WO2012147210A1 - レジスト下層膜形成用組成物及びパターン形成方法 - Google Patents
レジスト下層膜形成用組成物及びパターン形成方法 Download PDFInfo
- Publication number
- WO2012147210A1 WO2012147210A1 PCT/JP2011/060489 JP2011060489W WO2012147210A1 WO 2012147210 A1 WO2012147210 A1 WO 2012147210A1 JP 2011060489 W JP2011060489 W JP 2011060489W WO 2012147210 A1 WO2012147210 A1 WO 2012147210A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- underlayer film
- resist underlayer
- carbon atoms
- resist
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/09—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
- G03F7/091—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B44—DECORATIVE ARTS
- B44C—PRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
- B44C1/00—Processes, not specifically provided for elsewhere, for producing decorative surface effects
- B44C1/22—Removing surface-material, e.g. by engraving, by etching
- B44C1/227—Removing surface-material, e.g. by engraving, by etching by etching
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/02—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G8/00—Condensation polymers of aldehydes or ketones with phenols only
- C08G8/04—Condensation polymers of aldehydes or ketones with phenols only of aldehydes
- C08G8/08—Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
- C08G8/20—Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with polyhydric phenols
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/09—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
- G03F7/094—Multilayer resist systems, e.g. planarising layers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/09—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
- G03F7/11—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/30—Imagewise removal using liquid means
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/36—Imagewise removal not covered by groups G03F7/30 - G03F7/34, e.g. using gas streams, using plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/0271—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
- H01L21/0273—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
- H01L21/0274—Photolithographic processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/31—Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
- C08G2261/314—Condensed aromatic systems, e.g. perylene, anthracene or pyrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/33—Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
- C08G2261/332—Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/90—Applications
Definitions
- the present invention relates to a resist underlayer film forming composition and a pattern forming method.
- the substrate patterning step includes, for example, a step of depositing a photosensitive material called a resist composition on the substrate to form a resist film, a step of exposing a predetermined region of the resist film, a development of the resist film, and exposure. A step of removing a portion or an unexposed portion to obtain a resist pattern on which a predetermined pattern is formed, a step of dry etching the substrate using the obtained resist pattern as an etching mask, and the like.
- an ultraviolet light such as an ArF excimer laser is used as an exposure light source for exposing the resist film.
- the required resolution has become less than the wavelength of exposure light (ultraviolet light).
- the exposure process tolerance such as the exposure tolerance and the focus tolerance is insufficient.
- it is effective to improve the resolution by reducing the thickness of the resist film.
- the resist required for etching the substrate is effective. It may be difficult to ensure the film thickness.
- the composition for forming the resist underlayer film is preferably composed of a component having etching resistance, such as a thermosetting phenol novolac, which has an aromatic ring that has a high carbon content and absorbs energy during etching.
- a component having etching resistance such as a thermosetting phenol novolac
- a composition containing a polymer, a composition containing a polymer having an acenaphthylene skeleton, and the like have been proposed (see Japanese Patent Application Laid-Open Nos. 2001-40293 and 2000-143937).
- a composition containing a copolymer of a styrene derivative or an allylbenzene derivative and a nortricyclene derivative has also been proposed (see JP 2008-65303 A).
- the resist underlayer film formed by the conventional underlayer film forming composition as described above tends to have a low refractive index n at 193 nm and a large extinction coefficient k. Therefore, when a resist underlayer film is formed from a composition containing a polymer having an aromatic ring and a resist film mainly composed of an acrylic system is formed on the resist underlayer film, the resist underlayer film is compared with the resist film. There is an inconvenience that the reflectance becomes high and a good resist pattern cannot be formed.
- the present invention has been made based on the above circumstances, and forms a resist underlayer film having excellent etching resistance and reduced reflectance (that is, a high refractive index n and a low extinction coefficient k).
- An object of the present invention is to provide a resist underlayer film forming composition that can be used, and a pattern forming method using the same.
- R 1 is a hydroxy group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an acyl group having 2 to 10 carbon atoms, or an aryl group having 6 to 14 carbon atoms.
- N is an integer of 0 to 5.
- n 2 or more, a plurality of R 1 may be the same or different, X is a divalent hydrocarbon group having 1 to 20 carbon atoms, or carbon An alkanediyloxy group of 1 to 20.
- m is an integer of 1 to 7.
- n + m is 7 or less.
- R 2 is a single bond or an alkanediyl group having 1 to 4 carbon atoms
- R 3 is an alicyclic group having 4 to 20 carbon atoms or an arylene group having 6 to 30 carbon atoms, provided that R 3 Some or all of the hydrogen atoms possessed by a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, Group, may be substituted with an acyl group or hydroxyalkyl group.
- the above formula (1) is preferably represented by the following formula (1-1).
- R 1 , R 2 , X, m and n are as defined in the above formula (1).
- R 4 is a hydroxy group, an alkyl group having 1 to 6 carbon atoms
- 6 is an alkoxy group having 2 to 6 carbon atoms
- a hydroxyalkyl group having 1 to 6 carbon atoms wherein l is an integer of 0 to 3, provided that when l is 2 or more, a plurality of R 4 May be the same or different.
- the weight average molecular weight of the polymer is preferably 500 to 8,000.
- the resist underlayer film forming composition preferably further contains a [C] acid generator.
- the resist underlayer film forming composition preferably further contains a [D] crosslinking agent.
- the pattern forming method of the present invention includes a step of applying the resist underlayer film forming composition on a substrate to be processed to form a resist underlayer film, and using the resist composition on the substrate to be processed on which the resist underlayer film is formed. A step of forming a resist pattern, and a step of etching the resist underlayer film and the substrate to be processed.
- the resist underlayer film forming composition of the present invention it is possible to form a resist underlayer film having excellent etching resistance and a low refractive index due to a high refractive index n and a small extinction coefficient k. Further, according to the pattern forming method of the present invention, a pattern having an excellent pattern shape can be formed with good reproducibility.
- the resist underlayer film forming composition of the present invention contains a [A] polymer and a [B] solvent.
- the resist underlayer film forming composition preferably contains a [C] acid generator and a [D] cross-linking agent.
- other optional components may be included as long as the effects of the present invention are not impaired. Hereinafter, each component will be described in detail.
- the polymer is a polymer containing a repeating unit represented by the above formula (1) (hereinafter also referred to as “repeating unit (I)”).
- R 1 is a hydroxy group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an acyl group having 2 to 10 carbon atoms, or an aryl group having 6 to 14 carbon atoms.
- n is an integer of 0 to 5. However, when n is 2 or more, the plurality of R 1 may be the same or different.
- X is a divalent hydrocarbon group having 1 to 20 carbon atoms or an alkanediyloxy group having 1 to 20 carbon atoms.
- m is an integer of 1 to 7. When m is 2 or more, the plurality of Xs may be the same or different.
- N + m is an integer of 1 to 7.
- R 2 is a single bond or an alkanediyl group having 1 to 4 carbon atoms.
- R 3 is an alicyclic group having 4 to 20 carbon atoms or an arylene group having 6 to 30 carbon atoms. However, part or all of the hydrogen atoms possessed by R 3 may be substituted with a hydroxy group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group, an acyl group, or a hydroxyalkyl group.
- examples of the alkyl group having 1 to 6 carbon atoms represented by R 1 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and a tert-butyl group. It is done.
- Examples of the alkoxy group having 1 to 6 carbon atoms represented by R 1 include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, and a tert-butoxy group.
- Examples of the acyl group having 2 to 10 carbon atoms represented by R 1 include an aliphatic acyl group such as an acetyl group, an aromatic acyl group, and the like.
- Examples of the aryl group having 6 to 14 carbon atoms represented by R 1 include a phenyl group and a naphthyl group.
- one part or all part of the hydrogen atom which said R1 has may be substituted by the substituent.
- the substituent include a nitro group, an amino group, a carboxyl group, a sulfonic acid group, a mercapto group, a hydroxymethyl group, an ester group, and an epoxy group.
