WO2012137281A1 - 給湯器及び流量制御方法 - Google Patents
給湯器及び流量制御方法 Download PDFInfo
- Publication number
- WO2012137281A1 WO2012137281A1 PCT/JP2011/058459 JP2011058459W WO2012137281A1 WO 2012137281 A1 WO2012137281 A1 WO 2012137281A1 JP 2011058459 W JP2011058459 W JP 2011058459W WO 2012137281 A1 WO2012137281 A1 WO 2012137281A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heated
- heated liquid
- liquid
- tank
- flow rate
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 113
- 238000000034 method Methods 0.000 title claims description 4
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 title 1
- 239000007788 liquid Substances 0.000 claims abstract description 194
- 238000010438 heat treatment Methods 0.000 claims description 29
- 230000010349 pulsation Effects 0.000 claims description 27
- 238000009835 boiling Methods 0.000 claims description 17
- 230000004087 circulation Effects 0.000 abstract description 54
- 230000007423 decrease Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 12
- 238000002474 experimental method Methods 0.000 description 11
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 8
- 239000008399 tap water Substances 0.000 description 7
- 235000020679 tap water Nutrition 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 229910000019 calcium carbonate Inorganic materials 0.000 description 4
- 230000001629 suppression Effects 0.000 description 4
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 3
- 229910001424 calcium ion Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28G—CLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
- F28G7/00—Cleaning by vibration or pressure waves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D19/00—Details
- F24D19/0092—Devices for preventing or removing corrosion, slime or scale
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/10—Control of fluid heaters characterised by the purpose of the control
- F24H15/14—Cleaning; Sterilising; Preventing contamination by bacteria or microorganisms, e.g. by replacing fluid in tanks or conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/30—Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
- F24H15/305—Control of valves
- F24H15/31—Control of valves of valves having only one inlet port and one outlet port, e.g. flow rate regulating valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/30—Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
- F24H15/305—Control of valves
- F24H15/325—Control of valves of by-pass valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/30—Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
- F24H15/335—Control of pumps, e.g. on-off control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H9/00—Details
- F24H9/20—Arrangement or mounting of control or safety devices
- F24H9/2007—Arrangement or mounting of control or safety devices for water heaters
- F24H9/2014—Arrangement or mounting of control or safety devices for water heaters using electrical energy supply
- F24H9/2021—Storage heaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
- F28D20/0034—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F19/00—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Definitions
- the present invention relates to a water heater having a function of suppressing scale adhesion to a heating channel that heats a liquid to be heated in a heater.
- Hot water heaters that supply hot water to bathrooms and kitchens are roughly divided into electric water heaters, gas water heaters, and oil water heaters, but there are parts called heat exchangers that transmit heat to water.
- electric water heaters in particular, heat pump heat exchange type electric water heaters (heat pump water heaters) are attracting attention from the viewpoint of energy saving and carbon dioxide reduction as a measure against global warming.
- the principle is that the heat of the atmosphere is transferred to a heat medium, and hot water is boiled with that heat. Specifically, the high heat generated when the gas is compressed is transferred to water through a heat exchanger, and the cooling cycle is repeated to return the temperature of the heat medium to the atmospheric temperature again by the cold air when the gas is expanded. Is due to. Theoretically, it is not possible to generate more heat energy than the input energy, but since the heat pump water heater uses the heat of the atmosphere, more heat energy than the energy required for operation can be used.
- Patent Document 1 even if the calcium carbonate scale peels off due to vibration applied to the plate, it returns to the plate heat exchanger via the circulation circuit and is applied to the surface of the plate heated by high-temperature water. Due to the reattachment, there was a problem that the heat transfer performance deterioration of the plate heat exchanger and the blockage of the flow path could not be prevented.
- the present invention provides a water heater capable of suppressing scale adhesion to the inner wall of a heated liquid (water) flow channel in a heater constituting a water heater, and suppressing deterioration in heat exchange performance and flow channel blockage due to scale adhesion. With the goal.
- the water heater of this invention is A tank in which a liquid to be heated is stored; A heater disposed in the middle of a heated liquid pipe that forms a flow path through which the heated liquid flowing out from the tank flows into the tank again, and the heated liquid flowing out from the tank into the heated liquid pipe A heater having a heating flow path in which the heating liquid flows in, the heated liquid that has flowed in is heated to flow out to the heated liquid piping on the inflow side of the tank; A flow control unit for circulating the heated liquid stored in the tank to the heated liquid piping; The distribution control unit While pulsating the heated liquid passing through the heating flow path of the heater by controlling the flow rate of the heated liquid passing through the heating flow path of the heater, The heating of the heater so that the total volume of the liquid to be heated stored in the tank passes through the heater a predetermined number of times or less within a boiling time set as a time until it reaches a predetermined temperature. The flow rate of the liquid to be heated passing through the flow path is controlled.
- the pulsation is applied to the liquid flow that circulates between the hot water tank and the heater to peel off the scale deposited on the inner wall (heat transfer surface) of the heated liquid flow path in the heater,
- the peeling scale By suppressing the number of times the heated liquid circulates between the tank and the heater, it is possible to prevent the peeling scale from reattaching to the inner wall of the heated liquid channel in the heater. Thereby, the fall of the heat exchange performance resulting from scale adhesion and the blockage
- FIG. 3 is a configuration diagram of a water heater 110 according to Embodiment 1.
- FIG. 4 shows a change over time in the flow rate of the liquid to be heated in the first embodiment.
- FIG. 4 is a correlation diagram between the number of times of heated liquid circulation and the amount of scale adhesion in the first embodiment.
- FIG. 4 is a correlation diagram between the maximum flow rate of the liquid to be heated and the amount of scale adhesion in the first embodiment.
- FIG. 3 is a correlation diagram between a pulsation time interval and a scale adhesion amount in the first embodiment.
- FIG. 6 is a configuration diagram of a water heater 120 according to Embodiment 2.
- FIG. 6 is a configuration diagram of a water heater 130 in a third embodiment.
- FIG. 6 is a configuration diagram of a water heater 140 in a fourth embodiment.
- FIG. 1 is a configuration diagram of a water heater 110 according to the first embodiment.
- the tank 1 is for storing water that is the liquid to be heated (the liquid to be heated) or hot water that has been heated.
- the pump 2 circulates water that is the liquid to be heated.
- the heat exchanger 3 (heater) raises the temperature of the water to be heated.
- the heat exchanger 3 is connected to the tank 1 via a heated liquid circulation pipe 4.
- the heat exchanger 3 is also connected to the heat medium pipe 5. That is, the heated liquid channel 31 (heating channel) and the heat medium channel 32 in the heat exchanger 3 are in contact with each other, and heat exchange is performed here.
- hot water is used as the heat medium, but the heat medium is not limited to this, and carbon dioxide, a fluorocarbon refrigerant, or a hydrocarbon refrigerant may be used.
- the control device 6 is for controlling the operation of the pump 2, and is connected to the pump 2 via a signal line 61.
- the hot water discharge pipe 11 is a pipe for taking out hot water in the tank 1.
- the tap water pipe 12 is a pipe for supplying water into the tank 1.
- the tap water piping 11 and the tap water piping 12 are each connected to the tank 1.
- the water heated by the heat exchanger 3 is stored in the tank 1 and flows out from the hot water supply pipe 11 as necessary. That is, the hot water flowing out from the hot water discharge pipe 11 is hot water directly heated by the heat exchanger 3. The same applies to the water heaters 120 to 140 described below.
- the heated liquid circulation pipe 4 (heated liquid pipe) forms a flow path through which the heated liquid flowing out from the tank 1 flows into the tank 1 again.
- the heat exchanger 3 is disposed in the middle of the heated liquid circulation pipe 4.
- the heated liquid flowing out from the tank 1 to the heated liquid circulation pipe 4 flows in, and the heated heated liquid is heated by heat exchange with the heat medium flowing through the heat medium flow path 32, so that the tank is heated.
- 1 has a heated liquid passage 31 (heating passage) that flows out to the heated liquid circulation pipe 4 on the inflow side.
- the pump 2 and the control device 6 constitute a flow control unit 101 that distributes the liquid to be heated stored in the tank 1 to the liquid to be heated circulation pipe 4.
- the distribution control unit 101 pulsates the heated liquid passing through the heated liquid flow path 31 by controlling the flow rate of the heated liquid passing through the heated liquid flow path 31 of the heat exchanger 3. Further, as will be described later, when the flow control unit 101 is heated, the total volume V (L) of the liquid to be heated stored in the tank 1 and the total volume V of the liquid to be heated reach a predetermined temperature.
- Water to be heated is introduced into the tank 1 through the tap water pipe 12.
- the water in the tank 1 is sent to the heat exchanger 3 via the pump 2 and the heated liquid circulation pipe 4. While the water passes through the liquid flow path 31 to be heated in the heat exchanger 3, heat is supplied from the heat medium in the heat medium flow path 32 in contact with the water, and the temperature is raised.
- the heated water that is, hot water, returns to the tank 1 through the heated liquid circulation pipe 4 on the inflow side of the tank 1.
- the heat medium in the heat medium flow path 32 is sent to a heat pump (not shown here) through the heat medium pipe 5 and heated, and then returns to the heat exchanger 3 through the heat medium pipe 5.
- boiling time the time from when the water in the tank 1 starts to be heated until the total amount of the liquid to be heated in the tank 1 reaches a predetermined temperature.
- the control device 6 controls the operation of the pump 2 and pulsates the water flow.
- the average flow rate is determined so that the number of circulations is “a predetermined number or less”.
- the “number of circulations” is the number of times that the water in the tank 1 circulates in the closed circuit on average, and is a value calculated by the following equation (1).
- Circulation count (Average flow rate F ⁇ Boiling time T) ⁇ (Volume V of tank 1 + Volume of heated liquid circulation pipe 4 + Volume of heated liquid flow path 31)
- volume V of the tank 1 in the expressions (1) and (2) is the capacity of the liquid to be heated stored in the tank 1.
- Circulation count (Average flow rate F ⁇ Boiling time T) ⁇ (Volume V of tank 1) Equation (2)
- the number of circulations determined from the above equation (1) or equation (2) is a value indicating the number of times that the entire volume V of the liquid to be heated stored in the tank 1 passes through the heat exchanger 3.
- the “volume of the tank 1” is increased to “the amount of water to be heated”, and the “boiling time” is increased to “the target water amount to a predetermined temperature”. Replace with “time”. For example, if the amount of water to be heated is halved, the boiling time is also halved. Therefore, as long as the average flow rate is determined, the number of circulations does not change.
- the scale deposited on the inner wall of the heated liquid channel 31 in the heat exchanger 3 is peeled off by applying pulsation to the water flow circulating through the tank 1 and the heat exchanger 3.
- the peeling scale is prevented from reattaching to the inner wall of the heated liquid channel 31.
- the heat exchanger is not limited to its structure and type, such as a double-tube heat exchanger, a shell-and-tube heat exchanger, in addition to a plate heat exchanger. May be immersed in a hot bath (a tank storing a heat medium such as high-temperature hot water) and heated, or a heating device such as an electric heater may be contacted.
- a hot bath a tank storing a heat medium such as high-temperature hot water
- a heating device such as an electric heater may be contacted.
- the water temperature in the first tank was 25 ° C., and the amount of heat was added so that the hot water temperature rose to 75 ° C. when passing through the copper tube outlet.
- the boiling time T was 1 hour (60 minutes). That is, water was circulated so that all of the water in the tank reached 75 ° C. 1 hour after the start of boiling.
- the above operation was regarded as one batch, and this was repeated 72 batches, and the amount of scale adhered to the inner wall of the copper tube was analyzed. Specifically, after the attached scale was extracted with 1 mol / L dilute hydrochloric acid, the amount of calcium ions was measured using a high performance liquid chromatography analyzer. At the start of each cycle, all of the heated simulated high hardness water is once discharged and new simulated high hardness water is poured into the tank.
- FIG. 2 is a diagram schematically showing a change over time in flow rate when pulsation is applied to the liquid to be heated.
- the horizontal axis is time, and the vertical axis is flow rate.
- UH is the maximum flow rate
- UL is the reference flow rate (minimum flow rate)
- TC is the pulsation cycle time
- TH is the time from the reference flow rate UL to the maximum flow rate UH.
- UM is an average flow rate, and is obtained as a value obtained by dividing the integrated flow rate for TC time of the heated liquid to which pulsation is applied by TC.
- the reference value of each parameter in the following Experiment 1 to Experiment 3 was determined as follows.
- Fig. 3 shows the experimental results.
- the scale adhesion amount when the pulsation is not applied and the number of circulations is 1 is also shown in the same graph.
- the number of circulations was 1, the best result was obtained, but when the number of circulations was 3 or less, a high scale adhesion suppression effect was recognized.
- FIG. 4 shows the experimental results.
- the scale adhesion amount when the pulsation is not applied and the flow rate is fixed at 1.0 (L / min) is also shown in the same graph.
- the maximum flow rate was more than twice the reference flow rate, a high scale adhesion suppression effect was observed.
- Example 3 The relationship between the pulsation cycle time TC and the amount of scale adhesion was examined.
- FIG. 5 shows the experimental results.
- the scale adhesion amount when the pulsation is not applied and the flow rate is fixed at 1.0 (L / min) is also shown in the same graph.
- TC was 10 seconds or less, a high scale adhesion inhibiting effect was observed.
- the number of circulations was 3 or less, the maximum flow after 2 seconds was more than twice the reference flow, and the pulsation cycle time was 10 seconds or less.
- the phenomenon that the hot water temperature became unstable was not observed. This means that the influence of the pulsation to the extent applied under the above conditions is absorbed with respect to the heat capacity held by the heated liquid in the heated liquid flow path.
- the amount of heat given to the average flow rate of the heated liquid is appropriately designed. If it is, it is possible to make the hot water temperature in the tank after the boiling time reach the target value. Therefore, when the heated liquid flow path 31 and the heat medium flow path 32 are brought into contact with each other to raise the temperature of the heated liquid, the heat medium side heat source device is not placed in the tank, not the hot water temperature at the outlet of the heated liquid flow path 31. If the average hot water temperature is controlled, hunting of the heat source machine operation amount can be avoided.
- a pulsation waveform close to a pulse wave is given, but a rectangular wave and a sine wave also have almost the same effect.
- the hot water tank for storing the liquid to be heated for storing the liquid to be heated, the heater for heating the liquid to be heated, the circulation channel for circulating the liquid to be heated, Liquid driving means for circulating the liquid to be heated in the circulation channel and control means for adjusting the flow rate of the liquid to be heated were provided.
- the control means pulsates the flow rate of the liquid to be heated, and the number of times the liquid to be heated circulates in the system within a predetermined temperature rising time (until the liquid to be heated in the tank reaches a predetermined temperature) is 3 or less.
- the average flow rate of the liquid to be heated is controlled so that According to this structure, the scale deposited on the inner wall (heat transfer surface) of the heated liquid channel in the heater is peeled off by applying pulsation to the heated liquid flow circulating through the hot water tank and the heater, By suppressing the number of times the heated liquid circulates between the tank and the heater, it is possible to prevent the peeling scale from reattaching to the inner wall of the heated liquid channel in the heater. Thereby, the fall of the heat exchange performance resulting from scale reattachment and a channel blockage can be controlled certainly.
- FIG. A water heater 120 according to the second embodiment will be described with reference to FIG.
- the pump 2, the valve 7, and the control device 6 a constitute the flow control unit 102.
- the pump operation itself is controlled by the control device 6 (pump control device) to generate the pulsation of the liquid to be heated.
- the pulsation application method is not limited to this.
- pulsation is generated in the liquid to be heated by controlling the opening and closing of the flow rate adjusting valve, and the number of circulations is controlled to 3 times or less.
- FIG. 6 shows a configuration diagram of water heater 120 in the second embodiment.
- a valve 7 (flow rate adjusting valve) is arranged between the heat exchanger 3 and the pump 2 of the heated liquid circulation pipe 4.
- the control device 6a controls the opening / closing operation of the valve 7.
- the control device 6a is connected to the valve 7 through a signal line 61a. Others are the same as in FIG. With the configuration as shown in FIG. 6, the controller 6a adjusts the opening degree of the valve 7 so that the pulsation similar to that of the first embodiment can be generated in the liquid to be heated.
- the flow control unit 102 includes the pump 2, the valve 7, and the control device 6a.
- the pump 2 is disposed in the middle of the heated liquid circulation pipe 4 and causes the heated liquid stored in the tank 1 to flow through the heated liquid circulation pipe 4.
- the valve 7 is disposed in the middle of the heated liquid circulation pipe 4 at any position on the suction side and the discharge side of the pump 2 and adjusts the flow rate of the heated liquid by receiving control.
- the control device 6a controls the valve 7 to control the flow rate of the liquid to be heated, thereby generating pulsation in the liquid to be heated.
- FIG. 7 shows a configuration diagram of water heater 130 in the third embodiment.
- the flow control unit 103 includes the pump 2, a bypass pipe 41 (bypass pipe), a valve 71 (bypass flow rate adjustment valve), and a control device 6b (bypass flow rate adjustment valve control device).
- the pump 2 is arranged in the middle of the heated liquid circulation pipe 4 and on the inflow side of the heat exchanger 3, and distributes the heated liquid stored in the tank 1 to the heated liquid circulation pipe 4.
- the bypass pipe 41 (bypass pipe) forms a bypass flow path that bypasses from the discharge side of the pump 2 to the suction side of the pump 2.
- the valve 71 is disposed in the middle of the bypass pipe 41, and adjusts the flow rate of the liquid to be heated flowing through the bypass pipe 41 by receiving control from the control device 6b.
- the control device 6b controls the flow rate of the heated liquid flowing through the heated liquid circulation pipe 4 by controlling the opening degree of the valve 71, thereby generating pulsation in the heated liquid. Others are the same as in FIG.
- FIG. 8 shows a configuration diagram of water heater 140 in the third embodiment. Except that an auxiliary heating device 8 (for example, an electric heater) is provided in the tank 1, it is the same as FIG.
- the “circulation number” of the liquid to be heated is recognized up to 4 times or less. Instead, the amount of heating is adjusted so that the hot water temperature at the outlet of the heated liquid flow path 31 is equal to or lower than a predetermined temperature, and the shortage of heat is supplied from the auxiliary heating device 8 in the tank 1 so that the hot water temperature in the tank 1 is increased. The temperature is raised to a predetermined temperature. Thereby, the fall of the heat exchange performance resulting from the scale adhesion of the to-be-heated liquid flow path 31 and flow path obstruction
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Fluid Mechanics (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
Description
加熱対象の被加熱液が貯留されるタンクと、
前記タンクから流出した前記被加熱液が再び前記タンクに流入する流路を形成する被加熱液配管の途中に配置された加熱器であって、前記タンクから前記被加熱液配管に流出した前記被加熱液が流入し、流入した前記被加熱液が昇温されて前記タンクの流入側の前記被加熱液配管に流出する加熱流路を有する加熱器と、
前記タンクに貯留された前記被加熱液を前記被加熱液配管に流通させる流通制御部と
を備え、
前記流通制御部は、
前記加熱器の前記加熱流路を通過する前記被加熱液の流量を制御することにより前記加熱器の前記加熱流路を通過する前記被加熱液を脈動させると共に、
前記タンクに貯留された前記被加熱液の全容量が、所定温度に達するまでの時間として設定された沸き上げ時間内に前記加熱器を所定の回数以下通過するように、前記加熱器の前記加熱流路を通過する前記被加熱液の流量を制御することを特徴とする。
以下、実施の形態1における給湯器110の構成と動作について、図1を参照しながら説明する。なお以下に示す「L」はリットル(1L=1×10-3m3)を示す。
図1は、実施の形態1における給湯器110の構成図である。タンク1は、被加熱液である水(加熱対象の被加熱液)あるいは加熱後の湯を貯めるためものである。ポンプ2は被加熱液である水を循環させる。熱交換器3(加熱器)は、被加熱液である水を昇温する。熱交換器3は、被加熱液循環配管4を介してタンク1と接続されている。熱交換器3は熱媒体配管5とも接続されている。すなわち熱交換器3内の被加熱液流路31(加熱流路)と熱媒体流路32が接触しており、ここで熱交換が行われる。熱媒体は、例えば高温の湯が用いられるが、これに限定するものではなく、二酸化炭素やフロン系冷媒あるいは炭化水素系冷媒でもよい。制御装置6はポンプ2の動作を制御するためのものであり、信号線61を介してポンプ2と接続されている。出湯配管11はタンク1内の湯を取り出す配管である。水道水配管12はタンク1内に水を補給するための配管である。
出湯配管11、水道水配管12は、それぞれタンク1に接続されている。
水中の硬度成分すなわちカルシウムイオン濃度が高いとき、炭酸カルシウムの結晶が析出する。そもそも熱媒体流路32と接している被加熱液流路31の内壁は、当然ながら温度が高く、炭酸カルシウムが析出しやすい。さらに、炭酸カルシウムの結晶核は液相と接触する面積が小さい方がエネルギー的に有利(安定)なため、固液界面すなわち異物や壁面があると、そこに接するように核を形成する。このようなメカニズムにより、熱交換器3の内部すなわち被加熱液流路31の内壁(伝熱面)にスケールが析出する。
ここで、タンク1内の水の加熱を開始し、タンク1内の被加熱液の全量が所定の温度に達するまでの時間を、「沸き上げ時間」と定義する。この間、水道水配管12からの水道水補給ならびに出湯配管11からの出湯は行われないものとする。沸き上げ時間中、制御装置6はポンプ2の動作を制御し、水流を脈動させる。ただし平均流量は、循環回数が「所定の回数以下」となるように定められる。ここで「循環回数」とは、タンク1内の水が平均的に閉回路内を循環する回数のことであり、次の式(1)で算出される値である。
(1)実験では、タンク1として容積60Lのステンレス製タンクを用いた。
(2)また、熱交換器3の有する被加熱液流路31として、内径12mm、長さ10mの銅管を用意し、これを樹脂製配管で接続した。
(3)被加熱液は、一般試薬で調整した模擬高硬度水を用いた(硬度100mg-CaCO3/L、Mアルカリ度140mg-CaCO3/L、pH7.5)。
(4)被加熱液流路31の銅管は、40Lのステンレスホットバスに浸漬させ、模擬高硬度水を昇温した。
(5)初発のタンク内の水温は25℃とし、銅管出口を通過すると湯温が75℃にまで上昇するように熱量を加えた。
(6)沸き上げ時間Tは1時間(60分)とした。すなわち沸き上げ開始から1時間後にタンク内の水の全てが75℃に到達するように水を循環させた。
(7)以上の操作を1バッチとして、これを72バッチ繰り返し、銅管内壁に付着したスケール量を分析した。具体的には、付着したスケールを1モル/Lの希塩酸で抽出した後、高速液体クロマトグラフィ分析装置を使ってカルシウムイオン量を測定した。なお、各サイクルを開始するにあたっては、加熱された模擬高硬度水をいったん全て排出し、新しい模擬高硬度水をタンク内に注入している。
UH=1.4(L/分)、UL=0.7(L/分)、UM=1.0(L/分)、TC=5(秒)、TH=2(秒)。
被加熱液の循環回数とスケール付着量との相関について調べた。循環回数と流量との関係を以下に示す。上記式(2)よれば、
循環回数×タンク1容積V(60L)=平均流量UM×沸き上げ時間T(60分)
である。よって、この実験1では、循環回数=平均流量UM、である。
循環回数2:UH=2.8(L/分)、UL=1.4(L/分)、UM=2.0(L/分)
循環回数3:UH=4.2(L/分)、UL=2.1(L/分)、UM=3.0(L/分)
循環回数4:UH=5.6(L/分)、UL=2.8(L/分)、UM=4.0(L/分)
循環回数5:UH=7.0(L/分)、UL=3.5(L/分)、UM=5.0(L/分)
循環回数6:UH=8.4(L/分)、UL=4.2(L/分)、UM=6.0(L/分)
脈動の強度、すなわちTH時間後(ここでは2秒後)の最大流量UHが基準流量ULの何倍となれば、高いスケール付着抑制効果が得られるかを調べた。定めた実験条件を以下に示す。
1.5倍:UH=1.2(L/分)、UL=0.8(L/分)、UM=1.0(L/分)、
2.0倍:UH=1.4(L/分)、UL=0.7(L/分)、UM=1.0(L/分)、
3.0倍:UH=1.65(L/分)、UL=0.55(L/分)、UM=1.0(L/分)。
脈動サイクル時間TCとスケール付着量との関係について調べた。
図5は実験結果を示す。比較のため、脈動を印加せず流量を1.0(L/分)で固定したときのスケール付着量も、同じグラフに示している。TCが10秒以下のとき、高いスケール付着抑制効果が認められた。
実験2のように脈動の強度が強い方が、すなわち平均流量UMが大きく(循環回数が大きく)、最大流量UHの基準流量ULに対する倍率が大きい。また実験3のように、脈動サイクル時間TCが短い方が、スケール付着抑制効果は高い。一方で、流量が上下することで、被加熱液流路31の出口の湯温が不安定になるのではないかという懸念がある。この湯温の安定性についても調べたところ、上に示した「循環回数が3以下」、「2秒後の最大流量が基準流量の2倍以上」、「脈動サイクル時間が10秒以下」という脈動条件において、湯温が不安定になる現象は認められなかった。これは被加熱液流路中の被加熱液が保持する熱容量に対して、上記条件で印加した程度の脈動の与える影響は、吸収されてしまうことを意味している。
図6を参照して実施の形態2の給湯器120を説明する。実施の形態2の給湯器120では、ポンプ2、弁7及び制御装置6aが流通制御部102を構成する。実施の形態1では、ポンプ動作そのものを制御装置6(ポンプ制御装置)で制御し、被加熱液の脈動を発生させたが、脈動印加の方式についてはこれに限るものではない。実施の形態2では、流量調整弁の開閉を制御することで被加熱液に脈動を発生すると共に、循環回数を3回数以下に制御する。
図6は、実施の形態2における給湯器120の構成図を示す。実施の形態2では、被加熱液循環配管4の熱交換器3とポンプ2との間に、弁7(流量調整弁)が配置されている。制御装置6aは、弁7の開閉動作を制御する。制御装置6aは、信号線61aを介して弁7と接続されている。その他は図1と同様である。図6のような構成により、制御装置6aが弁7の開度を調節することで、実施の形態1と同様の脈動を被加熱液に発生することができる。
図7を参照して実施の形態3の給湯器130を説明する。実施の形態3では、バイパス路の流量を調整することで被加熱液に脈動を発生すると共に、循環回数を3回数以下に制御する。
図7は、実施の形態3における給湯器130の構成図を示す。実施の形態3では、流通制御部103は、ポンプ2、バイパス管41(バイパス配管)、弁71(バイパス流量調整弁)、及び制御装置6b(バイパス流量調整弁制御装置)を備えている。ポンプ2は、被加熱液循環配管4の途中であって熱交換器3の流入側に配置され、タンク1に貯留された被加熱液を被加熱液循環配管4に流通させる。バイパス管41(バイパス配管)は、ポンプ2の吐出側からポンプ2の吸込側にバイパスするバイパス流路を形成する。弁71は、バイパス管41の途中に配置され、制御装置6bから制御を受けることによってバイパス管41を流れる被加熱液の流量を調整する。制御装置6bは、弁71の開度を制御することによって、被加熱液循環配管4を流れる被加熱液の流量を制御することで、被加熱液に脈動を発生させる。その他は図1と同様である。
図8を参照して実施の形態4の給湯器140を説明する。給湯器140では給湯器110と同様に、ポンプ2及び制御装置6が流通制御部101を構成する。
図8は、実施の形態3における給湯器140の構成図を示す。補助加熱装置8(例えば電気ヒーター)が、タンク1内に設けられた他は、図1と同様である。
Claims (10)
- 加熱対象の被加熱液が貯留されるタンクと、
前記タンクから流出した前記被加熱液が再び前記タンクに流入する流路を形成する被加熱液配管の途中に配置された加熱器であって、前記タンクから前記被加熱液配管に流出した前記被加熱液が流入し、流入した前記被加熱液が昇温されて前記タンクの流入側の前記被加熱液配管に流出する加熱流路を有する加熱器と、
前記タンクに貯留された前記被加熱液を前記被加熱液配管に流通させる流通制御部と
を備え、
前記流通制御部は、
前記加熱器の前記加熱流路を通過する前記被加熱液の流量を制御することにより前記加熱器の前記加熱流路を通過する前記被加熱液を脈動させると共に、
前記タンクに貯留された前記被加熱液の全容量が、所定温度に達するまでの時間として設定された沸き上げ時間内に前記加熱器を所定の回数以下通過するように、前記加熱器の前記加熱流路を通過する前記被加熱液の流量を制御することを特徴とする給湯器。 - 前記流通制御部は、
前記タンクに貯留された前記被加熱液の前記全容量が、前記沸き上げ時間内に前記加熱器を多くとも3回通過するように、前記加熱器の前記加熱流路を通過する前記被加熱液の流量を制御することを特徴とする請求項1記載の給湯器。 - 前記流通制御部は、
所定の周期TCで前記被加熱液を周期的に脈動させると共に、前記周期TCが、10秒以下となるように、前記被加熱液を脈動させることを特徴とする請求項1または2のいずれかに記載の給湯器。 - 前記流通制御部は、
最大流量UHと最低流量ULとが出現する所定の周期TCで前記被加熱液を周期的に脈動させると共に、最高流量値UHと最低流量値ULとの比UH/ULが、2以上となるように、前記被加熱液を脈動させることを特徴とする請求項1~3のいずれかに記載の給湯器。 - 前記流通制御部は、
前記被加熱液を周期的に脈動させる場合に、前記加熱器の前記加熱流路を通過する単位時間当たりの前記被加熱液の流量の時間変化を示す脈動波形が、
パルス波、矩形波、サイン波のいずれかの形状に近似するように脈動させることを特徴とする請求項3または4のいずれかに記載の給湯器。 - 前記流通制御部は、
前記タンクに貯留された前記被加熱液の前記全容量が、前記沸き上げ時間内に前記加熱器を多くとも4回通過するように、前記加熱器の前記加熱流路を通過する前記被加熱液の流量を制御し、
前記タンクは、
貯留された加熱対象の被加熱液を加熱する補助加熱装置を備えたことを特徴とする請求項1記載の給湯器。 - 前記流通制御部は、
前記被加熱液配管の途中に配置され、前記タンクに貯留された前記被加熱液を前記被加熱液配管に流通させるポンプと、前記ポンプを制御することによって、前記ポンプが流通させる前記被加熱液の流量を制御するポンプ制御装置と
を備えたことを特徴とする請求項1~6のいずれかに記載の給湯器。 - 前記流通制御部は、
前記被加熱液配管の途中に配置され、前記タンクに貯留された前記被加熱液を前記被加熱液配管に流通させるポンプと、
前記被加熱液配管の途中であって前記ポンプの吸込側と吐出側とのいずれかの位置に配置され、制御を受けることによって前記被加熱液の流量を調整する流量調整弁と、
前記流量調整弁を制御することによって、前記被加熱液の流量を制御する弁制御装置とを備えたことを特徴とする請求項1~6のいずれかに記載の給湯器。 - 前記流通制御部は、
前記被加熱液配管の途中であって前記加熱器の流入側に配置され、前記タンクに貯留された前記被加熱液を前記被加熱液配管に流通させるポンプと、
前記ポンプの吐出側から前記ポンプの吸込側にバイパスするバイパス流路を形成するバイパス配管と、
前記バイパス配管の途中に配置され、制御を受けることによって前記バイパス配管を流れる前記被加熱液の流量を調整するバイパス流量調整弁と、
前記バイパス流量調整弁を制御することによって、前記被加熱液配管を流れる前記被加熱液の流量を制御するバイパス流量調整弁制御装置と
を備えたことを特徴とする請求項1~6のいずれかに記載の給湯器。 - 加熱対象の被加熱液が貯留されるタンクと、
前記タンクから流出した前記被加熱液が再び前記タンクに流入する流路を形成する被加熱液配管の途中に配置された加熱器であって、前記タンクから前記被加熱液配管に流出した前記被加熱液が流入し、流入した前記被加熱液が昇温されて前記タンクの流入側の前記被加熱液配管に流出する加熱流路を有する加熱器と、
前記タンクに貯留された前記被加熱液を前記被加熱液配管に流通させる流通制御部と
を備えた給湯器の前記流通制御部が行う前記被加熱液の流量制御方法であって、
前記流通制御部は、
前記加熱器の前記加熱流路を通過する前記被加熱液の流量を制御することにより前記加熱器の前記加熱流路を通過する前記被加熱液を脈動させると共に、
前記タンクに貯留された前記被加熱液の全容量が、所定温度に達するまでの時間として設定された沸き上げ時間内に前記加熱器を所定の回数以下通過するように、前記加熱器の前記加熱流路を通過する前記被加熱液の流量を制御することを特徴とする流量制御方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/009,299 US9021993B2 (en) | 2011-04-01 | 2011-04-01 | Water heater and flow rate control method |
EP11862970.8A EP2696160B1 (en) | 2011-04-01 | 2011-04-01 | Hot water supply device and flow volumen control method |
PCT/JP2011/058459 WO2012137281A1 (ja) | 2011-04-01 | 2011-04-01 | 給湯器及び流量制御方法 |
AU2011365165A AU2011365165A1 (en) | 2011-04-01 | 2011-04-01 | Hot water supply device and flow volumen control method |
JP2013508643A JP5546680B2 (ja) | 2011-04-01 | 2011-04-01 | 給湯器及び流量制御方法 |
CN201180069818.3A CN103492828B (zh) | 2011-04-01 | 2011-04-01 | 热水器以及流量控制方法 |
HK14103225.5A HK1190183A1 (zh) | 2011-04-01 | 2014-04-03 | 熱水器以及流量控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/058459 WO2012137281A1 (ja) | 2011-04-01 | 2011-04-01 | 給湯器及び流量制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012137281A1 true WO2012137281A1 (ja) | 2012-10-11 |
Family
ID=46968722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/058459 WO2012137281A1 (ja) | 2011-04-01 | 2011-04-01 | 給湯器及び流量制御方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9021993B2 (ja) |
EP (1) | EP2696160B1 (ja) |
JP (1) | JP5546680B2 (ja) |
CN (1) | CN103492828B (ja) |
AU (1) | AU2011365165A1 (ja) |
HK (1) | HK1190183A1 (ja) |
WO (1) | WO2012137281A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014222136A (ja) * | 2013-05-14 | 2014-11-27 | 三菱電機株式会社 | 給湯機 |
EP2957839A4 (en) * | 2013-02-18 | 2016-09-07 | Mitsubishi Electric Corp | HOT WATER SUPPLY DEVICE |
WO2017158938A1 (ja) * | 2016-03-16 | 2017-09-21 | 三菱電機株式会社 | 熱交換システムおよび熱交換システムのスケール抑制方法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2520978A (en) * | 2013-12-05 | 2015-06-10 | Zonealone Ltd | A domestic hot water installation |
JP6370136B2 (ja) * | 2014-07-07 | 2018-08-08 | 三菱電機株式会社 | 温水装置及び温水装置における異常通知方法 |
AU2017304849A1 (en) * | 2016-07-26 | 2019-02-07 | Noritz Corporation | Heating and hot water supplying device |
CN109564006A (zh) * | 2016-07-26 | 2019-04-02 | 株式会社能率 | 供暖热水供给装置 |
KR101991112B1 (ko) * | 2018-02-12 | 2019-09-30 | 김현명 | 상수관로 탐지시스템 |
US10969141B2 (en) | 2018-03-13 | 2021-04-06 | Ngb Innovations Llc | Regulating temperature and reducing buildup in a water heating system |
KR102055678B1 (ko) * | 2018-10-11 | 2019-12-13 | 엘지전자 주식회사 | 정수기 |
CN113932443A (zh) * | 2021-09-15 | 2022-01-14 | 威能(无锡)供热设备有限公司 | 燃气热水设备及其控制方法、热水系统、和可读存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005221109A (ja) | 2004-02-04 | 2005-08-18 | Hitachi Engineering & Services Co Ltd | プレート式熱交換器の洗浄方法および装置 |
JP2009243797A (ja) * | 2008-03-31 | 2009-10-22 | Mitsubishi Electric Corp | 給湯機 |
JP2010091123A (ja) * | 2008-10-03 | 2010-04-22 | Panasonic Corp | スケール防止装置 |
JP2010175160A (ja) * | 2009-01-30 | 2010-08-12 | Panasonic Corp | 熱交換器用スケール防止装置 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3939803A (en) * | 1973-10-09 | 1976-02-24 | Institute Of Gas Technology | High temperature boiler and method |
SE415796B (sv) * | 1979-02-27 | 1980-10-27 | Ctc Ab | Anordning for varmvattenberedning |
US4959526A (en) * | 1986-07-03 | 1990-09-25 | Chubu Electric Power Company, Inc. | Storage type electric water heater having a closed circulation loop with a bubble pump |
US5115491A (en) * | 1990-12-17 | 1992-05-19 | Maier Perlman | Tempering system for storage tank water heaters utilizing inlet and outlet heat exchanger |
US6283067B1 (en) * | 1999-11-12 | 2001-09-04 | Aos Holding Company | Potable water temperature management system |
WO2003014627A1 (en) * | 2001-08-10 | 2003-02-20 | Queen's University At Kingston | Passive back-flushing thermal energy system |
JP3724475B2 (ja) * | 2002-10-28 | 2005-12-07 | 松下電器産業株式会社 | ヒートポンプ給湯機 |
DE10318528A1 (de) * | 2003-04-24 | 2004-11-11 | IVET Ingenieurgesellschaft für Verfahrensentwicklung und Entsorgungstechnik mbH | Vorrichtung und Verfahren zum Hervorrufen einer Flüssigkeitspulsation in einem Wärmeübertrager |
JP2005308235A (ja) * | 2004-04-16 | 2005-11-04 | Matsushita Electric Ind Co Ltd | 給湯機 |
JP2006125654A (ja) | 2004-10-26 | 2006-05-18 | Matsushita Electric Ind Co Ltd | ヒートポンプ給湯機 |
US20130075245A1 (en) * | 2009-12-16 | 2013-03-28 | F. Alan Frick | Methods and systems for heating and manipulating fluids |
IL176460A (en) * | 2006-06-21 | 2010-11-30 | Shmuel Ben Ishai | Water heating and storage system |
CN101501437A (zh) * | 2006-06-23 | 2009-08-05 | 埃克森美孚研究工程公司 | 减少热交换器中的结垢 |
US20080073063A1 (en) * | 2006-06-23 | 2008-03-27 | Exxonmobil Research And Engineering Company | Reduction of fouling in heat exchangers |
WO2010029786A1 (ja) | 2008-09-12 | 2010-03-18 | 三菱電機株式会社 | 熱交換器装置の運転方法、及び熱交換器装置 |
WO2010067454A1 (ja) * | 2008-12-12 | 2010-06-17 | 三菱電機株式会社 | 給湯方法および給湯装置 |
CN101476826B (zh) * | 2009-01-21 | 2010-12-29 | 武汉工程大学 | 脉动流强化传热换热器 |
EP2397789B1 (en) * | 2009-02-16 | 2019-05-08 | Mitsubishi Electric Corporation | Water heater |
-
2011
- 2011-04-01 WO PCT/JP2011/058459 patent/WO2012137281A1/ja active Application Filing
- 2011-04-01 EP EP11862970.8A patent/EP2696160B1/en active Active
- 2011-04-01 AU AU2011365165A patent/AU2011365165A1/en not_active Abandoned
- 2011-04-01 US US14/009,299 patent/US9021993B2/en active Active
- 2011-04-01 JP JP2013508643A patent/JP5546680B2/ja active Active
- 2011-04-01 CN CN201180069818.3A patent/CN103492828B/zh active Active
-
2014
- 2014-04-03 HK HK14103225.5A patent/HK1190183A1/zh not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005221109A (ja) | 2004-02-04 | 2005-08-18 | Hitachi Engineering & Services Co Ltd | プレート式熱交換器の洗浄方法および装置 |
JP2009243797A (ja) * | 2008-03-31 | 2009-10-22 | Mitsubishi Electric Corp | 給湯機 |
JP2010091123A (ja) * | 2008-10-03 | 2010-04-22 | Panasonic Corp | スケール防止装置 |
JP2010175160A (ja) * | 2009-01-30 | 2010-08-12 | Panasonic Corp | 熱交換器用スケール防止装置 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2957839A4 (en) * | 2013-02-18 | 2016-09-07 | Mitsubishi Electric Corp | HOT WATER SUPPLY DEVICE |
JP2014222136A (ja) * | 2013-05-14 | 2014-11-27 | 三菱電機株式会社 | 給湯機 |
WO2017158938A1 (ja) * | 2016-03-16 | 2017-09-21 | 三菱電機株式会社 | 熱交換システムおよび熱交換システムのスケール抑制方法 |
JP6239199B1 (ja) * | 2016-03-16 | 2017-11-29 | 三菱電機株式会社 | 熱交換システムおよび熱交換システムのスケール抑制方法 |
EP3412991A4 (en) * | 2016-03-16 | 2019-03-20 | Mitsubishi Electric Corporation | HEAT EXCHANGE SYSTEM AND BOILER-STONE PRESSURE PROCESS FOR HEAT EXCHANGE SYSTEM |
Also Published As
Publication number | Publication date |
---|---|
US9021993B2 (en) | 2015-05-05 |
EP2696160A4 (en) | 2015-05-20 |
AU2011365165A1 (en) | 2013-10-24 |
JPWO2012137281A1 (ja) | 2014-07-28 |
EP2696160B1 (en) | 2019-03-27 |
JP5546680B2 (ja) | 2014-07-09 |
CN103492828B (zh) | 2016-01-20 |
EP2696160A1 (en) | 2014-02-12 |
US20140144607A1 (en) | 2014-05-29 |
HK1190183A1 (zh) | 2014-06-27 |
CN103492828A (zh) | 2014-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5546680B2 (ja) | 給湯器及び流量制御方法 | |
EP2724989A1 (en) | Scale removal method and scale removal device | |
JP2010210181A (ja) | 給湯システム | |
JP5971149B2 (ja) | 給湯機 | |
JP2018159516A (ja) | 冷却塔設備、及びその水質管理方法 | |
JP2012117776A (ja) | ヒートポンプ式給湯機 | |
JP5375908B2 (ja) | ヒートポンプ給湯機 | |
JP5811053B2 (ja) | 熱交換器およびその運転方法 | |
JP2019173975A (ja) | 貯湯給湯装置 | |
JP6239199B1 (ja) | 熱交換システムおよび熱交換システムのスケール抑制方法 | |
JP2010190466A (ja) | 給湯装置 | |
JP5550130B2 (ja) | 給湯方法および給湯システム | |
JP5440193B2 (ja) | 貯湯式給湯機 | |
JP2014085066A (ja) | 水処理装置、加湿装置および給湯装置 | |
JP2005156002A (ja) | 製氷機 | |
JP5569490B2 (ja) | 貯湯式給湯機 | |
JP5430676B2 (ja) | 気泡供給方法及び給湯器 | |
JP2007101067A (ja) | ヒートポンプ給湯システム | |
JP6086820B2 (ja) | 給湯装置 | |
JP7205219B2 (ja) | 給湯装置 | |
JP2012232306A (ja) | 循環水系の薬注制御方法、及び循環水系の薬注制御装置 | |
JP2011032566A (ja) | 化成液加温システム及びその停止方法 | |
JP2016095119A (ja) | 給湯装置 | |
JP2014018739A (ja) | 水処理装置および給湯装置 | |
JP2005345075A (ja) | 貯湯式給湯器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11862970 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013508643 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011862970 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14009299 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2011365165 Country of ref document: AU Date of ref document: 20110401 Kind code of ref document: A |