WO2012142849A1 - 具有mems光阀的显示装置及其形成方法 - Google Patents

具有mems光阀的显示装置及其形成方法 Download PDF

Info

Publication number
WO2012142849A1
WO2012142849A1 PCT/CN2011/084900 CN2011084900W WO2012142849A1 WO 2012142849 A1 WO2012142849 A1 WO 2012142849A1 CN 2011084900 W CN2011084900 W CN 2011084900W WO 2012142849 A1 WO2012142849 A1 WO 2012142849A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
plate
light valve
movable grating
grating
Prior art date
Application number
PCT/CN2011/084900
Other languages
English (en)
French (fr)
Inventor
毛剑宏
唐德明
Original Assignee
上海丽恒光微电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海丽恒光微电子科技有限公司 filed Critical 上海丽恒光微电子科技有限公司
Priority to US14/112,165 priority Critical patent/US8854712B2/en
Publication of WO2012142849A1 publication Critical patent/WO2012142849A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • G02B26/04Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light by periodically varying the intensity of light, e.g. using choppers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0841Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers

Definitions

  • the present invention relates to the field of display technology, and more particularly to a display device having a MEMS light valve and a method of forming the same. Background technique
  • mainstream display devices mainly include: cathode ray tube display (CRT), liquid crystal display (LCD), plasma display (PDP), electroluminescence display (ELD) and vacuum fluorescent display (VFD). Since the liquid crystal display device has the advantages of lightness, thinness, small footprint, low power consumption, and low radiation, it is widely used in various data processing devices such as televisions, notebook computers, mobile phones, personal digital assistants and the like.
  • CTR cathode ray tube display
  • LCD liquid crystal display
  • PDP plasma display
  • ELD electroluminescence display
  • VFD vacuum fluorescent display
  • the liquid crystal display device mainly comprises: a substrate, a backlight is disposed in the substrate; a pixel electrode is disposed on the substrate, and the substrate further has a TFT (Thin Film Transistor Switch) array, and the TFT (Thin Film Transistor Switch) array is used for the pixel
  • the electrodes are electrically connected to control the potential of the pixel electrode; the color filter, and the liquid crystal layer between the pixel electrode and the color filter, and a common electrode layer is formed on one side of the color filter toward the liquid crystal layer.
  • the liquid crystal display device Providing a potential to the pixel electrode through the TFT (Thin Film Transistor Switch) array, causing a potential difference between the common electrode layer and the pixel electrode, and deflecting the liquid crystal in the liquid crystal layer by the potential difference, and controlling the angle of the liquid crystal deflection according to the magnitude of the potential difference, thereby being controllable
  • the amount of light emitted by the backlight through the liquid crystal layer to the color filter is white light, and only polarized light can pass through the liquid crystal layer, which will lose 50% of the light, so that the light utilization rate is only 50%, when the light passes through the color filter, the light The efficiency is only up to 33%, so the utilization of light in the liquid crystal display device is relatively low.
  • the liquid crystal display device has other defects: for example, a small viewing angle range, complicated structure, high cost, and the like.
  • the liquid crystal layer is replaced by a MEMS light valve, and the light transmittance of the light emitted by the backlight is controlled by the MEMS light valve.
  • TFT-MEMS replaces liquid crystal with high-speed and high-efficiency MEMS light valve by using existing TFT-LCD flat-panel micro-machining technology, eliminating the need for polarizers and color filters, which can greatly improve light efficiency, power consumption, and manufacturing cost.
  • a display device using a MEMS light valve is disclosed in U.S. Patent No. 7,271,945 B2, issued Sep. 18, 2007. However, the MEMS light valve is less sensitive. Summary of the invention
  • the problem solved by the present invention is that the sensitivity of the MEMS light valve in the prior art display device is low.
  • the present invention provides a display device having a MEMS light valve, comprising:
  • MEMS light valve on the substrate, wherein the MEMS light valve is used to control opening and closing of the fixed grating
  • the MEMS light valve includes: a first light valve and a second light valve, the first light valve is disposed on the second light valve; by controlling the first light valve and the second light valve The movement controls the opening and closing of the fixed grating, and the first light valve and the second light valve move in opposite directions.
  • the first light valve comprises: a first movable grating, a first electrode and a second electrical first movable grating are fixedly connected to the first electrode, the first electrode and the second electrode a relative arrangement, a capacitance is formed between the first electrode and the second electrode, and when the potential difference is between the second electrode and the first electrode, the first electrode drives the first movable grating to move;
  • the first movable grating has a fixed end on a side opposite to the first electrode, and the first movable grating is fixed by the fixed end, when there is no potential difference between the first electrode and the second electrode
  • the fixed end of the first movable grating drives the first movable grating to return to the original shape.
  • the second light valve comprises: a second movable grating, a third electrode and a fourth electrode; the third electrode and the fourth electrode are located at the second movable grating relative to the first electrode and The other side of the two electrodes;
  • the second movable grating is fixedly connected to the third electrode, the third electrode and the fourth electrode are oppositely disposed, a capacitance is formed between the third electrode and the fourth electrode, and the third electrode and the
  • the third electrode drives the second movable grating to move;
  • the second movable grating has a side opposite to the third electrode a fixed end, the second movable grating is fixed by the fixed end of the second movable grating, and when there is no potential difference between the third electrode and the fourth electrode, the fixed end of the second movable grating is driven
  • the second movable grating returns to its original state.
  • the fixed grating has a rectangular shape, and has a top edge, a bottom edge, and two side edges;
  • the first movable grating and the second movable grating are both rectangular, and each has a first edge, a second edge, and
  • the third side and the fourth side are opposite to each other, the first side corresponds to the top side, the third side corresponds to the bottom side, and the second side and the fourth side are opposite, respectively corresponding to The two sides;
  • the first electrode and the second electrode are disposed on a second side of the first movable grating, and the fixed end of the first movable grating is disposed on a fourth side of the first movable grating
  • the third electrode and the fourth electrode are disposed on a fourth side of the second movable grating, and the fixed end of the second movable grating is disposed on the second side of the second movable grating side.
  • the first light valve further includes a first fixing plate, and the fourth side of the first movable grating is fixedly connected to the first movable grating, and the first fixing plate is two, symmetric Disposed on a fourth side of the first movable grating, and respectively located on a first side and a third side of the first movable grating; a fixed end of the first movable grating is disposed at The first fixing plate is away from one end of the first movable grating;
  • the second light valve further includes a second fixing plate, and the second side of the second movable grating is fixedly connected to the second movable grating, and the second fixing plate is two, symmetrically distributed in the a second side of the second movable grating is respectively located on a first side and a third side of the second movable grating; a fixed end of the second movable grating is disposed at the second fixed The plate is away from one end of the second movable grating.
  • the first electrode has a first board and a second board, and the first board and the second board are connected to the first movable grating and symmetrically distributed, and the first board and the second board are away from each other
  • One end of the first movable grating is a first fixed end, and the first fixed end is fixed by the first fixed end to have a third plate and a fourth plate, and the third plate and the first electrode Opposite to a board, the fourth board is opposite to the second board of the first electrode, the third board and the fourth board have a second fixed end, and the second fixed end is connected to the third board and the fourth board Fixing the second electrode through the second fixed end; the two ends of the second electrode and the first electrode The distance between the second fixed end and the first electrode is smaller than the distance between the second fixed end and the first electrode.
  • the third electrode has a first board and a second board, and the first board and the second board are connected to the second movable grating and symmetrically distributed, the first board and the first board
  • the end of the second plate away from the second movable grating is a third fixed end, and the third electrode is fixed by the third fixed end;
  • the fourth electrode has a third plate and a fourth plate, the third plate is opposite to the first plate of the third electrode, and the fourth plate is opposite to the second plate of the third electrode, the third plate and The fourth plate has a fourth fixed end, the fourth fixed end is connected to the third plate and the fourth plate, and the fourth electrode is fixed by the fourth fixed end; The distance between the electrodes is smaller than the distance between the fourth fixed end and the third electrode.
  • the first movable grating and the second movable grating have a plurality of strip-shaped transparent openings, and the strip-shaped transparent openings are opposite to the first movable grating and the second movable grating
  • the second side is parallel.
  • the fixed grating is circular;
  • the first movable grating is circular, and has a plurality of fan-shaped transparent openings;
  • the second movable grating is circular, and has a plurality of fan-shaped transparent Opening
  • the fixed ends of the first electrode, the second electrode and the first movable grating are disposed on a circumference of the first movable grating;
  • the fixed ends of the third electrode, the fourth electrode, and the second movable grating are disposed around the circumference of the second movable grating.
  • the first electrode has a first board, and the first board is connected to a circumferential edge of the first movable grating, and an end of the first board away from the first movable grating is a first fixed end, The first fixed end fixes the first electrode;
  • the second electrode has a second plate, the second plate is opposite to the first plate of the first electrode, and the second plate has a second fixed end, and the second electrode is fixed by the second fixed end; a distance between one end of the second plate away from the second fixed end and the first electrode is smaller than a distance between the second fixed end and the first electrode;
  • the third electrode has a third plate, and the third plate is connected to a circumferential edge of the second movable grating, and one end of the third plate away from the second movable grating is a third fixed end, and the third Fixing the third electrode with a fixed end;
  • the fourth electrode has a fourth plate, and the fourth plate is opposite to the third plate of the third electrode,
  • the fourth plate has a fourth fixed end, and the second electrode is fixed by the fourth fixed end; a distance between one end of the fourth plate away from the fourth fixed end and the second electrode is smaller than the fourth fixed end The distance from the second electrode.
  • the first light valve further includes a first fixing plate, and the circumferential edge of the circular first movable grating is fixedly connected with the first movable grating; the fixed end of the first movable grating Provided at an end of the first fixing plate that is away from the first movable grating;
  • the second light valve further includes a second fixing plate, the circumferential edge of the circular second movable grating is fixedly connected with the second movable grating; the fixed end of the second movable grating is disposed at the The second fixing plate is away from one end of the second movable grating.
  • the fixed grating is a fan shape
  • the first movable grating is a fan shape, and has a plurality of strip-shaped transparent openings
  • the second movable grating is a fan shape, and has a plurality of strip-shaped transparent openings ;
  • the first electrode and the second electrode are disposed on a short arc side of the first movable grating, and the fixed end of the first movable grating is disposed on a side of the long arc side of the first movable grating;
  • the third electrode and the fourth electrode are disposed on a short arc side of the second movable grating, and the fixed end of the second movable grating is disposed on a side of the long arc side of the second movable grating.
  • the first electrode has a first board, and the first board is connected to a short arc side of the first movable grating, and one end of the first board away from the first movable grating is a first fixed end. Fixing the first electrode through the first fixed end;
  • the second electrode has a second plate, the second plate is opposite to the first plate of the first electrode, and the second plate has a second fixed end, and the second electrode is fixed by the second fixed end; a distance between one end of the second plate away from the second fixed end and the first electrode is smaller than a distance between the second fixed end and the first electrode;
  • the third electrode has a third plate, and the third plate is connected to the short arc side of the second movable grating, and the end of the third plate away from the second movable grating is a third fixed end, The third fixed end fixes the third electrode;
  • the fourth electrode has a fourth plate, the fourth plate is opposite to the third plate of the third electrode, and the fourth plate has a fourth fixed end, and the fourth electrode is fixed by the fourth fixed end; A distance between one end of the fourth plate away from the fourth fixed end and the third electrode is smaller than a distance between the fourth fixed end and the third electrode.
  • the first light valve further includes a first fixing plate located at the first movable light
  • the long arc edge of the grid is fixedly connected to the first movable grating; the fixed end of the first movable grating is disposed at an end of the first fixing plate away from the first movable grating;
  • the second light valve further includes a second fixing plate, the long arc edge of the second movable grating is fixedly connected with the second movable grating; the fixed end of the second movable grating is disposed at the first
  • the two fixing plates are away from one end of the second movable grating.
  • a TFT switch is further disposed on the substrate or the fixed grating, and the first electrode, the second electrode, the third electrode, and the fourth electrode are respectively electrically connected to the corresponding TFT switches.
  • the TFT switch includes:
  • the capacitor includes a first plate, a second plate, and a capacitor dielectric layer between the first plate and the second plate;
  • the first plate is in the same layer as the gate, and the first plate is made of the same material as the gate, and is a conductive material having a light transmittance of less than 50%;
  • the second electrode plate is located in the same layer as the source electrode and the drain electrode, and the second electrode plate is made of the same material as the source electrode and the drain electrode, and is a conductive material having a light transmittance of less than 50%.
  • the second plate is electrically connected to the source electrode or the drain electrode, and the second plate is electrically connected to the first electrode, the second electrode, the third electrode and the fourth electrode.
  • the conductive channel is a low-doped silicon layer
  • a highly doped silicon layer is between the low-doped silicon layer and the gate dielectric layer
  • the highly doped silicon layer has an opening, and the two sides of the opening respectively The source and drain regions expose the low doped silicon layer.
  • the material of the gate dielectric layer is the same as the material of the capacitor dielectric layer, and the gate dielectric layer and the capacitor dielectric layer are in the same layer.
  • the materials of the first plate, the second plate, the gate, the source electrode and the drain electrode are selected from the group consisting of metals.
  • the materials of the first plate, the second plate, the gate, the source electrode and the drain electrode are selected from one of gold, silver, copper, aluminum, titanium, chromium, molybdenum, cadmium, nickel, and cobalt. Or any combination of them.
  • the materials of the first plate, the second plate, the gate, the source electrode and the drain electrode are selected from the group consisting of gold, silver, copper, aluminum, titanium, chromium, molybdenum, cadmium, nickel, cobalt, and amorphous. Silicon, polysilicon, One of amorphous silicon, polycrystalline silicon or any combination thereof.
  • the TFT switch is an LTPS-TFT switch.
  • capping layer surrounding the MEMS light valve peripherally, covering the MEMS light valve at the top, and having an opening at the top of the capping layer;
  • a sealing cover seals the opening.
  • the material of the capping layer and the sealing cover is selected from the group consisting of silicon oxide, silicon nitride, silicon carbide or silicon oxynitride or any combination thereof.
  • the fixed grating is located on the substrate;
  • the second light valve is located above the fixed grating, and the first light valve is located above the second light valve.
  • the second light valve is located on the substrate, and the first light valve is located above the second light valve;
  • the stationary grating is located above the first light valve.
  • the present invention also provides a method of forming a display device having a MEMS light valve, comprising: providing a substrate;
  • MEMS light valve or, after forming a MEMS light valve over the substrate, forming a fixed grating over the MEMS light valve.
  • the TFT switch is electrically connected to the corresponding TFT switch.
  • the method for forming a TFT switch includes:
  • first conductive layer Forming a first conductive layer on the substrate or the fixed grating, wherein the material of the first conductive layer is a conductive material having a light transmittance of less than 50%;
  • first dielectric layer covering the gate, the first plate, a first dielectric layer on the first plate as a capacitor dielectric layer, and a first dielectric layer above the gate as a gate dielectric layer ;
  • the highly doped silicon layer has an opening, and both sides of the opening are a source region and a drain region, and the opening is exposed
  • the low doped silicon layer, the low doped silicon layer is a conductive channel;
  • the first dielectric layer constitutes a capacitor, and the second plate is electrically connected to the source or drain electrode.
  • the materials of the first conductive layer and the second conductive layer are selected from the group consisting of gold, silver, copper, aluminum, titanium, chromium, molybdenum, cadmium, nickel, cobalt, amorphous silicon, polycrystalline silicon, amorphous germanium silicon, polycrystalline One of silicon germanium or any combination of them.
  • the forming the MEMS light valve comprises:
  • the patterned first sacrificial layer, the patterned second sacrificial layer is removed.
  • the method before removing the patterned first sacrificial layer and the patterned second sacrificial layer, the method further includes:
  • a capping layer on a surface of the third sacrificial layer, the capping layer having a plurality of openings thereon to expose a third sacrificial layer; the capping layer surrounding the MEMS light valve and surrounding the top cover MEMS light valve.
  • the third sacrificial layer is simultaneously removed.
  • the material of the first sacrificial layer, the second sacrificial layer, and the third sacrificial layer is non-
  • the method of removing the first sacrificial layer and the second sacrificial layer while removing the third sacrificial layer comprises: isolating and oxidizing to form an oxygen plasma;
  • the oxygen plasma is introduced into the opening, and the amorphous carbon is ashed at a temperature ranging from 150 °C to 450 °C.
  • the method further includes: after removing the first sacrificial layer, the second sacrificial layer, and the third sacrificial layer, forming a sealing cover covering the capping layer.
  • the method further includes:
  • the third sacrificial layer is patterned to form an isolation trench between adjacent MEMS light valves; the capping layer is formed on a surface of the patterned third sacrificial layer.
  • the material of the capping layer and the sealing cover is selected from the group consisting of silicon oxide, silicon nitride, silicon carbide or silicon oxynitride or any combination thereof, and the forming method is chemical vapor deposition.
  • the present invention has the following advantages:
  • the MEMS light valve in the display device of the present invention includes a first light valve and a second light valve, and the relative movement of the first light valve and the second light valve controls the opening and closing of the fixed grating, relative to a light valve In this way, the sensitivity of the MEMS light valve can be improved.
  • the first light valve includes: a first movable grating, a first electrode and a second electrode, when there is a potential difference between the second electrode and the first electrode, The first electrode drives the first movable grating to move.
  • the second light valve includes: a second movable grating, a third electrode and a fourth electrode, wherein the third electrode drives the second electrode when there is a potential difference between the third electrode and the fourth electrode. The movable grating moves, and the first light valve and the second light valve move in opposite directions.
  • the first light valve and the second light valve have fixed ends, and the first light valve and the second light valve are connected to the substrate, and when the home position needs to be restored, the first electrode and the second electrode are canceled, and the third The potential difference between the electrode and the fourth electrode, the fixed end of the first movable grating and the fixed end of the second movable grating drive the first movable grating and the second movable grating to return to the original position. Therefore, the movement of the first light valve can be controlled by controlling the potential difference between the first electrode and the second electrode, and the movement of the second light valve can be controlled by controlling the potential difference between the third electrode and the fourth electrode, so that the MEMS light valve is The control is simple and the structure is relatively simple.
  • the TFT switch has a first plate, a second plate, and a capacitor dielectric layer between the first plate and the second plate.
  • Capacitance since the first plate and the gate are in the same layer, the first plate and the gate are made of the same material, and the light transmittance is less than 50%; the second plate is located on the same layer as the source and drain electrodes.
  • the second plate is made of the same material as the source electrode and the drain electrode, and is a conductive material having a light transmittance of less than 50%.
  • the TFT switch When applied to a display device having a MEMS light valve, since the MEMS light valve display device does not require a large aperture ratio, the TFT switch can be formed on a portion of the display device that is not used for light transmission, and the first plate
  • the second plate, the gate electrode, the source electrode and the drain electrode are conductive materials having a light transmittance of less than 50%, so that the TFT switch has better compatibility with the MEMS light valve, and the performance of the display device can be improved.
  • the first plate may be formed together with the gate
  • the second plate may be formed together with the source and the drain
  • the capacitor dielectric layer may be formed together when the gate dielectric layer is formed, thereby forming the TFT switch. The process is simplified, no separate capacitors are formed, cost is saved, production schedule is accelerated, and efficiency is improved.
  • Figure la is a perspective structural view of a MEMS light valve according to a specific embodiment of the present invention
  • Figure 1b is a schematic cross-sectional view of the display device having a MEMS light valve according to the a-a direction shown in Figure la;
  • FIG. 2 is a schematic diagram showing the circuit structure of a display device having a MEMS light valve according to the present invention
  • FIG. 3 is a plan view showing a MEMS light valve according to another embodiment
  • FIG. 4 is a plan view showing a MEMS light valve of still another embodiment
  • Figure 5 is a flow chart showing a method of forming a display device having a MEMS light valve in accordance with an embodiment of the present invention
  • 6 to 20 are schematic cross-sectional structural views showing a method of forming a display device having a MEMS light valve according to an embodiment of the present invention
  • 8a 2 to 8d are schematic cross-sectional structural views showing a method of forming a TFT switch according to an embodiment of the present invention
  • 21 is a cross-sectional structural view showing a display device having a MEMS light valve according to another embodiment of the present invention.
  • Figure 22 is a cross-sectional structural view showing an LTPS-TFT switch according to an embodiment of the present invention
  • Figure 23 is a schematic view showing the structure of an LTPS-TFT switch applied to the display device of the present invention.
  • Figure la is a perspective structural view of a MEMS light valve according to a specific embodiment of the present invention
  • Figure 1b is a schematic cross-sectional view of the display device having a MEMS light valve in the a-a direction shown in Figure la according to an embodiment of the present invention.
  • a display device includes: a substrate 40; a fixed grating 30 on the substrate 40, a MEMS light valve 100, and the MEMS light valve 100 is used to control the fixed grating
  • the MEMS light valve 100 includes: a first light valve 10 and a second light valve 20, wherein the first light valve 10 is disposed on the second light valve 20;
  • the movement of a light valve 10 and the second light valve 20 controls the opening and closing of the fixed grating 30, and the moving directions of the first light valve 10 and the second light valve 20 are opposite. That is to say, by the relative movement of the first light valve 10 and the second light valve 20, the light transmission and the light shielding speed of the fixed grating 30 can be accelerated, thereby improving the sensitivity of the MEMS light valve.
  • the first light valve 10 includes: a first movable grating 11, a first electrode 12 and a second electrode 13, the first movable grating 11 Fixedly connected to the first electrode 12, the first electrode 12 and the second electrode 13 are oppositely disposed, a capacitance is formed between the first electrode 12 and the second electrode 13, and the second electrode 13 and the first electrode
  • the first electrode 12 drives the first movable grating 11 to move;
  • the first movable grating 11 has a fixed end 141 on a side opposite to the first electrode 12.