- R 1 is preferably a hydroxy group.
- examples of the divalent hydrocarbon group represented by X include an alkanediyl group and an arylene group. Moreover, the said hydrocarbon group may have a substituent. The description of the substituent that R 1 may have can be applied to such a substituent.
- alkanediyl group examples include a methylene group and an ethylene group.
- the arylene group is preferably an arylene group having 6 to 14 carbon atoms, and examples thereof include a phenylene group and a naphthylene group.
- Examples of the alkanediyloxy group having 1 to 20 carbon atoms represented by X include a methyleneoxy group and an ethyleneoxy group.
- examples of the alkanediyl group represented by R 2 include a methylene group and an ethylene group.
- examples of the alicyclic group having 4 to 20 carbon atoms represented by R 3 include a cyclobutanediyl group and a cyclopentanediyl group.
- Examples of the arylene group having 6 to 30 carbon atoms represented by R 3 include a phenylene group and a naphthylene group.
- the substituent that the alicyclic group and arylene group may have is preferably a hydroxy group.
- the group represented by —R 2 —R 3 is preferably a group represented by the following formula.
- * indicates a bonding site with the aromatic ring.
- repeating unit (I) those represented by the above formula (1-1) are preferable.
- R 1 , R 2 , X, m and n are as defined in the above formula (1).
- R 4 is a hydroxy group, an alkyl group having 1 to 6 carbon atoms, or a hydroxyalkyl group.
- l is an integer of 0 to 3. However, when l is 2 or more, the plurality of R 4 may be the same or different.
- examples of the alkyl group having 1 to 6 carbon atoms represented by R 4 include a methyl group, an ethyl group, a propyl group, and a butyl group.
- Examples of the alkoxy group having 1 to 6 carbon atoms represented by R 4 include the same groups as those exemplified as the alkoxy group having 1 to 6 carbon atoms represented by R 1 in the above formula (1). It is done.
- acyl group having 2 to 6 carbon atoms represented by R 4 examples include aliphatic acyl groups such as acetyl group, aromatic acyl groups, and the like.
- hydroxyalkyl group having 1 to 6 carbon atoms represented by R 4 for example, part or all of the hydrogen atoms of the group exemplified as the alkyl group having 1 to 6 carbon atoms is substituted with a hydroxy group Groups and the like.
- R 4 is preferably a hydroxy group or a hydroxymethyl group.
- l is preferably from 0 to 2.
- the weight average molecular weight (Mw) in terms of polystyrene by gel permeation chromatography (GPC) of the polymer is preferably 500 to 8,000, more preferably 1,000 to 3,000. , 500 to 2,500 is more preferable.
- Mw is less than 500, components may volatilize during baking of the resist underlayer film, and a desired film thickness may not be obtained.
- Mw exceeds 8,000, the solubility in [B] solvent may fall.
- [A] Polymer Synthesis Method>
- a method for synthesizing a polymer a method of heating a naphthalene derivative, an aldehyde, and an alcohol represented by the following formula (2) in the presence of an acid catalyst in a solvent-free or solvent
- Examples include a method of introducing an alcohol represented by the following formula (2) into the coalescence in the presence of an acid catalyst.
- a naphthol compound in which a group represented by —R 2 —R 3 obtained by reacting an alcohol represented by the following formula (2) with a monomer before polymerization, for example, naphthol is used. Polymerization can also be performed.
- R 2 and R 3 are as defined in the above formula (1).
- Examples of the alcohol represented by the above formula (2) include 1-adamantanol, 1-adamantane methanol, 1,3-adamantane dimethanol, 1,3-adamantane diol, 1,3,5-adamantane trimethanol, 3,5-adamantanetriol is preferred.
- aldehydes examples include saturated aliphatic aldehydes such as formaldehyde, paraformaldehyde, acetaldehyde and propylaldehyde; unsaturated aliphatic aldehydes such as acrolein and methacrolein; heterocyclic aldehydes such as furfural; benzaldehyde and naphthylaldehyde. And aromatic aldehydes such as anthraldehyde.
- formaldehyde, paraformaldehyde, and furfural are preferable.
- these can be used individually by 1 type or in mixture of 2 or more types.
- the amount of aldehydes and alcohols used in the above synthesis method is preferably 10 to 100 parts by mass of aldehydes and 10 to 100 parts by mass of alcohols with respect to 100 parts by mass of naphthalene derivative.
- Examples of the acid catalyst used in the above synthesis method include mineral acids such as sulfuric acid, phosphoric acid and perchloric acid; organic sulfonic acids such as p-toluenesulfonic acid; carboxylic acids such as formic acid and oxalic acid.
- the amount of the acid catalyst used is variously selected depending on the type of acids used. For example, the amount is preferably 0.001 to 10,000 parts by mass, more preferably 0.01 to 1,000 parts by mass with respect to 100 parts by mass of the acenaphthylenes.
- the reaction temperature in the above synthesis method is preferably 40 ° C to 200 ° C. While the reaction time is variously selected depending on the reaction temperature, it is preferably 30 minutes to 72 hours.
- the content of the [A] polymer is 8 to 30% by mass when the total of the [A] polymer and the [B] solvent is 100% by mass. Preferably there is.
- the resist underlayer film forming composition of the present invention contains a [B] solvent that dissolves the [A] polymer.
- the solvent used in the resist underlayer film forming composition of the present invention is not particularly limited as long as it can dissolve the polymer [A].
- ethylene glycol monomethyl ether ethylene glycol monoethyl
- Ethylene glycol monoalkyl ethers such as ether, ethylene glycol mono-n-propyl ether, ethylene glycol mono-n-butyl ether
- Ethylene glycol monoalkyl ether acetates such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol mono-n-propyl ether acetate, ethylene glycol mono-n-butyl ether acetate
- Diethylene glycol dialkyl ethers such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol di-n-propyl ether, diethylene glycol di-n-butyl ether
- Triethylene glycol dialkyl ethers such as triethylene glycol dimethyl ether and triethylene glycol diethyl ether;
- Propylene glycol monoalkyl ethers such as propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-n-propyl ether, propylene glycol mono-n-butyl ether; Propylene glycol dialkyl ethers such as propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol di-n-propyl ether, propylene glycol di-n-butyl ether; Propylene glycol monoalkyl ether acetates such as propylene glycol monomethyl ether acetate, propylene glycol monoether ether acetate, propylene glycol mono-n-propyl ether acetate, propylene glycol mono-n-butyl ether acetate;
- Lactic acid esters such as methyl lactate, ethyl lactate, n-propyl lactate, i-propyl lactate, n-butyl lactate, i-butyl lactate; Methyl formate, ethyl formate, n-propyl formate, i-propyl formate, n-butyl formate, i-butyl formate, n-amyl formate, i-amyl formate, methyl acetate, ethyl acetate, n-propyl acetate, i-acetate Propyl, n-butyl acetate, i-butyl acetate, n-amyl acetate, i-amyl acetate, n-hexyl acetate, methyl propionate, ethyl propionate, n-propyl propionate, i-propyl propionate, n propionate Aliphatic carb
- solvents propylene glycol monomethyl ether, propylene glycol methyl ether acetate, ethylene glycol monoethyl ether acetate, ethyl lactate, n-butyl acetate, ethyl 3-ethoxypropionate, methyl 3-methoxypropionate, -Heptanone, cyclohexanone and ⁇ -butyrolactone are preferred.
- these [B] solvents can be used individually or in mixture of 2 or more types.
- the amount of the solvent used is preferably such an amount that the solid content concentration of the resulting composition is 5 to 80% by mass, more preferably 5 to 40% by mass, and still more preferably 10 to 30% by mass. %.
- solid content means components other than the solvent of the composition for resist underlayer film formation of this invention here.
- the resist underlayer film forming composition contains a [C] acid generator as a suitable component.
- the acid generator is a component that generates an acid upon exposure or heating.
