berechnet: 561.9441, 563.9420, 565.9400.
'H NMR (400 MHz, CDCI3) δ 7.49 - 7.39 (m, 1H), 7.29 (d, J = 7.9 Hz, 1H), 7.22 - 7.12 (m, 1H), 7.10 - 6.96 (m, 3H), 6.90 - 6.80 (m, 1H), 6.76 - 6.64 (m, 1H), 6.42 (s, 1H), 6.35 (s, 1H), 2.23 - 1.77 (m, 2H), 1.50 - 1.01 (m, 6H) ppm.
13C NMR (100 MHz, CDCI3) δ 168.89, 157.94, 134.31, 132.89, 132.77, 131.24, 124.33, 124.28, 124.25, 124.20, 123.21, 123.14, 119.45, 119.41, 117.27, 117.24, 117.13, 117.07, 116.25, 113.64, 113.47, 91.29, 62.68, 62.63, 36.90, 36.86, 31.47, 31.41, 29.24, 28.51, 28.49, 15.32 ppm. Beispiel 6 (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-cyan[3-(2,6- difluorph
Figure imgf000049_0001
Gemisch der Diastereomeren I und II ES HRMS: m/z gefunden: 561.9463, 563.9428, 565.9405(MNa+). C22Hi7F2N03Br2 (MNa+) berechnet: 561.9441, 563.9420, 565.9400. lH NMR (400 MHz, CDC13) δ 7.44 - 7.34 (m, 1H), 7.32 - 7.10 (m, 3H), 7.08 - 6.94 (m, 3H), 6.72 (d, J = 4.5 Hz, 1H), 6.69 (d, J= 4.5 Hz, 1H), 6.40 (s, 1H), 6.33 (s, 1H), 2.12 - 1.98 (m, 1H), 1.93 - 1.90 (m, 1H), 1.30 (s, 3H), 1.28 (s, 3H), 1.24 (s, 3H), 1.19 (s, 3H) ppm. 13C NMR (100 MHz, CDCI3) δ 168.97, 168.89, 158.51, 157.79, 157.75, 155.29, 155.25, 134.09, 133.74, 132.91, 132.79, 131.05, 126.29, 126.20, 126.11, 122.62, 122.59, 117.31, 117.26, 116.37, 116.25, 115.33, 1 15.20, 1 13.24, 113.19, 113.08, 1 13.02, 91.24, 91.08, 62.74, 62.65, 36.87, 36.84, 31.47, 31.41, 29.39, 29.22, 28.52, 28.50, 15.33, 15.30 ppm.
Beispiel 7 (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-cyan[3-(2,4,6- trifluorphenoxy)phenyl] methylester
Figure imgf000049_0002
Gemisch der Diastereomeren I und II
ES HRMS: m/z gefunden: 579.9383, 581.9343, 583.9332 (MNa+).
C22Hi6F3N03Br2 (MNa+) berechnet: 579.9347, 581.9326, 583.9306. lH NMR (400 MHz, CDCI3) δ 7.30 (td, J = 8.0, 3.5 Hz, 1H), 7.17 (dd, J = 9.9, 5.8 Hz, 1H), 7.06 - 7.00 (m, 1H), 6.88 (d, J= 8.3 Hz, 1H), 6.77 - 6.68 (m, 2 H), 6.62 (d, J= 4.9 Hz, 1H), 6.60 (d, J= 5.0 Hz, 1H), 6.30 (s, 1H), 6.25 (s, 1H), 2.03 - 1.91 (m, 1H), 1.83 (d, J = 8.5 Hz, 1H), 1.21 (s, 3H), 1.19 (s, 3H), 1.15 (s, 3H), 1.11 (s, 3H) ppm.
13C NMR (100 MHz, CDCI3) δ 168.92, 168.86, 160.53, 158.41, 158.06, 157.88, 157.82, 157.73, 157.67, 155.37, 155.30, 155.22, 155.15, 134.26, 133.91, 132.89, 132.76, 131.10, 128.13, 128.08, 122.83, 122.79, 117.16, 117.13, 116.32, 116.19, 115.24, 115.13, 102.12, 102.05, 101.93, 101.86, 101.79, 101.67, 101.60, 91.27, 91.08, 62.68, 62.60, 36.88, 36.85, 31.98, 31.47, 31.40, 29.38, 29.19, 28.50, 28.48, 23.05, 15.30,
15.28, 14.53 ppm
Beispiel 8 (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-cyan[3-(4- triflu
Figure imgf000050_0001
Gemisch der Diastereomeren I und II
ES HRMS: m/z gefunden: 609.9461, 611.9435, 613.9426 (MNa+). C23Hi8F3N04Br2 (MNa+) berechnet : 609.9452, 611.9432, 613.9426. lH NMR (400 MHz, CDC13) δ 7.35 (t, J= 8.0 Hz, 1H), 7.20 (d, J= 7.6 Hz, 1H), 7.18 - 7.06 (m, 3H), 7.03 - 6.92 (m, 3H), 6.62 (d, J = 5.6 Hz, 1H), 6.60 (d, J = 5.7 Hz, 1H), 6.31 (s, 1H), 6.26 (s, 1H), 2.02-1.95 (m, 1H), 1.83 (d, J= 8.4 Hz, 1H), 1.22 (s, 3H), 1.20 (s, 3H), 1.16 (s, 3H), 1.12 (s, 3H) ppm.
13C NMR (100 MHz, CDCI3) δ 168.89, 168.87, 158.04, 158.02, 155.31 , 155.29, 145.44, 134.40, 134.13, 132.86, 132.69, 131.28, 123.22, 123.18, 123.11, 120.76, 120.55, 120.54, 1 18.46, 118.35, 116.40, 116.25, 91.35, 91.10, 62.68, 62.64, 36.91, 36.87, 31.47, 31.39, 29.40, 29.21, 28.52, 28.50, 15.33, 15.31 ppm. Beispiel 9 (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-cyan[3-(4- chlorph
Figure imgf000050_0002
Gemisch der Diastereomeren I und II
ES HRMS: m/z gefunden: 559.9232, 561.9200, 563.9160 (MNa+). C22Hi8ClN03Br2 (MNa+) berechnet: 559.9240, 561.9210, 563.9190. lH NMR (400 MHz, CDC13) δ 7.33 (t, J= 8.0 Hz, 1H), 7.23 (d, J= 8.7 Hz, 2H), 7.18 (d, J= 7.8 Hz, 1H), 7.06 (d, J= 9.3Hz, 1H), 6.97 (d, J= 8.1 Hz, 1H), 6.91 - 6.82 (m, 2H), 6.62 (d, J= 5.9 Hz, 1H), 6.60 (d, J = 5.9 Hz, 1H), 6.29 (s, 1H), 6.24 (s, 1H), 2.02-1.95 (m, 1H), 1.83 (d, J = 8.4 Hz, 1H), 1.22 (s, 3H), 1.20 (s, 3H), 1.16 (s, 3H), 1.12 (s, 3H) ppm.
13C NMR (100 MHz, CDCI3) δ 168.89, 168.86, 158.22, 158.17, 155.37, 155.34, 134.31 , 134.03, 132.87, 132.71, 131.24, 130.44, 129.58, 129.53, 123.02, 122.93, 121.03, 120.99, 120.64, 120.59, 118.24, 118.10, 116.42, 116.28, 91.37, 91.12, 62.72, 62.66, 36.92, 36.88, 31.48, 31.40, 29.42, 28.58, 28.56, 15.38, 15.36 ppm.
Beispiel 9b -3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(S)-cyan[3-(4-
Figure imgf000051_0001
ES HRMS: m/z gefunden: 559.9224, 561.9194, 563.9201 (MNa+). C22Hi8ClN03Br2 (MNa+) berechnet: 559.9420, 561.9210, 563.9199. lH NMR (400 MHz, CDCI3) δ 7.41 (t, J= 8.0 Hz, 1H), 7.32 (d, J= 8.8 Hz, 2H), 7.27 (d, J= 7.8 Hz, 1H), 7.14 (s, 1H), 7.05 (d, J= 8.2 Hz, 1H), 6.96 (d, J= 8.8 Hz, 2H), 6.70 (d, J= 8.3 Hz, 1H), 6.38 (s, 1H), 2.08 (t, J= 8.4 Hz, 1H), 1.92 (d, J= 8.4 Hz, 1H), 1.25 (s, 3H), 1.20 (s, 3H) ppm. 13C NMR (100 MHz, CDCI3) δ 168.86, 158.21, 155.35, 134.31, 132.74, 131.25, 130.44, 129.57, 122.94, 121.03, 120.60, 118.11, 116.28, 91.36, 62.66, 36.92, 31.41, 29.23, 28.56, 15.39 ppm.
Beispiel 10 (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-cyan[3-(4- triflu
Figure imgf000051_0002
Gemisch der Diastereomeren I und II
ES HRMS: m/z gefunden: 593.9489, 595.9483, 597.9512 (MNa+). C22Hi8FN03Br2 (MNa+) berechnet: 593.9503, 595.9483, 597.9462. lH NMR (400 MHz, CDC13) δ 7.53 (d, J= 8.6 Hz, 1H), 7.39 (t, J= 8.0 Hz, 1H), 7.26 (d, J= 7.8 Hz, 1H), 7.14 (d, J= 9.8 Hz, 1H), 7.04 (d, J= 8.1 Hz, 1H), 7.00 (d, J= 8.6 Hz, 1H), 6.62 (d, J= 5.5 Hz, 1H), 6.60 (d, J= 5.5 Hz, 1H), 6.33 (s, 1H), 6.28 (s, 1H), 2.01 (t, J= 8.4 Hz, 1H), 1.98 (t, J= 8.4 Hz, 1H), 1.84 (d, J = 8.4 Hz, 1H), 1.23 (s, 3H), 1.21 (s, 3H), 1.17 (s, 3H), 1.12 (s, 3H) ppm. 13C NMR (100 MHz, CDCI3) δ 167.42, 158.55, 155.62, 155.56, 133.12, 132.86, 131.38, 131.20, 129.98, 126.40, 126.36, 126.33, 126.29, 122.44, 122.35, 120.26, 120.22, 1 17.87, 1 17.74, 1 17.43, 1 17.37, 1 14.91 , 1 14.76, 89.96, 89.69, 61.17, 61.14, 35.50, 35.46, 30.03, 29.94, 28.00, 27.79, 27.10, 27.08, 13.90, 13.88 ppm.
Beispiel 10b (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(S)-cyan[3-(4- triflu
Figure imgf000052_0001
ES HRMS: m/z gefunden: 593.9525, 595.9475, 597.9493 (MNa+). C23Hi8F3N03Br2 (MNa+) berechnet: 593.9503, 595.9483, 597.9462. lH NMR (400 MHz, CDCI3) δ 7.55 (d, J= 8.7 Hz, 2H), 7.40 (t, J= 8.0 Hz, 1H), 7.27 (d, J= 7.8 Hz, 1H), 7.13 (dd, J= 6.6, 4.6 Hz, 1H), 7.05 (dd, J= 8.1, 2.3 Hz, 1H), 7.01 (d, J= 8.6 Hz, 2H), 6.62 (d, J= 8.3 Hz, 1H), 6.33 (s, 1H), 2.02 (t, J= 8.4 Hz, 1H), 1.85 (d, J= 8.4 Hz, 1H), 1.18 (s, 3H), 1.13 (s, 3H) ppm.
13C NMR (100 MHz, CDCI3) δ 168.84, 157.07, 134.55, 132.59, 131.41 , 127.80, 127.76, 123.77, 121.64, 119.17, 118.86, 116.18, 91.42, 62.56, 36.94, 31.38, 29.22, 28.54, 15.34 ppm.
Beispiel I Ia (lR,3R)-3-(2-Chlor-2-trifluormethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(R)- cyan[3-(4
Figure imgf000052_0002
ES HRMS: m/z gefunden: 490.0790 (MNa+). C23H18CIF4NO3 (MNa+) berechnet: 490.0809. lH NMR (400 MHz, CDC13) δ 7.25 (t, J= 8.0 Hz, 1H), 7.09 (d, J= 7.8 Hz, 1H), 6.99 (s, 1H), 6.96 - 6.83 (m, 5H), 6.70 (d, J= 9.2 Hz, 1H), 6.18 (s, 1H), 2.12 (t, J= 8.6 Hz, 1H), 1.91 (d, J= 8.3 Hz, 1H), 1.20 (s, 6H) ppm.
13CNMR(100 MHz, CDCI3) δ 166.92, 159.00, 157.09, 156.59, 150.42, 150.39, 131.87, 129.25, 127.56, 127.52, 120.64, 119.64, 119.56, 118.10, 115.72, 115.25, 115.01, 114.43, 61.05, 30.57, 30.14, 28.49, 26.61, 13.25 ppm.
Beispiel IIb (lR,3R)-3-(2-Chlor-2-trifluormethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(S)- cyan[3-(4
Figure imgf000053_0001
ES HRMS: m/z gefunden: 490.0790 (MNa+). C23H18CIF4NO3 (MNa+) berechnet: 490.0809.
'HNMR (400 MHz, CDCI3) δ 7.27 (t,J= 8.0 Hz, 1H), 7.11 (t,J=6.3 Hz, 1H), 7.01-6.83 (m, 5H), 6.70 (d, J= 9.2 Hz, 1H), 6.25 (s, 1H), 2.16 (t, J= 8.7 Hz, 1H), 1.91 (d, J= 8.3 Hz, 1H), 1.17 (s, 3H), 1.09 (s, 3H) ppm. 13C NMR (100 MHz, CDCI3) δ 168.74, 160.91, 159.01, 158.49, 152.27, 152.24, 134.03, 131.16, 129.23, 129.18, 122.43, 121.57, 121.49, 119.97, 117.45, 117.16, 116.93, 116.16, 62.84, 32.38, 32.10, 30.18, 28.52, 15.18 ppm.
Beispiel 12a (lR,3R)-3-(2-Chlor-2-trifluormethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(R)- cyan[3 -(3 - fluorphenoxy)phenyl] methylester
Figure imgf000053_0002
ES HRMS: m/z gefunden: 490.0797 (MNa+).
C23H18CIF4NO3 (MNa+) berechnet: 490.0809. lH NMR (400 MHz, CDCI3) δ 7.39 (d, J= 6.8 Hz, 1H), 7.36 - 7.26 (m, 2H), 7.17 (dd, J= 11.4, 4.9 Hz, 1H), 7.06 (s, 1H), 6.96 (d, J= 8.1 Hz, 1H), 6.74-6.68 (m, 1H), 6.66 (d, J= 8.2 Hz, 1H), 6.59 (d, J= 10.0 Hz, 1H), 6.29 (s, 1H), 6.20 (s, 1H), 2.16-2.10 (m, 1H), 1.92 (d, J= 8.3 Hz, 1H), 1.20 (s, 6H) ppm. 13C NMR (100 MHz, CDC13) δ 166.95, 166.93, 163.29, 160.83, 156.38, 156.27, 155.78, 131.99, 130.37, 129.37, 129.35, 129.25, 128.97, 127.80, 127.51, 127.47, 127.46, 127.44, 126.39, 121.49, 119.35, 116.91, 114.52, 114.36, 112.98, 112.95, 109.40, 109.18, 105.30, 105.05, 61.43, 60.97, 30.56, 30.16, 30.13, 26.62, 13.28, 13.26 ppm. Beispiel 12b (lR,3R)-3-(2-Chlor-2-trifluormethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(S)- cyan[3-(3
Figure imgf000054_0001
ES HRMS: m/z gefunden: 490.0797 (MNa+).
C23H18CIF4NO3 (MNa+) berechnet: 490.0809. lH NMR (400 MHz, CDCI3) δ 7.31 (t, J= 8.0 Hz, 1H), 7.17 (t, J= 7.3 Hz, 1H), 7.05 (s, 1H), 6.98 (d, J = 8.2 Hz, 1H), 6.76-6.66 (m, 3H), 6.59 (d, J= 10.0 Hz, 1H), 6.27 (s, 1H), 2.16 (t, J= 8.7 Hz, 1H), 1.92 (d, J = 8.3 Hz, 1H), 1.17 (s, 3H), 1.09 (s, 3H) ppm.
13C NMR (100 MHz, CDCI3) δ 166.83, 163.28, 160.82, 156.35, 156.25, 155.80, 132.30, 129.39, 129.36, 129.26, 127.30, 127.25, 121.41, 119.34, 116.80, 114.20, 113.03, 113.00, 109.43, 109.22, 105.29, 105.05, 60.89, 30.47, 30.22, 28.30, 26.63, 13.27 ppm.
Beispiel 13a (lR,3R)-3-(2-Chlor-2-trifluormethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(R)- cyan[3-(4
Figure imgf000054_0002
ES HRMS: m/z gefunden: 506.0532, 508.0522 (MNa+). C23H18F3NO3CI2 (MNa+) berechnet : 506.0514, 508.0484. lH NMR (400 MHz, CDCI3) δ 7.33 (t, J= 8.0 Hz, 1H), 7.24 (d, J= 8.8 Hz, 2H), 7.17 (d, J= 7.8 Hz, 1H), 7.08 (s, 1H), 6.97 (d, J= 8.1 Hz, 1H), 6.88 (d, J= 8.8 Hz, 1H), 6.74 (d, J= 9.2 Hz, 1H), 6.24 (s, 1H), 2.18 (t, J= 8.7 Hz, 1H), 1.96 (d, J= 8.3 Hz, 1H), 1.26 (s, 6H) ppm.
13C NMR (100 MHz, CDCI3) δ 167.35, 156.80, 153.88, 132.39, 129.79, 128.99, 128.16, 127.94, 127.89, 121.56, 119.55, 119.22, 116.79, 114.84, 61.44, 31.01, 30.62, 28.98, 27.11, 13.74 ppm. Beispiel 13b (lR,3R)-3-(2-Chlor-2-trifluormethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(S)- cyan[3-(4
Figure imgf000055_0001
ES HRMS: m/z gefunden: 506.0512, 508.0507 (MNa+). C23H18F3NO3CI2 (MNa+) berechnet: 506.0514, 508.0484. lH NMR (400 MHz, CDCI3) δ 7.34 (t, J= 8.0 Hz, 1H), 7.30 - 7.22 (m, 1H), 7.18 (d, J= 7.8 Hz, 1H), 7.05 (s, 1H), 6.98 (d, J= 8.2 Hz, 1H), 6.89 (d, J= 8.8 Hz, 1H), 6.75 (d, J= 9.2 Hz, 1H), 6.30 (s, 1H), 2.21 (t, J = 8.7 Hz, 1H), 1.97 (d, J= 8.3 Hz, 1H), 1.22 (s, 3H), 1.14 (s, 3H) ppm.
13C NMR (100 MHz, CDCI3) δ 167.29, 156.83, 153.86, 132.70, 129.80, 128.99, 128.20, 127.77, 127.73, 121.45, 119.59, 119.17, 116.62, 114.69, 61.36, 30.93, 30.68, 28.76, 27.09, 13.74 ppm.
Beispiel 14 (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-cyan[4-fluor-3-(4- fluorph
Figure imgf000055_0002
Stufe A (Methode II): 4-Fluor-3-(4- auch DE-OS 2 739 854)
Figure imgf000055_0003
Zu einem Gemisch aus 280 mg (2 mmol) 4-Fluor-3-hydroxy-benzaldehyd and 560 mg (4 mmol) 4- Fluorophenyl-boronsäure in 20 mL of wasserfreien Dimethylenchlorid wurden nacheinander frisch aktiviertes 4Ä Molsieb, 364 mg (2 mmol) Kupfer(II)-acetat und 1,39 mL (10 mmol) Triethylamin gegeben. Das gesamte Reaktionsgemisch wurde 24 Stunden bei Raumtemperatur gerührt. Danach wurde das Reaktionsgemisch durch Kieselgel filtriert und das Lösungsmittel im Vakuum abgetrennt. Das zurückbleibende Rohprodukt wurde mittels Flash Chromatographie (Kieselgel, Eluent: 10% Essigsäureethyles- ter/Hexan) gereinigt. Man erhält 230 mg (49% d. Theorie) reinen 4-Fluor-3-(4- fluorphenoxy)benzaldehyd, der gemäss Beispiel 1 (vgl. Stufen B-D) weiter umgesetzt werden kann. Gemisch der Diastereomeren I und II ES HRMS: m/z gefunden: 561.9464, 563.9412, 565.9372 (MNa+). C22Hi7F2N03Br2 (MNa+) berechnet: 561.9441, 563.9420, 565.9400. lH NMR (400 MHz, CDC13) δ 7.36 - 7.24 (m, 3H), 7.18 (t, J = 7.3 Hz, 1H), 7.12 - 7.03 (m, 1H), 7.00 (dd, J = 9.0, 4.3Hz, 1H), 6.70 (d, J = 6.5 Hz, 1H), 6.68 (d, J = 6.5 Hz, 1H), 6.35 (s, 1H), 6.30 (s, 1H), 2.12-2.05 (m, 1H), 1.92 (d, J= 8.4 Hz, 1H), 1.32 (s, 3H), 1.30 (s, 3H), 1.26 (s, 3H), 1.20 (s, 3H) ppm.
13C NMR (100 MHz, CDCI3) δ 168.82, 168.80, 160.71, 160.70, 158.30, 158.29, 156.52, 156.47, 154.00, 153.95, 152.66, 152.64, 152.62, 145.60, 145.55, 145.49, 145.43, 132.85, 132.68, 129.32, 129.29, 129.03, 128.99, 124.54, 124.46, 124.45, 124.37, 120.75, 120.74, 120.63, 120.61, 1 19.92, 119.88, 119.84, 119.79, 118.50, 1 18.31 , 117.12, 1 16.88, 116.29, 1 16.14, 91.37, 91.13, 62.29, 62.24, 36.91, 36.88, 31.43, 31.35, 29.46, 29.24, 28.51, 28.48, 15.32, 15.30 ppm.
Beispiel 14b (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(S)-cyan[4-fluor-
3-(4-flu
Figure imgf000056_0001
ES HRMS: m/z gefunden: 561.9464, 563.9412, 565.9372 (MNa+). C22Hi7F2N03Br2 (MNa+) berechnet: 561.9441, 563.9420, 565.9400. lH NMR (400 MHz, CDCI3) δ 7.33 - 7.22 (m, 1H), 7.14 (d, J= 7.5 Hz, 1H), 7.09 - 6.95 (m, 2H), 6.67 (d, J= 8.3 Hz, 1H), 6.32 (s, 1H), 2.08 (t, J= 8.4 Hz, 1H), 1.89 (d, J= 8.4 Hz, 1H), 1.24 (s, 3H), 1.18 (s, 3H) ppm.
13C NMR (100 MHz, CDCI3) δ 168.78, 160.73, 158.32, 156.49, 153.97, 152.63, 152.61 , 145.63, 145.51 , 132.61, 129.30, 129.26, 124.42, 124.34, 120.61, 120.60, 119.91, 119.83, 118.50, 118.31, 117.1 1, 116.88, 116.11, 91.41, 62.22, 36.93, 31.35, 29.23, 28.50, 15.32 ppm.
In analoger Weise wurden die Beispiele 15 bis 24 erhalten.
Beispiel 15 -3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-cyan[4-fluor-3-(3-
Figure imgf000056_0002
Gemisch der Diastereomeren I und II
ES HRMS: m/z gefunden: 561.9455, 563.9445, 565.9400 (MNa+). C22Hi7F2N03Br2 (MNa+) berechnet: 561.9441, 563.9420, 565.9400. lH NMR (400 MHz, CDC13) δ 7.32 - 7.12 (m,4H), 6.76 (t, J= 8.3 Hz, 1H), 6.68 (d, J= 8.4 Hz, 1H), 6.64 - 6.56 (m, 2H), 6.28 (s, 1H), 6.23 (s, 1H), 2.09 - 1.93 (m, 1H), 1.82 (d, J= 8.4 Hz, 1H), 1.22 (s, 3H), 1.20 (s, 3H), 1.17 (s, 3H), 1.11 (s, 3H) ppm.
13C NMR (100 MHz, CDCI3) δ 168.82, 168.80, 165.13, 162.67, 158.46, 158.43, 158.35, 158.33, 156.98, 156.95, 154.45, 154.42, 144.16, 144.12, 144.04, 144.00, 132.76, 132.60, 131.23, 131.14, 129.51, 129.47, 129.20, 129.16, 125.50, 125.46, 125.43, 125.38, 122.27, 122.26, 122.22, 122.20, 118.69, 118.50, 116.21, 1 16.07, 1 13.24, 113.21 , 1 13.15, 113.12, 1 11.18, 1 1 1.14, 110.97, 1 10.93, 105.66, 105.41, 91.43, 91.20, 62.18, 62.16, 36.96, 36.93, 31.44, 31.35, 29.49, 29.29, 28.53, 28.50, 15.31 ppm.
Beispiel 15b (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(S)-cyan[4-fluor-
3 -(3 -flu
Figure imgf000057_0001
ES HRMS: m/z gefunden: 561.9455, 563.9445, 565.9400 (MNa+). C22Hi7F2N03Br2 (MNa+) berechnet: 561.9441, 563.9420, 565.9400.
'H NMR (400 MHz, CDCI3) δ 7.30-7.17 (m, 4H), 6.75 (t, J = 6.2 Hz, 1H), 6.68 (d, J = 7.8 Hz, 1H), 6.63 - 6.54 (m, 2H), 6.28 (s, 1H), 2.00 (t, J = 8.4 Hz, 1H), 1.82 (d, J = 8.4 Hz, 1H), 1.16 (s, 3H), 1.11 (s, 3H) ppm. 13C NMR (100 MHz, CDCI3) δ 171.53, 168.79, 165.1 1, 162.65, 158.44, 158.33, 156.93, 154.41, 144.15, 144.02, 132.77, 132.62, 131.23, 131.13, 129.52, 129.48, 125.46, 125.38, 122.21, 118.68, 118.49, 116.07, 113.23, 1 13.20, 11 1.16, 1 10.95, 105.64, 105.39, 91.40, 62.16, 60.79, 36.94, 31.35, 29.27, 28.48, 21.43, 15.30, 14.60 ppm.
Beispiel 16 (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-cyan[4-fluor-3- (3,4-diflu
Figure imgf000057_0002
Gemisch der Diastereomeren I und II
ES HRMS: m/z gefunden: 579.9350, 581.9304, 583.9326 (MNa+). C22Hi6F3N03Br2 (MNa+) berechnet : 579.9347, 581.9326, 583.9306. lH NMR (400 MHz, CDC13) δ 7.36-7.32 (m, 1H), 7.30 - 7.16 (m, 2H), 6.61 (d, J= 5.7 Hz, 1H), 6.58 (d, J = 5.8 Hz, 1H), 6.54 - 6.45 (m, 1H), 6.45 - 6.36 (m, 2H), 6.31 (s, 1H), 6.27 (s, 1H), 2.02 (t, J = 8.0 Hz, 1H), 1.99 (t, J = 8.0 Hz, 1H), 1.84 (d, J = 8.5 Hz, 1H), 1.24 (s, 3H), 1.22 (s, 3H), 1.18 (s, 3H), 1.13 (s, 3H) ppm.
13C NMR (101 MHz, CDCI3) δ 168.83, 168.81, 168.80, 165.33, 165.18, 162.86, 162.71 , 159.44, 159.42, 159.31, 159.30, 159.29, 157.09, 157.06, 154.55, 154.52, 143.13, 143.12, 143.10, 143.01, 143.00, 142.98, 132.71, 132.55, 129.76, 129.72, 129.45, 129.41, 126.40, 126.38, 126.35, 126.33, 126.30, 123.01 , 118.90, 118.88, 118.71, 116.13, 115.99, 101.14, 101.12, 101.06, 101.04, 101.03, 100.94, 100.92, 100.91, 100.89, 100.85, 100.83, 100.80, 99.82, 99.78, 99.56, 99.53, 99.31, 99.27, 91.49, 91.26, 62.08, 62.06, 37.00, 36.97, 31.43, 31.35, 29.53, 29.34, 28.53, 28.50, 15.30 ppm.
Beispiel 17 (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-cyan[4-fluor-3- (3,4,5 -trifluorphenoxy)phenyl] methylester
Figure imgf000059_0001
Gemisch der Diastereomeren I und II ES HRMS: m/z gefunden: 597.9261, 599.9222, 601.9252 (MNa+). C22Hi5F4N03Br2 (MNa+) berechnet: 597.9252, 599.9232, 601.9212. lH NMR (400 MHz, CDC13) δ 7.36-7.32 (m, 2H), 7.27 - 7.16 (m, 2H), 6.60 (d, J= 6.1 Hz, 1H), 6.58 (d, J = 6.2 Hz, 1H), 6.55-6.51 m, 1H), 6.30 (s, 1H), 6.27 9s, 1H), 2.05-1.96 (m, 1H), 1.84 (d, J = 8.4 Hz, 1H), 1.24 (s, 3H), 1.22 (s, 3H), 1.18 (s, 3H), 1.13 (s, 3H) ppm. 13C NMR (100 MHz, CDCI3) δ 168.79, 156.95, 156.92, 154.41, 154.39, 153.30, 153.24, 153.19, 153.13, 152.59, 150.81, 150.75, 150.70, 150.64, 143.28, 143.16, 132.71, 132.52, 129.84, 129.80, 129.56, 129.52, 126.38, 126.30, 122.68, 1 18.96, 118.77, 1 16.10, 1 15.96, 102.31 , 102.25, 102.14, 102.07, 91.52, 91.25, 62.06, 62.03, 37.01, 36.98, 31.43, 31.34, 29.53, 29.32, 28.51, 28.49, 15.28 ppm.
Beispiel 18b (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(S)-cyan[4-fluor- 3-(4-chl
Figure imgf000059_0002
ES HRMS: m/z gefunden: 577.9155, 579.9106, 581.9090 (MNa+). C22Hi7ClFN03Br2 (MNa+) berechnet: 577.9145, 579.9116, 581.9095. lH NMR (400 MHz, CDCI3) δ 7.37 - 7.16 (m, 5H), 6.93 (dd, J = 7.1, 5.2 Hz, 1H), 6.67 (d, J = 8.3 Hz, 1H), 6.34 (s, 1H), 2.08 (t, J= 8.4 Hz, 1H), 1.89 (d, J= 8.4 Hz, 1H), 1.25 (s, 3H), 1.19 (s, 3H) ppm.
13C NMR (100 MHz, CDCI3) δ 168.78, 156.73, 155.60, 154.20, 144.76, 144.65, 132.58, 130.35, 129.42, 129.38, 124.98, 124.91 , 121.45, 121.44, 1 19.31 , 1 18.62, 1 18.43, 1 16.08, 91.46, 62.17, 36.95, 31.35, 29.27, 28.52, 15.33 ppm.
Beispiel 19b (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(S)-cyan[4-fluor- 3-(4-trifluormethylphenoxy)phenyl]methylester
Figure imgf000060_0001
ES HRMS: m/z gefunden: 611.9474, 613.9372, 615.9388 (MNa+). C23Hi7F4N03Br2 (MNa+) berechnet: 611.9409, 613.9389, 615.9368. lH NMR (400 MHz, CDC13) δ 7.47 (d, J= 8.7 Hz, 2H), 7.28-7.20 (m, 2H), 7.22 - 7.12 (m, 2H), 6.91 (d, J = 8.6 Hz, 2H), 6.55 (d, J = 8.3 Hz, 1H), 6.24 (s, 1H), 1.96 (t, J = 8.3 Hz, 1H), 1.78 (d, J = 8.4 Hz, 1H), 1.12 (s, 3H), 1.06 (s, 3H) ppm.
13C NMR (100 MHz, CDCI3) δ 171.73, 161.50, 157.88, 155.44, 145.76, 132.78, 132.45, 129.47, 127.50, 126.40, 125.86, 123.41, 118.68, 117.27, 115.93, 91.06, 62.02, 36.92, 31.41, 28.88, 28.10, 14.57 ppm.
Beispiel 20a (lR,3R)-3-(2-Chlor-2-trifluormethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(R)- cyan[4-flu -3-(4-fluorphenoxy)phenyl]methylester
Figure imgf000060_0002
ES HRMS: m/z gefunden: 508.0703 (MNa+). C23H17F5NO3CI (MNa+) berechnet: 508.0715.
'H NMR (400 MHz, CDCI3) δ 7.19 (d, J = 7.3 Hz, 1H), 7.10 - 7.04 (m, 1H), 7.03 - 6.94 (m, 2H), 6.93 - 6.87 (m, 2H), 6.72 (d, J = 9.1 Hz, 1H), 6.19 (s, 1H), 2.18 (t, J = 8.7 Hz, 1H), 1.93 (d, J = 8.3 Hz, 3H), 1.26 (s, 1H), 1.25 (s, 3H) ppm.
13C NMR (100 MHz, CDCI3) δ 168.69, 160.76, 158.35, 156.60, 154.07, 152.57, 145.66, 145.55, 129.25, 129.20, 128.78, 128.74, 124.51, 124.43, 120.71, 119.86, 119.78, 118.53, 118.34, 117.11, 116.87, 116.11, 77.74, 77.42, 77.11, 62.43, 32.38, 32.08, 30.47, 28.54, 15.14 ppm. Beispiel 20b (lR,3R)-3-(2-Chlor-2-trifluormethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(S)- cyan[4-flu -3-(4-fluorphenoxy)phenyl]methylester
Figure imgf000061_0001
ES HRMS: m/z gefunden: 508.0703 (MNa+). C23H17F5NO3CI (MNa+) berechnet: 508.0715. lH NMR (400 MHz, CDCI3) δ 7.34 - 7.27 (m, 2H), 7.16 (d, J= 9.6 Hz, 1H), 7.12 - 6.97 (m, 4H), 6.82 (d, J= 9.2 Hz, 1H), 6.35 (s, 1H), 2.29 (dt, J= 13.5, 8.7 Hz, 1H), 2.07 - 1.98 (m, 1H), 1.32 (s, 3H), 1.22 (s, 3H) ppm.
13C NMR (100 MHz, CDCI3): δ 168.6, 159.5 (J= 242Hz), 155.6 (J= 254Hz), 152.5, 145.6 (J= 12.1Hz), 129.1 (J= 4.0Hz), 128.9, 124.4 (J= 7.6Hz), 123.4, 120.5, 119.9 (J= 9.0Hz), 118.4 (J= 9.2Hz), 117.0 (J = 23.3Hz), 115.9, 62.3, 32.3, 32.1, 30.2, 28.5, 15.1 ppm.
Beispiel 21a (lR,3R)-3-(2-Chlor-2-trifluormethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(R)- cyan[4-flu -3-(3-fluorphenoxy)phenyl]methylester
Figure imgf000061_0002
ES HRMS: m/z gefunden: 508.0698 (MNa+).
C23H17F5NO3CI (MNa+) berechnet: 508.0715. lH NMR (400 MHz, CDCI3) δ 7.22-7.12 (m, 4H), 6.76 - 6.51 (m, 4H), 6.17 (s, 1H), 2.13 (t, J= 8.7 Hz, 1H), 1.89 (d, J= 8.3 Hz, 1H), 1.21 (s, 3H), 1.20 (s, 3H) ppm.
13CNMR(100 MHz, CDCI3): δ 168.7, 162.4 (J= 248Hz), 156.6 (J= 259Hz), 152.8, 144.1, 131.2 (J = 10Hz), 129.1, 128.9, 125.4 (J= 8.0Hz), 123.0, 122.3, 118.6 (J= 19.2Hz), 116.1, 113.1 (J= 3.2Hz), 111.1 (J= 21.4Hz), 105.5 (J= 26.5Hz), 62.3, 32.2, 32.1, 30.5, 28.5, 15.1 ppm. Beispiel 21b (lR,3R)-3-(2-Chlor-2-trifluormethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(S)- cyan[4-flu -3-(3-fluorphenoxy)phenyl]methylester
Figure imgf000062_0001
ES HRMS: m/z gefunden: 508.0698 (MNa+). C23H17F5NO3CI (MNa+) berechnet: 508.0715.
'H NMR (400 MHz, CDCI3) δ 7.27 - 7.10 (m, 4H), 6.73-6.57 (m, 3H), 6.56 (d, J = 9.9 Hz, 1H), 6.23 (s, 1H), 2.16 (t, J= 8.7 Hz, 1H), 1.90 (d, J= 8.3 Hz, 1H), 1.17 (s, 3H), 1.08 (s, 3H) ppm.
13C NMR (100 MHz, CDCI3): δ 168.6, 162.4 (J = 248Hz), 156.6 (J = 259Hz), 152.8, 144.1, 131.2 (J= 10Hz), 129.0, 128.9, 125.4 ( J = 8.0Hz), 123.3, 122.2, 118.6 (J = 19.2Hz), 116.2, 113.2 (J = 3.2Hz), 111.1 ( J = 21.4Hz), 105.5 (J= 26.5Hz), 62.3, 32.2, 32.1, 30.2, 28.5, 15.1 ppm.
Beispiel 22 (lR,3R)-3-(2-Chlor-2-trifluormethenyl)-2,2-dimethyl-cyclopropancarbonsäure-cyan[4- fluor-3-(4
Figure imgf000062_0002
Gemisch der Diastereomeren I und II ES HRMS: m/z gefunden: 524.0396, 526.0380 (MNa+). C23H17CI2F4NO3 (MNa+) berechnet: 524.0419, 526.0390. lH NMR (400 MHz, CDCI3): δ 7.31 (2H, m), 7.24 (3H, m), 6.93 (2H, d), 6.34 (1H, s), 6.28 (1H, s), 2.25 (1H, t, J = 8.5Hz), 2.20 (1H, t, J = 8.6Hz), 2.01 (1H, d, J = 8.3Hz), 1.98 (1H, d, J = 8.3Hz), 1.32 (3H, s), 1.26 (3H, s), 1.22 (3H, s), 1.13 (3H, s) ppm. 13C NMR (100 MHz, CDCI3): 168.8, 168.7, 156.7, 155.5, 154.3, 144.8, 144.7, 130.4, 130.3, 129.6, 129.5, 129.3, 129.1 , 129.0, 128.9, 125.1, 124.9, 121.6, 121.4, 119.6, 119.3, 118.4, 116.2, 116.0, 62.4, 62.3, 32.4, 32.3, 32.1, 30.5, 30.2, 28.5, 28.4, 15.1 ppm.
Das ( 1 : 1 )-Gemisch der Diastereomeren lässt sich mittels präparativer HPLC auftrennen (vgl. Herstellungsbeispiel 1). Beispiel 22a (lR,3R)-3-(2-Chlor-2-trifluormethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(R)- cyan[4-flu -3-(4-chlorphenoxy)phenyl]methylester
Figure imgf000063_0001
ES HRMS: m/z gefunden: 524.0440, 526.0431 (MNa+). C23H17F4NO3CI2 (MNa+) berechnet: 524.0419, 526.0436. lH NMR (400 MHz, CDCI3) δ 7.26-7.20 (m, 3H), 7.18 (s, 1H), 7.16 - 7.11 (m, 1H), 6.84 (d, J = 8.9 Hz, 2H), 6.72 (d, J= 9.2 Hz, 1H), 6.20 (s, 1H), 2.17 (t, J= 8.7 Hz, 1H), 1.93 (d, J= 8.3 Hz, 1H), 1.25 (s, 3H), 1.24 (S, 3H) ppm.
13C NMR (100 MHz, CDCI3) δ 168.71, 156.84, 155.61, 154.31, 144.76, 144.64, 130.34, 129.40, 129.30, 129.26, 128.95, 128.92, 125.10, 125.02, 121.57, 1 19.24, 1 18.64, 118.45, 1 16.10, 62.39, 32.39, 32.09, 30.48, 28.51, 15.13 ppm.
Beispiel 22b (lR,3R)-3-(2-Chlor-2-trifluormethenyl)-2,2-dimethyl-cyclopropancarbonsäure-(S)- cyan[4-
Figure imgf000063_0002
ES HRMS: m/z gefunden: 524.0429, 526.0436 (MNa+). C23H17F4NO3CI2 (MNa+) berechnet: 524.0419, 526.0436. lH NMR (400 MHz, CDCI3) δ 7.31 - 7.16 (m, 4H), 7.12 (d, J = 7.4 Hz, 1H), 6.86 (d, J = 8.9 Hz, 2H), 6.72 (d, J= 9.2 Hz, 1H), 6.26 (s, 1H), 2.21 (t, J= 8.7 Hz, 1H), 1.94 (d, J= 8.3 Hz, 1H), 1.22 (s, 3H), 1.13 (s, 3H) ppm. 13C NMR (100 MHz, CDCI3) δ 168.64, 156.78, 155.58, 154.26, 144.83, 144.71, 130.35, 129.48, 129.27, 129.23, 129.06, 129.01 , 124.98, 124.91 , 121.44, 1 19.31, 1 18.64, 118.45, 1 15.93, 62.32, 32.29, 32.15, 30.23, 28.50, 15.14 ppm.
Beispiel 23 (lR,3R)-3-(2-Chlor-2-trifluormethenyl)-2,2-dimethyl-cyclopropancarbonsäure-cyan[4- fluor-3-(4-ethynylphenoxy)phenyl]methylester
Figure imgf000064_0001
ES HRMS: m/z gefunden: 514.0794 (MNa+). C25H18CIF4NO3 (MNa+) berechnet: 514.0809. lH NMR (400MHz, CDCI3): δ 7.49 (2H, m), 7.30 (3H, m), 6.93 (2H, m), 6.82 (1H, s), 6.79 (1H, s), 6.35 (1H, d, J = 4.8Hz), 6.29 (1H, d, J = 4.8Hz), 3.05 (1H, s), 3.04 (1H, s), 2.27 (1H, m), 2.04 (1H, d, J = 8.3Hz), 2.01 (1H, d, J= 8.3Hz), 1.34 (3H, s), 1.32 (3H, s), 1.29 (3H, s), 1.20 (3H, s) ppm.
13C NMR (100 MHz, CDCI3): δ 168.7, 168.6, 157.5, 155.7 (J = 255Hz), 155.6 (J = 255Hz), 144.3 (J = 12.3Hz), 144.2 (J = 12.3Hz), 134.4, 132.9, 128.9, 125.2, 122.0, 118.7 (J = 19.2Hz), 118.6 (J = 19.2Hz), 118.0, 117.9, 117.5, 116.0, 115.9, 83.3, 83.2, 77.4, 62.4, 62.3, 32.4, 32.3, 32.1, 32.0, 30.4, 30.2, 28.5, 15.3 ppm.
Beispiel 24 (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-cyan[4-fluor-3-(4- ethynylphenoxy)phenyl]methylester
Figure imgf000064_0002
Gemisch der Diastereomeren I und II
ES HRMS: m/z gefunden: 567.9551, 569.9499, 571.9479 (MNa+). C24Hi8Br2FN03 (MNa+) berechnet: 567.9535, 569.9515, 571.9494. lH NMR (400MHz, CDCI3): δ 7.49 (2H, m), 7.31 (3H, m), 6.94 (2H, m), 6.68 (1H, d, J = 8.3Hz), 6.65 (1H, d, J= 8.3Hz), 6.35 (1H, d, J= 4.8Hz), 6.31 (1H, d, J= 4.8Hz), 3.05 (1H, s), 2.08 (1H, t, J= 8.4Hz), 2.04 (1H, t, J = 8.4Hz), 1.91 (1H, d, J = 8.4Hz), 1.89 (1H, d, J = 8.4Hz), 1.30 (3H, s), 1.28 (3H, s), 1.24 (3H, s), 1.19 (3H, s) ppm.
13C NMR (100 MHz, CDCI3): δ 168.7, 158.2 (J = 250Hz), 157.5, 157.4, 144.2 (J = 12.3Hz), 144.1 (J = 12.3Hz), 134.3, 132.7, 132.5, 128.9, 125.3, 122.1, 118.7 (J = 19.2Hz), 118.6 (J = 19.2Hz), 118.0, 117.9, 117.8, 116.2, 116.1, 91.4, 91.2, 83.3, 83.2, 77.6, 62.2, 62.1, 36.9, 31.4, 31.3, 29.4, 29.3, 28.5, 15.3 ppm. Beispiel 25 (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-ethynyl[4-fluor-3- (4-fluorph
Figure imgf000065_0001
Stufe A: 4-Fluor-3-(4-fluorphenoxy)benzaldehyd (vgl. auch DE-OS 2 739 854) wird gemäss Beispiel 14, Stufe A (Methode II) erhalten. Stufe B (Methode III): 3-(4-Fluo enmethanol
Figure imgf000065_0002
0,59 g (2,53 mmol) 3-(Fluorphenoxy)benzaldehyd (Stufe A, Methode II) wurden in 10 ml trockenem Tetrahydrofuran unter Inertgasatmosphäre (Stickstoff) verrührt. Danach wurden unter Rühren 7,6 ml (3,8 mmol) Lithium Tetramethylsilyl-acetylen (als 0,5 M Lösung in THF) bei einer Temperatur von -78 °C hinzugegeben und innerhalb von 3 Stunden auf 0 °C erwärmt. Anschliessend wurde der Reaktionsansatz mit einer gesättigten Ammoniumchlorid-Lösung versetzt und mit Essigsäureethylester extrahiert. Die organische Phase wurde über Magnesiumsulfat getrocknet und im Vakuum eingeengt. Danach wurde das verbleibende Rohprodukt in 2 ml THF gelöst, die Lösung bei -20 °C mit 3,8 ml (3.8 mmol) IM Lösung Tetra-n-butylammoniumfluorid (TBAF) versetzt und 30 Minuten gerührt. Anschliessend wurde der gesamte Reaktionsansatz mit Wasser versetzt und anschliessend mit Essigsäureethylester extrahiert. Die organische Phase wurde über Magnesiumsulfat getrocknet und nach Filtration im Vakuum eingeengt. Das verbleibende Rohprodukt wurde mittels Flash Chromatographie (Kieselgel Eluent: 30% Essigsäureethylester : Hexane) gereinigt. Man erhält 395 mg (60 % der Theorie) reines 3-(4- Fluorphenoxy)phenyl)-a-ethynyl-4-fluor-benzenmethanol, das gemäss gemäss Stufe D (Methode I) mit (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropan-carbonsäurechlorid umgesetzt werden kann.
Gemisch der Diastereomeren I und II
ES HRMS: m/z gefunden: 560.9465, 562.9460, 564.9470 (MNa+).
C23H18 F203Br2Na (MNa+) berechnet: 560.9488, 562.9468, 564.9448. lH NMR (400 MHz, CDC13) δ 7.25 - 7.05 (m, 3H), 7.01 - 6.82 (m, 4H), 6.63 (t, J= 8.4 Hz, 1H), 6.28 (d, J = 2.2 Hz, 1H), 6.24 (d, J = 2.2 Hz, 1H), 2.57 (dd, J = 5.0, 2.3 Hz, 1H), 1.98 - 1.72 (m, 2H), 1.19 (s, 3H), 1.16 (s, 3H), 1.12 (s, 3H), 1.09 (s, 3H) ppm.
13C NMR (100 MHz, CDCI3) δ 168.01, 158.99, 156.59, 156.57, 154.43, 154.39, 151.94, 151.89, 151.69, 143.29, 143.22, 143.17, 143.11, 132.51, 132.47, 132.29, 132.25, 131.99, 131.97, 123.05, 122.97, 122.96, 122.88, 119.61, 119.48, 118.04, 117.99, 117.96, 117.91, 116.37, 116.35, 116.19, 116.16, 115.44, 115.20, 88.95, 88.91, 76.04, 75.72, 75.00, 74.84, 63.26, 63.22, 34.89, 34.85, 30.53, 27.19, 27.16, 27.12, 26.99, 13.97, 13.95 ppm.
In analoger Weise wurde das Beispiel 26 erhalten. Beispiel 26 (lR,3R)-3-(2-Chlor-2-trifluormethenyl)-2,2-dimethyl-cyclopropancarbonsäure-ethynyl[4- fluor-3-(4
Figure imgf000066_0001
Gemisch der Diastereomeren I und II
ES HRMS: m/z gefunden: 507.0756 (MNa+). C24H18 F503ClNa (MNa+) berechnet: 507.0762. lH NMR (400 MHz, CDCI3) δ 7.23 - 7.04 (m, 4H), 6.95 - 6.82 (m, 4H), 6.78 (d, J= 9.3 Hz, 1H), 6.27 (d, J= 2.2 Hz, 1H), 6.23 (d, J= 2.2 Hz, 1H), 2.55 (d, J = 3.0 Hz, 1H), 2.14 - 2.03 (m, 1H), 1.91 (dt, J = 8.3, 4.3 Hz, 1H), 1.20 (s, 3H), 1.20 (s, 3H), 1.16 (s, 3H), 1.10 (s, 3H) ppm.
13C NMR (100 MHz, CDCI3) δ 167.92, 167.87, 159.06, 156.65, 154.54, 154.49, 152.04, 151.99, 151.73, 143.37, 143.31, 143.25, 143.19, 132.40, 132.36, 132.14, 132.11, 128.65, 128.61, 128.57, 123.11, 123.03, 123.00, 122.93, 120.71, 119.66, 1 19.52, 118.07, 117.99, 1 17.92, 116.39, 1 16.20, 115.44, 115.20, 78.60, 78.38, 76.34, 76.02, 75.70, 75.10, 74.95, 63.56, 63.48, 31.62, 30.56, 30.14, 30.10, 28.22, 28.03, 27.16, 27.11, 21.62, 13.80, 13.78, 13.06 ppm.
Beispiel 27 (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-cyan[3-(4- fluorbenzyl)phenyl]methylester
Figure imgf000067_0001
Figure imgf000067_0002
Zu einem Gemisch aus 1,38 g (10 mmol) Kaliumcarbonat in 10 ml Tetrahydrofüran und 5 ml Wasser werden unter Schutzgasatmpsphäre (Stickstoff) nacheinander 0.50 g (3,3 mmol) 4- Formylphenylboronsäure (vgl. auch EP 1 167 371 AI), 0,37 ml (3,0 mmol) 4-Fluorbenzylbromid und 0,089 g (0,075 mmol) Tetrakis(triphenylphosphine)palladium(0) gegeben. Danach wird das Reaktionsgemisch 16 Stunden bei 80 °C gerührt. Anschliessend wird der Reaktionsansatz mit 50 ml IN Salzsäure versetzt und dreimal mit 30 ml Essigsäureethylester extrahiert. Die vereinigten organischen Phasen wer- den über Magnesiumsulfat getrocknet, filtriert und im Vakuum eingeengt. Das verbleibende Rohprodukt wurde mittels Flash Chromatographie (Kieselgel, Eluent: 10 % Essigsäureethylester : Hexan) gereinigt. Man erhält 0,5 g (80 % der Theorie) reinen 3-[(4-Fluorphenyl)methyl]benzaldehyd der gemäss Beispiel 1 (vgl. Stufen B-D) weiter umgesetzt werden kann.
Gemisch der Diastereomeren I und II ES HRMS: m/z gefunden: 541.9755, 543.9747, 545.9738 (MNa+).
C23H2oFN02Br2 (MNa+) berechnet: 541.9742, 543.9722, 545.9702. lH NMR (400 MHz, CDC13) δ 7.37 (d, J= 5.0 Hz, 1H), 7.32 (s, 1H), 7.26-7.23 (m, 1H), 7.12 (dd, J= 7.7, 5.4 Hz, 2H), 6.97 (t, J= 8.7 Hz, 1H), 6.71 (d, J= 4.1 Hz, 1H), 6.69 (d, J= 4.2 Hz, 1H), 6.37 (s, 1H), 6.33 (s, 1H), 3.98 (s, 2H), 2.04 (t, J= 8.4 Hz, 1H), 1.90 (d, J= 8.4 Hz, 1H), 1.30 (s, 3H), 1.27 (s, 3H), 1.22 (s, 3H), 1.17 (s, 3H) ppm.
13C NMR (100 MHz, CDCI3) δ 169.02, 168.98, 163.20, 160.77, 142.77, 136.30, 136.27, 133.03, 132.86, 132.68, 132.37, 131.30, 130.83, 130.75, 129.94, 128.63, 128.60, 126.21, 126.19, 116.70, 116.58, 115.99, 115.77, 91.24, 91.00, 63.16, 63.12, 41.26, 36.82, 31.57, 31.48, 29.33, 29.11, 28.58, 28.55, 15.37 ppm.
In analoger Weise wurde die Beispiele 28 bis 32 erhalten. Beispiel 28 (lR,3R)-3-(2-Chlor-2-trifluormethenyl)-2,2-dimethyl-cyclopropancarbonsäure-cyan[4- fluor-3-(4-fluorbenzyl)phenyl]methylester
Figure imgf000068_0001
Gemisch der Diastereomeren I und II
ES HRMS: m/z gefunden: 506.0899 (MNa+).
C24H19CIF5NO2 (MNa+) berechnet: 506.0922. lH NMR (400 MHz, CDCI3): δ 7.39 (1H, m), 7.30 (1H, dd, J = 2.1, 7.1Hz), 7.19 (1H, m), 7.15 (2H, m) 6.99 (2H, m), 6.80 (1H, d, J = 9.2Hz), 6.36 (1H, s), 6.29 (1H, s), 4.02 (2H, s), 2.27 (1H, t, J = 8.4Hz), 2.24 (1H, t, J= 8.5Hz), 2.01 (1H, d, J= 8.4Hz), 1.35 (3H, s), 1.33 (3H, s), 1.28 (3H, s), 1.17 (3H, s) ppm.
13C NMR (100 MHz, CDCI3): δ 168.7, 162.3 (J = 245Hz), 162.2 (J = 249Hz), 134.9, 132.9 (J = 3.2Hz), 131.1 (J = 4.7Hz), 130.9 (J = 7.4Hz), 129.8 (J = 16.9Hz), 129.1 (J = 9.1Hz), 128.4, 116.9 (J = 23.3Hz), 115.9 (J= 20.1Hz), 62.7, 62.6, 34.4, 32.4, 32.3, 30.3, 28.5, 15.1 ppm.
Beispiel 29 (lR,3R)-3-(2-Chlor-2-trifluormethenyl)-2,2-dimethyl-cyclopropancarbonsäure-cyan[3- (thien-3-
Figure imgf000068_0002
Gemisch der Diastereomeren I und II ES HRMS: m/z gefunden: 476.0664 (MNa+). C22H19CIF3NO2S (MNa+) berechnet: 476.0675. lH NMR (400 MHz, CDCI3): δ 7.38 (3H, m), 7.28 (2H, m), 6.94 (1H, m), 6.90 (1H, m), 6.85 (1H, d, J = 0.9Hz), 6.83 (1H, d, J= 0.9Hz), 6.39 (1H, s), 6.33 (1H, s), 4.02 (2H, s), 2.28 (1H, t, J= 8.5Hz), 2.24 (1H, t, J = 8.5Hz), 2.04 (1H, d, J = 8.3Hz), 2.02 (1H, d, J = 1.5Hz), 1.34 (6H, s), 1.29 (3H, s), 1.21 (3H, s) ppm.
13C NMR (100 MHz, CDCI3): δ 166.8, 142.4, 140, 140.7, 132.4, 132.0, 131.3, 131.2, 129.8, 129.4 (J = 4.6Hz), 129.2 (J = 4.6Hz), 128.5, 128.4, 126.4, 126.2, 126.1, 122.0, 1 16.5, 116.4, 63.3, 63.2, 36.7, 36.6, 32.5, 32.4, 32.1, 32.0, 30.3, 30.1, 28.6, 15.2 ppm.
Beispiel 30 (lR,3R)-3-(2-Chlor-2-trifluormethenyl)-2,2-dimethyl-cyclopropancarbonsäure-cyan[3- (thien-3-ylmethyl)phenyl]methylester
Figure imgf000069_0001
Gemisch der Diastereomeren I und II
ES HRMS: m/z gefunden: 476.0685 (MNa+).
C22H19CIF3NO2S (MNa+) berechnet: 476.0675. lH NMR (400 MHz, CDCI3): δ 7.40 (4H, m), 7.16 (1H, dd, J = 0.9, 5.1Hz), 6.95 (1H, m), 6.85 (2H, m), 6.40 (1H, s), 6.34 (1H, s), 4.19 (2H, s), 2.33 (1H, t, J= 8.5Hz), 2.25 (1H, m), 2.04 (1H, m), 2.00 (1H, m), 1.36 (6H, s), 1.35 (3H, s), 1.34 (3H, s), 1.33 (3H, s) ppm.
13C NMR (100 MHz, CDCI3): δ 166.2, 142.2, 140.8, 132.4, 132.1 , 131.1 , 129.9, 129.0, 128.4, 128.3, 127.3, 126.4, 126.1 , 124.7, 1 16.5, 116.4, 63.3, 63.2, 36.7, 36.1, 33.6, 33.5, 32.7, 32.5, 32.4, 28.6, 28.5, 15.2, 15.1 15.2 ppm.
Beispiel 31 (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-cyan[3-(thien-3- ylmethyl)ph
Figure imgf000069_0002
Gemisch der Diastereomeren I und II ES HRMS: m/z gefunden: 529.9413, 531.9376, 533.9350 (MNa+). C2iHi9N02Br2S (MNa+) berechnet: 529.9401, 531.9380, 533.9360. lH NMR (400 MHz, CDCI3): δ 7.38 (3H, m), 7.28 (2H, m), 6.95 (1H, m), 6.90 (1H, m), 6.72 (1H, m), 6.39 (1H, s), 6.34 (1H, s), 4.03 (2H, s), 2.07 (1H, t, J = 8.5Hz), 2.03 (1H, t, J = 8.5Hz), 1.91 (1H, d, J = 8.3Hz), 1.86 (1H, d, J= 1.5Hz), 1.32 (6H, s), 1.29 (3H, s), 1.27 (3H, s), 1.24 (3H, s) ppm.
13C NMR (100 MHz, CDCI3): δ 169.0, 168.9, 142.4, 140.8, 133.4, 133.3, 132.5, 132.2, 131.2, 129.8, 128.6, 128.5, 126.4, 126.1, 126.1, 122.1, 122.0, 116.6, 116.5, 91.2, 91.1, 63.2, 63.1, 36.8, 36.7, 31.5, 31.4, 29.3, 29.1, 28.8, 28.6, 15.2 ppm.
Beispiel 32 (lR,3R)-3-(2,2-Dibromethenyl)-2,2-dimethyl-cyclopropancarbonsäure-cyan[3-(thien-2- ylmethyl)phenyl] methylester
Figure imgf000070_0001
Gemisch der Diastereomeren I und II
ES HRMS: m/z gefunden: 529.9393, 531.9338, 533.9364 (MNa+).
C2iHi9N02Br2S (MNa+) berechnet: 529.9401, 531.9380, 533.9360. lH NMR (400 MHz, CDC13): δ 7.40 (4H, m), 7.35 (1H, m), 7.17 (1H, m), 6.93 (1H, m), 6.81 (2H, m), 6.72 (1H, d, J = 8.4Hz), 6.69 (1H, d, J = 8.4Hz), 6.39 (1H, s), 6.35 (1H, s), 4.19 (2H, s), 2.07 (1H, t, J = 8.4Hz), 2.03 (1H, t, J= 8.4Hz), 1.90 (1H, d, J= 8.4Hz), 1.32 (3H, s), 1.29 (3H, s), 1.25 (3H, s), 1.18 (3H, s) ppm.
