WO2012137281A1 - 給湯器及び流量制御方法 - Google Patents

給湯器及び流量制御方法 Download PDF

Info

Publication number
WO2012137281A1
WO2012137281A1 PCT/JP2011/058459 JP2011058459W WO2012137281A1 WO 2012137281 A1 WO2012137281 A1 WO 2012137281A1 JP 2011058459 W JP2011058459 W JP 2011058459W WO 2012137281 A1 WO2012137281 A1 WO 2012137281A1
Authority
WO
WIPO (PCT)
Prior art keywords
heated
heated liquid
liquid
tank
flow rate
Prior art date
Application number
PCT/JP2011/058459
Other languages
English (en)
French (fr)
Inventor
古川 誠司
一普 宮
神谷 俊行
禎司 齊藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/009,299 priority Critical patent/US9021993B2/en
Priority to EP11862970.8A priority patent/EP2696160B1/en
Priority to PCT/JP2011/058459 priority patent/WO2012137281A1/ja
Priority to AU2011365165A priority patent/AU2011365165A1/en
Priority to JP2013508643A priority patent/JP5546680B2/ja
Priority to CN201180069818.3A priority patent/CN103492828B/zh
Publication of WO2012137281A1 publication Critical patent/WO2012137281A1/ja
Priority to HK14103225.5A priority patent/HK1190183A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G7/00Cleaning by vibration or pressure waves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/0092Devices for preventing or removing corrosion, slime or scale
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/14Cleaning; Sterilising; Preventing contamination by bacteria or microorganisms, e.g. by replacing fluid in tanks or conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/305Control of valves
    • F24H15/31Control of valves of valves having only one inlet port and one outlet port, e.g. flow rate regulating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/305Control of valves
    • F24H15/325Control of valves of by-pass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/335Control of pumps, e.g. on-off control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2014Arrangement or mounting of control or safety devices for water heaters using electrical energy supply
    • F24H9/2021Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a water heater having a function of suppressing scale adhesion to a heating channel that heats a liquid to be heated in a heater.
  • Hot water heaters that supply hot water to bathrooms and kitchens are roughly divided into electric water heaters, gas water heaters, and oil water heaters, but there are parts called heat exchangers that transmit heat to water.
  • electric water heaters in particular, heat pump heat exchange type electric water heaters (heat pump water heaters) are attracting attention from the viewpoint of energy saving and carbon dioxide reduction as a measure against global warming.
  • the principle is that the heat of the atmosphere is transferred to a heat medium, and hot water is boiled with that heat. Specifically, the high heat generated when the gas is compressed is transferred to water through a heat exchanger, and the cooling cycle is repeated to return the temperature of the heat medium to the atmospheric temperature again by the cold air when the gas is expanded. Is due to. Theoretically, it is not possible to generate more heat energy than the input energy, but since the heat pump water heater uses the heat of the atmosphere, more heat energy than the energy required for operation can be used.
  • Patent Document 1 even if the calcium carbonate scale peels off due to vibration applied to the plate, it returns to the plate heat exchanger via the circulation circuit and is applied to the surface of the plate heated by high-temperature water. Due to the reattachment, there was a problem that the heat transfer performance deterioration of the plate heat exchanger and the blockage of the flow path could not be prevented.
  • the present invention provides a water heater capable of suppressing scale adhesion to the inner wall of a heated liquid (water) flow channel in a heater constituting a water heater, and suppressing deterioration in heat exchange performance and flow channel blockage due to scale adhesion. With the goal.
  • the water heater of this invention is A tank in which a liquid to be heated is stored; A heater disposed in the middle of a heated liquid pipe that forms a flow path through which the heated liquid flowing out from the tank flows into the tank again, and the heated liquid flowing out from the tank into the heated liquid pipe A heater having a heating flow path in which the heating liquid flows in, the heated liquid that has flowed in is heated to flow out to the heated liquid piping on the inflow side of the tank; A flow control unit for circulating the heated liquid stored in the tank to the heated liquid piping; The distribution control unit While pulsating the heated liquid passing through the heating flow path of the heater by controlling the flow rate of the heated liquid passing through the heating flow path of the heater, The heating of the heater so that the total volume of the liquid to be heated stored in the tank passes through the heater a predetermined number of times or less within a boiling time set as a time until it reaches a predetermined temperature. The flow rate of the liquid to be heated passing through the flow path is controlled.
  • the pulsation is applied to the liquid flow that circulates between the hot water tank and the heater to peel off the scale deposited on the inner wall (heat transfer surface) of the heated liquid flow path in the heater,
  • the peeling scale By suppressing the number of times the heated liquid circulates between the tank and the heater, it is possible to prevent the peeling scale from reattaching to the inner wall of the heated liquid channel in the heater. Thereby, the fall of the heat exchange performance resulting from scale adhesion and the blockage
  • FIG. 3 is a configuration diagram of a water heater 110 according to Embodiment 1.
  • FIG. 4 shows a change over time in the flow rate of the liquid to be heated in the first embodiment.
  • FIG. 4 is a correlation diagram between the number of times of heated liquid circulation and the amount of scale adhesion in the first embodiment.
  • FIG. 4 is a correlation diagram between the maximum flow rate of the liquid to be heated and the amount of scale adhesion in the first embodiment.
  • FIG. 3 is a correlation diagram between a pulsation time interval and a scale adhesion amount in the first embodiment.
  • FIG. 6 is a configuration diagram of a water heater 120 according to Embodiment 2.
  • FIG. 6 is a configuration diagram of a water heater 130 in a third embodiment.
  • FIG. 6 is a configuration diagram of a water heater 140 in a fourth embodiment.
  • FIG. 1 is a configuration diagram of a water heater 110 according to the first embodiment.
  • the tank 1 is for storing water that is the liquid to be heated (the liquid to be heated) or hot water that has been heated.
  • the pump 2 circulates water that is the liquid to be heated.
  • the heat exchanger 3 (heater) raises the temperature of the water to be heated.
  • the heat exchanger 3 is connected to the tank 1 via a heated liquid circulation pipe 4.
  • the heat exchanger 3 is also connected to the heat medium pipe 5. That is, the heated liquid channel 31 (heating channel) and the heat medium channel 32 in the heat exchanger 3 are in contact with each other, and heat exchange is performed here.
  • hot water is used as the heat medium, but the heat medium is not limited to this, and carbon dioxide, a fluorocarbon refrigerant, or a hydrocarbon refrigerant may be used.
  • the control device 6 is for controlling the operation of the pump 2, and is connected to the pump 2 via a signal line 61.
  • the hot water discharge pipe 11 is a pipe for taking out hot water in the tank 1.
  • the tap water pipe 12 is a pipe for supplying water into the tank 1.
  • the tap water piping 11 and the tap water piping 12 are each connected to the tank 1.
  • the water heated by the heat exchanger 3 is stored in the tank 1 and flows out from the hot water supply pipe 11 as necessary. That is, the hot water flowing out from the hot water discharge pipe 11 is hot water directly heated by the heat exchanger 3. The same applies to the water heaters 120 to 140 described below.
  • the heated liquid circulation pipe 4 (heated liquid pipe) forms a flow path through which the heated liquid flowing out from the tank 1 flows into the tank 1 again.
  • the heat exchanger 3 is disposed in the middle of the heated liquid circulation pipe 4.
  • the heated liquid flowing out from the tank 1 to the heated liquid circulation pipe 4 flows in, and the heated heated liquid is heated by heat exchange with the heat medium flowing through the heat medium flow path 32, so that the tank is heated.
  • 1 has a heated liquid passage 31 (heating passage) that flows out to the heated liquid circulation pipe 4 on the inflow side.
  • the pump 2 and the control device 6 constitute a flow control unit 101 that distributes the liquid to be heated stored in the tank 1 to the liquid to be heated circulation pipe 4.
  • the distribution control unit 101 pulsates the heated liquid passing through the heated liquid flow path 31 by controlling the flow rate of the heated liquid passing through the heated liquid flow path 31 of the heat exchanger 3. Further, as will be described later, when the flow control unit 101 is heated, the total volume V (L) of the liquid to be heated stored in the tank 1 and the total volume V of the liquid to be heated reach a predetermined temperature.
  • Water to be heated is introduced into the tank 1 through the tap water pipe 12.
  • the water in the tank 1 is sent to the heat exchanger 3 via the pump 2 and the heated liquid circulation pipe 4. While the water passes through the liquid flow path 31 to be heated in the heat exchanger 3, heat is supplied from the heat medium in the heat medium flow path 32 in contact with the water, and the temperature is raised.
  • the heated water that is, hot water, returns to the tank 1 through the heated liquid circulation pipe 4 on the inflow side of the tank 1.
  • the heat medium in the heat medium flow path 32 is sent to a heat pump (not shown here) through the heat medium pipe 5 and heated, and then returns to the heat exchanger 3 through the heat medium pipe 5.
  • boiling time the time from when the water in the tank 1 starts to be heated until the total amount of the liquid to be heated in the tank 1 reaches a predetermined temperature.
  • the control device 6 controls the operation of the pump 2 and pulsates the water flow.
  • the average flow rate is determined so that the number of circulations is “a predetermined number or less”.
  • the “number of circulations” is the number of times that the water in the tank 1 circulates in the closed circuit on average, and is a value calculated by the following equation (1).
  • Circulation count (Average flow rate F ⁇ Boiling time T) ⁇ (Volume V of tank 1 + Volume of heated liquid circulation pipe 4 + Volume of heated liquid flow path 31)
  • volume V of the tank 1 in the expressions (1) and (2) is the capacity of the liquid to be heated stored in the tank 1.
  • Circulation count (Average flow rate F ⁇ Boiling time T) ⁇ (Volume V of tank 1) Equation (2)
  • the number of circulations determined from the above equation (1) or equation (2) is a value indicating the number of times that the entire volume V of the liquid to be heated stored in the tank 1 passes through the heat exchanger 3.
  • the “volume of the tank 1” is increased to “the amount of water to be heated”, and the “boiling time” is increased to “the target water amount to a predetermined temperature”. Replace with “time”. For example, if the amount of water to be heated is halved, the boiling time is also halved. Therefore, as long as the average flow rate is determined, the number of circulations does not change.
  • the scale deposited on the inner wall of the heated liquid channel 31 in the heat exchanger 3 is peeled off by applying pulsation to the water flow circulating through the tank 1 and the heat exchanger 3.
  • the peeling scale is prevented from reattaching to the inner wall of the heated liquid channel 31.
  • the heat exchanger is not limited to its structure and type, such as a double-tube heat exchanger, a shell-and-tube heat exchanger, in addition to a plate heat exchanger. May be immersed in a hot bath (a tank storing a heat medium such as high-temperature hot water) and heated, or a heating device such as an electric heater may be contacted.
  • a hot bath a tank storing a heat medium such as high-temperature hot water
  • a heating device such as an electric heater may be contacted.
  • the water temperature in the first tank was 25 ° C., and the amount of heat was added so that the hot water temperature rose to 75 ° C. when passing through the copper tube outlet.
  • the boiling time T was 1 hour (60 minutes). That is, water was circulated so that all of the water in the tank reached 75 ° C. 1 hour after the start of boiling.
  • the above operation was regarded as one batch, and this was repeated 72 batches, and the amount of scale adhered to the inner wall of the copper tube was analyzed. Specifically, after the attached scale was extracted with 1 mol / L dilute hydrochloric acid, the amount of calcium ions was measured using a high performance liquid chromatography analyzer. At the start of each cycle, all of the heated simulated high hardness water is once discharged and new simulated high hardness water is poured into the tank.
  • FIG. 2 is a diagram schematically showing a change over time in flow rate when pulsation is applied to the liquid to be heated.
  • the horizontal axis is time, and the vertical axis is flow rate.
  • UH is the maximum flow rate
  • UL is the reference flow rate (minimum flow rate)
  • TC is the pulsation cycle time
  • TH is the time from the reference flow rate UL to the maximum flow rate UH.
  • UM is an average flow rate, and is obtained as a value obtained by dividing the integrated flow rate for TC time of the heated liquid to which pulsation is applied by TC.
  • the reference value of each parameter in the following Experiment 1 to Experiment 3 was determined as follows.
  • Fig. 3 shows the experimental results.
  • the scale adhesion amount when the pulsation is not applied and the number of circulations is 1 is also shown in the same graph.
  • the number of circulations was 1, the best result was obtained, but when the number of circulations was 3 or less, a high scale adhesion suppression effect was recognized.
  • FIG. 4 shows the experimental results.
  • the scale adhesion amount when the pulsation is not applied and the flow rate is fixed at 1.0 (L / min) is also shown in the same graph.
  • the maximum flow rate was more than twice the reference flow rate, a high scale adhesion suppression effect was observed.
  • Example 3 The relationship between the pulsation cycle time TC and the amount of scale adhesion was examined.
  • FIG. 5 shows the experimental results.
  • the scale adhesion amount when the pulsation is not applied and the flow rate is fixed at 1.0 (L / min) is also shown in the same graph.
  • TC was 10 seconds or less, a high scale adhesion inhibiting effect was observed.
  • the number of circulations was 3 or less, the maximum flow after 2 seconds was more than twice the reference flow, and the pulsation cycle time was 10 seconds or less.
  • the phenomenon that the hot water temperature became unstable was not observed. This means that the influence of the pulsation to the extent applied under the above conditions is absorbed with respect to the heat capacity held by the heated liquid in the heated liquid flow path.
  • the amount of heat given to the average flow rate of the heated liquid is appropriately designed. If it is, it is possible to make the hot water temperature in the tank after the boiling time reach the target value. Therefore, when the heated liquid flow path 31 and the heat medium flow path 32 are brought into contact with each other to raise the temperature of the heated liquid, the heat medium side heat source device is not placed in the tank, not the hot water temperature at the outlet of the heated liquid flow path 31. If the average hot water temperature is controlled, hunting of the heat source machine operation amount can be avoided.
  • a pulsation waveform close to a pulse wave is given, but a rectangular wave and a sine wave also have almost the same effect.
  • the hot water tank for storing the liquid to be heated for storing the liquid to be heated, the heater for heating the liquid to be heated, the circulation channel for circulating the liquid to be heated, Liquid driving means for circulating the liquid to be heated in the circulation channel and control means for adjusting the flow rate of the liquid to be heated were provided.
  • the control means pulsates the flow rate of the liquid to be heated, and the number of times the liquid to be heated circulates in the system within a predetermined temperature rising time (until the liquid to be heated in the tank reaches a predetermined temperature) is 3 or less.
  • the average flow rate of the liquid to be heated is controlled so that According to this structure, the scale deposited on the inner wall (heat transfer surface) of the heated liquid channel in the heater is peeled off by applying pulsation to the heated liquid flow circulating through the hot water tank and the heater, By suppressing the number of times the heated liquid circulates between the tank and the heater, it is possible to prevent the peeling scale from reattaching to the inner wall of the heated liquid channel in the heater. Thereby, the fall of the heat exchange performance resulting from scale reattachment and a channel blockage can be controlled certainly.
  • FIG. A water heater 120 according to the second embodiment will be described with reference to FIG.
  • the pump 2, the valve 7, and the control device 6 a constitute the flow control unit 102.
  • the pump operation itself is controlled by the control device 6 (pump control device) to generate the pulsation of the liquid to be heated.
  • the pulsation application method is not limited to this.
  • pulsation is generated in the liquid to be heated by controlling the opening and closing of the flow rate adjusting valve, and the number of circulations is controlled to 3 times or less.
  • FIG. 6 shows a configuration diagram of water heater 120 in the second embodiment.
  • a valve 7 (flow rate adjusting valve) is arranged between the heat exchanger 3 and the pump 2 of the heated liquid circulation pipe 4.
  • the control device 6a controls the opening / closing operation of the valve 7.
  • the control device 6a is connected to the valve 7 through a signal line 61a. Others are the same as in FIG. With the configuration as shown in FIG. 6, the controller 6a adjusts the opening degree of the valve 7 so that the pulsation similar to that of the first embodiment can be generated in the liquid to be heated.
  • the flow control unit 102 includes the pump 2, the valve 7, and the control device 6a.
  • the pump 2 is disposed in the middle of the heated liquid circulation pipe 4 and causes the heated liquid stored in the tank 1 to flow through the heated liquid circulation pipe 4.
  • the valve 7 is disposed in the middle of the heated liquid circulation pipe 4 at any position on the suction side and the discharge side of the pump 2 and adjusts the flow rate of the heated liquid by receiving control.
  • the control device 6a controls the valve 7 to control the flow rate of the liquid to be heated, thereby generating pulsation in the liquid to be heated.
  • FIG. 7 shows a configuration diagram of water heater 130 in the third embodiment.
  • the flow control unit 103 includes the pump 2, a bypass pipe 41 (bypass pipe), a valve 71 (bypass flow rate adjustment valve), and a control device 6b (bypass flow rate adjustment valve control device).
  • the pump 2 is arranged in the middle of the heated liquid circulation pipe 4 and on the inflow side of the heat exchanger 3, and distributes the heated liquid stored in the tank 1 to the heated liquid circulation pipe 4.
  • the bypass pipe 41 (bypass pipe) forms a bypass flow path that bypasses from the discharge side of the pump 2 to the suction side of the pump 2.
  • the valve 71 is disposed in the middle of the bypass pipe 41, and adjusts the flow rate of the liquid to be heated flowing through the bypass pipe 41 by receiving control from the control device 6b.
  • the control device 6b controls the flow rate of the heated liquid flowing through the heated liquid circulation pipe 4 by controlling the opening degree of the valve 71, thereby generating pulsation in the heated liquid. Others are the same as in FIG.
  • FIG. 8 shows a configuration diagram of water heater 140 in the third embodiment. Except that an auxiliary heating device 8 (for example, an electric heater) is provided in the tank 1, it is the same as FIG.
  • the “circulation number” of the liquid to be heated is recognized up to 4 times or less. Instead, the amount of heating is adjusted so that the hot water temperature at the outlet of the heated liquid flow path 31 is equal to or lower than a predetermined temperature, and the shortage of heat is supplied from the auxiliary heating device 8 in the tank 1 so that the hot water temperature in the tank 1 is increased. The temperature is raised to a predetermined temperature. Thereby, the fall of the heat exchange performance resulting from the scale adhesion of the to-be-heated liquid flow path 31 and flow path obstruction

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fluid Mechanics (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

 給湯器を構成する熱交換器内の被加熱液流路の内壁へのスケール付着を抑え、スケール付着に起因する熱交換性能の低下や流路閉塞を抑制する給湯器を提供する。タンク1と熱交換器3とを循環する被加液流に脈動を印加することで熱交換器3内の被加熱液流路31の内壁(伝熱面)に析出したスケールを剥離すると共に、タンクと熱交換器との間を循環する被加熱液の循環回数を3回以下に制御する。流通制御部101は、熱交換器3の被加熱液流路31を通過する被加熱液を脈動させると共に、タンク1に貯留された被加熱液の全容量と、タンク1内の被加熱液の全容量が所定温度に達するまでの沸き上げ時間と、被加熱液流路31を通過する被加熱液の流量とに基づいて決定され、かつ、タンク1に貯留された被加熱液の全容量が熱交換器3を通過する回数を示す循環回数が、3回数以下となるように被加熱液流路31を通過する被加熱液の流量を制御する。

Description

給湯器及び流量制御方法
 本発明は、加熱器において被加熱液を加熱する加熱流路へのスケール付着抑制機能を有する給湯器に関する。
 浴室や台所に温水を供給する給湯器は、電気給湯器、ガス給湯器、石油給湯器などに大別されるが、いずれも熱を水に伝えるための熱交換器と呼ばれる部分が存在する。電気給湯器の中でも、最近特に、省エネや地球温暖化対策としての二酸化炭素削減の観点から、ヒートポンプ熱交換式の電気給湯器(ヒートポンプ給湯器)が注目されている。その原理は、大気の熱を熱媒体に移し、その熱でお湯を沸かすものである。具体的に言えば気体を圧縮したときに発生する高熱を、熱交換器を介して水へ移し、その気体を膨張させたときの冷気によって再び熱媒体の温度を大気温まで戻す冷熱サイクルの繰り返しによるものである。理論上、投入エネルギー以上の熱エネルギーを発生させることはできないが、ヒートポンプ給湯器は大気の熱を活用する仕組みのため、運転に要するエネルギーよりも多くの熱エネルギーを利用することができる。
 熱交換器は水に対して熱を伝えるために、伝熱面を常に清浄な状態に保つことが非常に重要である。壁面が汚れると有効な伝熱面積が減少し、熱伝達性能の低下を招く。さらに汚れが蓄積すると、最悪の場合には流路の閉塞を招く。
 特に水中の硬度成分(カルシウムイオンやマグネシウムイオン)が高い地域では、加熱により炭酸塩を主成分とする「スケール」が析出し、熱交換器内に付着しやすいという課題がある。従来の給湯器では、プレート式熱交換器の高温水側の吐出弁を全閉あるいは全開と20%開度のように1秒程度の周期で脈動させ、プレート自体を振動させることにより低温水側流路の残渣物を剥離除去していた(例えば特許文献1)。
特開2005-221109号公報
 しかしながら、特許文献1においては、仮にプレートへの加振により炭酸カルシウムスケールが剥離したとしても、これが循環回路を介してプレート式熱交換器に戻ってきて、高温水により熱せられたプレートの表面に再付着するため、プレート式熱交換器の熱伝達性能劣化や流路閉塞を防ぐことはできないという課題があった。
 本発明は、給湯器を構成する加熱器内の被加熱液(水)流路内壁へのスケール付着を抑え、スケール付着に起因する熱交換性能の低下や流路閉塞を抑制できる給湯器の提供を目的とする。
 この発明の給湯器は、
 加熱対象の被加熱液が貯留されるタンクと、
 前記タンクから流出した前記被加熱液が再び前記タンクに流入する流路を形成する被加熱液配管の途中に配置された加熱器であって、前記タンクから前記被加熱液配管に流出した前記被加熱液が流入し、流入した前記被加熱液が昇温されて前記タンクの流入側の前記被加熱液配管に流出する加熱流路を有する加熱器と、
 前記タンクに貯留された前記被加熱液を前記被加熱液配管に流通させる流通制御部と
を備え、
 前記流通制御部は、
 前記加熱器の前記加熱流路を通過する前記被加熱液の流量を制御することにより前記加熱器の前記加熱流路を通過する前記被加熱液を脈動させると共に、
 前記タンクに貯留された前記被加熱液の全容量が、所定温度に達するまでの時間として設定された沸き上げ時間内に前記加熱器を所定の回数以下通過するように、前記加熱器の前記加熱流路を通過する前記被加熱液の流量を制御することを特徴とする。
 本発明によれば、給湯タンクと加熱器を循環する被加液流に脈動を印加することで加熱器内の被加熱液流路内壁(伝熱面)に析出したスケールを剥離するとともに、給湯タンクと加熱器との間を被加熱液が循環する回数を抑制することで、剥離スケールが加熱器内の被加熱液流路内壁に再付着するのを防ぐことができる。これにより、スケール付着に起因する熱交換性能の低下や流路閉塞を確実に抑制できる。
実施の形態1における給湯器110の構成図。 実施の形態1における被加熱液流量の時間変化を示す図。 実施の形態1における被加熱液循環回数とスケール付着量との相関図。 実施の形態1における被加熱液最大流量とスケール付着量との相関図。 実施の形態1における脈動時間間隔とスケール付着量との相関図。 実施の形態2における給湯器120の構成図。 実施の形態3における給湯器130の構成図。 実施の形態4における給湯器140の構成図。
 図1~図5を参照して実施の形態1を説明する。
 以下、実施の形態1における給湯器110の構成と動作について、図1を参照しながら説明する。なお以下に示す「L」はリットル(1L=1×10-3)を示す。
 実施の形態1.
 図1は、実施の形態1における給湯器110の構成図である。タンク1は、被加熱液である水(加熱対象の被加熱液)あるいは加熱後の湯を貯めるためものである。ポンプ2は被加熱液である水を循環させる。熱交換器3(加熱器)は、被加熱液である水を昇温する。熱交換器3は、被加熱液循環配管4を介してタンク1と接続されている。熱交換器3は熱媒体配管5とも接続されている。すなわち熱交換器3内の被加熱液流路31(加熱流路)と熱媒体流路32が接触しており、ここで熱交換が行われる。熱媒体は、例えば高温の湯が用いられるが、これに限定するものではなく、二酸化炭素やフロン系冷媒あるいは炭化水素系冷媒でもよい。制御装置6はポンプ2の動作を制御するためのものであり、信号線61を介してポンプ2と接続されている。出湯配管11はタンク1内の湯を取り出す配管である。水道水配管12はタンク1内に水を補給するための配管である。
 出湯配管11、水道水配管12は、それぞれタンク1に接続されている。
 給湯器110では、熱交換器3で加熱された水はタンク1に貯められ、必要に応じて出湯配管11から流出される。すなわち出湯配管11から流出する湯は、熱交換器3で直接加熱された湯である。これは以下に説明する給湯器120~140でも同様である。
 さらに給湯器110の構成を詳しく説明する。図1に示すように、被加熱液循環配管4(被加熱液配管)は、タンク1から流出した被加熱液が再びタンク1に流入する流路を形成する。熱交換器3は、被加熱液循環配管4の途中に配置されている。熱交換器3は、タンク1から被加熱液循環配管4に流出した被加熱液が流入し、流入した被加熱液が熱媒体流路32を流れる熱媒体との熱交換によって昇温されてタンク1の流入側の被加熱液循環配管4に流出する被加熱液流路31(加熱流路)を有する。また、ポンプ2と制御装置6(ポンプ制御装置)とは、タンク1に貯留された被加熱液を被加熱液循環配管4に流通させる流通制御部101を構成する。
 流通制御部101は、熱交換器3の被加熱液流路31を通過する被加熱液の流量を制御することにより、被加熱液流路31を通過する被加熱液を脈動させる。また流通制御部101は、後述するように、沸き上げする際に、タンク1に貯留された被加熱液の全容量V(L)と、被加熱液の全容量Vが所定温度に達するまでの時間として設定された沸き上げ時間T(分)と、熱交換器3の被加熱液流路31を通過する被加熱液の流量F(L/分)とに基づいて決定され、かつ、タンク1に貯留された被加熱液の全容量Vが熱交換器3を通過する回数を示す循環回数が、所定回数以下(実施の形態1では後述のように3回以下)となるように、熱交換器3の被加熱液流路31を通過する被加熱液の流量を制御する。
 次に、図1を参照しながら、実施の形態1における給湯器110の動作を説明する。
 被加熱液である水は、水道水配管12を介してタンク1に導入される。タンク1内の水は、ポンプ2、被加熱液循環配管4を介して、熱交換器3へ送られる。水は、熱交換器3内の被加熱液流路31を通過する間に、これに接触する熱媒体流路32内の熱媒体から熱を供給され、昇温される。昇温された水すなわち湯は、タンク1の流入側の被加熱液循環配管4を介してタンク1に戻る。熱媒体流路32内の熱媒体は、熱媒体配管5を介してヒートポンプ(ここでは図示していない)へ送られ加熱された後、熱媒体配管5を介して熱交換器3へ戻る。
(スケールの析出)
 水中の硬度成分すなわちカルシウムイオン濃度が高いとき、炭酸カルシウムの結晶が析出する。そもそも熱媒体流路32と接している被加熱液流路31の内壁は、当然ながら温度が高く、炭酸カルシウムが析出しやすい。さらに、炭酸カルシウムの結晶核は液相と接触する面積が小さい方がエネルギー的に有利(安定)なため、固液界面すなわち異物や壁面があると、そこに接するように核を形成する。このようなメカニズムにより、熱交換器3の内部すなわち被加熱液流路31の内壁(伝熱面)にスケールが析出する。
(沸き上げ時間、循環回数)
 ここで、タンク1内の水の加熱を開始し、タンク1内の被加熱液の全量が所定の温度に達するまでの時間を、「沸き上げ時間」と定義する。この間、水道水配管12からの水道水補給ならびに出湯配管11からの出湯は行われないものとする。沸き上げ時間中、制御装置6はポンプ2の動作を制御し、水流を脈動させる。ただし平均流量は、循環回数が「所定の回数以下」となるように定められる。ここで「循環回数」とは、タンク1内の水が平均的に閉回路内を循環する回数のことであり、次の式(1)で算出される値である。
 循環回数=(平均流量F×沸き上げ時間T)÷(タンク1の容積V+被加熱液循環配管4の容積+被加熱液流路31の容積)  式(1)
 一般的に、被加熱液循環配管4の容積ならびに被加熱液流路31の容積はタンク1の容積に比べて十分小さいので、これらの値は上記演算から省いてもよい。すなわち次式(2)のように算出してもよい。なお、式(1)、式(2)における「タンク1の容積V」とは、タンク1に貯留された被加熱液の容量である。
 循環回数=(平均流量F×沸き上げ時間T)÷(タンク1の容積V)  式(2)
 上記の式(1)あるいは式(2)から決定される循環回数は、タンク1に貯留された被加熱液の全容量Vが熱交換器3を通過する回数を示す値である。
 なお、タンク1内の水の一部を沸き上げるときは、「タンク1の容積」を「昇温する水量」に、「沸き上げ時間」を「対象の水量を所定の温度にまで昇温する時間」に置き換えれば良い。例えば、昇温する水量が半分になれば沸き上げ時間も半分になるので、平均流量さえ決まれば、循環回数は変わらない。
 実施の形態1の給湯器110では、タンク1と熱交換器3を循環する水流に脈動を印加することで熱交換器3内の被加熱液流路31の内壁に析出したスケールを剥離するとともに、タンク1と熱交換器3との間を湯が循環する循環回数を抑制することで、剥離スケールが被加熱液流路31内壁に再付着するのを防ぐ。これにより、スケール付着に起因する熱交換性能の低下や流路閉塞を確実に抑制できる。
 なお、熱交換器としては、プレート式熱交換器のほか二重管式熱交換器、シェルアンドチューブ式熱交換器など、その構造や形式に限定されるものではなく、被加熱液流路31をホットバス(高温の湯などの熱媒体を貯留したタンク)に浸漬して加熱しても良いし、電気ヒーターなどの加熱器具を接触させてもよい。
 次に、実施の形態1の具体例(実験条件)を説明する。
(1)実験では、タンク1として容積60Lのステンレス製タンクを用いた。
(2)また、熱交換器3の有する被加熱液流路31として、内径12mm、長さ10mの銅管を用意し、これを樹脂製配管で接続した。
(3)被加熱液は、一般試薬で調整した模擬高硬度水を用いた(硬度100mg-CaCO3/L、Mアルカリ度140mg-CaCO3/L、pH7.5)。
(4)被加熱液流路31の銅管は、40Lのステンレスホットバスに浸漬させ、模擬高硬度水を昇温した。
(5)初発のタンク内の水温は25℃とし、銅管出口を通過すると湯温が75℃にまで上昇するように熱量を加えた。
(6)沸き上げ時間Tは1時間(60分)とした。すなわち沸き上げ開始から1時間後にタンク内の水の全てが75℃に到達するように水を循環させた。
(7)以上の操作を1バッチとして、これを72バッチ繰り返し、銅管内壁に付着したスケール量を分析した。具体的には、付着したスケールを1モル/Lの希塩酸で抽出した後、高速液体クロマトグラフィ分析装置を使ってカルシウムイオン量を測定した。なお、各サイクルを開始するにあたっては、加熱された模擬高硬度水をいったん全て排出し、新しい模擬高硬度水をタンク内に注入している。
 図2は、被加熱液に脈動を印加した場合の流量の時間変化を模式的に示した図である。横軸は時間、縦軸は流量である。UHは最大流量、ULは基準流量(最小流量)、また、TCは脈動サイクル時間、THは基準流量ULから最大流量UHに到達するまでの時間である。UMは平均流量であり、脈動を印加した被加熱液のTC時間分の積算流量をTCで除した値として求められる。以下の実験1~実験3における各パラメータの基準値は、次のように定めた。
(実験1~実験3における各パラメータの基準値)
 UH=1.4(L/分)、UL=0.7(L/分)、UM=1.0(L/分)、TC=5(秒)、TH=2(秒)。
(実験1)
 被加熱液の循環回数とスケール付着量との相関について調べた。循環回数と流量との関係を以下に示す。上記式(2)よれば、
 循環回数×タンク1容積V(60L)=平均流量UM×沸き上げ時間T(60分)
である。よって、この実験1では、循環回数=平均流量UM、である。
 循環回数1:UH=1.4(L/分)、UL=0.7(L/分)、UM=1.0(L/分)
 循環回数2:UH=2.8(L/分)、UL=1.4(L/分)、UM=2.0(L/分)
 循環回数3:UH=4.2(L/分)、UL=2.1(L/分)、UM=3.0(L/分)
 循環回数4:UH=5.6(L/分)、UL=2.8(L/分)、UM=4.0(L/分)
 循環回数5:UH=7.0(L/分)、UL=3.5(L/分)、UM=5.0(L/分)
 循環回数6:UH=8.4(L/分)、UL=4.2(L/分)、UM=6.0(L/分)
 図3は、実験結果を示す。比較のため、脈動を印加せず循環回数を1回としたときのスケール付着量も同じグラフに示している。循環回数が1のときが最良の結果であったが、循環回数が3以下のとき、高いスケール付着抑制効果が認められた。
(実験2)
 脈動の強度、すなわちTH時間後(ここでは2秒後)の最大流量UHが基準流量ULの何倍となれば、高いスケール付着抑制効果が得られるかを調べた。定めた実験条件を以下に示す。
 1.25倍:UH=1.1(L/分)、UL=0.9(L/分)、UM=1.0(L/分)、
 1.5倍:UH=1.2(L/分)、UL=0.8(L/分)、UM=1.0(L/分)、
 2.0倍:UH=1.4(L/分)、UL=0.7(L/分)、UM=1.0(L/分)、
 3.0倍:UH=1.65(L/分)、UL=0.55(L/分)、UM=1.0(L/分)。
 これらの条件は、いずれも平均流量UMが1.0(L/分)なので、循環回数は1である。図4は実験結果を示す。比較のため、脈動を印加せず流量を1.0(L/分)で固定したときのスケール付着量も、同じグラフに示している。最大流量が基準流量の2倍以上のとき、高いスケール付着抑制効果が認められた。
(実験3)
 脈動サイクル時間TCとスケール付着量との関係について調べた。
 図5は実験結果を示す。比較のため、脈動を印加せず流量を1.0(L/分)で固定したときのスケール付着量も、同じグラフに示している。TCが10秒以下のとき、高いスケール付着抑制効果が認められた。
(銅管出口の湯温と脈動条件との関係)
 実験2のように脈動の強度が強い方が、すなわち平均流量UMが大きく(循環回数が大きく)、最大流量UHの基準流量ULに対する倍率が大きい。また実験3のように、脈動サイクル時間TCが短い方が、スケール付着抑制効果は高い。一方で、流量が上下することで、被加熱液流路31の出口の湯温が不安定になるのではないかという懸念がある。この湯温の安定性についても調べたところ、上に示した「循環回数が3以下」、「2秒後の最大流量が基準流量の2倍以上」、「脈動サイクル時間が10秒以下」という脈動条件において、湯温が不安定になる現象は認められなかった。これは被加熱液流路中の被加熱液が保持する熱容量に対して、上記条件で印加した程度の脈動の与える影響は、吸収されてしまうことを意味している。
 なお、仮に被加熱液流路31の容量が小さく、被加熱液流路31の出口の湯温が不安定になったとしても、被加熱液の平均流量に対して与えられる熱量が適正に設計されていれば、沸き上げ時間後のタンク内の湯温を目標値に到達させることは可能である。従って、被加熱液流路31と熱媒体流路32を接触させて被加熱液を昇温させる場合には、熱媒体側熱源機を被加熱液流路31の出口の湯温ではなくタンク内の平均湯温を用いて制御すれば、熱源機操作量のハンチングを回避できる。
 本実施の形態1では、図2に示すように、パルス波に近い脈動波形を与えたが、矩形波、サイン波でも、ほぼ同等の効果を奏する。
 以上の実施の形態1の給湯器110では、被加熱液を貯留するための給湯タンクと、被加熱液を昇温するための加熱器と、被加熱液を循環させるための循環流路と、循環流路内の被加熱液を流通させるための液駆動手段と、被加熱液の流量を調節するための制御手段を備えた。そして、上記制御手段は被加熱液流量を脈動させるとともに、所定の昇温時間内(タンク内被加熱液が所定温度に達するまでの間)に被加熱液が系内を循環する回数が3以下となるように被加熱液平均流量を制御する。この構成によれば、給湯タンクと加熱器を循環する被加液流に脈動を印加することで加熱器内の被加熱液流路内壁(伝熱面)に析出したスケールを剥離すると共に、給湯タンクと加熱器との間を被加熱液が循環する回数を抑制することで、剥離スケールが加熱器内の被加熱液流路内壁に再付着するのを防ぐことができる。これにより、スケール再付着に起因する熱交換性能の低下や流路閉塞を確実に抑制できる。
 実施の形態2.
 図6を参照して実施の形態2の給湯器120を説明する。実施の形態2の給湯器120では、ポンプ2、弁7及び制御装置6aが流通制御部102を構成する。実施の形態1では、ポンプ動作そのものを制御装置6(ポンプ制御装置)で制御し、被加熱液の脈動を発生させたが、脈動印加の方式についてはこれに限るものではない。実施の形態2では、流量調整弁の開閉を制御することで被加熱液に脈動を発生すると共に、循環回数を3回数以下に制御する。
 図6は、実施の形態2における給湯器120の構成図を示す。実施の形態2では、被加熱液循環配管4の熱交換器3とポンプ2との間に、弁7(流量調整弁)が配置されている。制御装置6aは、弁7の開閉動作を制御する。制御装置6aは、信号線61aを介して弁7と接続されている。その他は図1と同様である。図6のような構成により、制御装置6aが弁7の開度を調節することで、実施の形態1と同様の脈動を被加熱液に発生することができる。
 以上のように実施の形態2では、流通制御部102は、ポンプ2、弁7及び制御装置6aによって構成される。ポンプ2は、被加熱液循環配管4の途中に配置され、タンク1に貯留された被加熱液を被加熱液循環配管4に流通させる。また弁7は、被加熱液循環配管4の途中であってポンプ2の吸込側と吐出側とのいずれかの位置に配置され、制御を受けることによって被加熱液の流量を調整する。また、制御装置6aは、弁7を制御することによって、被加熱液の流量を制御することで、被加熱液に脈動を発生させる。
 実施の形態3.
 図7を参照して実施の形態3の給湯器130を説明する。実施の形態3では、バイパス路の流量を調整することで被加熱液に脈動を発生すると共に、循環回数を3回数以下に制御する。
 図7は、実施の形態3における給湯器130の構成図を示す。実施の形態3では、流通制御部103は、ポンプ2、バイパス管41(バイパス配管)、弁71(バイパス流量調整弁)、及び制御装置6b(バイパス流量調整弁制御装置)を備えている。ポンプ2は、被加熱液循環配管4の途中であって熱交換器3の流入側に配置され、タンク1に貯留された被加熱液を被加熱液循環配管4に流通させる。バイパス管41(バイパス配管)は、ポンプ2の吐出側からポンプ2の吸込側にバイパスするバイパス流路を形成する。弁71は、バイパス管41の途中に配置され、制御装置6bから制御を受けることによってバイパス管41を流れる被加熱液の流量を調整する。制御装置6bは、弁71の開度を制御することによって、被加熱液循環配管4を流れる被加熱液の流量を制御することで、被加熱液に脈動を発生させる。その他は図1と同様である。
 動作について説明する。制御装置6bが弁71を開くとバイパス管41に被加熱液が流れこむため、熱交換器3の被加熱液流路31へ流入する被加熱液流量は低下する。逆に制御装置6bが弁71を閉じると、バイパス管41には被加熱液が流れないため、熱交換器3の被加熱液流路31へ流入する被加熱液流量は増加する。これを繰り返すことにより、実施の形態1と同様に、脈動を発生すると共に、循環回数を3回数以下に制御することができる。
 実施の形態4.
 図8を参照して実施の形態4の給湯器140を説明する。給湯器140では給湯器110と同様に、ポンプ2及び制御装置6が流通制御部101を構成する。
 図8は、実施の形態3における給湯器140の構成図を示す。補助加熱装置8(例えば電気ヒーター)が、タンク1内に設けられた他は、図1と同様である。
 動作について説明する。本実施の形態4では、被加熱液の「循環回数」を4回以下まで認める。そのかわり被加熱液流路31の出口の湯温を所定温度以下となるように加熱量を調節し、不足分の熱量はタンク1内で補助加熱装置8から与えて、タンク1内の湯温を所定温度にまで昇温する。これにより、被加熱液流路31のスケール付着に起因する熱交換性能の低下や流路閉塞を抑制できる。
 1 タンク、11 出湯配管、12 水道水配管、101,102,103,104 流通制御部、110,120,130,140 給湯器、2 ポンプ、3 熱交換器、31 被加熱液流路、32 熱媒体流路、4 被加熱液循環配管、5 熱媒体配管、6 制御装置、61 信号線。

Claims (10)

  1.  加熱対象の被加熱液が貯留されるタンクと、
     前記タンクから流出した前記被加熱液が再び前記タンクに流入する流路を形成する被加熱液配管の途中に配置された加熱器であって、前記タンクから前記被加熱液配管に流出した前記被加熱液が流入し、流入した前記被加熱液が昇温されて前記タンクの流入側の前記被加熱液配管に流出する加熱流路を有する加熱器と、
     前記タンクに貯留された前記被加熱液を前記被加熱液配管に流通させる流通制御部と
    を備え、
     前記流通制御部は、
     前記加熱器の前記加熱流路を通過する前記被加熱液の流量を制御することにより前記加熱器の前記加熱流路を通過する前記被加熱液を脈動させると共に、
     前記タンクに貯留された前記被加熱液の全容量が、所定温度に達するまでの時間として設定された沸き上げ時間内に前記加熱器を所定の回数以下通過するように、前記加熱器の前記加熱流路を通過する前記被加熱液の流量を制御することを特徴とする給湯器。
  2.  前記流通制御部は、
     前記タンクに貯留された前記被加熱液の前記全容量が、前記沸き上げ時間内に前記加熱器を多くとも3回通過するように、前記加熱器の前記加熱流路を通過する前記被加熱液の流量を制御することを特徴とする請求項1記載の給湯器。
  3.  前記流通制御部は、
     所定の周期TCで前記被加熱液を周期的に脈動させると共に、前記周期TCが、10秒以下となるように、前記被加熱液を脈動させることを特徴とする請求項1または2のいずれかに記載の給湯器。
  4.  前記流通制御部は、
     最大流量UHと最低流量ULとが出現する所定の周期TCで前記被加熱液を周期的に脈動させると共に、最高流量値UHと最低流量値ULとの比UH/ULが、2以上となるように、前記被加熱液を脈動させることを特徴とする請求項1~3のいずれかに記載の給湯器。
  5.  前記流通制御部は、
     前記被加熱液を周期的に脈動させる場合に、前記加熱器の前記加熱流路を通過する単位時間当たりの前記被加熱液の流量の時間変化を示す脈動波形が、
     パルス波、矩形波、サイン波のいずれかの形状に近似するように脈動させることを特徴とする請求項3または4のいずれかに記載の給湯器。
  6.  前記流通制御部は、
     前記タンクに貯留された前記被加熱液の前記全容量が、前記沸き上げ時間内に前記加熱器を多くとも4回通過するように、前記加熱器の前記加熱流路を通過する前記被加熱液の流量を制御し、
     前記タンクは、
     貯留された加熱対象の被加熱液を加熱する補助加熱装置を備えたことを特徴とする請求項1記載の給湯器。
  7.  前記流通制御部は、
     前記被加熱液配管の途中に配置され、前記タンクに貯留された前記被加熱液を前記被加熱液配管に流通させるポンプと、前記ポンプを制御することによって、前記ポンプが流通させる前記被加熱液の流量を制御するポンプ制御装置と
    を備えたことを特徴とする請求項1~6のいずれかに記載の給湯器。
  8.  前記流通制御部は、
     前記被加熱液配管の途中に配置され、前記タンクに貯留された前記被加熱液を前記被加熱液配管に流通させるポンプと、
     前記被加熱液配管の途中であって前記ポンプの吸込側と吐出側とのいずれかの位置に配置され、制御を受けることによって前記被加熱液の流量を調整する流量調整弁と、
     前記流量調整弁を制御することによって、前記被加熱液の流量を制御する弁制御装置とを備えたことを特徴とする請求項1~6のいずれかに記載の給湯器。
  9.  前記流通制御部は、
     前記被加熱液配管の途中であって前記加熱器の流入側に配置され、前記タンクに貯留された前記被加熱液を前記被加熱液配管に流通させるポンプと、
     前記ポンプの吐出側から前記ポンプの吸込側にバイパスするバイパス流路を形成するバイパス配管と、
     前記バイパス配管の途中に配置され、制御を受けることによって前記バイパス配管を流れる前記被加熱液の流量を調整するバイパス流量調整弁と、
     前記バイパス流量調整弁を制御することによって、前記被加熱液配管を流れる前記被加熱液の流量を制御するバイパス流量調整弁制御装置と
    を備えたことを特徴とする請求項1~6のいずれかに記載の給湯器。
  10.  加熱対象の被加熱液が貯留されるタンクと、
     前記タンクから流出した前記被加熱液が再び前記タンクに流入する流路を形成する被加熱液配管の途中に配置された加熱器であって、前記タンクから前記被加熱液配管に流出した前記被加熱液が流入し、流入した前記被加熱液が昇温されて前記タンクの流入側の前記被加熱液配管に流出する加熱流路を有する加熱器と、
     前記タンクに貯留された前記被加熱液を前記被加熱液配管に流通させる流通制御部と
    を備えた給湯器の前記流通制御部が行う前記被加熱液の流量制御方法であって、
     前記流通制御部は、
     前記加熱器の前記加熱流路を通過する前記被加熱液の流量を制御することにより前記加熱器の前記加熱流路を通過する前記被加熱液を脈動させると共に、
     前記タンクに貯留された前記被加熱液の全容量が、所定温度に達するまでの時間として設定された沸き上げ時間内に前記加熱器を所定の回数以下通過するように、前記加熱器の前記加熱流路を通過する前記被加熱液の流量を制御することを特徴とする流量制御方法。
PCT/JP2011/058459 2011-04-01 2011-04-01 給湯器及び流量制御方法 WO2012137281A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/009,299 US9021993B2 (en) 2011-04-01 2011-04-01 Water heater and flow rate control method
EP11862970.8A EP2696160B1 (en) 2011-04-01 2011-04-01 Hot water supply device and flow volumen control method
PCT/JP2011/058459 WO2012137281A1 (ja) 2011-04-01 2011-04-01 給湯器及び流量制御方法
AU2011365165A AU2011365165A1 (en) 2011-04-01 2011-04-01 Hot water supply device and flow volumen control method
JP2013508643A JP5546680B2 (ja) 2011-04-01 2011-04-01 給湯器及び流量制御方法
CN201180069818.3A CN103492828B (zh) 2011-04-01 2011-04-01 热水器以及流量控制方法
HK14103225.5A HK1190183A1 (zh) 2011-04-01 2014-04-03 熱水器以及流量控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/058459 WO2012137281A1 (ja) 2011-04-01 2011-04-01 給湯器及び流量制御方法

Publications (1)

Publication Number Publication Date
WO2012137281A1 true WO2012137281A1 (ja) 2012-10-11

Family

ID=46968722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058459 WO2012137281A1 (ja) 2011-04-01 2011-04-01 給湯器及び流量制御方法

Country Status (7)

Country Link
US (1) US9021993B2 (ja)
EP (1) EP2696160B1 (ja)
JP (1) JP5546680B2 (ja)
CN (1) CN103492828B (ja)
AU (1) AU2011365165A1 (ja)
HK (1) HK1190183A1 (ja)
WO (1) WO2012137281A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014222136A (ja) * 2013-05-14 2014-11-27 三菱電機株式会社 給湯機
EP2957839A4 (en) * 2013-02-18 2016-09-07 Mitsubishi Electric Corp HOT WATER SUPPLY DEVICE
WO2017158938A1 (ja) * 2016-03-16 2017-09-21 三菱電機株式会社 熱交換システムおよび熱交換システムのスケール抑制方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2520978A (en) * 2013-12-05 2015-06-10 Zonealone Ltd A domestic hot water installation
JP6370136B2 (ja) * 2014-07-07 2018-08-08 三菱電機株式会社 温水装置及び温水装置における異常通知方法
AU2017304849A1 (en) * 2016-07-26 2019-02-07 Noritz Corporation Heating and hot water supplying device
CN109564006A (zh) * 2016-07-26 2019-04-02 株式会社能率 供暖热水供给装置
KR101991112B1 (ko) * 2018-02-12 2019-09-30 김현명 상수관로 탐지시스템
US10969141B2 (en) 2018-03-13 2021-04-06 Ngb Innovations Llc Regulating temperature and reducing buildup in a water heating system
KR102055678B1 (ko) * 2018-10-11 2019-12-13 엘지전자 주식회사 정수기
CN113932443A (zh) * 2021-09-15 2022-01-14 威能(无锡)供热设备有限公司 燃气热水设备及其控制方法、热水系统、和可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005221109A (ja) 2004-02-04 2005-08-18 Hitachi Engineering & Services Co Ltd プレート式熱交換器の洗浄方法および装置
JP2009243797A (ja) * 2008-03-31 2009-10-22 Mitsubishi Electric Corp 給湯機
JP2010091123A (ja) * 2008-10-03 2010-04-22 Panasonic Corp スケール防止装置
JP2010175160A (ja) * 2009-01-30 2010-08-12 Panasonic Corp 熱交換器用スケール防止装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3939803A (en) * 1973-10-09 1976-02-24 Institute Of Gas Technology High temperature boiler and method
SE415796B (sv) * 1979-02-27 1980-10-27 Ctc Ab Anordning for varmvattenberedning
US4959526A (en) * 1986-07-03 1990-09-25 Chubu Electric Power Company, Inc. Storage type electric water heater having a closed circulation loop with a bubble pump
US5115491A (en) * 1990-12-17 1992-05-19 Maier Perlman Tempering system for storage tank water heaters utilizing inlet and outlet heat exchanger
US6283067B1 (en) * 1999-11-12 2001-09-04 Aos Holding Company Potable water temperature management system
WO2003014627A1 (en) * 2001-08-10 2003-02-20 Queen's University At Kingston Passive back-flushing thermal energy system
JP3724475B2 (ja) * 2002-10-28 2005-12-07 松下電器産業株式会社 ヒートポンプ給湯機
DE10318528A1 (de) * 2003-04-24 2004-11-11 IVET Ingenieurgesellschaft für Verfahrensentwicklung und Entsorgungstechnik mbH Vorrichtung und Verfahren zum Hervorrufen einer Flüssigkeitspulsation in einem Wärmeübertrager
JP2005308235A (ja) * 2004-04-16 2005-11-04 Matsushita Electric Ind Co Ltd 給湯機
JP2006125654A (ja) 2004-10-26 2006-05-18 Matsushita Electric Ind Co Ltd ヒートポンプ給湯機
US20130075245A1 (en) * 2009-12-16 2013-03-28 F. Alan Frick Methods and systems for heating and manipulating fluids
IL176460A (en) * 2006-06-21 2010-11-30 Shmuel Ben Ishai Water heating and storage system
CN101501437A (zh) * 2006-06-23 2009-08-05 埃克森美孚研究工程公司 减少热交换器中的结垢
US20080073063A1 (en) * 2006-06-23 2008-03-27 Exxonmobil Research And Engineering Company Reduction of fouling in heat exchangers
WO2010029786A1 (ja) 2008-09-12 2010-03-18 三菱電機株式会社 熱交換器装置の運転方法、及び熱交換器装置
WO2010067454A1 (ja) * 2008-12-12 2010-06-17 三菱電機株式会社 給湯方法および給湯装置
CN101476826B (zh) * 2009-01-21 2010-12-29 武汉工程大学 脉动流强化传热换热器
EP2397789B1 (en) * 2009-02-16 2019-05-08 Mitsubishi Electric Corporation Water heater

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005221109A (ja) 2004-02-04 2005-08-18 Hitachi Engineering & Services Co Ltd プレート式熱交換器の洗浄方法および装置
JP2009243797A (ja) * 2008-03-31 2009-10-22 Mitsubishi Electric Corp 給湯機
JP2010091123A (ja) * 2008-10-03 2010-04-22 Panasonic Corp スケール防止装置
JP2010175160A (ja) * 2009-01-30 2010-08-12 Panasonic Corp 熱交換器用スケール防止装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2957839A4 (en) * 2013-02-18 2016-09-07 Mitsubishi Electric Corp HOT WATER SUPPLY DEVICE
JP2014222136A (ja) * 2013-05-14 2014-11-27 三菱電機株式会社 給湯機
WO2017158938A1 (ja) * 2016-03-16 2017-09-21 三菱電機株式会社 熱交換システムおよび熱交換システムのスケール抑制方法
JP6239199B1 (ja) * 2016-03-16 2017-11-29 三菱電機株式会社 熱交換システムおよび熱交換システムのスケール抑制方法
EP3412991A4 (en) * 2016-03-16 2019-03-20 Mitsubishi Electric Corporation HEAT EXCHANGE SYSTEM AND BOILER-STONE PRESSURE PROCESS FOR HEAT EXCHANGE SYSTEM

Also Published As

Publication number Publication date
US9021993B2 (en) 2015-05-05
EP2696160A4 (en) 2015-05-20
AU2011365165A1 (en) 2013-10-24
JPWO2012137281A1 (ja) 2014-07-28
EP2696160B1 (en) 2019-03-27
JP5546680B2 (ja) 2014-07-09
CN103492828B (zh) 2016-01-20
EP2696160A1 (en) 2014-02-12
US20140144607A1 (en) 2014-05-29
HK1190183A1 (zh) 2014-06-27
CN103492828A (zh) 2014-01-01

Similar Documents

Publication Publication Date Title
JP5546680B2 (ja) 給湯器及び流量制御方法
EP2724989A1 (en) Scale removal method and scale removal device
JP2010210181A (ja) 給湯システム
JP5971149B2 (ja) 給湯機
JP2018159516A (ja) 冷却塔設備、及びその水質管理方法
JP2012117776A (ja) ヒートポンプ式給湯機
JP5375908B2 (ja) ヒートポンプ給湯機
JP5811053B2 (ja) 熱交換器およびその運転方法
JP2019173975A (ja) 貯湯給湯装置
JP6239199B1 (ja) 熱交換システムおよび熱交換システムのスケール抑制方法
JP2010190466A (ja) 給湯装置
JP5550130B2 (ja) 給湯方法および給湯システム
JP5440193B2 (ja) 貯湯式給湯機
JP2014085066A (ja) 水処理装置、加湿装置および給湯装置
JP2005156002A (ja) 製氷機
JP5569490B2 (ja) 貯湯式給湯機
JP5430676B2 (ja) 気泡供給方法及び給湯器
JP2007101067A (ja) ヒートポンプ給湯システム
JP6086820B2 (ja) 給湯装置
JP7205219B2 (ja) 給湯装置
JP2012232306A (ja) 循環水系の薬注制御方法、及び循環水系の薬注制御装置
JP2011032566A (ja) 化成液加温システム及びその停止方法
JP2016095119A (ja) 給湯装置
JP2014018739A (ja) 水処理装置および給湯装置
JP2005345075A (ja) 貯湯式給湯器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862970

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013508643

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011862970

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14009299

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2011365165

Country of ref document: AU

Date of ref document: 20110401

Kind code of ref document: A