WO2012147497A1 - 人工硝子体材料 - Google Patents

人工硝子体材料 Download PDF

Info

Publication number
WO2012147497A1
WO2012147497A1 PCT/JP2012/059498 JP2012059498W WO2012147497A1 WO 2012147497 A1 WO2012147497 A1 WO 2012147497A1 JP 2012059498 W JP2012059498 W JP 2012059498W WO 2012147497 A1 WO2012147497 A1 WO 2012147497A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
vitreous material
self
artificial vitreous
peptide
Prior art date
Application number
PCT/JP2012/059498
Other languages
English (en)
French (fr)
Inventor
晃司 上杉
竜平 林
康隆 林田
馬場 耕一
幸二 西田
Original Assignee
株式会社メニコン
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社メニコン, 国立大学法人大阪大学 filed Critical 株式会社メニコン
Priority to JP2013511991A priority Critical patent/JP5845250B2/ja
Priority to CN201280020798.5A priority patent/CN103501828A/zh
Priority to EP12777267.1A priority patent/EP2703014A4/en
Priority to US14/114,102 priority patent/US20140045951A1/en
Publication of WO2012147497A1 publication Critical patent/WO2012147497A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0048Eye, e.g. artificial tears
    • A61K9/0051Ocular inserts, ocular implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/227Other specific proteins or polypeptides not covered by A61L27/222, A61L27/225 or A61L27/24
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/06Flowable or injectable implant compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/16Materials or treatment for tissue regeneration for reconstruction of eye parts, e.g. intraocular lens, cornea