13C NMR (100 MHz, CDCI3): δ 169.0, 168.9, 143.2, 142.1, 132.9, 132.8, 132.6, 132.3, 131.1 , 131.0, 129.9, 128.4, 128.3, 127.4, 126.4, 125.9, 124.8, 116.6, 116.5, 91.2, 90.9, 63.1, 63.0, 36.8, 36.2, 31.5, 31.4, 30.2, 29.3, 28.6, 28.5, 15.4 ppm.
Σ
Figure imgf000071_0001
Stufe A (Methode V): 4-Fluor-3-(4-fluorphenylmethoxy)-benzaldehyd
Figure imgf000071_0002
Zu einem Gemisch aus 0,70 g (50 mmol) 4-fluor-3-hydroxy-benzaldehyd, 1,10 ml (9,0 mmol) 4- Fluorbenzylbromid in 20 ml Aceton wurden 1,25 mg (9,0 mmol) Kaliumcarbonat gegeben. Danach wurde das Reaktionsgemisch 2 Stunden unter Rückflusstemperatur gerührt. Nach Abkühlen auf Raumtemperatur wurde das Reaktionsgemisch filtriert und das Filtrat im Vakuum eingeengt. Das verbleibende Rohprodukt wurde mittels Säulenchromatographie (Eluent: 5 % Essigsäureethylester : Hexan) gereinigt. Man erhält 1,16 g (90 % der Theorie) 4-Fluor-3-(4-fluorphenylmethoxy)-benzaldehyd als gelben Feststoff, gemäss Beispiel 1 (vgl. Stufen B-D) weiter umgesetzt werden kann.
Gemisch der Diastereomeren I und II
ES HRMS: m/z gefunden: 575.9572, 577.9587, 579.9600 (MNa+).
C23Hi9N03F2Br2 (MNa+) berechnet: 575.9597, 577.9577, 579.9556. lH NMR (400 MHz, CDC13): δ 7.44 (2H, m), 7.18 (1H, m), 7.16 (1H, m), 7.14 (1H, m), 7.09 (2H, m), 6.74 (1H, d, J = 8.5Hz), 6.68 (1H, d, J = 8.5Hz), 6.35 (1H, s), 6.33 (1H, s), 5.12 (2H, s), 2.09 (1H, t, J = 8.3Hz), 2.04 (1H, t, J = 8.3Hz), 1.89 (1H, d, J = 8.3Hz), 1.86 (1H, d, J = 8.3Hz), 1.32 (3H, s), 1.29 (3H, s), 1.27 (3H, s), 1.21 (3H, s) ppm.
13C NMR (100 MHz, CDCI3): δ 168.9, 161.3 (J = 245Hz), 155.2 (J = 249Hz), 147.9 (J = 11.5Hz), 133.5, 131.9, 130.0 (J = 8.4Hz), 129.9 (J = 8.3Hz), 128.7 (J = 3.9Hz), 128.4 (J = 3.9Hz), 121.9 (J = 8.2Hz), 121.7 (J = 8.2Hz), 1 17.4 (J = 20.1Hz), 116.4, 1 16.3, 1 16.0 (J = 22.3Hz), 1 15.6 (J = 3.4Hz), 1 15.5 (J = 3.4Hz), 91.3, 91.1, 71.3, 62.6, 36.8, 36.7, 31.9, 29.4, 29.1, 28.8, 15.6 ppm.
In analoger Weise wurde das Beispiel 34 erhalten.
Beispiel 34 (lR,3R)-3-(2-Chlor-2-trifluormethenyl)-2,2-dimethyl-cyclopropancarbonsäure-cyan[3- (4-fluorphenylmethoxy)phenyl]methylester
Figure imgf000072_0001
Gemisch der Diastereomeren I und II
ES HRMS: m/z gefunden: 522.0850 (MNa+).
C24H19CIF5NO3 (MNa+) berechnet: 522.0871. lH NMR (400 MHz, CDCI3): δ 7.43 (2H, m), 7.18 (1H, m), 7.16 (1H, m), 7.14 (1H, m), 7.09 (2H, m), 6.86 (1H, d, J= 9.3Hz), 6.83 (1H, d, J= 9.1Hz), 6.36 (1H, s), 6.31 (1H, s), 5.12 (2H, s), 2.29 (1H, t, J = 8.6Hz), 2.24 (1H, t, J= 8.6Hz), 2.02 (1H, d, J= 8.5Hz), 2.00 (1H, d, J= 8.6Hz), 1.35 (3H, s), 1.32 (3H, s), 1.29 (3H, s), 1.21 (3H, s) ppm.
13CNMR(100 MHz, CDCI3): δ 166.8, 160.9 (J= 245Hz), 155.1 (J=249Hz), 147.9 (J= 11.5Hz), 129.8, 127.9 (J= 8.3Hz), 127.8 (J = 3.9Hz), 127.7, 127.2 (J = 4.9Hz), 127.1 (J = 4.9Hz), 126.1 (J = 4.9Hz), 126.0 (J = 4.9Hz), 121.1, 121.9 (J = 8.2Hz), 121.7 (J = 8.2Hz), 115.3 (J = 20.1Hz), 114.1, 113.9 (J = 22.3Hz), 113.6 (J= 3.4Hz), 113.5 (J= 3.4Hz), 69.2, 60.7, 30.7, 29.8, 28.2, 28.0, 26.7, 13.0 ppm.
Anwendungsbeispiele
Phaedon-Test (PHAECO Spritzbehandlung)
Lösungsmittel: 78,0 GewichtsteileAceton
1,5 Gewichtsteile Dimethylformamid Emulgator: 0,5 Gewichtsteile Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhal- tigem Wasser auf die gewünschte Konzentration. Chinakohlblattscheiben (Brassica pekinensis) werden mit einer Wirkstoffzubereitung der gewünschten Konzentration gespritzt und nach dem Abtrocknen mit Larven des Meerrettichblattkäfers (Phaedon cochleariae) besetzt.
Nach 7 Tagen wird die Wirkung in % bestimmt. Dabei bedeutet 100 %, dass alle Käferlarven abgetötet wurden; 0 % bedeutet, dass keine Käferlarven abgetötet wurden.
Bei diesem Test zeigen z. B. die folgenden Verbindungen der Herstellungsbeispiele Wirkung von 100 % bei einer Aufwandmenge von 100 g/ha: 1 , la, lb, 2b, 3a, 3b, 4, 5, 6, 7, 8, 9, 10, 10b, I Ib, 12b, 13b, 14, 14b, 15, 15b, 16, 17, 18b, 19b, 20b, 21b, 22, 22b, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34.
Spodoptera frugiperda-Test (SPODFR Spritzbehandlung)
Lösungsmittel 78,0 GewichtsteileAceton
1,5 Gewichtsteile Dimethylformamid
Emulgator: 0,5 Gewichtsteile Alkylarylpolyglykolether Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhal- tigem Wasser auf die gewünschte Konzentration. Maisblattscheiben (Zea mays) werden mit einer Wirk- stoffzubereitung der gewünschten Konzentration gespritzt und nach dem Abtrocknen mit Raupen des Heerwurms {Spodoptera frugiperda) besetzt. Nach 7 Tagen wird die Wirkung in % bestimmt. Dabei bedeutet 100 %, dass alle Raupen abgetötet wurden; 0 % bedeutet, dass keine Raupe abgetötet wurde.
Bei diesem Test zeigen z. B. die folgenden Verbindungen der Herstellungsbeispiele Wirkung von 100 % bei einer Aufwandmenge von 100 g/ha : 1 , 1a, lb, 2b, 3a, 3b, 4, 5, 6, 7, 8, 9, 10, 10b, I Ib, 12b, 13b, 14, 14b, 15, 15b, 16, 17, 18b, 19b, 20a, 20b, 21a, 21b, 22, 22b, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34.
Myzus-Test (MYZUPE Spritzbehandlung)
Lösungsmittel 78 GewichtsteileAceton
1,5 Gewichtsteile Dimethylformamid
Emulgator: 0,5 Gewichtsteile Alkylarylpolyglykolether Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhal- tigem Wasser auf die gewünschte Konzentration. Chinakohlblattscheiben {Brassica pekinensis), die von allen Stadien der Grünen Pfirsichblattlaus (Myzus persicae) befallen sind, werden mit einer Wirkstoffzubereitung der gewünschten Konzentration gespritzt. Nach 6 Tagen wird die Wirkung in % bestimmt. Dabei bedeutet 100 %, dass alle Blattläuse abgetötet wurden; 0 % bedeutet, dass keine Blattläuse abgetötet wurden.
Bei diesem Test zeigen z. B. die folgenden Verbindungen der Herstellungsbeispiele Wirkung von 100 % bei einer Aufwandmenge von 100 g/ha: 1 , lb, la, 2b, 3a, 3b, 4, 5, 6, 7, 8, 9, 10, 10b, I Ia, I Ib, 12a, 12b, 13a, 13b, 14, 14b, 15, 15b, 16, 17, 18b, 19b, 19b, 20a, 20b, 21a, 21b, 22, 22a, 22b, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34.
Tetranychus-Test; OP-resistent (TETRUR Spritzbehandlung)
Lösungsmittel 78,0 GewichtsteileAceton
1,5 Gewichtsteile Dimethylformamid
Emulgator : 0,5 Gewichtsteile Alkylarylpolyglykolether Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhal- tigem Wasser auf die gewünschte Konzentration. Bohnenblattscheiben (Phaseolus vulgaris), die von allen Stadien der Gemeinen Spinnmilbe (Tetranychus urticae) befallen sind, werden mit einer Wirkstoffzubereitung der gewünschten Konzentration gespritzt. Nach 6 Tagen wird die Wirkung in % bestimmt. Dabei bedeutet 100 %, dass alle Spinnmilben abgetötet wurden; 0 % bedeutet, dass keine Spinnmilben abgetötet wurden.
Bei diesem Test zeigen z. B. die folgenden Verbindungen der Herstellungsbeispiele eine Wirkung von 80 % bei einer Aufwandmenge von 100g/ha: 2b, 5.
Bei diesem Test zeigen z. B. die folgenden Verbindungen der Herstellungsbeispiele eine Wirkung von 90 % bei einer Aufwandmenge von 100g/ha: 9b, 10b, I Ia, 12a, 16, 19, 21b, 23, 28, 33, 30, 31.
Bei diesem Test zeigen z. B. die folgenden Verbindungen der Herstellungsbeispiele eine Wirkung von 100 % bei einer Aufwandmenge von 100g/ha: lb, 5, I Ib, 12b, 13b, 14, 14b, 15b, 17, 18b, 20b, 22, 22b, 25, 26, 27, 29, 34.

Claims

Patentansprüche
1. Verbindungen der Formel (I),
Figure imgf000077_0001
worin
für Cyano, Alkenyl oder Alkinyl steht,
für einen Rest der Formel (L I
Figure imgf000077_0002
steht, in welcher
M für Sauerstoff, Schwefel, Methylen oder Oxymethylen steht,
R2 tes Hetar l oder für einen der Reste aus der Reihe
Figure imgf000077_0003
Figure imgf000077_0004
, worin der Pfeil die Bindung zum benachbarten Ring markiert, im Fall von R2 gleich (A) für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Alkenyl, Halogenalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Halo- genalkoxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfinyl, Halogenalkylsulfinyl, Alkylsul- fonyl, Halogenalkylsulfonyl, Iod, Nitro, Cyano, Amino, Alkylamino, Dialkylamino steht und im Fall R2 gleich (B) oder (C) für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Alkenyl, Halogenalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Ha- logenalkoxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfinyl, Halogenalkylsulfinyl, Al- kylsulfonyl, Halogenalkylsulfonyl, Chlor, Brom, Iod, Nitro, Cyano, Amino, Alkylamino, Dialkylamino steht und
Xi, Χι', X" im Fall von R2 gleich (D), (E), (F), (G), (H), (J), (K), (L), (Μ'), (N), (O), (P), (R) und (S) unabhängig voneinander für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Alkenyl, Halogenalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Halogenalkoxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfinyl, Halogenalkylsulfinyl, Al- kylsulfonyl, Halogenalkylsulfonyl, Halogen, Nitro, Cyano, Amino, Alkylamino, Dialkylamino, stehen und
Yi und Y2 unabhängig voneinander für Halogen oder Halogenalkyl stehen.
Verbindungen der allgemeinen Formel (II),
Figure imgf000078_0001
worin
Ri für Cyano, Alkenyl oder Alkinyl steht,
Q' einen Rest der F
Figure imgf000078_0002
(III)
steht, in welcher
M für Sauerstoff, Schwefel, Methylen oder Oxymethylen steht, für Halogen und für 1, 2 oder 3 steht, eihe
Figure imgf000079_0001
, worin der Pfeil die Bindung zum benachbarten Ring markiert, im Fall von R2 gleich (A) für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Alkenyl, Halogenalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Halo- genalkoxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfinyl, Halogenalkylsulfmyl, Alkylsul- fonyl, Halogenalkylsulfonyl, Fluor, Brom, Iod, Nitro, Cyano, Amino, Alkylamino, Dial- kylamino steht und im Fall R2 gleich (B) oder (C) für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Alkenyl, Halogenalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Ha- logenalkoxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfinyl, Halogenalkylsulfmyl, Al- kylsulfonyl, Halogenalkylsulfonyl, Halogen, Nitro, Cyano, Amino, Alkylamino, Dialkyla- mino steht und X2, Xi , X2" im Fall von R2 gleich (D), (E), (F), (G), (H), (J), (K), (L), (Μ'), (N), (O), (P), (R) und (S) unabhängig voneinander für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Alke- nyl, Halogenalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Halo- genalkoxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfinyl, Halogenalkylsulfinyl, Alkylsul- fonyl, Halogenalkylsulfonyl, Halogen, Nitro, Cyano, Amino, Alkylamino, Dialkylamino, stehen und
Yi und Y2 unabhängig voneinander für Halogen oder Halogenalkyl stehen.
Verfahren zur Herstellung der Verbindungen gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass Verbindungen der allgemeinen Formel (III)
Figure imgf000080_0001
in welcher
Yi und Y2 die weiter obene angegebene Bedeutung haben, und
LG für eine gegebenenfalls in-situ erzeugte nucleofuge Abgangsgruppe („Leaving Group"), steht, mit Verbindungen der allgemeinen Formel (IV) oder (V)
Figure imgf000080_0002
(IV) (V)
in welcher
Ri, R2, M, Z und n die weiter oben angegebene Bedeutung haben, gegebenenfalls in Gegenwart eines geeigneten Säurebindemittels und gegebenenfalls in Gegenwart eines geeigneten Verdünnungsmittels umgesetzt werden. Verbindungen gemäß Anspruch 1, dadurch gekennzeichnet, dass diese die allgemeine Formel (1.2) besitzen
in welcher
Figure imgf000081_0001
Figure imgf000081_0002
steht, worin der Pfeil die Bindung zum benachbarten Ring markiert, im Fall von R2 gleich (A) für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Alkenyl, Halogenalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Halo- genalkoxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfinyl, Halogenalkylsulfinyl, Alkylsul- fonyl, Halogenalkylsulfonyl, lod, Nitro, Cyano, Amino, Alkylamino, Dialkylamino steht und im Fall R2 gleich (B) oder (C) für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Alkenyl, Halogenalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Ha- logenalkoxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfinyl, Halogenalkylsulfinyl, Al- kylsulfonyl, Halogenalkylsulfonyl, Chlor, Brom, lod, Nitro, Cyano, Amino, Alkylamino, Dialkylamino steht und Xi, Χι', Xi" im Fall von R2 gleich (D), (E), (F), (G), (H), (J), (K), (L), (Μ'), (N), (O), (P), (R) und (S) unabhängig voneinander für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Alkenyl, Halogenalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Halo- genalkoxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfmyl, Halogenalkylsulfinyl, Alkylsul- fonyl, Halogenalkylsulfonyl, Halogen, Nitro, Cyano, Amino, Alkylamino, Dialkylamino, stehen und
Yi und Y2 für Brom, Chlor oder für Trifluormethyl steht.
Verbindung gemäß Anspruch 2, dadurch gekennzeichnet, dass diese die allgemeine Formel (Π.2) besitzen
Figure imgf000082_0001
in welcher
R2 für einen der Reste aus der Reihe
Figure imgf000082_0002
, worin der Pfeil die Bindung zum benachbarten Ring markiert, im Fall von R2 gleich (A) für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Alkenyl, Halogenalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Halo- genalkoxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfinyl, Halogenalkylsulfinyl, Alkylsul- fonyl, Halogenalkylsulfonyl, Fluor, Brom, Iod, Nitro, Cyano, Amino, Alkylamino, Dial- kylamino steht und
X2 im Fall R2 gleich (B) oder (C) für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Al- kenyl, Halogenalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Ha- logenalkoxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfinyl, Halogenalkylsulfinyl, Al- kylsulfonyl, Halogenalkylsulfonyl, Halogen, Nitro, Cyano, Amino, Alkylamino, Dialkyla- mino steht und
X2, Χ2', X2" im Fall von R2 gleich (D), (E), (F), (G), (H), (J), (K), (L), (Μ'), (N), (O) und (P) un- abhängig voneinander für Alkyl, Halogenalkyl, Cycloalkyl, Halogencycloalkyl, Alkenyl, Halogenalkenyl, Alkinyl, Alkoxy, Halogenalkoxy, Alkoxycarbonyl, Alkoxyalkyl, Halogenal- koxyalkyl, Alkylthio, Halogenalkylthio, Alkylsulfinyl, Halogenalkylsulfinyl, Alkylsulfonyl, Halogenalkylsulfonyl, Halogen, Nitro, Cyano, Amino, Alkylamino, Dialkylamino, stehen,
Z für Fluor steht, n für 1 oder 2 steht und
Yi und Y2 für Brom, Chlor oder für Trifluormethyl steht.
6. Mittel, gekennzeichnet durch einen Gehalt von mindestens einer Verbindung der Formel (I) gemäß Anspruch 1 und üblichen Streckmitteln und/oder oberflächenaktiven Substanzen.
7. Mittel, gekennzeichnet durch einen Gehalt von mindestens einer Verbindung der Formel (II) ge- mäß Anspruch 2 und üblichen Streckmitteln und/oder oberflächenaktiven Substanzen.
8. Verfahren zum Bekämpfen von Schädlingen dadurch gekennzeichnet, dass man eine Verbindung der Formel (I) gemäß Anspruch 1 oder ein Mittel gemäß Anspruch 6 auf die Schädlinge und/oder ihren Lebensraum einwirken lässt.
9. Verfahren zum Bekämpfen von Schädlingen dadurch gekennzeichnet, dass man eine Verbindung der Formel (II) gemäß Anspruch 2 oder ein Mittel gemäß Anspruch 7 auf die Schädlinge und/oder ihren Lebensraum einwirken lässt.
10. Verwendung von Verbindungen der Formel (I) gemäß Anspruch 1 oder von Mitteln gemäß Anspruch 6 zum Bekämpfen von Schädlingen.
11. Verwendung von Verbindungen der Formel (II) gemäß Anspruch 2 oder von Mitteln gemäß An- sprach 7 zum Bekämpfen von Schädlingen.
PCT/EP2012/057886 2011-05-04 2012-04-30 Neue cyclopropansäureeesterderivate als schädlingsbekämpfungsmittel WO2012150206A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11164738.4 2011-05-04
EP11164738 2011-05-04

Publications (2)

Publication Number Publication Date
WO2012150206A2 true WO2012150206A2 (de) 2012-11-08
WO2012150206A3 WO2012150206A3 (de) 2013-01-31

Family

ID=46022262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/057886 WO2012150206A2 (de) 2011-05-04 2012-04-30 Neue cyclopropansäureeesterderivate als schädlingsbekämpfungsmittel

Country Status (1)

Country Link
WO (1) WO2012150206A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103960279A (zh) * 2014-05-23 2014-08-06 青岛农业大学 溴氰菊酯与多杀菌素复配悬浮剂及其制备方法
CN104649908A (zh) * 2013-11-18 2015-05-27 江苏扬农化工股份有限公司 一种单一立体构型的拟除虫菊酯化合物及其制备方法和应用

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2544150A1 (de) 1974-10-03 1976-04-15 Kuraray Co Verfahren zur herstellung von substituierten cyclopropancarbonsaeuren und ihren estern
DE2547534A1 (de) 1974-10-24 1976-04-29 Sumitomo Chemical Co Cyclopropancarbonsaeureester
GB1446304A (en) 1972-05-25 1976-08-18 Nat Res Dev 3-substituted cyclopropane carboxylic acids and derivatives thereof
DE2615435A1 (de) 1976-04-09 1977-10-27 Bayer Ag Substituierte phenoxybenzyloxycarbonylderivate, verfahren zu ihrer herstellung und ihre verwendung als insektizide und akarizide
DE2621433A1 (de) 1976-05-14 1977-12-01 Bayer Ag Substituierte phenoxybenzyloxycarbonylderivate, verfahren zu ihrer herstellung und ihre verwendung als insektizide und akarizide
DE2802962A1 (de) 1977-01-24 1978-07-27 Ici Ltd Halogenierte ester, verfahren zu ihrer herstellung und sie enthaltende insektizide zusammensetzungen
DE2739854A1 (de) 1977-09-03 1979-03-15 Bayer Ag Fluorsubstituierte phenoxybenzyloxycarbonylderivate, verfahren zu ihrer herstellung und ihre verwendung als insektizide und akarizide
FR2407200A1 (fr) 1977-10-27 1979-05-25 Roussel Uclaf Procede de preparation d'esters d'alcools a-cyanes
JPS5573649A (en) 1978-11-22 1980-06-03 Sumitomo Chem Co Ltd New carboxylic acid ester, its preparation and insecticide and miticide low-toxic to fish and containing the compound as effective component
US4221799A (en) 1979-07-30 1980-09-09 The Dow Chemical Substituted pyridine methyl esters of tetramethyl cyclopropane carboxylic acids and their use as insecticides
EP0018315A1 (de) 1979-04-04 1980-10-29 Ciba-Geigy Ag 3-(Fluorbenzyl)-benzylalkohole, Verfahren zu ihrer Herstellung, ihre Verwendung als Zwischenprodukte zur Herstellung von Insektiziden und als Ausgangsmaterialien verwendete 3-(Fluorbenzyl)-benzylaldehyde
GB2085000A (en) 1980-10-08 1982-04-21 Ici Plc An improved process for the preparation of certain cyclopropane pyrethroid intermediates having a high cis-content
JPS57112354A (en) 1981-09-30 1982-07-13 Sumitomo Chem Co Ltd Preparation of cyclopropanecarboxylic acid ester
US4342770A (en) 1980-06-20 1982-08-03 Dow Chemical Company Limited Optically active isomers of substituted pyridine methyl esters of cyclopropane carboxylic acid and their use as insecticides
EP0091208A1 (de) 1982-04-05 1983-10-12 Imperial Chemical Industries Plc Verfahren zur Bekämpfung von Insekten und Cyclopropancarboxylate verwendbar als Wirkstoffe dafür
EP0227415A2 (de) 1985-12-23 1987-07-01 Imperial Chemical Industries Plc Pyrimidin-Derivate
EP0253536A2 (de) 1986-07-18 1988-01-20 Imperial Chemical Industries Plc Fluorbenzylester
WO1988006151A1 (en) 1987-02-13 1988-08-25 Lucky, Ltd. A process for the preparation of pyrethroid type ester compounds
WO1994008931A1 (en) 1992-10-15 1994-04-28 Schering Aktiengesellschaft Process and intermediates for the preparation of substituted 2-phenyl-5-(3-phenoxyphenyl)-1,1,1-trifluoropentanes
EP0921208A2 (de) 1997-12-05 1999-06-09 Mitsubishi Heavy Industries, Ltd. Verfahren und Vorrichtung zum Kühlen von bandförmigem Gut
EP1167371A2 (de) 2000-07-01 2002-01-02 Clariant GmbH Verfahren zur Herstellung hochreiner Formylphenylboronsäuren
WO2003053905A1 (en) 2001-12-20 2003-07-03 Syngenta Limited A process for the production of 1r pyrethroid esters
WO2003097576A2 (en) 2002-05-17 2003-11-27 Lica Pharmaceuticals A/S Diamino-functional chalcones
WO2008057497A2 (en) 2006-11-02 2008-05-15 Curis, Inc. Small organic molecule regulators of cell proliferation
US20100227841A1 (en) 2008-09-24 2010-09-09 Harbor BioSciencs, Inc. Patient populations and treatment methods

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533452A (en) * 1978-08-31 1980-03-08 Sumitomo Chem Co Ltd Carboxylic acid ester, its preparation, and insecticide having low toxicity to fish and containing the same as effective component
DE2966560D1 (en) * 1978-10-26 1984-02-23 Ciba Geigy Ag Vinylcyclopropane carboxylic acid-3-phenoxy-alpha-vinylbenzyl esters, process for their preparation and their use as pesticides
AU5212979A (en) * 1978-10-27 1980-05-01 Sumitomo Chemical Company, Limited Thiophene carboxylate derivatives
US4389412A (en) * 1979-03-30 1983-06-21 Kuraray Company, Ltd. Substituted cyclopropanecarboxylic acid esters and pesticidal compositions containing the same as active ingredient
US4348408A (en) * 1980-08-22 1982-09-07 Ciba-Geigy Corporation Pesticidal α-allenyl-3-phenoxybenzyl-2,2-dimethyl-3-(2,2-dihalovinyl)-cyclopropane-1-carboxylates
US4378372A (en) * 1981-02-26 1983-03-29 Ciba-Geigy Corporation Cyclopropanecarboxylic acid esters and use thereof in pest control

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1446304A (en) 1972-05-25 1976-08-18 Nat Res Dev 3-substituted cyclopropane carboxylic acids and derivatives thereof
DE2544150A1 (de) 1974-10-03 1976-04-15 Kuraray Co Verfahren zur herstellung von substituierten cyclopropancarbonsaeuren und ihren estern
DE2547534A1 (de) 1974-10-24 1976-04-29 Sumitomo Chemical Co Cyclopropancarbonsaeureester
DE2615435A1 (de) 1976-04-09 1977-10-27 Bayer Ag Substituierte phenoxybenzyloxycarbonylderivate, verfahren zu ihrer herstellung und ihre verwendung als insektizide und akarizide
DE2621433A1 (de) 1976-05-14 1977-12-01 Bayer Ag Substituierte phenoxybenzyloxycarbonylderivate, verfahren zu ihrer herstellung und ihre verwendung als insektizide und akarizide
DE2802962A1 (de) 1977-01-24 1978-07-27 Ici Ltd Halogenierte ester, verfahren zu ihrer herstellung und sie enthaltende insektizide zusammensetzungen
DE2739854A1 (de) 1977-09-03 1979-03-15 Bayer Ag Fluorsubstituierte phenoxybenzyloxycarbonylderivate, verfahren zu ihrer herstellung und ihre verwendung als insektizide und akarizide
FR2407200A1 (fr) 1977-10-27 1979-05-25 Roussel Uclaf Procede de preparation d'esters d'alcools a-cyanes
JPS5573649A (en) 1978-11-22 1980-06-03 Sumitomo Chem Co Ltd New carboxylic acid ester, its preparation and insecticide and miticide low-toxic to fish and containing the compound as effective component
EP0018315A1 (de) 1979-04-04 1980-10-29 Ciba-Geigy Ag 3-(Fluorbenzyl)-benzylalkohole, Verfahren zu ihrer Herstellung, ihre Verwendung als Zwischenprodukte zur Herstellung von Insektiziden und als Ausgangsmaterialien verwendete 3-(Fluorbenzyl)-benzylaldehyde
US4221799A (en) 1979-07-30 1980-09-09 The Dow Chemical Substituted pyridine methyl esters of tetramethyl cyclopropane carboxylic acids and their use as insecticides
US4342770A (en) 1980-06-20 1982-08-03 Dow Chemical Company Limited Optically active isomers of substituted pyridine methyl esters of cyclopropane carboxylic acid and their use as insecticides
GB2085000A (en) 1980-10-08 1982-04-21 Ici Plc An improved process for the preparation of certain cyclopropane pyrethroid intermediates having a high cis-content
JPS57112354A (en) 1981-09-30 1982-07-13 Sumitomo Chem Co Ltd Preparation of cyclopropanecarboxylic acid ester
EP0091208A1 (de) 1982-04-05 1983-10-12 Imperial Chemical Industries Plc Verfahren zur Bekämpfung von Insekten und Cyclopropancarboxylate verwendbar als Wirkstoffe dafür
EP0227415A2 (de) 1985-12-23 1987-07-01 Imperial Chemical Industries Plc Pyrimidin-Derivate
EP0253536A2 (de) 1986-07-18 1988-01-20 Imperial Chemical Industries Plc Fluorbenzylester
WO1988006151A1 (en) 1987-02-13 1988-08-25 Lucky, Ltd. A process for the preparation of pyrethroid type ester compounds
WO1994008931A1 (en) 1992-10-15 1994-04-28 Schering Aktiengesellschaft Process and intermediates for the preparation of substituted 2-phenyl-5-(3-phenoxyphenyl)-1,1,1-trifluoropentanes
EP0921208A2 (de) 1997-12-05 1999-06-09 Mitsubishi Heavy Industries, Ltd. Verfahren und Vorrichtung zum Kühlen von bandförmigem Gut
EP1167371A2 (de) 2000-07-01 2002-01-02 Clariant GmbH Verfahren zur Herstellung hochreiner Formylphenylboronsäuren
WO2003053905A1 (en) 2001-12-20 2003-07-03 Syngenta Limited A process for the production of 1r pyrethroid esters
WO2003097576A2 (en) 2002-05-17 2003-11-27 Lica Pharmaceuticals A/S Diamino-functional chalcones
WO2008057497A2 (en) 2006-11-02 2008-05-15 Curis, Inc. Small organic molecule regulators of cell proliferation
US20100227841A1 (en) 2008-09-24 2010-09-09 Harbor BioSciencs, Inc. Patient populations and treatment methods

Non-Patent Citations (17)

* Cited by examiner, † Cited by third party
Title
"Kupplungsreaktionen mit Boronsäurederivaten", CHEM. REV., vol. 95, 1995, pages 2457 - 2483
"Metal-Catalyzed Cross-Coupling Reactions", 2004, WILEY-VCH
"Methoden der Organischen Chemie", vol. VII-1, HOUBEN-WEYL, article "Herstellung von Aldehyden", pages: 413
BARBOUR, L. J.: "X-Seed - A software tool for supramolecular crystallography", J. SUPRAMOL. CHEM., vol. 1, 2001, pages 189 - 191
BODANSKY ET AL.: "Peptide Synthesis", 1976, WILEY & SONS
G. SHELDRICK: "SHELX-97 Programs for Solving and Refining Crystal Structures", 1997, INSTITÜT FÜR ANORGANISCHE CHEMIE DER UNIVERSITÄT
GROSS; MEIENHOFER: "The Peptides: Analysis, Synthesis, Biology", 1979, ACADEMIC PRESS
H. SUZUKI, BULL. CHEM. SOC. JAPAN, vol. 43, 1970, pages 3299
HOUBEN-WEYL, METHODEN DER ORGANISCHEN CHEMIE, vol. 15-2
HOUBEN-WEYL: "Methoden der Organischen Chemie", vol. V-4, pages: 784
K. OZAWA ET AL., NIPPON NOYAKU GAKKAISHI, vol. 11, 1986, pages 169 - 174
L. H. MCKENDRY, J. LABELLED COMP. RADIOPHARM., vol. 21, 1984, pages 401 - 408
M. ELIOTT ET AL., PESTICIDE SEI., vol. 6, 1975, pages 537 - 542
M. ELLIOTT ET AL., PESTIC. SEI., vol. 6, 1975, pages 537 - 542
S. WEIST ET AL., J. AMER. CHEM. SOC., vol. 126, 2004, pages 5942 - 5943
S.-J. XUE ET AL., YINGYONG HUAXUE, vol. 21, 2004, pages 319 - 321
TETRAHEDRON, vol. 58, 2002, pages 9633 - 9695

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104649908A (zh) * 2013-11-18 2015-05-27 江苏扬农化工股份有限公司 一种单一立体构型的拟除虫菊酯化合物及其制备方法和应用
CN104649908B (zh) * 2013-11-18 2016-08-24 江苏扬农化工股份有限公司 一种单一立体构型的拟除虫菊酯化合物及其制备方法和应用
CN103960279A (zh) * 2014-05-23 2014-08-06 青岛农业大学 溴氰菊酯与多杀菌素复配悬浮剂及其制备方法
CN103960279B (zh) * 2014-05-23 2016-07-13 青岛农业大学 溴氰菊酯与多杀菌素复配悬浮剂及其制备方法

Also Published As

Publication number Publication date
WO2012150206A3 (de) 2013-01-31

Similar Documents

Publication Publication Date Title
KR101865578B1 (ko) 살해충성 아릴피롤리딘
EP2582242B1 (de) Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften
RU2712092C2 (ru) Замещенные бензамиды для борьбы с членистоногими
TWI522040B (zh) 殺蟲之芳基吡咯啶類
EP3544978B1 (de) 2-[3-(alkylsulfonyl)-2h-indazol-2-yl]-3h-imidazo[4,5-b]pyridin-derivate und ähnliche verbindungen als schädlingsbekämpfungsmittel
KR20160078974A (ko) 절지동물 방제용 신규 화합물
KR20160104065A (ko) 농약으로서의 신규 피라졸릴헤테로아릴아미드
AU2016347345A1 (en) Condensed bicyclic heterocycle derivatives as pest control agents
KR20120100896A (ko) 살해충제로서의 아미드 및 티오아미드
WO2021068179A1 (en) Novel heteroaryl-substituted pyrazine derivatives as pesticides
ES2632355T3 (es) Carboxamidas pesticidas
EP2533641B1 (de) Hydrazin-substituierte anthranilsäurederivate
EP2595486A2 (de) Verwendung von anthranilsäureamidderivaten zur bekämpfung von insekten und spinnmilben durch angiessen, bodenmischung, furchenbehandlung, tröpfchenapplikation, boden-, stamm- oder blüteninjektion, in hydroponischen systemen, durch pflanzlochbehandlung oder tauchapplikation, floating- oder saatboxapplikation oder durch behandlung von saatgut, sowie zur steigerung der stresstoleranz in pflanzen gegenüber abiotischem stress
EP2707373A1 (de) Bicyclische (thio)carbonylamidine
WO2015150348A1 (de) VERWENDUNG VON N-ARYLAMIDIN-SUBSTITUIERTEN TRIFLUOROETHYLSULFOXID-DERIVATEN ZUR BEKÄMPFUNG VON SCHÄDLINGEN DURCH ANGIEßEN, TRÖPFCHENAPPLIKATION, TAUCHAPPLIKATION, BODENINJEKTION ODER DURCH DIE BEHANDLUNG VON SAATGUT
WO2012150208A1 (de) Verwendung von substituierten benzylalkoholestern der cyclopropancarbonsäure zur bekämpfung von insektizid-resistenten insekten
WO2012150206A2 (de) Neue cyclopropansäureeesterderivate als schädlingsbekämpfungsmittel
WO2012150221A2 (de) Neue halogenierte benzylalkoholester der cyclopropancarbonsäure als schädlingsbekämpfungsmittel
WO2012150207A1 (de) Verwendung von cyclopropancarbonsäureeesterderivaten zur bekämpfung von insektizid-resistenten insekten
WO2012150223A1 (de) Neue pyridinmethylester der cyclopropancarbonsäure als schädlingsbekämpfungsmittel
WO2012150205A1 (de) Neue substituierte benzylalkoholester der cyclopropancarbonsäure als schädlingsbekämpfungsmittel
WO2020078839A1 (de) Wirkstoffkombinationen
CN104321317A (zh) 杀虫的芳基吡咯烷
EP2635550B1 (de) Phenylsubstituierte bicyclooktan-1,3-dion-derivate
NZ719646B2 (en) Substituted benzamides for treating arthropodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12717739

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12717739

Country of ref document: EP

Kind code of ref document: A2