  • the first movable grating is fixed by the fixed end 141.
  • the fixed end 141 of the first movable grating drives the first movable
  • the grating 11 returns to its original state.
  • the second light valve 20 includes: a second movable grating 21, a third electrode 22 and a fourth electrode 23; the third electrode 22 and the fourth electrode 23 are located at the second movable grating 21 relative to the first The other side of the electrode 12 and the second electrode 13; the second movable grating 21 is fixedly connected to the third electrode 22, and the third electrode 22 and the fourth electrode 23 are oppositely disposed, and the third electrode 22 and A capacitance is formed between the fourth electrodes 23, and when there is a potential difference between the third electrode 22 and the fourth electrode 24, the third electrode 22 drives the second movable grating 21 to move;
  • the movable grating 21 has a fixed end 241 on a side opposite to the third electrode 22, and the second movable grating 21 is fixed by the fixed end 241, and the third electrode 22 and the fourth electrode 23 are fixed
  • the second movable light when there is no potential difference between The fixed end 241 of the grid 21 drives the second movable grating 21 back to its original shape.
  • the moving directions of both the first movable grating 11 and the second movable grating 21 are opposite, so that the first light valve 10 and the second light valve 20 can be moved together to improve the sensitivity of the MEMS light valve.
  • the fixed grating 30 is rectangular, having a top edge, a bottom edge, and two side edges, wherein the top edge is a side of the display device that is in a normal projection, away from the ground, and the bottom edge is a top edge The opposite side.
  • the first movable grating 11 and the second movable grating 21 are both rectangular, and each has a first side, a second side, a third side and a fourth side, the first side Opposite the third side, the first side corresponds to the top edge, the third side corresponds to the bottom edge, and the second side and the fourth side are opposite to each other, respectively corresponding to the two sides;
  • the first electrode 12 and The second electrode 13 is disposed on a second side of the first movable grating 11
  • the fixed end 141 of the first movable grating 11 is disposed on a fourth side of the first movable grating 11 .
  • the third electrode 22 and the fourth electrode 23 are disposed on a fourth side of the second movable grating, and the fixed end 241 of the second movable grating is disposed on the second movable grating 21
  • the first electrode 12 has a first plate 122 and a second plate 123, and the first plate 122 and the second plate 123 are connected to the first movable grating 11 and are symmetrically distributed.
  • One end of the first plate 122 and the second plate 123 away from the first movable grating 11 is a first fixed end 121, and the first fixed end 121 is fixed by the first fixed end 121 Electrode 12, and the first and second plates each having a first fixed end 121.
  • the first fixed end 121 is for electrically connecting to the TFT switch and fixed to the TFT switch.
  • the second electrode 13 has a third plate 132 and a fourth plate 133, the third plate 132 is opposite to the first plate 122 of the first electrode 12, and the fourth plate 133 and the second plate of the first electrode 12
  • a second fixed end 131 is defined between the third plate 132 and the fourth plate 133.
  • the second fixed end 131 connects the third plate 132 and the fourth plate 133, and passes through the second fixed end 131.
  • the second electrode 13 is fixed; the distance between the two ends of the second electrode 13 and the first electrode 12 is smaller than the distance between the second fixed end 131 and the first electrode 12.
  • the second fixed end 131 is for electrically connecting to the TFT switch and fixed to the TFT switch.
  • the angle between the third plate 132 and the fourth plate 133 is not 180 degrees, and the angle between the two is greater than 90 degrees and less than 180 degrees.
  • the distance between the first electrode and the second electrode at the end portion is the smallest, that is, the distance between the second electrode and the first electrode is smaller than the distance between the second fixed end and the first electrode.
  • the second electrode can attract the first electrode to move when the charge accumulates at the end such that there is a small potential difference between the first electrode and the second electrode.
  • the first electrode and the second electrode may also be parallel to each other.
  • the third electrode 22 and the fourth electrode 23 are disposed on one side of the fourth side, and the fourth electrode 23 and the fourth side are respectively located on both sides of the second electrode 22. That is, the third electrode 22 and the fourth electrode 23 are on opposite sides of the first electrode 12 and the second electrode 13, so that the moving directions of the first movable grating 11 and the second movable grating 21 are opposite.
  • the third electrode 22 has a first plate 222 and a second plate 223, and the first plate 222 and the second plate 223 are connected to the second movable grating 21, and Symmetrically, the one end of the first plate 222 and the second plate 223 away from the second movable grating 21 is a third fixed end 221, and the third electrode 22 is fixed by the third fixed end 221, and Both the first plate and the second plate have a third fixed end 221 .
  • the third fixed end 221 is for electrically connecting to the TFT switch and fixed to the TFT switch.
  • the fourth electrode 23 has a third plate 232 and a fourth plate 233, the third plate 232 is opposite to the first plate 222 of the third electrode 22, and the fourth plate 233 and the second plate of the third electrode 22 229, a third fixed end 231 is defined between the third plate 232 and the fourth plate 233, and the fourth fixed end 231 is connected to the third plate 232 and the fourth plate 233, and passes through the fourth fixed end 231.
  • the fourth electrode 23 is fixed, and a distance between the two ends of the fourth electrode 23 and the third electrode 22 is smaller than a distance between the fourth fixed end 231 and the third electrode 23.
  • the fourth fixed end 231 is used for electrically connecting to the TFT switch and fixed to the TFT switch.
  • the angle between the third plate 232 and the fourth plate 233 is not 180 degrees, and the angle between the two is greater than 90 degrees and less than 180 degrees.
  • the distance between the third electrode and the fourth electrode near the end is the smallest, and the distance between the two ends of the third electrode and the fourth electrode is smaller than the distance between the fourth fixed end and the first electrode.
  • the fourth electrode can attract the first electrode to move.
  • the third electrode and the fourth electrode may also be parallel to each other.
  • the first light valve 10 further includes a first fixing plate 14 disposed on the fourth side of the first movable grating 11 and fixedly connected to the first movable grating, along the fourth side.
  • the first fixing plates 14 are two, symmetrically distributed on the fourth side of the first movable grating 11, and respectively located on the first side and the third side; the first The fixed end 141 of the movable grating 11 is disposed on the first fixed plate 14 away from the first movable light One end of the grid, that is, one end that is not connected to the first movable grating 11.
  • the fixed end 141 is fixedly electrically connected to the corresponding TFT switch and fixed to the TFT switch, thereby fixing the first movable grating 11 through the fixed end 141.
  • the second light valve 20 further includes a second fixing plate 24, and the second side of the second movable grating 21 is fixedly connected with the second movable grating, along the second side.
  • the second fixing plates 24 are two, symmetrically distributed on the second side of the second movable grating 21, and respectively located on the first side and the third side; the second The fixed end 241 of the movable grating 11 is disposed at one end of the second fixing plate 24 away from the first movable grating, that is, at one end that is not connected to the second movable grating 21.
  • the fixed end 241 is fixedly electrically connected to the corresponding TFT switch and fixed to the TFT switch, thereby fixing the second movable grating 21 through the fixed end 241.
  • the fixed grating 30 is rectangular
  • the first movable grating 11 and the second movable grating 21 which are engaged with the fixed grating 30 are also rectangular.
  • the fixed grating 30 and the first movable grating 11 and the second movable grating 21 each have a plurality of strip-shaped light-transmissive openings, and the strip-shaped light-transmissive openings are parallel to the second and fourth sides.
  • the light-transmitting openings on the fixed grating 30 are not moved by the first movable grating 11, and the second movable
  • the opaque opening on the grating 21 is completely blocked, the light emitted by the backlight on the substrate 40 can pass through the light-transmissive opening of the fixed grating 30 and the light transmission of the first movable grating 11 and the second movable grating 21.
  • the opening is adjusted, and the amount of light is adjusted according to a range in which the light-transmitting opening of the fixed grating 30 is blocked by the opaque opening of the first movable grating 11 and the second movable grating 21.
  • the working principle of the display device of the embodiment of the present invention is that the first fixed end 121 of the first electrode 12 and the second fixed end 131 of the second electrode 13 are electrically connected to the peripheral control electrode through a TFT switch (not shown). For example, a voltage of 0 V is applied to the first electrode 12 through the control electrode, and a voltage of 10 V is applied to the second electrode 13.
  • the potential difference between the first electrode 12 and the second electrode 13 is 10 V, and the first electrode 12 has Negative charge, the second electrode 13 has a positive charge, and the first electrode 12 receives an electrostatic force to the left, so that the first electrode 12 drives the first movable grating 11 fixedly connected to the left to move to the left, due to the first electrode 12
  • the first fixed end 121 of the end is connected to the corresponding TFT switch, and the second fixed end 131 of the second electrode 13 is fixedly connected with the corresponding TFT switch, so when the first electrode 12 drives the first movable grating to move,
  • One electrode 12, second electrode 13, and the same The first movable grating 11 to which the electrode 12 is fixedly connected is deformed.
  • first movable grating 11 If the first movable grating 11 is to be moved back to the right, a voltage of 0 V is applied to the second electrode 13 while the voltage on the first electrode 12 is maintained at 0 V, thus, between the first electrode 12 and the second electrode 13. The potential difference is 0, and the electrostatic force is therefore 0.
  • the first electrode 12, the second electrode 13, and the first movable grating 11 will spring back under the action of the fixed end 141 of the first light valve, and return to the original state.
  • the third fixed end 221 of the third electrode 22 and the fourth fixed end 231 of the fourth electrode 23 are electrically connected to the peripheral control electrode through the TFT switch.
  • a voltage of 0 V is applied to the third electrode 22 through the control electrode.
  • the four electrodes 23 apply a voltage of 10 V, and the third electrode 22 and the fourth electrode 23 have a potential difference of 10 V, the third electrode 22 has a negative charge, the fourth electrode 23 has a positive charge, and the third electrode 22 receives a right charge.
  • the electrostatic force such that the third electrode 22 drives the second movable grating 21 fixedly connected thereto to move to the right, since the fixed end 221 of the end of the third electrode 22 is connected to the corresponding TFT switch, the middle of the fourth electrode 23 The fixed end 231 is fixedly connected to the corresponding TFT switch. Therefore, when the third electrode 22 drives the second movable grating 21 to move, the third electrode 22, the fourth electrode 23 and the second movable portion fixedly connected with the third electrode 22 are movable. The grating 21 is deformed.
  • the second movable grating 21 If the second movable grating 21 is to be moved back to the left, a voltage of 0 V is applied to the fourth electrode 23 while the voltage on the third electrode 22 is maintained at 0 V, thus, between the third electrode 22 and the fourth electrode 23 The potential difference is 0, and the electrostatic force is therefore 0.
  • the third electrode 22, the fourth electrode 23, and the second movable grating 21 will spring back to the original position under the action of the fixed end 241 of the second light valve.
  • the material of the fixing plate 24 is a conductive material, and may be a metal such as gold, silver, copper, aluminum, titanium, chromium, molybdenum, cadmium, nickel, cobalt, or the like, or a combination thereof; or a conductive non-metal,
  • amorphous silicon, polycrystalline silicon, amorphous germanium silicon, polycrystalline germanium silicon, etc. may also be a combination of a metal and a conductive non-metal; in a specific embodiment of the invention, aluminum is preferred.
  • An insulating layer is formed on the surfaces of the first movable grating 11, the first electrode 12, the second electrode 13, and the first fixing plate 14, and the second movable grating 21, the third electrode 22, the fourth electrode 23, and the second
  • the surface of the fixing plate 24 is formed with an insulating layer, and the material of the insulating layer may be silicon oxide, silicon nitride, silicon carbide or silicon oxynitride.
  • the fixed grating 30 is located on the substrate 40; the second light valve 20 is located above the fixed grating 30, the first light Valve 10 is located above the second light valve 20.
  • the upper and lower positions of the MEMS light valve 100 and the fixed grating 30 may be interchanged, that is, the second light valve 20 is located on the substrate 40, and the first light valve 10 is located. Above the second light valve 20; the fixed grating 30 is located above the first light valve 10.
  • a TFT switch thin film transistor array (not shown) is formed on the fixed grating 30, that is, the TFT switch is formed.
  • the TFT switch is used for fixed electrical connection with the first electrode, the second electrode, the third electrode, and the fourth electrode.
  • the substrate 40 has a backlight therein, and the backlight comprises a blue light source, a red light source and a green light source, and the blue light source, the red light source and the green light source may respectively be blue LEDs, Available in red and green LEDs, or in laser, and available in red, green and blue.
  • the side of the fixed grating 30 facing the back light source has a reflectance of more than 60%.
  • a plurality of fixed gratings 30 and MEMS light valves 100 are arranged in an array.
  • a fixed grating 30 and a MEMS light valve 100 are taken as an example for description.
  • the display device of the present invention further includes: a plurality of parallel scanning lines on the substrate.
  • G G2 Gm a plurality of parallel data lines on the substrate perpendicular to the scan line
  • Dl, D2, ... Dn data lines D1, D2, ... Dn are electrically connected to the source electrodes of the corresponding TFT switches, scan lines G1, G2, ... Gm and The gates of the corresponding TFT switches are electrically connected, and the TFT switches are controlled to be turned on and off by the scanning lines G1, G2, ..., Gm, and are applied to the TFTs through the data lines D1, D2, ... Dn.
  • the voltage of the switch, the drain electrode of the TFT switch is electrically connected to the MEMS light valve 100, and controls the voltage applied to the MEMS light valve 100; the capacitor C is electrically connected to the MEMS light valve 100.
  • a TFT switch according to a specific embodiment of the present invention includes: a gate electrode 41, a source region, a drain region, and a conductive channel for electrically conducting a source region and a drain region, located at the conductive channel and the gate electrode 41.
  • the gate dielectric layer 441 is connected to the source electrode 42 electrically connected to the source region and the drain electrode 43 electrically connected to the drain region.
  • the conductive channel is a low doped silicon layer 442, and the highly doped silicon layer 443 is between the low doped silicon layer 442 and the gate dielectric layer, and the highly doped silicon layer 443 has an opening (not labeled in the figure)
  • the highly doped silicon layer 443 on both sides of the opening is a source region and a drain region, respectively, and the opening exposes the low doped silicon layer 442.
  • the capacitor includes a first plate 45, a second plate 46, and a capacitive dielectric layer (not labeled) between the first plate and the second plate; the first plate 45 and the gate
  • the pole 41 is located in the same layer and the material is the same opaque material; the second electrode plate 46 is in the same layer as the source electrode 42 and the drain electrode 43, and the material is the same opaque material, and the second layer
  • the electrode plate 46 is electrically connected to the drain electrode 43, and the first electrode plate 45 is grounded; the first electrode 12, the second electrode 13, the third electrode 22, and the fourth electrode 23 are respectively connected to the drain electrode 43 of the corresponding TFT switch.
  • the source electrode 42 of the TFT switch is electrically connected to the data line of the display device, and the gate electrode 41 is electrically connected to the scan line of the display device.
  • the first plate 45, the second plate 46, and the dielectric layer between the first plate 45 and the second plate 46 constitute the capacitor C described in the present invention.
  • the second plate 46 is electrically connected to the drain electrode 43
  • the MEMS light valve is electrically connected to the drain electrode 43 through the second plate
  • the data line 49 is electrically connected to the source electrode 42.
  • the second plate 46 can also be electrically connected to the source electrode 42.
  • the MEMS light valve is electrically connected to the source electrode 42 through the second plate 46
  • the data line 49 is electrically connected to the drain electrode 43 according to the source region and The type of the drain area is determined.
  • the capacitor dielectric layer and the gate dielectric layer are in the same layer, and the materials are the same.
  • a dielectric layer is formed on the gate electrode 41 and the first electrode plate 45, and the dielectric layer is located on the gate electrode 41.
  • the dielectric layer on the first plate 45 serves as a capacitor dielectric layer.
  • the material of the first plate, the second plate, the gate, the source electrode and the drain electrode is selected from a metal selected from the group consisting of gold, silver, copper, aluminum, titanium, chromium, molybdenum, cadmium, nickel, cobalt or Any combination of them.
  • the materials of the first plate, the second plate, the gate, the source electrode and the drain electrode may also be selected from the group consisting of gold, silver, copper, aluminum, titanium, chromium, molybdenum, cadmium, nickel, cobalt, amorphous silicon, polysilicon, One of amorphous silicon, polycrystalline silicon or any combination thereof.
  • the material of the capacitor dielectric layer and the gate dielectric layer is selected from the group consisting of silicon oxide, silicon nitride, silicon carbide or silicon oxynitride Or any combination of them.
  • the materials of the first plate 45 and the second plate 46 are both metal, and the capacitor C is a MIM (Metal-Medium Layer-Metal) capacitor.
  • the TFT switch in this embodiment of the present invention is applied to a display device having a MEMS light valve, since the MEMS light valve display device does not require a large aperture ratio, the TFT switch can be formed in the display device without being used.
  • the portion where the light is transmitted, and the first plate, the second plate, the gate, the source electrode and the drain electrode have a light transmittance of less than 50%, so that the compatibility between the TFT switch and the MEMS light valve is better, and the improvement can be improved. Display device performance.
  • the display device further includes: a capping layer 57 and a sealing cover 59, the capping layer 57 surrounding the MEMS light valve and covering the MEMS light valve at the top And having an opening (not labeled in the figure) at the top of the capping layer 57; the sealing cover 59 seals the opening.
  • the closure cap 59 not only seals the opening, but also covers the top of the entire closure layer 57.
  • the material of the capping layer 57 and the sealing cover 59 may be selected from the group consisting of silicon oxide, silicon nitride, silicon carbide or silicon oxynitride or any combination thereof.
  • the sealing cover 59 can function as a sealing display device to prevent water vapor, dust, impurities, and the like from entering the display device, which can improve the life of the display device.
  • the fixed grating 30 and the first movable grating 11 and the second movable grating 21 are both rectangular, but in the present invention, the fixed grating 30 and the first movable grating 11 and The two movable gratings 21 are not limited to rectangular.
  • the fixed grating has a circular shape and has a plurality of fan-shaped light-transmissive openings; the movable grating has a circular shape and has a plurality of fan-shaped light-transmissive openings.
  • FIG. 3 is a schematic plan view of a MEMS light valve according to another embodiment.
  • the fixed grating of the specific embodiment is circular (not shown), and has a plurality of fan-shaped transparent openings, the shape of the fixed grating and MEMS light.
  • the shape of the valve is matched; in cooperation with the fixed grating, referring to FIG. 3, the first movable grating 11a and the second movable grating 21a are also circular, and have a plurality of fan-shaped light-transmissive openings. Since it is a plan view, the first light valve and the second light valve are illustrated on a plane in Fig. 3.
  • the first electrode 12a is fixedly electrically connected to the circumference of the circular first movable grating 11a, and the second electrode 13a is disposed opposite to the first electrode 12a to form a capacitance, and has a potential difference between the second electrode 13a and the first electrode 12a.
  • the first electrode 12a drives the first movable grating 11a to rotate under the action of the attraction force.
  • On the other side of the first movable grating 11a with respect to the first electrode 12a there is a fixed end 141a.
  • the fixed end 141a drives the first movable grating 11a to recover. In situ.
  • the third electrode 22a is fixedly electrically connected to the circumference of the circular second movable grating 21a, and the third electrode 22a, the fourth electrode 23a and the first electrode 12a and the second electrode 13a are located on different sides of the MEMS light valve, The four electrodes 23a are disposed opposite to the third electrode 22a to form a capacitance.
  • the fourth electrode 23a and the second electrode 22a have an attractive force
  • the third electrode 22a is The attraction force acts to rotate the second movable grating 21a.
  • On the other side of the second movable grating 21a with respect to the third electrode 22a there is a fixed end 241a.
  • the fixed end 241a drives the second movable grating 21a to recover. In situ. For specific principles, see the specific embodiment shown in Figure la above.
  • the first electrode 12a has a first plate 121a, and the first plate 121a is connected to a circumferential edge of the first movable grating 11a, and one end of the first plate 121a away from the first movable grating 11a is a first fixed end.
  • the first electrode 12a is fixed by the first fixed end 122a ;
  • the second electrode 13a has a second plate 131a, and the second plate 131a is opposite to the first plate 121a of the first electrode 12a,
  • the second plate 131a has a second fixed end 132a, the second fixed end 132a is adjacent to the first movable grating 11a, and the second plate 131a is away from the first movable end 132a at one end away from the first movable grating L la.
  • the second fixed end 132a fixes the second electrode 13a; the distance between the end of the second plate 131a away from the second fixed end 132a and the first electrode 12a is smaller than the distance between the second fixed end 132a and the first electrode 12a.
  • the third electrode 22a has a third plate 221a, the third plate 221a is connected to the circumferential edge of the second movable grating 21a, and the end of the third plate 221a away from the second movable grating 21a is a third fixed The end 222a, the third electrode 22a is fixed by the third fixed end 222a;
  • the fourth electrode 23a has a fourth plate 231a opposite to the third plate 221a of the third electrode 22a, the fourth plate 231a has a fourth fixed end 232a, and the fourth fixed end 232a is adjacent to the second Moving grating 21a, one end of the fourth plate 231a away from the fourth fixed end 232a is away from the second movable grating 21a, and the second electrode 13a is fixed by the fourth fixed end 232a; the fourth plate 231a is away from the fourth fixed One end of the end 232a and the second electrode The distance between the 13a is smaller than the distance between the fourth fixed end 232a and the second electrode 13a.
  • the first light valve further includes a first fixing plate 142a, and a circumferential edge of the circular first movable grating 11a is fixedly connected with the first movable grating 11a; a fixed end of the first movable grating 11a 141a is disposed at an end of the first fixing plate 142a away from the first movable grating 11a; the second light valve further includes a second fixing plate 242a located at a circumferential edge of the circular second movable grating 21a The second movable grating 21a is fixedly connected to the second movable grating 21a. The fixed end 241a of the second movable grating 21a is disposed at an end of the second fixed plate 242a away from the second movable grating 21a.
  • the MEMS light valve When a certain voltage is applied to each electrode, the MEMS light valve is rotated by the electrostatic force, so that the degree of coincidence of the light-transmissive opening of the fixed grating with the light-transmitting opening on the movable grating can be controlled, and the light transmission of the fixed grating can be controlled.
  • the principle of the MEMS light valve will not be described in detail here.
  • FIG. 4 is a schematic plan view of a MEMS light valve according to still another embodiment.
  • the fixed grating of the specific embodiment has a fan shape (not shown) and has a plurality of strip-shaped transparent openings, and the shape of the fixed grating is
  • the shape of the movable grating 31b is matched; referring to FIG. 4, the first movable grating 1 ib and the second movable grating 21b are both fan-shaped, and have a plurality of strip-shaped light-transmissive openings (not labeled in the drawing). Since it is a plan view, the first light valve and the second light valve are illustrated on a plane in Fig. 4.
  • the first electrode 12b is fixedly electrically connected to the short arc side of the sector-shaped first movable grating l ib, and the second electrode 13b is disposed opposite to the first electrode 12b to form a capacitance between the second electrode 13b and the first electrode 12b.
  • the fixed side 141b is provided on the other side (ie, the long arc side) of the first movable grating 1 ib with respect to the first electrode 12b.
  • the fixed end 141b The first movable grating l ib is driven to return to the original position.
  • the third electrode 22b is fixedly electrically connected to the short arc side of the circular second movable grating 21b, and the fourth electrode 23b is disposed opposite to the third electrode 22b to form a capacitance between the fourth electrode 23b and the second electrode 22b.
