WO2012135983A1 - 降膜蒸发器用强化传热管 - Google Patents

降膜蒸发器用强化传热管 Download PDF

Info

Publication number
WO2012135983A1
WO2012135983A1 PCT/CN2011/000989 CN2011000989W WO2012135983A1 WO 2012135983 A1 WO2012135983 A1 WO 2012135983A1 CN 2011000989 W CN2011000989 W CN 2011000989W WO 2012135983 A1 WO2012135983 A1 WO 2012135983A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
fin
transfer tube
falling film
tube
Prior art date
Application number
PCT/CN2011/000989
Other languages
English (en)
French (fr)
Inventor
孙新春
邓斌
武永强
王志军
李前方
Original Assignee
金龙精密铜管集团股份有限公司
上海金龙制冷技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金龙精密铜管集团股份有限公司, 上海金龙制冷技术有限公司 filed Critical 金龙精密铜管集团股份有限公司
Priority to US13/520,901 priority Critical patent/US20130220586A1/en
Publication of WO2012135983A1 publication Critical patent/WO2012135983A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • F28D3/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/422Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element with outside means integral with the tubular element and inside means integral with the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/34Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
    • F28F1/36Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely the means being helically wound fins or wire spirals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/10Secondary fins, e.g. projections or recesses on main fins

Definitions

  • the present invention relates to the field of heat transfer tubes, and more particularly to an enhanced heat transfer tube in a horizontal shell-and-tube type falling film evaporator.
  • a horizontal shell-and-tube type falling film evaporator has a high heat exchange efficiency due to less refrigerant charging, and is more and more subject to air conditioning, I: and other heat exchange equipment manufacturers.
  • the falling film evaporator ": The principle is as follows: The heat exchanger is provided with a plurality of rows of horizontally placed heat transfer tubes, and the refrigerant is uniformly sprayed from the top end of the heat transfer tube along the heat transfer tube K: On the heat transfer tube, the refrigerant then drops from the upper heat transfer tube to the lower row of the heat transfer tube, and the heat transfer tube drops the refrigerant exchanged thereon to ensure the evaporation of the refrigerant.
  • the heat transfer effect of the falling film evaporation depends on whether the heat transfer tube and the refrigerant can sufficiently heat exchange and whether there is enough refrigerant to wet the heat transfer tube; on the other hand, it depends on the upper heat transfer tube of T Whether the refrigerant on the outer surface can all drip on the outer surface of the lower heat transfer tube. Flashing, the heat transfer tube in the falling film evaporator has a crucial effect on ensuring the heat exchange effect of the evaporator and the heat exchange efficiency for improving the falling film evaporation.
  • a copper heat exchange tube for condenser of bromine cold unit shows that the existing heat transfer tube is generally provided with fins on the outer surface of the heat transfer tube to increase the heat exchange area to improve heat transfer. Efficiency, but it is easy to accumulate refrigerant between the fins in the ⁇ falling film evaporating heat exchanger to form a meniscus, which is unfavorable for the D-refrigerant to flow down; at the same time, the surface of the fin is smooth, which is not good for D- and The refrigerant is in full contact and lacks the vaporization core required for evaporation, which results in poor heat transfer.
  • the present invention S provides an enhanced heat transfer tube that has high heat transfer efficiency and is specifically suitable for falling film evaporation.
  • the invention adopts the following scheme to realize: a falling film evaporator, a heat transfer tube, a tube body including a heat transfer tube and fins disposed outside the heat transfer section of the tube body, the fins are spirally wound in the axial direction to heat transfer Outside the tube of the tube, the fin root tube body is integrally connected, wherein the fin has an axial cross-sectional shape ⁇ , and an axial gap between two axially adjacent T fins is formed for refrigerant circulation and evaporation.
  • the T-shaped fin is circumferentially provided with a circumferential fin groove dividing the fin, and an outer surface of the fin is provided with a groove or a convex guiding the flow of the refrigerant.
  • Ribs; inner teeth are provided in the tube.
  • the spiral T-shaped fins are provided with 26 to 60 pieces per inch in the axial direction, and the helix angle is 0.3 to 2.5 degrees.
  • the small holes are distributed in the circumferential direction of 60 to 160, the circumferential spacing of the small holes is 0.05 to 0.5 mm, and the small holes are 0.1 to 0.8 mm high.
  • the rotation direction of the groove on the outer surface of the fin/fin is uniform in the direction of rotation of the spiral fin, and is connected in the circumferential direction to form a circumferential flow channel having a width of 0.05 to 0.5 mm and a depth of 0.02 to 0.2. Mm.
  • the angle of the tube axis of the rib heat transfer tube disposed on the outer surface of the fin is 0 to 80°.
  • the number of ribs on the outer surface of each fin is two or more, the height of the rib is 0.01 ⁇ 0.25 m , and the width of the rib is 0.02 ⁇ 0.4 mm; two or more ribs are parallel to each other
  • the spacing between the ribs is 0.05 ⁇ 0.7 mm.
  • Both sides of the outer surface of the T-shaped fin are provided with side grooves or chamfers for guiding the flow of the refrigerant.
  • the internal teeth of the tube body are thread-shaped, the thread-like internal tooth has a cross-sectional shape, and the internal tooth has a cusp angle ranging from 10 to 120°.
  • the threaded inner toothed body has an axial angle ranging from 20 to 70 degrees, an internal rack number of 6 to 90, and an internal tooth height of 0.1 to 0.6 mm.
  • a plurality of small holes formed by the gap between the ⁇ fins provide a vaporization core when the refrigerant evaporates, thereby enhancing the evaporation heat exchange;
  • the annular passage formed by the spiral connection of the small holes Conducive to the circumferential flow of the refrigerant, enhance the disturbance of the vapor and liquid phases when the refrigerant evaporates, thereby enhancing the heat transfer efficiency; using the circumferential fin groove to divide the spiral fins on the circumference into a plurality of pieces, so that each small hole There is axial and circumferential clearance, and the refrigerant enters the small hole to ensure that the refrigerant can be continuously replenished when the refrigerant evaporates, and the refrigerant vapor is discharged, so that the evaporation can continue and form continuous evaporation.
  • the outer surface of the heat transfer tube fin is provided with a groove, and the groove is connected along the circumferential direction of the heat transfer tube to form a circumferential flow passage, which can drain the excess refrigerant on the outer surface of the heat transfer tube to prevent the refrigerant from accumulating outside the heat transfer tube.
  • it can prevent the formation of an excessively thick liquid film on the outer surface of the ih tube, which is not conducive to heat transfer, and causes steam evaporation in the absence of refrigerant in the tube; on the other hand, it prevents the upper row of refrigerant from dripping excessively thick.
  • the liquid film causes the refrigerant to splash, but can not participate in the heat exchange, resulting in a decrease in heat transfer efficiency; the circumferential flow path can also ensure the directionality of the refrigerant falling, prevent the refrigerant from drifting when it drops, and cannot fall to the end.
  • the lower tube is so that the lower tube lacks the refrigerant to cause dry steaming, and at the same time, the refrigerant cannot contact the heat transfer tube to cause the evaporator efficiency to decrease;
  • the outer surface of the heat transfer tube fin is provided with a plurality of parallel oblique ribs, which can increase the roughness of the outer surface of the heat transfer tube, increase the contact area of the refrigerant heat transfer tube, and ensure the refrigerant energy and the heat transfer tube.
  • the surface is fully contacted to enhance the heat exchange effect; and the retardation speed of some refrigerants can be retarded to ensure that enough refrigerant can enter the small holes of the heat transfer tube to ensure a continuous evaporation process;
  • each of the ⁇ -type fins may be provided with chamfering grooves, which can more effectively guide the refrigerant to enter the small holes of the heat transfer tube, and on the other hand, can guide the downward dripping of excess refrigerant. And ensure the directionality of dripping, thereby improving heat transfer efficiency;
  • the inner surface of the heat transfer tube is also provided with threaded internal teeth, which increases the heat transfer area of the heat transfer tube, and can enhance the turbulent flow of the fluid in the heat transfer tube, thereby increasing the heat exchange efficiency in the tube.
  • the invention improves the heat exchange coefficient of the inner and outer surfaces of the heat transfer tube, optimizes the heat exchange efficiency inside and outside the tube, improves the overall heat transfer efficiency of the heat transfer tube, and is suitable for the falling film evaporator.
  • the evaporator is used.
  • m 1 is a schematic cross-sectional view of an enhanced heat transfer tube for a falling film evaporator according to the present invention
  • m 2 is a schematic view of the three-dimensional structure of the heat transfer section / 3 ⁇ 4 portion of the enhanced heat transfer tube for the falling film evaporator of the present invention
  • m 3 is a schematic structural view showing a groove provided on the surface of the fin of the enhanced heat transfer tube for the falling film evaporator of the present invention
  • m 4 is a structural schematic diagram of two ribs on the surface of the fin of the enhanced heat transfer tube for the falling film evaporator of the present invention
  • m 5 is a schematic structural view of the four ribs of the fin surface of the falling film evaporator w of the present invention.
  • FIG. 6 is a schematic structural view showing the arrangement of side grooves and chamfers on the fins of the enhanced heat transfer tube for the falling film evaporator of the present invention
  • Figure 7 is a schematic view showing the structure of the fin surface of the fin-enhanced heat transfer tube of the falling film evaporator of the present invention.
  • Fig. 8 is a structural schematic view showing the combination of the rib edge groove of the fin surface of the enhanced heat transfer tube for the falling film evaporator of the present invention.
  • the present invention comprises a tube body 1 of a heat transfer tube and fins 2 disposed outside the heat transfer section of the tube body 1, the fins 2 being spirally wound in the axial direction: heat transfer Outside the tube body 1 of the tube, the fins 2 root tube bodies 1 are integrally connected, wherein the fins 2 have a cross-sectional shape in the axial direction of a ⁇ type, and axially adjacent axial gaps between the two ⁇ fins 2 Forming a small hole 3 through which the refrigerant flows and evaporates, and forming an annular passage in a spiral direction, the T fin 2 is provided with a circumferential fin groove 4 for dividing the fin in the circumferential direction, and the outer surface of the fin 2 is provided
  • the groove 5 for guiding the flow of the refrigerant is a convex rib 6; the inner body 7 is provided in the tube body 1.
  • the spiral T 3 ⁇ 4 fins 2 are provided in the range of 26 to 60 in the axial ⁇ inch, and the helix angle is 0.3 - 2.5 °; the material thickness of the T fin 2 is 0.1 to 0.4 mm.
  • the small holes 3 are distributed 60 ⁇ 160 in the circumferential direction, the circumferential spacing of the small holes 3 is 0.05 ⁇ 0.5 mm, and the small holes 3 are 0.1 ⁇ 0.8 mm high; the size of the small holes 3 is adjusted according to different refrigerant characteristics to ensure evaporation. effectiveness.
  • the rotation direction of the groove 5 of the outer surface 21 of the fin-fin 2 is consistent with the rotation direction of the spiral fin 2, and is connected in the circumferential direction to form a circumferential flow path, and the groove 5 is
  • the width is 0.05 to 0.5 mm and the depth is 0.02 to 0.2 mm; the shape of the groove 5 is curved.
  • the ribs 6 on the outer surface 21 of the finned fin 2 have an angle of 0 to 80 ° from the axis of the tube 1 of the heat transfer tube.
  • the number of ribs 6 on the outer surface 21 of each of the fins 2 is two or more, the height of the ribs 6 is 0.01 to 0.25 mm, and the width of the ribs 6 is 0.02 to 0.4 mm;
  • the ribs 6 are parallel to each other, and the spacing between the ribs 6 is 0.05 to 0.7 mm.
  • the both sides of the outer surface 21 of the T ⁇ fin 2 are provided with side grooves 22 or chamfers 41 for guiding the flow of the refrigerant.
  • the groove 5 and the rib 6, the rib 6 and the side groove 22 can be combined differently depending on the actual effect.
  • the internal teeth 7 in the tubular body 1 are thread-shaped, the threaded internal tooth section 7 is a triangle-like shape, and the internal tooth 7 has a apical angle of 10 to 120°.
  • the axis of the threaded internal tooth 7 has an axis angle of 20 to 70 °, the number of internal teeth 7 is 6 to 90, and the height of the internal tooth 7 is 0.1 ⁇ 0.6 mm.
  • the heat transfer tube of the invention can be completed by the simultaneous integration of the inner tube of the special machine tool tube, and the process of twisting the body is: firstly, the outer surface of the heat transfer tube body 1 is twisted and the spiral piece 2 of the spiral is extracted; The spiral fin 2 is divided into a plurality of fins by a cutter, and the fin 2 is rolled by a rolling knife to form a T-shaped fin; and then the knife A of the corresponding shape is used. The outer surface 21 of the fin 2 is used. The groove 5 is pressed into the ribs 6, and the rolling and spinning are added: the production material of the heat transfer tube is not increased, the production cost is saved, and the strength and heat transfer area of the heat transfer tube can be increased.
  • the outer diameter of the heat transfer tube body 1 is 25.32 mm, and the tube wall thickness of the heat transfer section is 0.635 mm.
  • the width of the bottom 31 of the small hole 3 formed by the T-shaped fin 2 is 0.406 mm, and the depth of the small hole 3 is 0.6 mm.
  • the circumferential fin groove 4 is 150, the circumferential fin groove 4 has a width of about 0.1 mm; the T fin 2 outer surface 21 is added with I: two parallel ribs 6, and the rib 6 has a height of 0.08 mm, and the rib 6 The width is 0.2mm; the heat transfer tube body 1 is simultaneously added with I: threaded internal thread 7 of the thread, the number of internal teeth 7 is 52 per inch, the height of the internal tooth 7 is 0.35 mm, the tube body 1 axis clamp The angle is 45° and the apex angle is 30°.
  • the heat transfer tube of the falling film evaporator is preferably made of a copper material, and may also be a copper alloy, an aluminum alloy, a key alloy, a low carbon steel, or a copper-aluminum composite. metallic material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

说明书 降膜蒸发器用强化传热管 技术领域 本发明涉及传热管技术领域, 尤其涉及用丁 ·卧式壳管式降膜蒸发器中的强化传热管。 背景技术 卧式壳管式降膜蒸发器由于冷媒充注^少,换热效率高越来越受到空调、化 I:等换热设备 制造商的 i视。这种降膜蒸发器的:」:作原理为: 换热器内设冇多排水平放置的传热管, 从传热器顶端向 下沿传热管 K:度均匀喷淋制冷剂在顶层传热管上,制冷剂再从上排传热管逐排向下排传热管滴落,传热 管 滴落在其上的制冷剂换热,保证制冷剂蒸发。这种降膜蒸发的换热效果一方面要取决丁传热管和制 冷剂是否能充分换热以及是否能有足够的制冷剂润湿传热管;另一方面还取决 T上排传热管外表面的制 冷剂是否能全部滴落在下排传热管外表面。 闪此, 降膜蒸发器里的传热管对保证蒸发器的换热效果, 以 及对提高降膜蒸发的换热效率有至关重耍的作川。
表面光滑的传热管 ώ丁-传热效率低, 除了特殊场合, 已不被蒸发器、 换热器厂商采川。 如发明专利
ZL200510132040.2《一种溴冷机组冷凝器用铜热交换管》所示, 现有的强化传热管一般是在传热管的外 表面加上翅片,从而增人换热面积以提高传热效率,但是用 τ·降膜蒸发换热器中翅片间容易积存制冷剂 形成弯液面, 不利丁 -制冷剂流动下滴; 同时, 这种翅片的表面是光滑的, 不利丁 -和冷媒充分接触, 并且 缺乏蒸发所需的汽化核心, 闪此传热效果差。
也有厂家采川如发明专利 ZL200510134630.9 《一种屯制冷机组用满液式铜蒸发换热管》 所示结构 的传热管, 这种传热管 ffl然能够有效形成制冷剂蒸发所需耍的汽化核心, 能增强传热效果, 但这种传热 管的翅片的外表面也是光滑的, 不利丁-其和冷媒的充分接触; 另外, 这种传热管不能有效引导制冷剂逐 排向下滴落, 使制冷剂从上到下滴落没有方向性, 容易发生偏移成飞溅而离开传热管, 不能参 换热导 致热量损火使传热效果也不尽理想。
为了适应降膜蒸发特冇的传热方式、 提高降膜蒸发器的换热性能, 需要进一步改进传热管的结构, 提高传热管的传热性能。
发明内容 本发明 S的是提供一种传热效率高、 专门适用于降膜蒸发的强化传热管。
本发明采用以下方案来实现: 降膜蒸发器川强化传热管,包括传热管的管体和设置在管体传热段外 侧的翅片, 所述翅片沿轴向螺旋盘绕在传热管的管体外, 翅片根部 管体相连为一体, 其中所述翅片沿 轴向的横截面形状 τ , 轴向相邻的两个 T 翅片间的轴向间隙形成供制冷剂流通、 蒸发的小孔, 并沿螺旋方向形成环形通道, 所述 T 型翅片沿周向设有将翅片分割开的周向翅槽, 所述翅片的外表面 设有引导制冷剂流动的凹槽或凸起的棱条; 管体内设有内齿。
所述螺旋 T型翅片沿轴向每英寸设有 26〜60个, 螺旋角为 0.3〜2.5°。 所述小孔沿周向分布 60〜160个, 小孔周向间距 0.05〜0.5 mm, 小孔高 0.1〜0.8 mm。 所述设 Τ·翅片外表面的凹槽的旋转方向 螺旋翅片的旋转方向一致,沿周向相连形成环向流道,所 述凹槽的宽度为 0.05〜0.5 mm, 深度为 0.02〜0.2 mm。 所述设于翅片外表面上的棱条 传热管的管体轴线的夹角为 0〜80° 。
所述每个翅片外表面上的棱条数 为一个成两个以上, 所述棱条的高度为 0.01〜0.25 mm, 棱条宽 度为 0.02〜0.4 mm; 两个以上的棱条互相平行, 棱条之间的间距为 0.05〜0.7 mm。
所述 T型翅片外表面的两侧设有引导制冷剂流动的边槽或倒角。
所述管体内的内齿为螺纹状, 该螺纹状内齿截面为类二角形, 内齿的齿顶角范围为 10〜120° 。 所述螺纹内齿 管体的轴线夹角范围为 20〜70° , 内齿条数为 6〜90个, 内齿的高度为 0.1〜0.6 mm。
本发明 Jl省如下益效果: 本发明中 τ 翅片间的间隙所形成的许多小孔, 提供了制冷剂蒸发时的 汽化核心, 从而强化了蒸发换热; 小孔沿螺旋相连形成的环形通道, 利于制冷剂环向流动, 增强制冷剂 蒸发时汽液相的扰动, 从而增强换热效¾; 采用周向翅槽将圆周上的螺旋翅片贯穿分割成分成多个, 使 每个小孔间存在轴向和周向间隙,利丁 ·制冷剂进入小孔,保证制冷剂蒸发时制冷剂能够源源不断的补入, 和制冷剂蒸汽的排出, 使蒸发能持续进行, 形成连续不断的蒸发过程;
传热管翅片外表面设有凹槽, 凹槽沿传热管周向相连形成环向流道,可对传热管外表面多余的制冷 剂进行引流, 避免制冷剂堆积在传热管外表面, 一方面可防 ih管外表面形成过厚的液膜不利于传热, 以 及造成卜'排管缺少制冷剂而发生千蒸; 另一方面,可防止上排制冷剂滴落在过厚的液膜上造成制冷剂飞 溅, 而不能参 换热, 导致传热效率降低; 环向流道还可保证制冷剂下落的方向性, 防止制冷剂滴落时 发生偏移, 不能滴落到止下方的管子上, 从而使下排管缺少制冷剂造成干蒸, 同时使制冷剂不能和传热 管接触造成蒸发器效率降低;
传热管翅片外表面设置有一条成多条平行的斜向棱条,可增加传热管外表面的粗糙度,增加制冷剂 传热管的接触面积, 保证制冷剂能和传热管外表面充分接触, 增强换热效果; 并可延缓部分制冷剂的 卜 '落速度, 保证足够多的制冷剂能够进入传热管小孔, 保证形成连续不断的蒸发过程;
每个 τ型翅片的两侧还可设置边槽成倒角, 一方面可更加有效的引导制冷剂能够进入传热管小孔, 另一方面也可引导多余制冷剂的向下滴落, 并保证滴落的方向性, 从而提高传热效率;
传热管的内腔表面还设有螺纹状的内齿,增人传热管的传热面积,并且能够增强传热管内流体紊流, 使管内换热效率增加。
采用上述结构, 本发明提高了传热管的内、外表面的换热系数, 使管内和管外换热效率得到组合优 化, 提高了传热管的整体传热效率, 适 Γ降膜蒸发器 蒸发器使用。 附图说明 现结合附图对本发明做进 - -步阐述:
m 1是本发明一种降膜蒸发器用强化传热管的剖面示意图;
m 2是本发明降膜蒸发器用强化传热管的传热段/ ¾部的立体结构示意图;
m 3是本发明降膜蒸发器用强化传热管的翅片表面设置凹槽的结构示意图;
m 4是本发明降膜蒸发器用强化传热管的翅片表面设置两个棱条的结构示意图;
m 5是本发明降膜蒸发器 w强化传热管的翅片表面设 s四个棱条的结构示意图;
图 6是本发明降膜蒸发器用强化传热管的翅片上设置边槽及倒角的结构示意图;
图 7是本发明降膜蒸发器 W强化传热管的翅片表面凹槽 ' 棱条组合的结构示意图;
图 8是本发明降膜蒸发器用强化传热管的翅片表面棱条 边槽组合的结构示意图。
具体实施方式 如图 1或 2所示, 本发明包括传热管的管体 1和设置在管体 1传热段外侧的翅片 2, 所述翅片 2沿轴向螺旋盘绕十:传热管的管体 1外, 翅片 2根部 管体 1相连为一体, 其中所述翅片 2 沿轴向的横截面形状呈 τ型,轴向相邻两个 τ 翅片 2间的轴向间隙形成供制冷剂流通、蒸发的小孔 3, 并沿螺旋方向形成环形通道, 所述 T 翅片 2沿周向设有将翅片分割幵的周向翅槽 4 , 所述翅片 2的外 表面设有引导制冷剂流动的凹槽 5成凸起的棱条 6; 管体 1 内设冇内齿 7。
所述螺旋 T ¾翅片 2沿轴向毎英寸设有 26〜60个,螺旋角为 0.3 -2.5°; T 翅片 2的材料厚为 0.1〜 0.4mm。
所述小孔 3沿周向分布 60〜160个, 小孔 3周向间距 0.05〜0.5 mm, 小孔 3高 0.1〜0.8 mm; 所述 小孔 3的大小根据不同制冷剂特性调整, 保证蒸发效率。
如图 3所示, 所述设丁-翅片 2外表面 21的凹槽 5的旋转方向与螺旋翅片 2的旋转方向一致, 沿周 向相连形成环向流道, 所述凹槽 5的宽度为 0.05〜0.5 mm, 深度为 0.02〜0.2 mm ; 凹槽 5的形状为弧 形。
如图 2或 4或 5所示, 所述设丁翅片 2外表面 21上的棱条 6 传热管的管体 1轴线的夹角为 0〜 80 ° 。
所述每个翅片 2外表面 21上的棱条 6数¾¾一个成两个以上,所述棱条 6的高度为 0.01〜0.25 mm , 棱条 6宽度为 0.02-0.4 mm ; 两个以上的棱条 6互相平行, 棱条 6之间的间距为 0.05〜0.7 mm。
如图 6所示, 所述 T ^翅片 2外表面 21的两侧设有引导制冷剂流动的边槽 22或倒角 41。
如图 7或 8所示, 凹槽 5与棱条 6、 棱条 6与边槽 22 可根据实际效果进行不同组合。
如图 1所示, 所述管体 1内的内齿 7为螺纹状, 该螺紋状内齿截面 7为类三角形, 内齿 7的齿顶角 范围为 10〜120° 。
所述螺紋内齿 7 管体 1的轴线夹角范闱为 20〜70 ° , 内齿 7条数为 6〜90个, 内齿 7的高度为 0.1 ~0.6 mm。
本发明传热管可采用专用机床管内管外同时一体化加工完成,其 Λ体加丄过程为:先在传热管管体 1的外表面上加 Γ.出螺旋 ¾的翅片 2; 然后利用切刀将螺旋 的翅片 2分割成多个翅片, 再用滚光刀 Λ 把翅片 2滚压形成 T形翅片;紧接着利用相应形状的刀 A.在翅片 2的外表面 21压制出凹槽 5成棱条 6, 采 滚压和旋压加 Ί :不增加传热管的制造材料,既节约了生产成本,乂能增加传热管的强度和传热面积。
面结合实施例说明本发明降膜蒸发器 HJ强化传热管的具体结构:
具体实施例 1 : 传热管管体 1的外径为 25.32mm , 传热段的管壁厚为 0.635mm。 T型翅片 2所形成 小孔 3底部 31的宽度为 0.406mm, 小孔 3深度为 0.6mm。 周向翅槽 4为 150个, 周向翅槽 4宽度约为 0.1mm; T 翅片 2外表面 21加 I:出两条平行的棱条 6, 棱条 6高度为 0.08mm, 棱条 6宽度为 0.2mm; 传热管管体 1内同时加 I:出螺纹状的螺纹内齿 7,内齿 7条数为每英寸 52个,内齿 7的高度为 0.35 mm, 管体 1轴线夹角为 45°, 齿顶角为 30°。
根据实际测试数据统计, 本发明 现有技术相比, 采用冷媒 R134a时, 降膜蒸发器传热性能提高 15%。
上述本发明实施例中,考虑到金属材料的传热性能和性价比, 降膜蒸发器传热管优选采用铜材料制 成, 也可以选用铜合金、 铝、 钥合金、 低碳钢、 铜铝复合 金属材料。
以上对本发明所提供的一种降膜蒸发器川强化传热管进行了详细介绍,本文中应用了 Λ体个例对本 发明的结构及实施方式迸行了阐述, 以上实施例的说明只是用于帮助理解本发明的方法及其核心思想; 同时,对丁 ·本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处, 综上所述, 本说明书内容不应理解为对本发明的限制。

Claims

权利要求书
1、 降膜蒸发器用强化传热管, 包括传热管的管体和设置在管体传热段外侧的翅片, 所述翅片沿轴 向螺旋盘绕在传热管的管体外, 翅片根部与管体相连为一体, 其特征在丁 ·: 所述翅片沿轴向的横截面形 状 T , 轴向相邻的两个 τ 翅片间的轴向间隙形成供制冷剂流通、 蒸发的小孔, 并沿螺旋方向形 成环形通道, 所述 τ型翅片沿周向设有将翅片分割开的周向翅槽, 所述翅片的外表面设有引导制冷剂 流动的凹槽成凸起的棱条; 管体内设冇内齿。
2、 根据权利要求 1所述的降膜蒸发器用强化传热管, 其特征在丁 ·: 所述螺旋 T型翅片沿轴向每英 寸设有 26〜60个, 螺旋角为 0.3〜2.5°。
3、 根据权利耍求 1所述的降膜蒸发器川强化传热管, 其特征在丁-: 所述小孔沿周向分布 60〜! 60 个, 小孔周向间距 0.05〜0.5 mm, 小孔高 0.1〜0.8 mm。
4、 根据权利耍求 1所述的降膜蒸发器用强化传热管, 其特征在丁-: 所述设 Τ·翅片外表面的凹槽的 旋转方向 螺旋翅片的旋转方向一致, 沿周向相迕形成环向流道, 所述凹梢的宽度为 0.05〜0.5 mm, 深度为 0.02-0.2 mm。
5、 根据权利耍求 1所述的降膜蒸发器用强化传热管, 其特征在丁-: 所述设于翅片外表面上的棱条 与传热管的管体轴线的夹角为 0〜80° 。
6、 根据权利要求 1成 5所述的降膜蒸发器 强化传热管, 其特征在丁 ·: 所述每个翅片外表面上的 棱条数 为一个成两个以上, 所述棱条的高度为 0.01〜0.25 mm, 棱条宽度为 0.02〜0.4 mm; 两个以上 的棱条互相平行, 棱条之间的间距为 0.05〜0.7 mm。
7、 根据权利耍求 1所述的降膜蒸发器用强化传热管, 其特征在丁 ·: 所述 T型翅片外表面的两侧设 有引导制冷剂流动的边槽或倒角。
8、 根据权利耍求 1所述的降膜蒸发器 ffl强化传热管, 其特征在丁 ·: 所述管体内的内齿为螺纹状, 该螺纹状内齿截面为类二角形, 内齿的齿顶角范围为 10〜120° 。
9、 根据权利要求 8所述的降膜蒸发器用强化传热管, 其特征在 Τ·: 所述螺纹内齿与管体的轴线夹 角范围为 20〜70° , 内齿条数为 6〜90个, 内齿的高度为 0.1〜0.6 mm。
PCT/CN2011/000989 2011-04-07 2011-06-15 降膜蒸发器用强化传热管 WO2012135983A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/520,901 US20130220586A1 (en) 2011-04-07 2011-06-15 Strengthened transmission tubes for falling film evaporators

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011100861990A CN102121805A (zh) 2011-04-07 2011-04-07 降膜蒸发器用强化传热管
CN201110086199.0 2011-04-07

Publications (1)

Publication Number Publication Date
WO2012135983A1 true WO2012135983A1 (zh) 2012-10-11

Family

ID=44250414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000989 WO2012135983A1 (zh) 2011-04-07 2011-06-15 降膜蒸发器用强化传热管

Country Status (2)

Country Link
CN (1) CN102121805A (zh)
WO (1) WO2012135983A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160305717A1 (en) * 2014-02-27 2016-10-20 Wieland-Werke Ag Metal heat exchanger tube

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102878725A (zh) * 2011-07-14 2013-01-16 杨伟光 一种肋片管式蒸发器
CN102401598A (zh) * 2011-11-23 2012-04-04 苏州新太铜高效管有限公司 一种降膜蒸发换热管
CN102538545A (zh) * 2012-01-06 2012-07-04 烟台恒辉铜业有限公司 降膜式蒸发管
CN102564195A (zh) * 2012-01-06 2012-07-11 烟台恒辉铜业有限公司 一种降膜式蒸发管
US9097465B2 (en) * 2012-04-21 2015-08-04 Lee Wa Wong Air conditioning system with multiple-effect evaporative condenser
CN103376013A (zh) * 2013-07-29 2013-10-30 无锡方盛换热器制造有限公司 一种换热器用换热管
CN103398618A (zh) * 2013-07-31 2013-11-20 无锡柯马机械有限公司 散热管
CN103398617A (zh) * 2013-07-31 2013-11-20 无锡柯马机械有限公司 高压散热管
CN103471442A (zh) * 2013-09-29 2013-12-25 江苏创兰太阳能空调有限公司 太阳能空调用铜盘管
CN103486894A (zh) * 2013-10-10 2014-01-01 金龙精密铜管集团股份有限公司 降膜蒸发器用强化传热管及其制备方法
CN103791755A (zh) * 2014-02-21 2014-05-14 江苏萃隆精密铜管股份有限公司 蒸发器用的高效换热管
CN104197769B (zh) * 2014-06-09 2015-11-11 赵炜 凸起高度沿高度变化的翅片散热器
CN104374224A (zh) * 2014-11-19 2015-02-25 金龙精密铜管集团股份有限公司 强化蒸发传热管
CN104482794A (zh) * 2014-12-31 2015-04-01 罗红卫 内外翅片换热管
CN105066761B (zh) * 2015-09-22 2017-03-08 烟台恒辉铜业有限公司 一种带窄缝形蒸汽排出口的蒸发管
CN105300155A (zh) * 2015-11-24 2016-02-03 金龙精密铜管集团股份有限公司 蒸发管
CN106323068A (zh) * 2016-08-15 2017-01-11 安徽天祥空调科技有限公司 一种螺旋散热铝管及其制造方法
CN106247839A (zh) * 2016-08-15 2016-12-21 安徽天祥空调科技有限公司 一种空调机组翅片式散热管及其制造方法
CN106642829A (zh) * 2016-11-16 2017-05-10 金龙精密铜管集团股份有限公司 一种吸收式机组用蒸发管及制备方法
CN106767097A (zh) * 2017-01-12 2017-05-31 珠海格力电器股份有限公司 换热管及套管式换热器
CN106931820A (zh) * 2017-05-03 2017-07-07 广州市壹套节能设备有限责任公司 翅片螺旋换热管及换热器
CN109000494A (zh) * 2018-08-16 2018-12-14 上海欧贡制冷科技有限公司 一种蒸发换热管
CN109141094A (zh) * 2018-08-30 2019-01-04 珠海格力电器股份有限公司 换热管及空调器
CN109269337B (zh) * 2018-11-12 2024-01-26 山东恒辉节能技术集团有限公司 一种满液式蒸发器用换热管
CN110195994B (zh) * 2019-04-29 2021-07-13 西安交通大学 一种高效复合双侧强化传热管
CN110425773A (zh) * 2019-07-26 2019-11-08 江苏萃隆精密铜管股份有限公司 一种满液蒸发器用换热管
CN112944993A (zh) * 2019-12-10 2021-06-11 珠海格力电器股份有限公司 换热管、换热器及空调器
CN114061358A (zh) * 2020-08-03 2022-02-18 青岛海尔空调电子有限公司 降膜式蒸发器的换热管

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190663A (ja) * 1993-11-16 1995-07-28 Mitsubishi Heavy Ind Ltd 伝熱管
JPH11148747A (ja) * 1997-11-19 1999-06-02 Kobe Steel Ltd 吸収式冷凍機の蒸発器用伝熱管
JP2001153580A (ja) * 1999-11-29 2001-06-08 Furukawa Electric Co Ltd:The 伝熱管
CN1731066A (zh) * 2005-08-09 2006-02-08 江苏萃隆铜业有限公司 蒸发器热交换管
WO2008118963A1 (en) * 2007-03-27 2008-10-02 Wolverine Tube, Inc. Finned tube with indentations
CN101498532A (zh) * 2008-02-01 2009-08-05 金龙精密铜管集团股份有限公司 一种中央空调用蒸发管

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190663A (ja) * 1993-11-16 1995-07-28 Mitsubishi Heavy Ind Ltd 伝熱管
JPH11148747A (ja) * 1997-11-19 1999-06-02 Kobe Steel Ltd 吸収式冷凍機の蒸発器用伝熱管
JP2001153580A (ja) * 1999-11-29 2001-06-08 Furukawa Electric Co Ltd:The 伝熱管
CN1731066A (zh) * 2005-08-09 2006-02-08 江苏萃隆铜业有限公司 蒸发器热交换管
WO2008118963A1 (en) * 2007-03-27 2008-10-02 Wolverine Tube, Inc. Finned tube with indentations
CN101498532A (zh) * 2008-02-01 2009-08-05 金龙精密铜管集团股份有限公司 一种中央空调用蒸发管

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160305717A1 (en) * 2014-02-27 2016-10-20 Wieland-Werke Ag Metal heat exchanger tube
US11073343B2 (en) * 2014-02-27 2021-07-27 Wieland-Werke Ag Metal heat exchanger tube

Also Published As

Publication number Publication date
CN102121805A (zh) 2011-07-13

Similar Documents

Publication Publication Date Title
WO2012135983A1 (zh) 降膜蒸发器用强化传热管
US20130220586A1 (en) Strengthened transmission tubes for falling film evaporators
WO2019210690A1 (zh) 换热管、换热器及热泵机组
US9909819B2 (en) Evaporator tube having an optimised external structure
JP2002372390A (ja) 流下液膜式蒸発器用伝熱管
US9644900B2 (en) Evaporation heat transfer tube
WO2013181937A1 (zh) 强化冷凝传热管
KR102066878B1 (ko) 중공 공동을 갖는 증발열 전달 튜브
CN102679791A (zh) 用于热交换器的传热管
CN104040281A (zh) 空气调节机
CN105277021A (zh) 同轴缠绕式换热器
JP2012167854A (ja) 流下液膜式蒸発器用伝熱管、及びそれを用いたターボ冷凍機
CN112944985A (zh) 换热管、换热器及空调器
CN209341632U (zh) 一种蒸发管
CN211400926U (zh) 换热管、换热器及空调器
CN211400922U (zh) 换热管、换热器及空调器
JPH0771889A (ja) 流下液膜式蒸発器用伝熱管
CN201803634U (zh) 一种电制冷机组冷凝器用新型高效换热管
CN101315260A (zh) 一种氨/二氧化碳复叠制冷系统中换热器用高效换热管
WO2021114738A1 (zh) 换热管、换热器及空调器
JP2007163120A (ja) 蒸発式熱交換管
CN216245777U (zh) 一种翅片带过渡表面的传热管
CN213931555U (zh) 换热器及冰箱
CN211552565U (zh) 一种降膜换热管、降膜换热器和空调器
CN218936730U (zh) 一种具备自动除霜功能的蒸发器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13520901

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11863222

Country of ref document: EP

Kind code of ref document: A1