WO2012142944A1 - 旋转式压缩机以及旋转机械 - Google Patents

旋转式压缩机以及旋转机械 Download PDF

Info

Publication number
WO2012142944A1
WO2012142944A1 PCT/CN2012/074247 CN2012074247W WO2012142944A1 WO 2012142944 A1 WO2012142944 A1 WO 2012142944A1 CN 2012074247 W CN2012074247 W CN 2012074247W WO 2012142944 A1 WO2012142944 A1 WO 2012142944A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating shaft
pressure
rotary compressor
oil level
level sensor
Prior art date
Application number
PCT/CN2012/074247
Other languages
English (en)
French (fr)
Inventor
毛春智
苏晓耕
李庆伟
刘强
李洪山
Original Assignee
艾默生环境优化技术(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110104725.1A external-priority patent/CN102748295B/zh
Priority claimed from CN2011201248631U external-priority patent/CN202091205U/zh
Application filed by 艾默生环境优化技术(苏州)有限公司 filed Critical 艾默生环境优化技术(苏州)有限公司
Priority to US14/112,188 priority Critical patent/US9850900B2/en
Priority to EP12773783.1A priority patent/EP2713054B1/en
Priority to IN1826MUN2013 priority patent/IN2013MN01826A/en
Publication of WO2012142944A1 publication Critical patent/WO2012142944A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0088Lubrication
    • F04C15/0092Control systems for the circulation of the lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • F04B49/03Stopping, starting, unloading or idling control by means of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/12Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being elastic, e.g. steam or air
    • F04B9/123Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being elastic, e.g. steam or air having only one pumping chamber
    • F04B9/125Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being elastic, e.g. steam or air having only one pumping chamber reciprocating movement of the pumping member being obtained by a double-acting elastic-fluid motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/023Lubricant distribution through a hollow driving shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/025Lubrication; Lubricant separation using a lubricant pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/809Lubricant sump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/81Sensor, e.g. electronic sensor for control or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/24Level of liquid, e.g. lubricant or cooling liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/48Conditions of a reservoir linked to a pump or machine

Definitions

  • the present invention relates to a rotary compressor and a rotary machine. Background technique
  • the rotary compressor generally includes a housing, a compression mechanism housed in the housing, a drive mechanism for driving the compression mechanism, and the like.
  • a compression mechanism housed in the housing
  • a drive mechanism for driving the compression mechanism and the like.
  • the oil level in the compressor must be above the minimum protective oil level. The compressor should be stopped when the oil level in the compressor is below the minimum protective oil level.
  • Double or even multi-compressor systems have been widely used.
  • one or more of the compressors can be selectively activated to shut down other compressors, so that lubricating oil can move in these compressors and can result in individual compressors.
  • the lubricating oil is not balanced, and even some compressors lack lubricating oil.
  • level sensors that detect the level
  • these level sensors are only suitable for detecting the level in the tank or container.
  • These sensors include: Piezoelectric level sensors, reed switch type liquid level sensors, ultrasonic level sensing, photoelectric level sensing, and more.
  • These sensors are generally not used in hermetic compressors because the working environment in hermetic compressors is more severe. For example, the temperature range and pressure range in the compressor are wide, and the pressure and temperature are cyclical, and may also There are impurities and the like of the cast piece. In addition, lubricating oil foam may also be generated in the compressor, so these sensors cannot accurately detect the oil level.
  • An object of one or more embodiments of the present invention is to provide a rotary compressor capable of simply and reliably detecting lubricating oil in a compressor.
  • An object of one or more embodiments of the present invention is to provide a rotary machine capable of simply and reliably detecting lubricating oil in a rotary machine.
  • An aspect of the present specification provides a rotary compressor, comprising: a housing, the housing including a lubricating oil storage portion for containing lubricating oil; a compression mechanism disposed in the housing; a driving mechanism of the compression mechanism, the driving mechanism includes a rotating shaft, wherein the rotating shaft is provided with a through hole extending along an axial direction of the rotating shaft, and the rotating shaft is stored through the through hole and the lubricating oil a fluid communication; and an oil level sensor in fluid communication with the through hole in the rotating shaft through the pressure collecting passage.
  • the rotary compressor further includes a lower bearing housing for supporting the rotating shaft, wherein the pressure collecting passage includes: a sidewall extending through the rotating shaft and the rotating shaft a pressure collecting hole in which the through hole is in fluid communication, a circumferential oil groove formed on the rotating shaft or the lower bearing housing and in fluid communication with the pressure collecting hole, extending through the lower bearing housing and A communication passage in which the circumferential oil groove and the oil level sensor are in fluid communication.
  • the rotary compressor further includes a pressure collector disposed between the rotating shaft and the oil level sensor, wherein the pressure collecting passage comprises: a side extending through the rotating shaft a wall and a pressure collecting bore in fluid communication with the through bore in the rotating shaft, a circumferential oil groove formed in the rotating shaft or the pressure collector and in fluid communication with the pressure collecting orifice, extending through the a pressure collector and a communication passage in fluid communication with the circumferential oil groove and the oil level sensor.
  • the pressure collecting passage further includes a pressure collecting tube that is disposed in the pressure collecting hole and protrudes toward an axis of the through hole of the rotating shaft.
  • the length of the pressure collecting tube is determined according to the lowest protective lubricating oil level in the lubricating oil storage portion.
  • the minimum protective lubricating oil level satisfies the length of the pressure collecting tube
  • H h ——, where H is the height of the lowest protective lubricating oil level from the end face of the rotating shaft, and the unit is ⁇ ; L is the pressure collecting pipe protruding to the The length in the rotating shaft, the unit is ⁇ ; R is the inner radius of the rotating shaft, the unit is ⁇ ; h is the height of the central axis of the pressure collecting tube from the end surface of the rotating shaft, the unit It is glutinous rice; n is the number of revolutions of the rotating shaft, and the unit is rpm; g is the acceleration of gravity, and the unit is m/s 2 .
  • the height of the pressure collecting hole from a specific reference surface (S) is determined according to the lowest protective lubricating oil level in the lubricating oil storage portion.
  • the reference surface is a bottom surface of the rotary compressor or an end surface of the rotating shaft.
  • the rotary compressor further includes a pumping mechanism including an orifice plate disposed at an end of the rotating shaft and a dipstick disposed in the through hole of the rotating shaft.
  • the pumping mechanism includes an impeller pump disposed at an end of the rotating shaft.
  • the rotary compressor is a horizontal rotary compressor and an internal space thereof is partitioned into a high pressure side and a low pressure side by a sound absorbing plate, the high pressure side constituting the lubricating oil storage portion, and the pump oil
  • the mechanism is a fuel pipe that extends from the lubricating oil storage portion to a through hole of the rotating shaft.
  • the through hole includes a concentric hole portion concentric with the rotation axis and an eccentric hole portion radially offset with respect to the concentric hole.
  • the oil level sensor is a pressure sensor.
  • the oil level sensor is a pressure switch.
  • the oil level sensor comprises: a fluid pressure receiving portion for receiving a fluid pressure; and a converting portion capable of converting the fluid pressure into an electrical signal.
  • the fluid pressure receiving portion includes: a housing and a piston head capable of axial movement within the housing; the conversion portion including a terminal, a first contact disposed in the terminal, and a second contact, a spring that provides electrical communication between the piston head and the second contact and provides a restoring force to the piston head, wherein when the piston head is in contact with the first contact,
  • the oil level sensor outputs an electrical signal.
  • the first contact comprises a plurality of needle portions disposed apart from each other.
  • the second contact comprises an annular contact piece in electrical contact with the spring.
  • the rotary compressor further includes an oil temperature sensor.
  • the oil temperature sensor and the oil level sensor have a common pin.
  • the oil level sensor is disposed adjacent the lower bearing housing.
  • the oil level sensor is directly coupled to the communication passage in the lower bearing housing or the pressure collector.
  • the oil level sensor is connected to the communication passage in the lower bearing housing or the pressure collector by an additional conduit.
  • the rotary compressor is a scroll compressor, or a screw compressor, or a rotor compressor.
  • the oil level sensor is disposed inside or outside the housing.
  • the pressure collection passage further includes a connecting conduit in fluid communication with the communication passage in the lower bearing housing or pressure collector.
  • the connecting duct is arranged horizontally or obliquely.
  • a rotary machine comprising: a housing, the housing including a lubricating oil storage portion for containing lubricating oil; a rotating shaft disposed in the housing, a through hole extending along an axial direction of the rotating shaft is disposed in the rotating shaft, the rotating shaft is in fluid communication with the lubricating oil storage portion through the through hole; and a passage through the pressure collecting passage and the rotating shaft An oil level sensor in which the orifice is in fluid communication.
  • the rotary machine further includes a bearing housing for supporting the rotating shaft, wherein the pressure collecting passage includes: a sidewall extending through the rotating shaft and communicating with the rotating shaft a pressure collecting bore in fluid communication with the bore, a circumferential oil groove formed in the rotating shaft or the bearing housing and in fluid communication with the pressure collecting orifice, extending through the bearing housing and with the circumferential oil groove and A communication channel in which the oil level sensor is in fluid communication.
  • the pressure collecting passage includes: a sidewall extending through the rotating shaft and communicating with the rotating shaft a pressure collecting bore in fluid communication with the bore, a circumferential oil groove formed in the rotating shaft or the bearing housing and in fluid communication with the pressure collecting orifice, extending through the bearing housing and with the circumferential oil groove and A communication channel in which the oil level sensor is in fluid communication.
  • the rotary machine further includes a pressure collector disposed between the rotating shaft and the oil level sensor, wherein the pressure collecting passage includes: a sidewall extending through the rotating shaft and a pressure collecting bore in fluid communication with the through bore in the rotating shaft, a circumferential oil groove formed on the rotating shaft or the pressure collector and in fluid communication with the pressure collecting orifice, extending through the pressure collection And a communication passage in fluid communication with the circumferential oil groove and the oil level sensor.
  • the pressure collecting passage includes: a sidewall extending through the rotating shaft and a pressure collecting bore in fluid communication with the through bore in the rotating shaft, a circumferential oil groove formed on the rotating shaft or the pressure collector and in fluid communication with the pressure collecting orifice, extending through the pressure collection And a communication passage in fluid communication with the circumferential oil groove and the oil level sensor.
  • An oil level detecting mechanism is provided inside the compressor or the rotating machine, so that the lubricating oil in the compressor or the rotating machine can be detected in a timely, accurate and reliable manner to prevent or reduce the shortage of lubricating oil of the compressor or the rotating machine. And damaged.
  • the oil level detecting mechanism includes an oil level sensor and a pressure collecting passage in fluid communication with the through hole in the rotating shaft, and the oil level sensor may be a pressure sensor or a pressure switch. Therefore, the structure of the oil level detecting mechanism is relatively simple, thereby facilitating the processing and reducing the cost of the compressor or the rotating machine.
  • the oil level sensor of one or more embodiments of the present invention is relatively simple in construction and therefore low in cost, but has high reliability and short response time.
  • the first contact of the oil level sensor includes a plurality of spaced apart needle portions that output an on signal as long as any one of the needles is in contact with the piston head. Therefore, the reliability of the oil level sensor is improved.
  • the oil level sensor can be placed inside or outside the housing of the compressor, and the oil level sensor can be in direct communication with the pressure collection channel or through additional piping, thus greatly facilitating the arrangement of the various components within the compressor.
  • FIG. 1 is a schematic cross-sectional view of a rotary compressor according to an embodiment of the present invention
  • FIG. 2 is an enlarged view of a lower portion of the rotary compressor shown in FIG. 1;
  • FIG. 3 is a schematic view of an oil level detecting mechanism according to an embodiment of the present invention.
  • FIG. 4 is a perspective view of a lower bearing integrated with an oil level sensor according to an embodiment of the present invention.
  • Figure 5 is a dipstick provided in a rotary compressor according to an embodiment of the present invention.
  • Figure 6 is a front elevational view of an oil level sensor in accordance with an embodiment of the present invention.
  • Figure 7 is a cross-sectional view of an oil level sensor in accordance with an embodiment of the present invention, showing the oil level sensor in an open state;
  • Figure 8 is a cross-sectional view of an oil level sensor in accordance with an embodiment of the present invention, showing the oil level sensor in an on state;
  • FIG. 9 is a schematic view of an oil level detecting mechanism according to another embodiment of the present invention.
  • Figure 10 is a schematic illustration of a variation of an oil level detecting mechanism in accordance with another embodiment of the present invention.
  • Figure 11 shows the relationship between the minimum protective lubricating oil level, the inner radius of the rotating shaft, the height of the pressure collecting tube, and the length of the pressure collecting tube;
  • Figure 12 is a schematic view of an oil level detecting mechanism according to still another embodiment of the present invention.
  • FIGS. 13A and 13B are schematic cross-sectional views of a lower portion of a rotary compressor in accordance with a further embodiment of the present invention. Detailed ways
  • FIG. 1 is a schematic cross-sectional view of a rotary compressor in accordance with an embodiment of the present invention.
  • the rotary compressor shown in Fig. 1 is a scroll compressor, but it should be understood by those skilled in the art that the present invention is not limited to the scroll compressor shown in the drawings, but the present invention can also be applied to other types.
  • the present invention is applicable not only to a vertical compressor in which a rotary shaft is vertically oriented but also to a horizontal compressor in which a rotary shaft is horizontally oriented.
  • the rotary compressor 10 includes a housing 12 that is generally cylindrical. Provided on the housing 12 Intake connection 13 for inhaling a low pressure gaseous refrigerant. An end cover 14 is fixedly coupled to one end of the housing 12. The end cap 14 is fitted with a discharge joint 15 for discharging the compressed refrigerant. A sound absorbing panel 16 extending laterally with respect to the axial direction of the housing 12 (extending in a substantially horizontal direction in FIG. 1) is further disposed between the housing 12 and the end cover 14, thereby separating the internal space of the compressor It becomes the high pressure side and the low pressure side.
  • the space between the end cover 14 and the muffler plate 16 constitutes a high pressure side space, and the space between the muffler plate 16 and the casing 12 constitutes a low pressure side space.
  • a part of the casing 12 constitutes a lubricating oil storage portion for accommodating lubricating oil.
  • the lubricating oil storage portion is located at a lower portion of the housing 12.
  • the housing 12 is housed with a compression mechanism 20 and a drive mechanism 30.
  • the compression mechanism 20 includes a fixed scroll member 22 and an orbiting scroll member 24 that mesh with each other.
  • the drive mechanism 30 includes a motor 40 and a rotating shaft 50.
  • the motor 40 includes a stator 42 and a rotor 44.
  • the stator 42 is fixedly coupled to the housing 12.
  • the rotor 44 is fixedly coupled to the rotating shaft 50 and rotated in the stator 42.
  • the first end of the rotary shaft 50 (upper end in Fig. 1) is provided with an eccentric crank pin 52, and the second end (lower end in Fig. 1) of the rotary shaft 50 may include a concentric hole 54.
  • the concentric bore 54 leads to an eccentric crank pin 52 at the first end of the rotating shaft 50 via an eccentric bore 56 that is radially offset relative to the concentric bore 54.
  • the rotating shaft 50 is in fluid communication with the lubricating oil storage portion through a concentric hole 54.
  • the first end of the rotating shaft 50 is supported by the main bearing housing 60 and the second end is supported by the lower bearing housing 70.
  • the main bearing housing 60 and the lower bearing housing 70 are fixedly coupled to the housing 12 in a suitable manner.
  • the eccentric crank pin 52 of the rotary shaft 50 is inserted into the hub portion 26 of the orbiting scroll member 24 via the bushing 58 to rotationally drive the orbiting scroll member 24.
  • a pumping mechanism 80 may also be provided at the second end of the rotating shaft 50 (lower end in Fig. 1).
  • the pumping mechanism 80 includes an orifice plate 82 disposed at a second end of the rotating shaft 50 and an oil fork 84 disposed in the concentric bore 54 and rotatable with the rotating shaft 50.
  • the orifice plate 82 is substantially disk-shaped and has a through hole 83 at the center.
  • An example of the oil fork 84 is shown in FIG.
  • the dipstick 84 includes a base portion 86 having a substantially rectangular base portion, legs 87 and 88 extending from the base portion 86 in the same direction and bifurcated. The plane in which the legs 87 and 88 are located is inclined with respect to the plane in which the base is located in the rotational direction A of the rotary shaft 50.
  • the lubricating oil in the lower portion of the casing 12 enters the concentric hole 54 of the rotating shaft 50 through the through hole 83 of the orifice plate 82.
  • the lubricating oil flows radially from the center of the orifice plate 82 toward the periphery of the orifice plate 82 and the inner wall of the concentric orifice 54.
  • the lubricant is pumped up and driven in the concentric bore 54 to form a substantially paraboloid P, as shown in Figure 3, driven by the legs 87 and 88 of the oil fork 84 that rotates with the rotating shaft 50. Subsequently, the lubricating oil enters the fluid connection with the concentric hole 52.
  • the eccentric hole 56 is passed through and reaches the end of the eccentric crank pin 52. After being discharged from the end of the eccentric crank pin 52, the lubricating oil flows downward by gravity and splashes under the driving of various moving parts to lubricate and cool the moving parts.
  • a pumping mechanism composed of an orifice plate 82 and an oil fork 84 is employed.
  • the pumping mechanism is not limited thereto, and any mechanism capable of supplying lubricating oil into the concentric holes 54 of the rotating shaft 50 may be employed.
  • an impeller pump may be employed instead of the oil pumping mechanism constituted by the orifice plate 82 and the oil fork 84 shown in Fig. 1.
  • the high pressure side constitutes the above lubricating oil storage portion
  • the oil pipe is used as a pumping mechanism, and the supply of lubricating oil can be achieved by the pressure difference between the high pressure side and the low pressure side.
  • the compression mechanism 20 and the drive mechanism 30 are not limited to the structures shown in the drawings.
  • the compression mechanism 20 may be a rotor compression mechanism and a screw compression mechanism, etc.
  • the drive mechanism 30 may be a hydraulic drive mechanism disposed inside the housing or disposed outside the housing, a pneumatic drive mechanism, and various transmission drive mechanisms.
  • FIG. 2 is an enlarged view of a lower portion of the rotary compressor shown in FIG. 1.
  • Fig. 3 is a schematic view of an oil level detecting mechanism according to an embodiment of the present invention.
  • 4 is a perspective view of a lower bearing incorporating an oil level sensor in accordance with an embodiment of the present invention.
  • the rotary compressor 10 further includes an oil level detecting mechanism 100 disposed inside the compressor 10.
  • the oil level detecting mechanism 100 includes an oil level sensor 120 that is in fluid communication with the interior of the concentric bore 54 of the rotating shaft 50 through the pressure collecting passage 110.
  • FIG. 1 In the example shown in FIG.
  • the pressure collection channel 110 can include a pressure collection aperture 112 extending through the sidewall of the rotating shaft 50 in a generally radial direction, disposed in A circumferential oil groove 114 in the lower bearing housing 70 and in fluid communication with the pressure collecting bore 112, and a lower radial bearing in the lower bearing housing 70 through the lower bearing housing 70 and with the circumferential oil groove 114 and the oil level sensor 120 A fluid communication passage 116 is in fluid communication.
  • the oil level sensor 120 may be disposed at or near the lower bearing housing 70.
  • the pressure collection hole 112 can always be in fluid communication with the circumferential oil groove 114, and thus always in fluid communication with the communication passage 116, thereby stably introducing the fluid to The oil level sensor 120 is connected thereto.
  • Figure 6 is a front elevational view of an oil level sensor in accordance with an embodiment of the present invention, wherein the housing of the oil level sensor is not shown.
  • Figure 7 is a cross-sectional view of the oil level sensor showing the oil level sensor in an open state, in accordance with an embodiment of the present invention.
  • Figure 8 is a cross-sectional view of the oil level sensor showing the oil level sensor in an on state, in accordance with an embodiment of the present invention.
  • the oil level sensor 120 includes a substantially cylindrical outer casing 121, a piston cap 123 that is axially movable in the outer casing 121, a piston head 125 that moves with the piston cap 123, and a closed
  • the housing 121 has a terminal 126 at its end, a first contact 127 and a second contact 128 disposed in the terminal 126, and a return spring disposed between the piston head 125 and the terminal 126.
  • a fluid inlet port 122 is formed in a side wall of the outer casing 121 opposite to the terminal 126, and a discharge port 124 is formed in a side wall of the outer casing 121.
  • the first contact 127 can include a plurality of needles 127A and 127B that are connected to each other but spaced apart from each other. In the example of the figure, the first contact 127 includes two needles 127A and 127B, but those skilled in the art will appreciate that the first contact 127 may include only one needle or more than two needles.
  • the second contact 128 can include an annular contact piece 128A.
  • the annular contact piece 128A is disposed on the step portion of the terminal 126.
  • the return spring 129 is in electrical communication with the annular contact piece 128A of the second contact 128 and the piston head 125. Additionally, as shown in Figure 2, the first contact 127 and the second contact 128 of the oil level sensor 120 are routed to the exterior of the compressor via an adapter 150 disposed on the housing 12.
  • the piston head 125 moves in the opposite direction to the first contact 127 and the second contact 128 by the return spring 129. Thereby, the first contact 127 and the second contact 128 are disconnected. At this time, the oil level sensor 120 does not output a signal or outputs a "0" signal.
  • the piston head 125 is urged by the supplied fluid against the force of the return spring 129 toward the first contact 127 and the second contact. 128 movement, the first contact 127 and the second contact 128 can be turned on when the piston head 125 is in contact with any one of the first contacts 127. At this time, the oil level sensor 120 outputs an on signal or outputs a "1" signal.
  • Figure 6-8 depicts a specific oil level sensor. It will be understood by those skilled in the art that the oil level sensor may be any type of sensor including a fluid pressure receiving portion for receiving fluid pressure and a converting portion capable of converting the fluid pressure into an electrical signal.
  • the piston head 125 moves toward the first contact 127 and the second contact 128 and finally turns on the first contact 127 and the second contact 128, thereby issuing a "signal indicating The proper amount of lubricating oil is present in the compressor.
  • a signal indicates that there is not a sufficient amount of lubricating oil in the compressor.
  • the lubricating oil level in the compressor it may be provided in the pressure collecting hole 122 of the side wall of the rotating shaft to protrude toward the axis of the concentric hole 54.
  • the desired oil level can be controlled by the length of the inward projection of the pressure collection tube 118 (e.g., the length L shown in Figures 9 and 11). As shown in Figure 3, when the pressure collection tube is shown When the distal end 119 of the 118 is located within the oil level indicated by the paraboloid P, the lubricating oil can enter the pressure collecting tube 118.
  • the kinetic energy of the lubricating oil can be converted into pressure, and thus the pressure A certain pressure difference is generated at both ends of the collecting pipe 118.
  • the piston head 125 of the oil level sensor 120 is pushed to turn on the first contact 127 and the second contact 128. Therefore, a signal of "1" is output.
  • the distal end 119 of the pressure collecting tube 118 is outside the oil level indicated by the paraboloid P, the lubricating oil cannot enter the oil level sensor 120 and outputs a signal of "0".
  • the detected lubricating oil level ie, the lowest protective lubricating oil level
  • a longer length of the pressure collecting tube 118 may be used, and when the desired lubricating oil level (ie, the lowest protective lubricating oil level) ) set more When low, a smaller length of pressure collection tube 118 can be employed.
  • the relationship between the minimum protective lubricating oil level of the compressor and the length of the pressure collecting tube 118 under certain operating conditions can be determined by calculation or experimentation.
  • H is the height of the lowest protective lubricating oil level S2 from the end face SO of the rotating shaft 50, in units of glutinous rice;
  • L is the length of the pressure collecting tube 118 protruding into the rotating shaft 50, and the unit is ⁇ ; R is the inner radius of the rotating shaft 50, and the unit is ⁇ ; h is the pressure collecting tube 118 from the end surface SO of the rotating shaft 50.
  • the oil level sensor can detect the lowest protective lubricating oil level of about 22 ⁇ . That is to say, when the lubricating oil level in the lubricating oil storage portion is higher than 22 mm, the oil level sensor can output a signal of "1", indicating that the compressor can operate normally.
  • the oil level sensor cannot output the "signal (ie, the signal of "0" is output), indicating that the lubricating oil in the compressor is insufficient, so that the compressor protection mechanism The compressor will be stopped.
  • the desired lubricating oil level i.e., the lowest protective lubricating oil level
  • the height of the pressure collecting hole 112 from the specific reference surface can be set lower.
  • the relationship between the desired oil level of the compressor under certain operating conditions and the height of the pressure collection orifice 112 from a particular reference surface can be determined by calculation or experiment.
  • the pressure collection passage 110 includes a pressure collection hole 112 disposed on a side wall of the rotating shaft, a circumferential oil groove 114 disposed in the lower bearing housing 70, and a communication extending through the lower bearing housing 70.
  • Channel 116 optionally including a pressure collection tube 118 disposed in pressure collection aperture 112.
  • the configuration of the pressure collection passage 110 is not limited thereto, but may have various modifications.
  • the circumferential oil groove 112 may be disposed on the rotating shaft 50 instead of the lower bearing housing 70.
  • the pressure collector 130 may be further disposed between the rotating shaft 50 and the oil level sensor 120. In the example of FIG.
  • pressure collector 130 is an annular member and includes a circumferential oil groove 114A in fluid communication with pressure collection bore 112 on rotating shaft 50 and in fluid communication with circumferential oil groove 114A and extending through the pressure collector The communication channel 116A of 130.
  • the circumferential oil groove 114B may be disposed on the rotating shaft 50.
  • the fluid inlet 122 of the oil level sensor 120 can be in fluid communication with the communication passage 116A of the pressure harvester 130, either directly or through other conduits.
  • the oil temperature sensor 140 can be further provided.
  • the oil temperature sensor 140 can share a lead 142 with the oil level sensor 120.
  • the leads 141 and 142 output the signals of the oil level sensor 120
  • the leads 142 and 143 output the signals of the oil temperature sensor.
  • the compressor is provided with double protection.
  • the oil level detecting mechanism 100 is in fluid communication with the concentric bores 54.
  • the concentric holes 54 may be replaced by non-concentric holes extending axially along the axis of rotation 50.
  • the oil level detecting mechanism 100 may also be in fluid communication with the eccentric hole 56 of the rotating shaft 50, depending on the internal design of the compressor. Even if the hole 54 or 56 is a non-concentric hole, the oil level detecting mechanism of the present invention can still operate normally due to the centrifugal force caused by the rotation of the rotating shaft.
  • a pressure sensor including a piston, a contact and a spring is described as an oil level sensor.
  • oil level sensor Any suitable pressure sensor, especially a pressure switch, is known as the oil level sensor.
  • the oil level sensor 120 is disposed in the housing 12 and may communicate with the communication passage 116 in the lower bearing housing 70 or the pressure collecting passage 130 directly or through additional piping.
  • 116A is in fluid communication.
  • the invention is not limited to this.
  • the oil level sensor 120 may be disposed outside the casing 12 by fluid communication with the communication passage 116 (or the communication passage in the pressure collector) in the lower bearing housing 70 through the connecting duct 160.
  • the connecting duct 160 can be horizontally set (as shown in Fig. 13A) or tilted (as shown in Fig. 13B). With this configuration, various components within the compressor can be more flexibly arranged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Description

旋转式压缩机以及旋转 Wfe 相关申请的交叉引用
本申请要求于 2011 年 4 月 18 日提交中国专利局、 申请号为 201110104725. K 发明名称为 "旋转式压缩机以及旋转 Wfe" 的中国专 利申请以及于 2011 年 4 月 18 日提交中国专利局、 申请号为 201120124863.1、 发明名称为 "旋转式压缩机以及旋转积 " 的中国专 利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
[02]本发明涉及一种旋转式压缩机以及一种旋转机械。 背景技术
[03]旋转式压缩机通常包括壳体、 容纳在壳体中的压缩机构、 用于驱动 压缩机构的驱动机构等。 为了保证压缩机的正常运转, 压缩机内必须要 有足够的润滑油。 压缩机内的润滑油油位必须高于最低保护润滑油油 位。 当压缩机内的润滑油油位低于该最低保护润滑油油位时, 应该停止 压缩机。
[04]双联甚至多联压缩机系统已经被广泛应用。 在这种双联或多联压缩 机系统中,可以选择性地启动其中的一个或多个压缩机而关闭其他的压 缩机, 因此润滑油会在这些压缩机中运动而可能导致各个压缩机中的润 滑油不平衡, 甚至出现某些压缩机缺少润滑油的情况。
[05]此外, 不管是在单个压缩机的构成的压缩机系统中还是在由多个压 缩机构成的多联压缩机系统中,都有可能因为压缩机系统或压缩机漏油 而导致润滑油缺乏。
[06]另外, 在大型的制冷系统中, 由于管路长度较长、 部件较多, 也可 能导致润滑油不能及时循环回到压缩机中而引起压缩机缺乏润滑油。
[07]因此, 必须准确地检测压缩机的润滑油状态 (比如油位高度), 以 及时停止压缩机, 防止压缩机损坏。 发明内容 本发明要解决的技术问题
[08]然而, 目前绝大多数压缩机中没有内置的油位传感器。
[09]虽然存在一些检测液位的液位传感器, 但是这些液位传感器仅适用 于检测油箱或容器中的液位。 这些传感器包括: 压电式液位传感器、 干 簧管式液位传感器、 超声波式液位传感、 光电式液位传感等。 上述传感 器一般无法应用于密封式压缩机中, 因为密封式压缩机中的工作环境更 加严酷, 比如, 压缩机中的温度范围和压力范围都很宽, 而且压力和温 度会产生循环, 并且也可能存在铸造件的杂质等。 此外, 在压缩机中还 可能产生润滑油泡沫, 因此这些传感器不能准确检测油位高度。
[10]因此, 需要一种能够较筒单地和可靠地检测压缩机中的润滑油的旋 转式压缩机。 技术方案
[11]本发明的一个或多个实施例的一个目的是提供一种能够简单地和 可靠地检测压缩机中的润滑油的旋转式压缩机。
[12]本发明的一个或多个实施例的一个目的是提供一种能够简单地和 可靠地检测旋转机械中的润滑油的旋转机械。
[13]本说明书的一个方面提供了一种旋转式压缩机, 包括: 壳体, 所述壳 体包括用于容纳润滑油的润滑油存储部; 设置在所述壳体内的压缩机构; 驱动所述压缩机构的驱动机构, 所述驱动机构包括旋转轴, 所述旋转轴中 设置有沿所述旋转轴的轴向延伸的通孔, 所述旋转轴通过所述通孔与所述 润滑油存储部流体连通; 以及通过压力采集通道与所述旋转轴内的通孔流 体连通的油位传感器。
[14]优选地, 所述旋转式压缩机进一步包括用于支撑所述旋转轴的下轴承 座, 其中所述压力采集通道包括: 延伸穿过所述旋转轴的侧壁并且与所述 旋转轴内的通孔流体连通的压力采集孔、 形成在所述旋转轴或所述下轴承 座上并且与所述压力采集孔流体连通的周向油槽、 延伸穿过所述下轴承座 并且与所述周向油槽和所述油位传感器流体连通的连通通道。 [15]优选地, 所述旋转式压缩机进一步包括设置在所述旋转轴和所述油位 传感器之间的压力采集器, 其中所述压力采集通道包括: 延伸穿过所述旋 转轴的侧壁并且与所述旋转轴内的通孔流体连通的压力采集孔、 形成在所 述旋转轴或所述压力采集器上并且与所述压力采集孔流体连通的周向油 槽、 延伸穿过所述压力采集器并且与所述周向油槽和所述油位传感器流体 连通的连通通道。
[ 16]优选地, 所述压力采集通道还包括设置在所述压力采集孔中并且朝向 所述旋转轴的通孔的轴线突出的压力采集管。
[17]优选地, 所述压力采集管的长度根据所述润滑油存储部中的最低保护 润滑油油位来确定。
[18]优选地, 所述最低保护润滑油油位设定得越高, 所述压力采集管的长 度设定得越长。
[19]优选地, 所述最低保护润滑油油位与所述压力采集管的长度之间满足
(R - L)2■(—■Ιπ)2
如下关系: H = h ——, 其中, H为从所述旋转轴的端面算起的 所述最低保护润滑油油位的高度, 单位为亳米; L为所述压力采集管突出 到所述旋转轴中的长度, 单位为亳米; R为所述旋转轴的内半径, 单位为 亳米; h为从所述旋转轴的端面算起的所述压力采集管的中心轴线的高度, 单位为亳米; n为所述旋转轴的转数, 单位为转 /分; g为重力加速度, 单 位为米 /秒 2
[20]优选地, 所述压力采集孔距一特定参考面 (S ) 的高度根据所述润滑 油存储部中的最低保护润滑油油位来确定。
[21〗优选地, 所述最低保护润滑油油位设定得越高, 所述压力采集孔的高 度设定得越高。
[22]优选地, 所述参考面为所述旋转式压缩机的底面或所述旋转轴的端 面。 [23]优选地, 所述旋转式压缩机进一步包括泵油机构, 所述泵油机构包括 设置在所述旋转轴端部的孔板和设置在所述旋转轴的通孔内的油叉。
[24]优选地, 所述泵油机构包括设置在所述旋转轴端部的叶轮泵。
[25]优选地, 所述旋转式压缩机为卧式旋转压缩机并且其内部空间由消音 板分隔成高压侧和低压侧, 所述高压侧构成所述润滑油存储部, 并且所述 泵油机构为从所述润滑油存储部延伸到所述旋转轴的通孔的油管。
[26]优选地, 所述通孔包括与所述旋转轴同心的同心孔部分和相对于所述 同心孔沿径向偏置的偏心孔部分。
[27]优选地, 所述油位传感器是压力传感器。
[28]优选地, 所述油位传感器是压力开关。
[29]优选地, 所述油位传感器包括: 用于接收流体压力的流体压力接收部 分; 以及能够将所述流体压力转换成电信号的转换部分。
[30]优选地, 所述流体压力接收部分包括: 外壳和能够在所述外壳内轴向 运动的活塞头; 所述转换部分包括接线柱、 设置在所述接线柱内的第一触 点和第二触点, 在所述活塞头和所述第二触点之间提供电连通并且为所述 活塞头提供恢复力的弹簧, 其中当所述活塞头与所述第一触点接触时, 所 述油位传感器输出电信号。
[31]优选地, 所述第一触点包括多个彼此隔开设置的针部。
[32]优选地, 所述第二触点包括与所述弹簧电接触的环形接触片。
[33]优选地, 所述旋转式压缩机进一步包括油温传感器。
[34]优选地, 所述油温传感器与所述油位传感器具有共用的引脚。
[35]优选地, 所述油位传感器设置在所述下轴承座附近。
[36]优选地, 所述油位传感器与所述下轴承座或所述压力采集器中的连通 通道直接连接。
[37]优选地, 所述油位传感器与所述下轴承座或所述压力采集器中的连通 通道通过额外的管路连接。 [38]优选地, 所述旋转式压缩机为涡旋压缩机、或螺杆式压缩机、 或转子 式压缩机。
[39]优选地, 所述油位传感器设置在所述壳体内部或外部。
[40]优选地, 当所述油位传感器设置在所述壳体外部时, 所述压力采集通 道进一步包括与所述下轴承座或压力采集器中的连通通道流体连通的连 接管道。
[41]优选地, 所述连接管道水平设置或倾斜设置。
[42]本说明书的另一个方面, 提供了一种旋转机械, 包括: 壳体, 所述壳 体包括用于容纳润滑油的润滑油存储部; 设置在所述壳体内的旋转轴, 所 述旋转轴中设置有沿所述旋转轴的轴向延伸的通孔, 所述旋转轴通过所述 通孔与所述润滑油存储部流体连通; 以及通过压力采集通道与所述旋转轴 内的通孔流体连通的油位传感器。
[43]优选地, 所述旋转机械进一步包括用于支撑所述旋转轴的轴承座, 其 中所述压力采集通道包括: 延伸穿过所述旋转轴的侧壁并且与所述旋转轴 内的通孔流体连通的压力采集孔、 形成在所述旋转轴或所述轴承座上并且 与所述压力采集孔流体连通的周向油槽、 延伸穿过所述轴承座并且与所述 周向油槽和所述油位传感器流体连通的连通通道。
[44]优选地, 所述旋转机械进一步包括设置在所述旋转轴和所述油位传感 器之间的压力采集器, 其中所述压力采集通道包括: 延伸穿过所述旋转轴 的侧壁并且与所述旋转轴内的通孔流体连通的压力采集孔、 形成在所述旋 转轴或所述压力采集器上并且与所述压力采集孔流体连通的周向油槽、 延 伸穿过所述压力采集器并且与所述周向油槽和所述油位传感器流体连通 的连通通道。 有益效果
[45]根据本发明的一种或几种实施例的旋转式压缩机以及旋转机械的 优点在于:
[46]在压缩机或旋转机械内部设置有油位检测机构, 因此能够较及时、 准确、 可靠地检测压缩机或旋转机械内的润滑油, 以防止或减少压缩机 或旋转机械由于润滑油不足而损坏。 [47]油位检测机构包括油位传感器和与旋转轴内的通孔流体连通的压 力采集通道, 并且油位传感器可是一种压力传感器或压力开关。 因此, 油位检测机构的结构较简单, 因此便于加工, 并降低了压缩机或旋转机 械的成本。
[48]在本发明的一个或多个实施例中, 通过将压缩机或旋转机械内的油 位检测转换成液压检测, 能够更加简单和可靠地检测压缩机或旋转机械 内的润滑油, 并且才能采用结构更简单成本更低的压力传感器或压力开 关来代替昂贵的液位传感器。
[49]通过控制压力采集管的长度或压力采集孔的高度, 能够较容易地调 整期望检测的润滑油油位。 因此, 能够较容易地应用于各种类型、 型号 的压缩机或旋转机械。
[50]本发明的一个或多个实施例的油位传感器结构较简单, 因此成本较 低, 但是可靠性较高、 响应时间较短。
[51 ]油位传感器的第一触点包括多个彼此隔开的针部, 只要任何一个针 部与活塞头接触即可输出导通信号。因此,提高了油位传感器的可靠性。
[52]油位传感器可以设置在压缩机的壳体内部或外部, 并且油位传感器 可以与压力采集通道直接连通或通过额外的管路连通, 因此大大便利的 压缩机内各部件的布置。
[53]在本发明的一个或多个实施例的旋转式压缩机中, 不但提供了油位 传感器, 而且提供了油温传感器, 因此能够为压缩机提供多重保护。 附图说明
[54]通过以下参照附图的描述, 本发明的一个或几个实施例的特征和优 点将变得更加容易理解, 其中:
[55]图 1是根据本发明一种实施方式的旋转式压缩机的示意性剖面图; [56]图 2是图 1所示旋转式压缩机下部的放大图;
[57]图 3是根据本发明实施方式的油位检测机构的示意图;
[58]图 4 是根据本发明实施方式的整合有油位传感器的下轴承的立体 图;
[59]图 5是设置在根据本发明实施方式的旋转式压缩机中的油叉;
[60]图 6是根据本发明实施方式的油位传感器的主视图;
[61]图 7是根据本发明实施方式的油位传感器的剖面图, 示出了油位传 感器处于断开状态;
[62]图 8是根据本发明实施方式的油位传感器的剖面图, 示出了油位传 感器处于导通状态;
[63]图 9是根据本发明的另一种实施方式的油位检测机构的示意图;
[64]图 10是根据本发明的另一种实施方式的油位检测机构的变形的示 意图;
[65]图 11示出了最低保护润滑油油位、旋转轴的内半径、压力采集管的 高度和压力采集管的长度之间的关系;
[66]图 12是根据本发明的又一实施方式的油位检测机构的示意图; 以 及
[67]图 13A和 13B是根据本发明进一步的实施方式的旋转式压缩机下部 的示意性剖面图。 具体实施方式
[68]下面对优选实施方式的描述仅仅是示范性的, 而绝不是对本发明及其 应用或用法的限制。
[69]下面将参照图 1描述根据本发明的旋转式压缩机的基本构造。 图 1 是根据本发明一种实施方式的旋转式压缩机的示意性剖面图。 图 1所示 的旋转式压缩机是一种涡旋压缩机, 但是, 本领域技术人员应该理解, 本发明不限于图中所示的涡旋压缩机,相反本发明还可以应用于其他类 型的包括旋转轴的压缩机, 比如螺杆式压缩机、 转子式压缩机等, 以及 包括旋转轴的任何类型的旋转机械。 此外, 本发明不但适用于旋转轴竖 直定向的立式压缩机, 而且适用于旋转轴水平定向的卧式压缩机。
[70]旋转式压缩机 10包括一般为圆筒形的壳体 12。在壳体 12上设置有 进气接头 13, 用于吸入低压的气态制冷剂。 壳体 12的一端固定连接有 端盖 14。 端盖 14装配有排放接头 15, 用于排出压缩后的制冷剂。 在壳 体 12和端盖 14之间还设置有相对于壳体 12的轴向方向横向延伸 (在 图 1中为沿大致水平的方向延伸)的消音板 16,从而将压缩机的内部空 间分隔成高压侧和低压侧。端盖 14和消音板 16之间的空间构成高压侧 空间, 而消音板 16与壳体 12之间的空间构成低压侧空间。 壳体 12的 一部分构成用于容纳润滑油的润滑油存储部。 在图 1的示例中, 润滑油 存储部位于壳体 12的下部。
[71]壳体 12内容置有压缩机构 20和驱动机构 30。在图 1所示的示例中, 压缩机构 20包括彼此啮合的定涡旋部件 22和动涡旋部件 24。驱动机构 30包括马达 40和旋转轴 50。 马达 40包括定子 42和转子 44。 定子 42 与壳体 12固定连接。转子 44与旋转轴 50固定连接并且在定子 42中旋 转。 旋转轴 50的第一端(图 1中为上端)设置有偏心曲柄销 52, 旋转轴 50的第二端(图 1中为下端)可包括同心孔 54。 同心孔 54经由相对于同 心孔 54径向偏置的偏心孔 56通向旋转轴 50第一端的偏心曲柄销 52。 旋转轴 50通过同心孔 54与所述润滑油存储部流体连通。
[72]旋转轴 50的第一端由主轴承座 60支撑,而第二端由下轴承座 70支撑。 主轴承座 60和下轴承座 70通过适当的方式固定连接到壳体 12。旋转轴 50 的偏心曲柄销 52经由衬套 58插入到动涡旋部件 24的毂部 26中以旋转驱 动动涡旋部件 24。
[73]在旋转轴 50的第二端(图 1中为下端)还可以设置泵油机构 80。 在 图 1所示的示例中,泵油机构 80包括设置在旋转轴 50第二端处的孔板 82 和设置在同心孔 54内并与旋转轴 50—起旋转的油叉 84。 孔板 82大致为 圆盘形并且中心处设置有通孔 83。图 5示出了油叉 84的一种示例。如图 5 所示, 油叉 84包括基部大致为矩形的基部 86, 从基部 86沿相同的方向延 伸并且分叉的腿部 87和 88。 腿部 87和 88所在的平面相对于基部所在的 平面沿旋转轴 50的旋转方向 A倾斜。
[74]当压缩机运转时,壳体 12下部的润滑油通过孔板 82的通孔 83进入旋 转轴 50的同心孔 54。 在离心力的作用下, 润滑油沿径向从孔板 82的中心 向孔板 82的周缘和同心孔 54的内壁流动。在与旋转轴 50—起旋转的油叉 84的腿部 87和 88的带动下, 润滑油并向上泵送并在同心孔 54中形成大 致抛物面 P的形状, 如图 3所示。 随后, 润滑油进入与同心孔 52流体连 通的偏心孔 56中并到达偏心曲柄销 52的端部。在从偏心曲柄销 52的端部 排出之后, 润滑油在重力作用下向下流动并且在各种运动部件的带动下飞 溅而润滑和冷却各运动部件。
[75]在图 1所示的示例中,采用了由孔板 82和油叉 84构成的泵油机构。 但是, 本领域技术人员应该理解, 泵油机构不限于此, 而是可以采用能 够将润滑油供给到旋转轴 50的同心孔 54中的任何机构。 另外, 可以采 用叶轮泵代替图 1所示的由孔板 82和油叉 84构成的泵油机构。 此外, 在卧式压缩机中, 由于大部分润滑油存储在高压侧(此时, 高压侧构成 上述润滑油存储部), 因此可以使用从高压侧延伸到位于低压侧的旋转 轴的同心孔的油管来作为泵油机构,此时可通过高压侧和低压侧之间的 压差实现润滑油的供给。
[76]此外, 本领域技术人员应该理解, 压缩机构 20和驱动机构 30并不局 限于图中所示的结构。相反,压缩机构 20可以是转子式压缩机构和螺杆式 压缩机构等,而驱动机构 30可以是设置在壳体内部或设置在壳体外部的液 压驱动机构、 气动驱动机构以及各种传动驱动机构。
[77]下述文献提供了与本发明实施方式相关的旋转式压缩机的其他详 细信息: CN201206549Y、 US2009/0068048A1、 US2009/0068045A1、 US2009/0068044A1以及 US2009/0068043A1。这些文献的全部内容通过 参照引入本文。
[78]压缩机中必须具有足够的润滑油才能保证压缩机的正常运转。 换言 之, 当压缩机中的润滑油的量, 例如润滑油的油位高度, 低于预定值例 如最低保护润滑油油位时, 必须停止压缩机以防止压缩机损坏。
[79]下面将参照图 1-8描述根据本发明的油位检测机构。 其中, 图 2是 图 1所示旋转式压缩机下部的放大图。 图 3是根据本发明实施方式的油 位检测机构的示意图。 图 4是根据本发明实施方式的整合有油位传感器 的下轴承的立体图。
[80]如图 1-3所示,根据本发明实施方式的旋转式压缩机 10还包括设置 在压缩机 10内部的油位检测机构 100。根据本发明实施方式的油位检测 机构 100包括通过压力采集通道 110与旋转轴 50的同心孔 54内部流体 连通的油位传感器 120。 在图 3所示的示例中, 压力采集通道 110可包 括沿大致径向的方向延伸穿过旋转轴 50侧壁的压力采集孔 112、设置在 下轴承座 70中并且与压力采集孔 112流体连通的周向油槽 114、以及在 下轴承座 70中沿大致径向的方向延伸穿过下轴承座 70并且与周向油槽 114和油位传感器 120的流体入口 122流体连通的连通通道 116。 油位 传感器 120可设置在下轴承座 70处或设置在下轴承座 70附近。在旋转 轴 50的旋转过程中, 旋转轴 50上的压力采集孔 112也旋转。 由于设置 了与压力采集孔 112的旋转路径相对应的周向油槽 114, 因此压力采集 孔 112能够始终与周向油槽 114流体连通, 进而始终与连通通道 116流 体连通, 从而将流体稳定地引入到与之相连的油位传感器 120。
[81]图 6是根据本发明实施方式的油位传感器的主视图, 其中油位传感 器的外壳没有在图中示出。 图 7是根据本发明实施方式的油位传感器的 剖面图, 示出了油位传感器处于断开状态。 图 8是根据本发明实施方式 的油位传感器的剖面图, 示出了油位传感器处于导通状态。
[82]如图 6-8所示, 油位传感器 120包括大致圆筒形的外壳 121、 能够 在外壳 121中轴向运动的活塞帽 123、 与活塞帽 123—起运动的活塞头 125、封闭外壳 121—端的接线柱 126、设置在接线柱 126中的第一触点 127和第二触点 128、 和设置在活塞头 125和接线柱 126之间的复位弹 簧。在外壳 121的与接线柱 126相反的一端侧壁上设置有流体入口 122, 在外壳 121的侧壁上形成有排出口 124。 在活塞头 125轴向运动的过程 中, 活塞头 125和接线柱 126之间的流体经由排出口 124排出从而减小 对供给流体造成的阻力。活塞头 125的活塞杆 125a延伸穿过接线柱 126 中形成的通孔 131并且能够在通孔 131中轴向运动。第一触点 127可包 括多个彼此连接但彼此隔开的针部 127A和 127B。在图中的示例中, 第 一触点 127包括两个针部 127A和 127B,但是本领域技术人员应该理解, 第一触点 127可仅包括一个针部或多于两个的针部。第二触点 128可包 括环形接触片 128A。 环形接触片 128A设置在接线柱 126的台阶部上。 复位弹簧 129与第二触点 128的环形接触片 128A和活塞头 125电连通。 另外, 如图 2所示, 油位传感器 120的第一触点 127和第二触点 128通 过设置在壳体 12上的适配器 150通到压缩机的外部。
[83]如图 7所示, 当油位传感器 120的入口 122没有供给流体时, 活塞 头 125在复位弹簧 129的作用下朝向与第一触点 127和第二触点 128相 反的方向运动, 从而断开第一触点 127和第二触点 128。 此时, 油位传 感器 120不输出信号, 或者输出 "0" 信号。 [84]如图 8所示, 当油位传感器 120的入口 122供给有流体时, 活塞头 125 被所供给的流体推动克服复位弹簧 129 的作用力而朝向第一触点 127和第二触点 128运动, 当活塞头 125与第一触点 127的任何一个针 部接触时能够导通第一触点 127和第二触点 128。此时,油位传感器 120 输出导通信号, 或者输出 " 1" 信号。
[85]图 6-8描述了一种特定的油位传感器。 本领域技术人员应该理解, 油位传感器可以是包括用于接收流体压力的流体压力接收部分以及能 够将所述流体压力转换成电信号的转换部分的任何类型的传感器。
[86]下面描述在本发明实施方式的旋转式压缩机中检测润滑油的过程。 当压缩机的壳体 12中存在适量润滑油时, 进入旋转轴 50的同心孔 54 中的润滑油在离心力的作用下形成如图 3所示的抛物面 P。 此时, 润滑 油通过旋转轴侧壁上的压力采集孔 112、形成在下轴承座 70中的周向油 槽 114以及下轴承座 70中的连通通道 116进入油位传感器 120的流体 入口 122。如上所述,在润滑油的推动下,活塞头 125朝向第一触点 127 和第二触点 128运动并最终导通第一触点 127和第二触点 128, 从而发 出 " 的信号, 表明压缩机中的存在适量润滑油。 相反, 当压缩机的 壳体 12中没有足够量的润滑油时, 没有润滑油到达油位传感器 120的 流体入口 122, 因此油位传感器 120输出 "0" 的信号, 表明压缩机中没 有足够量的润滑油。 [87]为了更加准确地检测压缩机中的润滑油油位, 可以在旋转轴侧壁的 压力采集孔 122中设置朝向同心孔 54的轴线突出的压力采集管 118。可 以通过压力采集管 118向内突出的长度(例如,图 9和 11所示的长度 L ) 来控制期望检测的润滑油油位。 如图 3所示, 当压力采集管 118的远端 119位于由抛物面 P表示的油面内时, 润滑油能够进入压力采集管 118。 在沿压力采集管 118运动的过程中, 润滑油的动能可以转化成压力, 因 此在压力采集管 118的两端产生一定的压力差。 当具有一定压力的润滑 油进入油位传感器 120时, 油位传感器 120的活塞头 125被推动而导通 第一触点 127 与第二触点 128, 因此输出 " 1" 的信号。 当压力采集管 118的远端 119位于由抛物面 P表示的油面之外时, 润滑油不能进入油 位传感器 120而输出 "0" 的信号。 因此, 当期望检测的润滑油油位(即 最低保护润滑油油位)设定得较高时, 可采用较长长度的压力采集管 118, 而当期望检测的润滑油油位(即最低保护润滑油油位)设定得较 低时, 可采用较小长度的压力采集管 118。 特别是, 可以通过计算或实 验来确定压缩机在特定工况下最低保护润滑油油位与压力采集管 118的 长度之间的关系。
[88]特别参见图 11, 最低保护润滑油油位与压力采集管 118的长度之间 可以满足如下关系:
(R - L)2■(—■2π)2
H = h 60——,
2000 · g 其中, H为从所述旋转轴 50的端面 SO算起的最低保护润滑油油 位 S2的高度, 单位为亳米;
L为压力采集管 118突出到旋转轴 50中的长度, 单位为亳米; R为旋转轴 50的内半径, 单位为亳米; h为从旋转轴 50的端面 SO算起的压力采集管 118的中心轴线 S1 的高度, 单位为亳米; n为旋转轴的转数, 单位为转 /分; g为重力加速度, 单位为米 /秒 2。
[89]根据上述公式,例如当 h=32mm, L=6.9mm, n=2000rpm, R=9mm, g=9.81m/s2时, H « 22mm。 即, 当旋转的转速为 2000转 /分、 压力采集 管突出到旋转轴中的长度为 6.9亳米时, 油位传感器能够检测到的最低 保护润滑油油位为大约 22亳米。 也就是说, 当润滑油存储部中的润滑 油油位高于 22亳米时, 油位传感器能够输出 " 1" 的信号, 表明压缩机 能够正常运转。 而润滑油存储部中的润滑油油位低于 22亳米时, 油位 传感器不能输出 " 的信号 (即输出 "0" 的信号), 表明压缩机中的 润滑油不足, 从而压缩机保护机构将停止压缩机。
[90]除了上述设置压力采集管的方式之外, 还可以通过调整压力采集孔 112距特定基准面 (例如, 图 9所述的基准面 S, 其可以是压缩机的底 面, 也可以是旋转轴 50的端面 SO )的高度 h来更加准确地检测压缩机 中的润滑油油位。 具体地, 当期望检测的润滑油油位(即最低保护润滑 油油位)设定得较高时, 可将压力采集孔 112距特定基准面的高度设置 得较高, 而当期望检测的润滑油油位(即最低保护润滑油油位)设定得 较低时,可将压力采集孔 112距特定基准面的高度设置得较低。特别是, 可以通过计算或实验来确定压缩机在特定工况下期望检测的润滑油油 位与压力采集孔 112距特定基准面的高度之间的关系。
[91]在图 3所示的示例中, 压力采集通道 110包括设置在旋转轴侧壁上 的压力采集孔 112、 设置在下轴承座 70的周向油槽 114、 延伸穿过下轴 承座 70的连通通道 116,可选地包括设置在压力采集孔 112中的压力采 集管 118。 但是, 压力采集通道 110的构造不限于此, 而是可以具有各 种变形。 例如, 周向油槽 112可以设置在旋转轴 50上, 而不是设置在 下轴承座 70上。 此外, 例如, 如图 9和 10所示, 可以进一步在旋转轴 50和油位传感器 120之间设置压力采集器 130。 在图 9的示例中, 压力 采集器 130是一个环状构件并且包括与旋转轴 50上的压力采集孔 112 流体连通的周向油槽 114A和与周向油槽 114A流体连通并且延伸穿过 压力采集器 130的连通通道 116A。 在图 10的示例中, 周向油槽 114B 可设置在旋转轴 50上。 油位传感器 120的流体入口 122可直接或通过 其他管路与压力采集器 130的连通通道 116A流体连通。 通过设置压力 采集孔 130, 可以更加灵活地布置油位传感器 120, 并且无需对下轴承 座 70的构造进行修改。
[92]在图 11所示的根据本发明的油位检测机构的示例中。还可以进一步 设置油温传感器 140。 油温传感器 140可以与油位传感器 120共用一条 引线 142。 具体地, 引线 141和 142输出油位传感器 120的信号, 而引 线 142和 143输出油温传感器的信号。 在本实施方式中, 不但可以根据 油位传感器 120的信号来控制压缩机, 而且可以根据油温传感器 140的 信号来控制压缩机。 因此, 为压缩机提供了双重保护。
[93]在图中所示的实施例中, 油位检测机构 100与同心孔 54流体连通。 但是本领域技术人员应该理解, 所述同心孔 54可以用沿旋转轴 50轴向 延伸的非同心孔来代替。 此外, 根据压缩机内部设计的情况, 油位检测 机构 100也可以与旋转轴 50的偏心孔 56流体连通。 即使孔 54或 56是 非同心的孔, 由于旋转轴旋转而引起的离心力, 本发明的油位检测机构 仍然能够正常运转。
[94]在本发明的实施方式中, 描述了一种包括活塞、 触点和弹簧的压力 传感器作为油位传感器。 本领域技术人员应该理解, 可以采用本领域公 知的任何适当的压力传感器, 特别是压力开关, 来作为油位传感器。
[95]在上述实施方式中, 描述了油位传感器 120设置在壳体 12中并且 可以直接地或通过额外的管路与下轴承座 70中的连通通道 116或压力 采集器 130中的连通通道 116A流体连通。 但是本发明并不局限于此。 如图 13A和 13B所示, 油位传感器 120可以设置在壳体 12的外部通过 通过连接管道 160与下轴承座 70中的连通通道 116(或压力采集器中的 连通通道)流体连通。 连接管道 160可以水平设置(如图 13A所示)或 者倾斜设置 (如图 13B所示)。 采用这种构造, 压缩机内的各种部件能 够更加灵活地布置。 [96]尽管在此已详细描述本发明的各种实施方式, 但是应该理解本发明 并不局限于这里详细描述和示出的具体实施方式,在不偏离本发明的实 质和范围的情况下可由本领域的技术人员实现其它的变型和变体。所有 这些变型和变体都落入本发明的范围内。 而且, 所有在此描述的构件都 可以由其他技术性上等同的构件来代替。

Claims

权利要求书
1. 一种旋转式压缩机, 包括:
壳体(12), 所述壳体包括用于容纳润滑油的润滑油存储部;
设置在所述壳体( 12 ) 内的压缩 ¾ ( 20 );
驱动所述压缩机构 ( 20 )的驱动机构 ( 30 ), 所述驱动机构 ( 30 )包括 旋转轴(50), 所述旋转轴(50)中设置有沿所述旋转轴(50)的轴向延伸 的通孔(54, 56), 所述旋转轴(50)通过所述通孔(54, 56)与所述润滑 油存储部流体连通; 以及
通 it ^力采集通道( 110 )与所述旋转轴( 50 )内的通孔( 54, 56 )流 体连通的油位传感器( 120)。
2. 如权利要求 1所述的旋转式压缩机,进一步包括用于支撑所述旋转 轴(50) 的下轴承座 (70),
其中所述压力采集通道( 110)包括: 延伸穿过所述旋转轴(50)的侧 壁并且与所述旋转轴( 50 )内的通孔( 54, 56 )流体连通的压力采集孔( 112 )、 形成在所述旋转轴(50)或所述下轴承座 (70)上并且与所述压力采集孔
( 112)流体连通的周向油槽( 114)、 以及延伸穿过所述下轴承座(70)并 且与所述周向油槽( 114)和所述油位传感器( 120)流体连通的连通通道
(116)。
3. 如权利要求 1所述的旋转式压缩机,进一步包 殳置在所述旋转轴 (50)和所述油位传感器( 120)之间的压力采集器( 130),
其中所述压力采集通道( 110)包括: 延伸穿过所述旋转轴(50)的侧 壁并且与所述旋转轴( 50 )内的通孔( 54, 56 )流体连通的压力采集孔( 112 )、 形成在所述旋转轴( 50 )或所述压力采集器( 130 )上并且与所述压力采集 孔( 112)流体连通的周向油槽( 114A, 114B)、 以及延伸穿过所述压力采 集器( 130 )并且与所述周向油槽( 114A, 114B )和所述油位传感器( 120 ) 流体连通的连通通道 ( 116A)。
4. 如权利要求 2或 3所述的旋转式压缩机, 其中所述压力采集通道 ( 110 )还包括设置在所述压力采集孔( 112 )中并且朝向所述旋转轴( 50 ) 的通孔(54, 56)的轴线突出的压力采集管 (118)。
5. 如权利要求 4所述的旋转式压缩机, 其中所述压力采集管 (118) 的长度根据所述润滑油存储部中的最低保护润滑油油位来确定。
6. 如权利要求 5所述的旋转式压缩机,其中所述最低保护润滑油油位 设定得越高, 所述压力采集管 (118)的长度设定得越长。
7. 如权利要求 5所述的旋转式压缩机,其中所述最低保护润滑油油位 与所述压力采集管 (118) 的长度之间满足如下关系:
(R-L)2-(— ·2^)2
H = h ^
2000 · g , 其中, H为从所述旋转轴(50)的端面(SO)算起的所述最低保护润 滑油油位的高度, 单位为亳米;
L为所述压力采集管( 118)突出到所述旋转轴(50)中的长度, 单位 为亳米;
R为所述旋转轴(50) 的内半径, 单位为亳米;
h为从所述旋转轴(50)的端面 (SO)算起的所述压力采集管(118) 的中心轴线(S1)的高度, 单位为亳米;
n为所述旋转轴的转数, 单位为转 /分;
g为重力加速度, 单位为米 /秒 2
8.如权利要求 2或 3所述的旋转式压缩机,其中所 力采集孔( 112 ) 距一特定参考面 (S) 的高度根据所述润滑油存储部中的最低保护润滑油 油位来确定。
9. 如权利要求 8所述的旋转式压缩机,其中所述最低保护润滑油油位 设定得越高, 所述压力采集孔(112)的高度设定得越高。
10. 如权利要求 8所述的旋转式压缩机, 其中所述参考面 (S)为所 述旋转式压缩机的底面或所述旋转轴(50)的端面。
11. 如权利要求 1所述的旋转式压缩机, 进一步包括泵油机构(80), 所述泵油机构 (80) 包括设置在所述旋转轴(50)端部的孔板 (82)和设 置在所述旋转轴(50)的通孔(54, 56) 内的油叉(84)。
12. 如权利要求 1所述的旋转式压缩机, 进一步包括泵油机构(80), 所述泵油机构 (80) 包括设置在所述旋转轴(50)端部的叶轮泵。
13. 如权利要求 1所述的旋转式压缩机, 其中所述旋转式压缩机为卧 式旋转压缩机并且其内部空间由消音板分隔成高压侧和低压侧, 所述高压 侧构成所述润滑油存储部, 并且
所述旋转式压缩机进一步包括泵油机构 ( 80 ), 所述泵油机构( 80 )为 从所述润滑油存储部延伸到所述旋转轴(50) 的通孔(54, 56)的油管。
14. 如权利要求 1所述的旋转式压缩机, 其中所述通孔(54, 56) 包 括与所述旋转轴( 50 )同心的同心孔部分( 54 )和相对于所述同心孔( 54 ) 沿径向偏置的偏心孔部分(56)。
15. 如权利要求 1所述的旋转式压缩机, 其中所述油位传感器(120) 是压力传感器。
16. 如权利要求 1所述的旋转式压缩机, 其中所述油位传感器(120) 是压力开关。
17. 如权利要求 1所述的旋转式压缩机, 其中所述油位传感器(120) 包括:
用于接收流体压力的流体压力接收部分; 以及
能够将所述流体压力转换成电信号的转换部分。
18. 如权利要求 17所述的旋转式压缩机,其中所述流体压力接收部分 包括:
外壳 ( 121 ), 以及
能够在所述外壳(121) 内轴向运动的活塞头(125);
所述转换部分包括:
接线柱( 126 ),
设置在所述接线柱( 126) 内的第一触点 ( 127)和第二触点 ( 128), 以及
在所述活塞头( 125)和所述第二触点( 128)之间提供电连通并且为 所述活塞头( 125)提供恢复力的弹簧( 129),
其中当所述活塞头(125)与所述第一触点 (127)接触时, 所述油位 传感器输出电信号。
19. 如权利要求 18所述的旋转式压缩机, 其中所述第一触点(127) 包括多个彼此隔开设置的针部(127A, 127B )„
20. 如权利要求 18所述的旋转式压缩机, 其中所述第二触点(128) 包括与所述弹簧(129) 电接触的环形接触片 (128A;)。
21.如权利要求 1所述的旋转式压缩机,进一步包括油温传感器( 140 )。
22. 如权利要求 21所述的旋转式压缩机, 其中所述油温传感器( 140 ) 与所述油位传感器( 120)具有共用的引线( 142)。
23. 如权利要求 2所述的旋转式压缩机, 其中所述油位传感器(120) 设置在所述下轴承座 ( 70 )附近。
24. 如权利要求 2所述的旋转式压缩机, 其中所述油位传感器(120) 与所述下轴承座 (70) 中的连通通道(116)直接连接。
25. 如权利要求 2所述的旋转式压缩机, 其中所述油位传感器(120) 与所述下轴承座 (70) 中的连通通道(116)通过额外的管路连接。
26. 如权利要求 3所述的旋转式压缩机, 其中所述油位传感器(120) 与所述压力采集器( 130) 中的连通通道( 116A)直接连接。
27. 如权利要求 3所述的旋转式压缩机, 其中所述油位传感器(120) 与所述压力采集器( 130) 中的连通通道( 116A)通过额外的管路连接。
28. 如权利要求 1所述的旋转式压缩机, 其中所述旋转式压缩机为涡 旋压缩机、 或螺杆式压缩机、 或转子式压缩机。
29.如权利要求 2或 3所述的旋转式压缩机,其中所述油位传感器( 120) 设置在所述壳体(12) 内部。
30. 如权利要求 2所述的旋转式压缩机, 其中所述油位传感器(120) 设置在所述壳体(12)外部。
31.如权利要求 30所述的旋转式压缩机,其中所述压力采集通道( 110 ) 进一步包括与所述下轴承座 ( 70 )中的连通通道( 116 )流体连通的连接管 道(160)。
32. 如权利要求 3所述的旋转式压缩机, 其中所述油位传感器(120) 设置在所述壳体(12 )外部,
33.如权利要求 32所述的旋转式压缩机,其中所述压力采集通道( 110 ) 进一步包括与所述压力采集器( 130 ) 中的连通通道( 116A )流体连通的 连接管道(160 )。
34.如权利要求 31或 33所述的旋转式压缩机,其中所述连接管道( 160 ) 水平设置或倾斜设置。
35. 一种旋转机械, 包括:
壳体, 所述壳体包括用于容纳润滑油的润滑油存储部;
设置在所述壳体内的旋转轴, 所述旋转轴中设置有沿所述旋转轴的轴 向延伸的通孔, 所述旋转轴通过所述通孔与所述润滑油存储部流体连通; 以及
通过压力采集通道与所述旋转轴内的通孔流体连通的油位传感器。
36. 如权利要求 35所述的旋转机械,进一步包括用于支撑所述旋转轴 的轴承座,
其中所述压力采集通道包括: 延伸穿过所述旋转轴的侧壁并且与所述 旋转轴内的通孔流体连通的压力采集孔、 形成在所述旋转轴或所述轴承座 上并且与所述压力采集孔流体连通的周向油槽、 延伸穿过所述轴承座并且 与所述周向油槽和所述油位传感器流体连通的连通通道。
37. 如权利要求 35所述的旋转机械,进一步包括设置在所述旋转轴和 所述油位传感器之间的压力采集器,
其中所述压力采集通道包括: 延伸穿过所述旋转轴的侧壁并且与所述 旋转轴内的通孔流体连通的压力采集孔、 形成在所述旋转轴或所述压力采 集器上并且与所述压力采集孔流体连通的周向油槽、 延伸穿过所述压力采 集器并且与所述周向油槽和所述油位传感器流体连通的连通通道。
PCT/CN2012/074247 2011-04-18 2012-04-18 旋转式压缩机以及旋转机械 WO2012142944A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/112,188 US9850900B2 (en) 2011-04-18 2012-04-18 Rotary compressor and rotation mechanism
EP12773783.1A EP2713054B1 (en) 2011-04-18 2012-04-18 Rotary compressor and rotation mechanism
IN1826MUN2013 IN2013MN01826A (zh) 2011-04-18 2012-04-18

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201110104725.1A CN102748295B (zh) 2011-04-18 2011-04-18 旋转式压缩机以及旋转机械
CN2011201248631U CN202091205U (zh) 2011-04-18 2011-04-18 旋转式压缩机以及旋转机械
CN201110104725.1 2011-04-18
CN201120124863.1 2011-04-18

Publications (1)

Publication Number Publication Date
WO2012142944A1 true WO2012142944A1 (zh) 2012-10-26

Family

ID=47041056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074247 WO2012142944A1 (zh) 2011-04-18 2012-04-18 旋转式压缩机以及旋转机械

Country Status (4)

Country Link
US (1) US9850900B2 (zh)
EP (1) EP2713054B1 (zh)
IN (1) IN2013MN01826A (zh)
WO (1) WO2012142944A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101635553B1 (ko) * 2014-10-30 2016-07-01 엘지전자 주식회사 압축기 및 그 오일자가 진단방법
JP6471525B2 (ja) * 2015-02-16 2019-02-20 富士電機株式会社 冷媒圧縮機
WO2019129113A1 (zh) * 2017-12-28 2019-07-04 艾默生环境优化技术(苏州)有限公司 用于压缩机系统的进气管道及压缩机系统
CN113123972B (zh) 2019-12-31 2023-06-06 丹佛斯(天津)有限公司 油泵和涡旋压缩机

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4440022A (en) * 1981-10-14 1984-04-03 Smiths Industries Public Limited Company Liquid-level detection
JPS6093191A (ja) * 1983-10-26 1985-05-24 Mitsubishi Electric Corp 並列式圧縮装置
US4669960A (en) * 1985-02-26 1987-06-02 Lexair, Inc. Fluid pressure sensor
US4932841A (en) * 1989-03-20 1990-06-12 Thermo King Corporation Combination oil pressure regulator and low oil pressure detector for refrigerant compressor
US5256042A (en) * 1992-02-20 1993-10-26 Arthur D. Little, Inc. Bearing and lubrication system for a scroll fluid device
CN1740571A (zh) * 2004-08-25 2006-03-01 科普兰公司 电动压缩机的润滑
CN201206549Y (zh) 2007-09-11 2009-03-11 艾默生环境优化技术有限公司 涡旋压缩机
US20090068045A1 (en) 2007-09-11 2009-03-12 Xiaogeng Su Compressor Having A Shutdown Valve
US20090068048A1 (en) 2007-09-11 2009-03-12 Stover Robert C Compressor Sealing Arrangement
CN202091205U (zh) * 2011-04-18 2011-12-28 艾默生环境优化技术(苏州)研发有限公司 旋转式压缩机以及旋转机械

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3411313A (en) * 1966-12-02 1968-11-19 Carrier Corp Compressor protective control
US3552433A (en) * 1969-06-13 1971-01-05 Bell Aerospace Corp Concentric spool valve
AT391012B (de) * 1987-08-25 1990-08-10 Nikolaevsky Korablestroitelny Vorschmiersystem fuer ein, ein oelbad aufweisendes verdichter-schmiersystem
JPH0799154B2 (ja) 1989-09-11 1995-10-25 ダイキン工業株式会社 密閉形圧縮機
US6082972A (en) 1995-12-06 2000-07-04 Carrier Corporation Oil level sight glass for a compressor
JPH09317673A (ja) 1996-05-29 1997-12-09 Mitsubishi Electric Corp 圧縮機
US6276901B1 (en) * 1999-12-13 2001-08-21 Tecumseh Products Company Combination sight glass and sump oil level sensor for a hermetic compressor
JP4759862B2 (ja) 2001-07-16 2011-08-31 パナソニック株式会社 密閉型電動圧縮機
US6746216B2 (en) 2002-07-19 2004-06-08 Scroll Technologies Scroll compressor with vented oil pump
US7131250B2 (en) * 2002-10-04 2006-11-07 Jcs/Thg, Llp Appliance for vacuum sealing food containers
DE10333402A1 (de) 2003-07-16 2005-02-10 Bitzer Kühlmaschinenbau Gmbh Kompressor
ATE536195T1 (de) * 2007-10-04 2011-12-15 Gambro Lundia Ab Infusionsgerät
KR101376615B1 (ko) 2007-12-27 2014-03-20 엘지전자 주식회사 밀폐형 압축기

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4440022A (en) * 1981-10-14 1984-04-03 Smiths Industries Public Limited Company Liquid-level detection
JPS6093191A (ja) * 1983-10-26 1985-05-24 Mitsubishi Electric Corp 並列式圧縮装置
US4669960A (en) * 1985-02-26 1987-06-02 Lexair, Inc. Fluid pressure sensor
US4932841A (en) * 1989-03-20 1990-06-12 Thermo King Corporation Combination oil pressure regulator and low oil pressure detector for refrigerant compressor
US5256042A (en) * 1992-02-20 1993-10-26 Arthur D. Little, Inc. Bearing and lubrication system for a scroll fluid device
CN1740571A (zh) * 2004-08-25 2006-03-01 科普兰公司 电动压缩机的润滑
CN201206549Y (zh) 2007-09-11 2009-03-11 艾默生环境优化技术有限公司 涡旋压缩机
US20090068045A1 (en) 2007-09-11 2009-03-12 Xiaogeng Su Compressor Having A Shutdown Valve
US20090068043A1 (en) 2007-09-11 2009-03-12 Xiaogeng Su Compressor Having Shell With Alignment Features
US20090068044A1 (en) 2007-09-11 2009-03-12 Huaming Guo Compressor With Retaining Mechanism
US20090068048A1 (en) 2007-09-11 2009-03-12 Stover Robert C Compressor Sealing Arrangement
CN202091205U (zh) * 2011-04-18 2011-12-28 艾默生环境优化技术(苏州)研发有限公司 旋转式压缩机以及旋转机械

Also Published As

Publication number Publication date
EP2713054A1 (en) 2014-04-02
EP2713054A4 (en) 2014-12-03
US20140044581A1 (en) 2014-02-13
US9850900B2 (en) 2017-12-26
EP2713054B1 (en) 2020-12-30
IN2013MN01826A (zh) 2015-06-12

Similar Documents

Publication Publication Date Title
CN102748295B (zh) 旋转式压缩机以及旋转机械
US7377759B2 (en) Scroll fluid machine with a self-rotation-preventing device having ears for an orbiting scroll
JP5868247B2 (ja) ロータリー式圧縮機
WO2012142944A1 (zh) 旋转式压缩机以及旋转机械
US20170002816A1 (en) Scroll compressor
EP3334940B1 (en) Oil-balancing system for a multiple compressor sytem
CN202091205U (zh) 旋转式压缩机以及旋转机械
US8118563B2 (en) Tandem compressor system and method
CN203978834U (zh) 油位传感器和旋转式压缩机
JP5459376B1 (ja) スクロール圧縮機
US8057194B2 (en) Compressor with discharge muffler attachment using a spacer
CN202520555U (zh) 旋转式机械
WO2020231910A1 (en) Compressor with vibration sensor
JP2019031966A (ja) 真空ポンプ
JP6575665B2 (ja) 圧縮機
JP6753355B2 (ja) スクロールコンプレッサ
US10669850B2 (en) Impeller-type liquid ring compressor
CN214196662U (zh) 压缩机
WO2024057444A1 (ja) 油分離器、圧縮機及び冷凍サイクル装置
JP2018025154A (ja) スクロールコンプレッサ
CN103089648B (zh) 旋转式压缩机及其控制方法
CN105221429A (zh) 油位传感器和旋转式压缩机及其润滑油检测方法
JP2013060873A (ja) 圧縮機
JP2016180385A (ja) スクロール型電動圧縮機
JP2015121277A (ja) 圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12773783

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012773783

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14112188

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE