WO2012140879A1 - ハイブリッド建設機械 - Google Patents

ハイブリッド建設機械 Download PDF

Info

Publication number
WO2012140879A1
WO2012140879A1 PCT/JP2012/002507 JP2012002507W WO2012140879A1 WO 2012140879 A1 WO2012140879 A1 WO 2012140879A1 JP 2012002507 W JP2012002507 W JP 2012002507W WO 2012140879 A1 WO2012140879 A1 WO 2012140879A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
housing
motor housing
motor
stator
Prior art date
Application number
PCT/JP2012/002507
Other languages
English (en)
French (fr)
Inventor
允紀 廣澤
山▲崎▼ 洋一郎
Original Assignee
コベルコ建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コベルコ建機株式会社 filed Critical コベルコ建機株式会社
Priority to CN201280017933.0A priority Critical patent/CN103460563B/zh
Priority to US14/111,339 priority patent/US9337697B2/en
Priority to EP12771542.3A priority patent/EP2698903A4/en
Publication of WO2012140879A1 publication Critical patent/WO2012140879A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/0858Arrangement of component parts installed on superstructures not otherwise provided for, e.g. electric components, fenders, air-conditioning units
    • E02F9/0866Engine compartment, e.g. heat exchangers, exhaust filters, cooling devices, silencers, mufflers, position of hydraulic pumps in the engine compartment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/006Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric motors

