WO2012136134A1 - 单一芯片推挽桥式磁场传感器 - Google Patents

单一芯片推挽桥式磁场传感器 Download PDF

Info

Publication number
WO2012136134A1
WO2012136134A1 PCT/CN2012/073495 CN2012073495W WO2012136134A1 WO 2012136134 A1 WO2012136134 A1 WO 2012136134A1 CN 2012073495 W CN2012073495 W CN 2012073495W WO 2012136134 A1 WO2012136134 A1 WO 2012136134A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
field sensor
push
permanent magnet
type magnetic
Prior art date
Application number
PCT/CN2012/073495
Other languages
English (en)
French (fr)
Inventor
金英西
雷啸锋
迪克⋅詹姆斯·G
沈卫锋
王建国
薛松生
黎伟
Original Assignee
江苏多维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110326725.6A external-priority patent/CN102540112B/zh
Application filed by 江苏多维科技有限公司 filed Critical 江苏多维科技有限公司
Priority to JP2014502976A priority Critical patent/JP2014512003A/ja
Priority to EP12767718.5A priority patent/EP2696209B1/en
Priority to US14/009,912 priority patent/US9664754B2/en
Publication of WO2012136134A1 publication Critical patent/WO2012136134A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0005Geometrical arrangement of magnetic sensor elements; Apparatus combining different magnetic sensor types
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0011Arrangements or instruments for measuring magnetic variables comprising means, e.g. flux concentrators, flux guides, for guiding or concentrating the magnetic flux, e.g. to the magnetic sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N59/00Integrated devices, or assemblies of multiple devices, comprising at least one galvanomagnetic or Hall-effect element covered by groups H10N50/00 - H10N52/00
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q2220/00Business processing using cryptography
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F1/00Coin inlet arrangements; Coins specially adapted to operate coin-freed mechanisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/50Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols using hash chains, e.g. blockchains or hash trees

Definitions

  • the invention relates to a sensor for magnetic field detection, in particular to a single chip push-pull bridge type magnetic field sensor.
  • Magnetic sensors are primarily used for direction, intensity and position detection of magnetic fields.
  • Push-pull bridge type magnetic field sensors with magnetoresistance as a sensitive component have the advantages of low offset, high sensitivity and good temperature stability.
  • Magnetic Tmmd Junction (MTJ) is a magnetoresistive element that has been used in industrial applications in recent years. It utilizes the tunnel magnetoresistance effect (TMR) of magnetic multilayer film materials, mainly represented by magnetoresistance. The resistance of the component changes as the size and direction of the external field changes.
  • the magnetic field sensor using the MTJ element as the sensing element has higher sensitivity and power consumption than the magnetic field sensor made of the widely used AMR (anisotropic magnetoresistance effect) element, Hall effect material, and GMR (Giant Magnetoresistance Effect) element. Low, good linearity, wide dynamic range, good temperature characteristics and strong anti-interference ability.
  • MTJ components can be easily integrated into the existing chip processing technology, making it easy to make a small integrated magnetic field. sensor.
  • the push-pull bridge sensor has higher sensitivity than a single-resistor, reference-bridge sensor, and has a temperature compensation function that suppresses the effects of temperature drift.
  • Conventional MTJ or GMR push-pull bridge sensors require that the pinning layers of the spin valve components in the adjacent two arm resistances have opposite magnetization directions, and the MTJ or GMR components that are typically deposited on the same substrate, due to their magnetic moments The magnetic field strength required for the flipping is the same, so the magnetization direction of the pinning layer of the magnetic element on the same base is generally the same, which makes it difficult to fabricate the push-pull bridge sensor.
  • the current methods for making push-pull bridge sensors are mainly -
  • Multi-chip package technology Take two consistent good magnetoresistors from the same wafer or different wafers. The two magnetoresistors have the same sensitive direction (the magnetization direction of the nail ft layer is the same), and then one of them is relatively Another magnetoresistive flip is 80° for multi-chip packaging to form a push-pull half-bridge.
  • the method can realize the function of the push-pull half bridge, that is, the detection sensitivity is improved, and the temperature compensation function is provided, but in other aspects, the multi-chip package has a large package size and high production cost; in actual packaging, the 18 ⁇ flip can not be strictly performed, that is, The sensitivity directions of the two resistors are not strictly different by 18 ⁇ , so that the output characteristics of the two resistors vary with the external field, and the sensitivity is different, and there is asymmetry problem such as a large bias voltage, which will bring about in practical applications.
  • New problem (3) Laser heating assisted domain local inversion method; usually when MTJ or GMR full bridge is prepared on the substrate, the MTJ or GMR wafers are annealed in the same strong magnetic field to make the magnetization directions of the different bridge arms the same. . Then, the laser is used to locally heat the wafer to assist the magnetic moment to reverse, so that the magnetization direction of the pinning layer of the adjacent bridge arm of the bridge sensor is opposite, and the bridge sensor of the single chip is realized.
  • This method requires special equipment, expensive equipment, and increased process complexity.
  • the bridge sensor produced by laser heating cannot guarantee the resistance consistency of each bridge arm.
  • the invention provides a single chip push-pull bridge type magnetic field sensor which can be manufactured on a large scale and can be designed according to application requirements, and comprises a plurality of bridge-connected magnetoresistive elements, each of which comprises a sensitive direction
  • the sensitive element, the sensitive element is a ⁇ , ⁇ element, AMR element or GMR element, and a pair of permanent magnets for biasing the magnetization direction of the magnetoresistive element are disposed on both sides of each of the magnetoresistive elements.
  • each permanent magnet is greater than the width between the pair of permanent magnets to reduce the edge effect between each pair of permanent magnets, '
  • each permanent magnet has a boundary edge closest to the corresponding magnetoresistive element, the boundary edge being at an angle to the sensitive direction of the single chip push-pull bridge magnetic field sensor, the included angle being an acute or obtuse angle.
  • the permanent magnets on either side of the magnetoresistive element produce a permanent magnet bias field having a permanent magnet biasing direction.
  • the strength of the permanent magnet bias field is varied by setting the thickness of the permanent magnet.
  • each of the permanent magnets has a boundary edge closest to the corresponding magnetoresistive element, and the intensity of the permanent magnet bias field is changed by setting an angle formed by the magnetization direction of the permanent magnet and the boundary edge of the permanent magnet.
  • the pair of permanent magnets have a shape that produces a uniform magnetic bias field.
  • the magnetoresistive elements are arranged in parallel with each other.
  • the magnetoresistive element is provided with an energization coil that is ffl offset from the preset and calibration outputs, and the magnetoresistive element and the energization coil are insulated from each other.
  • FIG. 1 is a schematic diagram of a tunnel junction magnetoresistance (MTJ) component.
  • MTJ tunnel junction magnetoresistance
  • Figure 2 is an ideal output graph of the MTJ component.
  • Figure 3 is a schematic illustration of the MTJ elements connected in series to form an equivalent MTJ magnetoresistance.
  • Fig. 5 is a schematic view showing the design of biasing the magnetization direction of the free layer by using two strip-shaped permanent magnets.
  • Figure 6 is a schematic view showing the design of the magnetization direction of the free layer by using permanent magnets and shape anisotropy energy.
  • Figure 7 is a design intent of a tapered half-bridge magnetic field sensor.
  • Figure 8 is a design intent of a push-pull full-bridge magnetic field sensor.
  • Figure 9 is a layout diagram of a push-pull full-bridge magnetic field sensor.
  • Figure 10 shows the simulation results of the push-pull bridge design with the sensitive direction perpendicular to the easy axis and its output.
  • Figure ⁇ is the simulation result of the push-pull bridge design with the sensitive direction parallel to the easy axis ⁇ and its output.
  • Figure 2 is a schematic diagram of the design of the magnetization coil to preset and calibrate the magnetization direction of the free layer.
  • Figure 13 is a layout diagram of a push-pull bridge magnetic field sensor that presets and calibrates the direction of magnetization of the free layer by energizing the coil.
  • FIG. ⁇ is a schematic of a tunnel junction magnetoresistance (MTJ) component.
  • a standard germanium component 1 includes a magnetic free layer 6, a magnetic germanium layer 2, and a ramp barrier layer 5 between the two magnetic layers.
  • the magnetic free layer 6 is composed of a ferromagnetic material, and the magnetization direction 7 of the magnetic free layer changes as the external magnetic field changes.
  • the magnetic pinning layer 2 is a magnetic layer having a fixed magnetization direction, and the magnetization direction 8 of the magnetic pinning layer is pinned in one direction, and does not change under normal conditions.
  • the magnetic T-tie layer is usually formed by depositing a ferromagnetic layer 4 above or below the antiferromagnetic layer 3.
  • the MTj structure is usually deposited over the conductive seed layer 16, while the upper electrode layer 17 is above the MTJ structure, and the measured resistance value 18 between the MTJ element seed layer 16 and the upper electrode layer 7 represents the magnetic free layer 6 and the magnetic T.
  • Figure 2 is an ideal output plot of the ⁇ , ⁇ component.
  • the output curve is saturated in the low-impedance state 20 and the high-impedance state 21, and RL and the resistance values of the low-impedance state 20 and the high-impedance state 21, respectively.
  • the measured resistance value 18 of the entire element is in the low resistance state 20; when the magnetization direction of the magnetic free layer 7 and the magnetization of the magnetic pinning layer ⁇ 8 When anti-parallel, the measured resistance value of the entire component is 18 in the high-impedance state 21.
  • the resistance of the MTJ element 1 can vary linearly between the high resistance state and the low resistance state with the applied magnetic field, and the magnetic field range between the saturation field - and is the measurement range of the MTJ element.
  • Figure 3 is a schematic illustration of the MTJ elements connected in series to form an equivalent MTJ magnetoresistance.
  • the series of MTJ component strings can reduce noise and improve sensor stability.
  • the bias voltage of each MTJ element 1 decreases as the number of magnetic ramp junctions increases.
  • the reduction in current requires a large voltage output, which reduces shot noise, and increases the ESD stability of the sensor as the number of magnetic tunnel junctions increases.
  • the noise of the MTJ magnetoresistance decreases correspondingly because the uncorrelated random behavior of each individual MTJ element is averaged out.
  • 4 is an output diagram of the relative magnetization directions of the magnetic free layer and the magnetic pin layer.
  • the magnetization direction 7 of the magnetic free layer and the magnetization direction 8 of the magnetic pinning layer are at an angle ⁇ , as can be seen from the figure, under the action of the external field of the same sensitive direction 9, different angles ⁇ MT f components can have different response directions.
  • the magnetization direction 8 and the angle ⁇ of the magnetic pinning layer of a group of MTJ elements are the same, and the magnetization direction 7 of the magnetic free layer is different, when an external field is applied to the magnetoresistive element.
  • the component of the external field in the sensitive direction 9 causes the magnetization direction of the magnetic free layer of the magnetoresistive element to turn in the opposite direction.
  • the magnetization direction 7 of a magnetic free layer (as indicated by the solid arrow in FIG. 4) is more prone to magnetic pinning.
  • the magnetization direction of the layer is 8, at which time the resistance of the element is lowered; at the same time, the magnetization direction ⁇ of the other magnetic self-twist layer (shown by the dashed arrow in Fig. 4) is away from the magnetization direction 8 of the magnetic pinning layer, and the resistance of the element Raise. Therefore, this design can cause the magnetoresistive elements to produce opposite directions of response.
  • Figure 5 is a schematic view showing the design of biasing the magnetization direction of the free layer by using two strip-shaped permanent magnets, wherein each permanent magnet has an appropriate length 12 with respect to the magnet gap 13 to avoid the edge effect of the magnet boundary, after magnetization in the same direction
  • the direction of the magnetic bias field 10 is perpendicular to the surface of the permanent magnet.
  • Fig. 6 is a schematic view showing the arrangement of the magnetization of the free layer by using the permanent magnet and the shape of each of the different properties.
  • the magnetization direction 7 of the magnetic free layer depends on the shape anisotropy energy and the magnetic bias field 10 Combine.
  • the shape of the magnetoresistive element can be generally rectangular, rhomboid or tan.
  • the shape anisotropy can make the direction of magnetization of the free layer tend to the long axis direction of the dry magnetoresistive element, by setting the shape of the element, that is, the ratio of the long axis to the short axis.
  • the intensity of each of the shapes can be preset, and the magnetization direction 7 of the magnetic free layer of the magnetoresistive element is a result of the competition between the shape anisotropy energy and the magnetic bias field 10.
  • the intensity of the magnetic bias field 10 depends on the density of the magnetic charge on the surface of the magnet. The closer the magnetization direction 11 is to the direction perpendicular to the interface 14, the greater the density of the surface charge.
  • the density of the surface magnetic charge is proportional to sin , where the angle ⁇ is the angle between the permanent magnet interface 14 and the magnetization direction 11.
  • the angle a of the magnetoresistive element can be preset by adjusting the magnetic bias field 10 and the shape anisotropy energy. In this design, the sensitive direction 9 and the magnetization direction 8 of the magnetic pinning layer are perpendicular.
  • Figure ⁇ is a design intent of a push-pull half-bridge magnetic field sensor.
  • the magnetoresistances R11 and R 12 form a half bridge, the angles ⁇ of the two magnetoresistors are the same, the magnetization direction 8 of the magnetic pinning layer is the same, and the magnetization direction of the magnetic free layer is 7 different directions, the magnetic free layer
  • the magnetization direction 7 depends on the combination of the shape anisotropy energy and the magnetic bias field 10.
  • the magnetization direction 7 of the magnetic free layer of the magnetoresistive resistor R11 approaches the magnetization direction 8 of the magnetic pinning layer, and the resistance thereof decreases correspondingly;
  • the magnetization of the magnetic free layer of R12 "7 is far away from the magnetization direction 8 of the magnetic pin 3 ⁇ 4 layer, and its resistance value increases correspondingly.
  • the output terminal voltage VOUT changes correspondingly, which constitutes a push-pull half. bridge.
  • the biasing method of the push-pull half-bridge magnetic field sensor is as follows: As shown in Fig. 7, a magnetic field is applied to the push-pull half bridge along the magnetizing side, and the magnetic field at the gap 13 between the permanent magnets 15 is removed after the external magnetic field is removed. 10 is generated by the virtual magnetic charge at the boundary 14 Straight to the boundary 14, the specific biasing direction is as indicated by the arrow 10 of FIG.
  • Figure 8 is a design intent of a tapered-wound full-bridge magnetic field sensor.
  • the magnetoresistors R2 i, R22, R23, R24 are connected in full bridge, the angle a of each magnetoresistive is the same, the magnetization of the magnetic pinning layer is the same, and the relative position of the magnetoresistance (R21 and R23) , the magnetic free layers of R22 and R24) have the same magnetization direction 7, and the adjacent magnetoresistances (R21 and R22, R22 and R23, R23 and R24, R24 and R21) have different magnetization directions of the magnetic free layer.
  • the magnetization of the magnetoresistance R2], R23 approaches the magnetization direction 8 of the magnetic pinning layer from the magnetization direction 7 of the magnetic pinning layer, and the resistance thereof decreases accordingly; At the same time, the magnetization direction 7 of the magnetic free layer of R22 and R24 is far away from the magnetization direction 8 of the magnetic pinning layer, and the resistance value thereof is correspondingly increased. Under the action of the constant voltage V BiAS , the voltage between the output terminals VI and V2 changes correspondingly. That is, the push-pull full bridge is formed.
  • the biasing method of the push-pull full-bridge magnetic field sensor is as follows: As shown in FIG. 8, a strong magnetic field is applied to the push-pull full bridge along the magnetization direction 11, and the magnetic field at the gap 13 between the permanent magnets 15 after the external magnetic field is sprinkled. 10 is generated by a virtual magnetic charge at boundary 14, perpendicular to boundary 14, the particular biasing direction of which is indicated by arrow 10 of FIG.
  • Figure ⁇ is the same as the magnetization direction 8 of the magnetic nail ft layer of the push-pull bridge sensor shown in Fig. 8.
  • the push-pull full-bridge sensor can be directly formed on the same chip by one process, without using a multi-chip packaging process, nor A laser-assisted local auxiliary thermal annealing is required.
  • Figure 9 is a layout diagram of a push-pull full-bridge magnetic field sensor. As shown in the figure, several MTJ elements 1 are connected in series to form an equivalent magnetoresistance. After magnetization, the permanent magnets 15 on both sides of the MTJ element 1 provide a magnetic bias field 10 to the free layer magnetization of the free layer of the element. The direction 7 is biased with a sensitive direction 9 perpendicular to the pinning layer magnetization direction 8. The pads 23 of the sensor can be connected to the package pins of the ASIC integrated circuit or lead frame by wires.
  • Figure 10 shows the simulation results of the push-pull bridge design i and its output in the direction of the sensitive direction perpendicular to the easy axis. The upper two output plots are the output curves of the magnetoresistance at the adjacent positions of the saturation field 50 Oe and 100 Oe, and the lower two output plots are the full bridge output curves of the saturated field 50 Oe and 100 Oe.
  • Figure 1 is the simulation result of the design of the push-pull bridge with the sensitive direction parallel to the easy axis direction and its output.
  • the upper two output plots are the output curves of the magnetoresistors at the adjacent positions of the saturation fields 50 Oe and 100 Oe.
  • the two output plots on the T side are the full bridge output curves of the saturation fields 50 Oe and 100 () e.
  • the output curve of MTJ is not the ideal curve as shown in Figure 2.
  • the design of Fig. 12 is to provide an energizing coil 22 above the magnetoresistive element, and the magnetic field generated by the energizing coil 22 applies an external field to the free layer.
  • This design can realize the preset and calibration of the output offset after the chip is packaged. , with great controllability, can be operated in the background according to the actual needs.
  • the wire width of the wire that produces the calibration field is 5 ⁇ m
  • the wire width that is opposite to the calibration current is 3 ⁇ ⁇
  • the gap width between the wires is 2.5 ⁇ ⁇ .
  • Figure 13 is a layout diagram of a push-pull bridge magnetic field sensor that pre-sets and calibrates the free-layer magnetization by energizing the coil. As shown, the pads 23 of the sensor can be connected by leads to the package of the ASIC integrated circuit or leadframe. Pad 24 is the input and output of the energized coil.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Description

技术领域
该发明涉及一种磁场探测用的传感器, 尤其为一种单一芯片推挽桥式磁场传感器。
背景技术
磁性传感器主要用于磁场的方向、 强度和位置探测。 以磁电阻为敏感元件的推挽桥式磁场传 感器具有偏移低, 灵敏度高以及温度稳定性良好的优点。 磁性隧道结元件 (MTJ, Magnetic Tmmd Junction) 是近年来开始工业应用的一种磁电阻元件, 它利用的是磁性多层膜材料的 隧道磁电阻效应 (TMR, Tunnel agnetoresistance), 主要表现为磁电阻元件的阻值随外场的 大小和方向的变化而发生变化。 以 MTJ 元件为传感元件的磁场传感器比目前广泛应 的 AMR (各向异性磁电阻效应) 元件、 霍尔效应材料以及 GMR (巨磁电阻效应) 元件制成的 磁场传感器具有灵敏度高, 功耗低, 线性度好, 动态范围宽, 温度特性好, 抗千扰能力强的 优点, 此外, MTJ元件还能方便地集成到现有的芯片徵加工工艺中, 便于制成体积很小的集 成磁场传感器。
推挽桥式传感器具有比单电阻、 参考桥式传感器更高的灵敏度, 同时具有温度补偿功能, 能 够抑制温度漂移的影响。 传统的 MTJ 或 GMR推挽式桥式传感器要求相邻两个桥臂电阻中 的自旋阀元件的钉扎层磁化方向相反, 而通常沉积在同一基片上的 MTJ 或 GMR 元件, 由 于其磁矩翻转所需要的磁场强度大小相同, 因此在同一个基; t上的磁性元件的钉扎层磁化方 向通常都相同, 这使得制作推挽桥式传感器存在很大困难。 目前制作推挽留桥式传感器的方 法主要有-
( 1 ) 两次成膜工艺: 分两次分别沉积钉扎层磁化方向相反的 MT f 或 GMR元件。 该方法制 作工艺复杂, 同时第二次工艺迸行退火^会明显影响第一次沉积的薄膜。 这使得前后两次成 膜的 ·致性差, 导致桥式传感器不同桥臂的电阻不相同, 影响传感器的整体性能;
(2) 多芯片封装技术: 从同一晶圆或是不同晶圆取两个一致性好的磁电阻, 这两个磁电阻 的敏感方向相同 (钉 ft层磁化方向相同), 然后将其中一个相对另一个磁电阻翻转 〗80° 进 行多芯片封装, 构成推挽式半桥。 该方法能够实现推挽式半桥的功能, 即提高了检测灵敏 度, 具有温度补偿功能, 但是另 ·方面多芯片封装, 封装尺寸大, 生产成本高; 实际封装时 不能严格的进行 18ίΤ 翻转, 即两个电阻的灵敏度方向不是严格的相差 18ίΓ , 使得两个电 阻随外场变化的输出特性不相同, 出现灵敏度不同, 存在比较大的偏置电压等不对称问题, 这样在实际应用中就会带来新的问题; (3 ) 激光加热辅助磁畴局部翻转法; 通常在基片上制备 MTJ或 GMR全桥时, 采 ]¾将 MTJ 或 GMR晶圆在同一强磁场中退火来使不同桥臂的钉 层磁化方向相同。 之后采用激光对晶 圆进行局部加热辅助磁矩翻转, 使得桥式传感器相邻桥臂的钉扎层磁化方向相反, 而实现 单一芯片的桥式传感器。 该方法需要专 ^设备, 设备昂贵, 增加了工艺复杂度, 同时激光加 热所制得的桥式传感器, 其各桥臂的电阻一致性也无法得到保证。
从以上可以看出, 现有的单一芯; t桥式传感器都存在整体性能无法保证, 生产成本高等缺 点。
本发明提供了一种可以大规模制造, 可根据应用需求设计的一种单一芯片推挽桥式磁场传感 器, 它包括多个桥式连接的磁电阻元件, 每个磁电阻元件包括具有敏感方向的敏感元件, 敏 感元件为 ΜΤ,ί元件、 AMR元件或 GMR元件, 每个磁电阻元件的两侧设置有用于对磁电阻 元件的磁化方向进行偏置的一对永磁体。
优选地, 每个永磁体的长度大于该对永磁体之间的宽度以减小每对永磁体之间产生的边缘化 效应,'
优选地, 每个永磁体具有最靠近相对应磁电阻元件的边界边, 该边界边与的单一芯片推挽桥 式磁场传感器的敏感方向呈一夹角, 该夹角为锐角或钝角。
优选地, 位于磁电阻元件两侧的永磁体产生一永磁偏置场, 该永磁偏置场具有一永磁偏置方 向。
优选地, 通过设置永磁体的厚度以改变永磁偏置场的强度。
优选地, 每个永磁体具有最靠近相对应磁电阻元件的边界边, 通过设置永磁体的充磁方向和 永磁体的边界边所成的夹角以改变永磁偏置场的强度。
优选地, 该对永磁体具有产生均匀磁偏置场的形状。
优选地, 磁电阻元件之间相互平行排布。
优选地, 磁电阻元件的周围设置有 ffl于预设和校准输出偏移的通电线圈, 磁电阻元件和通电 线圈之间相绝缘。
附图说明
图 1是一个隧道结磁电阻 (MTJ) 元件的示意图。
图 2是 MTJ元件的理想输出曲线图。
图 3是 MTJ元件串联而形成一个等效 MTJ磁电阻的示意图。
图 4是磁性自由层和磁性钉扎层的相对磁化方向的输出图。
图 5是采用两块条形永磁体偏置自由层磁化方向的设计示意图。 图 6是是采用永磁体和形状各向异性能偏置自由层磁化方向的设计示意图。
图 7是一种锥挽半桥磁场传感器的设计意图。
图 8是一种推挽全桥磁场传感器的设计意图。
图 9是一种推挽全桥磁场传感器的布局示意图。
图 10是敏感方向垂直于易轴方向的推挽桥设计及其输出的模拟结果。
图 Π是敏感方向平行于易轴方 ^的推挽桥设计及其输出的模拟结果。
图】2是通过通电线圈预设和校准自由层磁化方向的设计示意图。
图 13是通过通电线圈预设和校准自由层磁化方向的推挽桥磁场传感器的布局图。
具体实施方式
下面结合附图 1 -】3 之一对本发明的较佳实施倒进行详细阐述, 以使本发明的优点和特征能 更易于被本领域的技术人员理解, 从而对本发明的保护范围作出更为清楚明确的界定。
图 : ί 是一个隧道结磁电阻 (MTJ) 元件的示意图。 一个标准的 ΜΉ元件 1 包括磁性自由层 6, 磁性釕 层 2 以及两个磁性层之间的遂道势垒层 5。 磁性自由层 6 由铁磁材料构成, 磁 性自由层的磁化方向 7随外部磁场的改变而变化。 磁性钉扎层 2是一个磁化方向固定的磁性 层, 磁性钉扎层的磁化方向 8被钉 在一个方向, 在一般条件不会发生改变。 磁性 T扎层通 常是在反铁磁层 3 的上方或下方沉积铁磁层 4构成。 MTj 结构通常是沉积在导电的种子层 16的上方, 同时 MTJ结构的上方为上电极层 17 , MTJ元件种子层 16和上电极层 7之间的 测量电阻值 18代表磁性自由层 6和磁性 T扎层 2之间的相对磁化方向。
图 2是 ΜΤ,ί元件的理想输出曲线图, 输出曲线在低阻态 20和高阻态 21 时饱和, RL和 分别代表低阻态 20和高阻态 21的阻值。 当磁性自由层的磁化方向 7与磁性钉扎层的磁化方 向 8平行时, 整个元件的测量电阻值 18在低阻态 20; 当磁性自由层的磁化方向 7与磁性钉 扎层的磁化方^ 8 反平行时, 整个元件的测量电阻值 18 在高阻态 21。 通过己知的技术, MTJ元件 1的电阻可随着外加磁场在高阻态和低阻态间线性变化, 饱和场 - 和 之间的磁 场范围就是 MTJ元件的测量范围。
图 3是 MTJ元件串联而形成一个等效 MTJ磁电阻的示意图。 串联起来的 MTJ元件串能降 低噪声, 提高传感器的稳定性。 在 ! νίΤ,ί磁电阻中, 每个 MTJ元件 1的偏置电压隨磁璲道结 数量的增加而降低。 电流的降低需要产生一个大的电压输出, 从而降低了散粒噪声, 随着磁 隧道结的增多同时也增强了传感器的 ESD稳定性。 此外, 随着 MTJ元件 1数量的增多 MTJ 磁电阻的噪声相应地降低, 这是因为每一个独立的 MTJ 元件的互不相关的随机行为被平均 掉。 图 4是磁性自由层和磁性钉钆层的相对磁化方向的输出图。 如图所示, 磁性自由层的磁化方 向 7和磁性钉扎层的磁化方向 8呈一夹角 α, .从图中可以看出, 在同 ·敏感方向 9的外场作 用下, 不同角度 α的 MT f 元件可以具有不同的响应方向。 通过设置不同的永磁体偏置场 10 的方向, 使一组 MTJ元件的磁性钉扎层的磁化方向 8和夹角 α相同, 磁性自由层的磁化方 向 7不同, 当对磁电阻元件施加一外场 , 外场沿敏感方向 9的分量使这组磁电阻元件的磁 性自由层的磁化方向 Ί转向相反的方向 一个磁性自由层的磁化方向 7 (如图 4实线箭头 所示) 更倾向于磁性钉扎层的磁化方向 8, 此时元件的阻值降低; 同时另一个磁性自 ώ层的 磁化方向 Ί (如图 4虚线箭头所示) 远离磁性钉扎层的磁化方向 8 , 此^元件的阻值升高。 因此, 该设计可以使磁电阻元件产生相反的响应方向。
图 5是采用两块条形永磁体偏置自由层磁化方向的设计示意图, 其中每块永磁体相对于磁体 间隙 13 具有适当的长度 12 以避免磁体边界的边缘效应, 在沿同一方向充磁之后磁偏置场 10的方向垂直于永磁体的表面。
图 6是是采用永磁体和形状各 ^异性能偏置自由层磁化方 ^的设†示意图, 实际上磁性自由 层的磁化方向 7依赖于形状各向异性能和磁偏置场 10作^的结合。 磁电阻元件的形状通常 可以是矩形、 菱形或楠圆形, 形状各向异性能使自由层磁化方向趋向干磁电阻元件的长轴方 向, 通过设置元件的形状, 即长轴和短轴的比值可以预设形状各 ^异性能的强度, 磁电阻元 件的磁性自由层的磁化方向 7是形状各向异性能和磁偏置场 10的竞争结果。 磁偏置场 10的 强度依赖于磁体表面磁荷的密度, 充磁方向 11和垂直于界面 14的方向越靠近, 表面磁荷堆 积的密度就越大。 表面磁荷的密度和 sin Θ成正比, 其中角度 Θ是永磁体界面 14和充磁方向 11 的夹角。 通过调整磁偏置场 10和形状各向异性能可以预设磁电阻元件的夹角 a , 在该设 计中, 敏感方向 9和磁性钉扎层的磁化方向 8垂直。
图 Ί是一种推挽半桥磁场传感器的设计意图。 如图所示, 磁电阻 R11 和 R 12构成一半桥, 两个磁电阻的夹角 α大小相同, 磁性钉扎层的磁化方向 8相同, 磁性自由层的磁化方向 7指 向不同, 磁性自由层的磁化方向 7依赖于形状各向异性能和磁偏置场 10作 的结合。 当对 推挽半桥传感器施加一沿敏感方向 9正向的外场时, 磁电阻 R11的磁性自由层的磁化方向 7 趋近于磁性钉扎层的磁化方向 8, 其阻值相应地降低; 同时 R12的磁性自由层的磁化方「 7 远离磁性钉 ¾层的磁化方向 8, 其阻值相应地增加, 在恒压 VBIAS的作 下, 输出端电压 VOUT发生相应的变化, 即构成推挽半桥。
推挽半桥磁场传感器的偏置方法为: 如图 7 所示, 沿充磁方^ I I 对推挽半桥施加一强磁 场, 撤去外磁场后, 永磁体 15之间的间隙 13处的磁场 10由边界 14处的虚拟磁荷产生, 垂 直于边界 14, 其具体偏置方向如图 7的箭头 10所示。
图 8 是一种锥挽全桥磁场传感器的设计意图。 如图所示, 磁电阻 R2 i、 R22、 R23、 R24 全 桥连接, 每个磁电阻的夹角 a大小相同, 磁性钉扎层的磁化方「 8相同, 相对位置的磁电阻 ( R21和 R23 , R22和 R24 ) 的磁性自由层的磁化方向 7相同, 相邻位置的磁电阻 (R21和 R22, R22和 R23, R23和 R24, R24和 R21 ) 磁性自由层的磁化方向 7不同。 当对推挽半 桥传感器施加一沿敏感方向 9正向的外场时, 磁电阻 R2】、 R23的磁性自 ffl层的磁化方向 7 趋近于磁性钉扎层的磁化方向 8, 其阻值相应地降低; 同时 R22、 R24 的磁性自由层的磁化 方向 7远离磁性钉扎层的磁化方向 8, 其阻值相应地增加, 在恒压 VBiAS的作用下, 输出端 VI和 V2间的电压发生相应的变化, 即构成推挽全桥。 在理想情况下, 若电阻 R2:i 和 R23 的阻值由 R1变为 (R l+ A R) , 则相应的 R22和 R24的阻值由 R2变为 (R2- Δ Ϊ ), 则输出 为:
R2 + RI
( 1 ) 理想情况下, R】==R2> A R, 则化简后可得:
Figure imgf000007_0001
(2 ) 即实现推挽全桥的输出。
推挽全桥磁场传感器的偏置方法为: 如图 8 所示, 沿充磁方向 11 对推挽全桥施加一强磁 场, 撒去外磁场后, 永磁体 15之间的间隙 13处的磁场 10由边界 14处的虚拟磁荷产生, 垂 直于边界 14, 其具体偏置方向如图 8的箭头 10所示。
图 Ί和图 8所示的推挽桥传感器的磁性钉 ft层的磁化方向 8相同, -可以在同一芯片上通过一 次工艺直接形成推挽全桥传感器, 不需要采用多芯片封装工艺, 也不需要进行激光加热局部 辅助热退火。
图 9是一种推挽全桥磁场传感器的布局示意图。 如图所示, 若干个 MTJ元件 1 串联起来伤 为一个等效的磁电阻, 充磁之后, MTJ元件 1两侧的永磁体 15为元件的自由层提供磁偏置 场 10对自 ώ层磁化方向 7进行偏置, 其敏感方向 9垂直于钉扎层磁化方向 8。 传感器的焊 盘 23可以通过引线连接到 ASIC集成电路或引线框的封装引脚上。 图 10 是敏感方向垂直于易轴方向的推挽桥设 i 及其输出的模拟结果。 上方的两个输出图为 饱和场 50 Oe和 100 Oe的相邻位置的磁电阻的输出曲线, 下方的两个输出图为饱和场 50 Oe 和 100 Oe的全桥输出曲线。
图 1】 是敏感方向平行于易轴方向的推挽桥设计及其输出的模拟结果。 上方的两个输出图为 饱和场 50 Oe和 100 Oe的相邻位置的磁电阻的输出曲线, T方的两个输出图为饱和场 50 Oe 和 100 ()e的全桥输出曲线。
通常在实际測量中, MTJ的输出曲线并非是如图 2所示的理想曲线, 存在一定的偏移, 在实 际操作中需要对其施加外场使其饱和, 从而进行校准测量其偏移值。 图 12 的设计是在磁电 阻元件的上方设置通电线圈 22, 利 ]¾通电线圈 22产生的磁场对自由层施加一外场, 该设计 可以在芯片制备封装之后实现对输出偏移的预设和校准, 具有很大的操控性, 可按照实际使 用的需求进行后台操作。 如图所示, 产生校准场的导线的线宽为 5 u m, 与校准电流逆向的 导线线宽为 3 μ ηι, 导线间的间隙宽度为 2.5 μ ηι。
图 13 是通过通电线圈预设和校准自由层磁化方 ^的推挽桥磁场传感器的布局图。 如图所 示, 传感器的焊盘 23可以通过引线连接到 ASIC集成电路或引线框的封装弓 i脚上。 焊盘 24 为通电线圈的输入和输出端。
以上对本发明的特定实施^结合图示进行了说明, 很明显, 在不离开本发明的范围和精神的 基础上, 可以对现有技术和工艺进行很多修改。 在本发明的所属技术领域中, 只要掌握通常 知识, 就可以在本发明的技术要旨范围内, 进行多种多样的变更。

Claims

权利要求-
1. 一种阜一芯片锥挽桥式磁场传感器, 它包括多个桥式连接的磁电阻元件, 每个磁电阻元 件包括具有敏感方向的敏感元件, 敏感元件为 ΜΤ,ί元件、 AMR元件或 GMR元件, 其特征 在于: 每个磁电阻元件的两侧设置有用于对所述磁电阻元件的磁化方向迸行偏置的一对永磁 体。
2. 根据权利要求 1 所述的单一芯; t推挽桥式磁场传感器, 其中, 每个永磁体的长度大于该 对永磁体之间的宽度以减小每对永磁体之间产生的边缘化效应。
3. 根据权利要求 1 所述的单一芯 i†推挽桥式磁场传感器, 其中, 每个永磁体具有最靠近相 对应磁电阻元件的边界边, 该边界边与所述的单一芯片推挽桥式磁场传感器的敏感方向呈-一 夹角, 该夹角为锐角或钝角。
4. 根据权利要求 1 所述的单一芯片推挽桥式磁场传感器, 其中, 位于磁电阻元件两侧的永 磁体产生一永磁偏置场, 该永磁偏置场具有一永磁偏置方向。
5. 根据权利要求 4 所述的单一芯; t推挽桥式磁场传感器, 其中, 通过设置永磁体的厚度以 改变永磁偏置场的强度。
6. 根据权利要求 4 所述的单一芯片推挽桥式磁场传感器, 其中, 每个永磁体具有最靠近相 对应磁电阻元件的边界边, 通过设置永磁体的充磁方向和所述永磁体的边界边所成的夹角以 改变永磁偏置场的强度。
7. 根据权利要求 i 所述的单一芯片推挽桥式磁场传感器, 其中, 该对永磁体具有产生均匀 磁偏置场的形状。
8. 根据权利要求 1 所述的单一芯片推挽桥式磁场传感器, 其中, 磁电阻元件之间相互平行 排布。
9. 根据权利要求 1 所述的单一芯片推挽桥式磁场传感器, 其中, 磁电阻元件的周 设置有 用于预设和校准输出偏移的通电线圈, 磁电阻元件和通电线圈之间相绝缘。
I
PCT/CN2012/073495 2011-04-06 2012-04-01 单一芯片推挽桥式磁场传感器 WO2012136134A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014502976A JP2014512003A (ja) 2011-04-06 2012-04-01 シングルチッププッシュプルブリッジ型磁界センサ
EP12767718.5A EP2696209B1 (en) 2011-04-06 2012-04-01 Single-chip push-pull bridge-type magnetic field sensor
US14/009,912 US9664754B2 (en) 2011-04-06 2012-04-01 Single chip push-pull bridge-type magnetic field sensor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201120097042.3 2011-04-06
CN2011200970423U CN202013413U (zh) 2011-04-06 2011-04-06 单一芯片桥式磁场传感器
CN201110326725.6A CN102540112B (zh) 2011-04-06 2011-10-25 单一芯片推挽桥式磁场传感器
CN201110326725.6 2011-10-25

Publications (1)

Publication Number Publication Date
WO2012136134A1 true WO2012136134A1 (zh) 2012-10-11

Family

ID=44784030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/073495 WO2012136134A1 (zh) 2011-04-06 2012-04-01 单一芯片推挽桥式磁场传感器

Country Status (5)

Country Link
US (1) US9664754B2 (zh)
EP (1) EP2696209B1 (zh)
JP (1) JP2014512003A (zh)
CN (1) CN202013413U (zh)
WO (1) WO2012136134A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016525689A (ja) * 2013-07-30 2016-08-25 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. シングルチップ・プッシュプルブリッジ型磁界センサ
EP2995962A4 (en) * 2013-05-10 2017-01-18 Murata Manufacturing Co., Ltd. Magnetic current sensor and current measurement method
US9664754B2 (en) 2011-04-06 2017-05-30 MultiDimension Technology Co., Ltd. Single chip push-pull bridge-type magnetic field sensor

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102226836A (zh) 2011-04-06 2011-10-26 江苏多维科技有限公司 单一芯片桥式磁场传感器及其制备方法
CN102565727B (zh) * 2012-02-20 2016-01-20 江苏多维科技有限公司 用于测量磁场的磁电阻传感器
CN102809665B (zh) 2012-06-04 2016-08-03 江苏多维科技有限公司 一种磁电阻齿轮传感器
CN102968845B (zh) * 2012-10-31 2015-11-25 江苏多维科技有限公司 一种被磁偏置的敏感方向平行于检测面的验钞磁头
CN103839321B (zh) * 2012-11-23 2018-05-15 北京嘉岳同乐极电子有限公司 一种长尺寸检测磁传感器及其制作方法
US9377327B2 (en) * 2013-06-28 2016-06-28 Analog Devices Global Magnetic field direction sensor
CN103645448A (zh) * 2013-12-20 2014-03-19 叶友忠 改型惠斯通半桥电路及传感器
US9503097B2 (en) 2014-01-28 2016-11-22 Crocus Technology Inc. Analog circuits incorporating magnetic logic units
EP3100312A1 (en) 2014-01-28 2016-12-07 Crocus Technology Inc. Mlu configured as analog circuit building blocks
CN104931075A (zh) * 2014-03-17 2015-09-23 精工爱普生株式会社 编码器、机电装置、机器人以及铁路车辆
CN104569870B (zh) * 2015-01-07 2017-07-21 江苏多维科技有限公司 一种单芯片具有校准/重置线圈的z轴线性磁电阻传感器
JP6352195B2 (ja) 2015-01-14 2018-07-04 Tdk株式会社 磁気センサ
CN104698409B (zh) * 2015-02-04 2017-11-10 江苏多维科技有限公司 一种单芯片具有校准线圈/重置线圈的高强度磁场x轴线性磁电阻传感器
CN105093139B (zh) * 2015-06-09 2017-11-24 江苏多维科技有限公司 一种推挽式x轴磁电阻传感器
US9897667B2 (en) 2016-01-26 2018-02-20 Nxp Usa, Inc. Magnetic field sensor with permanent magnet biasing
US9739842B2 (en) * 2016-01-26 2017-08-22 Nxp Usa, Inc. Magnetic field sensor with skewed sense magnetization of sense layer
US9841469B2 (en) * 2016-01-26 2017-12-12 Nxp Usa, Inc. Magnetic field sensor with multiple sense layer magnetization orientations
RU2617454C1 (ru) * 2016-02-17 2017-04-25 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Способ изготовления магниторезистивного датчика
US10162016B2 (en) * 2016-03-08 2018-12-25 Texas Instruments Incorporated Reduction of magnetic sensor component variation due to magnetic materials through the application of magnetic field
US10545196B2 (en) * 2016-03-24 2020-01-28 Nxp Usa, Inc. Multiple axis magnetic sensor
US10145907B2 (en) 2016-04-07 2018-12-04 Nxp Usa, Inc. Magnetic field sensor with permanent magnet biasing
US9933496B2 (en) 2016-04-21 2018-04-03 Nxp Usa, Inc. Magnetic field sensor with multiple axis sense capability
JP6280610B1 (ja) * 2016-10-03 2018-02-14 Tdk株式会社 磁気抵抗効果素子及びその製造方法、並びに位置検出装置
JP6769882B2 (ja) * 2017-01-19 2020-10-14 旭化成エレクトロニクス株式会社 磁気センサ
CN107015171B (zh) * 2017-03-24 2023-10-24 江苏多维科技有限公司 一种具有磁滞线圈的磁传感器封装结构
JP6485491B2 (ja) * 2017-06-08 2019-03-20 Tdk株式会社 磁気センサ及びカメラモジュール
JP6777058B2 (ja) * 2017-11-09 2020-10-28 Tdk株式会社 磁気センサ
JP2019087688A (ja) 2017-11-09 2019-06-06 Tdk株式会社 磁気センサ
CN111758040B (zh) * 2017-12-26 2023-04-28 罗伯特·博世有限公司 具有分布的通量引导件的z轴线磁性传感器
KR20190079420A (ko) * 2017-12-27 2019-07-05 주식회사 해치텍 자동 이득 조정 알고리즘을 이용한 회전각 검출 방법 및 그 장치
CN109556647B (zh) * 2018-11-30 2021-08-03 苏州大学 一种隧道磁阻效应传感器的低频噪声抑制装置及方法
US11385306B2 (en) * 2019-08-23 2022-07-12 Western Digital Technologies, Inc. TMR sensor with magnetic tunnel junctions with shape anisotropy
US11169228B2 (en) 2019-08-27 2021-11-09 Western Digital Technologies, Inc. Magnetic sensor with serial resistor for asymmetric sensing field range
US11199594B2 (en) * 2019-08-27 2021-12-14 Western Digital Technologies, Inc. TMR sensor with magnetic tunnel junctions with a free layer having an intrinsic anisotropy
CN112082579B (zh) * 2020-07-31 2023-08-15 中国电力科学研究院有限公司 宽量程隧道磁电阻传感器及惠斯通半桥

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040165319A1 (en) * 2003-02-20 2004-08-26 Honeywell International Inc. Magnetic field sensor
US20090189601A1 (en) * 2008-01-29 2009-07-30 Hitachi Metals, Ltd. Magnetic sensor and rotation-angle-detecting apparatus
CN101672903A (zh) * 2009-09-23 2010-03-17 电子科技大学 一种惠斯通电桥式自旋阀磁传感器的制备方法
JP2011103336A (ja) * 2009-11-10 2011-05-26 Denso Corp 磁気抵抗効果素子およびそれを用いたセンサ
CN202013413U (zh) * 2011-04-06 2011-10-19 江苏多维科技有限公司 单一芯片桥式磁场传感器
CN102226835A (zh) * 2011-04-06 2011-10-26 江苏多维科技有限公司 单一芯片双轴磁场传感器及其制备方法
CN102226836A (zh) * 2011-04-06 2011-10-26 江苏多维科技有限公司 单一芯片桥式磁场传感器及其制备方法
CN102331564A (zh) * 2011-04-06 2012-01-25 江苏多维科技有限公司 单一芯片桥式磁场传感器及其制备方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4860432A (en) * 1986-09-02 1989-08-29 Alps Electric Co., Ltd. Method of manufacturing a magnetoresistive sensor
US4841235A (en) * 1987-06-11 1989-06-20 Eaton Corporation MRS current sensor
JPH05281319A (ja) * 1992-04-02 1993-10-29 Fujitsu Ltd 磁気センサ
JPH06148301A (ja) * 1992-05-15 1994-05-27 Fujitsu Ltd 磁気センサ
JP3089828B2 (ja) * 1992-05-27 2000-09-18 株式会社村田製作所 強磁性磁気抵抗素子
WO1995028649A1 (en) * 1994-04-15 1995-10-26 Philips Electronics N.V. A magnetic field sensor, an instrument comprising such a sensor and a method of manufacturing such a sensor
US6246233B1 (en) * 1994-12-30 2001-06-12 Northstar Technologies Inc. Magnetoresistive sensor with reduced output signal jitter and temperature compensation
DE19520178A1 (de) * 1995-06-01 1996-12-05 Siemens Ag Magnetisierungsvorrichtung für magnetoresistive Dünnschicht-Sensorelemente in einer Brückenschaltung
WO1998048291A2 (en) * 1997-04-18 1998-10-29 Koninklijke Philips Electronics N.V. Magnetic field sensor comprising a wheatstone bridge
JP3498737B2 (ja) 2001-01-24 2004-02-16 ヤマハ株式会社 磁気センサの製造方法
FR2830621B1 (fr) * 2001-10-09 2004-05-28 Commissariat Energie Atomique Structure pour capteur et capteur de champ magnetique
AU2003225703A1 (en) * 2002-03-08 2003-09-22 Brown University Research Foundation High resolution scanning magnetic microscope operable at high temperature
JP4190780B2 (ja) * 2002-03-18 2008-12-03 株式会社デンソー 回転検出装置
JP4016857B2 (ja) 2002-10-18 2007-12-05 ヤマハ株式会社 磁気センサ及びその製造方法
JP3835447B2 (ja) 2002-10-23 2006-10-18 ヤマハ株式会社 磁気センサ、同磁気センサの製造方法及び同製造方法に適したマグネットアレイ
JP4055609B2 (ja) * 2003-03-03 2008-03-05 株式会社デンソー 磁気センサ製造方法
CN1902498A (zh) * 2004-01-08 2007-01-24 皇家飞利浦电子股份有限公司 磁阻速度传感器
JP4557134B2 (ja) 2004-03-12 2010-10-06 ヤマハ株式会社 磁気センサの製造方法、同磁気センサの製造方法に使用されるマグネットアレイ及び同マグネットアレイの製造方法
US7391091B2 (en) * 2004-09-29 2008-06-24 Nve Corporation Magnetic particle flow detector
WO2006098431A1 (ja) 2005-03-17 2006-09-21 Yamaha Corporation 三軸磁気センサおよびその製造方法
US7483295B2 (en) * 2007-04-23 2009-01-27 Mag Ic Technologies, Inc. MTJ sensor including domain stable free layer
US7635974B2 (en) * 2007-05-02 2009-12-22 Magic Technologies, Inc. Magnetic tunnel junction (MTJ) based magnetic field angle sensor
DE102007029817B9 (de) * 2007-06-28 2017-01-12 Infineon Technologies Ag Magnetfeldsensor und Verfahren zur Kalibration eines Magnetfeldsensors
WO2009084433A1 (ja) * 2007-12-28 2009-07-09 Alps Electric Co., Ltd. 磁気センサ及び磁気センサモジュール
JP2009216390A (ja) * 2008-03-06 2009-09-24 Ricoh Co Ltd 3軸磁気センシング装置およびその製造方法
US8203332B2 (en) * 2008-06-24 2012-06-19 Magic Technologies, Inc. Gear tooth sensor (GTS) with magnetoresistive bridge

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040165319A1 (en) * 2003-02-20 2004-08-26 Honeywell International Inc. Magnetic field sensor
US20090189601A1 (en) * 2008-01-29 2009-07-30 Hitachi Metals, Ltd. Magnetic sensor and rotation-angle-detecting apparatus
CN101672903A (zh) * 2009-09-23 2010-03-17 电子科技大学 一种惠斯通电桥式自旋阀磁传感器的制备方法
JP2011103336A (ja) * 2009-11-10 2011-05-26 Denso Corp 磁気抵抗効果素子およびそれを用いたセンサ
CN202013413U (zh) * 2011-04-06 2011-10-19 江苏多维科技有限公司 单一芯片桥式磁场传感器
CN102226835A (zh) * 2011-04-06 2011-10-26 江苏多维科技有限公司 单一芯片双轴磁场传感器及其制备方法
CN102226836A (zh) * 2011-04-06 2011-10-26 江苏多维科技有限公司 单一芯片桥式磁场传感器及其制备方法
CN102331564A (zh) * 2011-04-06 2012-01-25 江苏多维科技有限公司 单一芯片桥式磁场传感器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2696209A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9664754B2 (en) 2011-04-06 2017-05-30 MultiDimension Technology Co., Ltd. Single chip push-pull bridge-type magnetic field sensor
EP2995962A4 (en) * 2013-05-10 2017-01-18 Murata Manufacturing Co., Ltd. Magnetic current sensor and current measurement method
US10184959B2 (en) 2013-05-10 2019-01-22 Murata Manufacturing Co., Ltd. Magnetic current sensor and current measurement method
JP2016525689A (ja) * 2013-07-30 2016-08-25 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. シングルチップ・プッシュプルブリッジ型磁界センサ
EP3029479A4 (en) * 2013-07-30 2017-03-15 Multidimension Technology Co., Ltd. Singlechip push-pull bridge type magnetic field sensor

Also Published As

Publication number Publication date
EP2696209A1 (en) 2014-02-12
US20140035570A1 (en) 2014-02-06
JP2014512003A (ja) 2014-05-19
EP2696209A4 (en) 2015-06-10
US9664754B2 (en) 2017-05-30
CN202013413U (zh) 2011-10-19
EP2696209B1 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
WO2012136134A1 (zh) 单一芯片推挽桥式磁场传感器
US9722175B2 (en) Single-chip bridge-type magnetic field sensor and preparation method thereof
TWI616007B (zh) 對磁場具有改良響應的自旋閥磁阻元件
JP6193212B2 (ja) シングルチップ2軸ブリッジ型磁界センサ
CN102540112B (zh) 单一芯片推挽桥式磁场传感器
EP2752675B1 (en) Mtj three-axis magnetic field sensor and encapsulation method thereof
US9678178B2 (en) Magnetoresistive magnetic field gradient sensor
JP6420665B2 (ja) 磁場を測定する磁気抵抗センサ
US10060941B2 (en) Magnetoresistive gear tooth sensor
JP6403326B2 (ja) 電流センサ
WO2012142915A1 (zh) 单片参考全桥磁场传感器
WO2015058632A1 (zh) 一种用于高强度磁场的推挽桥式磁传感器
WO2012097673A1 (zh) 独立封装的桥式磁场传感器
WO2014190907A1 (zh) 单芯片桥式磁场传感器
JP2017502298A5 (zh)
WO2018006879A1 (zh) 一种无需置位和复位装置的各向异性磁电阻电流传感器
EP1636810A1 (en) Method of manufacturing a device with a magnetic layer-structure
JP2008306112A (ja) 磁気抵抗効果膜、磁気センサ及び回転角度検出装置
CN111965571B (zh) 一种gmr磁场传感器的制备方法
KR101965510B1 (ko) 거대자기저항 센서
KR100479445B1 (ko) 풀 브리지 특성을 갖는 교환 바이어스형 스핀밸브를이용한 자기센서 제조방법
TW201243874A (en) A stacked spin-valve magnetic sensor and fabrication method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12767718

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014502976

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14009912

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012767718

Country of ref document: EP