  • the fourth electrode 23b is disposed opposite to the third electrode 22b to form a capacitance between the fourth electrode 23b and the second electrode 22b.
  • the second movable grating 21b has a fixed end 241b with respect to the other side (ie, the long circular arc side) of the third electrode 22b.
  • the fixed end 241b drives The second movable grating 21b returns to its original position.
  • the first electrode 12b has a first plate 121b, and the first plate 121b is connected to the short arc side of the first movable grating lib, and the first plate 121b is away from the first movable grating lib.
  • a fixed end 122b the first electrode 12b is fixed by the first fixed end 122b ;
  • the second electrode 13b has a second plate 131b, and the second plate 131b is opposite to the first plate 121b of the first electrode 12b,
  • the second plate 131b has a second fixed end 132b.
  • the second fixed end 132b is adjacent to the first movable grating lib, and the second plate 131b is away from the first movable end 132b away from the first movable grating lib.
  • the second fixed end 132b fixes the second electrode 13b; the distance between the end of the second plate 131b away from the second fixed end 132b and the first electrode 12b is smaller than the distance between the second fixed end 132b and the first electrode 12b
  • the third electrode 22b has a third plate 221b, the third plate 221b is connected to the short arc side of the second movable grating 21b, and the third plate 221b is away from the second movable grating 21b.
  • the electrode 23b has a fourth plate 231b opposite to the third plate 221b of the third electrode 22b, the fourth plate 231b has a fourth fixed end 232b, and the fourth fixed end 232b is adjacent to the second movable grating 21b, one end of the fourth plate 231b away from the fourth fixed end 232b is away from the second movable grating 21b, and the fourth electrode 23b is fixed by the fourth fixed end 232b; the fourth plate 231b is away from the fourth fixed end 232b
  • the distance between one end of the third electrode 22b is smaller than the distance between the fourth fixed end 232b and the third electrode 22b.
  • the first light valve further includes a first fixing plate 142b, and the long arc edge of the first movable grating lib is fixedly connected with the first movable grating lib; the fixed end 141b of the first movable grating lib The first light fixing plate 142b is disposed at an end away from the first movable grating lib; the second light valve further includes a second fixing plate 242b located at a long arc edge and a second of the second movable grating 21b
  • the movable grating 21b is fixedly connected; the fixed end 241b of the second movable grating 21b is disposed on the second fixing plate 242b away from the second movable grating 21b, and applies a certain voltage to each electrode to make the MEMS light valve Under the action of electrostatic force Rotating, thereby controlling the degree of coincidence of the light-transmissive opening of the fixed grating with the light-transmissive opening on the movable grating, and controlling the light
  • the TFT switch may also be an LTPS-TFT switch (Low Temperature p-Si TFT).
  • Fig. 22 is a schematic sectional view showing the structure of the LTPS-TFT switch
  • Fig. 23 is a schematic view showing the structure of the LTPS-TFT switch applied to the display device of the present invention.
  • the LTPS-TFT switch includes: a source region 61, a drain region 62, a channel region 63 between the source electrode 61 and the drain electrode 62, and a gate dielectric layer on the channel region 63. 64.
  • the source region 61 is electrically connected to the source electrode 66 through a first plug.
  • the drain region 62 is electrically connected to the drain electrode 67 through a second plug.
  • the TFT switch further includes a capacitor on the source electrode 66 and the drain electrode 67.
  • the capacitor includes a first plate 71 and a second plate 72. The first plate 71 and the second plate 72 are located.
  • the first dielectric plate 71 is located above the source electrode and the drain electrode, and is electrically connected to the source electrode 66.
  • the capacitor dielectric layer 73 is located on the first electrode plate 72.
  • the second plate 72 is located on the capacitor dielectric layer 73.
  • the above TFT switch can also be other forms of switching circuits, such as MEMS switches and the like.
  • Fig. 5 is a flow chart of the method.
  • 6 to 20 are schematic cross-sectional views showing a method of forming a display device according to a specific embodiment of the present invention, and a method of forming a display device according to a specific embodiment of the present invention will be described in detail with reference to FIGS. 5 and 6 to 20.
  • the substrate 40 is provided by performing step S11 with reference to Figs. 5 and 6.
  • substrate 40 is a glass substrate.
  • a backlight (not shown) is formed in the substrate 40, and the backlight includes a blue light source, a red light source, and a green light source, and the blue light source, the red light source, and the green light.
  • the light source can be provided by a blue LED, a red LED, and a green LED, respectively, or can be provided by a laser, and provides a red, green, and blue color laser.
  • a method of forming the fixed grating 30 includes: forming a conductive layer on the substrate 40, and then patterning the conductive layer by photolithography to form the fixed grating 30.
  • the material of the fixed grating 30 is selected from the group consisting of gold, silver, copper, aluminum, titanium, chromium, molybdenum, etc., and may be one of them, or any combination thereof, and aluminum is preferred in the embodiment of the present invention.
  • the method of forming the conductive layer may be chemical vapor deposition or physical vapor deposition.
  • a TFT switch is formed on the fixed grating before forming the MEMS light valve.
  • a dielectric layer 31 is formed to cover the fixed grating 30.
  • the material of the dielectric layer 31 is silicon oxide (SiO 2 ), silicon nitride (SiN), silicon oxycarbide (SiOC) or silicon oxynitride (SiON).
  • the method of forming the dielectric layer 31 is chemical vapor deposition.
  • a TFT switch array is then formed on the dielectric layer 31. The first electrode, the second electrode, the third electrode, and the fourth electrode respectively correspond to one TFT switch and are electrically connected thereto.
  • the method of forming the TFT switch is:
  • step a is performed to form a first conductive layer on the fixed grating, the material of the first conductive layer being a conductive material having a light transmittance of less than 50%.
  • the material of the first conductive layer is described above for the TFT switch.
  • the first conductive layer may be a stacked structure of a titanium layer, an aluminum layer and a titanium layer (Ti/Al/Ti), or may be a laminated structure of an aluminum layer and a molybdenum layer (Al/Mo).
  • the step b is performed to pattern the first conductive layer to form the gate electrode 41 and the first electrode plate 45: the gate electrode 41 is formed by masking, exposing, developing, and dry etching the first conductive layer. A plate 45 and a scanning line 48.
  • step c is performed to form a first dielectric layer 441 covering the gate, the first plate, and the first dielectric layer on the first plate as a capacitor dielectric layer; And a step d, sequentially forming a low-doped silicon layer 442 and a highly doped silicon layer 443 on the first dielectric layer on the gate 41; the highly doped silicon layer 443 has an opening, and the two sides of the opening are source regions And a drain region, the opening exposing the low doped silicon layer 442, the low doped silicon layer 442 being a conductive channel.
  • the material of the first dielectric layer 441 may be silicon oxide (SiO 2 ), silicon nitride (SiN), silicon oxynitride (SiON) or silicon oxycarbide (SiOC), or they may be Any combination.
  • Continuous film formation by PECVD enhanced plasma chemical vapor deposition
  • PECVD enhanced plasma chemical vapor deposition
  • the first plate 45, the gate 41, and the scan line 48 are then formed with a low doped silicon layer 442 on the first dielectric layer 441, and then a highly doped silicon layer 443 is formed on the low doped silicon layer 442.
  • the low-doped silicon layer 442, the highly doped silicon layer 443 is patterned by photolithography (masking, exposure) and dry etching, and the low doping on the first dielectric layer 441 on the gate 41 is retained.
  • step e is performed to form a second conductive layer covering the first dielectric layer 441 and the low doped silicon layer 442 , the highly doped silicon layer 443 , the second conductive layer
  • the material is a conductive material having a light transmittance of less than 50%; thereafter, performing step f, patterning the second conductive layer to form a source electrode 42 electrically connected to the source region, a drain electrode 43 electrically connected to the drain region, and
  • the second plate 46, the first dielectric plate 45, the first dielectric plate 45 and the first dielectric plate 45 form a capacitor, and the second electrode plate 46 is electrically connected to the source or drain electrode.
  • the data line 49 is also formed when the second conductive layer is patterned.
  • the second plate 46 is electrically connected to the source electrode 42 and the data line 49 is electrically connected to the drain electrode.
  • the second plate 46 can also be electrically connected to the drain electrode 43.
  • 49 is electrically connected to the source electrode, and is determined according to the type of the source region and the drain region.
  • the second conductive layer may be a stacked structure of a titanium layer, an aluminum layer and a titanium layer (Ti/Al/Ti), or may be a laminated structure of an aluminum layer and a molybdenum layer (Al/Mo). Or a chromium (Cr) layer, or a molybdenum (Mo) layer, or a tantalum layer, which is formed by chemical vapor deposition or physical vapor deposition.
  • a passivation layer 47 is finally formed by PECVD.
  • the material of the passivation layer 47 is selected from silicon oxide, silicon nitride, silicon carbide or silicon oxynitride or any of them.
  • the etching of the passivation layer is performed by mask exposure and dry etching, and the passivation layer is used as a protective film for protecting the TFT switch.
  • the first plate may be formed together with the gate
  • the second plate may be formed together with the source and the drain
  • the capacitor dielectric layer may be formed together when the gate dielectric layer is formed, thereby simplifying the process of forming the TFT switch without separately forming Capacitance, cost saving, speed up production, mention high efficiency.
  • step S13 is performed to form a patterned first sacrificial layer 51 on the fixed grating 30 and define a position of the second light valve.
  • the patterned first sacrificial layer 51 is not formed directly on the fixed grating 30, and a passivation layer 47 is further formed between the fixed grating 30 and the patterned first sacrificial layer 51.
  • a first sacrificial layer is formed over the fixed grating 30 to cover the structure on the surface of the fixed grating 30, in this embodiment, to cover the TFT switch and the dielectric layer 31.
  • the material of the first sacrificial layer is amorphous carbon, which is formed by a common chemical vapor deposition process in a CMOS process.
  • the first sacrificial layer is patterned to form a predetermined patterned sacrificial layer 51a defining the position of the second MEMS light valve.
  • a predetermined sacrificial layer 51b is formed at a position where the sacrificial layer is removed, and the predetermined patterned sacrificial layer 51a and the predetermined sacrificial layer 51b are collectively used as a pattern A sacrificial layer 51.
  • the material of the predetermined sacrificial layer 51b is also amorphous carbon, which is formed by a common chemical vapor deposition process in a CMOS process.
  • step S14 is performed, and a third conductive layer 52 and a second dielectric layer (not shown) are sequentially formed on the surface of the patterned first sacrificial layer 51, and patterned.
  • the third conductive layer 52 and the second dielectric layer form a fixed end of the second movable grating and the second movable grating.
  • the first conductive layer is etched by isotropic wet etching to form a second movable grating, and the first conductive layer at the third electrode position remains.
  • the second fixing plate that is connected to the second movable grating is also etched.
  • the material of the third conductive layer 52 may be a metal such as one or a combination of gold, silver, copper, aluminum, titanium, chromium, molybdenum, cadmium, nickel, cobalt, or the like; It may also be a conductive non-metal such as amorphous silicon, polycrystalline silicon, amorphous germanium silicon, polycrystalline silicon or the like; it may also be a combination of a metal and a conductive non-metal.
  • the third conductive layer 52 can be formed by a chemical vapor deposition or physical vapor deposition process. In a specific embodiment of the present invention, optionally, the material of the third conductive layer 52 is aluminum.
  • the material of the second dielectric layer is selected from one of silicon oxide, silicon nitride, silicon carbide, silicon oxynitride or any combination thereof, and the method of forming the second dielectric layer is chemical vapor deposition.
  • the material of the second dielectric layer is preferably silicon oxide.
  • step S15 is performed to form a patterned second sacrificial layer on the patterned third conductive layer and the second dielectric layer to define a position of the first MEMS light valve.
  • a second sacrificial layer is formed on the first dielectric layer, and the material of the second sacrificial layer 53' is amorphous carbon, and the forming method is a common chemical vapor deposition process in a CMOS process.
  • the second sacrificial layer is then patterned using a photolithography, etch process to form a patterned second sacrificial layer 53.
  • step S16 is performed to form a fourth conductive layer 54 and a third dielectric layer (not shown) on the patterned second sacrificial layer 53 .
  • the fourth conductive layer 54 and the third dielectric layer are patterned to form a first light valve, a third electrode of the second light valve, and a fourth electrode. Specifically:
  • a fourth conductive layer 54 and a third dielectric layer are sequentially formed to cover the structure formed on the substrate 40, that is, to cover the patterned first sacrificial layer 51, Two movable gratings 21.
  • the material of the fourth conductive layer 54 may be a metal such as one or a combination of gold, silver, copper, aluminum, titanium, chromium, molybdenum, cadmium, nickel, cobalt, etc.; Non-metals, such as amorphous silicon, polycrystalline silicon, amorphous germanium silicon, polycrystalline germanium silicon, etc.; may also be a combination of a metal and a conductive non-metal.
  • the fourth conductive layer 54 can be formed by a chemical vapor deposition or physical vapor deposition process.
  • the material of the fourth conductive layer 52 is aluminum.
  • the material of the third dielectric layer is selected from one of silicon oxide, silicon nitride, silicon carbide, silicon oxynitride or any combination thereof, and the method of forming the third dielectric layer is chemical vapor deposition. In a specific embodiment of the invention, the material of the third dielectric layer is preferably silicon oxide.
  • the method of patterning the fourth conductive layer 54 and the third dielectric layer is a photolithography and etching process.
  • the fourth conductive layer 54 and the second dielectric layer are wet-etched to form a first movable grating 11 and a first fixed plate (the cross-sectional schematic view is not illustrated, and may be referred to the reference FIG. 1a).
  • a photoresist is formed on the fourth conductive layer 54 and the second dielectric layer after the wet etching, and the patterned photoresist is combined with the reference diagram 1a to define the first electrode of the first light valve.
  • a second electrode, a third electrode position of the second light valve, using the patterned photoresist as a mask, dry etching the fourth conductive layer, and the second dielectric layer forms a first electrode of the first light valve 12.
  • step S17 is performed to remove the patterned first sacrificial layer and the patterned second sacrificial layer.
  • the method before removing the patterned first sacrificial layer and the patterned second sacrificial layer, the method further includes:
  • a third sacrificial layer 55 is formed to cover the structure formed on the substrate 40.
  • the material of the third sacrificial layer is also amorphous carbon, and the forming method is a common chemical vapor deposition process in a CMOS process.
  • the method further includes: patterning the third sacrificial layer 55 to form an isolation trench 56 between adjacent MEMS light valves.
  • the isolation trench 56 can separate the individual MEMS light valves from each other, and the isolation trench 56 is annular.
  • the method of patterning the third sacrificial layer 55 is a conventional photolithography, etching process.
  • the method of patterning the third sacrificial layer 55 is a conventional photolithography, etching process. In other embodiments, the isolation trenches may not be formed.
  • a capping layer 57 is formed on the surface of the third sacrificial layer 55, that is, a capping layer 57 is formed on the upper surface and the peripheral side surface of the patterned third sacrificial layer 55, the capping layer There are a plurality of openings 58 on the 57, and a third sacrificial layer 55 is exposed at the position of the opening; the capping layer 57 surrounds the MEMS light valve around, and covers the MEMS light valve at the top.
  • the cover layer 57 includes a top cover 571 and a ring cover 572.
  • the ring cover 572 is a place where the cover layer 57 and the base 40 are fixed.
  • the ring cover 572 is a closed ring cover for protecting the MEMS light valves one by one.
  • the material of the capping layer 57 is silicon oxide, silicon nitride, silicon carbide or silicon oxynitride. In this embodiment, silicon oxide is preferred.
  • the method of forming the capping layer 57 is: first forming a silicon oxide layer by chemical vapor deposition to cover the surface of the patterned third sacrificial layer 55; then etching the silicon oxide layer by photolithography and etching to form an opening A capping layer 57 of 58 that exposes the patterned third sacrificial layer 55.
  • the opening 58 should have an aspect ratio ranging from 0.5 to 20, and the opening has a pore diameter ranging from 0.1 to 10 ⁇ m.
  • the patterned first sacrificial layer, the patterned second sacrificial layer, and the patterned third sacrificial layer are also removed.
  • the removing the patterned first sacrificial layer, the patterned second sacrificial layer, and the patterned third sacrificial layer comprises: ionizing oxygen to form an oxygen plasma; passing the oxygen plasma into the opening at a temperature
  • the amorphous carbon is ashed under conditions ranging from 150 °C to 450 °C.
  • the method further includes: forming a sealing cover 59 to seal the opening 58.
  • the material of the sealing cover 59 is silicon oxide, Silicon nitride, silicon carbide or silicon oxynitride.
  • the method of forming the sealing cover is chemical vapor deposition.
  • the sealing cover 59 can function as a sealing display device to prevent water vapor, dust, impurities, and the like from entering the display device, which can improve the life of the display device.
  • the specific embodiment of forming the display device described above first forms a fixed grating on the substrate and then forms a MEMS light valve over the fixed grating. In other embodiments of the invention, it is also possible to first form a MEMS light valve on the substrate and then form a fixed grating over the MEMS light valve.
  • 21 is a cross-sectional structural view of the fixed grating above the MEMS light valve. Referring to FIG. 21, in this embodiment, a MEMS light valve is formed on the substrate 40, and the MEMS light valve includes a first movable grating 11', The first electrode 12', the second electrode 13', the second movable grating 21', the third electrode 22', and the fourth electrode 23'.
  • the fixing is formed after the cooperation.
  • the grating 30', the first movable grating 11' and the second movable grating 21' of the MEMS light valve are corresponding to the first electrode 12', the second electrode 13', the third electrode 22', and the fourth electrode 23'
  • the adjustment of the first movable grating 11' and the second movable grating 21' is shifted upward, so that the first movable grating 11' and the second movable grating 21' are close to the fixed grating 30'.
  • other configurations of the MEMS light valve can be inferred from the specific embodiments described above, and will not be described in detail.
  • a capping layer 57 and a sealing cover 59 are formed, and then a fixed grating 30' is formed on the sealing cover 59.
  • a specific embodiment of the embodiment can be inferred by those skilled in the art based on the specific embodiments described above, and will not be described herein. Moreover, those skilled in the art can deduce the method of forming the display device in the embodiment according to the process description of the specific embodiments described above, and no further details are provided herein.
  • the method for forming a display device according to the specific embodiment shown in FIG. 1a of the present invention is described in detail.
  • the method for forming the display device of the specific embodiment shown in FIG. 3 and FIG. 4 is also applicable to the method.
  • a suitable mask is required for patterning.
  • a method of forming an LTPS-TFT switch includes:
  • Step 1) forming a silicon layer on the substrate or the fixed grating.
  • a layer of silicon is formed over the fixed grating 30. If, in other embodiments, a MEMS light valve is formed and then a fixed grating is formed, a silicon layer is formed on the substrate 40.
  • Step 2) crystallizing the silicon layer to form a polysilicon layer.
  • Step 3 patterning the polysilicon layer to form a patterned polysilicon layer, defining regions of the source region 61, the drain region 62, and the channel region 63.
  • the channel region can be doped to adjust the threshold voltage.
  • Step 4 forming a gate dielectric layer 64 covering the patterned polysilicon layer.
  • Step 5 ion implantation forms source region 61 and drain region 62.
  • Step 6 forming a gate 65 on the gate dielectric layer 64.
  • Step 7 forming an interlayer dielectric layer (not labeled in the figure) covering the gate dielectric layer 64 and the gate 65.
  • the material of the interlayer dielectric layer may be selected from silicon oxide.
  • Step 8 forming a first plug (not labeled) in the gate dielectric layer 64 and the interlayer dielectric layer, and electrically connecting with the source region 61 to form a second plug (not labeled in the figure). 62 Electrical connection.
  • the method of forming the plug is a well-known technique and will not be described in detail.
  • Step 9 a source electrode 66 is formed on the plug connected to the source region 61, and a drain electrode 67 is formed on the plug connected to the drain region 62.
  • Step 10 forming a patterned passivation layer on a surface composed of the interlayer dielectric layer, the first plug, and the second plug, the patterned passivation layer having an opening, the opening being exposed
  • the source electrode 67 The source electrode 67.
  • Step 11 forming a first conductive layer, a dielectric layer and a second conductive layer in sequence on the surface of the patterned passivation layer and the opening.
  • the materials of the first conductive layer and the second conductive layer are selected from the group consisting of gold, silver, copper, aluminum, titanium, chromium, molybdenum, cadmium, nickel, cobalt, amorphous silicon, polycrystalline silicon, amorphous germanium silicon, polycrystalline One of silicon germanium or any combination thereof is formed by vapor deposition.
  • the material of the dielectric layer is selected from the group consisting of silicon oxide, silicon nitride, silicon carbide or silicon oxynitride or any combination thereof, which is formed by chemical vapor deposition.
  • Step 12 patterning the first conductive layer, the dielectric layer, and the second conductive layer to form a first plate, a capacitor dielectric layer, and a second plate; the first conductive layer correspondingly forming a first plate, The second conductive layer corresponds to form a second plate, and the dielectric layer forms a capacitor dielectric layer.
  • the MEMS light valve and the capping layer and the sealing cap can be formed by the method described above.
  • the MEMS light valve in the display device of the present invention includes a first light valve and a second light valve, and the relative movement of the first light valve and the second light valve controls the opening and closing of the fixed grating, relative to a light valve In this way, the sensitivity of the MEMS light valve can be improved.
  • the first light valve comprises: a first movable grating, An electrode and a second electrode, wherein the first electrode drives the first movable grating to move when a potential difference is between the second electrode and the first electrode.
  • the second light valve includes: a second movable grating, a third electrode and a fourth electrode, wherein the third electrode drives the second electrode when there is a potential difference between the third electrode and the fourth electrode.
  • the first light valve and the second light valve have fixed ends, and the first light valve and the second light valve are connected to the substrate, and when the home position needs to be restored, the first electrode and the second electrode are canceled, and the third The potential difference between the electrode and the fourth electrode, the fixed end of the first movable grating and the fixed end of the second movable grating drive the first movable grating and the second movable grating to return to the original position. Therefore, the movement of the first light valve can be controlled by controlling the potential difference between the first electrode and the second electrode, and the movement of the second light valve can be controlled by controlling the potential difference between the third electrode and the fourth electrode, so that the MEMS light valve is The control is simple and the structure is relatively simple.
  • the TFT switch, the first plate of the capacitor, the second plate, and the capacitor dielectric layer between the first plate and the second plate constitute a capacitor
  • the plate and the gate are in the same layer, the first plate and the gate are made of the same material, and the light transmittance is less than 50%;
  • the second plate is in the same layer as the source and drain electrodes, and the second plate is
  • the source electrode and the drain electrode have the same material and are conductive materials having a light transmittance of less than 50%.
  • the TFT switch When applied to a display device having a MEMS light valve, since the MEMS light valve display device does not require a large aperture ratio, the TFT switch can be formed on a portion of the display device that is not used for light transmission, and the first plate
  • the second plate, the gate electrode, the source electrode and the drain electrode are conductive materials having a light transmittance of less than 50%, so that the TFT switch has better compatibility with the MEMS light valve, and the performance of the display device can be improved.
  • the first plate may be formed together with the gate
  • the second plate may be formed together with the source and the drain
  • the capacitor dielectric layer may be formed together when the gate dielectric layer is formed, thereby forming the TFT switch. The process is simplified, no separate capacitors are formed, cost is saved, production schedule is accelerated, and efficiency is improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Signal Processing (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)

Description

具有 MEMS光阀的显示装置及其形成方法 技术领域
本发明涉及显示技术领域, 尤其涉及具有 MEMS光阀的显示装置 及其形成方法。 背景技术
近年来, 随着信息通讯领域的迅速发展, 对各种类型的显示设备 的需求越来越大。 目前主流的显示装置主要有: 阴极射线管显示器 (CRT), 液晶显示器 (LCD), 等离子体显示器 (PDP), 电致发光显 示器 (ELD) 和真空荧光显示器 (VFD) 等。 由于液晶显示装置具有: 轻、 薄、 占地小、 耗电小、 辐射小等优点, 被广泛应用于各种数据处 理设备中, 例如电视、 笔记本电脑、 移动电话、 个人数字助理等。
液晶显示装置主要包括: 基底, 在该基底内设有背光源; 像素电 极, 位于所述基底上, 基底上还具有 TFT (薄膜晶体管开关) 阵列, 该 TFT (薄膜晶体管开关) 阵列用于与像素电极电连接, 控制像素电 极的电位; 彩色滤光板, 以及位于像素电极和彩色滤光板之间的液晶 层,并且在彩色滤光板向液晶层的一面上形成有公共电极层。通过 TFT (薄膜晶体管开关) 阵列给像素电极提供电势, 使公共电极层和像素 电极之间具有电势差, 通过该电势差使液晶层中的液晶偏转, 根据电 势差的大小控制液晶偏转的角度, 从而可以控制背光源发出的光透过 液晶层发送至彩色滤光板的光的多少。 液晶显示装置中, 使用的背光 源为白光, 而且只有偏振光才可以通过液晶层, 这将会损失 50%的光, 使光的利用率仅有 50%, 当光通过彩色滤光板, 光的效率最多只有 33%, 因此液晶显示装置中光的利用率比较低。此外, 液晶显示装置还 具有其他方面的缺陷: 例如视角范围小, 结构复杂、 成本高等。
随着 MEMS技术的发展, 显示装置中, 利用 MEMS光阀替换液 晶层, 通过 MEMS光阀控制背光源发出的光的透光率。 TFT-MEMS借 助现有 TFT-LCD平板微加工技术, 用高速高效的 MEMS光阀替换液 晶, 不再需要偏光片、 彩色滤光板, 可大幅度提高光效率、 降低功耗 以及制造成本。 2007年 9月 18日公开的公开号为 US7271945B2的美国专利公开 了一种用 MEMS光阀的显示装置, 然而 MEMS光阀灵敏度较低。 发明内容
本发明解决的问题是现有技术的显示装置中的 MEMS光阀灵敏度 低。
为解决上述问题, 本发明提供一种具有 MEMS光阀的显示装置, 包括:
基底;
位于所述基底上的固定光栅、 MEMS光阀, 所述 MEMS光阀用于 控制所述固定光栅的开启、 关闭;
所述 MEMS光阀包括: 第一光阀和第二光阀, 所述第一光阀设于 所述第二光阀之上; 通过控制所述第一光阀和所述第二光阀的移动控 制所述固定光栅的开启、 关闭, 且所述第一光阀和第二光阀的移动方 向相反。
可选的, 所述第一光阀包括: 第一可动光栅, 第一电极和第二电 所述第一可动光栅与所述第一电极固定连接, 所述第一电极和第 二电极相对设置, 在第一电极和第二电极之间形成电容, 在所述第二 电极和所述第一电极之间具有电势差时, 所述第一电极带动所述第一 可动光栅移动; 所述第一可动光栅在与所述第一电极相对的一侧具有 固定端, 通过所述固定端固定所述第一可动光栅, 在所述第一电极和 第二电极之间没有电势差时, 所述第一可动光栅的固定端带动第一可 动光栅回复原状。
可选的, 所述第二光阀包括: 第二可动光栅, 第三电极和第四电 极; 所述第三电极、 第四电极位于所述第二可动光栅相对于第一电极 和第二电极的另一侧;
所述第二可动光栅与所述第三电极固定连接, 所述第三电极和第 四电极相对设置, 在第三电极和第四电极之间形成电容, 在所述第三 电极和所述第四电极之间具有电势差时, 所述第三电极带动所述第二 可动光栅移动; 所述第二可动光栅在与所述第三电极相对的一侧具有 固定端, 通过所述第二可动光栅的固定端固定所述第二可动光栅, 在 所述第三电极和第四电极之间没有电势差时, 所述第二可动光栅的固 定端带动第二可动光栅回复原状。
可选的, 所述固定光栅为矩形, 具有顶边、 底边和两侧边; 所述第一可动光栅和第二可动光栅均为矩形, 且均具有第一边、 第二边、 第三边和第四边, 所述第一边和第三边相对, 第一边对应所 述顶边, 第三边对应所述底边, 所述第二边和第四边相对, 分别对应 所述两侧边;
所述第一电极和所述第二电极设置于所述第一可动光栅的第二边 一侧, 所述第一可动光栅的固定端设于所述第一可动光栅的第四边一 所述第三电极和所述第四电极设置于第二可动光栅的第四边一 侧, 所述第二可动光栅的固定端设于所述第二可动光栅的第二边一侧。
可选的, 所述第一光阀还包括第一固定板, 设于所述第一可动光 栅的第四边与第一可动光栅固定连接, 所述第一固定板为两个, 对称 分布在所述第一可动光栅的第四边, 且分别位于所述第一可动光栅的 第一边一侧和第三边一侧; 所述第一可动光栅的固定端设于所述第一 固定板远离第一可动光栅的一端;
所述第二光阀还包括第二固定板, 设于所述第二可动光栅的第二 边与第二可动光栅固定连接, 所述第二固定板为两个, 对称分布在所 述第二可动光栅的第二边, 且分别位于所述第二可动光栅的第一边一 侧和第三边一侧; 所述第二可动光栅的固定端设于所述第二固定板远 离第二可动光栅的一端。
可选的, 所述第一电极具有第一板、 第二板, 第一板和第二板与 所述第一可动光栅连接且对称分布, 所述第一板和所述第二板远离第 一可动光栅的一端为第一固定端, 通过所述第一固定端固定所述第一 所述第二电极具有第三板和第四板, 第三板与所述第一电极的第 一板相对, 第四板与所述第一电极的第二板相对, 所述第三板和所述 第四板之间具有第二固定端, 第二固定端连接第三板和第四板, 通过 所述第二固定端固定所述第二电极; 所述第二电极两端与第一电极之 间的距离小于第二固定端与第一电极之间的距离。
可选的, 所述第三电极具有第一板、 第二板, 所述第一板和所述 第二板与所述第二可动光栅连接且对称分布, 所述第一板和所述第二 板远离第二可动光栅的一端为第三固定端, 通过所述第三固定端固定 所述第三电极;
所述第四电极具有第三板和第四板, 第三板与所述第三电极的第 一板相对, 第四板与所述第三电极的第二板相对, 所述第三板和所述 第四板之间具有第四固定端, 第四固定端连接第三板和第四板, 通过 所述第四固定端固定所述第四电极; 所述第四电极两端与第三电极之 间的距离小于第四固定端与第三电极之间的距离。
可选的, 所述第一可动光栅、 第二可动光栅具有多个条状的透光 开口, 所述条状的透光开口与所述第一可动光栅、 第二可动光栅的第 二边平行。
可选的, 所述固定光栅为圆形; 所述第一可动光栅为圆形, 具有 多个扇形的透光开口; 所述第二可动光栅为圆形, 具有多个扇形的透 光开口;
所述第一电极、 第二电极、 第一可动光栅的固定端设于第一可动 光栅的圆周边;
所述第三电极、 第四电极、 第二可动光栅的固定端设于第二可动 光栅的圆周边。
可选的, 所述第一电极具有第一板, 第一板与所述第一可动光栅 的圆周边缘连接, 所述第一板远离第一可动光栅的一端为第一固定端, 通过所述第一固定端固定所述第一电极;
所述第二电极具有第二板, 第二板与所述第一电极的第一板相对, 所述第二板具有第二固定端, 通过所述第二固定端固定所述第二电极; 所述第二极板远离第二固定端的一端与第一电极之间的距离小于第二 固定端与第一电极之间的距离;
所述第三电极具有第三板, 第三板与所述第二可动光栅的圆周边 缘连接, 所述第三板远离第二可动光栅的一端为第三固定端, 通过所 述第三固定端固定所述第三电极;
所述第四电极具有第四板, 第四板与所述第三电极的第三板相对, 所述第四板具有第四固定端, 通过所述第四固定端固定所述第二电极; 所述第四极板远离第四固定端的一端与第二电极之间的距离小于第四 固定端与第二电极之间的距离。
可选的, 所述第一光阀还包括第一固定板, 位于所述圆形的第一 可动光栅的圆周边缘与第一可动光栅固定连接; 所述第一可动光栅的 固定端设于所述第一固定板的远离第一可动光栅的一端;
所述第二光阀还包括第二固定板, 位于所述圆形的第二可动光栅 的圆周边缘与第二可动光栅固定连接; 所述第二可动光栅的固定端设 于所述第二固定板的远离第二可动光栅的一端。
可选的, 所述固定光栅为扇形; 所述第一可动光栅为扇形, 具有 多个条状的透光开口; 所述第二可动光栅为扇形, 具有多个条状的透 光开口;
所述第一电极、 第二电极设于第一可动光栅的短圆弧边、 第一可 动光栅的固定端设于第一可动光栅的长圆弧边一侧;
所述第三电极、 第四电极设于第二可动光栅的短圆弧边、 第二可 动光栅的固定端设于第二可动光栅的长圆弧边一侧。
可选的, 所述第一电极具有第一板, 第一板与所述第一可动光栅 的短圆弧边连接, 所述第一板远离第一可动光栅的一端为第一固定端, 通过所述第一固定端固定所述第一电极;
所述第二电极具有第二板, 第二板与所述第一电极的第一板相对, 所述第二板具有第二固定端, 通过所述第二固定端固定所述第二电极; 所述第二极板远离第二固定端的一端与第一电极之间的距离小于第二 固定端与第一电极之间的距离;
所述第三电极具有第三板, 第三板与所述第二可动光栅的短圆弧 边连接, 所述第三板远离第二可动光栅的一端为第三固定端, 通过所 述第三固定端固定所述第三电极;
所述第四电极具有第四板, 第四板与所述第三电极的第三板相对, 所述第四板具有第四固定端, 通过所述第四固定端固定所述第四电极; 所述第四极板远离第四固定端的一端与第三电极之间的距离小于第四 固定端与第三电极之间的距离。
可选的, 所述第一光阀还包括第一固定板, 位于所述第一可动光 栅的长圆弧边缘与第一可动光栅固定连接; 所述第一可动光栅的固定 端设于所述第一固定板远离第一可动光栅的一端;
所述第二光阀还包括第二固定板, 位于所述第二可动光栅的长圆 弧边缘与第二可动光栅固定连接; 所述第二可动光栅的固定端设于所 述第二固定板远离第二可动光栅的一端。
可选的, 还包括 TFT开关, 位于所述基底或固定光栅上, 所述第 一电极、 第二电极、 第三电极和第四电极分别与相应的 TFT开关电连 接。
可选的, 所述 TFT开关包括:
栅极, 源区、 漏区, 用于电导通源区和漏区的导电沟道, 位于所 述栅极和导电沟道之间的栅介质层, 与所述源区电连接的源电极, 与 所述漏区电连接的漏电极, 电容; 所述电容包括第一极板、 第二极板 以及位于第一极板和第二极板之间的电容介质层;
所述第一极板与所述栅极位于同一层, 所述第一极板与所述栅极 的材料相同, 为透光率小于 50%的导电材料;
所述第二极板与所述源电极和漏电极位于同一层, 所述第二极板 与所述源电极和漏电极的材料相同, 为透光率小于 50%的导电材料, 所述第二极板与源电极或漏电极电连接, 所述第二极板与所述第一电 极、 第二电极、 第三电极和第四电极电连接。
可选的, 所述导电沟道为低掺杂硅层, 所述低掺杂硅层和栅介质 层之间为高掺杂硅层, 所述高掺杂硅层具有开口, 开口两侧分别为源 区和漏区, 所述开口暴露出所述低掺杂硅层。
可选的, 所述栅介质层的材料与所述电容介质层的材料相同, 且 栅介质层和电容介质层位于同一层。
可选的, 所述第一极板、 第二极板、 栅极、 源电极和漏电极的材 料选自金属。
可选的, 所述第一极板、 第二极板、 栅极、 源电极和漏电极的材 料选自金、 银、 铜、 铝、 钛、 铬、 钼、 镉、 镍、 钴其中之一或者它们 的任意组合。
可选的, 所述第一极板、 第二极板、 栅极、 源电极和漏电极的材 料选自金、 银、 铜、 铝、 钛、 铬、 钼、 镉、 镍、 钴、 非晶硅、 多晶硅、 非晶锗硅、 多晶锗硅其中之一或者它们的任意的组合。
可选的, 所述 TFT开关为 LTPS-TFT开关。
可选的, 还包括封盖层和密封盖, 所述封盖层在四周包围所述 MEMS光阀、在顶部遮盖所述 MEMS光阀, 且在所述封盖层的顶部具 有开口; 所述密封盖密封所述开口。
可选的, 所述封盖层和密封盖的材料选自氧化硅、 氮化硅、 碳化 硅或氮氧化硅或者它们的任意组合。
可选的, 所述固定光栅位于所述基底上;
所述第二光阀位于所述固定光栅之上, 所述第一光阀位于所述第 二光阀之上。
可选的, 所述第二光阀位于所述基底上, 所述第一光阀位于所述 第二光阀之上;
所述固定光栅位于所述第一光阀之上。
本发明还提供一种形成具有 MEMS光阀的显示装置的方法,包括: 提供基底;
在所述基底上形成固定光栅、 以上所述的 MEMS光阀;
其中, 在所述基底上形成固定光栅后, 在所述固定光栅之上形成
MEMS光阀; 或者, 在所述基底之上形成 MEMS光阀后, 在 MEMS 光阀之上形成固定光栅。
可选的, 在形成 MEMS光阀之前, 在所述基底或固定光栅上形成
TFT开关, 所述固定电极与相应的 TFT开关电连接。
可选的, 所述形成 TFT开关的方法包括:
在所述基底或固定光栅上形成第一导电层, 所述第一导电层的材 料为透光率小于 50%的导电材料;
图形化所述第一导电层, 形成栅极、 第一极板;
形成第一介质层, 覆盖所述栅极、 第一极板, 位于所述第一极板 上的第一介质层作为电容介质层, 位于所述栅极上方的第一介质层作 为栅介质层;
在所栅极上的第一介质层上依次形成低掺杂硅层、 高掺杂硅层; 所述高掺杂硅层具有开口, 开口两侧为源区和漏区, 所述开口暴露出 所述低掺杂硅层, 所述低掺杂硅层为导电沟道; 形成第二导电层, 覆盖所述第一介质层和低掺杂硅层、 高掺杂硅 层, 所述第二导电层的材料为透光率小于 50%的导电材料;
图形化所述第二导电层, 形成与源区电连接的源电极、 与漏区电 连接的漏电极和第二极板, 所述第二极板、 第一极板和第一极板上的 第一介质层组成电容, 所述第二极板与源电极或漏电极电连接。
可选的, 第一导电层和第二导电层的材料选自金、 银、 铜、 铝、 钛、 铬、 钼、 镉、 镍、 钴、 非晶硅、 多晶硅、 非晶锗硅、 多晶锗硅其 中之一或者它们的任意的组合。
可选的, 在所述形成 TFT开关后, 形成 MEMS光阀, 所述形成 MEMS光阀包括:
在所述基底或者固定光栅上形成图形化的第一牺牲层、 定义出第 二光阀的位置;
在所述图形化的第一牺牲层的表面形成第三导电层、第二介质层, 图形化所述第三导电层、 第二介质层形成第二可动光栅、 第二可动光 栅的固定端;
在所述图形化后的第三导电层、 第二介质层上形成图形化的第二 牺牲层, 定义出第一 MEMS光阀的位置;
在所述图形化的第二牺牲层上, 形成第四导电层、 第三介质层, 图形化所述第四导电层、 第三介质层形成第一光阀、 所述第二光阀的 第三电极、 第四电极;
去除所述图形化的第一牺牲层、 图形化的第二牺牲层。
可选的, 在去除所述图形化的第一牺牲层和图形化的第二牺牲层 之前还包括:
形成第三牺牲层, 覆盖所述 MEMS光阀、 图形化的第一牺牲层、 图形化的第二牺牲层;
在所述第三牺牲层的表面形成封盖层, 所述封盖层上具有多个开 口, 暴露出第三牺牲层; 所述封盖层在四周包围所述 MEMS光阀、 在 顶部遮盖所述 MEMS光阀。
可选的, 所述去除第一牺牲层和第二牺牲层时, 同时去除第三牺 牲层。
可选的, 所述第一牺牲层、 第二牺牲层、 第三牺牲层的材料为非 去除第一牺牲层和第二牺牲层, 同时去除第三牺牲层的方法包括: 等离化氧化形成氧等离子体;
将所述氧等离子体通入所述开口,在温度范围为 150°C〜450°C的条 件下灰化所述非晶碳。
可选的, 还包括: 在去除第一牺牲层、 第二牺牲层和第三牺牲层 后, 形成密封盖, 覆盖所述封盖层。
可选的, 形成第三牺牲层后, 形成封盖层之前还包括:
图形化所述第三牺牲层, 形成相邻的 MEMS光阀之间的隔离槽; 所述封盖层形成于所述图形化后的第三牺牲层的表面。
可选的, 所述封盖层和密封盖的材料选自氧化硅、 氮化硅、 碳化 硅或氮氧化硅或者它们的任意组合, 形成方法为化学气相沉积。
与现有技术相比, 本发明具有以下优点:
本发明的显示装置中的 MEMS光阀包括第一光阀和第二光阀, 通 过第一光阀和第二光阀两者相对运动, 来控制固定光栅的开启和关闭, 相对于一个光阀而言可以提高 MEMS光阀的灵敏度。
在本发明具体实施例中, 所述第一光阀包括: 第一可动光栅, 第 一电极和第二电极, 在所述第二电极和所述第一电极之间具有电势差 时, 所述第一电极带动所述第一可动光栅移动。 所述第二光阀包括: 第二可动光栅, 第三电极和第四电极, 在所述第三电极和所述第四电 极之间具有电势差时, 所述第三电极带动所述第二可动光栅移动, 并 且第一光阀和第二光阀的移动方向相反。 而且, 第一光阀和第二光阀 均有固定端, 将第一光阀和第二光阀与基底连接, 当需要回复原位时, 取消第一电极与第二电极之间、 第三电极与第四电极之间的电势差, 第一可动光栅的固定端、 第二可动光栅的固定端会带动第一可动光栅 和第二可动光栅回复原位。 因此, 可以通过控制第一电极和第二电极 之间的电势差控制第一光阀的移动, 通过控制第三电极和第四电极之 间的电势差控制第二光阀的移动, 使 MEMS光阀的控制简单, 而且结 构也相对简单。
而且, 在本发明的具体实施例中, TFT开关, 其电容的第一极板、 第二极板以及位于第一极板和第二极板之间的电容介质层组成了电 容, 由于第一极板与栅极位于同一层, 第一极板与栅极的材料相同, 为透光率小于 50%的导电材料; 第二极板与源电极和漏电极位于同一 层, 第二极板与源电极和漏电极的材料相同, 为透光率小于 50%的导 电材料。 在应用于具有 MEMS光阀的显示装置中时, 由于 MEMS光 阀显示装置不需要大的开口率, 因此可以将 TFT开关形成在显示装置 中不用来进行透光的部位上, 而且第一极板、 第二极板、 栅极、 源电 极和漏电极为透光率小于 50%导电材料,这样 TFT开关与 MEMS光阀 的兼容性更好, 可以提高显示装置的性能。 这样结构的 TFT开关, 第 一极板可以和栅极一起形成, 第二极板可以和源极、 漏极一起形成, 电容介质层可以在形成栅介质层时一起形成, 从而使形成 TFT开关的 工艺简化, 不用单独形成电容, 节约成本, 加快生产进度, 提高效率。 附图说明
图 la是本发明具体实施例的 MEMS光阀的立体结构图; 图 lb是本发明具体实施例的具有 MEMS光阀的显示装置沿图 la 所示的 a-a方向的剖面结构示意图;
图 2为本发明的具有 MEMS光阀的显示装置的电路结构示意图; 图 3为另一具体实施例的 MEMS光阀的平面示意图;
图 4为又一具体实施例的 MEMS光阀的平面示意图;
图 5为本发明具体实施例的形成具有 MEMS光阀的显示装置的方 法的流程图;
图 6〜图 20为本发明具体实施例的形成具有 MEMS光阀的显示装 置的方法的剖面结构示意图;
图 8 、 8a2〜图 8d为本发明具体实施例的 TFT开关的形成方法的 剖面结构示意图;
图 21为本发明另一实施例的具有 MEMS光阀的显示装置的剖面 结构示意图;
图 22为本发明具体实施例的 LTPS-TFT开关的剖面结构示意图; 图 23为 LTPS-TFT开关应用于本发明的显示装置的结构示意图。 具体实施方式 为了使本领域的技术人员可以更好的理解本发明, 下面结合具体 实施例详细说明本发明具体实施方式的显示装置。
图 la是本发明具体实施例的 MEMS光阀的立体结构图; 图 lb为 本发明具体实施例的具有 MEMS光阀的显示装置沿图 la所示的 a-a方 向的剖面结构示意图。结合参考图 la和图 lb, 本发明具体实施方式的 显示装置包括: 基底 40; 位于所述基底 40上的固定光栅 30、 MEMS 光阀 100, 所述 MEMS光阀 100用于控制所述固定光栅 30的开启、关 闭; 所述 MEMS光阀 100包括: 第一光阀 10和第二光阀 20, 所述第 一光阀 10设于所述第二光阀 20之上; 通过控制所述第一光阀 10和所 述第二光阀 20的移动控制所述固定光栅 30的开启、 关闭, 且所述第 一光阀 10和第二光阀 20的移动方向相反。 也就是说, 通过第一光阀 10和第二光阀 20的相对运动, 可以加快固定光栅 30的透光、 遮光速 度, 从而提高 MEMS光阀的灵敏度。
继续结合参考图 la和图 lb,本发明具体实施例中,所述第一光阀 10包括: 第一可动光栅 11, 第一电极 12和第二电极 13, 所述第一可 动光栅 11与所述第一电极 12固定连接, 所述第一电极 12和第二电极 13相对设置, 在第一电极 12和第二电极 13之间形成电容, 在所述第 二电极 13和所述第一电极 12之间具有电势差时, 所述第一电极 12带 动所述第一可动光栅 11移动; 所述第一可动光栅 11在与所述第一电 极 12相对的一侧具有固定端 141, 通过所述固定端 141固定所述第一 可动光栅, 在所述第一电极 12和第二电极 13之间没有电势差时, 所 述第一可动光栅的固定端 141带动第一可动光栅 11回复原状。
所述第二光阀 20包括: 第二可动光栅 21, 第三电极 22和第四电 极 23 ; 所述第三电极 22、 第四电极 23位于所述第二可动光栅 21相对 于第一电极 12和第二电极 13的另一侧; 所述第二可动光栅 21与所述 第三电极 22固定连接, 所述第三电极 22和第四电极 23相对设置, 在 第三电极 22和第四电极 23之间形成电容, 在所述第三电极 22和所述 第四电极 24之间具有电势差时, 所述第三电极 22带动所述第二可动 光栅 21移动; 所述第二可动光栅 21在与所述第三电极 22相对的一侧 具有固定端 241, 通过所述固定端 241 固定所述第二可动光栅 21, 在 所述第三电极 22和第四电极 23之间没有电势差时, 所述第二可动光 栅 21的固定端 241带动第二可动光栅 21回复原状。 并且, 本发明中, 第一可动光栅 11和第二可动光栅 21两者的移动方向相反, 这样第一 光阀 10和第二光阀 20才可以配合移动, 提高 MEMS光阀的灵敏度。
在本发明具体实施例中, 所述固定光栅 30为矩形, 具有顶边、 底 边和两侧边, 其中, 顶边为显示装置处于正常放映时, 远离地面的一 边, 底边为与顶边相对的一边。
与固定光栅 30相配合, 所述第一可动光栅 11和第二可动光栅 21 均为矩形, 且均具有第一边、 第二边、 第三边和第四边, 所述第一边 和第三边相对, 第一边对应所述顶边, 第三边对应所述底边, 所述第 二边和第四边相对, 分别对应所述两侧边; 所述第一电极 12和所述第 二电极 13设置于所述第一可动光栅 11 的第二边一侧, 所述第一可动 光栅 11的固定端 141设于所述第一可动光栅 11 的第四边一侧; 所述 第三电极 22和所述第四电极 23设置于第二可动光栅的第四边一侧, 所述第二可动光栅的固定端 241设于所述第二可动光栅 21的第二边一 本发明具体实施例中,所述第一电极 12具有第一板 122和第二板 123, 第一板 122和第二板 123与第一可动光栅 11连接, 且对称分布, 第一板 122和第二板 123远离第一可动光栅 11 的一端为第一固定端 121,通过所述第一固定端 121固定所述第一电极 12, 并且第一板和第 二板均具有一第一固定端 121。 第一固定端 121用于与 TFT开关电连 接、且固定在 TFT开关上。所述第二电极 13具有第三板 132和第四板 133, 第三板 132与所述第一电极 12的第一板 122相对, 第四板 133 与所述第一电极 12的第二板 123相对, 所述第三板 132和所述第四板 133之间具有第二固定端 131, 第二固定端 131连接第三板 132和第四 板 133, 并且通过所述第二固定端 131 固定所述第二电极 13 ; 所述第 二电极 13两端与第一电极 12之间的距离小于第二固定端 131与第一 电极 12之间的距离。第二固定端 131用于与 TFT开关电连接、且固定 在 TFT开关上。并且,本发明具体实施例中,第三板 132和第四板 133 之间的夹角不是 180度, 两者之间的夹角大于 90度小于 180度。 这样 在第一电极和第二电极在靠近端部处两者之间的距离最小, 即所述第 二电极两端与第一电极之间的距离小于第二固定端与第一电极之间的 距离, 这样电荷积聚在端部, 从而第一电极与第二电极之间具有较小 的电势差时, 第二电极就可以吸引第一电极运动。 在其他实施例中, 第一电极与第二电极也可以相互平行。
第三电极 22和第四电极 23设置于所述第四边一侧, 且第四电极 23 和所述第四边分别位于第二电极 22 的两侧。 也就是说, 第三电极 22、 第四电极 23与第一电极 12、 第二电极 13处于相对侧, 这样可以 保证第一可动光栅 11和第二可动光栅 21的移动方向相反。
本发明具体实施例中, 所述第三电极 22具有第一板 222、 和第二 板 223, 所述第一板 222和所述第二板 223与所述第二可动光栅 21连 接, 且对称分布, 所述第一板 222和所述第二板 223远离第二可动光 栅 21的一端为第三固定端 221, 通过所述第三固定端 221固定所述第 三电极 22, 并且第一板和第二板均具有一第三固定端 221。 第三固定 端 221用于与 TFT开关电连接、 且固定在 TFT开关上。 所述第四电极 23具有第三板 232和第四板 233, 第三板 232与所述第三电极 22的第 一板 222相对, 第四板 233与所述第三电极 22的第二板 223相对, 所 述第三板 232和所述第四板 233之间具有第四固定端 231,第四固定端 231连接第三板 232和第四板 233, 并且通过所述第四固定端 231固定 所述第四电极 23, 所述第四电极 23两端与第三电极 22之间的距离小 于第四固定端 231与第三电极 23之间的距离。第四固定端 231用于与 TFT开关电连接、且固定在 TFT开关上。并且, 本发明具体实施例中, 第三板 232和第四板 233之间的夹角不是 180度, 两者之间的夹角大 于 90度小于 180度。这样在第三电极和第四电极在靠近端部处两者之 间的距离最小, 所述第三电极两端与第四电极之间的距离小于第四固 定端与第一电极之间的距离, 这样电荷积聚在端部, 从而第三电极与 第四电极之间具有较小的电势差时, 第四电极就可以吸引第一电极运 动。 在其他实施例中, 第三电极与第四电极也可以相互平行。
本发明具体实施例中, 所述第一光阀 10还包括第一固定板 14, 设于所述第一可动光栅 11的第四边与第一可动光栅固定连接, 沿第四 边方向延伸, 所述第一固定板 14为两个, 对称分布在所述第一可动光 栅 11的第四边, 且分别位于所述第一边一侧和第三边一侧; 所述第一 可动光栅 11的固定端 141设于所述第一固定板 14的远离第一可动光 栅的一端, 也就是没有与第一可动光栅 11连接的一端。 该固定端 141 与相应的 TFT开关固定电连接, 并且固定在 TFT开关上, 从而将第一 可动光栅 11通过该固定端 141固定。
本发明具体实施例中, 所述第二光阀 20还包括第二固定板 24, 设于所述第二可动光栅 21的第二边与第二可动光栅固定连接, 沿第二 边方向延伸, 所述第二固定板 24为两个, 对称分布在所述第二可动光 栅 21的第二边, 且分别位于所述第一边一侧和第三边一侧; 所述第二 可动光栅 11的固定端 241设于所述第二固定板 24的远离第一可动光 栅的一端, 也就是没有与第二可动光栅 21连接的一端。 该固定端 241 与相应的 TFT开关固定电连接, 并且固定在 TFT开关上, 从而将第二 可动光栅 21通过该固定端 241固定。
在图 la和图 lb所示的本发明的具体实施例中, 由于固定光栅 30 为矩形, 与该固定光栅 30配合的第一可动光栅 11、 第二可动光栅 21 也为矩形。 固定光栅 30和第一可动光栅 11、 第二可动光栅 21均具有 多个条状的透光开口, 所述条状的透光开口与所述第二边、 第四边平 行。 当固定光栅 30和第一可动光栅 11、 第二可动光栅 21上的条状的 透光开口吻合, 即固定光栅 30上的透光开口没有被第一可动光栅 11、 第二可动光栅 21上的不透光开口完全遮住时, 由基底 40上的背光源 发出的光可以透过固定光栅 30的透光开口以及第一可动光栅 11、第二 可动光栅 21 的透光开口, 并且, 根据固定光栅 30的透光开口被第一 可动光栅 11、 第二可动光栅 21的不透光开口遮住的范围调节光量。
本发明具体实施例的显示装置的工作原理为:第一电极 12的第一 固定端 121、 第二电极 13的第二固定端 131均通过 TFT开关(图中未 示) 与外围的控制电极电连接, 例如, 通过控制电极给第一电极 12施 加 0V的电压, 给第二电极 13施加 10V的电压, 则第一电极 12和第 二电极 13之间具有 10V的电势差, 第一电极 12上具有负电荷, 第二 电极 13上具有正电荷, 第一电极 12受到向左的静电力, 这样第一电 极 12就会带动与其固定连接的第一可动光栅 11 向左移动, 由于第一 电极 12的末端的第一固定端 121与相应的 TFT开关连接, 第二电极 13中间的第二固定端 131与相应的 TFT开关固定连接, 因此在第一电 极 12带动第一可动光栅移动时, 第一电极 12、 第二电极 13以及与第 一电极 12固定连接的第一可动光栅 11发生形变。 如果要使第一可动 光栅 11向右运动回复原状, 给第二电极 13施加 0V的电压, 同时第一 电极 12上的电压保持 0V, 这样, 第一电极 12和第二电极 13之间的 电势差为 0, 静电力也因此为 0, 第一电极 12、 第二电极 13以及第一 可动光栅 11在第一光阀的固定端 141的作用下将弹回原位,回复原状。
第三电极 22的第三固定端 221、 第四电极 23的第四固定端 231 均通过 TFT开关与外围的控制电极电连接, 例如, 通过控制电极给第 三电极 22施加 0V的电压, 给第四电极 23施加 10V的电压, 则第三 电极 22和第四电极 23之间具有 10V的电势差,第三电极 22上具有负 电荷, 第四电极 23上具有正电荷, 第三电极 22受到向右的静电力, 这样第三电极 22就会带动与其固定连接的第二可动光栅 21向右移动, 由于第三电极 22的末端的固定端 221与相应的 TFT开关连接,第四电 极 23的中间的固定端 231与相应的 TFT开关固定连接,因此在第三电 极 22带动第二可动光栅 21移动时,第三电极 22、第四电极 23以及与 第三电极 22固定连接的第二可动光栅 21发生形变。 如果要使第二可 动光栅 21向左运动回复原状, 给第四电极 23施加 0V的电压, 同时第 三电极 22上的电压保持 0V, 这样, 第三电极 22和第四电极 23之间 的电势差为 0, 静电力也因此为 0, 第三电极 22、 第四电极 23以及第 二可动光栅 21在第二光阀的固定端 241的作用下将弹回原位, 回复原 状。
需要说明的是,此处为了说明 MEMS光阀的运动原理所列举的电 压只是起举例说明作用, 在实际应用中, 给各个电极施加的电压要根 据实际情况确定。
在本发明具体实施例中, 第一可动光栅 11、 第一电极 12、 第二电 极 13和第一固定板 14以及第二可动光栅 21、 第三电极 22、 第四电极 23和第二固定板 24的材料为可导电材料,可以是金属,如金、银、铜、 铝、 钛、 铬、 钼、 镉、 镍、 钴等其中之一或者其中的组合; 也可以是 导电非金属, 如非晶硅、 多晶硅、 非晶锗硅、 多晶锗硅等等; 还可以 是金属和导电非金属的组合; 本发明具体实施例中, 优选铝。 在第一 可动光栅 11、 第一电极 12、 第二电极 13和第一固定板 14的表面形成 有一层绝缘层, 第二可动光栅 21、 第三电极 22、 第四电极 23和第二 固定板 24的表面形成有一层绝缘层, 该绝缘层的材料可以为氧化硅、 氮化硅、 碳化硅或氮氧化硅。
在图 la和图 lb所示的本发明的具体实施例中, 所述固定光栅 30 位于所述基底 40上; 所述第二光阀 20位于所述固定光栅 30之上, 所 述第一光阀 10位于所述第二光阀 20之上。在本发明的其他实施例中, MEMS光阀 100和固定光栅 30的上下位置可以互换, 也就是说, 所述 第二光阀 20位于所述基底 40上, 所述第一光阀 10位于所述第二光阀 20之上; 所述固定光栅 30位于所述第一光阀 10之上。
在图 la和图 lb所示的本发明的具体实施例中,在固定光栅 30上 形成有 TFT开关(thin film transistor, 薄膜晶体管开关) 阵列 (图中未 示), 也就是说, TFT开关形成在固定光栅 30的不用来进行透光率控 制的部位。 TFT 开关用来与第一电极、 第二电极、 第三电极、 第四电 极固定电连接。
本发明具体实施例中, 所述基底 40内有背光源, 且背光源包括蓝 光光源、 红光光源和绿光光源, 所述的蓝光光源、 红光光源和绿光光 源可以分别由蓝光 LED、 红光 LED和绿光 LED提供, 也可以通过激 光提供, 且提供红绿蓝三色激光。 本发明中, 所述固定光栅 30面向背 光源的一面具有大于 60%的反射率。
显示装置中固定光栅 30以及 MEMS光阀 100均为多个, 呈阵列 排布, 本发明具体实施例中, 以一个固定光栅 30和一个 MEMS光阀 100为例进行说明。
图 2为本发明的具有 MEMS光阀的显示装置的电路结构示意图, 参考图 2, 本发明的显示装置还包括:位于基底上的多条平行的扫描线
G G2 Gm, 位于基底上的垂直于扫描线的多条平行的数据线
Dl、 D2、 ...... Dn; 数据线 Dl、 D2、 ...... Dn与相应的 TFT开关的源 电极电连接, 扫描线 Gl、 G2、 ...... Gm与相应的 TFT开关的栅极电连 接, 通过扫描线 Gl、 G2、 ...... Gm控制 TFT开关的开启、 关闭, 通过 数据线 Dl、 D2、 ...... Dn控制施加给 TFT开关的电压, TFT开关的漏 电极与 MEMS光阀 100电连接, 控制施加给 MEMS光阀 100的电压; 电容 C与 MEMS光阀 100电连接。 需要说明的是, 图示中没有示意出 与每一个 MEMS光阀 100电连接的所有的 TFT开关。 参考图 8d, 本发明具体实施例的 TFT开关, 包括: 栅极 41, 源 区、 漏区、 用于电导通源区和漏区的导电沟道, 位于所述导电沟道和 栅极 41之间的栅介质层 441, 与源区电连接的源电极 42、 与漏区电连 接的漏电极 43, 电容。 所述导电沟道为低掺杂硅层 442, 所述低掺杂 硅层 442和栅介质层之间为高掺杂硅层 443,所述高掺杂硅层 443具有 开口 (图中未标号), 开口两侧的高掺杂硅层 443分别为源区和漏区, 所述开口暴露出所述低掺杂硅层 442。 所述电容包括第一极板 45、 第 二极板 46以及位于第一极板和第二极板之间的电容介质层(图中未标 号); 所述第一极板 45与所述栅极 41位于同一层、 材料为相同的不透 光材料; 所述第二极板 46与所述源电极 42、 漏电极 43位于同一层、 材料为相同的不透光材料, 且所述第二极板 46与所述漏电极 43 电连 接, 第一极板 45接地; 所述第一电极 12、 第二电极 13、 第三电极 22、 第四电极 23分别与相应的 TFT开关的漏电极 43电连接, TFT开关的 源电极 42与显示装置的数据线电连接, 栅极 41与显示装置的扫描线 电连接。 其中, 第一极板 45、 第二极板 46、 位于第一极板 45、 第二极 板 46之间的介质层组成了本发明中所述的电容 C。
在本发明具体实施例中,第二极板 46与漏电极 43电连接, MEMS 光阀通过第二极板与漏电极 43电连接,数据线 49与源电极 42电连接。 在其他实施例中, 第二极板 46也可以与源电极 42电连接, MEMS光 阀通过第二极板 46与源电极 42电连接, 数据线 49与漏电极 43电连 接, 根据源区和漏区的类型确定。
本发明具体实施例中, 电容介质层和栅介质层在同一层, 且材料 相同, 在制作工艺中, 在栅极 41和第一极板 45上形成介质层, 位于 栅极 41上的介质层作为栅介质层, 位于第一极板 45上的介质层作为 电容介质层。
第一极板、 第二极板、 栅极、 源电极和漏电极的材料选自金属, 金属选自金、 银、 铜、 铝、 钛、 铬、 钼、 镉、 镍、 钴其中之一或者它 们的任意组合。 第一极板、 第二极板、 栅极、 源电极和漏电极的材料 也可以选自金、 银、 铜、 铝、 钛、 铬、 钼、 镉、 镍、 钴、 非晶硅、 多 晶硅、 非晶锗硅、 多晶锗硅其中之一或者它们的任意的组合。 所述电 容介质层和栅介质层的材料选自氧化硅、 氮化硅、 碳化硅或氮氧化硅 或者它们的任意组合。 可选的, 第一极板 45和第二极板 46的材料均 为金属, 电容 C为 MIM (金属-介质层-金属) 电容。
本发明的该具体实施例中的 TFT开关,在应用于具有 MEMS光阀 的显示装置中时, 由于 MEMS光阀显示装置不需要大的开口率, 因此 可以将 TFT开关形成在显示装置中不用来进行透光的部位上, 而且第 一极板、 第二极板、 栅极、 源电极和漏电极为透光率小于 50%导电材 料, 这样 TFT开关与 MEMS光阀的兼容性更好, 可以提高显示装置的 性能。
另外, 参考图 lb, 本发明具体实施例中, 显示装置还包括: 封盖 层 57和密封盖 59, 所述封盖层 57在四周包围所述 MEMS光阀、在顶 部遮盖所述 MEMS光阀, 且在所述封盖层 57的顶部具有开口 (图中 未标号); 所述密封盖 59密封所述开口。 在本发明具体实施例中, 密 封盖 59不仅密封开口, 而且也覆盖整个封盖层 57的顶部。 所述封盖 层 57和所述密封盖 59的材料可以选自氧化硅、 氮化硅、 碳化硅或氮 氧化硅或者它们的任意组合。密封盖 59可以起到密封显示装置的作用, 防止水蒸气、 灰尘、 杂质等进入显示装置内, 这样可以提高显示装置 的寿命。
以上所述的本发明的具体实施例中,固定光栅 30和第一可动光栅 11、 第二可动光栅 21均为矩形, 但是本发明中, 固定光栅 30和第一 可动光栅 11、第二可动光栅 21不限于矩形。 例如, 所述固定光栅为圆 形, 具有多个扇形的透光开口; 所述可动光栅为圆形, 具有多个扇形 的透光开口。
图 3为另一具体实施例的 MEMS光阀的平面示意图,该具体实施 例的固定光栅为圆形(图中未示), 具有多个扇形的透光开口, 该固定 光栅的形状与 MEMS光阀的形状相配合; 与固定光栅配合, 参考图 3, 所述第一可动光栅 11a和第二可动光栅 21a也为圆形,具有多个扇形的 透光开口。 由于是平面图, 因此图 3 中将第一光阀和第二光阀示意在 一个平面上。
第一电极 12a与圆形的第一可动光栅 11a的圆周边固定电连接, 第二电极 13a与第一电极 12a相对设置, 形成电容, 当第二电极 13a 与第一电极 12a之间具有电势差时,第二电极 13a和第一电极 12a之间 具有吸引力,第一电极 12a在该吸引力的作用下带动第一可动光栅 11a 旋转。在第一可动光栅 11a相对于第一电极 12a的另一侧,具有固定端 141a,当第二电极 13a与第一电极 12a之间没有电势差时,固定端 141a 带动第一可动光栅 11a回复原位。 具体的原理参见以上图 la所示的具 体实施例。
第三电极 22a与圆形的第二可动光栅 21a的圆周边固定电连接, 而且第三电极 22a、 第四电极 23a与第一电极 12a、 第二电极 13a位于 MEMS光阀的不同侧, 第四电极 23a与第三电极 22a相对设置, 形成 电容, 当第四电极 23a与第二电极 22a之间具有电势差时, 第四电极 23a和第三电极 22a之间具有吸引力,第三电极 22a在该吸引力的作用 下带动第二可动光栅 21a旋转。 在第二可动光栅 21a相对于第三电极 22a的另一侧,具有固定端 241a, 当第四电极 23a与第三电极 22a之间 没有电势差时, 固定端 241a带动第二可动光栅 21a回复原位。 具体的 原理参见以上图 la所示的具体实施例。
所述第一电极 12a具有第一板 121a,第一板 121a与所述第一可动 光栅 11a的圆周边缘连接, 所述第一板 121a远离第一可动光栅 11a的 一端为第一固定端 122a,通过所述第一固定端 122a固定所述第一电极 12a; 所述第二电极 13a具有第二板 131a, 第二板 131a与所述第一电 极 12a的第一板 121a相对, 所述第二板 131a具有第二固定端 132a, 第二固定端 132a靠近第一可动光栅 l la, 第二板 131a远离第二固定端 132a的一端远离第一可动光栅 l la, 通过所述第二固定端 132a固定所 述第二电极 13a;所述第二板 131a远离第二固定端 132a的一端与第一 电极 12a之间的距离小于第二固定端 132a与第一电极 12a之间的距离; 所述第三电极 22a具有第三板 221a,第三板 221a与所述第二可动光栅 21a的圆周边缘连接, 所述第三板 221a远离第二可动光栅 21a的一端 为第三固定端 222a,通过所述第三固定端 222a固定所述第三电极 22a; 所述第四电极 23a具有第四板 231a, 第四板 231a与所述第三电极 22a 的第三板 221a相对, 所述第四板 231a具有第四固定端 232a, 第四固 定端 232a靠近第二可动光栅 21a, 第四板 231a远离第四固定端 232a 的一端远离第二可动光栅 21a, 通过所述第四固定端 232a固定所述第 二电极 13a;所述第四板 231a远离第四固定端 232a的一端与第二电极 13a之间的距离小于第四固定端 232a与第二电极 13a之间的距离。 所述第一光阀还包括第一固定板 142a, 位于所述圆形的第一可动 光栅 11a的圆周边缘与第一可动光栅 11a固定连接;所述第一可动光栅 11a的固定端 141a设于所述第一固定板 142a的远离第一可动光栅 11a 的一端; 所述第二光阀还包括第二固定板 242a, 位于所述圆形的第二 可动光栅 21a的圆周边缘与第二可动光栅 21a固定连接; 所述第二可 动光栅 21a的固定端 241a设于所述第二固定板 242a远离第二可动光栅 21a的一端。
当给各个电极施加一定的电压,使 MEMS光阀在静电力的作用下 旋转, 从而可以控制固定光栅的透光开口与可动光栅上的透光开口的 吻合程度, 控制固定光栅的透光。 在此不对 MEMS光阀的原理做详细 说明。
图 4为又一具体实施例的 MEMS光阀的平面示意图,该具体实施 例的所述固定光栅为扇形 (图中未示), 具有多个条状的透光开口, 该 固定光栅的形状与可动光栅 31b的形状相配合; 参考图 4,第一可动光 栅 l ib和第二可动光栅 21b均为扇形, 具有多个条状的透光开口 (图 中未标号)。 由于是平面图, 因此图 4中将第一光阀和第二光阀示意在 一个平面上。
第一电极 12b与扇形的第一可动光栅 l ib的短圆弧边固定电连接, 第二电极 13b与第一电极 12b相对设置, 形成电容, 当第二电极 13b 与第一电极 12b之间具有电势差时, 第二电极 13b和第一电极 12b之 间具有吸引力, 第一电极 12b在该吸引力的作用下带动第一可动光栅 l ib旋转。在第一可动光栅 l ib相对于第一电极 12b的另一侧(即长圆 弧边), 具有固定端 141b, 当第二电极 13b与第一电极 12b之间没有电 势差时, 固定端 141b带动第一可动光栅 l ib回复原位。 具体的原理参 见以上图 la所示的具体实施例。
第三电极 22b与圆形的第二可动光栅 21b的短圆弧边固定电连接, 第四电极 23b与第三电极 22b相对设置, 形成电容, 当第四电极 23b 与第二电极 22b之间具有电势差时, 第四电极 23b和第三电极 22b之 间具有吸引力, 且第四电极 23b位于第三电极 22b的位置与第二电极 13b位于第一电极 12b的位置相反,这样在该吸引力的作用下带动第二 可动光栅 21b旋转时, 保证第一光阀和第二光阀的转动方向相反。 在 第二可动光栅 21b相对于第三电极 22b的另一侧 (即长圆弧边), 具有 固定端 241b, 当第四电极 23b与第三电极 22b之间没有电势差时, 固 定端 241b带动第二可动光栅 21b回复原位。具体的原理参见以上图 lb 所示的具体实施例。
所述第一电极 12b具有第一板 121b, 第一板 121b与所述第一可 动光栅 lib的短圆弧边连接, 所述第一板 121b远离第一可动光栅 lib 的一端为第一固定端 122b,通过所述第一固定端 122b固定所述第一电 极 12b; 所述第二电极 13b具有第二板 131b, 第二板 131b与所述第一 电极 12b的第一板 121b相对,所述第二板 131b具有第二固定端 132b, 第二固定端 132b靠近第一可动光栅 lib,第二板 131b远离第二固定端 132b的一端远离第一可动光栅 lib, 通过所述第二固定端 132b固定所 述第二电极 13b;所述第二板 131b远离第二固定端 132b的一端与第一 电极 12b之间的距离小于第二固定端 132b与第一电极 12b之间的距离; 所述第三电极 22b具有第三板 221b,第三板 221b与所述第二可动光栅 21b的短圆弧边连接, 所述第三板 221b远离第二可动光栅 21b的一端 为第三固定端 222b,通过所述第三固定端 222b固定所述第三电极 22b; 所述第四电极 23b具有第四板 231b, 第四板 231b与所述第三电极 22b 的第三板 221b相对, 所述第四板 231b具有第四固定端 232b, 第四固 定端 232b靠近第二可动光栅 21b, 第四板 231b远离第四固定端 232b 的一端远离第二可动光栅 21b, 通过所述第四固定端 232b固定所述第 四电极 23b;所述第四板 231b远离第四固定端 232b的一端与第三电极 22b之间的距离小于第四固定端 232b与第三电极 22b之间的距离。
所述第一光阀还包括第一固定板 142b,位于所述第一可动光栅 lib 的长圆弧边缘与第一可动光栅 lib 固定连接; 所述第一可动光栅 lib 的固定端 141b设于所述第一固定板 142b远离第一可动光栅 lib的一 端;所述第二光阀还包括第二固定板 242b,位于所述第二可动光栅 21b 的长圆弧边缘与第二可动光栅 21b 固定连接; 所述第二可动光栅 21b 的固定端 241b设于所述第二固定板 242b远离第二可动光栅 21b的一 当给各个电极施加一定的电压,使 MEMS光阀在静电力的作用下 旋转, 从而可以控制固定光栅的透光开口与可动光栅上的透光开口的 吻合程度, 控制固定光栅的透光。 在此不对 MEMS光阀的原理做详细 说明。
本发明中, TFT开关也可以为 LTPS-TFT开关 (Low Temperature p-Si TFT, 低温多晶硅 TFT开关)。
图 22为 LTPS-TFT开关的剖面结构示意图, 图 23为 LTPS-TFT 开关应用于本发明的显示装置的结构示意图。 参考图 22, 所述 LTPS-TFT开关包括: 源区 61、 漏区 62, 位于所述源电极 61和漏电极 62之间的沟道区 63, 位于所述沟道区 63上的栅介质层 64, 位于所述 栅介质层 64上的栅极 65,所述源区 61通过第一插栓与源电极 66电连 接, 所述漏区 62通过第二插栓与漏电极 67电连接。 并且显示装置中 的数据线 (图中未示) 与漏电极 67电连接, 所述栅极 65与显示装置 中的扫描线 (图中未示) 电连接。 所述 TFT开关还包括位于所述源电 极 66、漏电极 67上的电容; 所述电容包括第一极板 71、第二极板 72, 位于所述第一极板 71和第二极板 72之间的电容介质层 73; 所述第一 极板 71位于所述源电极和漏电极上方, 且与所述源电极 66电连接, 所述电容介质层 73位于所述第一极板 72上, 所述第二极板 72位于所 述电容介质层 73上。
除此之外, 上述 TFT 开关还可以为其他形式的开关电路, 例如 MEMS开关等。
基于以上所述的显示装置的精神, 本发明还提供一种形成显示装 置的方法, 图 5为该法的流程图。图 6〜图 20为本发明具体实施例的形 成显示装置的方法的剖面结构示意图, 结合参考图 5、 图 6〜图 20详细 说明本发明具体实施例的形成显示装置的方法。
结合参考图 5和图 6, 执行歩骤 S11 , 提供基底 40。 本发明具体 实施例中, 基底 40为玻璃基底。在本发明具体实施例中, 所述基底 40 内形成有背光源 (图中未示), 且背光源包括蓝光光源、 红光光源和绿 光光源, 所述的蓝光光源、红光光源和绿光光源可以分别由蓝光 LED、 红光 LED和绿光 LED提供, 也可以通过激光提供, 且提供红绿蓝三 色激光。
继续结合参考图 5和图 7, 执行歩骤 S12, 在所述基底 40上形成 固定光栅 30。本发明具体实施例中, 形成固定光栅 30的方法包括: 在 基底 40上形成导电层, 之后利用光刻的方法图形化导电层形成固定光 栅 30。在本发明中, 固定光栅 30的材料选自金、 银、铜、 铝、 钛、铬、 钼等, 可以是其中之一, 也可以是它们的任意组合, 本发明具体实施 例中优选为铝。 其中, 形成导电层的方法可以为化学气相沉积或物理 气相沉积。
本发明具体实施例中, 在形成固定光栅之后, 在形成 MEMS光阀 之前, 在所述固定光栅上形成 TFT开关。
参考图 8, 本发明具体实施例中, 形成固定光栅 30后, 形成介质 层 31, 覆盖固定光栅 30。 介质层 31的材料为氧化硅 (Si02)、 氮化硅 ( SiN)、 碳氧化硅(SiOC) 或氮氧化硅(SiON)。 形成介质层 31的方 法为化学气相沉积。之后在介质层 31上形成 TFT开关阵列。第一电极、 第二电极、第三电极、第四电极分别对应一个 TFT开关, 与其电连接。
在该具体实施例中, 形成 TFT开关的方法为:
结合参考图 8ai和图 8¾, 执行歩骤 a, 在所述固定光栅上形成第 一导电层, 所述第一导电层的材料为透光率小于 50%的导电材料。 该 第一导电层的材料参见以上对 TFT开关的描述。 该具体实施例中, 第 一导电层可以为钛层、 铝层和钛层 (Ti/Al/Ti) 的叠层结构, 也可为铝 层、 钼层 (Al/Mo) 的叠层结构, 或者铬 (Cr) 层, 或者钼 (Mo) 层, 或者钽层, 其形成方法为化学气相沉积或物理气相沉积。 之后, 执行 歩骤 b, 图形化所述第一导电层, 形成栅极 41、 第一极板 45: 即经掩 膜、 曝光、 显影、 干法蚀刻第一导电层后形成栅极 41、 第一极板 45 以及扫描线 48。
结合参考图 8bi和图 8b2, 执行歩骤 c, 形成第一介质层 441, 覆 盖所述栅极、 第一极板, 位于所述第一极板上的第一介质层作为电容 介质层; 和歩骤 d, 在所栅极 41上的第一介质层上依次形成低掺杂硅 层 442、 高掺杂硅层 443; 所述高掺杂硅层 443具有开口, 开口两侧为 源区和漏区, 所述开口暴露出所述低掺杂硅层 442, 所述低掺杂硅层 442为导电沟道。
本发明中, 第一介质层 441的材料可以为氧化硅(Si02)、 氮化硅 ( SiN)、 氮氧化硅(SiON) 或者碳氧化硅(SiOC) 等, 也可以为它们 的任意组合。利用 PECVD法(增强等离子体化学气相沉积)进行连续 成膜, 形成第一介质层 441、 低掺杂硅 442, 高掺杂硅层 443, 也就是 首先利用 PECVD法形成第一介质层 441, 覆盖第一极板 45、 栅极 41 以及扫描线 48, 接着在第一介质层 441上形成低掺杂硅层 442, 之后 在低掺杂硅层 442上形成高掺杂硅层 443。 然后, 利用光刻(掩膜、 曝 光) 和干法蚀刻图形化低掺杂硅层 442、 高掺杂硅层 443, 保留位于所 述栅极 41上的第一介质层 441上的低掺杂硅层 442、 高掺杂硅层 443; 之后, 图形化所述高掺杂硅层 443, 形成开口 (图中未标号), 开口两 侧的高掺杂硅层 443 分别为源区、 漏区, 所述开口暴露出所述低掺杂 硅层 442, 该低掺杂硅层 442作为导电沟道。
结合参考图 8Cl和图 8c2, 执行歩骤 e, 形成第二导电层, 覆盖所 述第一介质层 441和低掺杂硅层 442、 高掺杂硅层 443, 所述第二导电 层的材料为透光率小于 50%的导电材料; 之后, 执行歩骤 f, 图形化所 述第二导电层, 形成与源区电连接的源电极 42、 与漏区电连接的漏电 极 43和第二极板 46, 所述第二极板 46、 第一极板 45和第一极板 45 上的第一介质层组成电容,所述第二极板 46与源电极或漏电极电连接。 该具体实施例中, 图形化第二导电层时, 也形成了数据线 49。 在该具 体实施例中, 第二极板 46与源电极 42电连接, 数据线 49与漏电极电 连接, 在其他实施例中, 第二极板 46也可以与漏电极 43 电连接, 数 据线 49与源电极电连接, 根据源区和漏区的类型确定。
该第二导电层的材料参见以上对 TFT开关的描述。 该具体实施例 中, 第二导电层可以为钛层、 铝层和钛层 (Ti/Al/Ti) 的叠层结构, 也 可为铝层、钼层(Al/Mo)的叠层结构, 或者铬(Cr)层, 或者钼(Mo) 层, 或者钽层, 其形成方法为化学气相沉积或物理气相沉积。
参考图 8d, 该具体实施例中, 形成 TFT开关后, 最后用 PECVD 法形成钝化层 47, 钝化层 47的材料选自氧化硅、氮化硅、碳化硅或氮 氧化硅或者它们的任意组合; 之后再用掩膜曝光及干法蚀刻进行钝化 层的蚀刻成形, 该钝化层作为保护膜用于对 TFT开关进行保护。
第一极板可以和栅极一起形成, 第二极板可以和源极、 漏极一起 形成, 电容介质层可以在形成栅介质层时一起形成, 从而使形成 TFT 开关的工艺简化, 不用单独形成电容, 节约成本, 加快生产进度, 提 高效率。
结合参考图 5和图 9、 图 10, 执行歩骤 S13 , 在所述固定光栅 30 上形成图形化的第一牺牲层 51、 定义出第二光阀的位置。 本发明具体 实施例中, 并非直接在固定光栅 30上形成图形化的第一牺牲层 51,在 所述固定光栅 30和图形化的第一牺牲层 51之间还形成有钝化层 47。 具体为:
参考图 9, 在所述固定光栅 30上形成第一牺牲层, 覆盖所述固定 光栅 30表面上的结构,在该具体实施例中, 为覆盖 TFT开关以及介质 层 31。 在本发明具体实施例中, 第一牺牲层的材料为非晶碳, 其形成 方法为 CMOS工艺中的普通的化学气相沉积工艺。形成第一牺牲层后, 图形化所述第一牺牲层, 形成预定的图形化的牺牲层 51a, 定义出第二 MEMS光阀的位置。 继续参考图 10, 形成预定图形的牺牲层 51a后, 在去除牺牲层的位置上形成预定的牺牲层 51b,所述预定的图形化的牺 牲层 51a和预定的牺牲层 51b共同作为图形化的第一牺牲层 51。 在本 发明具体实施例中, 预定的牺牲层 51b 的材料也为非晶碳, 其形成方 法为 CMOS工艺中的普通的化学气相沉积工艺。
结合参考图 5和图 11、 图 12, 执行歩骤 S14, 在所述图形化的第 一牺牲层 51的表面依次形成第三导电层 52、第二介质层(图中未示), 图形化所述第三导电层 52、 第二介质层形成第二可动光栅、 第二可动 光栅的固定端。 利用各向同性的湿法刻蚀刻蚀第一导电层形成第二可 动光栅, 第三电极位置的第一导电层保留。 在该具体实施例中, 也刻 蚀形成了与第二可动光栅连接的第二固定板。
参考图 11, 本发明中, 所述第三导电层 52的材料可以是金属, 如 金、 银、 铜、 铝、 钛、 铬、 钼、 镉、 镍、 钴等其中之一或者其中的组 合; 也可以是导电非金属, 如非晶硅、 多晶硅、 非晶锗硅、 多晶锗硅 等等; 还可以是金属和导电非金属的组合。 该第三导电层 52的形成方 法可以为化学气相沉积或物理气相沉积工艺。 本发明具体实施例中, 可选的, 第三导电层 52的材料为铝。 本发明中, 所述第二介质层的材 料选自氧化硅、 氮化硅、 碳化硅、 氮氧化硅其中之一或者它们的任意 组合, 形成第二介质层的方法为化学气相沉积。 本发明具体实施例中, 第二介质层的材料优选氧化硅。 图形化第三导电层 52、 第二介质层的 方法为光刻、 刻蚀工艺。
结合参考图 5和图 13, 执行歩骤 S15 , 在所述图形化后的第三导 电层、 第二介质层上形成图形化的第二牺牲层, 定义出第一 MEMS光 阀的位置。 具体为: 在所述第一介质层上形成第二牺牲层, 第二牺牲 层 53'的材料为非晶碳,其形成方法为 CMOS工艺中的普通的化学气相 沉积工艺。 然后利用光刻、 刻蚀工艺图形化所述第二牺牲层, 形成图 形化的第二牺牲层 53。
结合参考图 5和图 14、 图 15、 图 16, 执行歩骤 S16, 在所述图形 化的第二牺牲层 53上, 依次形成第四导电层 54、第三介质层(图中未 示), 图形化所述第四导电层 54、第三介质层形成第一光阀、所述第二 光阀的第三电极、 第四电极。 具体为:
参考图 14, 依次形成第四导电层 54、 第三介质层(图中未示意出 第三介质层), 覆盖所述基底 40上形成的结构, 即覆盖图形化的第一 牺牲层 51、 第二可动光栅 21。 本发明中, 所述第四导电层 54的材料 可以是金属, 如金、 银、 铜、 铝、 钛、 铬、 钼、 镉、 镍、 钴等其中之 一或者其中的组合; 也可以是导电非金属, 如非晶硅、 多晶硅、 非晶 锗硅、 多晶锗硅等等; 还可以是金属和导电非金属的组合。 该第四导 电层 54的形成方法可以为化学气相沉积或物理气相沉积工艺。本发明 具体实施例中, 可选的, 第四导电层 52的材料为铝。 第三介质层的材 料选自氧化硅、 氮化硅、 碳化硅、 氮氧化硅其中之一或者它们的任意 组合, 形成第三介质层的方法为化学气相沉积。 本发明具体实施例中, 第三介质层的材料优选氧化硅。 图形化第四导电层 54、 第三介质层的 方法为光刻、 刻蚀工艺。
参考图 15, 湿法刻蚀第四导电层 54、 第二介质层, 形成第一可动 光栅 11、 第一固定板 (图中的截面示意图没有示意出, 可结合参考图 la)。 参考图 16, 在湿法刻蚀后的第四导电层 54、 第二介质层上形成 光刻胶, 图形化光刻胶, 结合参考图 la, 定义出第一光阀的第一电极、 第二电极, 第二光阀的第三电极、 第四电极位置, 以图形化的光刻胶 为掩膜, 干法刻蚀第四导电层、 第二介质层形成第一光阀的第一电极 12、 第二电极 13, 第二光阀的第三电极 22、 第四电极 23, 之后灰化去 除图形化的光刻胶。 结合参考图 5和图 17至图 20, 执行歩骤 S17, 去除所述图形化的 第一牺牲层、 图形化的第二牺牲层。 在本发明具体实施例中, 去除图 形化的第一牺牲层、 图形化的第二牺牲层之前还包括:
首先参考图 17, 形成第三牺牲层 55, 覆盖在基底 40上形成的结 构。 本发明具体实施例中, 在本发明具体实施例中, 第三牺牲层的材 料也为非晶碳, 其形成方法为 CMOS工艺中的普通的化学气相沉积工 艺。 形成第三牺牲层 55后, 还包括: 图形化所述第三牺牲层 55, 形成 相邻的 MEMS光阀之间的隔离槽 56。 该隔离槽 56可以将各个 MEMS 光阀相互隔开, 隔离槽 56为环形。 图形化所述第三牺牲层 55的方法 为常规的光刻、 刻蚀工艺。 图形化所述第三牺牲层 55的方法为常规的 光刻、 刻蚀工艺。 在其他实施例中, 也可以不形成隔离槽。
参考图 18, 在所述第三牺牲层 55的表面形成封盖层 57, 也就是 在图形化的第三牺牲层 55的上表面和周围侧表面上形成封盖层 57,所 述封盖层 57上具有多个开口 58,在所述开口的位置处暴露出第三牺牲 层 55; 所述封盖层 57在四周包围所述 MEMS光阀、 在顶部遮盖所述 MEMS光阀。 该封盖层 57包括顶盖 571和环盖 572, 其中环盖 572是 封盖层 57和基底 40固定的地方, 环盖 572为一圈封闭的环盖,可以将 MEMS光阀一个个保护起来。 本发明中, 封盖层 57的材料为氧化硅、 氮化硅、 碳化硅或氮氧化硅, 该具体实施例中, 优选氧化硅。 形成封 盖层 57的方法为: 首先用化学气相沉积形成氧化硅层, 覆盖所述图形 化的第三牺牲层 55的表面; 然后用光刻、 刻蚀工艺刻蚀氧化硅层, 形 成具有开口 58的封盖层 57,该开口 58暴露出图形化的第三牺牲层 55。 所述开口 58的深宽比范围应为 0.5〜20,所述开口的孔径范围为 0.1〜10 微米。
形成封盖层之后, 参考图 19, 去除图形化的第一牺牲层、 图形化 的第二牺牲层, 也去除图形化的第三牺牲层。 所述去除图形化的第一 牺牲层、 图形化的第二牺牲层和图形化的第三牺牲层包括: 离化氧气 形成氧等离子体; 将所述氧等离子体通入所述开口, 在温度范围为 150 °C〜450 °C的条件下灰化所述非晶碳。
参考图 20, 在本发明中, 形成以上所述的显示装置后, 还包括: 形成密封盖 59, 密封所述开口 58。 所述密封盖 59的材料为氧化硅、 氮化硅、 碳化硅或氮氧化硅。 所述形成密封盖的方法为化学气相沉积。 密封盖 59可以起到密封显示装置的作用, 防止水蒸气、 灰尘、 杂质等 进入显示装置内, 这样可以提高显示装置的寿命。
以上所述的形成显示装置的具体实施例, 首先在基底上形成固定 光栅, 然后在固定光栅之上形成 MEMS光阀。 在本发明的其他实施例 中, 也可以首先在基底上形成 MEMS光阀, 然后在 MEMS光阀之上 形成固定光栅。 图 21为固定光栅位于 MEMS光阀之上的剖面结构示 意图, 参考图 21, 在该具体实施例中, 先在基底 40上形成 MEMS光 阀,该 MEMS光阀包括第一可动光栅 11'、第一电极 12'、第二电极 13', 第二可动光栅 21'、 第三电极 22'、 第四电极 23', 该具体实施例, 由于 先形成 MEMS光阀, 为了配合之后形成的固定光栅 30', MEMS光阀 的第一可动光栅 11'、 第二可动光栅 21'相对于第一电极 12'、 第二电极 13'、 第三电极 22'、 第四电极 23'做相应的调整, 即第一可动光栅 11'、 第二可动光栅 21'的位置上移, 使第一可动光栅 11'、 第二可动光栅 21' 靠近固定光栅 30'。该具体实施例中, MEMS光阀的其他结构根据以上 所述的具体实施例可以推知, 此不做详述。 在形成 MEMS光阀后, 形 成封盖层 57以及密封盖 59, 然后在密封盖 59上形成固定光栅 30'。本 领域技术人员根据以上所述的具体实施例, 可以推知该实施例的具体 实施方式, 在此不做赘述。 而且, 本领域技术人员根据以上所述的具 体实施例的工艺描述, 可以推知该实施例中, 形成显示装置的方法, 在此不做赘述。
以上所述为本发明图 la所示的具体实施例详述了形成显示装置的 方法, 本发明图 3和图 4所示的具体实施例的显示装置的形成方法也 适用于该方法, 只是在图形化时需要更换适合的掩膜板。
结合参考图 22和图 23, 本发明具体实施例的, 形成 LTPS-TFT开 关的方法包括:
歩骤 1 ), 在所述基底或所述固定光栅上形成硅层。 在图 23所示 的本发明的具体实施例中, 在所述固定光栅 30上形成硅层。 如果在其 他实施例中, 先形成 MEMS光阀, 然后再形成固定光栅, 则在基底 40 上形成硅层。
歩骤 2), 晶化所述硅层形成多晶硅层。 歩骤 3 ), 图形化所述多晶硅层, 形成图形化的多晶硅层, 定义出 源区 61、 漏区 62以及沟道区 63的区域。 在该歩骤中, 可以对沟道区 进行掺杂, 调节阈值电压。
歩骤 4), 形成栅介质层 64, 覆盖所述图形化的多晶硅层。
歩骤 5 ), 离子注入形成源区 61和漏区 62。
歩骤 6), 在所述栅介质层 64上形成栅极 65。
歩骤 7), 形成层间介质层 (图中未标号), 覆盖所述栅介质层 64 和栅极 65。 层间介质层的材料可选氧化硅。
歩骤 8), 在所述栅介质层 64和层间介质层中形成第一插栓 (图 中未标号), 与源区 61电连接, 形成第二插栓 (图中未标号) 漏区 62 电连接。 形成插栓的方法为公知技术, 此不做详述。
歩骤 9), 在源区 61连接的插栓上形成源电极 66, 在漏区 62连接 的插栓上形成漏电极 67。
歩骤 10), 在所述层间介质层、 第一插栓、 第二插栓组成的表面 上形成图形化的钝化层, 所述图形化的钝化层具有开口, 所述开口暴 露出所述源电极 67。
歩骤 11 ),在所述图形化的钝化层和开口的表面依次形成第一导电 层、 介质层、 第二导电层。 所述第一导电层和所述第二导电层的材料 选自金、 银、 铜、 铝、 钛、 铬、 钼、 镉、 镍、 钴、 非晶硅、 多晶硅、 非晶锗硅、 多晶锗硅其中之一或者它们的任意的组合, 其形成方法为 气相沉积。 所述介质层的材料选自氧化硅、 氮化硅、 碳化硅或氮氧化 硅或者它们的任意组合, 其形成方法为化学气相沉积。
歩骤 12), 图形化所述第一导电层、 介质层、 第二导电层形成第 一极板、 电容介质层、 第二极板; 所述第一导电层对应形成第一极板, 所述第二导电层对应形成第二极板, 介质层对于形成电容介质层。
在形成 LTPS-TFT开关后, 可以利用以上所述的方法形成 MEMS 光阀以及封盖层、 密封盖。
本发明的显示装置中的 MEMS光阀包括第一光阀和第二光阀,通 过第一光阀和第二光阀两者相对运动, 来控制固定光栅的开启和关闭, 相对于一个光阀而言可以提高 MEMS光阀的灵敏度。
在本发明具体实施例中, 所述第一光阀包括: 第一可动光栅, 第 一电极和第二电极, 在所述第二电极和所述第一电极之间具有电势差 时, 所述第一电极带动所述第一可动光栅移动。 所述第二光阀包括: 第二可动光栅, 第三电极和第四电极, 在所述第三电极和所述第四电 极之间具有电势差时, 所述第三电极带动所述第二可动光栅移动, 并 且第一光阀和第二光阀的移动方向相反。 而且, 第一光阀和第二光阀 均有固定端, 将第一光阀和第二光阀与基底连接, 当需要回复原位时, 取消第一电极与第二电极之间、 第三电极与第四电极之间的电势差, 第一可动光栅的固定端、 第二可动光栅的固定端会带动第一可动光栅 和第二可动光栅回复原位。 因此, 可以通过控制第一电极和第二电极 之间的电势差控制第一光阀的移动, 通过控制第三电极和第四电极之 间的电势差控制第二光阀的移动, 使 MEMS光阀的控制简单, 而且结 构也相对简单。
而且, 在本发明的具体实施例中, TFT开关, 其电容的第一极板、 第二极板以及位于第一极板和第二极板之间的电容介质层组成了电 容, 由于第一极板与栅极位于同一层, 第一极板与栅极的材料相同, 为透光率小于 50%的导电材料; 第二极板与源电极和漏电极位于同一 层, 第二极板与源电极和漏电极的材料相同, 为透光率小于 50%的导 电材料。 在应用于具有 MEMS光阀的显示装置中时, 由于 MEMS光 阀显示装置不需要大的开口率, 因此可以将 TFT开关形成在显示装置 中不用来进行透光的部位上, 而且第一极板、 第二极板、 栅极、 源电 极和漏电极为透光率小于 50%导电材料,这样 TFT开关与 MEMS光阀 的兼容性更好, 可以提高显示装置的性能。 这样结构的 TFT开关, 第 一极板可以和栅极一起形成, 第二极板可以和源极、 漏极一起形成, 电容介质层可以在形成栅介质层时一起形成, 从而使形成 TFT开关的 工艺简化, 不用单独形成电容, 节约成本, 加快生产进度, 提高效率。
本发明虽然已以较佳实施例公开如上, 但其并不是用来限定本发 明, 任何本领域技术人员在不脱离本发明的精神和范围内, 都可以利 用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修 改, 因此, 凡是未脱离本发明技术方案的内容, 依据本发明的技术实 质对以上实施例所作的任何简单修改、 等同变化及修饰, 均属于本发 明技术方案的保护范围。

Claims

权利要求书:
1、 一种具有 MEMS光阀的显示装置, 包括:
基底;
位于所述基底上的固定光栅、 MEMS光阀, 所述 MEMS光阀用于 控制所述固定光栅的开启、 关闭;
其特征在于, 所述 MEMS光阀包括: 第一光阀和第二光阀, 所述 第一光阀设于所述第二光阀之上; 通过控制所述第一光阀和所述第二 光阀的移动控制所述固定光栅的开启、 关闭, 且所述第一光阀和第二 光阀的移动方向相反。
2、 如权利要求 1所述的具有 MEMS光阀的显示装置, 其特征在 于, 所述第一光阀包括: 第一可动光栅, 第一电极和第二电极;
所述第一可动光栅与所述第一电极固定连接, 所述第一电极和第 二电极相对设置, 在第一电极和第二电极之间形成电容, 在所述第二 电极和所述第一电极之间具有电势差时, 所述第一电极带动所述第一 可动光栅移动; 所述第一可动光栅在与所述第一电极相对的一侧具有 固定端, 通过所述固定端固定所述第一可动光栅, 在所述第一电极和 第二电极之间没有电势差时, 所述第一可动光栅的固定端带动第一可 动光栅回复原状。
3、 如权利要求 2所述的具有 MEMS光阀的显示装置, 其特征在 于, 所述第二光阀包括: 第二可动光栅, 第三电极和第四电极; 所述 第三电极、 第四电极位于所述第二可动光栅相对于第一电极和第二电 极的另一侧;
所述第二可动光栅与所述第三电极固定连接, 所述第三电极和第 四电极相对设置, 在第三电极和第四电极之间形成电容, 在所述第三 电极和所述第四电极之间具有电势差时, 所述第三电极带动所述第二 可动光栅移动; 所述第二可动光栅在与所述第三电极相对的一侧具有 固定端, 通过所述第二可动光栅的固定端固定所述第二可动光栅, 在 所述第三电极和第四电极之间没有电势差时, 所述第二可动光栅的固 定端带动第二可动光栅回复原状。
4、 如权利要求 3所述的具有 MEMS光阀的显示装置, 其特征在 于, 所述固定光栅为矩形, 具有顶边、 底边和两侧边; 所述第一可动光栅和第二可动光栅均为矩形, 且均具有第一边、 第二边、 第三边和第四边, 所述第一边和第三边相对, 第一边对应所 述顶边, 第三边对应所述底边, 所述第二边和第四边相对, 分别对应 所述两侧边;
所述第一电极和所述第二电极设置于所述第一可动光栅的第二边 一侧, 所述第一可动光栅的固定端设于所述第一可动光栅的第四边一 所述第三电极和所述第四电极设置于第二可动光栅的第四边一 侧, 所述第二可动光栅的固定端设于所述第二可动光栅的第二边一侧。
5、 如权利要求 4所述的具有 MEMS光阀的显示装置, 其特征在 于, 所述第一光阀还包括第一固定板, 设于所述第一可动光栅的第四 边与第一可动光栅固定连接, 所述第一固定板为两个, 对称分布在所 述第一可动光栅的第四边, 且分别位于所述第一可动光栅的第一边一 侧和第三边一侧; 所述第一可动光栅的固定端设于所述第一固定板远 离第一可动光栅的一端;
所述第二光阀还包括第二固定板, 设于所述第二可动光栅的第二 边与第二可动光栅固定连接, 所述第二固定板为两个, 对称分布在所 述第二可动光栅的第二边, 且分别位于所述第二可动光栅的第一边一 侧和第三边一侧; 所述第二可动光栅的固定端设于所述第二固定板远 离第二可动光栅的一端。
6、 如权利要求 4所述的具有 MEMS光阀的显示装置, 其特征在 于, 所述第一电极具有第一板、 第二板, 第一板和第二板与所述第一 可动光栅连接且对称分布, 所述第一板和所述第二板远离第一可动光 栅的一端为第一固定端, 通过所述第一固定端固定所述第一电极; 所述第二电极具有第三板和第四板, 第三板与所述第一电极的第 一板相对, 第四板与所述第一电极的第二板相对, 所述第三板和所述 第四板之间具有第二固定端, 第二固定端连接第三板和第四板, 通过 所述第二固定端固定所述第二电极; 所述第二电极两端与第一电极之 间的距离小于第二固定端与第一电极之间的距离。
7、 如权利要求 4所述的具有 MEMS光阀的显示装置, 其特征在 于, 所述第三电极具有第一板、 第二板, 所述第一板和所述第二板与 所述第二可动光栅连接且对称分布, 所述第一板和所述第二板远离第 二可动光栅的一端为第三固定端, 通过所述第三固定端固定所述第三 所述第四电极具有第三板和第四板, 第三板与所述第三电极的第 一板相对, 第四板与所述第三电极的第二板相对, 所述第三板和所述 第四板之间具有第四固定端, 第四固定端连接第三板和第四板, 通过 所述第四固定端固定所述第四电极; 所述第四电极两端与第三电极之 间的距离小于第四固定端与第三电极之间的距离。
8、 如权利要求 4所述的具有 MEMS光阀的显示装置, 其特征在 于, 所述第一可动光栅、 第二可动光栅具有多个条状的透光开口, 所 述条状的透光开口与所述第一可动光栅、第二可动光栅的第二边平行。
9、 如权利要求 3所述的具有 MEMS光阀的显示装置, 其特征在 于, 所述固定光栅为圆形; 所述第一可动光栅为圆形, 具有多个扇形 的透光开口; 所述第二可动光栅为圆形, 具有多个扇形的透光开口; 所述第一电极、 第二电极、 第一可动光栅的固定端设于第一可动 光栅的圆周边;
所述第三电极、 第四电极、 第二可动光栅的固定端设于第二可动 光栅的圆周边。
10、 如权利要求 9所述的具有 MEMS光阀的显示装置, 其特征在 于, 所述第一电极具有第一板, 第一板与所述第一可动光栅的圆周边 缘连接, 所述第一板远离第一可动光栅的一端为第一固定端, 通过所 述第一固定端固定所述第一电极;
所述第二电极具有第二板, 第二板与所述第一电极的第一板相对, 所述第二板具有第二固定端, 通过所述第二固定端固定所述第二电极; 所述第二极板远离第二固定端的一端与第一电极之间的距离小于第二 固定端与第一电极之间的距离;
所述第三电极具有第三板, 第三板与所述第二可动光栅的圆周边 缘连接, 所述第三板远离第二可动光栅的一端为第三固定端, 通过所 述第三固定端固定所述第三电极;
所述第四电极具有第四板, 第四板与所述第三电极的第三板相对, 所述第四板具有第四固定端, 通过所述第四固定端固定所述第二电极; 所述第四极板远离第四固定端的一端与第二电极之间的距离小于第四 固定端与第二电极之间的距离。
11、 如权利要求 10所述的具有 MEMS光阀的显示装置, 其特征 在于, 所述第一光阀还包括第一固定板, 位于所述圆形的第一可动光 栅的圆周边缘与第一可动光栅固定连接; 所述第一可动光栅的固定端 设于所述第一固定板的远离第一可动光栅的一端;
所述第二光阀还包括第二固定板, 位于所述圆形的第二可动光栅 的圆周边缘与第二可动光栅固定连接; 所述第二可动光栅的固定端设 于所述第二固定板的远离第二可动光栅的一端。
12、 如权利要求 3所述的具有 MEMS光阀的显示装置, 其特征在 于, 所述固定光栅为扇形; 所述第一可动光栅为扇形, 具有多个条状 的透光开口; 所述第二可动光栅为扇形, 具有多个条状的透光开口; 所述第一电极、 第二电极设于第一可动光栅的短圆弧边、 第一可 动光栅的固定端设于第一可动光栅的长圆弧边一侧;
所述第三电极、 第四电极设于第二可动光栅的短圆弧边、 第二可 动光栅的固定端设于第二可动光栅的长圆弧边一侧。
13、 如权利要求 12所述的具有 MEMS光阀的显示装置, 其特征 在于, 所述第一电极具有第一板, 第一板与所述第一可动光栅的短圆 弧边连接, 所述第一板远离第一可动光栅的一端为第一固定端, 通过 所述第一固定端固定所述第一电极;
所述第二电极具有第二板, 第二板与所述第一电极的第一板相对, 所述第二板具有第二固定端, 通过所述第二固定端固定所述第二电极; 所述第二极板远离第二固定端的一端与第一电极之间的距离小于第二 固定端与第一电极之间的距离;
所述第三电极具有第三板, 第三板与所述第二可动光栅的短圆弧 边连接, 所述第三板远离第二可动光栅的一端为第三固定端, 通过所 述第三固定端固定所述第三电极;
所述第四电极具有第四板, 第四板与所述第三电极的第三板相对, 所述第四板具有第四固定端, 通过所述第四固定端固定所述第四电极; 所述第四极板远离第四固定端的一端与第三电极之间的距离小于第四 固定端与第三电极之间的距离。
14、 如权利要求 13所述的具有 MEMS光阀的显示装置, 其特征 在于, 所述第一光阀还包括第一固定板, 位于所述第一可动光栅的长 圆弧边缘与第一可动光栅固定连接; 所述第一可动光栅的固定端设于 所述第一固定板远离第一可动光栅的一端;
所述第二光阀还包括第二固定板, 位于所述第二可动光栅的长圆 弧边缘与第二可动光栅固定连接; 所述第二可动光栅的固定端设于所 述第二固定板远离第二可动光栅的一端。
15、 如权利要求 3所述的具有 MEMS光阀的显示装置, 其特征在 于, 还包括 TFT开关, 位于所述基底或固定光栅上, 所述第一电极、 第二电极、 第三电极和第四电极分别与相应的 TFT开关电连接。
16、 如权利要求 15所述的具有 MEMS光阀的显示装置, 其特征 在于, 所述 TFT开关包括:
栅极, 源区、 漏区, 用于电导通源区和漏区的导电沟道, 位于所 述栅极和导电沟道之间的栅介质层, 与所述源区电连接的源电极, 与 所述漏区电连接的漏电极, 电容; 所述电容包括第一极板、 第二极板 以及位于第一极板和第二极板之间的电容介质层;
所述第一极板与所述栅极位于同一层, 所述第一极板与所述栅极 的材料相同, 为透光率小于 50%的导电材料;
所述第二极板与所述源电极和漏电极位于同一层, 所述第二极板 与所述源电极和漏电极的材料相同, 为透光率小于 50%的导电材料, 所述第二极板与源电极或漏电极电连接, 所述第二极板与所述第一电 极、 第二电极、 第三电极和第四电极电连接。
17、 如权利要求 16所述的具有 MEMS光阀的显示装置, 其特征 在于, 所述导电沟道为低掺杂硅层, 所述低掺杂硅层和栅介质层之间 为高掺杂硅层, 所述高掺杂硅层具有开口, 开口两侧分别为源区和漏 区, 所述开口暴露出所述低掺杂硅层。
18、 如权利要求 16所述的具有 MEMS光阀的显示装置, 其特征 在于, 所述栅介质层的材料与所述电容介质层的材料相同, 且栅介质 层和电容介质层位于同一层。
19、 如权利要求 16所述的具有 MEMS光阀的显示装置, 其特征 在于, 所述第一极板、 第二极板、 栅极、 源电极和漏电极的材料选自 金属。
20、 如权利要求 19所述的具有 MEMS光阀的显示装置, 其特征 在于, 所述第一极板、 第二极板、 栅极、 源电极和漏电极的材料选自 金、 银、 铜、 铝、 钛、 铬、 钼、 镉、 镍、 钴其中之一或者它们的任意 组合。
21、 如权利要求 16所述的具有 MEMS光阀的显示装置, 其特征 在于, 所述第一极板、 第二极板、 栅极、 源电极和漏电极的材料选自 金、 银、 铜、 铝、 钛、 铬、 钼、 镉、 镍、 钴、 非晶硅、 多晶硅、 非晶 锗硅、 多晶锗硅其中之一或者它们的任意的组合。
22、 如权利要求 15所述的具有 MEMS光阀的显示装置, 其特征 在于, 所述 TFT开关为 LTPS-TFT开关。
23、 如权利要求 1〜22任一项所述的具有 MEMS光阀显示装置, 其特征在于, 还包括封盖层和密封盖, 所述封盖层在四周包围所述 MEMS光阀、在顶部遮盖所述 MEMS光阀, 且在所述封盖层的顶部具 有开口; 所述密封盖密封所述开口。
24、 如权利要求 23所述的具有 MEMS光阀的显示装置, 其特征 在于, 所述封盖层和密封盖的材料选自氧化硅、 氮化硅、 碳化硅或氮 氧化硅或者它们的任意组合。
25、 如权利要求 1所述的具有 MEMS光阀的显示装置, 其特征在 于, 所述固定光栅位于所述基底上;
所述第二光阀位于所述固定光栅之上, 所述第一光阀位于所述第 二光阀之上。
26、 如权利要求 1所述的具有 MEMS光阀的显示装置, 其特征在 于, 所述第二光阀位于所述基底上, 所述第一光阀位于所述第二光阀 之上;
所述固定光栅位于所述第一光阀之上。
27、 一种形成具有 MEMS光阀的显示装置的方法, 其特征在于, 包括:
提供基底;
在所述基底上形成固定光栅、权利要求 3〜14任一项所述的 MEMS 光阀; 其中, 在所述基底上形成固定光栅后, 在所述固定光栅之上形成
MEMS光阀; 或者, 在所述基底之上形成 MEMS光阀后, 在 MEMS 光阀之上形成固定光栅。
28、 如权利要求 27所述的形成显示装置的方法, 其特征在于, 在 形成 MEMS光阀之前, 在所述基底或固定光栅上形成 TFT开关, 所述 固定电极与相应的 TFT开关电连接。
29、 如权利要求 28所述的形成具有 MEMS光阀的显示装置的方 法, 其特征在于, 所述形成 TFT开关的方法包括:
在所述基底或固定光栅上形成第一导电层, 所述第一导电层的材 料为透光率小于 50%的导电材料;
图形化所述第一导电层, 形成栅极、 第一极板;
形成第一介质层, 覆盖所述栅极、 第一极板, 位于所述第一极板 上的第一介质层作为电容介质层, 位于所述栅极上方的第一介质层作 为栅介质层;
在所栅极上的第一介质层上依次形成低掺杂硅层、 高掺杂硅层; 所述高掺杂硅层具有开口, 开口两侧为源区和漏区, 所述开口暴露出 所述低掺杂硅层, 所述低掺杂硅层为导电沟道;
形成第二导电层, 覆盖所述第一介质层和低掺杂硅层、 高掺杂硅 层, 所述第二导电层的材料为透光率小于 50%的导电材料;
图形化所述第二导电层, 形成与源区电连接的源电极、 与漏区电 连接的漏电极和第二极板, 所述第二极板、 第一极板和第一极板上的 第一介质层组成电容, 所述第二极板与源电极或漏电极电连接。
30、 如权利要求 29所述的形成具有 MEMS光阀的显示装置的方 法, 其特征在于, 第一导电层和第二导电层的材料选自金、 银、 铜、 铝、 钛、 铬、 钼、 镉、 镍、 钴、 非晶硅、 多晶硅、 非晶锗硅、 多晶锗 硅其中之一或者它们的任意的组合。
31、 如权利要求 29所述的形成具有 MEMS光阀的显示装置的方 法, 其特征在于, 在所述形成 TFT开关后, 形成 MEMS光阀, 所述形 成 MEMS光阀包括:
在所述基底或者固定光栅上形成图形化的第一牺牲层、 定义出第 二光阀的位置; 在所述图形化的第一牺牲层的表面形成第三导电层、第二介质层, 图形化所述第三导电层、 第二介质层形成第二可动光栅、 第二可动光 栅的固定端;
在所述图形化后的第三导电层、 第二介质层上形成图形化的第二 牺牲层, 定义出第一 MEMS光阀的位置;
在所述图形化的第二牺牲层上, 形成第四导电层、 第三介质层, 图形化所述第四导电层、 第三介质层形成第一光阀、 所述第二光阀的 第三电极、 第四电极;
去除所述图形化的第一牺牲层、 图形化的第二牺牲层。
32、 如权利要求 31所述的形成具有 MEMS光阀的显示装置的方 法, 其特征在于, 在去除所述图形化的第一牺牲层和图形化的第二牺 牲层之前还包括:
形成第三牺牲层, 覆盖所述 MEMS光阀、 图形化的第一牺牲层、 图形化的第二牺牲层;
在所述第三牺牲层的表面形成封盖层, 所述封盖层上具有多个开 口, 暴露出第三牺牲层; 所述封盖层在四周包围所述 MEMS光阀、 在 顶部遮盖所述 MEMS光阀。
33、 如权利要求 32所述的形成具有 MEMS光阀的显示装置的方 法, 其特征在于, 所述去除第一牺牲层和第二牺牲层时, 同时去除第 三牺牲层。
34、 如权利要求 33所述的形成具有 MEMS光阀的显示装置的方 法, 其特征在于, 所述第一牺牲层、 第二牺牲层、 第三牺牲层的材料 为非晶碳;
去除第一牺牲层和第二牺牲层, 同时去除第三牺牲层的方法包括: 等离化氧化形成氧等离子体;
将所述氧等离子体通入所述开口,在温度范围为 150°C〜450°C的条 件下灰化所述非晶碳。
35、 如权利要求 33所述的形成具有 MEMS光阀的显示装置的方 法, 其特征在于, 还包括: 在去除第一牺牲层、 第二牺牲层和第三牺 牲层后, 形成密封盖, 覆盖所述封盖层。
36、 如权利要求 35所述的形成具有 MEMS光阀的显示装置的方 法, 其特征在于, 形成第三牺牲层后, 形成封盖层之前还包括: 图形化所述第三牺牲层, 形成相邻的 MEMS光阀之间的隔离槽; 所述封盖层形成于所述图形化后的第三牺牲层的表面。
37、 如权利要求 35所述的形成具有 MEMS光阀的显示装置的方 法, 其特征在于, 所述封盖层和密封盖的材料选自氧化硅、 氮化硅、 碳化硅或氮氧化硅或者它们的任意组合, 形成方法为化学气相沉积。
PCT/CN2011/084900 2011-04-18 2011-12-29 具有mems光阀的显示装置及其形成方法 WO2012142849A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/112,165 US8854712B2 (en) 2011-04-18 2011-12-29 Display device provided with MEMS light valve and forming method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110097096.4A CN102279463B (zh) 2011-04-18 2011-04-18 具有mems光阀的显示装置及其形成方法
CN201110097096.4 2011-04-18

Publications (1)

Publication Number Publication Date
WO2012142849A1 true WO2012142849A1 (zh) 2012-10-26

Family

ID=45105005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084900 WO2012142849A1 (zh) 2011-04-18 2011-12-29 具有mems光阀的显示装置及其形成方法

Country Status (3)

Country Link
US (1) US8854712B2 (zh)
CN (1) CN102279463B (zh)
WO (1) WO2012142849A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140268272A1 (en) * 2013-03-13 2014-09-18 Pixtronix, Inc. Mems shutter assemblies for high-resolution displays
US9134532B2 (en) 2013-03-13 2015-09-15 Pixtronix, Inc. MEMS shutter assemblies for high-resolution displays

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102279463B (zh) * 2011-04-18 2013-10-23 上海丽恒光微电子科技有限公司 具有mems光阀的显示装置及其形成方法
CN102419475B (zh) * 2011-12-21 2014-10-01 上海丽恒光微电子科技有限公司 Mems光阀及其制造方法、具有该mems光阀的显示装置
US20140175909A1 (en) * 2012-12-21 2014-06-26 Pixtronix, Inc. Systems and Methods for Supporting a Movable Element of an Electromechanical Device
JP2014178456A (ja) * 2013-03-14 2014-09-25 Pixtronix Inc 表示装置及びその製造方法
CN104464632B (zh) * 2014-12-24 2017-01-11 京东方科技集团股份有限公司 一种像素结构及其制备方法、像素显示方法和阵列基板
US20170003499A1 (en) * 2015-07-02 2017-01-05 Pixtronix, Inc. Silane modified fluid for mems stiction reduction
CN106338837A (zh) * 2016-10-26 2017-01-18 厦门天马微电子有限公司 一种三维显示装置
KR101841365B1 (ko) * 2016-11-08 2018-03-22 성균관대학교산학협력단 촉각 피드백 장치
CN106782231B (zh) * 2017-01-20 2020-09-11 合肥安达创展科技股份有限公司 一种基于lcd光阀阵列的动画显示系统
CN110930953A (zh) * 2019-11-22 2020-03-27 深圳市华星光电半导体显示技术有限公司 mini-LED背光模组及液晶显示面板
CN112730945B (zh) * 2020-12-21 2023-05-09 上海交通大学 基于自加热非晶锗热电阻的柔性mems流速传感器
CN112904550B (zh) * 2021-01-29 2022-04-22 华中科技大学 一种基于多层硅基光栅的太赫兹波幅度调制器及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6288824B1 (en) * 1998-11-03 2001-09-11 Alex Kastalsky Display device based on grating electromechanical shutter
US20090244678A1 (en) * 2005-02-23 2009-10-01 Pixtronix, Inc. Display apparatus and methods for manufacture thereof
US20110032246A1 (en) * 2009-08-07 2011-02-10 Samsung Electronics Co., Ltd. Display device using mems and driving method thereof
CN202057883U (zh) * 2011-04-18 2011-11-30 上海丽恒光微电子科技有限公司 具有mems光阀的显示装置
CN102279463A (zh) * 2011-04-18 2011-12-14 上海丽恒光微电子科技有限公司 具有mems光阀的显示装置及其形成方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2251148Y (zh) * 1994-10-18 1997-04-02 韩佐军 光栅光阀式立体电视节目观赏装置
US6407851B1 (en) * 2000-08-01 2002-06-18 Mohammed N. Islam Micromechanical optical switch
KR100815362B1 (ko) * 2005-01-05 2008-03-19 삼성전기주식회사 인터디지테이트형의 회절형 광변조기
US7271945B2 (en) * 2005-02-23 2007-09-18 Pixtronix, Inc. Methods and apparatus for actuating displays
CN101240887A (zh) * 2008-03-18 2008-08-13 北京星光影视设备科技股份有限公司 气体放电灯机械调光装置
CN101567554A (zh) * 2008-04-22 2009-10-28 天津泛海科技有限公司 应用微机电系统mems开关的电池组保护电路
WO2012088011A1 (en) * 2010-12-20 2012-06-28 Pixtronix, Inc. Systems and methods for mems light modulator arrays with reduced acoustic emission

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6288824B1 (en) * 1998-11-03 2001-09-11 Alex Kastalsky Display device based on grating electromechanical shutter
US20090244678A1 (en) * 2005-02-23 2009-10-01 Pixtronix, Inc. Display apparatus and methods for manufacture thereof
US20110032246A1 (en) * 2009-08-07 2011-02-10 Samsung Electronics Co., Ltd. Display device using mems and driving method thereof
CN202057883U (zh) * 2011-04-18 2011-11-30 上海丽恒光微电子科技有限公司 具有mems光阀的显示装置
CN102279463A (zh) * 2011-04-18 2011-12-14 上海丽恒光微电子科技有限公司 具有mems光阀的显示装置及其形成方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140268272A1 (en) * 2013-03-13 2014-09-18 Pixtronix, Inc. Mems shutter assemblies for high-resolution displays
WO2014164140A1 (en) * 2013-03-13 2014-10-09 Pixtronix, Inc. Mems shutter assemblies for high-resolution displays
US9134532B2 (en) 2013-03-13 2015-09-15 Pixtronix, Inc. MEMS shutter assemblies for high-resolution displays
JP2016516215A (ja) * 2013-03-13 2016-06-02 ピクストロニクス,インコーポレイテッド 高解像度ディスプレイのためのmemsシャッターアセンブリ
US9632307B2 (en) 2013-03-13 2017-04-25 Snaptrack, Inc. MEMS shutter assemblies for high-resolution displays
KR101822099B1 (ko) 2013-03-13 2018-01-25 스냅트랙, 인코포레이티드 고해상도 디스플레이들에 대한 mems 셔터 어셈블리들

Also Published As

Publication number Publication date
US8854712B2 (en) 2014-10-07
US20140029077A1 (en) 2014-01-30
CN102279463B (zh) 2013-10-23
CN102279463A (zh) 2011-12-14

Similar Documents

Publication Publication Date Title
WO2012142849A1 (zh) 具有mems光阀的显示装置及其形成方法
WO2012142847A1 (zh) 具有mems光阀的显示装置及其形成方法
US8061910B2 (en) Micro shutter having iris function, method for manufacturing the same, and micro camera module having the same
CN103293804B (zh) 液晶显示装置及其制造方法
TWI482285B (zh) 薄膜電晶體,具有該薄膜電晶體的陣列基板,以及用於製造該陣列基板的方法
US8729612B2 (en) Active matrix substrate and method for manufacturing the same
US8698170B2 (en) Display device with spacer between two substrates
WO2001033292A1 (fr) Dispositif d'affichage a cristaux liquides
TWI699601B (zh) 畫素結構及其製造方法
KR20080110347A (ko) 전기 영동 표시 장치 및 그 제조 방법
TW200405103A (en) Liquid crystal display device
CN103137555B (zh) 薄膜晶体管液晶显示器件及其制造方法
US9318505B2 (en) Display panel and method of manufacturing the same
TWI374323B (en) Panel for display device and liquid crystal display
TWI490615B (zh) 用於邊緣電場切換模式液晶顯示裝置的陣列基板及其製造方法
CN101976650A (zh) 薄膜晶体管及其制造方法
US7763480B2 (en) Method for manufacturing thin film transistor array substrate
CN202057883U (zh) 具有mems光阀的显示装置
WO2017031941A1 (zh) 阵列基板及其制备方法、显示面板
CN112382638B (zh) 阵列基板及其制备方法、显示装置
CN202057882U (zh) 具有mems光阀的显示装置
WO2012142845A1 (zh) Mems光阀、显示装置及其形成方法
CN102237370A (zh) Tft基板及其形成方法、显示装置
US20160033754A1 (en) Display device and method for fabricating the same
CN113488485B (zh) 阵列基板、阵列基板的制作方法及显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864043

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14112165

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864043

Country of ref document: EP

Kind code of ref document: A1