- photoacid generator examples include diphenyliodonium trifluoromethanesulfonate, diphenyliodonium nonafluoro-n-butanesulfonate, diphenyliodonium pyrenesulfonate, and diphenyliodonium n.
- Halogen-containing compound-based photoacid generators such as phenylbis (trichloromethyl) -s-triazine, 4-methoxyphenylbis (trichloromethyl) -s-triazine, 1-naphthylbis (trichloromethyl) -s-triazine; 1,2-naphthoquinonediazide-4-sulfonyl chloride, 1,2-naphthoquinonediazide-5-sulfonyl chloride, 1,2-naphthoquinonediazide-4-sulfonic acid ester of 2,3,4,4′-tetrahydroxybenzophenone or Diazoketone compound-based photoacid generators such as 1,2-naphthoquinonediazide-5-sulfonic acid ester; Sulfone compound photoacid generators such as 4-trisphenacylsulfone, mesitylphenacylsulfone, bis (phenylsulfonyl)
- diphenyliodonium trifluoromethanesulfonate diphenyliodonium nonafluoro-n-butanesulfonate, diphenyliodonium pyrenesulfonate, diphenyliodonium n-dodecylbenzenesulfonate, diphenyliodonium 10-camphorsulfonate, diphenyliodonium naphthalenesulfonate, Bis (4-t-butylphenyl) iodonium trifluoromethanesulfonate, bis (4-t-butylphenyl) iodonium nonafluoro-n-butanesulfonate, bis (4-t-butylphenyl) iodonium n-dodecylbenzenesulfonate, bis ( 4-t-butylphenyl) iodonium 10-camphorsulfon
- thermal acid generator examples include 2,4,4,6-tetrabromocyclohexadienone, benzoin tosylate, and 2-nitrobenzyl tosylate. And alkyl sulfonates. These thermal acid generators can be used alone or in admixture of two or more.
- a photo-acid generator and a thermal acid generator can also be used together.
- the amount of the acid generator is preferably 10 parts by mass or less, more preferably 0.1 to 5 parts by mass, per 100 parts by mass of the solid content of the resist underlayer film forming composition.
- the composition for forming a resist underlayer film of the present invention can effectively cause a crosslinking reaction between the molecular chains of each polymer at a relatively low temperature including normal temperature.
- the resist underlayer film forming composition contains [D] a crosslinking agent as a suitable component.
- the cross-linking agent prevents intermixing between the resist underlayer film obtained by curing the underlayer film forming composition and the resist film formed on the resist underlayer film. It is a component having an action of preventing film cracking.
- [D] cross-linking agent polynuclear phenols, various commercially available curing agents and the like can be used.
- polynuclear phenols examples include dinuclear phenols such as 4,4′-biphenyldiol, 4,4′-methylene bisphenol, 4,4′-ethylidene bisphenol, and bisphenol A; 4,4 ′, 4 ′′- Trinuclear phenols such as methylidenetrisphenol, 4,4 ′-[1- ⁇ 4- (1- [4-hydroxyphenyl] -1-methylethyl) phenyl ⁇ ethylidene] bisphenol; polyphenols such as novolak Can be mentioned.
- dinuclear phenols such as 4,4′-biphenyldiol, 4,4′-methylene bisphenol, 4,4′-ethylidene bisphenol, and bisphenol A
- 4,4 ′, 4 ′′- Trinuclear phenols such as methylidenetrisphenol, 4,4 ′-[1- ⁇ 4- (1- [4-hydroxyphenyl] -1-methyl
- polynuclear phenols 4,4 '-[1- ⁇ 4- (1- [4-hydroxyphenyl] -1-methylethyl) phenyl ⁇ ethylidene] bisphenol, novolac and the like can be mentioned.
- the said polynuclear phenols can be used individually or in mixture of 2 or more types.
- curing agent examples include 2,3-tolylene diisocyanate, 2,4-tolylene diisocyanate, 3,4-tolylene diisocyanate, 3,5-tolylene diisocyanate, 4,4′- And diisocyanates such as diphenylmethane diisocyanate, hexamethylene diisocyanate, and 1,4-cyclohexane diisocyanate.
- Examples of commercially available products include Epicoat 812, 815, 826, 828, 834, 836, 871, 1001, 1004, 1007, 1009, and 1031 (above, Yuka Shell Epoxy Co., Ltd.) ), Araldite 6600, 6700, 6800, 502, 6071, 6084, 6097, 6099 (above, manufactured by Ciba Geigy), D.C. E. R.
- Epoxy compounds such as 331, 332, 333, 661, 644, 667 (above, manufactured by Dow Chemical Co.); Cymel 300, 301, 303, 350, 370, 771, 325, Melamine-based curing agents such as 327, 703, 712, 701, 272, 202, Mycoat 506, 508 (Mitsui Cyanamid Co., Ltd.); Cymel 1123, 1123-10, 1128, Benzoguanamine-based curing agents such as My Coat 102, 105, 106, 130 (above, Mitsui Cyanamid); Cymel 1170, 1172 (above, Mitsui Cyanamid), Nicalak N-2702 (Sanwa Chemical Co., Ltd.) And the like, and the like.
- curing agents melamine curing agents, glycoluril curing agents and the like are preferable.
- curing agent can be used individually or in mixture of 2 or more types.
- curing agent can also be used together as a crosslinking agent.
- the blending amount of the crosslinking agent is preferably 50 parts by mass or less per 100 parts by mass of the solid content of the resist underlayer film forming composition.
- the composition for lower layer film formation of this invention can contain other arbitrary components other than a [A] polymer, a [B] solvent, a [C] acid generator, and a [D] crosslinking agent.
- the other optional components are preferably components having functions such as prevention of intermixing between the resist underlayer film and the resist film and improvement of the coating property of the composition for forming the underlayer film.
- binder resin, a radiation absorber, surfactant, etc. can be mentioned, for example.
- thermoplastic resins and thermosetting resins can be used.
- thermoplastic resin for example, Polyethylene, polypropylene, poly-1-butene, poly-1-pentene, poly-1-hexene, poly-1-heptene, poly-1-octene, poly-1-decene, poly-1-dodecene, poly-1- ⁇ -Olefin polymers such as tetradecene, poly-1-hexadecene, poly-1-octadecene, and polyvinylcycloalkane; poly-1,4-pentadiene, poly-1,4-hexadiene, poly-1,5-hexadiene
- Non-conjugated diene polymers such as ⁇ , ⁇ -unsaturated aldehyde polymers; ⁇ , ⁇ -unsaturated ketone polymers such as poly (methyl vinyl ketone), poly (aromatic vinyl ketone), poly (cyclic vinyl ketone); (meth) acrylic acid Polymers of ⁇ , ⁇ -unsaturated
- Polymers of diolefin carboxylic acid esters such as sorbic acid ester and muconic acid ester; Polymers of ⁇ , ⁇ -unsaturated carboxylic acid thioester such as (meth) acrylic acid thioester and ⁇ -chloroacrylic acid thioester; ) Polymers of (meth) acrylonitrile such as acrylonitrile and ⁇ -chloroacrylonitrile or derivatives thereof; Polymers of (meth) acrylamide or derivatives thereof such as (meth) acrylamide, N, N-dimethyl (meth) acrylamide; Polymers of metal compounds; Polymers of vinyloxy metal compounds; Polyimines; polyethers such as polyphenylene oxide, poly-1,3-dioxolane, polyoxirane, polytetrahydrofuran, polytetrahydropyran; polysulfides; polysulfonamides; polypeptides; nylon 66, nylon 1 to nylon 12, etc.
- Polyesters such as aliphatic polyesters, aromatic polyesters, alicyclic polyesters and polycarbonates; Polyureas; Polysulfones; Polyazines; Polyamines; Polyaromatic ketones; Polyimides; Polybenzoxazoles; polybenzothiazoles; polyaminotriazoles; polyoxadiazoles; polypyrazoles; polytetrazoles; polyquinoxalines; polytriazines; Down like; quinoline compounds; mention may be made of a poly-Anne tiger gelsolin, and the like.
- thermosetting resin is a component having an effect of preventing the intermixing between the resist underlayer film obtained and the resist film formed thereon, which is cured by heating and becomes insoluble in a solvent. It can be preferably used as a binder resin.
- thermosetting resins include thermosetting acrylic resins, phenol resins, urea resins, melamine resins, amino resins, aromatic hydrocarbon resins, epoxy resins, alkyd resins. And the like. Of these thermosetting resins, urea resins, melamine resins, aromatic hydrocarbon resins and the like are preferable.
- the above binder resins can be used alone or in admixture of two or more.
- the blending amount of the binder resin is preferably 20 parts by mass or less and more preferably 10 parts by mass or less per 100 parts by mass of the solid content of the resist underlayer film forming composition.
- the radiation absorber examples include oil-soluble dyes, disperse dyes, basic dyes, methine dyes, pyrazole dyes, imidazole dyes, hydroxyazo dyes, and the like; bixin derivatives, norbixin, stilbene, 4, Fluorescent whitening agents such as 4′-diaminostilbene derivatives, coumarin derivatives and pyrazoline derivatives; UV absorbers such as hydroxyazo dyes, Tinuvin 234 (manufactured by Ciba Geigy), Tinuvin 1130 (manufactured by Ciba Geigy); anthracene derivatives, And aromatic compounds such as anthraquinone derivatives.
- the radiation absorbers can be used alone or in admixture of two or more.
- the blending amount of the radiation absorber is preferably 100 parts by mass or less, and more preferably 50 parts by mass or less, per 100 parts by mass of the solid content of the resist underlayer film forming composition.
- the above surfactant is a component having an effect of improving coating properties, striation, wettability, developability and the like.
- examples of such surfactants include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene-n-octylphenyl ether, polyoxyethylene-n-nonylphenyl ether, polyethylene glycol Nonionic surfactants such as dilaurate and polyethylene glycol distearate are listed.
- Examples of commercially available products include KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), Polyflow No. 75, no. 95 (above, manufactured by Kyoeisha Yushi Chemical Co., Ltd.), F-top EF101, EF204, EF303, EF352 (above, manufactured by Tochem Products), MegaFuck F171, F172, F173 (above, Dainippon Ink and Chemicals, Inc.) Manufactured by Kogyo Co., Ltd.), Florard FC430, FC431, FC135, FC93 (above, manufactured by Sumitomo 3M), Asahi Guard AG710, Surflon S382, SC101, SC102, SC103, SC104, SC105, SC106 ( As mentioned above, Asahi Glass Co., Ltd.) can be mentioned.
- the compounding amount of the surfactant is preferably 15 parts by mass or less and more preferably 10 parts by mass or less per 100 parts by mass of the solid content of the resist underlayer film forming composition.
- a storage stabilizer for example, a storage stabilizer, an antifoaming agent, an adhesion aid and the like can be mentioned.
- the pattern forming method of the present invention includes (1) a step of applying the resist underlayer film forming composition according to claim 1 on a substrate to be processed to form a resist underlayer film, and (2) forming the resist underlayer film. Forming a resist pattern using a resist composition on the processed substrate, and (3) etching the resist underlayer film and the substrate to be processed.
- each step will be described.
- the substrate for example, a silicon wafer, a wafer coated with aluminum, or the like can be used.
- Application of the underlayer film composition can be carried out by an appropriate method such as spin coating, cast coating, roll coating or the like. Thereafter, the coating film is cured by exposure and / or heating.
- the radiation to be exposed is appropriately selected from visible light, ultraviolet light, far ultraviolet light, X-ray, electron beam, ⁇ -ray, molecular beam, ion beam and the like according to the type of photoacid generator used.
- the underlayer film composition contains a photoacid generator and is exposed, the coating film can be effectively cured even at room temperature.
- the heating temperature is preferably about 90 ° C to 350 ° C, more preferably about 200 ° C to 300 ° C.
- the coating film can be effectively cured even at about 90 ° C. to 150 ° C., for example.
- the film thickness of the resist underlayer film formed in this step is preferably 0.1 ⁇ m to 5 ⁇ m.
- Step (2) In the resist pattern forming step, pattern formation is performed using the resist composition solution on the resist underlayer film formed in the resist underlayer film forming step.
- Examples of such a pattern forming process include (2-1) a resist film forming process in which a resist composition is applied, and the resulting coating film is pre-baked to form a resist film. (2-2) The resist film And (2-3) a development resist film forming process for developing the exposed resist film. Below, each said process which the said pattern formation process has is demonstrated.
- Resist Film Formation Step A resist composition solution is applied on the resist underlayer film so that the resist film has a predetermined thickness. Thereafter, pre-baking is performed, and the solvent is volatilized to form a resist film.
- the pre-baking temperature at this time is appropriately adjusted according to the type of resist composition and the like, but is preferably about 30 ° C. to 200 ° C., more preferably 50 ° C. to 150 ° C.
- the resist composition examples include a positive or negative chemically amplified resist composition containing a photoacid generator, a positive resist composition comprising an alkali-soluble resin and a quinonediazide-based photosensitizer, and an alkali-soluble resin.
- examples thereof include a negative resist composition comprising a crosslinking agent.
- the resist composition used when the resist film is formed on the resist underlayer film preferably has a solid content concentration of about 5 to 50% by mass.
- the pore diameter is 0.2 ⁇ m. Filtered with a degree filter. In this step, a commercially available resist composition can be used as it is.
- the radiation used for exposure is visible light, ultraviolet light, far ultraviolet light, X-rays, electron beams, ⁇ -rays, molecules, depending on the type of photoacid generator used in the resist composition. It is appropriately selected from a line, an ion beam, etc., but is preferably far ultraviolet rays, and in particular, KrF excimer laser (248 nm), ArF excimer laser (193 nm), F2 excimer laser (wavelength 157 nm), Kr 2 excimer laser (wavelength 147 nm), ArKr excimer laser (wavelength 134 nm), extreme ultraviolet light (wavelength 13 nm, etc.) and the like are preferable.
- the developer used in this step is appropriately selected according to the type of resist composition used. Development in the case of a positive chemically amplified resist composition or a positive resist composition containing an alkali-soluble resin is used.
- the liquid include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyldiethylamine, dimethyl / ethanol.
- Alkaline aqueous solution etc. may be mentioned.
- an appropriate amount of a water-soluble organic solvent for example, an alcohol such as methanol or ethanol, or a surfactant can be added to these alkaline aqueous solutions.
- the pattern forming step a method of forming a fine pattern using a plurality of developers in the above (2-3) developing step after many (2-2) exposing steps (for example, Japanese Patent Application Laid-Open No. 2008-292975). And a method of forming a fine pattern through the steps (2-1) to (2-3) a plurality of times (see, for example, JP 2011-053643 A). Also, a pattern forming method (for example, see JP 2010-262980 A) that does not go through the above (2-3) development step such as a nanoimprint lithography method can be used.
- Mw Weight average molecular weight (Mw)
- GPC columns G2000HXL: 2, G3000HXL: 1) manufactured by Tosoh Corporation, flow rate: 1.0 mL / min, elution solvent: tetrahydrofuran, column temperature: 40 ° C. under the analysis conditions, monodisperse polystyrene It was measured by a standard gel permeation chromatograph (detector: differential refractometer).
- the reaction solution was diluted with 100 parts by mass of n-butyl acetate, and the organic layer was washed with a large amount of a mixed solvent of water / methanol (mass ratio: 1/2). Thereafter, the solvent was distilled off to obtain a polymer (A-1).
- the Mw of the polymer (A-1) was 1,800.
- the coagulated resin was washed several times with the mixed solvent and then vacuum dried.
- the molar ratio of each repeating unit derived from the monomers (a), (b) and (c) was 64:18:18, and Mw was 27,000 (yield 60%).