Definitions

  • the present invention relates to an artificial vitreous material.
  • the vitreous is a gel-like substance composed of collagen and sodium hyaluronate that fills the posterior cavity of the eyeball.
  • the vitreous body has a tamponade effect that presses the retina from the inside of the eyeball and prevents its peeling. Therefore, it is an important tissue for the normal functioning of the eyeball.
  • vitrectomy is widely applied for retinal vitreous diseases that require surgical treatment, but there is no appropriate substitute for vitreous, so the vitreous was removed even after vitrectomy. It remains. It has also been reported that after the vitreous body has been excised, the effect of intraocular drug administration by injection is lower than in the presence of the vitreous body.
  • gas for example, air, expanded gas such as sulfur hexafluoride or octafluoropropane
  • silicone oil is frequently used in clinical practice.
  • silicone oil is highly toxic to ocular tissues and needs to be removed after a certain period of time, which is cumbersome to handle.
  • the silicone oil may cause emulsification and cloudiness.
  • Liquid perfluorocarbons are also used as temporary tamponade materials during surgery.
  • liquid perfluorocarbons are also highly toxic to ocular tissues and are removed from the eye at the end of surgery.
  • compositions using polyethylene glycol modified at one end with a long-chain alkyl group and polyethylene glycol modified at both ends with a long-chain alkyl group have been proposed (for example, Patent Documents). 3).
  • this composition is high in hardness and can be expected to have a tamponade effect, it is necessary to use a needle (21 gauge) that is thicker than a commonly used injection needle (25 gauge) in order to improve operability. Therefore, the load applied to the eyeball is increased, and the period required for treatment may be increased.
  • the present invention has been made to solve the above-mentioned problems, and its purpose is to have no toxicity to the eye tissue, to maintain the tamponade effect in the eye for a long time, and to be excellent in operability. It is to provide an artificial vitreous material.
  • an artificial vitreous material contains a self-assembling peptide and a salt, and has an osmotic pressure of 40 mOsm / kg to 200 mOsm / kg.
  • the artificial vitreous material includes 0.01 w / v% to 0.5 w / v% of the self-assembling peptide.
  • the self-assembling peptide consists of the following amino acid sequence: Amino acid sequence: a 1 b 1 c 1 b 2 a 2 b 3 db 4 a 3 b 5 c 2 b 6 a 4 (In the amino acid sequence, a 1 ⁇ a 4 is an basic amino acid residue; b 1 ⁇ b 6 are uncharged polar amino acid residues and / or hydrophobic amino acid residue, provided that at least of which 5 are hydrophobic amino acid residues; c 1 and c 2 are acidic amino acid residues; d is a hydrophobic amino acid residue).
  • b 1 to b 6 in the amino acid sequence are each independently an alanine residue, a valine residue, a leucine residue, or an isoleucine residue.
  • d is an alanine residue, valine residue, leucine residue, or isoleucine residue in the amino acid sequence.
  • the tamponade effect can be maintained in the eye for a long time.
  • the artificial vitreous material of the present invention since the artificial vitreous material of the present invention has appropriate fluidity, it is excellent in operability.
  • the artificial vitreous material of the present invention contains a self-assembling peptide and a salt, and has no toxicity to ocular tissues. Therefore, according to the artificial vitreous material of the present invention, it is not necessary to maintain the prone state after surgery such as after tamponade by gas, and the extraction operation as in the case of using silicone oil or the like. Quality of life (QOL) can be improved.
  • the artificial vitreous material of the present invention is excellent in drug retention, it is possible to prevent the effect of drug administration into the eye after removal of the vitreous body.
  • self-assembling peptide refers to a peptide that spontaneously assembles in a solvent through interaction between peptide molecules.
  • the interaction is not particularly limited, and examples thereof include a hydrogen bond, an ionic interaction, an electrostatic interaction such as van der Waals force, and a hydrophobic interaction.
  • self-assembling peptides can self-assemble to form nanofibers or gels in aqueous solutions at room temperature (eg, 0.4 w / v% aqueous peptide solution).
  • gel refers to a viscoelastic substance having both viscous and elastic properties.
  • hydrophilic amino acid means basic amino acids such as arginine (Arg / R), lysine (Lys / K), histidine (His / H), aspartic acid (Asp / D), glutamic acid Acidic amino acids such as (Glu / E), tyrosine (Tyr / Y), serine (Ser / S), threonine (Thr / T), asparagine (Asn / N), glutamine (Gln / Q), cysteine (Cys / C) ) And other uncharged polar amino acids.
  • the alphabets in parentheses are the three-letter code and single-character code for amino acids, respectively.
  • hydrophobic amino acid means alanine (Ala / A), leucine (Leu / L), isoleucine (Ile / I), valine (Val / V), methionine (Met / M), Nonpolar amino acids such as phenylalanine (Phe / F), tryptophan (Trp / W), glycine (Gly / G), proline (Pro / P) and the like are included.
  • the alphabets in parentheses are the three-letter code and single-character code for amino acids, respectively.
  • the artificial vitreous material of the present invention includes a self-assembling peptide and a salt.
  • the artificial vitreous material of the present invention can maintain a long-term tamponade effect in the eye by including a self-assembling peptide and a salt, and is excellent in operability.
  • the artificial vitreous material of the present invention has an osmotic pressure of 40 mOsm / kg to 200 mOsm / kg.
  • an osmotic pressure of the artificial vitreous material is within the above range, an artificial vitreous material that can maintain a longer-term tamponade effect in the eye and has excellent operability can be obtained. If the osmotic pressure exceeds 200 mOsm / kg, the transparency of the artificial vitreous material may be reduced.
  • the osmotic pressure of the artificial vitreous material can be measured by an osmotic pressure measurement method (osmolarity measurement method) using a freezing point depression method according to the Japanese Pharmacopoeia.
  • the artificial vitreous material of the present invention preferably has its pH adjusted to physiological conditions (about pH 7.4), and can be adjusted by using any pH adjusting agent or buffering agent.
  • salt As the salt, a salt similar to the salt contained in a body fluid (for example, aqueous humor) is preferable, and any appropriate salt can be used. Examples of the salt include ionic salts such as sodium chloride and magnesium chloride. These salts may be used alone or in combination of two or more.
  • the salt may be used in the form of a salt solution in which an arbitrary salt is dissolved in an arbitrary solvent. Distilled water etc. are mentioned as a solvent used for this salt solution.
  • a commercially available salt solution may be used. Specifically, diluting solutions for intraocular perfusates such as physiological saline, Ringer's solution, oxyglutathione solution (for example, diluting solution for oxyglutathione solution supplied by Nippon Alcon Co., Ltd. Manufactured by Co., Ltd., and trade name OPEAQUA (registered trademark) diluting solution for oxyglutathione solution). These salt solutions may be used alone or in combination of two or more.
  • the ratio of the salt in the artificial vitreous material of the present invention can be adjusted so that the osmotic pressure of the obtained artificial vitreous material is 40 mOsm / kg to 200 mOsm / kg.
  • the self-assembling peptide used in the present invention is not particularly limited as long as it is not toxic to a living body, particularly ocular tissue, and any appropriate self-assembling peptide can be used.
  • the artificial vitreous material of the present invention preferably contains 0.01 w / v% to 0.5 w / v%, more preferably 0.05 w / v% to 0.4 w / v% of a self-assembling peptide.
  • an artificial vitreous material that maintains a long-term tamponade effect in the eye and is excellent in operability can be obtained.
  • Self-assembling peptides are also attracting attention as base materials for drug delivery systems. Therefore, the artificial vitreous material of the present invention can prevent a decrease in the effect of administering the drug injected into the eye after being injected into the eye. Only one type of self-assembling peptide may be used, or two or more types may be used in combination.
  • the self-assembling peptide used in the present invention has the following amino acid sequence.
  • Amino acid sequence a 1 b 1 c 1 b 2 a 2 b 3 db 4 a 3 b 5 c 2 b 6 a 4
  • a 1 to a 4 represent basic amino acid residues
  • b 1 to b 6 represent uncharged polar amino acid residues and / or hydrophobic amino acid residues, provided that at least 5 are hydrophobic amino acid residues
  • c 1 and c 2 represent acidic amino acid residues
  • d represents hydrophobic amino acid residues.
  • a self-assembling peptide consisting of the above amino acid sequence By using a self-assembling peptide consisting of the above amino acid sequence, a self-assembling peptide capable of maintaining a tamponade effect for a longer period in the eye can be obtained. Moreover, since the peptide which consists of the said amino acid sequence can form the gel excellent in transparency and mechanical strength on physiological conditions, it can be used suitably as an artificial vitreous material.
  • the amino acid constituting the self-assembling peptide may be an L-amino acid or a D-amino acid. Moreover, a natural amino acid may be sufficient and a non-natural amino acid may be sufficient. Natural amino acids are preferred because they are available at low cost and facilitate peptide synthesis.
  • a 1 to a 4 represent basic amino acid residues.
  • the basic amino acid is preferably arginine, lysine or histidine, more preferably arginine or lysine. This is because these amino acids are strongly basic.
  • a 1 to a 4 may be the same amino acid residue or different amino acid residues.
  • b 1 to b 6 represent uncharged polar amino acid residues and / or hydrophobic amino acid residues, at least 5 of which are hydrophobic amino acid residues.
  • the hydrophobic amino acid is preferably alanine, leucine, isoleucine, valine, methionine, phenylalanine, tryptophan, glycine or proline.
  • the uncharged polar amino acid is preferably tyrosine, serine, threonine, asparagine, glutamine, or cysteine. This is because these amino acids are easily available.
  • b 3 and b 4 are each independently any suitable hydrophobic amino acid residue, more preferably a leucine residue, an alanine residue, a valine residue, or an isoleucine residue, particularly preferably Is a leucine residue or an alanine residue.
  • b 3 and b 4 located at the 6th and 8th positions are hydrophobic amino acid residues, the 3 amino acid residues at the 6th to 8th positions become the hydrophobic amino acid residues in succession. .
  • the hydrophobic region formed at the center of the amino acid sequence can improve the strength of the artificial vitreous material due to its hydrophobic interaction, etc., and can maintain the tamponade effect in the eye for a long time. Presumed to be possible.
  • b 1 to b 6 are all hydrophobic amino acid residues. This is because the self-assembling peptide preferably forms a ⁇ -sheet structure and can self-assemble. More preferably, b 1 to b 6 are each independently a leucine residue, an alanine residue, a valine residue, or an isoleucine residue, and more preferably a leucine residue or an alanine residue. In a preferred embodiment, 4 or more of b 1 to b 6 are leucine residues, particularly preferably 5 or more of them are leucine residues, and most preferably all are leucine residues. It is easy to prepare artificial vitreous material because of its excellent solubility in water, and can improve the strength of the artificial vitreous material and maintain the tamponade effect in the eye for a long time. This is because a body material can be obtained.
  • c 1 and c 2 represent acidic amino acid residues.
  • the acidic amino acid is preferably aspartic acid or glutamic acid. This is because these amino acids are easily available.
  • c 1 and c 2 may be the same amino acid residue or different amino acid residues.
  • d represents a hydrophobic amino acid residue.
  • d is a hydrophobic amino acid residue and has a predetermined symmetrical structure, an artificial vitreous material with better mechanical strength is obtained, and the tamponade effect is maintained in the eye for a long time. It will be possible to do this.
  • D is preferably an alanine residue, a valine residue, a leucine residue, or an isoleucine residue.
  • the side chain length of the amino acid on the hydrophilic surface side of the ⁇ sheet structure formed by the self-assembling peptide can be non-complementary, but the self-assembling peptide can exhibit excellent self-organizing ability, Furthermore, it is possible to obtain an artificial vitreous material that is superior in mechanical strength and can maintain the tamponade effect in the eye for a long period of time.
  • the total charge in the neutral region of amino acid residues contained in the self-assembling peptide is substantially +2. That is, the self-assembling peptide does not cancel out the positive charge and the negative charge derived from the side chain of the amino acid residue contained in the peptide in the neutral region.
  • the self-assembling peptide used in the present invention is, for example, electrostatic in addition to electrostatic attraction between peptides. Since repulsive force works and these delicate balances are maintained, excessive association does not substantially occur, and it is assumed that a stable gel can be formed without precipitation in a neutral region close to physiological conditions. .
  • the “neutral region” refers to a region having a pH of 6 to 8, preferably 6.5 to 7.5.
  • the charge of the self-assembling peptide at each pH can be calculated, for example, according to the method of Lehninger (Biochimie, 1979).
  • the method of the Raininger is performed by a program available on, for example, the EMBL WWW Gateway to Isoelectric Point Service website (http://www.embl-heidelberg.de/cgi/pi-wrapper.pl).
  • n-RLDLRLALRLLDLR-c SEQ ID NO: 1
  • n-RLDLRLLLLRLDLR-c SEQ ID NO: 2
  • n-RADLRLALRLLDLR-c SEQ ID NO: 3
  • n-RLDLRLALLRLDA-c SEQ ID NO: 4
  • n-RADLRLLLRLLDLR-c SEQ ID NO: 5
  • n-RADLRLLLRLDA-c SEQ ID NO: 6
  • n-RLDLRLALLLDLR-c SEQ ID NO: 7
  • n-RLDLRLLARLDLR-c SEQ ID NO: 8
  • the self-assembling peptide can be manufactured by any appropriate manufacturing method. Examples thereof include a chemical synthesis method such as a solid phase method such as the Fmoc method or a liquid phase method, and a molecular biological method such as gene recombinant expression.
  • the self-assembling peptide may be a self-assembling peptide with any modification (hereinafter referred to as a modified peptide).
  • the modified peptide is a peptide obtained by subjecting the self-assembling peptide to any modification as long as it has a self-assembling ability and is not toxic to a living body, particularly eye tissue.
  • the site where the modification is performed may be the N-terminal amino group of the self-assembling peptide, the C-terminal carboxyl group, or both.
  • any appropriate modification can be selected as long as the obtained modified peptide has a self-organizing ability and does not have toxicity to a living body, particularly an eye tissue.
  • introduction of protecting groups such as N-terminal acetylation, C-terminal amidation; introduction of functional groups such as alkylation, esterification or halogenation; hydrogenation; monosaccharide, disaccharide, oligosaccharide, or polysaccharide And the like; introduction of a lipid compound such as fatty acid, phospholipid, or glycolipid; introduction of an amino acid or protein; introduction of DNA; introduction of a compound having other physiological activity.
  • the peptide after introduction is a peptide in which any amino acid is added to the N-terminal and / or C-terminal of the self-assembling peptide. Included in modified peptides. Only one type of modification may be performed, or two or more types may be combined. For example, the N-terminus of an added peptide having a desired amino acid introduced at the C-terminus of the self-assembling peptide may be acetylated and the C-terminus amidated.
  • the added peptide (modified peptide) as a whole may not have the characteristics of the self-assembling peptide. Specifically, when an arbitrary amino acid is added and the sequence in the N-terminal direction and the sequence in the C-terminal direction are asymmetric about the 7-position hydrophobic amino acid sequence, the hydrophobic amino acid is equal to the hydrophilic amino acid. In some cases, it has a ratio. Even in such a case, since the self-assembling peptide has an extremely excellent self-assembling ability, the added peptide to which an arbitrary amino acid is added is also excellent in mechanical strength and is long-term in the eye. An artificial vitreous material capable of maintaining the tamponade effect can be obtained.
  • the number of amino acid residues constituting the modified peptide after introduction is preferably 14 to 200, more preferably 14 to 100, still more preferably 14 to 50, It is preferably 14 to 30, and most preferably 14 to 20. If the number of amino acid residues exceeds 200, the self-assembling ability of the self-assembling peptide may be impaired.
  • the type and position of the amino acid to be introduced can be appropriately set according to the use of the modified peptide.
  • hydrophobic amino acids and hydrophilic amino acids are introduced alternately from the N-terminal and / or C-terminal arginine residues (hydrophilic amino acids) of the self-assembling peptide.
  • the above modification can be performed by any appropriate method depending on the type and the like.
  • the artificial vitreous material of the present invention may contain any additive in addition to the self-assembling peptide and salt.
  • the additive include arbitrary drugs, for example, low molecular weight compounds, nucleic acids such as DNA and RNA, antibodies such as Lucentis, Avastin, and Macgen.
  • the artificial vitreous material of the present invention can be produced by any suitable method.
  • an aqueous peptide solution is prepared by dissolving the self-assembled peptide in distilled water to a desired concentration, and the aqueous peptide solution, the salt, and optionally any additives and solvents are used with any stirring means.
  • an artificial vitreous material can be obtained by stirring and mixing.
  • the artificial vitreous material can be obtained by stirring and mixing the peptide aqueous solution, the salt solution and, if necessary, any additive using any stirring means.
  • the artificial vitreous material of the present invention can be injected into the eyeball using any suitable means. For example, after filling the artificial vitreous material of the present invention into a syringe, it can be sterilized and injected into the eyeball using a syringe. Since the artificial vitreous material of the present invention is excellent in operability, even an injection needle that is thinner than a 25-gauge injection needle that is usually used for injection into the eyeball is easily injected into the eyeball. be able to.
  • the osmotic pressure of the artificial vitreous material was measured as follows. (Measurement of osmotic pressure) Each artificial vitreous material was diluted with distilled water (manufactured by Otsuka Pharmaceutical Factory, trade name: Pharmacopoeia Otsuka distilled water) until it became a solution state.
  • the diluted artificial vitreous material using an osmotic pressure measuring device (manufactured by Advanced Instruments, trade name: Osmometer 3900)
  • Osmometer 3900 The osmotic pressure of was measured.
  • the osmotic pressure of each artificial vitreous material was obtained by proportionally calculating the obtained osmotic pressure with the dilution factor.
  • Example 1 Self-assembled peptide (Menicon Co., Ltd., trade name: PanaceaGel SPG-178, 1 w / v%) is mixed with distilled water (Otsuka Pharmaceutical Factory Co., Ltd., trade name: Pharmacopoeia Otsuka distilled water), and the peptide concentration is 0 A 15 w / v% aqueous peptide solution was obtained.
  • aqueous peptide solution and salt solution 1 (manufactured by Showa Yakuhin Kako Co., Ltd., OPAQUA (registered trademark) (oxyglutathione solution) dilution solution, osmotic pressure: 308 mOsm / kg) were mixed at a volume ratio of 2: 1 to produce artificial glass.
  • Body material 1 was obtained.
  • Table 1 shows the self-assembling peptide concentration, salt solution ratio and osmotic pressure in the obtained artificial vitreous material.
  • Example 2 Example except that salt solution 2 (manufactured by Nippon Alcon Co., Ltd., trade name: BSS Plus (registered trademark) (oxyglutathione solution), osmotic pressure: 308 mOsm / kg) was used instead of salt solution 1
  • BSS Plus registered trademark
  • osmotic pressure 308 mOsm / kg
  • Example 3 An artificial vitreous material 3 was obtained in the same manner as in Example 2 except that the peptide concentration of the aqueous peptide solution was 0.45 w / v%. Table 1 shows the self-assembling peptide concentration, salt solution ratio and osmotic pressure in the obtained artificial vitreous material.
  • Example 4 An artificial vitreous material 4 was obtained in the same manner as in Example 1 except that the peptide concentration of the aqueous peptide solution was 0.075 w / v%. Table 1 shows the self-assembling peptide concentration, salt solution ratio and osmotic pressure in the obtained artificial vitreous material.
  • Example 5 Artificial vitreous material in the same manner as in Example 2, except that the peptide concentration of the aqueous peptide solution was 0.25 w / v%, and the mixing ratio of the aqueous peptide solution to the salt solution 1 was 2: 3 by volume. 5 was obtained. Table 1 shows the self-assembling peptide concentration, salt solution ratio and osmotic pressure in the obtained artificial vitreous material.
  • Example 1 A peptide aqueous solution with a peptide concentration of 1 w / v% was prepared in the same manner as in Example 1, and distilled water (manufactured by Otsuka Pharmaceutical Factory Co., Ltd., trade name: Pharmacopoeia Otsuka distilled water) was further added to the peptide aqueous solution to self-assemble.
  • the peptide concentration was 0.1 w / v% to obtain an artificial vitreous material C1.
  • Table 1 shows the self-assembling peptide concentration, salt solution ratio and osmotic pressure in the obtained artificial vitreous material.
  • Example 2 An artificial vitreous material C2 was obtained in the same manner as in Example 1 except that the peptide concentration of the aqueous peptide solution was 1 w / v%, and the mixing ratio of the aqueous peptide solution and the salt solution was 3: 7 by volume. .
  • Table 1 shows the self-assembling peptide concentration, salt solution ratio and osmotic pressure in the obtained artificial vitreous material.
  • Tamponade effect ⁇ High tamponade effect
  • Tamponade effect
  • No tamponade effect
  • Table 2 The warmed artificial vitreous material was filled into a syringe (injection needle: 26 gauge), and the operability was evaluated by the feel (handling) at the time of injection. The evaluation results are shown in Table 2.
  • the artificial vitreous materials obtained in Examples 1 to 5 had a tamponade effect and excellent operability. Further, it has high transparency and can be suitably used as an artificial vitreous material. Usually, a 25 gauge needle is used for injection into the eyeball. The artificial vitreous material of the present invention was excellent in operability even when a thinner 26 gauge injection needle was used.
  • the artificial vitreous material obtained in Comparative Example 1 and Comparative Example 3 was in a liquid state, and a sufficient tamponade effect was not obtained.
  • the artificial vitreous material obtained in Comparative Example 2 was excellent in the tamponade effect and operability, it was inferior in transparency and therefore not suitable for use as an artificial vitreous material.
  • FIG. 1a A photograph of the anterior segment of the eyeball one week after surgery is shown in FIG. 1a
  • a photograph of the fundus is shown in FIG. 1b
  • a photograph of HE-stained retinal tissue is shown in FIG. 1c.
  • FIG. 1c A photograph of the anterior segment of the eyeball one month after surgery is shown in FIG.
  • FIG. 2a a photograph of the fundus is shown in FIG. 2b
  • a photograph of HE-stained retinal tissue is shown in FIG. 2c
  • a photograph of the anterior fundus of the eyeball 3 months after surgery A photograph is shown in FIG. 3a
  • a photograph of the fundus is shown in FIG. 3b
  • a photograph of HE-stained retinal tissue is shown in FIG. 3c.
  • the artificial vitreous material of the present invention has excellent operability, and is not toxic to the eye tissue even after a long period of 3 months, and is a good tamponade in the eyeball. The effect could be maintained.
  • the artificial vitreous material of the present invention can be suitably used as a tamponade material used after vitrectomy.
  • SEQ ID NO: 1 is a self-assembling peptide used in the present invention.
  • SEQ ID NO: 2 is a self-assembling peptide used in the present invention.
  • SEQ ID NO: 3 is a self-assembling peptide used in the present invention.
  • SEQ ID NO: 4 is a self-assembling peptide used in the present invention.
  • SEQ ID NO: 5 is a self-assembling peptide used in the present invention.
  • SEQ ID NO: 6 is a self-assembling peptide used in the present invention.
  • SEQ ID NO: 7 is a self-assembling peptide used in the present invention.
  • SEQ ID NO: 8 is a self-assembling peptide used in the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Ophthalmology & Optometry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

 眼組織への毒性がなく、眼内で長期的にタンポナーデ効果を維持することができ、かつ、操作性に優れた人工硝子体材料を提供すること。本発明の人工硝子体材料は、自己組織化ペプチド、および、塩を含み、浸透圧が40mOsm/kg~200mOsm/kgである。本発明の人工硝子体材料は、眼組織への毒性がなく、眼内で長期的にタンポナーデ効果を維持することができ、かつ、操作性に優れる。

Description

人工硝子体材料
 本発明は、人工硝子体材料に関する。
 硝子体は、眼球の後房(posterior cavity)を埋めるコラーゲンおよびヒアルロン酸ナトリウムから構成されるゲル状の物質である。硝子体は、眼球の内側から網膜を押さえつけ、その剥離を防ぐタンポナーデ効果を有する。そのため、眼球が正常に機能するためには、重要な組織である。現在、手術加療の必要な網膜硝子体疾患に対しては、硝子体切除術が多く適用されているが、硝子体の適切な代替品がないため、硝子体切除後も硝子体が切除されたままとなっている。また、硝子体が切除された後では、注射による眼内への薬物投与の効果が硝子体存在下よりも低下することも報告されている。
 硝子体切除後のタンポナーデ材料として、気体(例えば、空気、6フッ化硫黄または8フッ化プロパン等の膨張ガス)、ならびに、シリコーンオイルおよび液体パーフルオロカーボン等が用いられている。なかでも、シリコーンオイルが臨床において、多く用いられている。しかしながら、シリコーンオイルは眼組織への毒性が強く、一定期間後に抜去する必要があり、扱いが煩雑である。さらに、シリコーンオイルは、乳化白濁等が起こる場合がある。また、液体パーフルオロカーボンは、手術中に一時的なタンポナーデ材料として使用されている。しかしながら、液体パーフルオロカーボンについても、眼組織への毒性が強く、手術終了時には眼内から抜去されている。空気、6フッ化硫黄または8フッ化プロパン等の膨張ガスを用いるガスタンポナーデの場合、眼内での気体の吸収により、その効果は1日から1週間と短い期間である(例えば、特許文献1)。また、ガスタンポナーデでは、術後、患者は通常、1週間程度、うつ伏せの姿勢が強要される。タンポナーデ材料として、コラーゲンやヒアルロン酸およびその塩も用いられている(例えば、特許文献2)。しかしながら、これらは生物および/または微生物由来であるため、高価であり、臨床への応用には至っていない。
 また、タンポナーデ材料として、片末端を長鎖アルキル基で修飾されたポリエチレングリコール、および、両末端を長鎖アルキル基で修飾されたポリエチレングリコールを用いた組成物が提案されている(例えば、特許文献3)。この組成物は、硬度が高く、タンポナーデ効果は期待できるものの、操作性を向上させるためには、通常使用される注射針(25ゲージ)よりも太い針(21ゲージ)を使用する必要がある。そのため、眼球にかかる負荷が大きくなり、治療に要する期間も長くなるおそれがある。
特開平6-154263号公報 特開平5-184663号公報 特開2010-104632号公報
 本発明は、上記課題を解決するためになされたものであり、その目的は、眼組織への毒性がなく、眼内で長期的にタンポナーデ効果を維持することができ、かつ、操作性に優れた人工硝子体材料を提供することである。
 本発明によれば、人工硝子体材料が提供される。該人工硝子体材料は、自己組織化ペプチド、および、塩を含み、浸透圧が40mOsm/kg~200mOsm/kgである。
 好ましい実施形態においては、上記人工硝子体材料は、上記自己組織化ペプチドを0.01w/v%~0.5w/v%含む。
 好ましい実施形態においては、上記自己組織化ペプチドは下記のアミノ酸配列からなる:
アミノ酸配列:adb
(該アミノ酸配列中、a~aは、塩基性アミノ酸残基であり;b~bは、非電荷極性アミノ酸残基および/または疎水性アミノ酸残基であり、ただし、そのうちの少なくとも5個は、疎水性アミノ酸残基であり;cおよびcは、酸性アミノ酸残基であり;dは、疎水性アミノ酸残基である)。
 好ましい実施形態においては、上記アミノ酸配列中、b~bが、それぞれ独立してアラニン残基、バリン残基、ロイシン残基、またはイソロイシン残基である。
 好ましい実施形態においては、上記アミノ酸配列中、dがアラニン残基、バリン残基、ロイシン残基、またはイソロイシン残基である。
 本発明の人工硝子体材料によれば、眼内で長期的にタンポナーデ効果を維持することができる。また、本発明の人工硝子体材料は、適度な流動性を有しているため、操作性にも優れる。本発明の人工硝子体材料は、自己組織化ペプチドおよび塩を含むものであり、眼組織への毒性もない。そのため、本発明の人工硝子体材料によれば、ガスによるタンポナーデ後のような術後のうつ伏せ状態の維持、および、シリコーンオイル等を用いた場合のような抜去手術が不要であるため、患者のクオリティオブライフ(QOL)を向上させ得る。また、本発明の人工硝子体材料は、薬物保持性にも優れるため、硝子体除去後の眼内への薬物投与効果の低減を防止し得る。
本発明の人工硝子体材料を注入して1週間後の家兎の眼球の前眼部の写真である。 本発明の人工硝子体材料を注入して1週間後の家兎の眼球の眼底の写真である。 本発明の人工硝子体材料を注入して1週間後の家兎のHE染色した網膜組織の写真である。 本発明の人工硝子体材料を注入して1ヶ月後の家兎の眼球の前眼部の写真である。 本発明の人工硝子体材料を注入して1ヶ月後の家兎の眼球の眼底の写真である。 本発明の人工硝子体材料を注入して1ヶ月後の家兎のHE染色した網膜組織の写真である。 本発明の人工硝子体材料を注入して3ヶ月後の家兎の眼球の前眼部の写真である。 本発明の人工硝子体材料を注入して3ヶ月後の家兎の眼球の眼底の写真である。 本発明の人工硝子体材料を注入して3ヶ月後の家兎のHE染色した網膜組織の写真である。
<用語の定義>
(1)本明細書において、「自己組織化ペプチド」とは、溶媒中において、ペプチド分子同士の相互作用を介して自発的に集合するペプチドをいう。相互作用としては、特に限定されず、例えば、水素結合、イオン間相互作用、ファンデルワールス力等の静電的相互作用、疎水性相互作用が挙げられる。1つの実施形態において、自己組織化ペプチドは、室温の水溶液(例えば、0.4w/v%のペプチド水溶液)中において、自己組織化してナノファイバーまたはゲルを形成し得る。
(2)本明細書において、「ゲル」とは、粘性的な性質と弾性的な性質とを併せ持つ粘弾性物質をいう。
(3)本明細書において、「親水性アミノ酸」は、アルギニン(Arg/R)、リシン(Lys/K)、ヒスチジン(His/H)等の塩基性アミノ酸、アスパラギン酸(Asp/D)、グルタミン酸(Glu/E)等の酸性アミノ酸、チロシン(Tyr/Y)、セリン(Ser/S)、トレオニン(Thr/T)、アスパラギン(Asn/N)、グルタミン(Gln/Q)、システイン(Cys/C)等の非電荷極性アミノ酸を含む。上記括弧内のアルファベットはそれぞれ、アミノ酸の三文字表記および一文字表記である。
(4)本明細書において、「疎水性アミノ酸」は、アラニン(Ala/A)、ロイシン(Leu/L)、イソロイシン(Ile/I)、バリン(Val/V)、メチオニン(Met/M)、フェニルアラニン(Phe/F)、トリプトファン(Trp/W)、グリシン(Gly/G)、プロリン(Pro/P)等の非極性アミノ酸を含む。上記括弧内のアルファベットはそれぞれ、アミノ酸の三文字表記および一文字表記である。
<人工硝子体材料>
 本発明の人工硝子体材料は、自己組織化ペプチドおよび塩を含む。本発明の人工硝子体材料は、自己組織化ペプチドおよび塩を含むことにより、眼内で長期的なタンポナーデ効果を維持することができ、かつ、操作性に優れる。
 本発明の人工硝子体材料は、浸透圧が40mOsm/kg~200mOsm/kgである。人工硝子体材料の浸透圧が上記の範囲内であることにより、眼内でさらに長期的なタンポナーデ効果を維持することができ、かつ、操作性に優れた人工硝子体材料が得られ得る。浸透圧が200mOsm/kgを超えると、人工硝子体材料の透明性が低下するおそれがある。なお、人工硝子体材料の浸透圧は、日本薬局方に準じた凝固点降下法を用いた浸透圧測定法(オスモル濃度測定法)により測定することができる。
 本発明の人工硝子体材料は、pHを生理的条件(pH7.4程度)に調整されていることが好ましく、任意のpH調整剤、または緩衝剤等を用いることにより調整され得る。
A.塩
 上記塩としては、体液(例えば、房水)に含まれる塩と類似の塩が好ましく、任意の適切な塩を用いることができる。上記塩としては、例えば、塩化ナトリウムおよび塩化マグネシウム等のイオン性の塩が挙げられる。これらの塩は、単独で用いてもよく、2種以上を組み合わせてもよい。
 上記塩は、任意の塩を任意の溶媒に溶解した塩溶液の形態で用いてもよい。該塩溶液に用いられる溶媒としては、蒸留水等が挙げられる。該塩溶液としては、市販の塩溶液を用いてもよい。具体的には、生理食塩水、リンゲル液、オキシグルタチオン溶液等の眼内灌流液用の希釈液(例えば、日本アルコン株式会社製、商品名ビーエスエスプラス付属のオキシグルタチオン溶液用希釈液、昭和薬品加工株式会社製、商品名オペアクア(登録商標)付属のオキシグルタチオン溶液用希釈液)等が挙げられる。これらの塩溶液は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明の人工硝子体材料中の塩の割合は、得られる人工硝子体材料の浸透圧が40mOsm/kg~200mOsm/kgとなるよう、調整され得る。
B.自己組織化ペプチド
 本発明で用いる自己組織化ペプチドとしては、生体、特に眼組織に対して毒性のないものであればよく、任意の適切な自己組織化ペプチドを用いることができる。本発明の人工硝子体材料は、自己組織化ペプチドを好ましくは0.01w/v%~0.5w/v%、より好ましくは0.05w/v%~0.4w/v%含む。自己組織化ペプチドを上記の範囲内で含むことにより、眼内での長期間のタンポナーデ効果を維持し、かつ、操作性に優れた人工硝子体材料が得られ得る。自己組織化ペプチドは、ドラッグデリバリーシステムの基材としても注目されている。したがって、本発明の人工硝子体材料は、眼内に注入された後、眼内に注入された薬物投与効果の低減を防止し得る。自己組織化ペプチドは、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
 好ましくは、本発明で用いる自己組織化ペプチドは、下記のアミノ酸配列からなる。
アミノ酸配列:adb
(上記アミノ酸配列中、a~aは、塩基性アミノ酸残基を表し;b~bは、非電荷極性アミノ酸残基および/または疎水性アミノ酸残基を表し、ただし、そのうちの少なくとも5個は、疎水性アミノ酸残基であり;cおよびcは、酸性アミノ酸残基を表し;dは、疎水性アミノ酸残基を表す)。
上記アミノ酸配列からなる自己組織化ペプチドを用いることにより、眼内でより長期間のタンポナーデ効果を維持することが可能な自己組織化ペプチドが得られる。また、上記アミノ酸配列からなるペプチドは、生理条件下において、透明性および力学的強度に優れるゲルを形成し得るため、人工硝子体材料として好適に用いることができる。
 上記自己組織化ペプチドを構成するアミノ酸は、L-アミノ酸であってもよく、D-アミノ酸であってもよい。また、天然アミノ酸であってもよく、非天然アミノ酸であってもよい。低価格で入手可能であり、ペプチド合成が容易であることから、好ましくは天然アミノ酸である。
 上記アミノ酸配列中、a~aは、塩基性アミノ酸残基を表す。塩基性アミノ酸は、好ましくはアルギニン、リシン、またはヒスチジンであり、より好ましくはアルギニンまたはリシンである。これらのアミノ酸は、塩基性が強いからである。a~aは、同一のアミノ酸残基であってもよく、異なるアミノ酸残基であってもよい。
 上記アミノ酸配列中、b~bは、非電荷極性アミノ酸残基および/または疎水性アミノ酸残基を表し、そのうちの少なくとも5個は、疎水性アミノ酸残基である。疎水性アミノ酸は、好ましくはアラニン、ロイシン、イソロイシン、バリン、メチオニン、フェニルアラニン、トリプトファン、グリシン、またはプロリンである。非電荷極性アミノ酸は、好ましくはチロシン、セリン、トレオニン、アスパラギン、グルタミン、またはシステインである。これらのアミノ酸は、入手が容易だからである。
 好ましくは、bおよびbは、それぞれ独立して任意の適切な疎水性アミノ酸残基であり、さらに好ましくはロイシン残基、アラニン残基、バリン残基、またはイソロイシン残基であり、特に好ましくはロイシン残基またはアラニン残基である。上記アミノ酸配列において、それぞれ6位と8位に位置するbとbが疎水性アミノ酸残基である場合、6~8位の3つのアミノ酸残基が連続して疎水性アミノ酸残基となる。このようにアミノ酸配列の中心に形成された疎水性領域は、その疎水性相互作用等により、人工硝子体材料の強度を向上させることができ、眼内で長期的にタンポナーデ効果を維持することができると推測される。
 好ましくは、b~bはすべて疎水性アミノ酸残基である。自己組織化ペプチドが好適にβシート構造を形成し、自己組織化し得るからである。より好ましくは、b~bは、それぞれ独立してロイシン残基、アラニン残基、バリン残基、またはイソロイシン残基であり、さらに好ましくはロイシン残基またはアラニン残基である。好ましい実施形態においては、b~bのうちの4個以上がロイシン残基であり、特に好ましくはそのうちの5個以上がロイシン残基であり、最も好ましくはすべてがロイシン残基である。水への溶解性に優れるため人工硝子体材料の調製が容易であり、また、人工硝子体材料の強度を向上させることができ、眼内で長期的にタンポナーデ効果を維持することができる人工硝子体材料が得られ得るからである。
 上記アミノ酸配列中、cおよびcは、酸性アミノ酸残基を表す。酸性アミノ酸は、好ましくはアスパラギン酸またはグルタミン酸である。これらのアミノ酸は、入手が容易だからである。cおよびcは、同一のアミノ酸残基であってもよく、異なるアミノ酸残基であってもよい。
 上記アミノ酸配列中、dは、疎水性アミノ酸残基を表す。上記のとおり、dが疎水性アミノ酸残基であり、かつ、所定の対称構造を有することにより、より力学的強度に優れた人工硝子体材料が得られ、眼内で長期的にタンポナーデ効果を維持することが可能となると考えられる。
 dは、好ましくはアラニン残基、バリン残基、ロイシン残基、またはイソロイシン残基である。この場合、自己組織化ペプチドが形成するβシート構造の親水性面側のアミノ酸の側鎖長は非相補的となり得るが、該自己組織化ペプチドは、優れた自己組織化能を発揮し得、さらには、従来よりも力学的強度に優れ、眼内で長期的にタンポナーデ効果を維持することが可能な人工硝子体材料が得られ得る。
 上記自己組織化ペプチドに含まれるアミノ酸残基の中性領域における電荷の総和は、実質的に+2である。すなわち、上記自己組織化ペプチドは、中性領域において該ペプチドに含まれるアミノ酸残基の側鎖に由来するプラス電荷とマイナス電荷とが相殺されない。加えて、N末端とC末端のアミノ酸残基がともに塩基性アミノ酸残基であることから、本発明で用いられる自己組織化ペプチドは、例えば、ペプチド間に静電的引力に加えて静電的斥力が働き、これらの微妙なバランスが保たれることで過度の会合が実質的に生じないため、生理条件下に近い中性領域で沈殿することなく安定なゲルを形成し得ると推測される。なお、本明細書において、「中性領域」とは、pH6~8、好ましくは、pH6.5~7.5の領域をいう。
 各pHにおける上記自己組織化ペプチドの電荷は、例えば、レーニンジャー(Lehninger)〔Biochimie、1979〕の方法に従って算出され得る。レーニンジャーの方法は、例えば、EMBL WWW Gateway to Isoelectric Point Serviceのウェブサイト(http://www.embl-heidelberg.de/cgi/pi-wrapper.pl)上で利用可能なプログラムにより行なわれ得る。
 本発明で用いられる自己組織化ペプチドとして、好ましい具体例を以下に示す。
     n-RLDLRLALRLDLR-c(配列番号1)
     n-RLDLRLLLRLDLR-c(配列番号2)
     n-RADLRLALRLDLR-c(配列番号3)
     n-RLDLRLALRLDAR-c(配列番号4)
     n-RADLRLLLRLDLR-c(配列番号5)
     n-RADLRLLLRLDAR-c(配列番号6)
     n-RLDLRALLRLDLR-c(配列番号7)
     n-RLDLRLLARLDLR-c(配列番号8)
 上記自己組織化ペプチドは、任意の適切な製造方法によって製造され得る。例えば、Fmoc法等の固相法又は液相法等の化学合成方法、遺伝子組換え発現等の分子生物学的方法が挙げられる。
 上記自己組織化ペプチドは任意の修飾がされた自己組織化ペプチド(以下、修飾ペプチドという)であってもよい。該修飾ペプチドは、自己組織化能を有し、かつ、生体、特に眼組織に対して毒性を有さない範囲で、上記自己組織化ペプチドに任意の修飾を施したペプチドである。修飾が行われる部位は、上記自己組織化ペプチドのN末端アミノ基であってもよく、C末端カルボキシル基であってもよく、その両方であってもよい。
 上記修飾としては、得られる修飾ペプチドが自己組織化能を有し、かつ、生体、特に眼組織に対して毒性を有しない範囲において任意の適切な修飾が選択され得る。例えば、N末端のアセチル化、C末端のアミド化等の保護基の導入;アルキル化、エステル化、またはハロゲン化等の官能基の導入;水素添加;単糖、二糖、オリゴ糖、または多糖等の糖化合物の導入;脂肪酸、リン脂質、または糖脂質等の脂質化合物の導入;アミノ酸またはタンパク質の導入;DNAの導入;その他生理活性を有する化合物等の導入が挙げられる。アミノ酸またはタンパク質が導入される場合、導入後のペプチドは上記自己組織化ペプチドのN末端および/またはC末端に任意のアミノ酸が付加されたペプチドであるが、本明細書においては、該付加ペプチドも修飾ペプチドに含む。修飾は1種のみ行われてもよく、2種以上を組み合わせて行ってもよい。例えば、上記自己組織化ペプチドのC末端に所望のアミノ酸を導入した付加ペプチドのN末端をアセチル化し、C末端をアミド化してもよい。
 上記付加ペプチド(修飾ペプチド)は、全体として、上記自己組織化ペプチドの特徴を有さない場合がある。具体的には、任意のアミノ酸の付加により、7位の疎水性アミノ酸配列を中心としてN末端方向の配列とC末端方向の配列とが非対称となる場合、疎水性アミノ酸と親水性アミノ酸とを等しい割合で有する場合等がある。このような場合であっても、上記自己組織化ペプチドが極めて優れた自己組織化能を有するので、任意のアミノ酸が付加された付加ペプチドもまた、力学的強度に優れ、眼内で長期的にタンポナーデ効果を維持することが可能な人工硝子体材料が得られ得る。
 アミノ酸またはタンパク質が導入される場合、導入後の修飾ペプチドを構成するアミノ酸残基数は、好ましくは14~200であり、より好ましくは14~100であり、さらに好ましくは14~50であり、特に好ましくは14~30、最も好ましくは14~20である。アミノ酸残基数が200を超えると、上記自己組織化ペプチドの自己組織化能が損なわれる場合がある。
 導入されるアミノ酸の種類および位置は、修飾ペプチドの用途等に応じて適切に設定され得る。好ましくは、上記自己組織化ペプチドのN末端および/またはC末端のアルギニン残基(親水性アミノ酸)から疎水性アミノ酸と親水性アミノ酸とが交互になるように導入される。
 上記修飾は、その種類等に応じて、任意の適切な方法によって行われ得る。
C.添加剤
 本発明の人工硝子体材料は、上記自己組織化ペプチドおよび塩以外に、任意の添加剤を含んでいてもよい。該添加剤としては、任意の薬剤、例えば、低分子化合物、DNAおよびRNA等の核酸、ルセンティス、アバスチン、マクジェン等の抗体等が挙げられる。
D.人工硝子体材料の製造方法
 本発明の人工硝子体材料は、任意の適切な方法で製造され得る。例えば、上記自己組織化ペプチドを所望の濃度となるよう蒸留水に溶解してペプチド水溶液を調製し、該ペプチド水溶液、上記塩および必要に応じて任意の添加剤および溶媒を任意の撹拌手段を用いて、撹拌、混合することにより人工硝子体材料が得られ得る。他の方法としては、例えば、上記ペプチド水溶液、上記塩溶液および必要に応じて任意の添加剤を任意の撹拌手段を用いて、撹拌、混合することにより人工硝子体材料が得られ得る。
E.人工硝子体材料の使用方法
 本発明の人工硝子体材料は、任意の適切な手段を用いて、眼球内に注入され得る。例えば、注射筒内に本発明の人工硝子体材料を充填した後、滅菌処理をし、注射器を用いて、眼球内に注入され得る。本発明の人工硝子体材料は、操作性に優れているため、通常眼球内への注射に使用される25ゲージの注射針よりも細い注射針であっても容易に眼球内への注入を行うことができる。
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、人工硝子体材料の浸透圧については、以下のようにして測定した。
(浸透圧の測定)
 各人工硝子体材料を溶液状態となるまで、蒸留水(株式会社大塚製薬工場製、商品名:局方大塚蒸留水)を用いて希釈した。次いで、日本薬局方に記載の浸透圧測定法(オスモル濃度測定法)に準じて、浸透圧測定装置(アドバンスドインストルメンツ社製、商品名:オズモメーター3900)を用いて、希釈した人工硝子体材料の浸透圧を測定した。得られた浸透圧を希釈倍率で比例計算することにより、各人工硝子体材料の浸透圧を求めた。
[実施例1]
 自己組織化ペプチド(株式会社メニコン製、商品名:PanaceaGel SPG-178、1w/v%)を蒸留水(株式会社大塚製薬工場製、商品名:局方大塚蒸留水)と混合し、ペプチド濃度0.15w/v%のペプチド水溶液を得た。得られたペプチド水溶液と塩溶液1(昭和薬品化工株式会社製、オペアクア(登録商標)(オキシグルタチオン溶液)用希釈液、浸透圧:308mOsm/kg)を体積比2:1で混合し、人工硝子体材料1を得た。得られた人工硝子体材料中の自己組織化ペプチド濃度、塩溶液の割合および浸透圧を表1に示す。
[実施例2]
 塩溶液1に代えて、塩溶液2(日本アルコン株式会社製、商品名:ビーエスエスプラス(登録商標)(オキシグルタチオン溶液)用希釈液、浸透圧:308mOsm/kg)を用いた以外は実施例1と同様にして、人工硝子体材料2を得た。得られた人工硝子体材料中の自己組織化ペプチド濃度、塩溶液の割合および浸透圧を表1に示す。
[実施例3]
 ペプチド水溶液のペプチド濃度を0.45w/v%とした以外は、実施例2と同様にして、人工硝子体材料3を得た。得られた人工硝子体材料中の自己組織化ペプチド濃度、塩溶液の割合および浸透圧を表1に示す。
[実施例4]
 ペプチド水溶液のペプチド濃度を0.075w/v%とした以外は、実施例1と同様にして、人工硝子体材料4を得た。得られた人工硝子体材料中の自己組織化ペプチド濃度、塩溶液の割合および浸透圧を表1に示す。
[実施例5]
 ペプチド水溶液のペプチド濃度を0.25w/v%としたこと、ペプチド水溶液と塩溶液1との混合比を体積比で2:3とした以外は、実施例2と同様にして、人工硝子体材料5を得た。得られた人工硝子体材料中の自己組織化ペプチド濃度、塩溶液の割合および浸透圧を表1に示す。
(比較例1)
 実施例1と同様にしてペプチド濃度1w/v%のペプチド水溶液を調製し、該ペプチド水溶液にさらに蒸留水(株式会社大塚製薬工場製、商品名:局方大塚蒸留水)を加え、自己組織化ペプチド濃度を0.1w/v%とし、人工硝子体材料C1を得た。得られた人工硝子体材料中の自己組織化ペプチド濃度、塩溶液の割合および浸透圧を表1に示す。
(比較例2)
 ペプチド水溶液のペプチド濃度を1w/v%としたこと、ペプチド水溶液と塩溶液との混合比を体積比で3:7とした以外は実施例1と同様にして、人工硝子体材料C2を得た。得られた人工硝子体材料中の自己組織化ペプチド濃度、塩溶液の割合および浸透圧を表1に示す。
(比較例3)
 ペプチド水溶液のペプチド濃度を0.2w/v%としたこと、ペプチド水溶液と塩溶液との混合比を体積比で9:1としたこと以外は実施例1と同様にして、人工硝子体材料C3を得た。得られた人工硝子体材料中の自己組織化ペプチド濃度、塩溶液の割合および浸透圧を表1に示す。
Figure JPOXMLDOC01-appb-T000001
[評価]
 実施例1~5および比較例1~3で得られた人工硝子体材料をインキュベーター(SANYO製、商品名:COインキュベーター)を用いて、37℃まで加温し、以下の評価を行った。
<タンポナーデ効果、物性および透明性>
 加温した人工硝子体材料のタンポナーデ効果、物性および透明性を目視により確認し、評価した。タンポナーデ効果については、以下のように評価した。評価結果を表2に示す。
 タンポナーデ効果 ◎:高いタンポナーデ効果あり
          ○:タンポナーデ効果あり
          ×:タンポナーデ効果なし
<操作性>
 加温後の人工硝子体材料を注射器(注射針:26ゲージ)に充填し、射出する際の感触(ハンドリング)により操作性を評価した。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例1~5で得られた人工硝子体材料は、タンポナーデ効果を有しており、操作性にも優れていた。また、透明性も高く、人工硝子体材料として好適に用いられ得るものであった。通常、眼球への注射には25ゲージの注射針が用いられる。本発明の人工硝子体材料は、それよりも細い26ゲージの注射針を用いた場合であっても、操作性に優れていた。
 比較例1および比較例3で得られた人工硝子体材料は、液状であり、十分なタンポナーデ効果が得られるものではなかった。一方、比較例2で得られた人工硝子体材料は、タンポナーデ効果および操作性には優れるものの、透明性に劣るため、人工硝子体材料としての使用には適さないものであった。
[試験例]家兎眼球への注入試験
 体重2kgの白色家兎21検体に、ケタミン15mg/kgおよびキシラジン10mg/kgを筋肉注射し、深麻酔をかけた。角膜反射消失、および、痛み刺激に対する反応が消失していることを確認した。次いで、片眼の硝子体切除術を行い、切除後、実施例2で得られた人工硝子体材料2を注入し、手術を終了した。手術方法は、ヒト臨床において、広く普及している3ポートシステム(25G)の方法を用いた。手術の1日後、3日後、1週間後、2週間後、3週間後、1ヶ月後および3ヶ月後に人工硝子体材料を注入した眼球を細隙灯顕微鏡および眼底顕微鏡を用いて観察し、網膜電図の測定を行った。各観察日において、家兎3検体から人工硝子体材料を注入した眼球を摘出し、HE染色をし、網膜の状態を観察した。手術1週間後の眼球の前眼部の写真を図1aに、眼底の写真を図1bに、HE染色した網膜組織の写真を図1cにそれぞれ示す。同様に、手術1ヶ月後の眼球の前眼部の写真を図2aに、眼底の写真を図2bに、HE染色した網膜組織の写真を図2cに、手術3ヶ月後の眼球の前底部の写真を図3aに、眼底の写真を図3bに、HE染色した網膜組織の写真を図3cにそれぞれ示す。
 全観察日において、水晶体および人工硝子体材料のいずれにも濁りはなく、眼底の観察が可能であった。手術1ヶ月後においても、白内障は発生しておらず、網膜組織への毒性は見られなかった。さらに、手術1ヶ月後においても、眼球内に人工硝子体材料は残存しており、良好なタンポナーデ効果が維持されていた。また、人工硝子体材料自体も硬化や、混濁することなく残存していた。手術3ヶ月後においても、白内障は発生しておらず、網膜組織への毒性は見られなかった。さらに、人工硝子体材料の硬化や懸濁も発生しておらず、良好なタンポナーデ効果が維持されていた。このように、本発明の人工硝子体材料は優れた操作性を有しており、かつ、3ヶ月という長期間経過後であっても、眼組織への毒性がなく、眼球内で良好なタンポナーデ効果を維持することができた。
 本発明の人工硝子体材料は、硝子体切除術後に用いるタンポナーデ材として好適に用いられ得る。
 配列番号1は、本発明で用いられる自己組織化ペプチドである。
 配列番号2は、本発明で用いられる自己組織化ペプチドである。
 配列番号3は、本発明で用いられる自己組織化ペプチドである。
 配列番号4は、本発明で用いられる自己組織化ペプチドである。
 配列番号5は、本発明で用いられる自己組織化ペプチドである。
 配列番号6は、本発明で用いられる自己組織化ペプチドである。
 配列番号7は、本発明で用いられる自己組織化ペプチドである。
 配列番号8は、本発明で用いられる自己組織化ペプチドである。