Definitions

  • the present invention relates to a hybrid construction machine including an engine, a generator motor connected to the engine, and a means for cooling the generator motor.
  • the background art will be described by taking as an example a hybrid excavator having a power unit configured by connecting an engine, a generator motor, and a hydraulic pump in series.
  • a generator motor and a hydraulic pump are connected to the engine.
  • the hydraulic actuator is driven by the oil discharged from the hydraulic pump.
  • the battery is charged by operating the generator motor as a generator, and the engine is assisted by operating the generator motor as a motor with the electric power of the capacitor when appropriate.
  • a pump device in which a refrigerant passage is provided in an electric motor housing is known (see Patent Document 1).
  • the stator that is, the entire generator motor is cooled by heat exchange between a coolant such as water and the stator.
  • the refrigerant passage be provided on the outer periphery of the stator in terms of cooling efficiency.
  • the refrigerant passage cannot be provided on the outer periphery of the stator. For this reason, it is necessary to provide the refrigerant passage offset in the axial direction with respect to the outer periphery of the stator (the coupling surface between the engine housing and the electric motor housing).
  • An object of the present invention is to provide a hybrid construction machine capable of efficiently cooling a generator motor while keeping the total length of a power unit short.
  • the present invention is a hybrid construction machine, which has an engine having a crankshaft and an engine housing, a rotor connected to the crankshaft, and a radially outer position of the rotor.
  • a generator motor having an electric motor housing that houses the rotor and the stator, and the engine housing and the electric motor housing are coupled to the engine side of the engine housing at a radially outer position of the stator.
  • an electric motor side coupling surface of the electric motor housing are coupled to each other, and the electric motor housing projects from the inner peripheral edge of the electric motor side coupling surface to the engine side in the axial direction over the entire circumference around the axis.
  • An overhanging portion that fits into the engine housing, and the stator.
  • a hybrid construction machine that is disposed at a position shifted in the axial direction with respect to a coupling surface.
  • FIG. 2 is a perspective view of the motor housing shown in FIG.
  • the hybrid excavator includes a power unit configured by connecting an engine 1, a generator motor 2, and a hydraulic pump 3 in series.
  • the hybrid excavator includes an engine 1, a generator motor 2 connected to the engine 1, a hydraulic pump 3 connected to the generator motor 2, the engine 1, and a generator motor. 2, a flywheel 5 provided between the generator motor 2, a coupling 7 provided between the generator motor 2 and the hydraulic pump 3, a refrigerant passage 22 for cooling the generator motor 2, and a refrigerant passage 22. And a heat insulating material 17 provided between the engine 1 and the generator motor 2, and a heat insulating material 20 provided between the generator motor 2 and the hydraulic pump 3.
  • the engine 1 includes a crankshaft 4 that is an output shaft of the engine 1 and an engine housing 12 that houses main components of the engine.
  • the flywheel 5 is attached to the crankshaft 4 of the engine 1.
  • the generator motor 2 includes a rotor 30 connected to the crankshaft 4, a stator 31 disposed on the outer periphery of the rotor, and a motor housing that houses the rotor 30 and the stator 31 and is coupled to the engine housing 12 on the outer periphery of the stator 31.
  • the rotor 30 includes a rotor shaft 6 connected to the flywheel 5 and a rotor core 9 provided on the outer periphery of the rotor shaft 6.
  • the stator 31 includes a stator core 10 provided on the outer periphery of the rotor 30 and a coil 11 wound around the stator core 10.
  • the hydraulic pump 3 has a pump shaft 8 that is rotated by the power of the engine 1 and the power of the generator motor 2, and a pump housing 14 that houses the main components of the hydraulic pump 3.
  • the pump shaft 8 is connected to the rotor shaft 6 via a coupling 7.
  • the engine housing 12 and the motor housing 13 are the outer peripheral position in the radial direction of the stator 31 (stator core 10) and the engine side coupling surface 15a of the engine housing 12 and the motor housing 13. Are coupled to each other in a state where they are pressed in the axial direction over the entire circumference around the axis (axis parallel to the central axis O in FIG. 1). Specifically, the end of the engine housing 12 connected to the electric motor housing 13 protrudes in a bowl shape toward the outside in the radial direction from the other portions, and has an engine side flange 15 having an engine side connecting surface 15a. Is provided.
  • an end of the motor housing 13 coupled to the engine housing 12 is provided with a motor-side flange 16 that protrudes in a bowl shape toward the outside in the radial direction from the other portions and has a motor-side coupling surface 16a. It has been.
  • a heat insulating material 17 is sandwiched between the flanges 15 and 16. Specifically, the heat insulating material 17 is sandwiched between the flange side coupling surface 15a and the motor side coupling surface 16a.
  • the flanges 15 and 16 are connected by bolts at a plurality of locations in the circumferential direction at the radially outer position of the stator 31 (stator core 10).
  • the engine housing 12 and the motor housing 13 are coupled at the radially outer position of the stator 31 (stator core 10).
  • the engine housing 12 is preferably formed of a magnetic material such as iron in order to ensure the required strength.
  • the motor housing 13 is made of a magnetic material, the power generation efficiency may be reduced due to leakage of magnetic force.
  • the motor housing 13 is preferably formed of a nonmagnetic material.
  • the motor housing 13 is formed in a cylindrical shape as a whole.
  • a large-diameter surface 13a, a small-diameter surface 13b having a diameter smaller than the diameter of the large-diameter surface 13a, and the large-diameter surface 13a and the small-diameter surface 13b are connected to the inner periphery of the motor housing 13 in a stepped manner.
  • a connection surface 13c is formed between the large-diameter surface 13a and the small-diameter surface 13b (see FIG. 2).
  • the motor housing 13 is provided with a projecting portion 21 that projects from the inner peripheral edge of the motor side coupling surface 16a toward the engine side in the axial direction over the entire circumference around the axis. That is, the overhang portion 21 is provided on the inner peripheral side of the end portion on the engine housing 12 side that is coupled to the engine housing 12. The overhang portion 21 protrudes from the motor side coupling surface 16a toward the engine housing 12 in the axial direction. Further, the overhanging portion 21 is provided in a ring shape over the entire circumference of the motor housing 13 with the center line O in FIG. 1 as the center.
  • the overhanging portion 21 can be fitted inside the engine housing 12 in a state where the engine housing 12 and the electric motor housing 13 are arranged concentrically.
  • the engine housing 12 has a fitting hole 32a into which the overhanging portion 21 can be fitted, and a small diameter hole 32c having a diameter smaller than that of the fitting hole 32a.
  • a contact surface 32b interposed between the fitting hole 32a and the small diameter hole 32c is formed.
  • an inner surface centering on the center line O of FIG. 1 is formed.
  • the outer diameter dimension of the overhanging portion 21 and the inner diameter dimension of the fitting hole 32a are set to values that can be fitted to each other.
  • the heat insulating material 17 is also provided between the outer surface of the overhang portion 21 and the inner surface of the fitting hole 32a. Therefore, the outer diameter dimension of the overhang portion 21 and the inner diameter dimension of the fitting hole 32a are set in consideration of the thickness dimension of the heat insulating material 17.
  • the tip surface of the overhanging portion 21 is in contact with the contact surface 32b with the heat insulating material 17 interposed therebetween.
  • the inner side surface of the overhang portion 21 is included in the large-diameter surface 13a.
  • the large-diameter surface 13a is in surface contact with the outer peripheral surface of the stator core 10 in the entire width range in the axial direction of the stator 31 (direction parallel to the center line O in FIG. 1).
  • the connection surface 13c is in surface contact with the side surface of the stator core 10 opposite to the engine 1 (hydraulic pump 3 side).
  • the refrigerant passage 22 is provided in the motor housing 13 and is used for flowing a refrigerant (a liquid such as water or oil or a refrigerant gas) for cooling the stator 31.
  • a refrigerant a liquid such as water or oil or a refrigerant gas
  • the refrigerant passage 22 is disposed at a position offset to the motor-side coupling surface 16a, that is, the axially opposite side of the engine 1 (the hydraulic pump 3 side) with respect to the radially outer position of the stator. .
  • symbol ⁇ indicates an offset amount from the motor side coupling surface 16 a of the refrigerant passage 22.
  • the offset amount ⁇ is desirably as small as possible (the refrigerant passage 22 is disposed at a position close to the stator) in order to improve heat transfer efficiency.
  • the refrigerant passage 22 is formed on the outer peripheral surface of the electric motor housing 13, extends in the circumferential direction and opens to the outer peripheral side of the electric motor housing 13, and the electric motor housing so as to cover the opening of the concave groove 23. 13 and the inner peripheral surface of the cover 24 provided on the outer peripheral surface.
  • the recessed groove 23 and the cover 24 are respectively provided over the entire circumference of the motor housing 13.
  • the pipe 25 is connected to the refrigerant passage 22.
  • a pump (not shown)
  • the refrigerant is supplied from the outside to the refrigerant passage 22 via the pipe 25 and returns from the refrigerant passage to the pump via the pipe 25. That is, the refrigerant circulates between the refrigerant passage 22 and the pump. It is preferable to provide a mechanism for cooling the refrigerant between the refrigerant passage 22 and the pump.
  • reference numeral 26 denotes an O-ring that seals between the cover 24 and the motor housing 13. Each O-ring 26 is provided at a mounting portion of the cover 24.
  • the engine housing 12 (engine-side coupling surface 15a) and the motor housing 13 (motor-side coupling surface 16a) are coupled at the radially outer position of the stator 31, and the refrigerant
  • the passage 22 is disposed so as to be offset in the axial direction with respect to the stator 31 (the motor side coupling surface 16a).
  • the motor housing 13 is further provided with a projecting portion 21 projecting toward the engine housing 12, and the inner peripheral surface of the motor housing 13 including the inner peripheral surface of the projecting portion 21 ( The large-diameter surface 13a) is in surface contact with the outer peripheral surface of the stator 31 (stator core 10). Therefore, the cooling efficiency can be improved by increasing the contact area (heat transfer area) between the stator 31 and the motor housing 13.
  • the required cooling performance of the stator 31 (the generator motor 2) can be ensured without increasing the shaft length of the motor housing 13.
  • the inner peripheral surface (large-diameter surface 13a) of the motor housing 13 including the inner peripheral surface of the overhanging portion 21 is in surface contact with the outer peripheral surface of the stator 31 (stator core 10) in the entire width range of the stator 31 in the axial direction.
  • the connection surface 13c of the electric motor housing 13 is in surface contact with the side surface of the stator 31 opposite to the engine (the hydraulic pump 3 side). As a result, the heat transfer area can be further increased.
  • the overhanging portion 21 for increasing the heat transfer area is fitted inside the engine housing 12 (the overhanging portion 21 is used as a fitting portion for the engine housing 12). Therefore, the concentricity between the engine housing 12 and the electric motor housing 13 can be ensured, and the assemblability can be improved.
  • a refrigerant passage 22 is formed on the outer peripheral surface of the motor housing 13. Therefore, unlike the case where the refrigerant passage 22 is provided on the inner peripheral side of the electric motor housing 13, there is no possibility that the stator 31 and the rotor 30 are immersed in the refrigerant when the refrigerant leaks.
  • the coolant passage 22 is constituted by the concave groove 23 formed in the motor housing 13 and the cover 24. Therefore, it is advantageous in terms of processing and cost as compared with the case where the independent refrigerant passage 22 is attached to the outer periphery of the motor housing 13.
  • flanges 15 and 16 that project in a bowl shape toward the outside in the radial direction are provided, and the flanges 15 and 16 are coupled to each other. ing. Therefore, the flanges 15 and 16 for coupling the housings 12 and 13 can act as heat radiating fins that exchange heat with the outside air. Therefore, the cooling efficiency can be further improved by enhancing the heat dissipation of the engine housing 12 and the motor housing 13.
  • Thermal insulation materials 17 and 20 are interposed between the engine housing 12 and the motor housing 13 (flanges 15 and 16) and between the motor housing 13 and the pump housing 14 (flanges 18 and 19), respectively. . Therefore, in the hybrid construction machine in which the engine 1, the generator motor 2 and the hydraulic pump 3 are connected in series, the heat transfer between the engine 1 and the generator motor 2 and the heat transfer between the generator motor 2 and the hydraulic pump 3 are performed. It can be suppressed by the heat insulating materials 17 and 20. Therefore, the cooling efficiency of the stator 31 by the refrigerant passage 22 can be increased by suppressing heat transfer from the engine 1 or the hydraulic pump 3 serving as a heat source to the motor housing 13 by the heat insulating materials 17 and 20.
  • heat insulating materials 17 and 20 may be provided only between the engine housing 12 and the electric motor housing 13 or only between the electric motor housing 13 and the pump housing 14. Further, the heat insulating materials 17 and 20 can be omitted.
  • the present invention is not limited to a hybrid excavator, but is a hybrid construction machine in which an engine, a generator motor, and a hydraulic pump are connected on the same axis, or an engine and a generator motor are connected on the same axis, and the hydraulic pump generates power. It can be widely applied to hybrid construction machines connected to the engine in parallel with the electric motor.
  • the present invention is a hybrid construction machine, an engine having a crankshaft and an engine housing, a rotor connected to the crankshaft, a stator disposed at a radially outer position of the rotor, and the above
  • a generator motor having a rotor and a motor housing that houses the stator, wherein the engine housing and the motor housing are connected to the engine side coupling surface of the engine housing and the motor housing at a radially outer position of the stator.
  • the motor side coupling surface is coupled to each other, and the motor housing extends from the inner peripheral edge of the motor side coupling surface to the engine side in the axial direction over the entire circumference around the shaft and is fitted in the engine housing.
  • the overhanging portion to be jammed and the coolant for cooling the stator are flowed.
  • an inner peripheral surface of the motor housing including the inner peripheral surface of the projecting portion is in surface contact with the outer peripheral surface of the stator, and the refrigerant passage is in contact with the motor-side coupling surface.
  • a hybrid construction machine arranged at a position shifted in the axial direction.
  • the engine housing (engine side coupling surface) and the motor housing (motor side coupling surface) are coupled to each other at the radially outer position of the stator of the generator motor, and the refrigerant passage is the stator (motor side coupling surface).
  • the motor housing is further provided with a projecting portion projecting toward the engine housing, and the inner peripheral surface of the motor housing including the inner peripheral surface of the projecting portion faces the outer peripheral surface of the stator. In contact. Therefore, the cooling efficiency can be improved by increasing the contact area (heat transfer area) between the stator and the motor housing.
  • axis in the present invention means an axis parallel to the rotation axis of the crankshaft or the rotation axis of the rotor.
  • the inner peripheral surface of the motor housing including the inner peripheral surface of the overhanging portion is in surface contact with the outer peripheral surface of the stator in the entire width range in the axial direction.
  • the contact area can be maximized to increase heat transfer.
  • full width range in the axial direction means the full width range in the axial direction of the stator coil.
  • the inner peripheral surface of the motor housing contacts the outer peripheral surface of the coil.
  • a large-diameter surface, a small-diameter surface having a diameter smaller than the diameter of the large-diameter surface, and the large-diameter surface and the small-diameter surface are connected in steps to the inner periphery of the motor housing.
  • a connecting surface interposed between the large-diameter surface and the small-diameter surface is formed, and an inner peripheral surface of the projecting portion is included in the large-diameter surface, and the large-diameter surface is While the surface is in surface contact with the outer peripheral surface, the connection surface is preferably in surface contact with the side surface of the stator opposite to the engine.
  • the electric motor housing can be brought into surface contact with the side surface of the stator. Therefore, the heat transfer area between the motor housing and the stator can be further increased.
  • the projecting portion of the motor housing can be fitted inside the engine housing in a state where the engine housing and the motor housing are arranged concentrically.
  • the overhanging portion for increasing the heat transfer area can be used as a fitting portion for the engine housing.
  • the refrigerant passage is formed on the outer peripheral surface of the electric motor housing, extends in the circumferential direction and opens to the outer peripheral side of the electric motor housing, and the electric motor so as to cover the opening of the concave groove. It is preferable that it is prescribed
  • the refrigerant passage is formed on the outer peripheral surface of the motor housing. Therefore, unlike the case where the refrigerant passage is provided on the inner peripheral side of the motor housing, there is no possibility that the stator or the rotor is immersed in the refrigerant when the refrigerant leaks.
  • the refrigerant passage is constituted by the concave groove formed in the motor housing and the cover. Therefore, it is advantageous in terms of processing and cost compared to the case where an independent refrigerant passage is attached to the outer periphery of the housing.
  • an end of the engine housing that is coupled to the motor housing is provided with an engine-side flange that protrudes radially outward from the other portions and has the engine-side coupling surface.
  • An end of the electric motor housing that is coupled to the engine housing is provided with an electric motor side flange that protrudes radially outward from the other portions and has the electric motor side coupling surface, and the engine side flange and the electric motor. It is preferable that the side flange is connected.
  • the engine-side flange and the motor-side flange for coupling the engine housing and the motor housing can act as heat radiating fins that exchange heat with the outside air. Therefore, the cooling efficiency can be further improved by enhancing the heat dissipation in the engine housing and the motor housing.
  • a hydraulic pump having a pump housing coupled to the opposite side of the motor housing to the engine, and interposed between at least one of the engine housing and the motor housing and between the motor housing and the pump housing. It is preferable to further include a heat insulating material.
  • the heat transfer between the engine and the generator motor and the heat transfer between the generator motor and the hydraulic pump are performed by the heat insulating material. Can be suppressed. Therefore, the cooling efficiency of the stator by the refrigerant passage can be increased by suppressing heat transfer from the engine and / or hydraulic pump serving as a heat source to the motor housing by the heat insulating material.
  • a heat insulating material is sandwiched between the engine side coupling surface and the motor side coupling surface.
  • heat transfer from the engine to the motor housing can be suppressed by the heat insulating material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Motor Or Generator Frames (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

 パワーユニットの全長を短く抑えながら、発電電動機を効率良く冷却する。電動機ハウジング13には、電動機側結合面16aの内周縁から軸回りの全周に亘り軸方向のエンジン1側に向けて張り出すとともにエンジンハウジング12内に嵌まり込む張り出し部21と、ステータ31を冷却する冷媒を流すための冷媒通路22とが設けられ、張り出し部21の内周面を含む電動機ハウジング13の内周面は、ステータ31の外周面に面接触するとともに、冷媒通路22は、電動機側結合面16aに対して軸方向にずれた位置に配置されている。

Description

ハイブリッド建設機械
 本発明は、エンジンと、エンジンに接続された発電電動機と、発電電動機を冷却するための手段とを備えたハイブリッド建設機械に関するものである。
 エンジンと発電電動機と油圧ポンプとが直列に接続されることにより構成されたパワーユニットを有するハイブリッドショベルを例にとって背景技術を説明する。
 ハイブリッドショベルにおいては、エンジンに対し発電電動機及び油圧ポンプが接続されている。そして、ハイブリッドショベルでは、油圧ポンプからの吐出油により油圧アクチュエータを駆動する。一方、発電電動機を発電機として作動させることによって蓄電器に充電し、適時、この蓄電器の電力により発電電動機を電動機として作動させることによってエンジンをアシストする。
 ハイブリッドショベルにおいて、電動機ハウジングに冷媒通路が設けられたポンプ装置が公知である(特許文献1参照)。特許文献1に記載のポンプ装置では、水等の冷媒とステータとの熱交換によって、ステータ、つまり発電電動機全体が冷却される。
 上記冷媒通路は、冷却効率の点で、ステータの外周に設けられるのが望ましい。
 ところが、エンジンハウジングと電動機ハウジングとをステータの外周で結合する場合には、冷媒通路をステータの外周に設けることができない。このため、冷媒通路をステータの外周(エンジンハウジングと電動機ハウジングとの結合面)に対して軸方向にオフセットして設けることが必要となる。
 しかし、この構成では、冷媒通路がステータから大きく離間するため、伝熱ロスが多くなることにより冷却効率が悪くなる。
 一方、対策として、特許文献1に示されているように、ステータの位置を各ハウジングの結合面から軸方向にずらして配置するとともに、その外周に冷媒通路を設ける(ステータと冷媒通路の両者を各ハウジングの結合面からずらして配置する)ことが考えられる。
 しかし、これでは、電動機ハウジングの軸方向の寸法(軸長)が大きくなる。そのため、パワーユニットをエンジンルームという限られたスペースに設置するために同ユニットの全長をできるだけ短縮したい、という要請に応えられない。
特開2007-181273号公報
 本発明の目的は、パワーユニットの全長を短く抑えながら、発電電動機を効率良く冷却することができるハイブリッド建設機械を提供することにある。
 上記課題を解決するために、本発明は、ハイブリッド建設機械であって、クランクシャフトとエンジンハウジングとを有するエンジンと、上記クランクシャフトに接続されたロータと、上記ロータの径方向の外側位置に配置されたステータと、上記ロータ及び上記ステータを収容する電動機ハウジングとを有する発電電動機とを備え、上記エンジンハウジングと上記電動機ハウジングとは、上記ステータの径方向の外側位置で上記エンジンハウジングのエンジン側結合面と上記電動機ハウジングの電動機側結合面とが互いに結合され、上記電動機ハウジングには、上記電動機側結合面の内周縁から軸回りの全周に亘り上記軸方向のエンジン側に向けて張り出すとともに上記エンジンハウジング内に嵌まり込む張り出し部と、上記ステータを冷却する冷媒を流すための冷媒通路とが設けられ、上記張り出し部の内周面を含む電動機ハウジングの内周面は、上記ステータの外周面に面接触するとともに、上記冷媒通路は、上記電動機側結合面に対して上記軸方向にずれた位置に配置されている、ハイブリッド建設機械を提供する。
 本発明によれば、パワーユニットの全長短縮と、発電電動機の良好な冷却性能を両立させることができる。
本発明の実施形態に係るエンジン、発電電動機、及び油圧ポンプの結合部分の半断面側面図である。 図1の一部を拡大した図である。 図1に示す電動機ハウジングの斜視図である。
 以下添付図面を参照しながら、本発明の実施の形態について説明する。なお、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定する性格のものではない。
 本発明の実施形態を図1~図3によって説明する。
 実施形態に係るハイブリッドショベルは、図1に示すように、エンジン1と、発電電動機2と、油圧ポンプ3とを直列に接続することにより構成されたパワーユニットを有する。
 具体的に、ハイブリッドショベルは、図1及び図2に示すように、エンジン1と、エンジン1に接続された発電電動機2と、発電電動機2に接続された油圧ポンプ3と、エンジン1と発電電動機2との間に設けられたフライホイール5と、発電電動機2と油圧ポンプ3との間に設けられたカップリング7と、発電電動機2を冷却するための冷媒通路22と、冷媒通路22に接続された配管25と、エンジン1と発電電動機2との間に設けられた断熱材17と、発電電動機2と油圧ポンプ3との間に設けられた断熱材20とを備えている。
 エンジン1は、その出力軸であるクランクシャフト4と、エンジンの主要な構成を収容するエンジンハウジング12とを備えている。
 フライホイール5は、エンジン1のクランクシャフト4に取付けられている。
 発電電動機2は、クランクシャフト4に接続されたロータ30と、ロータの外周に配置されたステータ31と、ロータ30及びステータ31を収容するとともにステータ31の外周でエンジンハウジング12に結合された電動機ハウジング13とを有する。ロータ30は、フライホイール5に接続されたロータシャフト6と、ロータシャフト6の外周に設けられたロータコア9とを有する。ステータ31は、ロータ30の外周に設けられたステータコア10と、ステータコア10に巻回されたコイル11とを有する。
 油圧ポンプ3は、エンジン1の動力及び発電電動機2の動力により回転するポンプシャフト8と、油圧ポンプ3の主要な構成を収容するポンプハウジング14とを有する。ポンプシャフト8は、ロータシャフト6にカップリング7を介して接続されている。
 次に、エンジンハウジング12と電動機ハウジング13との結合状態、及び、電動機ハウジング13とポンプハウジング14との結合状態を、それぞれ説明する。
 (1)エンジンハウジング12と電動機ハウジング13との結合状態
 エンジンハウジング12と電動機ハウジング13とは、ステータ31(ステータコア10)の径方向の外周位置でエンジンハウジング12のエンジン側結合面15aと電動機ハウジング13の電動機側結合面16aとが軸(図1の中心軸Oと平行する軸)回りの全周に亘り軸方向に押圧された状態で、互いに結合されている。具体的に、エンジンハウジング12の電動機ハウジング13に結合される端部には、それ以外の部分よりも径方向の外側に向けて鍔状に突出するとともにエンジン側結合面15aを有するエンジン側フランジ15が設けられている。また、電動機ハウジング13のエンジンハウジング12に結合される端部には、それ以外の部分よりも径方向の外側に向けて鍔状に突出するとともに電動機側結合面16aを有する電動機側フランジ16が設けられている。これらフランジ15、16の間には、断熱材17が挟み込まれている。具体的に、断熱材17は、フランジ側結合面15aと電動機側結合面16aとの間に挟持されている。この状態で、各フランジ15、16は、ステータ31(ステータコア10)の径方向の外側位置において、周方向の複数個所でボルトにより連結されている。これにより、エンジンハウジング12及び電動機ハウジング13は、ステータ31(ステータコア10)の径方向の外側位置で、結合されている。
 なお、エンジンハウジング12は、必要な強度を確保するために鉄等の磁性体により形成されていることが望ましい。
 これに対し、電動機ハウジング13が磁性体で形成されていると磁力の漏れによって発電電動効率が低下するおそれがある。そのため、電動機ハウジング13は、非磁性体により形成されていることが望ましい。
 (2)電動機ハウジング13とポンプハウジング14との結合状態
 電動機ハウジング13のポンプハウジング14に結合される端部には、それ以外の部分よりも径方向の外側に向けて鍔状に突出するフランジ18が形成されている。また、ポンプハウジング14の電動機ハウジング13に結合される端部には、それ以外の部分よりも径方向の外側に向けて鍔状に突出するフランジ19が設けられている。これらフランジ18、19の間には、断熱材20が挟み込まれている。具体的に、フランジ18、19の相対向する結合面の間に断熱材20が挟みこまれている。この状態で、フランジ18、19は、周方向の複数個所でボルトにより連結されている。これにより、電動機ハウジング13及びポンプハウジング14は、結合されている。
 電動機ハウジング13は、全体として円筒状に形成されている。
 具体的に、電動機ハウジング13の内周には、大径面13aと、大径面13aの直径よりも小さい直径を有する小径面13bと、大径面13aと小径面13bとが段状に接続されるように大径面13aと小径面13bとの間に介在する接続面13cとが形成されている(図2参照)。
 また、電動機ハウジング13には、電動機側結合面16aの内周縁から軸回りの全周に亘り軸方向のエンジン側に向けて張り出す張り出し部21が設けられている。つまり、張り出し部21は、エンジンハウジング12と結合されるエンジンハウジング12側の端部の内周側に設けられている。張り出し部21は、電動機側結合面16aから軸方向におけるエンジンハウジング12に向けて突出する。また、張り出し部21は、図1の中心線Oを中心として電動機ハウジング13の全周に亘るリング状に設けられている。
 上記張り出し部21は、エンジンハウジング12と電動機ハウジング13とが同心に配置された状態で、エンジンハウジング12の内側に嵌合可能である。具体的に、エンジンハウジング12には、図2に示すように、張り出し部21が嵌合可能な嵌合穴32aと、この嵌合穴32aの直径寸法よりも小さな直径寸法を有する小径穴32cと、嵌合穴32aと小径穴32cとの間に介在する当接面32bとが形成されている。嵌合穴32aには、図1の中心線Oを中心とする内側面が形成されている。また、張り出し部21の外径寸法と嵌合穴32aの内径寸法とが互いに嵌合可能な値に設定されている。なお、本実施形態では、張り出し部21の外側面と嵌合穴32aの内側面との間にも断熱材17が設けられている。したがって、張り出し部21の外径寸法及び嵌合穴32aの内径寸法は、断熱材17の厚み寸法も考慮して設定されている。当接面32bには、断熱材17を挟んだ状態で張り出し部21の先端面が当接する。
 張り出し部21の内側面は、大径面13aに含まれる。そして、大径面13aは、ステータコア10の外周面に対し、ステータ31の軸方向(図1の中心線Oに平行な方向)の全幅範囲で面接触する。一方、接続面13cは、ステータコア10のエンジン1の反対側(油圧ポンプ3側)の側面に面接触している。
 冷媒通路22は、電動機ハウジング13に設けられているとともに、ステータ31を冷却する冷媒(水、油等の液体又は冷媒ガス)を流すためのものである。具体的に、冷媒通路22は、電動機側結合面16a、つまり、ステータの径方向の外側位置に対して軸方向のエンジン1と反対側(油圧ポンプ3側)にオフセットした位置に配置されている。
 図2中、符号αは、冷媒通路22の電動機側結合面16aからのオフセット量を指示する。オフセット量αは、伝熱効率を向上するために、できるだけ小さくする(冷媒通路22をステータに近い位置に配置する)のが望ましい。
 具体的に、冷媒通路22は、電動機ハウジング13の外周面に形成され、周方向に延びるとともに電動機ハウジング13の外周側に開口する凹溝23と、この凹溝23の開口を覆うように電動機ハウジング13の外周面上に設けられたカバー24の内周面とによって規定されている。凹溝23及びカバー24は、それぞれ電動機ハウジング13の全周に亘って設けられている。
 配管25は、冷媒通路22に接続されている。図示しないポンプの作動により、冷媒は、配管25を介して外部から冷媒通路22に供給され、配管25を介して冷媒通路からポンプへ戻る。つまり、冷媒は、冷媒通路22と上記ポンプとの間を循環する。冷媒通路22とポンプとの間に、冷媒を冷却するための機構を設けることが好ましい。
 図2及び図3中、符号26はカバー24と電動機ハウジング13との間をシールするOリングである。各Oリング26は、カバー24の取付部分に設けられている。
 なお、図の複雑化を避けるために、図1において電動機ハウジング13の大径面13a、小径面13b、接続面13c、凹溝23及びカバー24についての符号を省略している。
 また、図3において、冷媒通路22のカバー24及び配管25の図示を省略している。
 以上説明したように、上記実施形態では、ステータ31の径方向の外側位置でエンジンハウジング12(エンジン側結合面15a)と電動機ハウジング13(電動機側結合面16a)とが結合されているとともに、冷媒通路22がステータ31(電動機側結合面16a)に対して軸方向にオフセットして配置されている。この構成を前提として、さらに、上記実施形態では、電動機ハウジング13にエンジンハウジング12側に張り出した張り出し部21が設けられ、この張り出し部21の内周面を含めた電動機ハウジング13の内周面(大径面13a)がステータ31(ステータコア10)の外周面に面接触している。そのため、ステータ31と電動機ハウジング13との接触面積(伝熱面積)を増加させることにより、冷却効率を向上することができる。
 これにより、上記オフセットによる伝熱のロスを接触面積の増加によって十分補うことができる。
 言い換えれば、電動機ハウジング13の軸長を増やさずに、必要なステータ31(発電電動機2)の冷却性能を確保することができる。
 また、上記実施形態によると、次の効果を得ることができる。
 (i) 張り出し部21の内周面を含む電動機ハウジング13の内周面(大径面13a)は、ステータ31(ステータコア10)の外周面に対し、ステータ31の軸方向の全幅範囲で面接触する。さらに、電動機ハウジング13の接続面13cは、ステータ31のエンジンと反対側(油圧ポンプ3側)の側面に面接触している。これらにより、伝熱面積をさらに増加させることができる。
 (ii) 伝熱面積の増加のための張り出し部21をエンジンハウジング12の内側に嵌合させている(張り出し部21をエンジンハウジング12に対する嵌合部として利用している)。そのため、エンジンハウジング12と電動機ハウジング13との同心度を確保し、かつ、組立性を改善することができる。
 (iii) 冷媒通路22が電動機ハウジング13の外周面に形成されている。そのため、電動機ハウジング13の内周側に冷媒通路22を設けた場合と異なり、冷媒が漏れた場合にステータ31やロータ30が冷媒に浸されるおそれがない。
 しかも、電動機ハウジング13に形成された凹溝23とカバー24とによって冷媒通路22が構成されている。そのため、独立した冷媒通路22を電動機ハウジング13の外周に取付ける場合と比べて加工、コストの点で有利となる。
 (iv) エンジンハウジング12及び電動機ハウジング13の互いに結合される端部には、それぞれ径方向の外側に向けて鍔状に突出するフランジ15、16が設けられ、これらフランジ15、16同士が結合されている。そのため、各ハウジング12、13の結合用のフランジ15、16を、外気との熱交換を行う放熱フィンとして作用させることができる。そのため、エンジンハウジング12及び電動機ハウジング13の放熱性を高めることにより、冷却効率を一層向上させることができる。
 (v) エンジンハウジング12と電動機ハウジング13(フランジ15、16)との間、及び電動機ハウジング13とポンプハウジング14(フランジ18、19)との間に、それぞれ断熱材17、20が介在している。そのため、エンジン1と発電電動機2と油圧ポンプ3とを直列に接続するハイブリッド建設機械において、エンジン1と発電電動機2との間の伝熱及び発電電動機2と油圧ポンプ3との間の伝熱を断熱材17、20によって抑制することができる。したがって、熱源となるエンジン1又は油圧ポンプ3から電動機ハウジング13への伝熱を断熱材17、20で抑えることにより、冷媒通路22によるステータ31の冷却効率を高めることができる。
 なお、エンジンハウジング12と電動機ハウジング13との間、又は、電動機ハウジング13とポンプハウジング14との間にのみ、断熱材17、20を設けてもよい。また、断熱材17、20を省略することもできる。
 また、本発明は、ハイブリッドショベルに限らず、エンジンと発電電動機と油圧ポンプとが同軸上で接続されるハイブリッド建設機械、又はエンジンと発電電動機とが同軸上で接続されているとともに油圧ポンプが発電電動機と並列状態でエンジンに接続されるハイブリッド建設機械に広く適用することができる。
 なお、上述した具体的実施形態には以下の構成を有する発明が主に含まれている。
 すなわち、本発明は、ハイブリッド建設機械であって、クランクシャフトとエンジンハウジングとを有するエンジンと、上記クランクシャフトに接続されたロータと、上記ロータの径方向の外側位置に配置されたステータと、上記ロータ及び上記ステータを収容する電動機ハウジングとを有する発電電動機とを備え、上記エンジンハウジングと上記電動機ハウジングとは、上記ステータの径方向の外側位置で上記エンジンハウジングのエンジン側結合面と上記電動機ハウジングの電動機側結合面とが互いに結合され、上記電動機ハウジングには、上記電動機側結合面の内周縁から軸回りの全周に亘り上記軸方向のエンジン側に向けて張り出すとともに上記エンジンハウジング内に嵌まり込む張り出し部と、上記ステータを冷却する冷媒を流すための冷媒通路とが設けられ、上記張り出し部の内周面を含む電動機ハウジングの内周面は、上記ステータの外周面に面接触するとともに、上記冷媒通路は、上記電動機側結合面に対して上記軸方向にずれた位置に配置されている、ハイブリッド建設機械を提供する。
 本発明では、発電電動機のステータの径方向の外側位置でエンジンハウジング(エンジン側結合面)と電動機ハウジング(電動機側結合面)とが結合されているとともに、冷媒通路がステータ(電動機側結合面)に対して軸方向にオフセットして配置されている。この構成を前提として、さらに、本発明では、電動機ハウジングにエンジンハウジング側に張り出した張り出し部が設けられ、この張り出し部の内周面を含めた電動機ハウジングの内周面がステータの外周面に面接触している。そのため、ステータと電動機ハウジングとの接触面積(伝熱面積)を増加させることにより、冷却効率を向上することができる。
 言い換えれば、電動機ハウジングの軸長を増やさずに、必要なステータ(発電電動機)の冷却性能を確保することができる。
 なお、本発明における『軸』は、クランクシャフトの回転軸又はロータの回転軸と平行する軸を意味する。
 上記ハイブリッド建設機械において、上記張り出し部の内周面を含む上記電動機ハウジングの内周面は、上記ステータの外周面に対し、上記軸方向の全幅範囲で面接触することが好ましい。
 この態様によれば、接触面積を最大限に大きくとって伝熱性を高めることができる。
 なお、ステータがステータコアとこれに巻回されたコイルとを有する場合、上記『軸方向の全幅範囲』は、ステータコイルの軸方向の全幅範囲を意味する。ただし、電動機ハウジングの内周面がコイルの外周面に接触するのを除外する趣旨ではない。
 上記ハイブリッド建設機械において、上記電動機ハウジングの内周には、大径面と、大径面の直径よりも小さい直径を有する小径面と、上記大径面と上記小径面とが段状に接続されるように上記大径面と上記小径面との間に介在する接続面とが形成され、上記張り出し部の内周面は、上記大径面に含まれ、上記大径面は、上記ステータの外周面に面接触する一方、上記接続面は、上記ステータのエンジンと反対側の側面に面接触することが好ましい。
 この態様によれば、電動機ハウジングをステータの側面にも面接触させることができる。そのため、電動機ハウジングとステータとの間の伝熱面積をさらに増加させることができる。
 上記ハイブリッド建設機械において、上記電動機ハウジングの張り出し部は、上記エンジンハウジングと上記電動機ハウジングとが同心に配置された状態で、上記エンジンハウジングの内側に嵌合可能であることが好ましい。
 この態様では、伝熱面積の増加のための張り出し部をエンジンハウジングに対する嵌合部として利用することができる。これにより、エンジンハウジングと電動機ハウジングとの同心度を確保し、かつ、組立性を改善することができる。
 上記ハイブリッド建設機械において、上記冷媒通路は、上記電動機ハウジングの外周面に形成され、周方向に延びるとともに上記電動機ハウジングの外周側に開口する凹溝と、上記凹溝の開口を覆うように上記電動機ハウジングの外周面上に設けられたカバーの内周面とによって規定されていることが好ましい。
 この態様では、冷媒通路が電動機ハウジングの外周面に形成されている。そのため、電動機ハウジングの内周側に冷媒通路を設けた場合と異なり、冷媒が漏れた場合にステータやロータが冷媒に浸されるおそれがない。
 しかも、前記態様では、電動機ハウジングに形成された凹溝とカバーとによって冷媒通路が構成されている。そのため、独立した冷媒通路をハウジング外周に取付ける場合と比べて加工、コストの点で有利となる。
 ハイブリッド建設機械において、上記エンジンハウジングの上記電動機ハウジングに結合される端部には、それ以外の部分よりも径方向の外側に突出するとともに上記エンジン側結合面を有するエンジン側フランジが設けられ、上記電動機ハウジングの上記エンジンハウジングに結合される端部には、それ以外の部分よりも径方向の外側に突出するとともに上記電動機側結合面を有する電動機側フランジが設けられ、上記エンジン側フランジと上記電動機側フランジとが結合されていることが好ましい。
 この態様では、エンジンハウジングと電動機ハウジングとを結合するためのエンジン側フランジ及び電動機側フランジを、外気との熱交換を行う放熱フィンとして作用させることができる。そのため、エンジンハウジング及び電動機ハウジングにおける放熱性を高めることにより、冷却効率を一層向上させることができる。
 ハイブリッド建設機械において、上記電動機ハウジングの上記エンジンと反対側に結合されるポンプハウジングを有する油圧ポンプと、上記エンジンハウジングと電動機ハウジングとの間、及び電動機ハウジングとポンプハウジングとの間の少なくとも一方に介在された断熱材とをさらに備えていることが好ましい。
 この態様によれば、エンジンと発電電動機と油圧ポンプとを直列に接続するハイブリッド建設機械において、エンジンと発電電動機との間の伝熱及び発電電動機と油圧ポンプとの間の伝熱を断熱材によって抑制することができる。したがって、熱源となるエンジン及び/又は油圧ポンプから電動機ハウジングへの伝熱を断熱材で抑えることにより、冷媒通路によるステータの冷却効率を高めることができる。
 ハイブリッド建設機械において、上記エンジン側結合面と上記電動機側結合面との間には、断熱材が挟持されていることが好ましい。
 この態様によれば、エンジンから電動機ハウジングへの伝熱を断熱材で抑えることができる。
 本発明によれば、パワーユニットの全長短縮と、発電電動機の良好な冷却性能を両立させることができる。
 1  エンジン
 2  発電電動機
 3  油圧ポンプ
 4  クランクシャフト
 12  エンジンハウジング
 13  電動機ハウジング
 13a  電動機ハウジングの大径面
 13b  電動機ハウジングの小径面
 13c  電動機ハウジングの接続面
 14  ポンプハウジング
 15  エンジンハウジングのフランジ
 16  電動機ハウジングのフランジ
 17、20  断熱材
 18  電動機ハウジングのフランジ
 19  ポンプハウジングのフランジ
 21  張り出し部
 22  冷媒通路
 23  凹溝
 24  カバー
 30  ロータ
 31  ステータ

Claims (8)

  1.  ハイブリッド建設機械であって、
     クランクシャフトとエンジンハウジングとを有するエンジンと、
     上記クランクシャフトに接続されたロータと、上記ロータの径方向の外側位置に配置されたステータと、上記ロータ及び上記ステータを収容する電動機ハウジングとを有する発電電動機とを備え、
     上記エンジンハウジングと上記電動機ハウジングとは、上記ステータの径方向の外側位置で上記エンジンハウジングのエンジン側結合面と上記電動機ハウジングの電動機側結合面とが互いに結合され、
     上記電動機ハウジングには、上記電動機側結合面の内周縁から軸回りの全周に亘り上記軸方向のエンジン側に向けて張り出すとともに上記エンジンハウジング内に嵌まり込む張り出し部と、上記ステータを冷却する冷媒を流すための冷媒通路とが設けられ、
     上記張り出し部の内周面を含む電動機ハウジングの内周面は、上記ステータの外周面に面接触するとともに、上記冷媒通路は、上記電動機側結合面に対して上記軸方向にずれた位置に配置されている、ハイブリッド建設機械。
  2.  上記張り出し部の内周面を含む上記電動機ハウジングの内周面は、上記ステータの外周面に対し、上記軸方向の全幅範囲で面接触する、請求項1に記載のハイブリッド建設機械。
  3.  上記電動機ハウジングの内周には、大径面と、大径面の直径よりも小さい直径を有する小径面と、上記大径面と上記小径面とが段状に接続されるように上記大径面と上記小径面との間に介在する接続面とが形成され、
     上記張り出し部の内周面は、上記大径面に含まれ、
     上記大径面は、上記ステータの外周面に面接触する一方、上記接続面は、上記ステータのエンジンと反対側の側面に面接触する、請求項1又は2に記載のハイブリッド建設機械。
  4.  上記電動機ハウジングの張り出し部は、上記エンジンハウジングと上記電動機ハウジングとが同心に配置された状態で、上記エンジンハウジングの内側に嵌合可能である、請求項1~3の何れか1項に記載のハイブリッド建設機械。
  5.  上記冷媒通路は、上記電動機ハウジングの外周面に形成され、周方向に延びるとともに上記電動機ハウジングの外周側に開口する凹溝と、上記凹溝の開口を覆うように上記電動機ハウジングの外周面上に設けられたカバーの内周面とによって規定されている、請求項1~4の何れか1項に記載のハイブリッド建設機械。
  6.  上記エンジンハウジングの上記電動機ハウジングに結合される端部には、それ以外の部分よりも径方向の外側に突出するとともに上記エンジン側結合面を有するエンジン側フランジが設けられ、
     上記電動機ハウジングの上記エンジンハウジングに結合される端部には、それ以外の部分よりも径方向の外側に突出するとともに上記電動機側結合面を有する電動機側フランジが設けられ、
     上記エンジン側フランジと上記電動機側フランジとが結合されている、請求項1~5の何れか1項に記載のハイブリッド建設機械。
  7.  上記電動機ハウジングの上記エンジンと反対側に結合されるポンプハウジングを有する油圧ポンプと、
     上記エンジンハウジングと電動機ハウジングとの間、及び電動機ハウジングとポンプハウジングとの間の少なくとも一方に介在された断熱材とをさらに備えている、請求項1~6の何れか1項に記載のハイブリッド建設機械。
  8.  上記エンジン側結合面と上記電動機側結合面との間には、断熱材が挟持されている、請求項1~6の何れか1項に記載のハイブリッド建設機械。
PCT/JP2012/002507 2011-04-12 2012-04-11 ハイブリッド建設機械 WO2012140879A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280017933.0A CN103460563B (zh) 2011-04-12 2012-04-11 混合动力工程机械
US14/111,339 US9337697B2 (en) 2011-04-12 2012-04-11 Hybrid construction machine
EP12771542.3A EP2698903A4 (en) 2011-04-12 2012-04-11 HYBRID CONSTRUCTION EQUIPMENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-088013 2011-04-12
JP2011088013A JP5626085B2 (ja) 2011-04-12 2011-04-12 ハイブリッド建設機械

Publications (1)

Publication Number Publication Date
WO2012140879A1 true WO2012140879A1 (ja) 2012-10-18

Family

ID=47009070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002507 WO2012140879A1 (ja) 2011-04-12 2012-04-11 ハイブリッド建設機械

Country Status (5)

Country Link
US (1) US9337697B2 (ja)
EP (1) EP2698903A4 (ja)
JP (1) JP5626085B2 (ja)
CN (1) CN103460563B (ja)
WO (1) WO2012140879A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5972821B2 (ja) * 2013-03-29 2016-08-17 株式会社小松製作所 発電機モータへのディーゼル酸化触媒装置搭載構造
EP3157144B1 (en) 2014-06-16 2019-05-22 Kubota Corporation Parallel hybrid power transmission mechanism
JP6526551B2 (ja) * 2015-12-11 2019-06-05 株式会社クボタ パラレルハイブリッド動力伝達機構

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993871A (ja) * 1995-09-22 1997-04-04 Denso Corp 回転電機
JP2007181273A (ja) 2005-12-27 2007-07-12 Shin Caterpillar Mitsubishi Ltd ポンプ装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1055576C (zh) * 1994-06-08 2000-08-16 精密电力设备公司 多用途交流电动发电机
DE4421427C1 (de) * 1994-06-18 1996-01-18 Fichtel & Sachs Ag Elektromotor-Getriebe-Baueinheit
JP3168895B2 (ja) * 1995-12-06 2001-05-21 トヨタ自動車株式会社 ハイブリッド駆動装置
US5711740A (en) 1996-05-29 1998-01-27 New Venture Gear, Inc. Mechanical clutch for planetary-type gear reduction unit
DE19817333C5 (de) * 1998-04-18 2007-04-26 Conti Temic Microelectronic Gmbh Elektrische Antriebseinheit aus Elektromotor und Elektronikmodul
US6253437B1 (en) * 1999-03-03 2001-07-03 Ford Global Technologies, Inc. Hybrid vehicle motor alignment
DE19916459A1 (de) * 1999-04-12 2000-10-26 Bosch Gmbh Robert Starter-Generator für ein Kraftfahrzeug
JP2001339924A (ja) * 2000-05-30 2001-12-07 Honda Motor Co Ltd アウターロータ型モータ・ジェネレータ
DE10294361D2 (de) * 2001-09-26 2004-08-26 Luk Lamellen & Kupplungsbau Getriebe
DE112005002200B4 (de) * 2004-11-19 2011-04-28 Aisin AW Co., Ltd., Anjo-shi Hybridfahrzeugantriebseinheit
CN101176249B (zh) * 2005-05-10 2011-06-15 株式会社小松制作所 装设在发动机上的发电机/电动机
JP2009298369A (ja) * 2008-06-17 2009-12-24 Mazda Motor Corp 車両の駆動装置
JP5206457B2 (ja) 2009-02-03 2013-06-12 コベルコ建機株式会社 ハイブリッド作業機械の軸潤滑装置
US20110006545A1 (en) 2009-07-08 2011-01-13 Hamilton Sundstrand Corporation Nested exciter and main generator stages for a wound field generator
CN201629633U (zh) * 2010-02-02 2010-11-10 株洲南车时代电气股份有限公司 一种与发动机连接成一体的永磁发电机

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993871A (ja) * 1995-09-22 1997-04-04 Denso Corp 回転電機
JP2007181273A (ja) 2005-12-27 2007-07-12 Shin Caterpillar Mitsubishi Ltd ポンプ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2698903A4

Also Published As

Publication number Publication date
CN103460563B (zh) 2016-04-13
CN103460563A (zh) 2013-12-18
EP2698903A1 (en) 2014-02-19
JP5626085B2 (ja) 2014-11-19
JP2012223003A (ja) 2012-11-12
US9337697B2 (en) 2016-05-10
EP2698903A4 (en) 2016-06-01
US20140026551A1 (en) 2014-01-30

Similar Documents

Publication Publication Date Title
JP6318056B2 (ja) 回転電機のハウジング、およびこれを備えた回転電機
JP5908741B2 (ja) 回転電機
JP5718391B2 (ja) 回転電機
JP6056518B2 (ja) 回転電機用回転構造
JP5583650B2 (ja) 電動ポンプ
WO2021051794A1 (zh) 一种发动机和电机总成
US10666111B2 (en) Rotary electric machine
CN110350679B (zh) 一种定子密封结构及具有该密封结构的电机
JP2005261083A (ja) 回転電機の冷却構造
WO2021051795A1 (zh) 一种发动机和电机总成
JP6852817B2 (ja) 回転電機
WO2012140879A1 (ja) ハイブリッド建設機械
CN111600419B (zh) 旋转电机
JP2013132115A (ja) 回転電機
CN115864768A (zh) 双转子轮毂电机
JP7106892B2 (ja) 回転電機
JP2013132116A (ja) 回転電機
US20100244444A1 (en) Communal heating and power station unit having a reciprocating internal combustion engine and having an electrical machine
JP2013051805A (ja) 回転電機の冷却構造
JP2017099147A (ja) モータ及びこれを備える電動過給機
KR20100011738A (ko) 하이브리드 차량용 구동모터의 고정자 조립구조
JP2011144758A (ja) 密閉型電動圧縮機
JP6028899B2 (ja) ハイブリッド建設機械の駆動装置
JP2014011942A (ja) モータ、および、建機用ハイブリッド構造体
JP6523403B1 (ja) 回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12771542

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14111339

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012771542

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012771542

Country of ref document: EP