- Example 1 10 parts of the polymer (A-1) was dissolved in 100 parts of propylene glycol monomethyl ether to obtain a mixed solution. Thereafter, the mixed solution was filtered through a membrane filter having a pore size of 0.1 ⁇ m to obtain a resist underlayer film forming composition. The following various evaluations were performed using this resist underlayer film forming composition as a coating solution.
- Examples 2 to 6 and Comparative Example 1 A resist underlayer film forming composition was obtained in the same manner as in Example 1 except that the polymer components shown in Table 2 were used instead of the polymer (A-1). The following various evaluations were performed using the obtained composition for forming a resist underlayer film as a coating solution.
- Example 7 10 parts of polymer (A-1), 5 parts of (C-1) diphenyliodonium trifluoromethanesulfonate as [C] acid generator, and (D-1) Nicalac N-2702 as [D] crosslinker 10 parts) was dissolved in 100 parts of propylene glycol monomethyl ether to obtain a mixed solution. Thereafter, the mixed solution was filtered through a membrane filter having a pore size of 0.1 ⁇ m to obtain a resist underlayer film forming composition. The following various evaluations were performed using this resist underlayer film forming composition as a coating solution.
- Example 8 to 9 A resist underlayer film forming composition was obtained in the same manner as in Example 7 except that the polymer components shown in Table 2 were used instead of the polymer (A-1). The following various evaluations were performed using the obtained composition for forming a resist underlayer film as a coating solution.
- Each resist underlayer film forming composition was applied onto a silicon wafer having a diameter of 8 inches by spin coating. Next, it heated at 180 degreeC for 60 second with the hotplate. Then, it heated at 350 degreeC for 60 second, and formed the 0.3-micrometer-thick lower layer film.
- an interlayer composition solution for a three-layer resist process (NFC SOG080, manufactured by JSR Corporation) was spin-coated on this lower layer film, and then heated at 200 ° C. for 60 seconds on a hot plate. Subsequently, an intermediate layer film having a thickness of 0.05 ⁇ m was formed by heating at 300 ° C. for 60 seconds. Next, the above-prepared resist composition prepared above was spin-coated on this intermediate layer coating, and pre-baked at 130 ° C. for 90 seconds on a hot plate to form a resist coating having a thickness of 0.2 ⁇ m.
- Each resist underlayer film forming composition was spin-coated on a silicon wafer having a diameter of 8 inches. Then, it heated at 300 degreeC for 120 second on the hotplate, and formed the lower layer film with a film thickness of 0.3 micrometer. About this lower layer film, J. Org. A.
- the refractive index (n) and absorbance (extinction coefficient (k)) at a wavelength of 193 nm were measured using a spectroscopic ellipsometer VUV-VASE manufactured by WOOLLAM.
- the film has a sufficient function as an antireflection film in the ArF exposure resist process.
- the extinction coefficient (k) is in the range of 0.25 or more and 0.40 or less, it can be determined that the ArF exposure resist process has a sufficient function as an antireflection film.
- the resist underlayer film forming compositions of Examples 1 to 9 were excellent in etching resistance and reduced in reflectance as compared with the resist underlayer film forming composition of Comparative Example 1 ( That is, a resist underlayer film having a high refractive index n and a low extinction coefficient k was able to be formed. Further, it was found that the resist pattern formed using the resist underlayer film forming compositions of Examples 1 to 9 was superior to the comparative example 1 in terms of the pattern shape.
- composition for forming a resist underlayer film according to the present invention is suitable as a material for forming an underlayer film used in a multi-layer resist process suitable for microfabrication in a lithography process, particularly for manufacturing a highly integrated circuit element.
- the pattern formation method of the present invention is suitable as a pattern formation method in a multilayer resist process suitable for microfabrication in a lithography process, in particular, for manufacturing a highly integrated circuit element.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Structural Engineering (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Materials For Photolithography (AREA)
Abstract
Description
[A]下記式(1)で表される繰り返し単位を含む重合体(以下、「[A]重合体」ともいう)及び[B]溶剤を含有するレジスト下層膜形成用組成物である。
本発明のレジスト下層膜形成用組成物は、[A]重合体及び[B]溶剤を含有する。また、当該レジスト下層膜形成用組成物は、[C]酸発生剤、[D]架橋剤を含有することが好ましい。さらに、本発明の効果を損なわない限り、その他の任意成分を含んでいてもよい。以下、各成分について詳述する。
[A]重合体は、上記式(1)で表される繰り返し単位(以下、「繰り返し単位(I)」ともいう)を含む重合体である。
上記式(1)中、R1はヒドロキシ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数2~10のアシル基又は炭素数6~14のアリール基である。nは0~5の整数である。但し、nが2以上のとき、複数のR1は同一でも異なっていてもよい。Xは炭素数1~20の2価の炭化水素基、又は炭素数1~20のアルカンジイルオキシ基である。mは1~7の整数である。mが2以上のとき、複数のXは同一でも異なっていてもよい。また、n+mは1~7の整数である。R2は単結合又は炭素数1~4のアルカンジイル基である。R3は炭素数4~20の脂環式基又は炭素数6~30のアリーレン基である。但し、上記R3が有する水素原子の一部又は全部は、ヒドロキシ基、炭素数1~6のアルキル基、アルコキシ基、アシル基又はヒドロキシアルキル基で置換されていてもよい。
[A]重合体の合成方法としては、ナフタレン誘導体、アルデヒド類及び下記式(2)で表されるアルコール類を酸触媒の存在下で、無溶剤又は溶剤中で加熱する方法、重合後の重合体に下記式(2)で表されるアルコールを酸触媒存在下に導入する方法等が挙げられる。また、重合前の単量体、例えばナフトールに、下記式(2)で表されるアルコール類を反応させて得られる-R2-R3で表される基がペンダントされたナフトール化合物を用いて重合を行うこともできる。
本発明のレジスト下層膜形成用組成物は、[A]重合体を溶解する[B]溶剤を含有する。本発明のレジスト下層膜形成用組成物に使用される溶剤としては、[A]重合体を溶解しうるものであれば特に限定されるものではなく、例えば、 エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ-n-プロピルエーテル、エチレングリコールモノ-n-ブチルエーテル等のエチレングリコールモノアルキルエーテル類;
エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノ-n-プロピルエーテルアセテート、エチレングリコールモノ-n-ブチルエーテルアセテート等のエチレングリコールモノアルキルエーテルアセテート類;
ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジ-n-プロピルエーテル、ジエチレングリコールジ-n-ブチルエーテル等のジエチレングリコールジアルキルエーテル類;
トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル等のトリエチレングリコールジアルキルエーテル類;
プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジ-n-プロピルエーテル、プロピレングリコールジ-n-ブチルエーテル等のプロピレングリコールジアルキルエーテル類;
プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエテルエーテルアセテート、プロピレングリコールモノ-n-プロピルエーテルアセテート、プロピレングリコールモノ-n-ブチルエーテルアセテート等のプロピレングリコールモノアルキルエーテルアセテート類;
ギ酸メチル、ギ酸エチル、ギ酸n-プロピル、ギ酸i-プロピル、ギ酸n-ブチル、ギ酸i-ブチル、ギ酸n-アミル、ギ酸i-アミル、酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸i-プロピル、酢酸n-ブチル、酢酸i-ブチル、酢酸n-アミル、酢酸i-アミル、酢酸n-ヘキシル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸n-プロピル、プロピオン酸i-プロピル、プロピオン酸n-ブチル、プロピオン酸i-ブチル、酪酸メチル、酪酸エチル、酪酸n-プロピル、酪酸i-プロピル、酪酸n-ブチル、酪酸i-ブチル等の脂肪族カルボン酸エステル類;
トルエン、キシレン等の芳香族炭化水素類;
メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、シクロヘキサノン等のケトン類;
N-メチルホルムアミド、N,N-ジメチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類;
γ-ブチロラクトン等のラクトン類
等を挙げることができ、これらを適宜選択して使用することができる。
当該レジスト下層膜形成用組成物は、好適成分として[C]酸発生剤を含有する。[C]酸発生剤は、露光又は加熱により酸を発生する成分である。
ビス(4-t-ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムノナフルオロ-n-ブタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムn-ドデシルベンゼンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウム10-カンファースルホネート、ビス(4-t-ブチルフェニル)ヨードニウムナフタレンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムヘキサフルオロアンチモネート、
トリフェニルスルホニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムノナフルオロ-n-ブタンスルホネート、トリフェニルスルホニウムn-ドデシルベンゼンスルホネート、トリフェニルスルホニウムナフタレンスルホネート、トリフェニルスルホニウム10-カンファースルホネート、トリフェニルスルホニウムヘキサフルオロアンチモネート、
4-ヒドロキシフェニル・フェニル・メチルスルホニウムp-トルエンスルホネート、4-ヒドロキシフェニル・ベンジル・メチルスルホニウムp-トルエンスルホネート、
1-ナフチルジメチルスルホニウムトリフルオロメタンスルホネート、1-ナフチルジエチルスルホニウムトリフルオロメタンスルホネート、4-シアノ-1-ナフチルジメチルスルホニウムトリフルオロメタンスルホネート、4-シアノ-1-ナフチルジエチルスルホニウムトリフルオロメタンスルホネート、4-ニトロ-1-ナフチルジメチルスルホニウムトリフルオロメタンスルホネート、4-ニトロ-1-ナフチルジエチルスルホニウムトリフルオロメタンスルホネート、4-メチル-1-ナフチルジメチルスルホニウムトリフルオロメタンスルホネート、4-メチル-1-ナフチルジエチルスルホニウムトリフルオロメタンスルホネート、4-ヒドロキシ-1-ナフチルジメチルスルホニウムトリフルオロメタンスルホネート、4-ヒドロキシ-1-ナフチルジエチルスルホニウムトリフルオロメタンスルホネート、
1-〔4-(1-メトキシエトキシ)ナフタレン-1-イル〕テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-〔4-(2-メトキシエトキシ)ナフタレン-1-イル〕テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(4-メトキシカルボニルオキシナフタレン-1-イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(4-エトキシカルボニルオキシナフタレン-1-イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(4-n-プロポキシカルボニルオキシナフタレン-1-イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、
1-(4-ベンジルオキシ)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(ナフチルアセトメチル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート
等のオニウム塩系光酸発生剤類;
1,2-ナフトキノンジアジド-4-スルホニルクロリド、1,2-ナフトキノンジアジド-5-スルホニルクロリド、2,3,4,4’-テトラヒドロキシベンゾフェノンの1,2-ナフトキノンジアジド-4-スルホン酸エステル又は1,2-ナフトキノンジアジド-5-スルホン酸エステル等のジアゾケトン化合物系光酸発生剤類;
4-トリスフェナシルスルホン、メシチルフェナシルスルホン、ビス(フェニルスルホニル)メタン等のスルホン化合物系光酸発生剤類;
ベンゾイントシレート、ピロガロールのトリス(トリフルオロメタンスルホネート)、ニトロベンジル-9,10-ジエトキシアントラセン-2-スルホネート、トリフルオロメタンスルホニルビシクロ[2,2,1]ヘプト-5-エン-2,3-ジカルボジイミド、N-ヒドロキシスクシンイミドトリフルオロメタンスルホネート、1,8-ナフタレンジカルボン酸イミドトリフルオロメタンスルホネート等のスルホン酸化合物系光酸発生剤類等を挙げることができる。
当該レジスト下層膜形成用組成物は、好適成分として[D]架橋剤を含有する。[D]架橋剤は、下層膜形成用組成物を硬化させて得られるレジスト下層膜と、このレジスト下層膜の上に形成されるレジスト被膜との間のインターミキシングを防止し、さらにはレジスト下層膜のクラックを防止する作用を有する成分である。このような[D]架橋剤としては、多核フェノール類、種々の市販の硬化剤等を使用することができる。
本発明の下層膜形成用組成物は、[A]重合体、[B]溶剤、[C]酸発生剤及び[D]架橋剤以外のその他の任意成分を含むことができる。その他の任意成分は、レジスト下層膜とレジスト被膜との間のインターミキシングの防止、下層膜形成用組成物の塗布性の向上等の作用を有する成分であることが好ましい。上記その他の任意成分としては、例えば、バインダー樹脂、放射線吸収剤、界面活性剤等を挙げることができる。
ポリエチレン、ポリプロピレン、ポリ-1-ブテン、ポリ-1-ペンテン、ポリ-1-ヘキセン、ポリ-1-ヘプテン、ポリ-1-オクテン、ポリ-1-デセン、ポリ-1-ドデセン、ポリ-1-テトラデセン、ポリ-1-ヘキサデセン、ポリ-1-オクダデセン、ポリビニルシクロアルカン等のα-オレフイン系重合体類;ポリ-1,4-ペンタジエン、ポリ-1,4-ヘキサジエン、ポリ-1,5-ヘキサジエン等の非共役ジエン系重合体類;
α,β-不飽和アルデヒド系重合体類;ポリ(メチルビニルケトン)、ポリ(芳香族ビニルケトン)、ポリ(環状ビニルケトン)等のα,β-不飽和ケトン系重合体類;(メタ)アクリル酸、α-クロルアクリル酸、(メタ)アクリル酸塩、(メタ)アクリル酸エステル、(メタ)アクリル酸ハロゲン化物等のα,β-不飽和カルボン酸又はその誘導体の重合体類;ポリ(メタ)アクリル酸無水物、無水マレイン酸の共重合体等のα,β-不飽和カルボン酸無水物の重合体類;メチレンマロン酸ジエステル、イタコン酸ジエステル等の不飽和多塩基性カルボン酸エステルの重合体類;
ポリイミン類;ポリフェニレンオキシド、ポリ-1,3-ジオキソラン、ポリオキシラン、ポリテトラヒドロフラン、ポリテトラヒドロピラン等のポリエーテル類;ポリスルフィド類;ポリスルホンアミド類;ポリペプチド類;ナイロン66、ナイロン1~ナイロン12等のポリアミド類;脂肪族ポリエステル、芳香族ポリエステル、脂環族ポリエステル、ポリ炭酸エステル等のポリエステル類;ポリ尿素類;ポリスルホン類;ポリアジン類;ポリアミン類;ポリ芳香族ケトン類;ポリイミド類;ポリベンゾイミダゾール類;ポリベンゾオキサゾール類;ポリベンゾチアゾール類;ポリアミノトリアゾール類;ポリオキサジアゾール類;ポリピラゾール類;ポリテトラゾール類;ポリキノキサリン類;ポリトリアジン類;ポリベンゾオキサジノン類;ポリキノリン類;ポリアントラゾリン類等を挙げることができる。
本発明のパターン形成方法は、(1)被加工基板上に請求項1に記載のレジスト下層膜形成用組成物を塗布し、レジスト下層膜を形成する工程、(2)上記レジスト下層膜が形成された被加工基板にレジスト組成物を用いてレジストパターンを形成する工程、及び(3)レジスト下層膜と被加工基板とをエッチングする工程を有する。以下、各工程について説明する。
基板としては、例えば、シリコンウエハー、アルミニウムで被覆したウエハー等を使用することができる。下層膜組成物の塗布は、回転塗布、流延塗布、ロール塗布等の適宜の方法で実施することができる。その後、露光及び/又は加熱することにより塗膜を硬化させる。露光される放射線は、使用される光酸発生剤の種類に応じて、可視光線、紫外線、遠紫外線、X線、電子線、γ線、分子線、イオンビーム等から適切に選択される。下層膜組成物が光酸発生剤を含有し、かつ露光する場合には、常温でも塗膜を有効に硬化させることが可能である。また加熱温度は、90℃~350℃程度であることが好ましく、より好ましくは200℃~300℃程度である。下層膜組成物が熱酸発生剤を含有する場合は、例えば、90℃~150℃程度でも塗膜を有効に硬化させることが可能である。本工程で形成されるレジスト下層膜の膜厚は、0.1μm~5μmであることが好ましい。
レジストパターン形成工程では、上記レジスト下層膜形成工程にて形成されたレジスト下層膜上にレジスト組成物溶液を用いてパターン形成を行う。このようなパターン形成工程としては、例えば、(2-1)レジスト組成物を塗布し、得られた塗膜をプレベークしてレジスト被膜を形成するレジスト被膜形成工程、(2-2)上記レジスト被膜を、フォトマスクを介して選択的に露光する露光工程、(2-3)露光したレジスト被膜を現像する現像レジスト被膜形成工程を有するものを挙げることができる。以下に、上記パターン形成工程が有する上記各工程について説明する。
レジスト下層膜上に、レジスト被膜が所定の膜厚となるようにレジスト組成物溶液を塗布する。その後、プレベークして、溶剤を揮発させて、レジスト被膜を形成する。この際のプレベークの温度は、レジスト組成物の種類等に応じて適宜調整されるが、30℃~200℃程度であることが好ましく、50℃~150℃であることがより好ましい。
露光に用いられる放射線としては、レジスト組成物に使用される光酸発生剤の種類に応じて、可視光線、紫外線、遠紫外線、X線、電子線、γ線、分子線、イオンビーム等から適切に選択されるが、好ましくは遠紫外線であり、特に、KrFエキシマレーザー(248nm)、ArFエキシマレーザー(193nm)、F2エキシマレーザー(波長157nm)、Kr2エキシマレーザー(波長147nm)、ArKrエキシマレーザー(波長134nm)、極紫外線(波長13nm等)等が好ましい。
露光後のレジスト被膜を現像し、洗浄し、乾燥することにより、所定のレジストパターンを形成させる。本工程では、解像度、パターンプロファイル、現像性等を向上させるため、露光したのち現像前に、ポストベークを行うこともできる。
得られたレジストパターンをマスクとし、例えば酸素プラズマ等のガスプラズマを用いて、レジスト下層膜のエッチングを行う。さらに、上記レジスト下層膜をマスクとして基板のエッチングを行う。これにより、所定のパターンが得られる。
Mwは、東ソー社製のGPCカラム(G2000HXL:2本、G3000HXL:1本)を用い、流量:1.0mL/分、溶出溶剤:テトラヒドロフラン、カラム温度:40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフ(検出器:示差屈折計)により測定した。
[合成例1]
温度計を備えたセパラブルフラスコに、窒素雰囲気下で、2,7-ジヒドロキシナフタレン100質量部、ホルマリン30質量部、p-トルエンスルホン酸1質量部、及びプロピレングリコールモノメチルエーテル150質量部を仕込み、攪拌しつつ80℃で6時間重合させて反応溶液を得た。反応溶液に1-アダマンタノール43質量部を加え、80℃で24時間撹拌させた。その後、反応溶液を酢酸n-ブチル100質量部で希釈し、多量の水/メタノール(質量比:1/2)混合溶媒で有機層を洗浄した。その後、溶媒を留去して重合体(A-1)を得た。重合体(A-1)のMwは、1,800であった。
表1に記載のナフタレン誘導体及びアルコールを所定量配合した以外は、合成例1と同様に操作して重合体(A-2)~(A-6)及び(a-1)を得た。得られた各重合体のMwを合わせて表1に示す。
[合成例8]
還流管を装着したセパラブルフラスコに、窒素気流下で、8-メチル-8-t-ブトキシカルボニルメトキシカルボニルテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(単量体(a))29部、8-メチル-8-ヒドロキシテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(単量体(b))10部、無水マレイン酸(単量体(c))18部、2,5-ジメチル-2,5-ヘキサンジオールジアクリレート4部、t-ドデシルメルカプタン1部、アゾビスイソブチロニトリル4部、及び1,2-ジエトキシエタン60部を仕込み、攪拌しつつ70℃で6時間重合した。その後、反応溶液を大量のn-ヘキサン/i-プロピルアルコール(質量比=1/1)混合溶媒中に注いで樹脂を凝固させた。凝固した樹脂を該混合溶媒で数回洗浄したのち、真空乾燥した。上記単量体(a)、(b)及び(c)に由来する各繰り返し単位のモル比は64:18:18であり、Mwが27,000であった(収率60%)。
[実施例1]
重合体(A-1)10部をプロピレングリコールモノメチルエーテル100部に溶解して混合溶液を得た。その後、この混合溶液を孔径0.1μmのメンブランフィルターでろ過することによりレジスト下層膜形成用組成物を得た。このレジスト下層膜形成用組成物を塗工液として用いて以下の各種評価を行った。
重合体(A-1)の代わりに表2に記載の重合体成分を用いた以外は、実施例1と同様に操作して各レジスト下層膜形成用組成物を得た。得られたレジスト下層膜形成用組成物を塗工液として用いて以下の各種評価を行った。
重合体(A-1)10部、[C]酸発生剤として(C-1)ジフェニルヨードニウムトリフルオロメタンスルホネート5部、[D]架橋剤として(D-1)ニカラックN-2702(三和ケミカル社製)10部をプロピレングリコールモノメチルエーテル100部に溶解して混合溶液を得た。その後、この混合溶液を孔径0.1μmのメンブランフィルターでろ過することによりレジスト下層膜形成用組成物を得た。このレジスト下層膜形成用組成物を塗工液として用いて以下の各種評価を行った。
重合体(A-1)の代わりに表2に記載の重合体成分を用いた以外は、実施例7と同様に操作して各レジスト下層膜形成用組成物を得た。得られたレジスト下層膜形成用組成物を塗工液として用いて以下の各種評価を行った。
直径8インチのシリコンウエハ上に、各レジスト下層膜形成用組成物をスピンコート法により塗布した。次に、ホットプレートにて、180℃で60秒間加熱した。引き続き、350℃で60秒間加熱して、膜厚0.3μmの下層膜を形成した。次に、この下層膜上に3層レジストプロセス用中間層組成物溶液(NFC SOG080、JSR社製)をスピンコートした後、ホットプレートにて、200℃で60秒間加熱した。引き続き、300℃で60秒間加熱して、膜厚0.05μmの中間層被膜を形成した。次に、この中間層被膜上に、上記調製した得たレジスト組成物をスピンコートし、ホットプレートにて、130℃、90秒間プレベークして、膜厚0.2μmのレジスト被膜を形成した。
[パターン形状]
ポジ型レジストパターンが形成されたレジスト被膜におけるパターン形状を走査型電子顕微鏡により観察して以下の基準で評価した。観察されるパターン形状が矩形の場合を良好(A)とし、矩形以外の形状(例えばT-top、スカム等)を不良(B)とした。
ポジ型レジストパターンが形成された上記レジスト被膜への定在波の影響の有無を、走査型電子顕微鏡により観察して定在波防止効果を以下の基準で評価した。パターン側面に、下層膜からの反射による定在波が見られなかった場合を良好(A)とし、定在波が見られた場合を不良(B)とした。
直径8インチのシリコンウエハ上に、各レジスト下層膜形成用組成物をスピンコートした。その後、ホットプレート上にて、300℃で120秒間加熱して、膜厚0.3μmの下層膜を形成した。この下層膜について、J.A.WOOLLAM社製の分光エリプソメータVUV-VASEを用いて、波長193nmにおける屈折率(n)と吸光度(消衰係数(k))を測定した。
スピンコート法により、直径8インチのシリコンウエハ上に、レジスト下層膜形成用組成物をスピンコートして、膜厚300nmの下層膜を形成した。その後、この下層膜を、エッチング処理(圧力:0.03Torr、高周波電力:3000W、Ar/CF4=40/100sccm、基板温度:20℃)し、エッチング処理後の下層膜の膜厚を測定した。そして、膜厚の減少量と処理時間との関係からエッチングレート(nm/分)を算出した。なお、エッチングレートが低い場合、エッチング耐性に優れると評価される。
Claims (6)
- [A]下記式(1)で表される繰り返し単位を含む重合体及び[B]溶剤を含有するレジスト下層膜形成用組成物。
- [A]重合体の重量平均分子量が500~8,000である請求項1に記載のレジスト下層膜形成用組成物。
- [C]酸発生剤をさらに含有する請求項1に記載のレジスト下層膜形成用組成物。
- [D]架橋剤をさらに含有する請求項1に記載のレジスト下層膜形成用組成物。
- (1)被加工基板上に請求項1に記載のレジスト下層膜形成用組成物を塗布し、レジスト下層膜を形成する工程、
(2)上記レジスト下層膜が形成された被加工基板にレジスト組成物を用いてレジストパターンを形成する工程、及び
(3)レジスト下層膜と被加工基板とをエッチングする工程
を有するパターン形成方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020137027937A KR101808893B1 (ko) | 2011-04-28 | 2011-04-28 | 레지스트 하층막 형성용 조성물 및 패턴 형성 방법 |
PCT/JP2011/060489 WO2012147210A1 (ja) | 2011-04-28 | 2011-04-28 | レジスト下層膜形成用組成物及びパターン形成方法 |
US14/061,808 US9134611B2 (en) | 2011-04-28 | 2013-10-24 | Composition for forming resist underlayer film and pattern-forming method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/060489 WO2012147210A1 (ja) | 2011-04-28 | 2011-04-28 | レジスト下層膜形成用組成物及びパターン形成方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/061,808 Continuation US9134611B2 (en) | 2011-04-28 | 2013-10-24 | Composition for forming resist underlayer film and pattern-forming method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012147210A1 true WO2012147210A1 (ja) | 2012-11-01 |
Family
ID=47071749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/060489 WO2012147210A1 (ja) | 2011-04-28 | 2011-04-28 | レジスト下層膜形成用組成物及びパターン形成方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9134611B2 (ja) |
KR (1) | KR101808893B1 (ja) |
WO (1) | WO2012147210A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6146305B2 (ja) * | 2011-10-12 | 2017-06-14 | Jsr株式会社 | パターン形成方法 |
TWI592760B (zh) * | 2014-12-30 | 2017-07-21 | 羅門哈斯電子材料韓國有限公司 | 與經外塗佈之光致抗蝕劑一起使用之塗層組合物 |
EP3872826A1 (en) * | 2020-02-27 | 2021-09-01 | ABB Schweiz AG | An improved switching device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006285095A (ja) * | 2005-04-04 | 2006-10-19 | Shin Etsu Chem Co Ltd | レジスト下層膜材料およびパターン形成方法 |
JP2010134437A (ja) * | 2008-10-28 | 2010-06-17 | Shin-Etsu Chemical Co Ltd | フォトレジスト下層膜形成材料及びパターン形成方法 |
JP2010230773A (ja) * | 2009-03-26 | 2010-10-14 | Jsr Corp | レジスト下層膜形成用組成物、レジスト下層膜、レジスト下層膜の形成方法、及びパターン形成方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3928278B2 (ja) | 1998-11-16 | 2007-06-13 | Jsr株式会社 | 反射防止膜形成組成物 |
JP4288776B2 (ja) | 1999-08-03 | 2009-07-01 | Jsr株式会社 | 反射防止膜形成組成物 |
JP4823959B2 (ja) | 2006-08-10 | 2011-11-24 | 信越化学工業株式会社 | レジスト下層膜材料及びパターン形成方法 |
JP4554665B2 (ja) | 2006-12-25 | 2010-09-29 | 富士フイルム株式会社 | パターン形成方法、該パターン形成方法に用いられる多重現像用ポジ型レジスト組成物、該パターン形成方法に用いられるネガ現像用現像液及び該パターン形成方法に用いられるネガ現像用リンス液 |
JP5446434B2 (ja) | 2009-04-30 | 2014-03-19 | Jsr株式会社 | ナノインプリントリソグラフィー用硬化性組成物及びナノインプリント方法 |
JP2011053643A (ja) | 2009-08-03 | 2011-03-17 | Jsr Corp | レジストパターン形成方法及び感放射線性樹脂組成物 |
WO2011040340A1 (ja) * | 2009-09-29 | 2011-04-07 | Jsr株式会社 | パターン形成方法及びレジスト下層膜形成用組成物 |
-
2011
- 2011-04-28 KR KR1020137027937A patent/KR101808893B1/ko active IP Right Grant
- 2011-04-28 WO PCT/JP2011/060489 patent/WO2012147210A1/ja active Application Filing
-
2013
- 2013-10-24 US US14/061,808 patent/US9134611B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006285095A (ja) * | 2005-04-04 | 2006-10-19 | Shin Etsu Chem Co Ltd | レジスト下層膜材料およびパターン形成方法 |
JP2010134437A (ja) * | 2008-10-28 | 2010-06-17 | Shin-Etsu Chemical Co Ltd | フォトレジスト下層膜形成材料及びパターン形成方法 |
JP2010230773A (ja) * | 2009-03-26 | 2010-10-14 | Jsr Corp | レジスト下層膜形成用組成物、レジスト下層膜、レジスト下層膜の形成方法、及びパターン形成方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20140018949A (ko) | 2014-02-13 |
KR101808893B1 (ko) | 2017-12-13 |
US20140048512A1 (en) | 2014-02-20 |
US9134611B2 (en) | 2015-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5136407B2 (ja) | レジスト下層膜形成用組成物及びパターン形成方法 | |
JP5257009B2 (ja) | レジスト下層膜形成用組成物、レジスト下層膜の形成方法、及びパターン形成方法 | |
JP4288776B2 (ja) | 反射防止膜形成組成物 | |
JP5376015B2 (ja) | レジスト下層膜形成方法及びそれに用いるレジスト下層膜用組成物並びにパターン形成方法 | |
KR100961373B1 (ko) | 아세나프틸렌 유도체, 중합체 및 반사 방지막 형성 조성물 | |
JP3852107B2 (ja) | 反射防止膜形成組成物 | |
JP5195478B2 (ja) | レジスト下層膜形成用組成物、レジスト下層膜、レジスト下層膜の形成方法、及びパターン形成方法 | |
JP5229044B2 (ja) | レジスト下層膜形成用組成物、レジスト下層膜、レジスト下層膜の形成方法、及びパターン形成方法 | |
WO2009119201A1 (ja) | レジスト下層膜及びレジスト下層膜形成用組成物並びにレジスト下層膜形成方法 | |
JP2004264710A (ja) | 反射防止膜形成組成物および反射防止膜 | |
JP5157560B2 (ja) | レジスト下層膜形成用組成物及びそれを用いたパターン形成方法 | |
JP4639915B2 (ja) | レジスト下層膜用組成物 | |
JP2004168748A (ja) | アセナフチレン誘導体、重合体および反射防止膜形成組成物 | |
JP4729803B2 (ja) | 多層レジストプロセス用下層膜形成組成物 | |
JP5125825B2 (ja) | 多層レジストプロセス用下層膜形成組成物 | |
JP2005015532A (ja) | 重合体および反射防止膜形成組成物 | |
JP5251433B2 (ja) | レジスト下層膜形成用組成物及びパターン形成方法 | |
US9134611B2 (en) | Composition for forming resist underlayer film and pattern-forming method | |
JP5573230B2 (ja) | レジスト下層膜形成用組成物及びパターン形成方法 | |
JP4134759B2 (ja) | 反射防止膜形成組成物および反射防止膜 | |
TWI432906B (zh) | Method for forming composition and pattern of photoresist underlayer film formation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11864221 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20137027937 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11864221 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |