WO2012133979A1 - 광 수술장치 및 이의 제어방법 - Google Patents

광 수술장치 및 이의 제어방법 Download PDF

Info

Publication number
WO2012133979A1
WO2012133979A1 PCT/KR2011/002979 KR2011002979W WO2012133979A1 WO 2012133979 A1 WO2012133979 A1 WO 2012133979A1 KR 2011002979 W KR2011002979 W KR 2011002979W WO 2012133979 A1 WO2012133979 A1 WO 2012133979A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
incision
high frequency
hemostatic
energy
Prior art date
Application number
PCT/KR2011/002979
Other languages
English (en)
French (fr)
Inventor
고광천
Original Assignee
주식회사 루트로닉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110026739A external-priority patent/KR101256116B1/ko
Priority claimed from KR1020110027501A external-priority patent/KR101256117B1/ko
Application filed by 주식회사 루트로닉 filed Critical 주식회사 루트로닉
Priority to US14/007,280 priority Critical patent/US20140025051A1/en
Publication of WO2012133979A1 publication Critical patent/WO2012133979A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/201Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser with beam delivery through a hollow tube, e.g. forming an articulated arm ; Hand-pieces therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/148Probes or electrodes therefor having a short, rigid shaft for accessing the inner body transcutaneously, e.g. for neurosurgery or arthroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/203Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser applying laser energy to the outside of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/06Electrodes for high-frequency therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00589Coagulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00601Cutting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00994Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combining two or more different kinds of non-mechanical energy or combining one or more non-mechanical energies with ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1246Generators therefor characterised by the output polarity
    • A61B2018/1253Generators therefor characterised by the output polarity monopolar
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1246Generators therefor characterised by the output polarity
    • A61B2018/126Generators therefor characterised by the output polarity bipolar
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/2065Multiwave; Wavelength mixing, e.g. using four or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/208Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser with multiple treatment beams not sharing a common path, e.g. non-axial or parallel

Definitions

  • the present invention relates to an optical surgical device and a control method thereof, and more particularly, to an optical surgical device and a control method thereof capable of dissecting body tissue and bleeding the incision site.
  • a product using a laser as a light source is generally widely used.
  • Lasers in various wavelengths including Nd: YAG laser, KTP laser, ER: YAG laser, CO2 laser, Ho: YAG laser, ruby laser, and alexandrite laser, are used. It is widely applied to.
  • This optical surgical device for cutting tissue in the body has been used in the procedure of cutting and bleeding the tissue using continuous wave light (continuous wave).
  • continuous wave light continuous wave
  • heat energy accumulates, causing damage to surrounding tissues and taking a long time for treatment.
  • a pulse wave light is used to impact a tissue.
  • the optical surgical device using such a pulse wave has a disadvantage that the hemostasis of the incision is not properly made.
  • An object of the present invention is to provide an optical therapy apparatus and a method of controlling the same, which can easily hemostatically cut an incision in the body while using pulsed wave light.
  • the above-mentioned conventional problem is an incision energy source for generating an incision energy for dissecting a surgical site, a hemostasis for hemostasis for generating hemostatic energy for bleeding the incision surgical source formed separately from the incision energy source.
  • An energy source, a handpiece that is connected to the incision energy source and the hemostatic energy source to provide the incision energy and the hemostatic energy to the surgical site, and the incision energy provided through the handpiece and the It can be solved by an optical surgery device including a control unit for controlling the hemostatic energy.
  • the incision energy source may generate light for incision and the hemostatic energy source may be configured to generate high frequency energy for hemostasis.
  • the incision energy source may generate light for incision
  • the hemostatic energy source may be configured to generate light for hemostasis having a wavelength different from that for the incision light.
  • the high frequency supply unit is provided adjacent to the end of the light irradiation unit, and provides a high frequency energy to the portion to which the light is irradiated, the insulation unit formed to surround a portion of the high frequency supply unit and the light irradiation unit and the high frequency supply unit It provides an optical surgical device comprising a control unit for controlling the driving of.
  • the light irradiator irradiates the incision light for dissecting the tissue in the body, and the high frequency supply unit provides high frequency energy for bleeding the dissected body tissue.
  • the high frequency supply part is composed of a thin pipe formed with a hole along the longitudinal direction, and the light irradiation part is inserted into the hollow.
  • a front end of the high frequency supply part may be configured to further include a monopolar high frequency electrode, and an external electrode having a polarity different from that of the high frequency electrode and attachable to a body surface.
  • a plurality of high frequency electrodes may be formed at a front end of the high frequency supply part, a part of the plurality of high frequency electrodes may be configured to form a positive electrode, and the rest of the plurality of high frequency electrodes to form a negative electrode.
  • the light generation unit for generating the incision light and hemostatic light having a wavelength different from the incision light, the incision site and the hemostatic light generated in the light generation alternatively the surgical site It can also be solved by an optical surgery apparatus and a control method thereof including a light irradiation unit for irradiating to the light, and a control unit for controlling the irradiation pattern of the light irradiated through the light irradiation unit.
  • the controller controls the cut light to be irradiated with a larger output than the hemostatic light through the light irradiator.
  • the cut light and the hemostatic light may be pulsed lights that are periodically interrupted for a predetermined time, and the hemostatic light may be irradiated to be interrupted for a shorter time than the cut light.
  • the cut light may be a pulsed light interrupted at a predetermined period, and the hemostatic light may be configured as continuous light.
  • the tissue is cut using the incision light, and the operation can be performed while the hemostasis is performed by the hemostatic light having a different wavelength from the high frequency energy or the incision light, so that the operation time is shortened and the operator's convenience This has the effect of being improved.
  • FIG. 1 is a perspective view showing an optical surgery apparatus according to a first embodiment of the present invention
  • FIG. 2 is a block diagram schematically showing the configuration of the optical surgery apparatus of Figure 1
  • FIG. 3 is a cross-sectional view showing a cross section of the handpiece of FIG.
  • FIG. 4 is a cross-sectional view showing another example of a cross section of the handpiece of FIG. 1;
  • FIG. 5 is a cross-sectional view showing a state of the procedure using the handpiece of FIG.
  • FIG. 6 is a flowchart illustrating a control method of the optical surgery apparatus of FIG.
  • FIG. 7 is a front view showing the end of the handpiece of the optical surgery apparatus according to a second embodiment of the present invention.
  • FIG. 8 is a cross-sectional view illustrating a procedure of using the handpiece of FIG. 7.
  • FIG. 8 is a cross-sectional view illustrating a procedure of using the handpiece of FIG. 7.
  • FIG. 9 is a perspective view showing an optical surgery apparatus according to a third embodiment of the present invention.
  • FIG. 10 is a block diagram schematically showing the configuration of the optical surgery apparatus of FIG.
  • 11 is a graph showing the pulse shape of the first light and the second light
  • FIG. 12 is a graph illustrating an irradiation pattern of light irradiated from the light irradiation unit of FIG. 11;
  • FIG. 13 is a flowchart illustrating a control method of the optical surgery apparatus of FIG. 9.
  • FIG. 14 is a perspective view showing an optical surgery apparatus according to a fourth embodiment of the present invention.
  • the optical surgery apparatus 10 includes a main body 100, a hand-piece 200, and a cable connecting the main body 100 and the handpiece 200. 300.
  • the main body 100 includes a power supply 101 that can receive power from the outside.
  • a control panel 102 for manipulating the driving contents of the optical surgery apparatus 10 and a display 103 displaying the same to a user may be installed.
  • the inside of the main body 100 is provided with a light generating unit 110 for generating a surgical light and a high frequency generating unit 120 for generating a high frequency energy.
  • the handpiece 200 is configured to be inserted into the body during surgery, and is configured to be gripped by the user.
  • the handpiece 200 is configured to include a gripping portion 200a that can be manipulated by a user and a inserting portion 200b inserted into the body (see FIG. 3). Therefore, the insertion portion 200b is configured in a narrow pipe structure that can be inserted into the body. And, at the end of the handpiece 200 corresponding to the insertion portion 200b, various components necessary for the procedure are installed.
  • the handpiece 200 is formed with a light path through which light travels, and a light irradiation part 210 for irradiating light to the surgical site is formed in front of the handpiece 200.
  • a high frequency supply unit 220 for providing high frequency energy to the surgical site is also provided.
  • various devices capable of performing various procedures may be installed in the cannula, including an imaging device or an illumination device for capturing an image of a surgical site.
  • the cable 300 is formed between the main body 100 and the handpiece 200, and includes a light transmitting unit 310 and a high frequency transmitting unit 320.
  • the light transmitting unit 310 forms a path through which the light generated from the light generating unit 110 of the main body 100 travels to the light irradiating unit 210 of the handpiece 200.
  • the high frequency transmission unit 320 forms a path for providing the high frequency generated by the high frequency generator 120 of the main body 100 to the high frequency supply unit 220 of the handpiece 200.
  • the light transmission unit 310 and the high frequency transmission unit 320 may be installed in one cable 300, it may be configured as a separate member for easy replacement.
  • FIG. 1 may further include a separate external electrode 500 is connected to the high frequency generator 120 of the main body 100.
  • the high frequency supply unit 220 provided in the handpiece 200 is provided with a mono-polar electrode, and the external electrode 500 forms an electrode having a different polarity than the electrode provided in the high frequency supply unit 220. do.
  • the external electrode 500 is formed to be attachable to the outside of the body. Therefore, when high frequency energy is generated from the high frequency generator 120 during surgery, the high frequency energy is provided to the body by the high frequency supply unit 220 located in the body and the external electrode 500 attached to the body.
  • FIG. 2 is a block diagram schematically showing the configuration of the optical surgery apparatus of FIG.
  • the configuration of the optical surgery apparatus according to the present embodiment will be described in more detail with reference to FIG. 2.
  • the light generating unit 100 of the present embodiment is installed inside the main body and is a device for generating light used during surgery.
  • the light generating portion is an energy source for cutting, and the light generated in the light generating portion is used as the cutting light. Therefore, the light generated from the light generating unit is irradiated to the surgical site, to provide the energy for cutting to the surgical site.
  • the light generator 110 may be configured using various kinds of light sources.
  • the light generator 110 includes a laser resonator for oscillating laser light.
  • the light generating unit 110 includes a resonator having Nd: YAG as a medium and generates laser light having a wavelength of 1444 nm.
  • the present invention is not limited to the type or wavelength of the above-described light generating unit, and light having different wavelengths may be used using various media according to the contents to be treated.
  • one side of the light generating unit 110 is provided with a light transmitting unit 310 to form a light path.
  • various optical members are provided between the light generating unit 110 and the light transmitting unit 310 to enter one end of the light transmitting unit 310 when light is generated from the light generating unit 110. Can be designed. And the light traveling along the light transmission unit 310 is irradiated to the surgical site through the light irradiation unit 210 of the handpiece 200.
  • the high frequency generator 120 is installed inside the main body 100 and receives power from the power supply 101 to generate radio frequency electronic energy.
  • the high frequency generator 120 is a hemostatic energy source, and the high frequency energy generated by the high frequency generator is provided to a surgical site and used as hemostatic energy.
  • the high frequency generator 120 is electrically connected to the high frequency supply unit 220 and the external electrode 500 of the handpiece 200, respectively.
  • one of the high frequency supply unit 220 and the external electrode 500 forms a negative electrode and the other forms a negative electrode. Therefore, the high frequency supply unit 220 of the handpiece 200 is positioned in the body, and the circuit is configured as a medium with the external electrode 500 attached to the outside of the body to supply high frequency energy into the body.
  • the high frequency generator 120 may be configured to generate high frequency energy of various frequency bands according to a user's setting, or may be configured to generate high frequency energy having a frequency of a specific band.
  • the optical surgery apparatus includes a control unit 400 for controlling each component.
  • the control unit 400 may be configured according to the contents set by the user through the control panel 102, an operation unit that can be separately operated by the user during the procedure, or a light stored according to a mode stored in the user's own memory (not shown).
  • the driving contents of the surgical device can be controlled.
  • the controller 400 may control a circuit connected to the light generator 110 and the high frequency generator 120 to control the output of the light generated by the light generator 110 and the pulse waveform of the light.
  • the output of the high frequency energy generated by the high frequency generator 120 and the frequency of the high frequency energy may be controlled.
  • the controller 400 may control the time and the irradiation time when the light is irradiated from the light irradiation unit 210, and may control the time and the irradiation time when the high frequency supply unit 220 supplies the high frequency energy. .
  • the controller may control each of them.
  • FIG. 3 is a cross-sectional view of the handpiece of FIG. 1. Referring to Figure 3 will be described in more detail the configuration of the optical surgery apparatus according to this embodiment.
  • the handpiece 200 includes a high frequency supply unit 220 and a light irradiation unit 210.
  • the high frequency supply part 220 forms a body of the handpiece 200, and a hollow is formed inward.
  • the part corresponding to the holding part 200a of the high frequency supply part 220 has a pipe shape having a relatively large diameter.
  • the part corresponding to the insertion part 200b is made in the shape of the narrow pipe of relatively thin diameter.
  • the high frequency supply unit 220 is composed of a metal material having excellent conductivity.
  • the high frequency supply part 220 is configured by using SUS (steel us stainless) material.
  • the high frequency supply unit 220 is connected to the high frequency transmission unit 320 to receive high frequency energy generated by the high frequency generator 120.
  • an insulating material is formed on the outer surface of the high frequency supply unit 220 (see FIG. 3). Therefore, the gripping portion 200a held by the user and the outer surface of the insertion portion 200b coming into contact with a position other than the surgical site of the patient may maintain an insulation state.
  • the outer surface of the high frequency supply unit 220 is coated with a silicon material to form the insulation unit 230.
  • the insulating portion 230 may be formed by using an insulating material such as PTFE (polytetrafluorethlene) resin or parylene resin.
  • the front end of the high frequency supply part 220 protrudes by a predetermined length from the front end of the insulation part 230, and the high frequency electrode 221 is formed.
  • the high frequency electrode 221 is formed to protrude from the front end of the insulating portion by a length of 0.2 mm or more and 10 mm or less. Therefore, high frequency energy can be supplied in a state in which an appropriate contact surface with the internal tissues is secured.
  • the front end of the high frequency supply unit 220 corresponding to the high frequency electrode 221 is rounded.
  • the high frequency electrode 221 may be rounded to form a curved surface to minimize the occurrence of overcurrent.
  • the high frequency supply unit 220 itself is configured to form the body of the handpiece 200, in addition to this can be changed to various structures.
  • the body of the handpiece is provided with a non-conductive material, it may be configured to press the conductive metal inside the body to form a high frequency supply.
  • the front end of the handpiece body is configured to form one high frequency electrode, but this is also merely an example, and various modifications are possible, such that a plurality of high frequency electrodes are arranged along the outer circumferential direction of the hollow.
  • a hollow is formed through the inside of the body of the handpiece 200.
  • the hollow forms a path through which the laser light transmitted from the light transmitting part 310 travels, and is connected to the front end of the handpiece 200 to irradiate the laser light through the light irradiating part 210.
  • the optical fiber 310 forming the light transmitting part 310 is inserted into the hollow of the handpiece to form the light path and the light irradiating part 210. That is, the end of the optical fiber 310 forms the light irradiation unit 210, the light is irradiated to the surgical site through the end of the optical fiber 310.
  • the end portion of the optical fiber 310 is configured to protrude by a predetermined length from the front end of the high frequency electrode.
  • the high frequency electrode 221 it is possible for the high frequency electrode 221 to supply high frequency energy to the site where the optical fiber 310 cuts off the tissue inside the body.
  • the front end of the optical fiber 310 is installed so as to protrude by a length of 1mm or more and 8mm or less than the front end of the high frequency electrode.
  • the optical surgery apparatus is configured to irradiate light through the front end of the optical fiber 310 by inserting the optical fiber 310 in the hollow of the handpiece 200.
  • this is an example, and it is also possible to configure the optical fiber to be detachably installed at the rear end of the handpiece.
  • the optical fiber 310 is connected and installed by a separate fastening member 250 provided at the rear end of the handpiece 200.
  • the optical path of the optical fiber 310 is arranged on the same axis as the hollow of the handpiece 200.
  • the hollow of the handpiece 200 may form a path through which the light transmitted along the optical fiber 310 proceeds, and the light irradiator 210 may be formed at the front end of the hollow to irradiate light.
  • FIG. 5 is a cross-sectional view illustrating a procedure of using the handpiece of FIG. 3.
  • the handpiece 200 of the optical surgery apparatus according to the present embodiment may proceed with incision and hemostasis of the tissue in the state in which the tissue is in close proximity to the tissue in the body.
  • the light is radiated through the light irradiation part 210 formed at the end of the handpiece 200 in a manner of irradiating the light.
  • the cut light irradiated through the light irradiator 210 uses laser light having a wavelength of 1444 nm.
  • the incision light consists of a pulse wave (pulse wave) having a strong output, the incision proceeds in a manner that strikes the body tissue with a strong energy during irradiation.
  • a high frequency energy is supplied using a high frequency electrode 221 formed at a portion adjacent to the light irradiator 210.
  • the high frequency electrode 221 of the handpiece 200 is made of a single electrode, the corresponding external electrode 500 is attached to the outside of the body to form a circuit.
  • the external electrode 500 attached to the body forms a negative electrode.
  • the external electrode 500 forms a positive electrode to form a circuit.
  • the high frequency energy supplied into the body by the high frequency electrode 221 and the external electrode 500 is converted into thermal energy.
  • the heat energy supplied into the body is concentrated at the site where the electrodes 221 and 400 are formed, and the heat energy is adjacent to the high frequency electrode 221 formed with a relatively narrow area than the external electrode 500 having a large surface area. Is intensively supplied.
  • the cut portion can be heated while supplying high frequency energy by the high frequency electrode 221 provided at the position adjacent to the light irradiator 210. . For this reason, blood coagulation may proceed and hemostasis may occur.
  • control unit 400 proceeds to cross the operation of irradiating the light from the light irradiation unit 210 and the operation of the hemostasis at the high frequency electrode 221 or to proceed at the same time, thereby performing the operation while bleeding the position at which the incision is made. Can be.
  • FIG. 6 is a flowchart illustrating a control method of the optical surgery apparatus according to the first embodiment. Hereinafter, a method of controlling the optical surgery apparatus will be described in detail with reference to FIG. 6.
  • the user attaches the external electrode 500 of the optical surgery apparatus to the outside of the patient's body. Then, the handpiece 200 with the optical fiber 310 is inserted into the body, and then placed in the surgical site that requires an incision.
  • the controller 400 drives the light generator 110 to generate the cut light (S10).
  • the cut-off light generated by the light generator 110 is irradiated for a predetermined first time through the light irradiator 210 of the handpiece 200 via the light transmitter 310 of the cable 300 (S20).
  • the incision light is a high-power pulse wave that is irradiated to the tissues of the body and incisions are made in such a way that an energy shock is applied to the tissues.
  • the controller 400 drives the high frequency generator 120 to generate high frequency energy (S30).
  • the high frequency generator 120 may be controlled to start driving in a state in which the incision procedure is temporarily stopped, and may be controlled to continuously generate high frequency energy by continuously driving while the incision is in progress. .
  • the high frequency energy generated by the high frequency generator 120 supplies high frequency energy to the body for a preset second time by the high frequency electrode 221 of the handpiece 200 and the external electrode 500 attached to the outside of the body ( S40). At this time, the high frequency energy is intensively supplied to the incision site adjacent to the high frequency electrode 221, which is converted into thermal energy to bleed the incision site.
  • the control unit 400 may perform the incision procedure for a preset first time and perform the hemostatic procedure corresponding to the incision procedure for a second predetermined time as one sequence, and repeatedly perform the control.
  • the hemostasis procedure may be controlled to proceed at the time when the incision procedure is finished, or may be controlled to proceed with the hemostasis procedure simultaneously with the hemostatic procedure.
  • the controller 400 may perform a step of determining whether the hemostasis of the incision site is completed. Such a determination may be directly made by the user through an image capturing the surgical site, or may be directly determined by the controller through image processing of a sensor (not shown) attached to the handpiece or a captured image.
  • the controller 400 may drive the high frequency generator 120 to additionally supply high frequency energy to a portion where the hemostasis is not performed. Through this additional hemostatic process it is possible to finish the hemostasis.
  • the optical surgery apparatus proceeds with the incision procedure and the hemostatic procedure using different types of energy, the time required for the procedure is shortened, and the patterns of the incision procedure and the hemostatic procedure are variously patterned. By freely controlling, it is possible to proceed with a variety of procedures.
  • the above-described embodiment has been described with respect to the optical surgery apparatus and the control method provided with a single-pole electrode on the handpiece, the corresponding electrode is installed outside.
  • the configuration of the above-described optical surgery apparatus is just an example, and can be changed to various structures of course.
  • FIG. 7 is a front view showing the front end of the handpiece of the optical surgery apparatus according to a second embodiment of the present invention.
  • the handpiece of the above-described embodiment has a structure in which the high frequency supply part is composed of a single SUS member to form a body of the handpiece.
  • the high frequency supply part is press-fitted with a conductive metal in between the non-conductive materials. Form. Therefore, a plurality of high frequency electrodes 221a and 221b are formed at the front end of the high frequency supply part.
  • the high-frequency electrode formed on the handpiece is mono-polar type, whereas in the present embodiment, the bi-polar type high-frequency electrode 221a, 221b) is possible.
  • FIG. 8 is a cross-sectional view illustrating a procedure of using the handpiece of FIG. 7.
  • the high frequency energy is supplied by the high frequency electrode positioned at the surgical site and the external electrode attached to the outside of the body.
  • the positive electrode 221a and the negative electrode positioned at the surgical site ( 221b) supplies high frequency energy. Therefore, it is possible to provide high frequency energy only in the region adjacent to the surgical site.
  • the optical surgery apparatus can be configured in various ways by changing the position of the electrode provided with a high frequency, and in addition to the above-described embodiment can be configured by varying the design in accordance with the treatment site and the treatment details. .
  • tissues in the body are incised using light energy and hemostatic incisions are made using high frequency energy.
  • a plurality of lights having different wavelengths are used to dissect the tissue in the body and to bleed the dissected site.
  • the optical surgery apparatus 1000 includes a body 1100, a handpiece 1200, and a cable 1300 connecting the body 1100 and the handpiece 1200. do.
  • the main body 1100 is provided with a power supply 1101 that can receive power from the outside.
  • a control panel 1102 for manipulating the driving contents of the optical surgery apparatus 1000 and a display 1103 for displaying the same to the user are installed on the outer surface of the main body.
  • a light generator 1104 for generating surgical light is provided inside the main body 1100.
  • the handpiece 1200 has a pointed shape, such as a needle, to be inserted into the body during surgery.
  • the light irradiator 1210 is formed at an end of the handpiece 1200. Therefore, after the end of the handpiece 1200 is placed in the surgical site during surgery, the procedure is performed by irradiating light through the light irradiation unit 1210.
  • a light path through which light can travel to the light irradiator 1210.
  • various devices for effective treatment may be built in the handpiece 1200.
  • an illumination signal line and an image signal line, etc. for capturing an image of a surgical site may be installed in the handpiece.
  • a flow path may be provided inside the handpiece to spray water or air to the surgical site.
  • the handpiece 1200 is formed in a structure that can be gripped so that the user can proceed with the procedure while changing the surgical position.
  • the external portion of the handpiece 1200 may be provided with an operation unit 1220 that allows the user to easily manipulate the treatment (for example, light irradiation or water injection, etc.).
  • various components embedded in the handpiece 1200 and the handpiece 1200 are integrally formed, and configured to operate the drive by an operation unit of the handpiece 1200.
  • each of the various components may be separately provided to be selectively inserted into the handpiece during the procedure to proceed with the procedure.
  • the cable 1300 is formed between the main body 1100 and the handpiece 1200.
  • the cable 1300 may include a light transmitting unit 1310 through which light generated by the light generating unit 1104 of the main body 1100 may travel to the light irradiation unit 1210.
  • the light transmission unit 1310 is composed of one or a plurality of optical fibers.
  • a signal line 1320 for transmitting various signals between the main body 1100 and the handpiece 1200 or a flow path through which a fluid proceeds (not shown) may be installed in the cable.
  • the optical fiber may be connected to one end of the handpiece so that the optical path and the optical axis inside the handpiece 1200 are connected.
  • one end of the optical fiber may be installed through the handpiece 1200 so that the optical fiber end forms the light irradiation part 1210 at the end of the handpiece 1200.
  • FIG. 10 is a block diagram schematically showing the configuration of the optical surgery apparatus of FIG.
  • the configuration of the optical surgery apparatus according to the present embodiment will be described in more detail with reference to FIG. 10.
  • the light generator 1104 includes a first light generator 1110 and a second light generator 1120.
  • the first light generator 1110 and the second light generator 1120 are configured as resonators capable of oscillating a laser. Inside each resonator are laser media 1111 and 1121.
  • the total reflection mirrors 1112 and 1122 and the partial reflection mirrors 1113 and 1123 are provided at both ends of the laser media 1111 and 1121, and various optical members (not shown) may be installed. Therefore, the laser medium oscillates light by an excitation medium such as a flash lamp (not shown), and amplifies while reciprocating inside the resonator to generate laser light.
  • the first light generator 1110 is an energy source for cutting and generates cutting light that can cut tissue inside the body.
  • the first light generator comprises Nd: YAG laser medium and generates first light having a wavelength of 1444 nm.
  • the second light generator 1120 is a hemostatic energy source and generates hemostatic light capable of hemostatically cutting the dissected tissue.
  • the second light generator comprises Nd: YAG laser medium and generates a second light having a wavelength of 1064 nm.
  • the first light generator 1110 and the second light generator 1120 are configured to generate light having different wavelengths. Therefore, since the first light and the second light exhibit different absorption characteristics in the tissues of the body, the first light is used to provide the incision energy to the tissues, and the second light provides the hemostatic energy to the tissues of the body. It can be used for the purpose.
  • the present embodiment is configured to generate light of 1444nm wavelength and light of 1064nm wavelength so that the procedure of incision and hemostasis of the tissue can proceed, but the present invention is not limited to the wavelength of the light, and according to the contents of the procedure Light can be used.
  • the light generator is configured by using a resonator that emits light using a flash lamp.
  • various light generators such as a gas laser or a semiconductor laser may be applied.
  • one side of the light generating unit 1104 is provided with a light transmitting unit 1310 forming a light path.
  • various optical members may be provided between the light generating unit 1104 and the light transmitting unit 1310. Therefore, the first light and the second light generated by the first light generator 1110 and the second light generator 1120 may enter the light transmission unit 1310 and be transmitted to the light irradiation unit 1210.
  • a splitter 1114 is provided at one side of the first light generator 1110 to selectively transmit or reflect light according to wavelength characteristics.
  • the splitter 1114 is configured to transmit the wavelength band of the first light, and the first light generated by the first light generator 1110 passes through the splitter to enter the light transmission unit 1310.
  • a reflection mirror 1124 may be provided at one side of the second light generator 1120. Accordingly, the second light generated by the second light generator 1120 is reflected by the reflection mirror 1124 and enters the splitter 1114. At this time, the splitter 1114 is configured to reflect the wavelength band of the second light, so that the second light is reflected by the splitter 1114 and enters the light transmission unit 1310.
  • the first light and the second light generated by the first and second light generators 1110 and 1120 respectively travel along the same optical path by the splitter 1114. Therefore, the light irradiation unit 1210 may proceed with the procedure by irradiating the first or second light provided along the light transmission unit 1310 to the surgical site.
  • the optical surgery apparatus 1000 includes a control unit 1400 for controlling each component.
  • the controller 1400 may be configured according to the contents set by the user through the control panel 1102, the contents manipulated by the user through the manipulation unit 1220 provided in the handpiece 1200, or a condition stored in an internal memory (not shown).
  • the driving contents of the optical surgery apparatus 1000 may be controlled.
  • the controller 1400 may control operations of the first light generator 1110 and the second light generator 1120.
  • the operation of the light generator proceeds differently depending on the operation of the flash lamp which excites the resonator. Accordingly, the controller 1400 may control whether the light is generated, the output size of the light, the frequency of the light and the pulse waveform of the light by controlling a circuit connected to the flash lamp.
  • the controller 1400 may control the first light and the second light generated by the first light generator 1110 and the second light generator 1120 to be selectively irradiated through the light irradiator.
  • the controller may alternatively drive the first light generator and the second light generator so that only the first light or the second light is irradiated through the light irradiator.
  • the controller 1400 independently controls the shutters 1115 and 1125 provided in the optical paths of the first light and the second light, respectively, so that the first light and the second light may be selectively irradiated.
  • the controller 1400 may control them.
  • FIG. 11 is a graph illustrating pulse shapes of the first light and the second light.
  • the first light and the second light irradiated through the light irradiation unit will be described in detail with reference to FIG. 11.
  • the first light is used as an incision light that can incision the internal tissue during surgery.
  • the first light may be irradiated to provide strong thermal energy to the local site, thereby cutting the corresponding position.
  • the second light is used as a hemostatic light for bleeding the incision site of the body tissue during surgery.
  • the second light can continue to provide relatively small thermal energy to the incision and adjacent sites to bleed the tissue in the body.
  • the first light and the second light each use laser pulsed light that is interrupted at a predetermined cycle.
  • the first light that is the cut light uses a laser light having a wavelength of 1444 nm
  • the second light that is a hemostatic light uses a laser light having a wavelength of 1064 nm.
  • the first light having the wavelength of 1444 nm can cut only the target site while minimizing the thermal effect on the adjacent site during tissue incision.
  • the second light having a wavelength of 1064 nm is easily diffused during light irradiation, the second light can be easily hemostatic by providing thermal energy to an adjacent portion of the irradiated area.
  • the incision light provides high heat energy to the tissues in the body to burn the tissues, or instantaneously provides strong energy to cut the tissues in a manner that strikes the tissues.
  • hemostatic light hemostasis in such a way as to coagulate the blood by providing relatively little heat energy to the tissue in the body. Therefore, as shown in FIG. 11, the output P1 of the first light irradiated from the light irradiation part 1210 is larger than the output P2 of the second light.
  • the first light and the second light have a pulse waveform in the form of being interrupted periodically for a predetermined time as described above.
  • the pulse period of the first light is longer than the pulse period of the second light, and the time t1 when the first light is interrupted in one period is formed longer than the time t2 when the second light is interrupted in one period.
  • the first light which is an incision light, intensively provides energy of a strong output to the tissue in the body to incise the tissue.
  • the time t1 until the n + 1th light is irradiated after the nth light is intermittently exceeded 0.15 ms so that the cut light is repeatedly irradiated and the heat energy is accumulated in the tissue. I can keep it.
  • the hemostatic second light continuously provides energy of relatively weak power to the tissue in the body to hemostatic the tissue. Therefore, in the second light irradiation, the time from the mth light intermittent to the m + 1th light irradiation can be maintained at 0.15 ms or less. In this case, when the interruption time of the second light is 0.15 ms or less, the light of m + 1 is irradiated before the heat energy provided to the tissue in the m-th light irradiation disappears. Therefore, the hemostatic effect is improved, such as irradiating light of continuous waves.
  • the optical surgery apparatus 1000 irradiates a laser light having a frequency of 40 Hz at the output of 1 J when the first light is irradiated, and outputs a laser having a frequency of 100 Hz at the output of 0.2 J when the second light is irradiated.
  • the interruption time per cycle during the first light irradiation exceeds 0.15 ms, and the interruption time per cycle during the second light irradiation is 0.15 ms or less.
  • these outputs and frequencies are just examples, and of course, they can be used according to the surgical site and the treatment purpose.
  • the second light generator 1120 of the present embodiment is configured using a resonator for generating a pulsed laser, but the present invention is not limited thereto. It is also possible to configure the second light generator using a light source that generates continuous light so as to have excellent hemostatic performance of the second light. In addition, since low-power light is used during hemostasis, it is also possible to configure a second light generator using a laser diode that generates a low-power laser.
  • FIG. 12 is a graph illustrating an irradiation pattern of light emitted from the light irradiation part of FIG. 11.
  • the optical surgery apparatus 1000 may control a pattern of light irradiated through the light irradiator 1210 by the control of the controller 1400.
  • the first light may be irradiated for a first time, and then the second light may be irradiated for a second time in one sequence to irradiate the light (see FIG. 12). See A-mode of FIG. 12)
  • the controller 1400 drives the first light generator 1110 and opens the shutter 1115 provided on the optical path of the first light to irradiate the first light. At this time, the shutter 1125 on the optical path of the second light is closed to block the second light from being irradiated through the light irradiator 1210.
  • the controller drives the second light generator 1120 and opens the shutter 1125 provided on the light path of the second light to irradiate the second light through the light irradiator 1210.
  • the shutter 1115 provided on the path of the first light is closed to block the first light from being irradiated.
  • the tissue may be dissected while the first light is irradiated during surgery, and then the operation of bleeding the incision site by irradiating the second light may be performed in one sequence.
  • the controller 1400 may control the mode in which only the second light is irradiated for a predetermined time so as to proceed with further hemostasis. (See B-mode in FIG. 12). Therefore, the hemostasis is completed by irradiating the second light during the progress of the B mode, and then switched to the A mode to perform an incision and a hemostatic procedure.
  • the first light is irradiated for three pulses and the second light is irradiated for nine pulses in the A mode operation, and the B mode is shown for the second light being irradiated for five pulses.
  • this is merely an example for convenience of explanation, and it is also possible to variously adjust the time for irradiating the first light or the second light for each mode.
  • the light irradiation pattern may be modified in various ways according to the needs of the user.
  • FIG. 13 is a flowchart illustrating a control method of an optical surgery apparatus according to the above-described embodiment.
  • a control method of the optical surgery apparatus will be described in detail with reference to FIG. 13.
  • the user installs the light irradiator 1210 of the optical surgery apparatus 1000 on the handpiece 1200 and inserts it into the body, and then places it at the surgical site that needs to be incision.
  • the controller 1400 drives the first light generator 1110 to generate the first light as the cut light (S110).
  • the incision light generated by the first light generator 1110 proceeds along the light transmission unit 1310 and is irradiated to the treatment site through the light irradiation unit 1210 to dissect the tissue in the body (S120).
  • the shutter 1125 disposed in the optical path of the second light maintains the closed state.
  • the controller 1400 drives the second light generator 1120 to generate a second light that is hemostatic light (S130).
  • the second light generator 1120 may be controlled to start driving when the irradiation of the first light is terminated to generate the second light, and to drive the second light while the first light is irradiated. It may be controlled to generate continuously.
  • the second light generated by the second light generator 1120 travels along the light transmission unit 1310 and is irradiated to the procedure site through the light irradiation unit 1210. (S140).
  • the shutter 1125 disposed on the optical path of the second light is opened, and the shutter 1115 disposed on the optical path of the first light is closed. Therefore, the second light is irradiated through the light irradiator 1210 so that the hemostasis is performed, and a sequence of cutting the tissue is performed (A mode of FIG. 12).
  • a step of determining whether the hemostasis of the incision is completed is performed (S150). This determination may be directly made by the user through an image of photographing the surgical site, and may be directly determined by the controller 1400 through image processing of a sensor (not shown) attached to the handpiece 1200 or the captured image. It is also possible.
  • the controller 1400 controls to additionally irradiate the second light (S160, mode B of FIG. 12). Therefore, hemostasis can be completed through an additional hemostasis process.
  • hemostasis when hemostasis is completed, it may be determined whether there is an additional drive control signal, and when there is a drive control signal, the mode A may be repeatedly performed and terminated when there is no additional control signal.
  • the optical surgery apparatus and its control method capable of performing various procedures using two different wavelengths have been described.
  • the configuration of the above-described surgical device may be changed to various structures as an example, and an example of the changed embodiment will be described below.
  • FIG. 14 is a block diagram schematically showing the structure of an optical surgery apparatus according to a fourth embodiment of the present invention.
  • a splitter and a reflecting mirror are provided at one side of the first light generator and the second light generator.
  • the first light and the second light are configured to share one light path, and are configured to be irradiated through the same light irradiation part.
  • the light transmitting unit 1310 of the present exemplary embodiment includes a first path 1311 through which the first light travels and a second path 1312 through which the second light travels.
  • the first path and the second path are composed of separate optical fibers.
  • the first path 1311 is formed at one side of the first light generator 1110 to form a path for the first light to travel to the light irradiator 1210, and the second path 1312 is the second light generator 1120. It is formed on one side of to form a path that the second light proceeds.
  • the light irradiator 1210 also includes a first irradiator 1211 and a second irradiator 1212.
  • the first irradiator 1211 irradiates the first light traveling through the first path 1311
  • the second irradiator 1212 irradiates the second light traveling through the second path 1312.
  • the optical surgery apparatus may be configured to separately provide a path through which the first light and the second light travel and a position to be irradiated, unlike the above-described third embodiment, and various other design changes are possible.
  • the optical surgery apparatus for irradiating two types of light is configured, but it is also possible to configure so as to selectively irradiate three or more lights.

Abstract

본 발명은 광 수술장치 및 이의 제어방법에 관한 것으로, 수술 부위를 절개하기 위한 절개용 에너지를 발생시키는 절개용 에너지 소스, 상기 절개용 에너지 소스와 별도로 형성되어 상기 절개된 수술 부위를 지혈시키기 위한 지혈용 에너지를 발생시키는 지혈용 에너지 소스, 상기 절개용 에너지 소스 및 상기 지혈용 에너지 소스와 연결되어 상기 절개용 에너지 및 상기 지혈용 에너지를 상기 수술 부위로 제공하는 핸드피스 그리고, 상기 핸드피스를 통해 제공되는 상기 절개용 에너지 및 상기 지혈용 에너지를 제어하기 위한 제어부;를 포함하는 광 수술장치 및 이의 제어방법을 제공한다.

Description

광 수술장치 및 이의 제어방법
본 발명은 광 수술장치 및 이의 제어방법에 관한 것으로, 상세하게는 체내 조직을 절개하고 절개 부위를 지혈할 수 있는 광 수술장치 및 이의 제어방법에 관한 것이다.
최근 들어 인체에 광을 조사하여, 인체 조직에 흡수되는 광 에너지에 의해 조직의 상태를 변화시키는 방식으로 치료하는 기술이 널리 적용되고 있다.
이러한 광을 이용한 치료 장치는 일반적으로 레이저를 광원으로 이용하는 제품이 널리 이용되고 있다. Nd:YAG 레이저, KTP 레이저, ER:YAG 레이저, CO2 레이저, Ho:YAG 레이저, 루비레이저, 알렉산드라이트 레이저 등 다양한 파장대역의 레이저가 이용되고 있으며, 제모, 피부 관리 등의 용도부터 외과 및 내과 수술 장치에까지 널리 적용되고 있다.
특히 체내 조직에 대한 시술을 진행하는 내과 수술은 기존의 각종 수술 도구를 체내로 삽입하여 시술하는 대신에, 광 파이버를 통하여 레이저를 조사하는 광 수술장치로 대체되고 있으며, 레이저의 에너지를 이용하여 체내 조직을 절개하는 등의 다양한 시술에 적용하고 있다.
이러한 체내 조직을 절개하는 광 수술장치는 연속파(continuous wave) 광을 이용하여 조직을 절개하고 지혈하는 시술에 사용되었다. 다만, 연속파 광원 사용시 열에너지가 누적되어 주변 조직이 손상되는 문제와 시술 시간이 장시간 소요되는 문제가 제기되었고, 이를 해결하기 위해 최근에는 펄스파(pulse wave) 광을 이용하여 조직에 충격을 가하는 방식으로 체내 조직을 절개하는 기술을 적용하고 있다. 그러나, 이러한 펄스파를 이용하는 광 수술장치의 경우 절개된 부분의 지혈이 제대로 이루어지지 않는 단점이 있다.
본 발명은 펄스파 광을 이용하여 체내 조직을 절개하면서, 절개된 부분을 용이하게 지혈시킬 수 있는 광 치료장치 및 이의 제어방법을 제공하기 위함이다.
전술한 종래의 문제점은, 수술 부위를 절개하기 위한 절개용 에너지를 발생시키는 절개용 에너지 소스, 상기 절개용 에너지 소스와 별도로 형성되어 상기 절개된 수술 부위를 지혈시키기 위한 지혈용 에너지를 발생시키는 지혈용 에너지 소스, 상기 절개용 에너지 소스 및 상기 지혈용 에너지 소스와 연결되어 상기 절개용 에너지 및 상기 지혈용 에너지를 상기 수술 부위로 제공하는 핸드피스 그리고, 상기 핸드피스를 통해 제공되는 상기 절개용 에너지 및 상기 지혈용 에너지를 제어하기 위한 제어부;를 포함하는 광 수술장치에 의해 해결될 수 있다.
여기서, 절개용 에너지 소스는 절개용 광을 발생시키고, 지혈용 에너지 소스는 지혈용 고주파 에너지를 발생시키도록 구성될 수 있다.
또는, 절개용 에너지 소스는 절개용 광을 발생시키고, 지혈용 에너지 소스는 상기 절개용 광과 상이한 파장을 갖는 지혈용 광을 발생시키도록 구성될 수 있다.
일 실시예로서, 상기 광 조사부의 단부에 인접 설치되고, 상기 광이 조사되는 부분으로 고주파 에너지를 제공하는 고주파 공급부, 상기 고주파 공급부의 일부를 감싸도록 형성되는 절연부 및 상기 광 조사부와 상기 고주파 공급부의 구동을 제어하는 제어부를 포함하는 광 수술장치를 제공한다.
상기 광 조사부는 체내 조직을 절개하는 절개광을 조사하고, 상기 고주파 공급부는 상기 절개된 체내 조직을 지혈하는 고주파 에너지를 제공한다.
상기 고주파 공급부는 길이 방향으로 따라 중공(hole)이 형성된 세경 파이프(thin pipe)로 구성되고, 상기 광 조사부는 상기 중공에 삽입 설치된다.
상기 고주파 공급부의 전단에는 단극(mono-polar)의 고주파 전극이 형성되고, 상기 고주파 전극과 다른 극성을 갖고 신체 표면에 부착 가능하게 형성되는 외부 전극을 더 포함하도록 구성될 수 있다.
또는, 상기 고주파 공급부의 전단에는 다수개의 고주파 전극이 형성되고, 상기 다수개의 고주파 전극의 일부는 양 전극을 형성하고, 나머지는 음 전극을 형성하도록 구성될 수 있다.
한편, 전술한 종래기술의 문제점은, 절개광 및 상기 절개광과 상이한 파장을 갖는 지혈광을 발생시키는 광 발생부, 상기 광 발생부에서 발생되는 상기 절개광 및 상기 지혈광을 택일적으로 수술 부위에 조사하는 광 조사부 그리고, 상기 광 조사부를 통해 조사되는 광의 조사 패턴을 제어하는 제어부를 포함하는 광 수술장치 및 이의 제어방법에 의해서도 해결될 수 있다.
상기 제어부는 상기 광 조사부를 통해 상기 절개광이 상기 지혈광 보다 큰 출력으로 조사되도록 제어한다.
여기서, 상기 절개광 및 상기 지혈광은 각각 기 설정된 시간 동안 주기적으로 단속되는 펄스광이고, 상기 지혈광은 상기 절개광 보다 짧은 시간 동안 단속되도록 조사될 수 있다.
또는, 상기 절개광은 기 설정된 주기로 단속되는 펄스광이고, 상기 지혈광은 연속광으로 구성될 수도 있다.
본 발명에 의할 경우, 절개광을 이용하여 체내 조직을 절개하고, 고주파 에너지 또는 절개광과 상이한 파장을 갖는 지혈광에 의해 지혈이 이루어지면서 수술을 진행할 수 있어, 수술 시간이 단축되고 수술자의 편의성이 개선되는 효과가 있다.
도 1은 본 발명의 제1 실시예에 따른 광 수술장치를 도시한 사시도,
도 2는 도 1의 광 수술장치의 구성을 개략적으로 도시한 블럭도,
도 3은 도 1의 핸드피스의 단면을 도시한 단면도,
도 4은 도 1의 핸드피스의 단면의 다른 예를 도시한 단면도,
도 5는 도 3의 핸드피스를 이용하여 시술하는 모습을 도시한 단면도,
도 6는 도 1의 광 수술장치의 제어방법을 도시한 순서도,
도 7은 본 발명의 제2 실시예에 따른 광 수술장치의 핸드피스 단부를 도시한 정면도,
도 8은 도 7의 핸드피스를 이용하여 시술하는 모습을 도시한 단면도,
도 9은 본 발명의 제3 실시예에 따른 광 수술장치를 도시한 사시도,
도 10는 도 9의 광 수술장치의 구성을 개략적으로 도시한 블럭도,
도 11은 제1 광 및 제2 광의 펄스 형태를 도시한 그래프,
도 12는 도 11의 광 조사부에서 조사되는 광의 조사 패턴을 도시한 그래프,
도 13는 도 9의 광 수술장치의 제어방법을 도시한 순서도이고,
도 14은 본 발명의 제4 실시예에 따른 광 수술장치를 도시한 사시도이다.
이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 구체적으로 설명하도록 한다. 아래의 실시예에서는 본 발명을 명확하게 설명할 수 있도록 구성요소를 단순화시킨 것으로, 본 발명이 이에 한정되는 것은 아니고 이 이외에도 각종 장치를 부가하거나 또는 응용 설계하여 실시할 수 있음은 물론이다.
본 실시예에 대한 설명은 첨부된 도면을 기준으로 한다. 그리고, 각 구성요소의 상호간의 위치 및 연결 관계를 설명하는 표현은, 해당 구성요소가 직접적으로 연결되는 경우 뿐 아니라 간접적으로 연결되는 경우를 모두 포함한다.
도 1은 본 발명의 제1 실시예에 따른 광 수술장치를 도시한 사시도이다. 도 1에 도시된 바와 같이, 본 실시예에 따른 광 수술장치(10)는 본체(100), 핸드피스(hand-piece)(200) 및 본체(100)와 핸드피스(200)를 연결하는 케이블(300)을 포함한다.
본체(100)는 외부로부터 전원을 공급받을 수 있는 전원 공급부(101)를 구비한다. 본체의 외면에는 광 수술장치(10)의 구동 내용을 조작하기 위한 컨트롤 패널(control panel)(102) 및 이를 사용자에게 표시하는 디스플레이(display)(103)가 설치될 수 있다. 그리고 본체(100)의 내측에는 수술용 광을 발생시키는 광 발생부(110) 및 고주파 에너지를 발생시키는 고주파 발생부(120)가 구비된다.
핸드피스(200)는 수술시 신체 내부로 삽입되어 시술이 이루어지는 구성으로서, 사용자가 파지할 수 있는 구조로 구성된다. 핸드피스(200)는 사용자가 손에 쥔 상태로 조작할 수 있는 파지부(200a) 및 신체 내부로 삽입되는 삽입부(200b)를 포함하여 구성된다(도 3 참조). 따라서 삽입부(200b)는 체내 삽입이 가능할 정도의 세경 파이프 구조로 구성된다. 그리고, 삽입부(200b)에 해당하는 핸드피스(200)의 단부에는 시술에 필요한 각종 구성요소가 설치된다.
구체적으로, 핸드피스(200)는 내측에 광이 진행하는 광 경로가 형성되며, 핸드피스(200) 전단에는 수술 부위로 광을 조사하는 광 조사부(210)가 형성된다. 그리고, 수술 부위로 고주파 에너지를 제공하기 위한 고주파 공급부(220) 또한 구비된다.
본 실시예에서는 별도로 구비하고 있지 않으나, 수술 부위의 영상을 촬영하기 위한 촬영 장치 또는 조명 장치를 비롯하여, 다양한 시술을 진행할 수 있는 각종 장치들을 케뉼라에 설치하는 것도 가능하다.
한편, 케이블(300)은 본체(100)와 핸드피스(200) 사이에 형성되며, 광 전달부(310) 및 고주파 전달부(320)를 포함하여 구성된다. 광 전달부(310)는 본체(100)의 광 발생부(110)에서 발생되는 광이 핸드피스(200)의 광 조사부(210)로 진행하는 경로를 형성한다. 고주파 전달부(320)는 본체(100)의 고주파 발생부(120)에서 발생된 고주파를 핸드피스(200)의 고주파 공급부(220)로 제공하는 경로를 형성한다.
이러한 광 전달부(310) 및 고주파 전달부(320)는 하나의 케이블(300)에 내장 설치되는 것도 가능하며, 교체가 용이하도록 각각 별개의 부재로 구성되는 것도 가능하다.
한편, 도 1에 도시된 바와 같이 본체(100)의 고주파 발생부(120)와 연결되는 별도의 외부 전극(500)을 더 포함할 수 있다. 핸드피스(200)에 구비된 고주파 공급부(220)는 단극(mono-polar) 형태의 전극이 설치되며, 외부 전극(500)은 고주파 공급부(220)에 구비되는 전극과 상이한 극성을 갖는 전극을 형성한다. 외부 전극(500)은 신체의 외부에 부착 가능하게 형성된다. 따라서 수술 중 고주파 발생부(120)로부터 고주파 에너지가 발생되면, 체내에 위치한 고주파 공급부(220)와 체외에 부착되는 외부 전극(500)에 의해 신체로 고주파 에너지가 제공된다.
도 2는 도 1의 광 수술장치의 구성을 개략적으로 도시한 블럭도이다. 이하에서는 도 2를 참조하여 본 실시예에 따른 광 수술장치의 구성을 더욱 구체적으로 설명하도록 한다.
본 실시예의 광 발생부(100)는 본체의 내부에 설치되며, 수술시 사용되는 광을 발생하는 장치이다. 본 실시예에서는 광 발생부가 절개용 에너지 소스이며, 광 발생부에서 발생되는 광을 절개용 광으로 이용된다. 따라서, 광 발생부에서 발생되는 광은 수술 부위로 조사되어, 수술 부위에 절개용 에너지를 제공한다.
광 발생부(110)는 다양한 종류의 광원을 이용하여 구성할 수 있고, 본 실시예에서는 일 예로서, 도 2에 도시된 바와 같이 레이저 광을 발진시키는 레이저 공진기를 구비한다. 구체적으로, 광 발생부(110)는 Nd:YAG를 매질로 하는 공진기를 구비하며, 1444nm 파장의 레이저 광을 발생시킨다. 다만, 본 발명이 전술한 광 발생부의 매질 종류 또는 파장에 한정되는 것은 아니며, 시술하고자 하는 내용에 따라 다양한 매질을 이용하여 상이한 파장의 광을 이용할 수 있다.
한편, 광 발생부(110)의 일측에는 광 경로를 형성하는 광 전달부(310)가 설치된다. 별도로 도시되지는 않았으나, 광 발생부(110)와 광 전달부(310) 사이에는 각종 광학 부재가 구비되어, 광 발생부(110)에서 광이 발생되면 광 전달부(310)의 일단으로 진입하도록 설계될 수 있다. 그리고 광 전달부(310)를 따라 진행하는 광은 핸드피스(200)의 광 조사부(210)를 통해 수술 부위로 조사된다.
한편, 고주파 발생부(120)는 본체(100)의 내부에 설치되며, 전원 공급부(101)로부터 전원을 공급받아 고주파 에너지(radio frequency electronic energy)를 발생시킨다. 본 실시예에서는 고주파 발생부(120)가 지혈용 에너지 소스이며, 고주파 발생부에서 발생되는 고주파 에너지는 수술 부위에 제공되어 지혈용 에너지로서 이용된다.
구체적으로, 고주파 발생부(120)는 핸드피스(200)의 고주파 공급부(220) 및 외부 전극(500)과 각각 전기적으로 연결된다. 여기서, 고주파 공급부(220) 및 외부 전극(500) 중 하나가 양 전극 나머지 하나가 음 전극을 형성한다. 따라서, 핸드피스(200)의 고주파 공급부(220)가 체내에 위치하고, 외부 전극(500)이 신체 외부에 부착된 상태에서 신체를 매질로 회로를 구성하여 체내에 고주파 에너지를 공급한다.
이때 고주파 발생부(120)는 사용자의 설정에 따라 다양한 주파수 대역의 고주파 에너지를 발생하도록 구성할 수도 있고, 특정 대역의 주파수를 갖는 고주파 에너지를 발생하도록 구성할 수도 있다.
한편, 본 실시예에 따른 광 수술장치는 각각의 구성요소를 제어하는 제어부(400)를 포함한다. 제어부(400)는 컨트롤 패널(102)을 통해 사용자가 설정한 내용, 시술 중 사용자가 별도로 조작할 수 있는 조작부를 구비하는 경우 사용자가 조작하는 내용 또는 자체 메모리(미도시)에 저장된 모드에 따라 광 수술장치의 구동 내용을 제어할 수 있다.
예를 들어, 제어부(400)는 광 발생부(110) 및 고주파 발생부(120)와 연결되는 회로를 제어함으로써, 광 발생부(110)에서 발생되는 광의 출력, 광의 펄스 파형을 제어할 수 있고, 고주파 발생부(120)에서 발생되는 고주파 에너지의 출력, 고주파 에너지의 주파수 등을 제어할 수 있다. 또한, 제어부(400)는 광 조사부(210)에서 광이 조사되는 시기 및 조사 시간 등을 제어하는 것도 가능하며, 고주파 공급부(220)에서 고주파 에너지를 공급하는 시기 및 조사 시간 등을 제어할 수도 있다.
이 이외에도, 도면에는 도시되지 않았으나 광 수술장치가 별도의 촬영부 또는 조명부 등을 구비하는 경우, 제어부가 이들을 각각 제어하는 것도 가능하다.
도 3은 도 1의 핸드피스의 단면을 도시한 단면도이다. 도 3을 참조하여 본 실시예에 따른 광 수술장치의 구성을 더욱 구체적으로 설명하도록 한다.
전술한 바와 같이, 핸드피스(200)는 고주파 공급부(220)와 광 조사부(210)를 포함한다.
도 3에 도시된 바와 같이 고주파 공급부(220)는 핸드피스(200)의 몸체를 형성하며, 내측으로 중공이 형성된다. 고주파 공급부(220) 중 파지부(200a)에 해당하는 부분은 상대적으로 굵은 직경을 갖는 파이프 형상으로 이루어진다. 그리고 삽입부(200b)에 해당하는 부분은 상대적으로 얇은 직경의 세경 파이프 형상으로 이루어진다.
고주파 공급부(220)는 도전성이 우수한 금속 재질로 구성된다. 본 실시예에서는 SUS(steel us stainless) 재질을 이용하여 고주파 공급부(220)를 구성한다. 그리고, 고주파 공급부(220)는 고주파 전달부(320)와 연결되어 고주파 발생부(120)에서 발생되는 고주파 에너지를 전달받는다.
이때, 고주파 공급부(220)의 외면에는 절연성 물질이 형성된다(도 3 참조). 따라서, 사용자가 손으로 쥐는 파지부(200a) 및 환자의 수술 부위 이외의 위치와 접촉하게 되는 삽입부(200b) 외면은 절연 상태를 유지할 수 있다.
본 실시예에서는 고주파 공급부(220)의 외면을 실리콘(silicon) 재질로 코팅하여 절연부(230)를 형성한다. 이 이외에도, PTFE(polytetrafluorethlene) 수지, 파릴렌(parylene) 수지 등의 절연성 물질을 이용하여 절연부(230)를 형성하는 것도 가능하다.
고주파 공급부(220)의 전단은 절연부(230)의 전단으로부터 소정 길이만큼 돌출 형성되어, 고주파 전극(221)이 형성된다. 본 실시예에서는 고주파 전극(221)이 절연부의 전단으로부터 0.2mm 이상 10mm 이하의 길이만큼 돌출 형성된다. 따라서, 체내 조직과 적정한 접촉면을 확보한 상태에서 고주파 에너지를 공급할 수 있다.
이때, 고주파 전극(221)에 해당하는 고주파 공급부(220)의 전단은 라운딩 가공한다. 실험 결과, 고주파 전극(221)에 모서리 구조가 형성되는 경우, 모서리 부분으로 과전류가 흐르는 현상이 발생하는 것을 관찰하였다. 따라서, 과전류의 발생을 최소화할 수 있도록, 고주파 전극(221)은 라운딩 가공하여 만곡면으로 형성할 수 있다.
본 실시예에서는 고주파 공급부(220) 자체가 핸드피스(200)의 몸체를 형성하도록 구성되었으나, 이 이외에도 다양한 구조로 변경 실시할 수 있다. 예를 들어, 핸드피스의 몸체는 비도전성 물질로 구비하되, 몸체 내측에 도전성 금속을 압입하여 고주파 공급부를 형성하도록 구성할 수 있다.
또한, 본 실시예에서는 핸드피스 몸체 전단이 하나의 고주파 전극을 형성하도록 구성하였으나, 이 또한 일예에 불과하며 중공의 외주 방향을 따라 다수개의 고주파 전극이 배치되도록 구성하는 등 다양한 변형이 가능하다.
한편, 도 3에 도시된 바와 같이 핸드피스(200)의 몸체 내측에는 중공이 관통 형성된다. 이러한 중공은 광 전달부(310)에서 전달되는 레이저 광이 진행하는 경로를 형성하며, 핸드피스(200) 전단까지 연결되어 광 조사부(210)를 통해 레이저 광이 조사된다.
본 실시예에서는 광 전달부(310)를 형성하는 광 파이버(310)를 핸드피스의 중공에 삽입시켜 광 경로 및 광 조사부(210)를 형성한다. 즉, 광 파이버(310)의 단부가 광 조사부(210)를 형성하며, 광 파이버(310) 단부를 통해 수술 부위로 광이 조사된다.
여기서 광 파이버(310) 단부는 고주파 전극의 전단보다 소정 길이만큼 돌출되도록 구성한다. 이 경우, 광 파이버(310)가 선두에서 체내 조직을 절개하면서 절개된 부위로 고주파 전극(221)이 고주파 에너지를 공급하는 것이 가능하다. 본 실시예에서는 광 파이버(310)전단이 고주파 전극의 전단보다 1mm 이상 8mm 이하의 길이만큼 돌출되도록 설치된다.
전술한 바와 같이, 본 실시예에 따른 광 수술장치는 핸드피스(200)의 중공에 광 파이버(310)를 삽입 설치하여 광 파이버(310) 전단을 통해 광을 조사하도록 구성한다. 다만, 이는 일 예이며, 광 파이버를 핸드피스의 후단에 착탈 가능하게 설치하도록 구성하는 것도 가능하다.
도 4에 도시된 바와 같이, 광 파이버(310)는 핸드피스(200) 후단에 구비되는 별도의 체결 부재(250)에 의해 연결 설치된다. 광 파이버(310)의 광 경로는 핸드피스(200)의 중공과 동일한 축으로 배치된다. 여기서, 핸드피스(200)의 중공은 광 파이버(310)를 따라 전달되는 광이 진행하는 경로를 형성하고, 중공의 전단에 광 조사부(210)가 형성되어 광을 조사하도록 구성할 수 있다.
도 5는 도 3의 핸드피스를 이용하여 시술하는 모습을 도시한 단면도이다. 도 5에 도시된 바와 같이, 본 실시예에 따른 광 수술장치의 핸드피스(200)는 체내 조직에 근접시킨 상태에서 체내 조직의 절개와 지혈을 진행하는 것이 가능하다.
절개 시술의 경우, 핸드피스(200) 단부에 형성되는 광 조사부(210)를 통해 절개광을 조사하는 방식으로 진행된다. 전술한 바와 같이, 광 조사부(210)를 통해 조사되는 절개광은 1444nm 파장의 레이저 광을 이용한다. 이때 절개광은 강한 출력을 갖는 펄스파(pulse wave)로 이루어져, 조사시 체내 조직을 강한 에너지로 타격하는 방식으로 절개를 진행한다.
지혈 시술의 경우, 광 조사부(210)와 인접한 부분에 형성된 고주파 전극(221)을 이용하여 고주파 에너지를 공급하는 방식으로 이루어진다. 전술한 바와 같이, 핸드피스(200)의 고주파 전극(221)은 단극 전극으로 이루어지며, 이에 상응하는 외부 전극(500)이 신체 외부에 부착되어 회로를 구성한다.
도 5에 도시된 바와 같이 고주파 전극(221)이 (+) 전극을 형성하는 경우, 체외에 부착된 외부 전극(500)이 (-) 전극을 형성한다. 또는 이와 반대로 고주파 전극(221)이 (-) 전극을 형성하는 경우, 외부 전극(500)은 (+) 전극을 형성하여 회로를 구성한다.
이와 같이 고주파 전극(221)과 외부 전극(500)에 의해 체내로 공급되는 고주파 에너지는 열에너지로 전환된다. 이때, 체내에 공급되는 열 에너지는 전극(221, 400)이 형성된 부위에 집중되고, 넓은 표면적을 갖는 외부 전극(500)보다 상대적으로 좁은 면적으로 형성되는 고주파 전극(221)과 인접한 부분에 열 에너지가 집중적으로 공급된다.
따라서, 광 조사부(210)로부터 절개광이 조사되어 체내 조직이 절개되면, 광 조사부(210)와 인접한 위치에 구비되는 고주파 전극(221)에 의해 고주파 에너지를 공급하면서 절개된 부위를 가열할 수 있다. 이로 인해, 혈액의 응고가 진행되어 지혈이 이루어질 수 있다.
이때, 제어부(400)는 광 조사부(210)에서 광을 조사하는 동작과 고주파 전극(221)에서 지혈이 이루어지는 동작을 교차하여 진행하거나 동시에 진행되도록 제어함으로써, 절개가 이루어지는 위치를 지혈하면서 수술을 진행할 수 있다.
도 6은 제1 실시예에 따른 광 수술장치의 제어방법을 도시한 순서도이다. 이하에서는 도 6을 참조하여 광 수술장치의 제어방법에 대해 구체적으로 설명하도록 한다.
우선, 사용자는 광 수술장치의 외부 전극(500)을 환자의 신체 외부에 부착시킨다. 그리고, 광 파이버(310)가 설치된 핸드피스(200)를 신체 내부에 삽입한 후, 절개가 필요한 수술 부위에 위치시킨다.
그리고 제어부(400)는 광 발생부(110)를 구동하여 절개광을 발생시킨다(S10). 광 발생부(110)에서 발생되는 절개광은 케이블(300)의 광 전달부(310)를 경유하여 핸드피스(200)의 광 조사부(210)를 통해 기설정된 제1 시간 동안 조사된다(S20). 절개광은 고출력 펄스파로서 체내 조직에 조사되면서 체내 조직에 에너지 충격을 가하는 방식으로 절개를 진행한다.
한편, 제어부(400)는 고주파 발생부(120)를 구동하여 고주파 에너지를 발생시킨다(S30). 이때, 고주파 발생부(120)는 절개 시술이 일시적으로 중단된 상태에서 구동을 시작하도록 제어되는 것도 가능하고, 절개가 진행되는 동안에도 지속적으로 구동하여 고주파 에너지를 지속적으로 발생시키도록 제어될 수 있다.
고주파 발생부(120)에서 발생된 고주파 에너지는 핸드피스(200)의 고주파 전극(221) 및 신체 외부에 부착된 외부 전극(500)에 의해 기 설정된 제2 시간 동안 신체에 고주파 에너지를 공급한다(S40). 이때, 고주파 전극(221)과 인접한 절개 부위로 고주파 에너지가 집중적으로 공급되고, 이는 열 에너지로 전환되면서 절개된 부위를 지혈한다.
제어부(400)는 기 설정된 제1 시간동안 절개 시술을 진행하고, 이러한 절개 시술에 대응하는 지혈 시술을 기 설정된 제2 시간동안 진행하는 것을 하나의 시퀀스로 하여 ,반복 수행하도록 제어하는 것이 가능하다. 이때, 지혈 시술은 절개 시술이 종료된 시점에서 진행되도록 제어될 수도 있으며, 지혈 시술과 동시에 지혈 시술을 진행하도록 제어될 수도 있다.
추가적으로 제어부(400)는 절개된 부위의 지혈이 완료되었는지 여부를 판단하는 단계를 수행할 수 있다. 이러한 판단은 수술 부위를 촹여하는 영상을 통해 사용자가 직접 판단하는 것도 가능하며, 핸드피스에 부착된 센서(미도시) 또는 촬영된 영상의 이미지 처리를 통해 제어부에서 직접 판단할 수도 있다.
이때, 지혈이 완료되지 않은 것으로 판단되는 경우 제어부(400)는 고주파 발생부(120)를 구동하여 지혈이 이루어지지 않은 부분으로 고주파 에너지를 추가적으로 공급할 수 있다. 이러한 추가적인 지혈 과정을 통해 지혈을 마무리하는 것이 가능하다.
이처럼, 본 실시예에 따른 광 수술장치는 서로 상이한 종류의 에너지를 이용하여 절개 시술 및 지혈 시술을 진행하므로, 시술에 소요되는 시간이 단축될 뿐 아니라, 다양한 패턴으로 절개 시술 및 지혈 시술의 패턴을 자유롭게 제어함으로써 다양한 방식의 시술을 진행하는 것이 가능하다.
다만, 전술한 실시예에서는 핸드피스에 단극 전극이 구비되고, 이에 상응하는 전극이 외부에 설치되는 광 수술장치 및 이의 제어방법에 대하여 설명하였다. 다만, 전술한 광 수술장치의 구성은 일 예에 불과하며, 다양한 구조로 변경 실시할 수 있음은 물론이다.
도 7은 본 발명의 제2 실시예에 따른 광 수술장치의 핸드피스 전단을 도시한 정면도이다.
전술한 실시예의 핸드피스는 고주파 공급부가 하나의 SUS 부재로 구성되어 핸드피스의 몸체를 형성하는 구조인 것에 비해, 본 실시예에서는 비도전성 재질의 몸체 사이에 도전성 금속이 압입된 형태로 고주파 공급부를 형성한다. 따라서, 고주파 공급부의 전단에는 다수개의 고주파 전극(221a, 221b)이 형성된다.
이중 일부는 (+) 전극(221a)이고, 나머지는 (-) 전극(221b)을 형성할 수 있다. 즉, 전술한 실시예에서는 핸드피스에 형성된 고주파 전극이 단극 타입(mono-polar type)이었던 것에 비해, 본 실시예에서는 핸드피스(200)에 양극 타입(bi-polar type)의 고주파 전극(221a, 221b)을 구비하는 것이 가능하다.
도 8은 도 7의 핸드피스를 이용하여 시술하는 모습을 도시한 단면도이다. 전술한 실시예에서는 수술 부위에 위치한 고주파 전극과 신체 외부에 부착된 외부 전극에 의해 고주파 에너지가 공급되는 것에 비해, 본 실시예에서는 수술 부위에 위치한 (+) 전극(221a) 및 (-) 전극(221b)에 의해 고주파 에너지가 공급된다. 따라서, 수술 부위와 인접한 부분에 한해 고주파 에너지를 제공하는 것이 가능하다.
이처럼, 본 발명에 따른 광 수술장치는 고주파가 제공되는 전극의 위치를 달리하여 다양하게 구성하는 것이 가능하며, 전술한 실시예 이외에도 시술 부위 및 시술 내용에 따라 다양하게 설계를 변경하여 구성할 수 있다.
전술한 제1, 제2 실시예에서는 광 에너지를 이용하여 체내 조직을 절개하고, 고주파 에너지를 이용하여 절개된 부위를 지혈시킨다. 이에 비해, 후술할 실시예에서는 서로 다른 파장을 갖는 복수개의 광을 이용하여 체내 조직을 절개하고, 절개된 부위를 지혈시키도록 구성된다.
이하에서는, 도 9 내지 도 14를 참조하여 본 발명의 제3 실시예 및 제4 실시예에 따른 광 수술장치를 구체적으로 설명한다.
도 9는 본 발명의 제3 실시예에 따른 광 수술장치를 도시한 사시도이다. 도 9에 도시된 바와 같이, 본 실시예에 따른 광 수술장치(1000)는 본체(1100), 핸드피스(1200) 및 본체(1100)와 핸드피스(1200)를 연결하는 케이블(1300)을 포함한다.
본체(1100)는 외부로부터 전원을 공급받을 수 있는 전원 공급부(1101)가 구비된다. 본체의 외면에는 광 수술장치(1000)의 구동 내용을 조작하기 위한 컨트롤 패널(control panel)(1102) 및 이를 사용자에게 표시하는 디스플레이(display)(1103)가 설치된다. 그리고 본체(1100)의 내측에는 수술용 광을 발생시키는 광 발생부(1104)가 구비된다.
핸드피스(1200)는 수술시 신체 내측으로 삽입 가능하도록 단부가 바늘과 같이 뾰족한 형상을 갖는다. 광 조사부(1210)는 핸드피스(1200)의 단부에 형성된다. 따라서, 수술시 핸드피스(1200) 단부를 수술 부위에 위치한 후, 광 조사부(1210)를 통해 광을 조사하여 시술을 진행한다.
핸드피스(1200) 내측에는 광 조사부(1210)로 광이 진행할 수 있는 광 경로가 형성된다. 이 이외에도 효과적인 시술을 위한 각종 장치가 핸드피스(1200)에 내장 설치될 수 있다. 구체적으로 도면에 도시하지는 않았으나, 수술 부위의 영상을 촬영하기 위한 조명 신호선 및 영상 신호선 등이 핸드피스에 내장 설치될 수 있다. 또는, 수술 부위로 물 또는 공기를 분사할 수 있도록 핸드피스 내측에 유로가 구비될 수 있다.
이러한 핸드피스(1200)는 사용자가 수술 위치를 변경하면서 시술을 진행할 수 있도록 파지할 수 있는 구조로 형성된다. 핸드피스(1200)의 외부에는 사용자가 시술 내용(예를 들어, 광 조사 또는 물 분사 등)을 간단하게 조작할 수 있는 조작부(1220)가 구비될 수 있다.
본 실시예에서는 핸드피스(1200) 및 핸드피스(1200)에 내장되는 각종 구성들이 일체로 형성되며, 핸드피스(1200)의 조작부에 의해 구동을 조작할 수 있도록 구성한다. 다만, 이는 일 예에 불과하며, 이외에도 각종 구성요소를 각각 별도로 구비하여 수술 중에 핸드피스에 선택적으로 삽입하여 시술을 진행하도록 구성되는 것도 가능하다.
한편, 케이블(1300)은 본체(1100)와 핸드피스(1200) 사이에 형성된다. 케이블(1300)은 본체(1100)의 광 발생부(1104)에서 발생되는 광이 광 조사부(1210)로 진행할 수 있는 광 전달부(1310)를 포함한다. 이러한 광 전달부(1310)는 하나 또는 다수개의 광 파이버(fiber)로 구성된다. 이 이외에도, 본체(1100)와 핸드피스(1200) 사이에서 각종 신호를 전달하는 신호선(1320) 또는 유체가 진행하는 유로 등(미도시)이 케이블에 내장 설치될 수 있다.
이때, 광 파이버는 핸드피스(1200) 내측의 광 경로와 광축이 연결되도록 핸드피스의 일단에 연결 설치되는 것도 가능하다. 또는 광 파이버의 일단이 핸드피스(1200)를 관통하여 설치되어, 광 파이버 단부가 핸드피스(1200)의 단부에서 광 조사부(1210)를 형성하도록 구성하는 것도 가능하다.
도 10은 도 9의 광 수술장치의 구성을 개략적으로 도시한 블럭도이다. 이하에서는 도 10을 참조하여 본 실시예에 따른 광 수술장치의 구성에 대해 더욱 구체적으로 설명하도록 한다.
도 10에 도시된 바와 같이 광 발생부(1104)는 제1 광 발생기(1110) 및 제2 광 발생기(1120)를 포함한다. 제1 광 발생기(1110) 및 제2 광 발생기(1120)는 레이저를 발진할 수 있는 공진기로 구성된다. 각각의 공진기 내부에는 레이저 매질(1111, 1121)이 구비된다. 레이저 매질(1111, 1121) 양단에는 전반사 거울(1112, 1122), 부분 반사 거울(1113, 1123)가 구비되며, 이 이외에도 각종 광학부재(미도시)가 설치될 수 있다. 따라서, 플래시 램프(미도시) 등의 여기 매체에 의해 레이저 매질은 광을 발진하고, 공진기 내측을 왕복하면서 증폭되어 레이저 광을 발생시킨다.
본 실시예에서 제1 광 발생기(1110)는 절개용 에너지 소스로서, 체내 조직을 절개할 수 있는 절개용 광을 발생시킨다. 구체적으로, 제1 광 발생기는 Nd:YAG를 레이저 매질을 포함하며, 1444nm의 파장을 갖는 제1 광을 발생시킨다.
이에 비해, 제2 광 발생기(1120)는 지혈용 에너지 소스로서, 절개된 조직을 지혈시킬 수 있는 지혈용 광을 발생시킨다. 구체적으로, 제2 광 발생기는 Nd:YAG를 레이저 매질을 포함하며, 1064nm의 파장을 갖는 제2 광을 발생시킨다.
이처럼 제1 광 발생기(1110) 및 제2 광 발생기(1120)는 서로 다른 파장의 광을 발생시키도록 구성된다. 따라서, 제1 광 및 제2 광은 체내 조직에서 서로 다른 흡수 특성을 나타내기 때문에, 제1 광은 체내 조직에 절개용 에너지를 제공하는 용도로, 제2 광은 체내 조직에 지혈용 에너지를 제공하는 용도로 사용될 수 있다.
본 실시예에서는 조직을 절개하고 이를 지혈하는 시술을 진행할 수 있도록 1444nm 파장의 광과 1064nm 파장의 광을 발생시키도록 구성하였으나, 본 발명이 이러한 광의 파장에 한정되는 것은 아니며 시술 내용에 따라 다양한 파장의 광을 이용할 수 있다.
나아가, 본 실시예에서는 플래시 램프를 이용하여 광을 발진하는 공진기를 이용하여 광 발생기를 구성하였으나, 이 이외에도 기체 레이저 또는 반도체 레이저 등의 다양한 광 발생기를 적용할 수 있음은 물론이다.
한편, 광 발생부(1104)의 일측에는 광 경로를 형성하는 광 전달부(1310)가 설치된다. 그리고 광 발생부(1104)와 광 전달부(1310) 사이에는 각종 광학 부재가 구비될 수 있다. 따라서, 제1 광 발생기(1110)와 제2 광 발생기(1120)에서 발생되는 제1 광 및 제2 광은 광 전달부(1310)로 진입하여 광 조사부(1210)로 전달될 수 있다.
구체적으로, 도 10에 도시된 바와 같이 제1 광 발생기(1110)의 일측에는 파장 특성에 따라 광을 선택적으로 투과시키거나 반사시키는 스플리터(1114)가 구비된다. 이때, 스플리터(1114)는 제1 광의 파장 대역은 투과시키도록 구성되어, 제1 광 발생기(1110)에서 발생된 제1 광은 스플리터를 투과하여 광 전달부(1310)로 진입한다.
이에 비해, 제2 광 발생기(1120)의 일측에는 반사거울(1124)이 구비될 수 있다. 따라서, 제2 광 발생기(1120)에서 발생된 제2 광은 반사거울(1124)에 의해 반사되어 스플리터(1114)로 진입한다. 이때, 스플리터(1114)는 제2 광의 파장 대역은 반사하도록 구성되어, 제2 광은 스플리터(1114)에 의해 반사되어 광 전달부(1310)로 진입한다.
즉, 제1, 제2 광 발생기(1110, 1120)에서 각각 발생되는 제1 광 및 제2 광은 스플리터(1114)에 의해 동일한 광 경로를 따라 진행한다. 따라서, 광 조사부(1210)는 광 전달부(1310)를 따라 제공되는 제1 광 또는 제2 광을 수술 부위로 조사하여 시술을 진행할 수 있다.
한편, 본 실시예에 따른 광 수술장치(1000)는 각각의 구성요소를 제어하는 제어부(1400)를 포함한다. 제어부(1400)는 컨트롤 패널(1102)을 통해 사용자가 설정한 내용, 핸드피스(1200)에 구비되는 조작부(1220)를 통해 사용자가 조작하는 내용 또는 자체 메모리(미도시) 등에 저장되는 조건 등에 따라 광 수술장치(1000)의 구동 내용을 제어할 수 있다.
일 예로, 제어부(1400)는 제1 광 발생기(1110) 및 제2 광 발생기(1120)의 동작을 제어할 수 있다. 광 발생기의 동작은 공진기를 여기시키는 플래쉬 램프의 동작에 따라 상이하게 진행된다. 따라서, 제어부(1400)는 플래쉬 램프와 연결된 회로를 제어함으로써, 광 발생 여부, 광의 출력 크기, 광의 주파수 및 광의 펄스 파형 등을 제어할 수 있다.
또한, 제어부(1400)는 제1 광 발생기(1110) 및 제2 광 발생기(1120)에서 발생되는 제1 광 및 제2 광이 광 조사부를 통해 택일적으로 조사되도록 제어할 수 있다. 예를 들어, 제어부는 제1 광 발생기 및 제2 광 발생기를 택일적으로 구동함으로써 광 조사부를 통해 제1 광 또는 제2 광만이 조사되도록 제어할 수 있다. 또는, 제1 광 및 제2 광의 광경로에 각각 설치되는 셔터(1115, 1125)를 제어부(1400)가 독립적으로 제어함으로써, 제1 광 및 제2 광을 택일적으로 조사할 수 있다.
이 이외에도, 광 수술장치(1000)가 별도의 촬영부, 조명부 또는 유체 분사부 등을 구비하는 경우, 제어부(1400)가 이들을 각각 제어할 수 있다.
도 11은 제1 광 및 제2 광의 펄스 형태를 도시한 그래프이다. 이하에서는, 도 11을 참조하여 광 조사부를 통해 조사되는 제1 광 및 제2 광에 대해 구체적으로 설명한다.
전술한 바와 같이, 제1 광은 수술시 체내 조직을 절개시킬 수 있는 절개광으로 이용된다. 제1 광은 체내 조직에 조사되면 국소 부위에 강한 열에너지를 제공하도록 조사됨으로써 해당 위치를 절개할 수 있다.
한편, 제2 광은 수술시 체내 조직의 절개된 부위를 지혈시키기 위한 지혈광으로 이용된다. 제2 광은 절개된 부위 및 이와 인접한 부위까지 상대적으로 작은 열 에너지를 지속적으로 제공하여 체내 조직을 지혈할 수 있다.
구체적으로, 제1 광 및 제2 광은 각각 소정의 주기로 단속되는 레이저 펄스 광을 이용한다. 여기서 절개광인 제1 광은 전술한 바와 같이 1444nm의 파장을 갖는 레이저 광을 이용하고, 지혈광인 제2 광은 1064nm 파장을 갖는 레이저 광을 이용한다.
1064nm 파장의 광은 체내 조직에 조사되면, 광 조사가 이루어지지 않은 부분까지도 열 확산이 용이하게 이루어지는 것에 비해, 1444nm 파장의 광은 1064nm 파장의 광에 비해 열이 확산되지 않는 특성이 있다.
따라서, 1444nm 파장을 갖는 제1 광은 조직 절개시 인접한 부위까지 열적으로 영향을 미치는 것을 최소화시키면서, 목표 부위만을 절개할 수 있다. 그리고, 1064nm 파장을 갖는 제2 광은 광 조사시 열 확산이 용이하게 이루어지므로, 조사 부위를 인접한 부분까지 열 에너지를 제공하여 쉽게 지혈이 가능하다.
한편, 절개광은 체내 조직에 높은 열 에너지를 제공하여 조직을 연소시키거나, 순간적으로 강한 에너지를 제공하여 조직을 타격하는 방식으로 조직을 절개한다. 이에 비해, 지혈광은 체내 조직에 상대적으로 작은 열 에너지를 제공하여 혈액을 응고시키는 방식으로 지혈한다. 따라서, 도 11에 도시된 바와 같이, 광 조사부(1210)에서 조사되는 제1 광의 출력(P1)은 제2 광의 출력(P2) 보다 쿠다.
이때, 제1 광 및 제2 광은 전술한 바와 같이 주기적으로 소정 시간동안 단속되는 형태의 펄스 파형을 갖는다. 이때, 제1 광의 펄스 주기는 제2 광의 펄스 주기보다 길고, 제1 광이 한 주기에서 단속되는 시간(t1)은 제2 광이 한 주기에서 단속되는 시간(t2)보다 길게 형성된다.
절개광인 제1 광은 체내 조직에 강한 출력의 에너지를 집중적으로 제공하여 조직을 절개한다. 이때, 절개광이 반복적으로 조사되면서 열 에너지가 체내 조직에 누적되는 것을 방지할 수 있도록, n번째 광이 단속된 후 n+1번째 광이 조사되기까지의 시간(t1)은 0.15㎲를 초과하도록 유지할 수 있다.
이에 비해, 지혈광인 제2 광은 상대적으로 약한 출력의 에너지를 체내 조직에 연속적으로 제공하여 조직을 지혈시킨다. 따라서, 제2 광 조사시, m번째 광이 단속된 후 m+1번째 광이 조사되기까지의 시간은 0.15㎲ 이하로 유지할 수 있다. 이 경우, 제2 광이 단속 시간이 0.15㎲ 이하이면, m번째 광 조사시 체내 조직에 제공된 열 에너지가 사라지기 전에 m+1의 광이 조사된다. 따라서, 연속파의 광을 조사하는 것과 같이 지혈 효과가 개선된다.
본 실시예에 따른 광 수술장치(1000)는 제1 광 조사시 40Hz의 주파수를 갖는 레이저 광을 1J의 출력으로 조사하고, 제2 광 조사시에는 100Hz의 주파수를 갖는 레이저를 0.2J의 출력으로 조사한다. 그리고, 제1 광 조사시 한 주기당 단속 시간은 0.15㎲를 초과하고, 제2 광 조사시 한 주기당 단속 시간은 0.15㎲ 이하로 구성한다. 다만, 이러한 출력 및 주파수는 일 예에 불과하며, 수술 부위 및 치료 목적에 따라 변경하여 사용할 수 있음은 물론이다.
한편, 본 실시예의 제2 광 발생기(1120)는 펄스형 레이저를 발생시키는 공진기를 이용하여 구성하였으나, 본 발명이 이에 한정되는 것은 아니다. 제2 광의 지혈 성능이 우수하도록 연속광을 발생시키는 광원을 이용하여 제2 광 발생기를 구성하는 것도 가능하다. 또한, 지혈시에는 저출력의 광을 이용하므로, 저출력의 레이저를 발생시키는 레이저 다이오드를 이용하여 제2 광 발생기를 구성하는 것도 가능하다.
도 12는 도 11의 광 조사부에서 조사되는 광의 조사 패턴을 도시한 그래프이다.
본 발명에 따른 광 수술장치(1000)는 제어부(1400)의 제어에 의해 광 조사부(1210)를 통해 조사되는 광의 패턴을 제어할 수 있다.
예를 들어, 도 12에 도시된 바와 같이 제1 광을 제1 시간 동안 조사한 후, 제2 광을 제2 시간 동안 조사하는 것을 하나의 시퀀스(sequence)로 하여 광을 조사하도록 제어할 수 있다(도 12의 A-mode 참조)
구체적으로, 제어부(1400)는 제1 광 발생기(1110)를 구동하고 제1 광의 광경로 상에 구비된 셔터(1115)를 개방하여 제1 광을 조사한다. 이때, 제2 광의 광경로 상의 셔터(1125)는 닫혀져 있어, 제2 광이 광 조사부(1210)를 통해 조사되는 것을 차단한다. 제1 광 조사시간이 종료되면, 제어부는 제2 광 발생기(1120)를 구동하고 제2 광의 광경로 상에 구비된 셔터(1125)를 개방하여 광 조사부(1210)를 통해 제2 광을 조사한다. 이때, 제1 광의 경로 상에 구비되는 셔터(1115)가 닫히면서, 제1 광이 조사되는 것을 차단한다. 이 경우, 수술시 제1 광이 조사되는 동안 체내 조직을 절개한 후, 제2 광을 조사하여 절개 부위를 지혈하는 동작을 하나의 시퀀스로 수행할 수 있다.
도 12에서는 이러한 시퀀스가 두 번에 걸쳐 연속적으로 진행하는 것을 도시하고 있다. 그러나 제어부(1400)의 제어에 의해 이러한 시퀀스를 반복하여 연속적으로 진행하는 것도 가능하며, 사용자가 조작부를 조작할 때 마다 한번의 시퀀스를 진행하도록 설계하는 것도 가능하다.
한편, 도 12의 A 모드와 같이 절개 후 연속적으로 지혈을 진행하는 것을 하나의 동작으로 반복하는 경우, 제2 광 조사시 지혈이 제대로 이루어지지 않을 수 있다. 따라서, 제어부(1400)는 추가적인 지혈을 진행할 수 있도록, 제2 광만을 소정 시간 동안 조사하는 모드로 제어할 수도 있다. (도 12의 B-mode 참조). 따라서, B 모드 진행시 제2 광을 조사함으로써 지혈을 완료하고, 다시 A 모드로 전환하여 절개 및 지혈 시술을 진행할 수 있다.
다만, 도 12에서 A 모드 동작시 제1 광이 3번의 펄스 동안 조사되고 제2 광이 9번의 펄스동안 조사되는 것으로 도시하고 있고, B 모드는 제2광이 5번의 펄스동안 조사되는 것으로 도시하고 있다. 다만, 이는 설명의 편의를 위하여 단순 도시한 예에 불과하며, 각각의 모드마다 제1 광 또는 제2 광을 조사하는 시간을 다양하게 조절하는 것도 가능하다.
또한, 도 12에서는 두 가지 제어 모드에 대해서만 설명하였으나, 이 이외에도 사용자의 필요에 따라 다양하게 광의 조사 패턴을 변형하여 사용할 수 있음은 물론이다.
도 13은 전술한 실시예에 따른 광 수술장치의 제어방법을 도시한 순서도이다. 이하에서는 도 13을 참조하여 광 수술장치의 제어방법에 대해 구체적으로 설명하도록 한다.
우선, 사용자가 광 수술장치(1000)의 광 조사부(1210)를 핸드피스(1200)에 설치하여 신체 내부에 삽입한 후, 절개가 필요한 수술 부위에 위치시킨다.
그리고, 제어부(1400)가 제1 광 발생기(1110)를 구동하여 절개광인 제1 광을 발생시킨다(S110). 제1 광 발생기(1110)에서 발생되는 절개광은 광 전달부(1310)를 따라 진행하여 광 조사부(1210)를 통해 시술 부위로 조사하여 체내 조직을 절개한다(S120). 이때, 제2 광의 광 경로에 배치되는 셔터(1125)는 닫힌 상태를 유지한다.
한편, 제어부(1400)는 제2 광 발생기(1120)를 구동하여 지혈광인 제2 광을 발생시킨다(S130). 이때, 제2 광 발생기(1120)는 제1 광을 조사하는 것이 종료되는 시점에서 구동을 시작하여 제2 광을 발생하도록 제어될 수도 있고, 제1 광이 조사되는 동안에도 구동하여 제2 광을 지속으로 발생시키도록 제어될 수도 있다.
제1 광을 조사하는 단계(S120)가 종료되면, 제2 광 발생기(1120)에서 발생된 제2 광은 광 전달부(1310)를 따라 진행하여 광 조사부(1210)를 통해 시술 부위로 조사된다(S140). 이때, 제2 광의 광 경로 상에 배치되는 셔터(1125)는 열리게 되고, 제1 광의 광 경로 상에 배치되는 셔터(1115)는 닫히게 된다. 따라서, 광 조사부(1210)를 통해 제2 광이 조사되어 지혈이 이루어지면서 조직을 절개하는 한 번의 시퀀스가 이루어진다(도 12의 A 모드).
이후, 절개된 부위의 지혈이 완료되었는지 여부를 판단하는 단계를 수행한다(S150). 이러한 판단은 수술 부위를 촬영하는 영상을 통해 사용자가 직접 판단하는 것도 가능하며, 핸드피스(1200)에 부착된 센서(미도시) 또는 촬영된 영상의 이미지 처리를 통해 제어부(1400)에서 직접 판단하는 것도 가능하다.
이때, 지혈이 완료되지 않은 것으로 판단되면 제어부(1400)는 제2 광을 추가적으로 조사하도록 제어한다(S160, 도 12의 B모드). 따라서, 추가적인 지혈 과정을 통해 지혈을 마무리 할 수 있다.
반면, 지혈이 완료된 경우 추가적인 구동 제어신호가 있는지 여부를 판단하여, 구동 제어신호가 있는 경우 A 모드를 반복하여 진행하고 추가적인 제어신호가 없는 경우에 종료할 수 있다.
이상에서는 서로 다른 두 개의 파장을 이용하여 다양한 시술을 진행할 수 있는 광 수술장치 및 이의 제어방법에 대하여 설명하였다. 다만, 전술한 수술장치의 구성은 일 예로서, 다양한 구조로 변경 실시할 수 있으며, 이하에서는 변경된 실시예의 일 예를 설명한다.
도 14에서는 본 발명의 제4 실시예에 따른 광 수술장치의 구조를 개략적으로 도시한 블럭도이다.
전술한 제 3실시예에서는 제1 광 발생기 및 제2 광 발생기의 일측에 스플리터 및 반사 거울을 구비한다. 따라서, 제1 광 및 제2 광이 하나의 광 경로를 공유하도록 구성되며, 동일한 광 조사부를 통해 조사되도록 구성된다.
반면, 도 14에 도시된 바와 같이 본 실시예의 광 전달부(1310)는 제1 광이 진행하는 제1 경로(1311) 및 제2 광이 진행하는 제2 경로(1312)를 포함하여 구성된다. 제1 경로 및 제2 경로는 별개의 광 파이버(fiber)로 구성된다. 제1 경로(1311)는 제1 광 발생기(1110)의 일측에 형성되어 제1 광이 광 조사부(1210)로 진행하는 경로를 형성하고, 제2 경로(1312)는 제2 광 발생기(1120)의 일측에 형성되어 제2 광이 진행하는 경로를 형성한다.
그리고 광 조사부(1210) 또한 제1 조사부(1211) 및 제2 조사부(1212)를 포함한다. 제1 조사부(1211)는 제1 경로(1311)를 통해 진행하는 제1 광을 조사하며, 제2 조사부(1212)는 제2 경로(1312)를 통해 진행하는 제2 광을 조사한다.
이처럼 전술한 제3 실시예와 달리 제1 광 및 제2 광이 진행하는 경로 및 조사되는 위치를 별도로 구비하도록 광 수술 장치를 구성할 수 있으며, 이 이외에도 다양하게 설계 변경이 가능하다.
또한, 본 실시예에서는 두 종류의 광을 조사하는 광 수술 장치를 구성하였으나, 세 개 이상의 광을 선택적으로 조사할 수 있도록 구성하는 것도 가능하다.

Claims (20)

  1. 수술 부위를 절개하기 위한 절개용 에너지를 발생시키는 절개용 에너지 소스;
    상기 절개용 에너지 소스와 별도로 형성되어, 상기 절개된 수술 부위를 지혈시키기 위한 지혈용 에너지를 발생시키는 지혈용 에너지 소스;
    상기 절개용 에너지 소스 및 상기 지혈용 에너지 소스와 연결되어, 상기 절개용 에너지 및 상기 지혈용 에너지를 상기 수술 부위로 제공하는 핸드피스; 그리고,
    상기 핸드피스를 통해 제공되는 상기 절개용 에너지 및 상기 지혈용 에너지를 제어하기 위한 제어부;를 포함하는 광 수술장치.
  2. 제1항에 있어서,
    상기 절개용 에너지 소스는 절개용 광을 발생시키고, 상기 지혈용 에너지 소스는 지혈용 고주파 에너지를 발생시키는 것을 특징으로 하는 광 수술장치.
  3. 제1항에 있어서,
    상기 절개용 에너지 소스는 절개용 광을 발생시키고, 상기 지혈용 에너지 소스는 상기 절개용 광과 상이한 파장을 갖는 지혈용 광을 발생시키는 것을 특징으로 하는 광 수술장치.
  4. 광 발생부에서 발생되는 광을 체내의 수술 부위로 조사하는 광 조사부;
    상기 광 조사부의 단부에 인접 설치되고, 상기 광이 조사되는 부분으로 고주파 에너지를 제공하는 고주파 공급부;
    상기 고주파 공급부의 일부를 감싸도록 형성되는 절연부; 및
    상기 광 조사부와 상기 고주파 공급부의 구동을 제어하는 제어부;를 포함하는 광 수술장치.
  5. 제4항에 있어서,
    상기 광 조사부는 체내 조직을 절개하는 절개광을 조사하고, 상기 고주파 공급부는 상기 절개된 체내 조직을 지혈하는 고주파 에너지를 제공하는 것을 특징으로 하는 광 수술장치.
  6. 제5항에 있어서,
    상기 고주파 공급부는 길이 방향으로 따라 중공(hole)이 형성된 세경 파이프(thin pipe)로 구성되고, 상기 광 조사부는 상기 중공에 삽입 설치되는 것을 특징으로 하는 광 수술장치.
  7. 제5항에 있어서,
    상기 고주파 공급부의 전단에는 단극(mono-polar)의 고주파 전극이 형성되고,
    상기 고주파 전극과 다른 극성을 갖고 신체 표면에 부착 가능하게 형성되는 외부 전극을 더 포함하는 것을 특징으로 하는 광 수술장치.
  8. 제5항에 있어서,
    상기 고주파 공급부의 전단에는 다수개의 고주파 전극이 형성되고, 상기 다수개의 고주파 전극의 일부는 양 전극을 형성하고, 나머지는 음 전극을 형성하는 것을 특징으로 하는 광 수술장치.
  9. 제5항에 있어서,
    상기 고주파 공급부의 전단은 라운딩 가공 처리된 것을 특징으로 하는 광 수술장치.
  10. 제5항에 있어서,
    상기 광 조사부 전단은 상기 고주파 공급부의 전단보다 1cm 이하의 길이만큼 돌출되는 것을 특징으로 하는 광 수술장치.
  11. 광 발생부를 구동하여 체내 조직을 절개할 수 있는 절개광을 발생시키는 단계;
    광 조사부를 통해 상기 절개광을 체내 조직으로 조사하는 단계;
    고주파 발생부를 구동하여 고주파 에너지를 발생시키는 단계; 그리고,
    상기 광 조사부와 인접 설치된 고주파 전극을 통해 상기 체내 조직으로 고주파 에너지를 제공하는 단계를 포함하는 광 수술장치의 제어방법.
  12. 절개광 및 상기 절개광과 상이한 파장을 갖는 지혈광을 발생시키는 광 발생부;
    상기 광 발생부에서 발생되는 상기 절개광 및 상기 지혈광을 택일적으로 수술 부위에 조사하는 광 조사부; 그리고,
    상기 광 조사부를 통해 조사되는 광의 조사 패턴을 제어하는 제어부를 포함하는 광 수술장치.
  13. 제12항에 있어서,
    상기 제어부는 상기 광 조사부를 통해 상기 절개광이 상기 지혈광 보다 큰 출력으로 조사되도록 제어하는 것을 특징으로 하는 광 수술장치.
  14. 제13항에 있어서,
    상기 절개광 및 상기 지혈광은 각각 기 설정된 시간 동안 주기적으로 단속되는 펄스광이고, 상기 지혈광은 상기 절개광 보다 짧은 시간 동안 단속되는 것을 특징으로 하는 광 수술장치.
  15. 제14항에 있어서,
    상기 절개광은 주기적으로 150㎲를 초과하는 시간 동안 단속되는 펄스광이고, 상기 지혈광은 주기적으로 150㎲ 이하의 시간 동안 단속되는 펄스광인 것을 특징으로 하는 광 수술장치.
  16. 제13항에 있어서,
    상기 절개광은 기 설정된 주기로 단속되는 펄스광이고, 상기 지혈광은 연속광인 것을 특징으로 하는 광 수술장치.
  17. 제13항에 있어서,
    상기 절개광은 1444nm의 파장을 갖는 광이고, 상기 지혈광은 1064nm의 파장의 광인 것을 특징으로 하는 광 수술장치.
  18. 제13항에 있어서,
    상기 제어부는 상기 광 조사부를 통해 제1 시간 동안 상기 절개광을 조사한 후, 제2 시간 동안 상기 지혈광을 조사하는 것을 하나의 시퀀스로 하여 광을 조사하도록 제어하는 것을 특징으로 하는 광 수술장치.
  19. 광 발생부를 구동하여 절개용 광을 발생시키는 단계;
    상기 절개용 광을 광 조사부를 통해 수술 부위에 조사하는 단계;
    상기 광 발생부로부터 상기 절개용 광과 상이한 파장을 갖는 지혈용 광을 발생시키는 단계;
    상기 지혈용 광을 상기 광 조사부를 통해 상기 절개용 광이 조사된 상기 수술 부위에 조사하는 단계를 포함하는 광 수술장치의 제어방법.
  20. 제19항에 있어서,
    상기 절개용 광은 상기 지혈용 광보다 더 큰 출력으로 상기 광 조사부를 통해 조사되는 것을 특징으로 하는 광 수술장치의 제어방법.
PCT/KR2011/002979 2011-03-25 2011-04-25 광 수술장치 및 이의 제어방법 WO2012133979A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/007,280 US20140025051A1 (en) 2011-03-25 2011-04-25 Apparatus for optical surgery and method for controlling same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2011-0026739 2011-03-25
KR1020110026739A KR101256116B1 (ko) 2011-03-25 2011-03-25 광 수술 장치 및 이의 제어방법
KR10-2011-0027501 2011-03-28
KR1020110027501A KR101256117B1 (ko) 2011-03-28 2011-03-28 광과 고주파를 이용한 수술 장치 및 이의 제어방법

Publications (1)

Publication Number Publication Date
WO2012133979A1 true WO2012133979A1 (ko) 2012-10-04

Family

ID=46931644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/002979 WO2012133979A1 (ko) 2011-03-25 2011-04-25 광 수술장치 및 이의 제어방법

Country Status (2)

Country Link
US (1) US20140025051A1 (ko)
WO (1) WO2012133979A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6533591B2 (ja) * 2015-03-24 2019-06-19 華為技術有限公司Huawei Technologies Co.,Ltd. アクセスポイント間の自動切り替え方法、及び無線ルーティング装置
CN106390303A (zh) * 2016-12-02 2017-02-15 中国科学院合肥物质科学研究院 980nm与2100nm钬激光双波长治疗仪
CN106390304A (zh) * 2016-12-02 2017-02-15 中国科学院合肥物质科学研究院 980nm与2790nm铒激光双波长治疗仪

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5011483A (en) * 1989-06-26 1991-04-30 Dennis Sleister Combined electrosurgery and laser beam delivery device
JPH09512736A (ja) * 1994-10-11 1997-12-22 ピーエルシー メディカル システムズ インコーポレーテッド 医用レーザ治療装置及び方法
KR20070094267A (ko) * 2006-03-17 2007-09-20 김대진 레이저 수술기
KR20080003243A (ko) * 2006-06-30 2008-01-07 알콘, 인코퍼레이티드 다기능 수술 프로브

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5509916A (en) * 1994-08-12 1996-04-23 Valleylab Inc. Laser-assisted electrosurgery system
US6500174B1 (en) * 1997-07-08 2002-12-31 Atrionix, Inc. Circumferential ablation device assembly and methods of use and manufacture providing an ablative circumferential band along an expandable member
US6059776A (en) * 1997-09-23 2000-05-09 Gatto; Dom L. Electrosurgical laser shears
JP2001352118A (ja) * 2000-06-08 2001-12-21 Cyber Laser Kk 光源装置および同光源装置を使用したレーザ装置
US20020111624A1 (en) * 2001-01-26 2002-08-15 Witt David A. Coagulating electrosurgical instrument with tissue dam
US20050283148A1 (en) * 2004-06-17 2005-12-22 Janssen William M Ablation apparatus and system to limit nerve conduction

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5011483A (en) * 1989-06-26 1991-04-30 Dennis Sleister Combined electrosurgery and laser beam delivery device
JPH09512736A (ja) * 1994-10-11 1997-12-22 ピーエルシー メディカル システムズ インコーポレーテッド 医用レーザ治療装置及び方法
KR20070094267A (ko) * 2006-03-17 2007-09-20 김대진 레이저 수술기
KR20080003243A (ko) * 2006-06-30 2008-01-07 알콘, 인코퍼레이티드 다기능 수술 프로브

Also Published As

Publication number Publication date
US20140025051A1 (en) 2014-01-23

Similar Documents

Publication Publication Date Title
JP6258392B2 (ja) フラッシュ蒸発手術システム
US6579283B1 (en) Apparatus and method employing a single laser for removal of hair, veins and capillaries
KR102367192B1 (ko) 질관 또는 기타 천연 또는 수술적으로 얻어진 구멍을 치료하기 위한 디바이스 및 관련된 장치
WO2014035176A2 (ko) 체내 시술 장치 및 이를 구비한 내시경 장치
US6149645A (en) Apparatus and method employing lasers for removal of hair
WO2012067384A2 (ko) 피부 치료용 광학장치, 이의 제어방법 및 피부 치료 방법
WO2015160064A1 (ko) 산광형 광섬유를 포함하는 프로브, 그 제조 방법 및 응용
US20110073584A1 (en) Portable Optical Ablation System
KR100722248B1 (ko) 다중 펄스 레이저를 이용한 레이저 치료 장치
WO2016126087A2 (ko) 피부내 혈관의 치료 장치
WO2012133979A1 (ko) 광 수술장치 및 이의 제어방법
US6168589B1 (en) Apparatus and method employing a single laser for removal of hair
JP2017051612A (ja) 生物組織の広範囲表面凝固のための切除システム
WO2020050493A1 (ko) 치료용 핸드 피스, 이를 포함하는 치료 장치 및 이를 이용한 치료 방법
CN105120787A (zh) 医用激光设备
WO1999029245A1 (en) Method and apparatus for permanent hair removal
WO2014092430A1 (ko) 광 치료장치, 이의 동작 방법 및 이를 이용한 치료방법
WO2015076597A1 (ko) 피부 질환 치료 방법 및 장치
KR101256116B1 (ko) 광 수술 장치 및 이의 제어방법
JPH04322668A (ja) 治療用レーザ装置
JP2008049054A (ja) レーザ治療装置
KR101256117B1 (ko) 광과 고주파를 이용한 수술 장치 및 이의 제어방법
WO2013051859A2 (ko) 레이저를 이용한 의료장치 및 상기 의료장치에 적용되는 핸드 피스
JP2008167896A (ja) 医療用レーザ装置
JP2000316868A (ja) 内視鏡用処置具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862028

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14007280

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11862028

Country of ref document: EP

Kind code of ref document: A1