Claims (5)

  1.  自己組織化ペプチド、および、塩を含む、人工硝子体材料であって、
     浸透圧が40mOsm/kg~200mOsm/kgである、人工硝子体材料。
  2.  前記自己組織化ペプチドを0.01w/v%~0.5w/v%含む、請求項1に記載の人工硝子体材料。
  3.  前記自己組織化ペプチドが下記のアミノ酸配列からなる、請求項1または2に記載の人工硝子体材料:
    アミノ酸配列:adb
    (該アミノ酸配列中、a~aは、塩基性アミノ酸残基であり;b~bは、非電荷極性アミノ酸残基および/または疎水性アミノ酸残基であり、ただし、そのうちの少なくとも5個は、疎水性アミノ酸残基であり;cおよびcは、酸性アミノ酸残基であり;dは、疎水性アミノ酸残基である)。
  4.  前記アミノ酸配列中、b~bが、それぞれ独立してアラニン残基、バリン残基、ロイシン残基、またはイソロイシン残基である、請求項3に記載の人工硝子体材料。
  5.  前記アミノ酸配列中、dがアラニン残基、バリン残基、ロイシン残基、またはイソロイシン残基である、請求項3または4に記載の人工硝子体材料。
PCT/JP2012/059498 2011-04-27 2012-04-06 人工硝子体材料 WO2012147497A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013511991A JP5845250B2 (ja) 2011-04-27 2012-04-06 人工硝子体材料
CN201280020798.5A CN103501828A (zh) 2011-04-27 2012-04-06 人造玻璃体材料
EP12777267.1A EP2703014A4 (en) 2011-04-27 2012-04-06 SYNTHETIC ENAMEL MATERIAL
US14/114,102 US20140045951A1 (en) 2011-04-27 2012-04-06 Synthetic vitreous material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011099564 2011-04-27
JP2011-099564 2011-04-27

Publications (1)

Publication Number Publication Date
WO2012147497A1 true WO2012147497A1 (ja) 2012-11-01

Family

ID=47072021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059498 WO2012147497A1 (ja) 2011-04-27 2012-04-06 人工硝子体材料

Country Status (5)

Country Link
US (1) US20140045951A1 (ja)
EP (1) EP2703014A4 (ja)
JP (1) JP5845250B2 (ja)
CN (1) CN103501828A (ja)
WO (1) WO2012147497A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014162906A1 (ja) * 2013-03-30 2017-02-16 株式会社糖鎖工学研究所 糖鎖−ポリペプチド複合体

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10821136B2 (en) * 2014-06-30 2020-11-03 National University Corporation Tokai National Higher Education And Research System Bone formation promoter
WO2016006693A1 (ja) * 2014-07-11 2016-01-14 株式会社メニコン 視認性確保材および視認性確保材吐出装置
JP6692021B2 (ja) * 2016-01-06 2020-05-13 国立大学法人 東京大学 眼科治療用ゲル材料
EP3476384A1 (en) * 2017-10-25 2019-05-01 F. Hoffmann-La Roche AG Artificial vitreous humor for the investigation of drugs and drug formulations

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184663A (ja) 1991-02-27 1993-07-27 Shiseido Co Ltd 硝子体注入物
JPH06154263A (ja) 1992-06-25 1994-06-03 Adatomed Pharmazeutische & Medizintechnische Gmbh 眼の後部腔への硝子液のタンポナーデ
JP2006204813A (ja) * 2005-01-31 2006-08-10 Hokkaido Univ 生体適合性および高体積変化能を有する組織体ならびにその作製方法
WO2007000979A1 (ja) * 2005-06-27 2007-01-04 Menicon Co., Ltd. 自己組織化ペプチドおよびそれより得られるゲル
JP2010104632A (ja) 2008-10-31 2010-05-13 Hoya Corp ゲル化能を有する眼科用組成物
EP2236523A1 (en) * 2009-03-30 2010-10-06 Scivision Biotech Inc. Method for producing cross-linked hyaluronic acid
US20100261893A1 (en) * 2009-04-09 2010-10-14 Scivision Biotech Inc. Method for producing cross-linked hyaluronic acid
JP2010280719A (ja) * 2009-03-09 2010-12-16 Menicon Co Ltd 自己組織化ペプチドおよび高強度ペプチドゲル

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2373237A1 (en) * 2000-03-10 2001-09-20 Insite Vision Incorporated Methods and compositions for treating and preventing posterior segment ophthalmic disorders
EP1897549B1 (en) * 2005-06-07 2011-08-24 InBiotex Inc. Radical scavenger and active oxygen eliminating agent

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184663A (ja) 1991-02-27 1993-07-27 Shiseido Co Ltd 硝子体注入物
JPH06154263A (ja) 1992-06-25 1994-06-03 Adatomed Pharmazeutische & Medizintechnische Gmbh 眼の後部腔への硝子液のタンポナーデ
JP2006204813A (ja) * 2005-01-31 2006-08-10 Hokkaido Univ 生体適合性および高体積変化能を有する組織体ならびにその作製方法
WO2007000979A1 (ja) * 2005-06-27 2007-01-04 Menicon Co., Ltd. 自己組織化ペプチドおよびそれより得られるゲル
JP2010104632A (ja) 2008-10-31 2010-05-13 Hoya Corp ゲル化能を有する眼科用組成物
JP2010280719A (ja) * 2009-03-09 2010-12-16 Menicon Co Ltd 自己組織化ペプチドおよび高強度ペプチドゲル
EP2236523A1 (en) * 2009-03-30 2010-10-06 Scivision Biotech Inc. Method for producing cross-linked hyaluronic acid
US20100261893A1 (en) * 2009-04-09 2010-10-14 Scivision Biotech Inc. Method for producing cross-linked hyaluronic acid

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FOSTER, W. J. ET AL.: "Internal Osmotic Pressure as a Mechanism of Retinal Attachment in a Vitreous Substitute", J. BIOACT. COMPAT. POLYM., vol. 21, no. 3, 2006, pages 221 - 235, XP055131551 *
KOJI UESUGI ET AL., JOURNAL OF JAPANESE OPHTHALMOLOGICAL SOCIETY, vol. 116, 1 March 2012 (2012-03-01), pages 300, XP008171246 *
NAGAI, Y. ET AL.: "The mechanical stimulation of cells in 3D culture within a self-assembling peptide hydrogel", BIOMATERIALS, vol. 33, no. 4, February 2012 (2012-02-01), pages 1044 - 1051, XP028115482 *
See also references of EP2703014A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014162906A1 (ja) * 2013-03-30 2017-02-16 株式会社糖鎖工学研究所 糖鎖−ポリペプチド複合体

Also Published As

Publication number Publication date
CN103501828A (zh) 2014-01-08
US20140045951A1 (en) 2014-02-13
EP2703014A4 (en) 2014-12-17
JP5845250B2 (ja) 2016-01-20
JPWO2012147497A1 (ja) 2014-07-28
EP2703014A1 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
JP6159359B2 (ja) 自己組織化ペプチドおよび高強度ペプチドゲル
US11890328B2 (en) Fibroin-derived protein composition
JP5845250B2 (ja) 人工硝子体材料
KR100444417B1 (ko) 성장인자를함유하는겔제형
US8236344B2 (en) Engineered proteins, and methods of making and using
AU2017267370B2 (en) A method to enhance wound healing using silk-derived protein
Wang et al. Keratose/poly (vinyl alcohol) blended nanofibers: Fabrication and biocompatibility assessment
KR20100127846A (ko) 각막 상피의 투과성을 증가시키고 각막실질 콜라겐 피브릴 망상조직을 탈안정화시키는 방법
WO2014141160A1 (en) Treatment for bile leakage
CA3095073A1 (en) Sap and peptidomimetics for treatment of eye disease
CN109862851A (zh) 用于治疗炎症的丝衍生蛋白质
EP3429646A1 (en) Pancreatic fistula occlusion
EA035402B1 (ru) Бифункциональные молекулы, содержащие полиэтиленгликоль, для подавления катаракт и пресбиопии
JP2023537951A (ja) 自己組織化両親媒性ペプチドハイドロゲル
RU2740185C2 (ru) Пептидная композиция
CN108671270A (zh) 具有氧化还原特性的粘弹剂材料
WO2017158420A1 (en) Preventing biological tissue adhesion
EP3429645A1 (en) Cerebrospinal fluid leakage occlusion
WO2019223748A1 (zh) 粘弹剂材料
WO2020162765A9 (en) Biomaterials and methods related thereto
JP2023546757A (ja) ペプチド製剤および眼科におけるその使用
EP4057941A2 (en) Stable formulations of silk-derived protein

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12777267

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013511991

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14114102

Country of ref document: US

Ref document number: 2012777267

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE