WO2012133595A1 - レジストパターン形成方法、感放射線性樹脂組成物及びレジスト膜 - Google Patents

レジストパターン形成方法、感放射線性樹脂組成物及びレジスト膜 Download PDF

Info

Publication number
WO2012133595A1
WO2012133595A1 PCT/JP2012/058265 JP2012058265W WO2012133595A1 WO 2012133595 A1 WO2012133595 A1 WO 2012133595A1 JP 2012058265 W JP2012058265 W JP 2012058265W WO 2012133595 A1 WO2012133595 A1 WO 2012133595A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
fluorine atom
resin composition
radiation
structural unit
Prior art date
Application number
PCT/JP2012/058265
Other languages
English (en)
French (fr)
Inventor
浩光 中島
木村 徹
裕介 浅野
雅史 堀
木村 礼子
一樹 笠原
拡 宮田
吉田 昌史
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2013507703A priority Critical patent/JP5835319B2/ja
Publication of WO2012133595A1 publication Critical patent/WO2012133595A1/ja
Priority to US14/037,659 priority patent/US9046765B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/283Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing one or more carboxylic moiety in the chain, e.g. acetoacetoxyethyl(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/22Esters containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/22Esters containing halogen
    • C08F220/24Esters containing halogen containing perhaloalkyl radicals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0041Photosensitive materials providing an etching agent upon exposure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0046Photosensitive materials with perfluoro compounds, e.g. for dry lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Definitions

  • the present invention relates to a resist pattern forming method, a radiation sensitive resin composition, and a resist film.
  • a resist film is formed on a substrate with a resin composition containing a polymer having an acid-dissociable group, and an excimer laser is applied to the resist film through a mask pattern.
  • a fine resist pattern is formed by exposing short-wavelength radiation such as the above and removing the exposed portion with an alkaline developer.
  • the immersion exposure method has an advantage that the depth of focus is hardly lowered even when the numerical aperture (NA) of the lens is increased, and high resolution can be obtained.
  • the resin composition used in the immersion exposure method prevents degradation of coating film performance and contamination of lenses, etc. by suppressing the elution of acid generators from the resist film to the immersion medium, and the resist film surface is drained. It is required to improve the property, prevent the watermark from remaining, and enable high-speed scanning exposure.
  • Japanese Patent Application Laid-Open No. 2005-352384 proposes a technique for forming an upper layer film (protective film) on a resist film, but requires a separate film formation step, which is complicated. Therefore, a method for increasing the hydrophobicity of the resist film surface has been studied.
  • WO 2007/116664 a resist pattern forming method using a resin composition containing a fluorine-containing polymer having a high hydrophobicity is proposed. Has been.
  • the present invention has been made based on the above-described circumstances, and an object of the present invention is to enable high-speed scanning exposure and to suppress the occurrence of defects such as bridge defects and to form a good resist pattern.
  • a resist pattern forming method is provided.
  • the present inventors have recognized the problems of the prior art as described above, and as a result of intensive studies to solve the problems, after forming a resist film having a surface free energy in a specific range, the resist film is exposed, It has been found that the above problems can be solved by developing, and the present invention has been completed.
  • the resist pattern forming method of the present invention comprises: (1) A step of forming a resist film having a surface free energy of 30 mN / m or more and 40 mN / m or less on a substrate using a radiation sensitive resin composition; (2) a step of exposing the resist film by irradiation through a mask; and (3) a step of developing the exposed resist film.
  • the resist pattern formation method by forming a resist film having the above-described properties, the water repellency of the resist film surface becomes moderate, enabling high-speed scanning exposure and suppressing the occurrence of defects such as bridge defects. Thus, a good resist pattern can be formed.
  • the exposure in the step (2) is preferably performed through an immersion exposure liquid disposed on the resist film.
  • the resist pattern forming method can be suitably used particularly for the immersion exposure method by forming a resist film having the above-described properties, and can improve both the scanning speed and the suppression of defect generation.
  • the radiation-sensitive resin composition preferably contains [A] a fluorine atom-containing polymer and [C] an acid generator.
  • the fluorine atom-containing polymer preferably has a structural unit (a1) containing an alkali-dissociable group. [A] Since the fluorine atom-containing polymer has the structural unit (a1), the affinity with an alkali developer at the time of alkali development can be increased, and as a result, the suppression of defect generation is more effectively improved. Can be made.
  • the fluorine atom-containing polymer preferably has a structural unit (a2) containing an acid dissociable group.
  • a2 By having the structural unit (a2) in the fluorine atom-containing polymer, the solubility of the [A] fluorine atom-containing polymer in the exposed portion in the alkaline developer is improved in the exposed portion of the resist film. Generation
  • the fluorine atom-containing polymer preferably does not have an alkali dissociable group and has a structural unit (a3) containing a fluorine atom. Since the [A] fluorine atom-containing polymer has the structural unit (a3), the water repellency of the resist film and the uneven distribution of the [A] fluorine atom-containing polymer in the resist film can be effectively promoted. As a result, both the scanning speed and the suppression of defect occurrence can be improved more effectively.
  • the radiation sensitive resin composition is [B] Base polymer having an acid dissociable group and having a fluorine atom content smaller than that of [A] fluorine atom-containing polymer (hereinafter also referred to as “[B] polymer”) It is preferable to further contain.
  • [A] fluorine atom-containing polymer and the [B] polymer in the radiation sensitive resin composition, it is possible to further promote uneven distribution of the [A] fluorine atom-containing polymer in the resist film, As a result, it is possible to improve both the scanning speed and the suppression of defect occurrence more effectively.
  • the radiation-sensitive resin composition preferably further contains a [D] acid diffusion controller.
  • the resolution as a photoresist is further improved.
  • the present invention includes a radiation-sensitive resin composition for forming a resist pattern in which the surface free energy of the resist film to be formed is 30 mN / m or more and 40 mN / m or less. Since the surface free energy of the resist film formed from the radiation-sensitive resin composition for forming a resist pattern of the present invention is in the above specific range, the water repellency of the resist film surface becomes appropriate, enabling high-speed scanning exposure, Generation of defects such as bridge defects can be suppressed and a good resist pattern can be formed.
  • the radiation-sensitive resin composition for forming a resist pattern of the present invention has the properties described above, it is suitably used for immersion exposure.
  • the radiation-sensitive resin composition for forming a resist pattern enables high-speed scanning exposure and suppresses the occurrence of defects such as bridge defects and can form a good resist pattern.
  • the present invention includes a resist film formed on a substrate using a radiation-sensitive resin composition for forming a resist pattern and having a surface free energy of 30 mN / m or more and 40 mN / m or less. Since the resist film has a surface free energy in the above specified range, the resist film surface has an appropriate water repellency, enables high-speed scanning exposure, and suppresses the occurrence of defects such as bridge defects. A pattern can be formed.
  • the resist pattern forming method of the present invention it is possible to form a good resist pattern while enabling high-speed scanning exposure and suppressing the occurrence of defects such as bridge defects.
  • the resist pattern forming method of the present invention comprises: (1) A step of forming a resist film having a surface free energy of 30 mN / m or more and 40 mN / m or less on a substrate using a radiation sensitive resin composition (hereinafter also referred to as “step (1)”), (2) a step of exposing the resist film by radiation through a mask (hereinafter also referred to as “step (2)”); and (3) a step of developing the exposed resist film (hereinafter referred to as “step”). (Also referred to as (3)) Have Hereinafter, each process is explained in full detail.
  • the radiation-sensitive resin composition is coated on a substrate such as a silicon wafer, silicon dioxide, or a wafer coated with a lower antireflection film by a coating means such as spin coating, cast coating, or roll coating.
  • a coating means such as spin coating, cast coating, or roll coating.
  • the solvent in the coating film is volatilized by pre-baking to form a resist film having a surface free energy of 30 mN / m or more and 40 mN / m or less.
  • the surface free energy of the formed resist film is preferably 32 mN / m or more and 40 mN / m or less, and more preferably 35 mN / m or more and 40 mN / m or less.
  • the surface free energy of the resist film to be formed can be measured by the following method.
  • the formed film is statically treated in a clean room (room temperature 23 ° C., humidity 45%, normal pressure environment) using a contact angle meter such as “DSA-10” manufactured by KRUS and represented by the following procedure. Calculate the contact angle. First, the wafer stage position is adjusted. Next, the wafer is set on the stage. Inject water into the needle of “DSA-10”. Next, the position of the needle is finely adjusted. Next, water is discharged from the needle to form a 5 ⁇ L water droplet on the wafer, and then the needle is withdrawn from the water droplet. Next, a contact angle is measured and it is set as the static contact angle (degree) of water.
  • a contact angle is measured and it is set as the static contact angle (degree) of water.
  • the same operation is performed using methylene iodide instead of water droplets, and the static contact angle (°) of methylene iodide is obtained. Then, the surface free energy (mN / m) is simply calculated from the obtained static contact angles by using the following method.
  • the surface free energy of water is 72.8 mN / m (dispersion term: 21.8 mN / m, polar term: 51.0 mN / m) and the surface free energy of methylene iodide is 50.8 mN / m (dispersion term: 48). .3 mN / m, polarity term: 2.5 mN / m), two equations are derived, and by solving the binary simultaneous equations, the dispersion term ⁇ dS of the surface free energy of the solid, which is an unknown, and the polarity term ⁇ pS is derived and added together to obtain ⁇ S. Since the surface free energy of the solid surface can be obtained by measuring the contact angle using two types of liquids with known dispersion and polarity terms, the liquid required for contact angle measurement is limited to water and methylene iodide. Not what you want.
  • the radiation sensitive resin composition a radiation sensitive resin composition for forming a resist pattern, which will be described later, can be used.
  • the thickness of the coating film is preferably about 10 nm to 500 nm.
  • the prebaking heating conditions vary depending on the composition of the radiation-sensitive resin composition, but are preferably about 30 to 200 ° C, more preferably 50 to 150 ° C.
  • the prebaking time is usually 180 seconds or less.
  • the lower antireflection film can be formed on the substrate surface using, for example, a lower antireflection film forming agent.
  • Step (2) the resist film formed in the step (1) is exposed by irradiation with radiation (in some cases through an immersion medium such as water). At this time, radiation is irradiated through a mask having a predetermined pattern. As the radiation, irradiation is performed by appropriately selecting from visible light, ultraviolet light, far ultraviolet light, X-rays, charged particle beams and the like according to the line width of the target pattern. Among these, far infrared rays are preferable, ArF excimer laser (wavelength 193 nm) and KrF excimer laser (wavelength 248 nm) are more preferable, and ArF excimer laser is particularly preferable.
  • the exposed photoresist film is subjected to post-exposure baking (PEB), whereby the polymer is deprotected by the acid generated from the acid generator in the exposed portion of the resist film.
  • PEB post-exposure baking
  • the heating condition of PEB is appropriately adjusted depending on the composition of the radiation sensitive resin composition, but is usually 30 ° C. to 200 ° C., preferably 50 ° C. to 170 ° C.
  • the PEB time is typically 180 seconds or less.
  • a predetermined resist pattern is formed by developing the exposed resist film with a developer. After development, it is common to wash with water and dry.
  • the developer include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyldiethylamine, ethyl Dimethylamine, triethanolamine, tetramethylammonium hydroxide, pyrrole, piperidine, choline, 1,8-diazabicyclo- [5.4.0] -7-undecene, 1,5-diazabicyclo- [4.3.0]
  • An alkaline aqueous solution in which at least one alkaline compound such as -5-nonene is dissolved is preferable.
  • an immersion liquid insoluble immersion protective film is formed on the resist film.
  • the immersion protective film include a solvent-peeling protective film that is peeled off by a solvent before the step (3) (see, for example, JP-A-2006-227632), and a developer peeling that peels off simultaneously with the development in the step (3).
  • Any of the mold protective films (for example, see WO2005-069076 and WO2006-035790) may be used. However, from the viewpoint of throughput, it is preferable to use a developer peeling type immersion protective film.
  • the resist pattern thus obtained has an excellent pattern shape and is suitable for fine processing using a lithography technique.
  • the radiation-sensitive resin composition for resist pattern formation of the present invention is a composition in which the surface free energy of the resist film to be formed is 30 mN / m or more and 40 mN / m or less, and can be suitably used for resist pattern formation. In particular, it can be suitably used for immersion exposure.
  • the resist film formed from this radiation sensitive resin composition for resist pattern formation is formed on condition of the following. A film is formed on a substrate (wafer) using the radiation-sensitive resin composition for forming a resist pattern.
  • a radiation-sensitive resin composition is applied at 1,500 rpm on an 8-inch silicon wafer in a clean room with a room temperature of 23 ° C., a humidity of 45%, and an atmospheric pressure using Act8 manufactured by Tokyo Electron. Then, a coating film having a film thickness of 75 nm is formed, and the coating film is formed by performing soft baking (SB) at 120 ° C. for 60 seconds.
  • SB soft baking
  • the radiation-sensitive resin composition for forming a resist pattern of the present invention preferably contains [A] a fluorine atom-containing polymer and [C] an acid generator. Moreover, the said radiation sensitive resin composition for resist pattern formation can contain a [B] polymer and a [D] acid diffusion control body as a suitable component. Furthermore, the said radiation sensitive resin composition for resist pattern formation may contain another arbitrary component, unless the effect of this invention is impaired. Hereinafter, each component will be described in detail.
  • the fluorine atom-containing polymer includes a structural unit (a1) containing an alkali dissociable group, a structural unit (a2) containing an acid dissociable group, and a structural unit containing no fluorine dissociating group and containing a fluorine atom. It is preferable to have at least one structural unit selected from the group consisting of (a3), a structural unit (a4) containing a polar group, and a structural unit (a5) containing a lactone structure, sultone structure or cyclic carbonate structure.
  • the fluorine atom-containing polymer may have other structural units other than the structural units (a1) to (a5).
  • the [A] fluorine atom containing polymer may have 2 or more types of each structural unit. Hereinafter, each structural unit will be described in detail.
  • the fluorine atom content in the fluorine atom-containing polymer is larger than that in the [B] polymer described later.
  • the fluorine atom content in the [A] fluorine atom-containing polymer is usually 5% by mass or more, preferably 5% by mass to 50% by mass, and more preferably 5% by mass to 40% by mass.
  • the fluorine atom content can be measured by 13 C-NMR.
  • the water repellency of the resist film surface can be increased, and there is no need to separately form an upper layer film during immersion exposure. [A] Since the fluorine atom-containing polymer has low surface free energy and water repellency, it is considered that the water repellency of the resist film surface can be improved.
  • the structural unit (a1) is a structural unit containing an alkali dissociable group.
  • Examples of the structural unit (a1) include a structural unit containing a functional group represented by the following formula (x) (hereinafter also referred to as “functional group (x)”).
  • A is an oxygen atom (excluding those directly bonded to an aromatic ring, a carbonyl group and a sulfoxyl group), an imino group, —CO—O— * or —SO 2 —O— *. . ( "*" Represents a bond that binds to R 1.)
  • the functional group (x) is a group in which a hydroxyl group, amino group, carboxy group or sulfoxyl group is modified with an alkali dissociable group.
  • R 1 represents an alkali dissociable group.
  • the “alkali dissociable group” refers to a group that substitutes a hydrogen atom in a polar functional group and dissociates in the presence of an alkali.
  • Such a functional group (x) causes a reaction as shown below with an alkaline aqueous solution to generate a polar group.
  • the alkali-dissociable group is dissociated by hydrolysis during alkali development to generate a polar group, so that the affinity with an alkali developer during alkali development can be increased. Therefore, it is considered that the scanning speed and the suppression of defect occurrence can be improved more effectively.
  • a resist film excellent in pattern shape and the like after development can be formed as compared with the case where a resin that generates a phenolic hydroxyl group during alkali development is used.
  • Such an alkali-dissociable group is not particularly limited as long as it exhibits the above properties, but when A is an oxygen atom or imino group in the above formula (x), it is represented by the following formula (R1-1). What is done.
  • R 8 is a hydrocarbon group having 1 to 10 carbon atoms in which part or all of the hydrogen atoms are substituted with fluorine atoms.
  • Examples of the hydrocarbon group having 1 to 10 carbon atoms in which part or all of the hydrogen atoms represented by R 8 are substituted with fluorine atoms include, for example, the number of carbon atoms in which some or all of the hydrogen atoms are substituted with fluorine atoms.
  • a linear or branched alkyl group having 1 to 10 carbon atoms and an alicyclic hydrocarbon group having 3 to 10 carbon atoms in which some or all of the hydrogen atoms are substituted with fluorine atoms are preferable.
  • alkyl group examples include methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, 2- (2-methylpropyl), 1-pentyl, 2- Pentyl group, 3-pentyl group, 1- (2-methylbutyl) group, 1- (3-methylbutyl) group, 2- (2-methylbutyl) group, 2- (3-methylbutyl) group, neopentyl group, 1-hexyl Group, 2-hexyl group, 3-hexyl group, 1- (2-methylpentyl) group, 1- (3-methylpentyl) group, 1- (4-methylpentyl) group, 2- (2-methylpentyl) Group, 2- (3-methylpentyl) group, 2- (4-methylpentyl) group, 3- (2-methylpentyl) group, 3- (3-methylpentyl) group and the like.
  • Examples of the alicyclic hydrocarbon group include a cyclopentyl group, a cyclopentylmethyl group, a 1- (1-cyclopentylethyl) group, a 1- (2-cyclopentylethyl) group, a cyclohexyl group, a cyclohexylmethyl group, and a 1- (1- (Cyclohexylethyl) group, 1- (2-cyclohexylethyl group), cycloheptyl group, cycloheptylmethyl group, 1- (1-cycloheptylethyl) group, 1- (2-cycloheptylethyl) group, 2-norbornyl group Etc.
  • R 8 is more preferably a linear or branched perfluoroalkyl group having 1 to 10 carbon atoms in which all the hydrogen atoms of the hydrocarbon group are substituted with fluorine atoms, and particularly preferably a trifluoromethyl group. .
  • the functional group (x) can be formed by subjecting alcohol, amine, or carboxylic acid to fluoroacylation by a conventionally known method. Examples thereof include 1) condensation of an alcohol and a fluorocarboxylic acid in the presence of an acid for esterification, and 2) condensation of an alcohol and a fluorocarboxylic acid halide in the presence of a base for esterification.
  • R 1 when A is —CO—O— *, examples of R 1 include those represented by the following formulas (R1-2) to (R1-4).
  • R 10 is a halogen atom or an alkyl group having 1 to 10 carbon atoms, an alkoxyl group, an acyl group, or an acyloxy group.
  • m 1 is an integer of 0 to 5.
  • m 2 is an integer of 0-4. When m 1 or m 2 is 2 or more, the plurality of R 10 may be the same or different from each other.
  • R 11 and R 12 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, bonded to each other and together with the carbon atom to which they are bonded, Up to 20 alicyclic structures may be formed.
  • halogen atom represented by R 10 examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Of these, fluorine atoms are preferred.
  • Examples of the alkyl group having 1 to 10 carbon atoms represented by R 10 include a methyl group, an ethyl group, a 1-propyl group, a 2-propyl group, a 1-butyl group, a 2-butyl group, and 2- (2- Methylpropyl) group, 1-pentyl group, 2-pentyl group, 3-pentyl group, 1- (2-methylbutyl) group, 1- (3-methylbutyl) group, 2- (2-methylbutyl) group, 2- ( 3-methylbutyl) group, neopentyl group, 1-hexyl group, 2-hexyl group, 3-hexyl group, 1- (2-methylpentyl) group, 1- (3-methylpentyl) group, 1- (4-methyl Pentyl) group, 2- (2-methylpentyl) group, 2- (3-methylpentyl) group, 2- (4-methylpentyl) group, 3- (2-methylpentyl) group, 3- (3-methyl Pent
  • Examples of the alkoxyl group having 1 to 10 carbon atoms represented by R 10 include a methoxy group, an ethoxy group, an n-butoxy group, a t-butoxy group, a propoxy group, and an isopropoxy group.
  • Examples of the acyl group having 1 to 10 carbon atoms represented by R 10 include an acetyl group, an ethylcarbonyl group, and a propylcarbonyl group.
  • Examples of the acyloxy group having 1 to 10 carbon atoms represented by R 10 include, for example, an acetoxy group, an ethylyloxy group, a butyryloxy group, a t-butyryloxy group, a t-amylyloxy group, an n-hexanecarbonyloxy group, and an n-octanecarbox group.
  • Examples include a nitroxy group.
  • Examples of the alkyl group having 1 to 10 carbon atoms represented by R 11 or R 12 include the same groups as the alkyl groups having 1 to 10 carbon atoms exemplified for R 10 above.
  • Examples of the alicyclic structure having 4 to 20 carbon atoms that may be formed together with the carbon atom to which R 11 and R 12 are bonded to each other include a cyclopentyl group, a cyclopentylmethyl group, and 1- (1-cyclopentylethyl).
  • Specific examples of the compound represented by the above formula (R1-4) include methyl group, ethyl group, 1-propyl group, 2-propyl group, 1-butyl group, 2-butyl group, 1-pentyl group, 2- Pentyl group, 3-pentyl group, 1- (2-methylbutyl) group, 1- (3-methylbutyl) group, 2- (3-methylbutyl) group, neopentyl group, 1-hexyl group, 2-hexyl group, 3- Hexyl group, 1- (2-methylpentyl) group, 1- (3-methylpentyl) group, 1- (4-methylpentyl) group, 2- (3-methylpentyl) group, 2- (4-methylpentyl) ) Group, 3- (2-methylpentyl) group and the like.
  • a methyl group, an ethyl group, a 1-propyl group, a 2-propyl group, a 1-butyl group, and a 2-butyl group are preferable
  • structural unit having the functional group (x) examples include those having a structural unit represented by the following formula (c-1) (hereinafter also referred to as “structural unit (c-1)”).
  • the structural unit (c-1) is a structural unit in which the functional group (x) is bonded to the main chain via X 1 , R 2 , R 3 and E.
  • R 1 is an alkali dissociable group.
  • A is an oxygen atom, an imino group, —CO—O— * or —CO—O— * or —SO 2 —O— *.
  • “*” Represents a bond to be bonded to R 1 .
  • R 2 is a single bond, a methylene group, a linear or branched alkylene group having 2 to 10 carbon atoms, or a cyclic hydrocarbon group having 4 to 20 carbon atoms.
  • X 1 is a single bond, a difluoromethylene group or a linear or branched perfluoroalkylene group having 2 to 20 carbon atoms.
  • R 3 is a single bond or an (n + 1) -valent hydrocarbon group having 1 to 20 carbon atoms, or a carbon-carbon bond of the hydrocarbon group or an R 2 side terminal, an oxygen atom, a sulfur atom, an imino group, a carbonyl
  • E is an oxygen atom, —CO—O— * or —CO—NH— *.
  • “*” Represents a bond to be bonded to R 3 .
  • R is a hydrogen atom, a methyl group or a trifluoromethyl group.
  • n is an integer of 1 to 3. However, when n is 2 or 3, a plurality of R 1 , R 2 , X 1 and A may be the same or different.
  • Examples of X 1 include those represented by the following formula (X-1).
  • Rf is independently a fluorine atom or a perfluoroalkyl group having 1 to 10 carbon atoms.
  • Examples of the structure represented by the above formula (X-1) include those represented by the following formulas (X-2) and (X-3).
  • R 3 represents a single bond or an (n + 1) -valent hydrocarbon group having 1 to 20 carbon atoms, or an oxygen atom between the carbon-carbon bond of the hydrocarbon group or the terminal on the R 2 side.
  • a structure having an atom, a sulfur atom, an imino group, a carbonyl group, —CO—O— or —CO—NH— is shown.
  • n is an integer of 1 to 3. Accordingly, 1 to 3 functional groups (x) are introduced into the structural unit (c-1).
  • the plurality of R 1 , R 2 and A may be the same or different. That is, when n is 2 or 3, the plurality of functional groups (x) may have the same structure or different structures.
  • a plurality of functional groups (x) may be bonded to the same carbon atom of R 2 or may be bonded to different carbon atoms.
  • R 3 having a chain structure includes, for example, methane, ethane, propane, butane, 2-methylpropane, pentane, 2-methylbutane, 2,2-dimethylpropane, hexane, heptane, octane, nonane, decane, etc.
  • Examples of the cyclic structure R 3 include cyclobutane, cyclopentane, cyclohexane, bicyclo [2.2.1] heptane, bicyclo [2.2.2] octane, and tricyclo [5.2.1.0 2,6. ] (N + 1) -valent hydrocarbon group having a structure in which (n + 1) hydrogen atoms are removed from alicyclic hydrocarbon such as decane, tricyclo [3.3.1.1 3,7 ] decane; aromatic such as benzene and naphthalene (N + 1) -valent hydrocarbon group having a structure in which (n + 1) hydrogen atoms are removed from a group hydrocarbon.
  • Examples of the ring structure composed of the oxygen atom and the hydrocarbon group having 1 to 20 carbon atoms include a cyclic ether structure having 3 to 8 carbon atoms.
  • Examples of the ring structure composed of the sulfur atom and the hydrocarbon group having 1 to 20 carbon atoms include cyclic thioether structures having 3 to 8 carbon atoms.
  • Examples of the ring structure composed of the imino and the hydrocarbon group having 1 to 20 carbon atoms include a cyclic amine structure having 3 to 8 carbon atoms.
  • Examples of the ring structure composed of the carbonyl group and the hydrocarbon group having 1 to 20 carbon atoms include cyclic ketone structures having 3 to 8 carbon atoms.
  • Examples of the ring structure composed of -CO-O- and a hydrocarbon group having 1 to 20 carbon atoms include lactone structures having 3 to 8 carbon atoms.
  • Examples of the ring structure composed of —CO—NH— and a hydrocarbon group having 1 to 20 carbon atoms include cyclic amide structures having 3 to 8 carbon atoms.
  • examples of the divalent linear or branched saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms include a methyl group, Ethyl group, n-propyl group, i-propyl group, n-butyl group, 2-methylpropyl group, 1-methylpropyl group, t-butyl group, pentyl group, isopentyl group, neopentyl group, hexyl group, heptyl group, Examples thereof include a divalent hydrocarbon group derived from a linear or branched alkyl group having 1 to 20 carbon atoms such as an octyl group, a nonyl group, and a decyl group.
  • Examples of the divalent cyclic saturated or unsaturated hydrocarbon group include groups derived from alicyclic hydrocarbons or aromatic hydrocarbons having 3 to 20 carbon atoms.
  • Specific examples of the alicyclic hydrocarbon include cyclobutane, cyclopentane, cyclohexane, bicyclo [2.2.1] heptane, bicyclo [2.2.2] octane, and tricyclo [5.2.1.0 2. , 6 ] decane, tricyclo [3.3.1.1 3,7 ] decane, tetracyclo [6.2.1.1 3,6 .
  • cycloalkanes such as 0 2,7 ] dodecane.
  • Specific examples of aromatic hydrocarbons include benzene and naphthalene.
  • At least one hydrogen atom is a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group.
  • a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms such as 2-methylpropyl group, 1-methylpropyl group, t-butyl group, hydroxyl group, cyano group, hydroxy group having 1 to 10 carbon atoms It may be substituted by one or more of an alkyl group, a carboxyl group, an oxygen atom and the like.
  • R is a hydrogen atom, a methyl group or a trifluoromethyl group
  • E is an oxygen atom, —CO—O— * or —CO—NH— * (“*” represents R 3
  • the bond to be combined is shown.)
  • those in which E is —CO—O— * are preferable. That is, [A] the fluorine atom-containing polymer is sometimes expressed as a structural unit (c-1) represented by the following formula (c-1a) (hereinafter referred to as “structural unit (c-1a)”). .).
  • R, R 1 , R 2 , R 3 , A, X 1 and n are as defined in the above formula (c-1).
  • structural unit (c-1a) a structural unit represented by the following formula (c-1a-1) (hereinafter sometimes referred to as “structural unit (c-1a-1)”) or And a structural unit represented by the following formula (c-1a-2) (hereinafter sometimes referred to as “structural unit (c-1a-2)”).
  • R, R 2 , R 3 , X 1 and n are as defined in the above formula (c-1).
  • R 8 has the same meaning as in the above formula (R1-1).
  • R, R 2 and X 1 are as defined in the above formula (c-1).
  • R 31 is a methylene group, a divalent cyclic hydrocarbon group, straight chain or branched alkylene group or C 4 -C 20 2 to 10 carbon atoms, an oxygen atom at the terminal of R 2 side, a sulfur atom, It includes a structure in which an imino group, a carbonyl group, —CO—O— or —CO—NH— is bonded.
  • R 9 represents any one of groups represented by the following formulas (1) to (3).
  • R 10 represents a halogen atom or an alkyl group having 1 to 10 carbon atoms, an alkoxyl group, an acyl group, or an acyloxy group.
  • m 1 represents an integer of 0 to 5
  • m 2 represents an integer of 0 to 4.
  • R 11 and R 12 each independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 11 and R 12 are bonded to each other to form a fatty acid having 4 to 20 carbon atoms.
  • a cyclic structure may be formed.
  • structural unit (c-1a-1) examples include those represented by the following formulas (c-1a-1a) to (c-1a-1b), for example.
  • R has the same meaning as in the above formula (c-1).
  • R 8 has the same meaning as in the above formula (R1-1).
  • n1 represents an integer of 0 to 4 independently of each other.
  • Rf independently of each other represents a fluorine atom or a perfluoroalkyl group having 1 to 10 carbon atoms, preferably a fluorine atom or a trifluoromethyl group.
  • R 2 has the same meaning as in the above formula (c-1).
  • R 31 has the same meaning as in the above formula (c-1a-2).
  • R 32 represents a linear or branched trivalent hydrocarbon group having 1 to 10 carbon atoms, or a trivalent cyclic hydrocarbon group having 4 to 20 carbon atoms, an oxygen atom at the terminal on the R 2 side, It may have a sulfur atom, a carbonyl group or an imino group.
  • Specific examples of the structural unit represented by the above formula (c-1a-1a) include those represented by the following formulas (c-1a-1c) to (c-1a-1f).
  • Specific examples of the structural unit represented by the above formula (c-1a-1b) include those represented by the following formula (c-1a-1g) or (c-1a-1h).
  • R 8 has the same meaning as the formula (R1-1). R is as defined in the above formula (c-1).
  • structural unit (c-1a-2) include those represented by the following formulas (c-1a-2a) to (c-1a-2b).
  • R has the same meaning as the formula (c-1).
  • R 9 has the same meaning as in the above formula (c-1a-2).
  • n2 represents an integer of 0 to 4 independently of each other.
  • Rf independently of each other represents a fluorine atom or a perfluoroalkyl group having 1 to 10 carbon atoms, preferably a fluorine atom or a trifluoromethyl group.
  • R 21 independently represents a methylene group, a linear or branched alkylene group having 2 to 10 carbon atoms, or a divalent cyclic hydrocarbon group having 4 to 20 carbon atoms.
  • R 22 represents a single bond or the same meaning as in the description of R 21 .
  • n2 is 1 or more, which has a fluorine atom or a perfluoroalkyl group at the ⁇ -position of the carbonyloxy group, It is thought that the reactivity with respect to increases. Moreover, the pKa of the COOH group generated by hydrolysis of the alkali dissociable group is also low, which is preferable from the viewpoint of improving hydrophilicity.
  • Specific examples of the structural unit represented by the above formula (c-1a-2a) include those represented by the following formulas (c-1a-2e) to (c-1a-2f).
  • Specific examples of the structural unit represented by the above formula (c-1a-2b) include those represented by the following formulas (c-1a-2c) to (c-1a-2d).
  • R has the same meaning as in the above formula (c-1).
  • R 9 has the same meaning as in the above formula (c-1a-2).
  • R a6 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • R a9 is a hydrogen atom, a trifluoroethoxycarbonyl group, or a hexafluoroisopropoxycarbonyl group.
  • Z a1 is a single bond or a methylene group.
  • Z a2 is a methylene group or an oxygen atom.
  • b is 0 or 1.
  • R a6 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • the content ratio of the structural unit (a1) containing an alkali dissociable group in the fluorine atom-containing polymer is preferably 5 mol% or more with respect to all the structural units constituting the [A] fluorine atom-containing polymer. 10 mol% to 90 mol% is more preferable, and 40 mol% to 90 mol% is particularly preferable.
  • the content ratio of the structural unit (a1) is less than 5 mol%, developability may be deteriorated and defect performance may be deteriorated.
  • R ⁇ a1> is a hydrogen atom or a methyl group.
  • R a2 to R a4 are each independently an alkyl group having 1 to 4 carbon atoms or an alicyclic hydrocarbon group having 4 to 20 carbon atoms.
  • R a3 and R a4 may be bonded to each other to form a divalent alicyclic hydrocarbon group having 4 to 20 carbon atoms together with the carbon atom to which they are bonded.
  • alkyl group having 1 to 4 carbon atoms examples include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, 2-methylpropyl group, 1-methylpropyl group, t-butyl group and the like. Is mentioned.
  • the alicyclic hydrocarbon group having 4 to 20 carbon atoms, or the alicyclic hydrocarbon group having 4 to 20 carbon atoms formed together with the carbon atom to which R a3 and R a4 are bonded together. Includes a polycyclic alicyclic group having a bridged skeleton such as an adamantane skeleton or a norbornane skeleton; and a monocyclic alicyclic group having a cycloalkane skeleton such as cyclopentane or cyclohexane. These groups may be substituted with one or more of linear, branched or cyclic alkyl groups having 1 to 10 carbon atoms, for example.
  • the structural unit (a2) is preferably a structural unit represented by the following formula.
  • R a1 has the same meaning as the above formula (5).
  • R a5 is an alkyl group having 1 to 4 carbon atoms.
  • m is an integer of 1-6.
  • structural units represented by the following formulas (5-1) to (5-20) are more preferable, and (5-4) and (5-12) are particularly preferable.
  • R a1 has the same meaning as the above formula (5).
  • the content ratio of the structural unit (a2) in the fluorine atom-containing polymer is preferably 5 mol% to 80 mol% with respect to all the structural units constituting the [A] fluorine atom containing polymer. % To 80 mol% is more preferable, and 10 mol% to 60 mol% is particularly preferable. When the content ratio of the structural unit (a2) exceeds 80 mol%, the scanability during immersion exposure may be deteriorated or the defect performance may be deteriorated.
  • Examples of the monomer that gives the structural unit (a2) include (meth) acrylic acid-bicyclo [2.2.1] hept-2-yl ester, (meth) acrylic acid-bicyclo [2.2.2] octa -2-yl ester, (meth) acrylic acid-tricyclo [5.2.1.0 2,6 ] dec-7-yl ester, (meth) acrylic acid-tricyclo [3.3.1.1 3,7 ] Deca-1-yl ester, (meth) acrylic acid-tricyclo [3.3.1.1 3,7 ] dec-2-yl ester, and the like.
  • R a14 represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • R a10 is a linear or branched alkyl group having 1 to 6 carbon atoms having a fluorine atom, or a monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms having a fluorine atom.
  • the alkyl group and the alicyclic hydrocarbon group may be partially or entirely substituted with hydrogen atoms.
  • Examples of the linear or branched alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, a propyl group, and a butyl group.
  • Examples of the monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms include a cyclopentyl group, a cyclopentylpropyl group, a cyclohexyl group, a cyclohexylmethyl group, a cycloheptyl group, a cyclooctyl group, and a cyclooctylmethyl group.
  • structural unit (a3) represented by the above formula (6) structural units represented by the following formulas (6-1) and (6-2) are preferable.
  • R a14 has the same meaning as in the above formula (6).
  • Examples of the monomer that gives the structural unit (a3) include trifluoromethyl (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, perfluoroethyl (meth) acrylate, perfluoro n-propyl ( (Meth) acrylate, perfluoro i-propyl (meth) acrylate, perfluoro n-butyl (meth) acrylate, perfluoro i-butyl (meth) acrylate, perfluoro t-butyl (meth) acrylate, perfluorocyclohexyl (meth) Acrylate, 2- (1,1,1,3,3,3-hexafluoro) propyl (meth) acrylate, 1- (2,2,3,3,4,4,5,5-octafluoro) pentyl ( (Meth) acrylate, 1- (2,2,3,3,4,4,5,5-octafluoro) he Sil (me
  • Examples of the structural unit (a3) include a structural unit represented by the following formula (7) in addition to the structural unit represented by the above formula (6).
  • R a11 is a hydrogen atom, a methyl group or a trifluoromethyl group.
  • R a12 is a (k + 1) -valent linking group.
  • Xa is a divalent linking group having a fluorine atom.
  • R a13 is a hydrogen atom or a monovalent organic group.
  • k is an integer of 1 to 3. However, when k is 2 or 3, the plurality of X a and R a13 may be the same or different.
  • Examples of the (k + 1) -valent linking group represented by R a12 include, for example, a linear or branched hydrocarbon group having 1 to 30 carbon atoms, an alicyclic hydrocarbon group having 3 to 30 carbon atoms, and a carbon number 6-30 aromatic hydrocarbon groups, or these groups combined with one or more groups selected from the group consisting of oxygen atom, sulfur atom, ether group, ester group, carbonyl group, imino group and amide group Groups.
  • the (k + 1) -valent linking group may have a substituent.
  • Examples of the linear or branched hydrocarbon group having 1 to 30 carbon atoms include (k + 1) hydrocarbon groups such as methane, ethane, propane, butane, pentane, hexane, heptane, decane, icosane and triacontane. And a group in which a hydrogen atom is removed.
  • Examples of the alicyclic hydrocarbon group having 3 to 30 carbon atoms include monocyclic saturated hydrocarbons such as cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, cyclodecane, methylcyclohexane, and ethylcyclohexane; Monocyclic unsaturated hydrocarbons such as cyclobutene, cyclopentene, cyclohexene, cycloheptene, cyclooctene, cyclodecene, cyclopentadiene, cyclohexadiene, cyclooctadiene, cyclodecadiene; Bicyclo [2.2.1] heptane, bicyclo [2.2.2] octane, tricyclo [5.2.1.0 2,6 ] decane, tricyclo [3.3.1.1 3,7 ] decane, Tetracycl
  • aromatic hydrocarbon group having 6 to 30 carbon atoms examples include (m + 1) from aromatic hydrocarbon groups such as benzene, naphthalene, phenanthrene, anthracene, tetracene, pentacene, pyrene, picene, toluene, xylene, ethylbenzene, mesitylene, cumene and the like. ) Groups from which a single hydrogen atom is removed.
  • Examples of the divalent linking group having a fluorine atom represented by X a include a divalent linear hydrocarbon group having 1 to 20 carbon atoms having a fluorine atom.
  • Examples of X a include structures represented by the following formulas (X a -1) to (X a -6).
  • X a is preferably a structure represented by the above formulas (X a -1) and (X a -2).
  • Examples of the monovalent organic group represented by R a13 include linear or branched hydrocarbon groups having 1 to 30 carbon atoms, alicyclic hydrocarbon groups having 3 to 30 carbon atoms, and 6 to 6 carbon atoms. 30 aromatic hydrocarbon groups, or a combination of these groups and one or more groups selected from the group consisting of oxygen, sulfur, ether, ester, carbonyl, imino and amide groups, etc. Is mentioned.
  • Examples of the structural unit (a3) include structural units represented by the following formulas (7-1) and (7-2).
  • R a18 is a divalent linear, branched or cyclic saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms.
  • R a11 , X a and R a13 are as defined in the above formula (7).
  • R a11 , X a , R a13 and k are as defined in the above formula (7). However, when k is 2 or 3, the plurality of X a and R a13 may be the same or different.
  • Examples of the structural units represented by the above formulas (7-1) and (7-2) include the following formulas (7-1-1), (7-1-2), and (7-1-1). ).
  • R a11 has the same meaning as in the above formula (7).
  • Examples of the monomer that gives the structural unit (a3) include (meth) acrylic acid (1,1,1-trifluoro-2-trifluoromethyl-2-hydroxy-3-propyl) ester and (meth) acrylic acid. (1,1,1-trifluoro-2-trifluoromethyl-2-hydroxy-4-butyl) ester, (meth) acrylic acid (1,1,1-trifluoro-2-trifluoromethyl-2-hydroxy -5-pentyl) ester, (meth) acrylic acid (1,1,1-trifluoro-2-trifluoromethyl-2-hydroxy-4-pentyl) ester, (meth) acrylic acid 2- ⁇ [5- ( 1 ′, 1 ′, 1′-trifluoro-2′-trifluoromethyl-2′-hydroxy) propyl] bicyclo [2.2.1] heptyl ⁇ ester and the like.
  • the content ratio of the structural unit (a3) in the fluorine atom-containing polymer is preferably 2 mol% to 70 mol%, preferably 2 mol%, based on all structural units constituting the [A] fluorine atom containing polymer. % To 30 mol% is more preferable. When the content ratio of the structural unit (a3) is less than 2 mol%, the water repellency is low and the defect performance may be deteriorated.
  • the [A] fluorine atom containing polymer may have 2 or more types of structural units (a3).
  • the content ratio of the structural unit having a fluorine atom in the fluorine atom-containing polymer is preferably 20 mol% or more and 90 mol% or less with respect to all the structural units constituting the [A] fluorine atom-containing polymer, 30 mol% or more and 80 mol% or less are preferable, and 40 mol% or more and 70 mol% are more preferable.
  • R a15 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • the content ratio of the structural unit (a4) in the fluorine atom-containing polymer is preferably 80 mol% or less, more preferably 40 mol% or less, based on all structural units constituting the [A] fluorine atom-containing polymer. More preferred.
  • [A] fluorine atom containing polymer may have 2 or more types of structural units (a4).
  • the fluorine atom-containing polymer can further contain a structural unit (a5) having a lactone structure, a sultone structure or a cyclic carbonate structure.
  • a structural unit (a5) By having the structural unit (a5), the adhesion of the resist film to the substrate can be improved.
  • Examples of the structural unit (a5) include a structural unit represented by the following formula.
  • R a16 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • R a7 is a hydrogen atom or a methyl group.
  • R a8 is a hydrogen atom or a methoxy group.
  • Z a1 is a single bond or a methylene group.
  • Z a2 is a methylene group or an oxygen atom.
  • a and b are 0 or 1;
  • the structural unit (a5) is preferably a structural unit represented by the following formula.
  • R a16 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • the content ratio of the structural unit (a5) in the fluorine atom-containing polymer is preferably 50 mol% or less, more preferably 30 mol% or less, based on all structural units constituting the [A] fluorine atom-containing polymer. More preferred.
  • Examples of preferable monomers that give the structural unit (a5) include monomers described in International Publication No. 2007/116664 pamphlet.
  • the content of the fluorine atom-containing polymer is preferably 0.1 parts by mass to 20 parts by mass, more preferably 1 part by mass to 15 parts by mass with respect to 100 parts by mass of the polymer [B] described later. 1 to 10 parts by mass is particularly preferable. If it is less than 0.1 part by mass, the effect of containing the [A] fluorine atom-containing polymer may not be sufficient. On the other hand, if it exceeds 20 parts by mass, the pattern forming ability as a resist may deteriorate.
  • the fluorine atom-containing polymer can be synthesized according to a conventional method such as radical polymerization.
  • a method in which a solution containing a monomer and a radical initiator is dropped into a reaction solvent or a solution containing a monomer to cause a polymerization reaction A method in which a solution containing a monomer and a solution containing a radical initiator are separately dropped into a reaction solvent or a solution containing a monomer to cause a polymerization reaction;
  • a method in which a plurality of types of solutions containing each monomer and a solution containing a radical initiator are separately dropped into a reaction solvent or a solution containing a monomer to cause a polymerization reaction;
  • a method of polymerizing a solution containing a monomer and a radical initiator in a solvent-free or reaction solvent It is preferable to synthesize by such a method.
  • the monomer amount in the dropped monomer solution is 30 mol with respect to the total amount of monomers used for polymerization. % Or more is preferable, 50 mol% or more is more preferable, and 70 mol% or more is particularly preferable.
  • the reaction temperature in these methods may be appropriately determined depending on the initiator type. Usually, it is 30 ° C to 180 ° C, preferably 40 ° C to 160 ° C, and more preferably 50 ° C to 140 ° C.
  • the dropping time varies depending on the reaction temperature, the type of initiator, the monomer to be reacted, etc., but is usually 30 minutes to 8 hours, preferably 45 minutes to 6 hours, more preferably 1 hour to 5 hours. .
  • the total reaction time including the dropping time varies depending on the conditions as in the dropping time, but is usually from 30 minutes to 8 hours, preferably from 45 minutes to 7 hours, and more preferably from 1 hour to 6 hours.
  • radical initiator used in the polymerization examples include azobisisobutyronitrile (AIBN), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis (2 -Cyclopropylpropionitrile), 2,2'-azobis (2,4-dimethylvaleronitrile) and the like. These initiators can be used alone or in admixture of two or more.
  • Examples of the solvent used for the polymerization include alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 4-methyl-2-pentanol; Ketones such as acetone, 2-butanone, 4-methyl-2-pentanone, 2-heptanone; Saturated carboxylic acid esters such as ethyl acetate, n-butyl acetate, i-butyl acetate and methyl propionate; alkanes such as n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n-decane; Cycloalkanes such as cyclohexane, cycloheptane, cyclooctane, decalin, norbornane; Aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, cumene; Halogenated
  • the resin obtained by the polymerization reaction is preferably recovered by a reprecipitation method. That is, after completion of the polymerization reaction, the target resin is recovered as a powder by introducing the polymerization solution into a reprecipitation solvent.
  • a reprecipitation solvent alcohols or alkanes can be used alone or in admixture of two or more.
  • the resin can be recovered by removing low-molecular components such as monomers and oligomers by a liquid separation operation, a column operation, an ultrafiltration operation, or the like.
  • the polystyrene-equivalent weight average molecular weight (Mw) of the fluorine atom-containing polymer by gel permeation chromatography (GPC) is not particularly limited, but is preferably 1,000 or more and 500,000 or less, and preferably 2,000 or more and 400,000. The following is more preferable, and 3,000 to 300,000 is particularly preferable.
  • Mw of the [A] fluorine atom-containing polymer is less than 1,000, the heat resistance when used as a resist tends to decrease.
  • the Mw of the [A] fluorine atom-containing polymer exceeds 500,000, the developability when used as a resist tends to be lowered.
  • the ratio (Mw / Mn) of Mw to the number average molecular weight (Mn) in terms of polystyrene by GPC of the fluorine atom-containing polymer is usually from 1 to 5, preferably from 1 to 3, preferably 1 or more. 2 or less is more preferable.
  • Mw / Mn in such a range, the photoresist film has excellent resolution performance.
  • Mw and Mn in this specification are GPC columns (manufactured by Tosoh Corporation, two G2000HXL, one G3000HXL, one G4000HXL), with a flow rate of 1.0 mL / min, elution solvent tetrahydrofuran, and column temperature of 40 ° C. under analysis conditions.
  • the polymer is a base polymer having an acid dissociable group and having a fluorine atom content smaller than that of the [A] fluorine atom-containing polymer.
  • the fluorine atom content in the polymer is smaller than the fluorine atom content in the [A] fluorine atom containing polymer, the radiation sensitive resin containing the [B] polymer and the [A] fluorine atom containing polymer.
  • the tendency that [A] fluorine atom-containing polymer is unevenly distributed in the surface layer becomes stronger. The characteristic regarding the mechanical contact angle is more effectively exhibited.
  • Base polymer refers to a polymer that is a main component of a resist film formed from a radiation-sensitive resin composition, and preferably occupies 50% by mass or more based on the total polymer constituting the resist film. Refers to a polymer.
  • this fluorine atom content rate (mass%) can be calculated
  • the polymer preferably has no alkali-dissociable group.
  • the [B] polymer is an alkali-insoluble or alkali-insoluble resin having an acid-dissociable group, and becomes a resin that becomes alkali-soluble when the acid-dissociable group is dissociated. Further, since it does not have an alkali dissociable group, it becomes insoluble in an alkali developer in an unexposed area.
  • alkaline-insoluble or alkali-insoluble means that the resist film is subjected to an alkali development condition employed when a resist pattern is formed from a resist film formed from the radiation-sensitive resin composition. When a film using only the polymer [B] is developed instead of 50%, it means that 50% or more of the initial film thickness of the film remains after development.
  • the polymer has a structural unit (b1) containing an acid dissociable group as a structural unit, a structural unit (b2) having a lactone structure or a cyclic carbonate structure, and a structural unit (b3) containing a polar group.
  • a structural unit (b1) containing an acid dissociable group as a structural unit a structural unit (b2) having a lactone structure or a cyclic carbonate structure, and a structural unit (b3) containing a polar group.
  • Examples of the structural unit (b1) include the same structural units as those exemplified as the structural unit (a2) in the [A] fluorine atom-containing polymer.
  • Examples of the structural unit (b2) include the same structural units as those listed as the structural unit (a5) in the [A] fluorine atom-containing polymer.
  • a structural unit (b3) the structural unit similar to what was mentioned as a structural unit (a4) in [A] fluorine atom containing polymer is mentioned.
  • the content ratio of the structural unit (b1) in the polymer is preferably 5% by mole to 90% by mole, and preferably 10% by mole to 80% by mole with respect to all the structural units constituting the [B] polymer. More preferred is 20 mol% to 70 mol%.
  • the content ratio of the structural unit (b1) exceeds 90 mol%, the adhesiveness of the resist film is lowered, and there is a risk of pattern collapse or pattern peeling.
  • the [B] polymer may have 2 or more types of structural units (b1).
  • the content ratio of the structural unit (b2) in the polymer is preferably from 0 to 70 mol%, and preferably from 10 to 60 mol%, based on all the structural units constituting the [B] polymer. More preferred. By setting it as such a content rate, adhesiveness with a board
  • the content ratio of the structural unit (b3) in the polymer is preferably 0 mol% to 30 mol%, and preferably 5 mol% to 20 mol%, based on all structural units constituting the [B] polymer. More preferred.
  • the polymer can be produced, for example, by polymerizing a monomer corresponding to each predetermined structural unit in a suitable solvent using a radical polymerization initiator.
  • Examples of the solvent used in the above polymerization include the same solvents as mentioned in the method for synthesizing [A] fluorine atom-containing polymer.
  • the reaction temperature in the above polymerization is usually preferably 40 ° C to 150 ° C and 50 ° C to 120 ° C.
  • the reaction time is usually preferably 1 hour to 48 hours and 1 hour to 24 hours.
  • the Mw of the polymer by GPC method is preferably 1,000 to 100,000, more preferably 1,000 to 50,000, and particularly preferably 1,000 to 30,000. [B] By making Mw of a polymer into the said range, the said radiation sensitive resin composition containing this is excellent in lithography performance.
  • the ratio of Mw to Mn (Mw / Mn) of the polymer is usually 1 to 3, preferably 1 to 2.
  • the content of the [B] polymer in the radiation sensitive resin composition is usually 50% by mass or more and preferably 60% by mass or more with respect to the total solid content. If the content is less than 50% by mass, the resolution performance as a resist may deteriorate.
  • the [C] acid generator generates an acid upon exposure, and the acid dissociates the acid-dissociable group present in the [A] fluorine atom-containing polymer and [B] polymer. As a result, the [A] fluorine atom-containing polymer and the [B] polymer become soluble in the developer.
  • a compound form hereinafter also referred to as “[C] acid generator” as described later is incorporated as a part of the polymer. Both forms may be used.
  • [C] Acid generators include onium salt compounds such as sulfonium salts and iodonium salts, sulfone compounds such as organic halogen compounds, disulfones and diazomethane sulfones.
  • onium salt compounds such as sulfonium salts and iodonium salts
  • sulfone compounds such as organic halogen compounds
  • disulfones and diazomethane sulfones.
  • preferred specific examples of the [C] acid generator include compounds described in paragraphs [0080] to [0113] of JP2009-134088A.
  • the acid generator include diphenyliodonium trifluoromethanesulfonate, diphenyliodonium nonafluoro-n-butanesulfonate, diphenyliodonium perfluoro-n-octanesulfonate, and bis (4-t-butylphenyl) iodonium.
  • Trifluoromethanesulfonate bis (4-t-butylphenyl) iodonium nonafluoro-n-butanesulfonate, bis (4-t-butylphenyl) iodonium perfluoro-n-octanesulfonate, triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium Nonafluoro-n-butanesulfonate, triphenylsulfonium perfluoro-n-octanesulfonate, cyclohexyl 2-oxocyclohexane Sill methyl trifluoromethanesulfonate, dicyclohexyl-2-oxo-cyclohexyl trifluoromethane sulfonate, 2-oxo-cyclohexyl dimethyl sulfonium trifluoromethane sulfonate, 4-hydroxy-1-nap
  • Trifluoromethanesulfonylbicyclo [2.2.1] hept-5-ene-2,3-dicarbodiimide, nonafluoro-n-butanesulfonylbicyclo [2.2.1] hept-5-ene-2,3-dicarbodiimide Perfluoro-n-octanesulfonylbicyclo [2.2.1] hept-5-ene-2,3-dicarbodiimide, N-hydroxysuccinimide trifluoromethanesulfonate, N-hydroxysuccinimide nonafluoro-n- Butane sulfonate, N-hydroxysuccinimide perfluoro-n-octane sulfonate, 1,8-naphthalenedicarboxylic imide trifluoromethane sulfonate are preferred.
  • [C] acid generators may be used alone or in combination of two or more.
  • the content of the acid generator is usually 0.1 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the polymer [B] from the viewpoint of ensuring sensitivity and developability as a resist. Preferably they are 0.5 mass part or more and 15 mass parts or less. In this case, if the content of the [C] acid generator is less than 0.1 parts by mass, the sensitivity and developability tend to decrease. On the other hand, if it exceeds 20 parts by mass, the transparency to radiation decreases, and the desired There is a risk that it may be difficult to obtain a resist pattern.
  • the acid diffusion controller controls the diffusion phenomenon in the resist film of the acid generated from the [C] acid generator by exposure, and has the effect of suppressing an undesirable chemical reaction in the non-exposed region, thereby achieving resolution as a resist. As a result, the storage stability of the resulting radiation-sensitive resin composition is improved.
  • the content of the acid diffusion controller in the radiation-sensitive resin composition may be a free compound (hereinafter also referred to as “[D] acid diffusion controller”) as a part of the polymer. Either the built-in form or both forms may be used.
  • Examples of the acid diffusion controller include compounds represented by the following formulas.
  • R d1 to R d5 are each independently a hydrogen atom, or a linear, branched, or cyclic alkyl group having 1 to 20 carbon atoms, an aryl group, or an aralkyl group. However, these groups may have a substituent.
  • R d1 and R d2 are bonded to each other with a nitrogen atom to which R d1 and R d2 are bonded, and / or R d3 and R d4 are bonded to each other with a carbon atom to which R d3 and R d4 are bonded.
  • an unsaturated hydrocarbon group or a derivative thereof may be formed.
  • Examples of the [D] acid diffusion controller represented by the above formula include Nt-butoxycarbonyldi-n-octylamine, Nt-amyloxycarbonyldi-n-octylamine, and Nt-butoxycarbonyl.
  • Di-n-nonylamine Nt-amyloxycarbonyldi-n-nonylamine, Nt-butoxycarbonyldi-n-decylamine, Nt-amyloxycarbonyldi-n-decylamine, Nt-butoxycarbonyl Dicyclohexylamine, Nt-amyloxycarbonyldicyclohexylamine, Nt-butoxycarbonyl-1-adamantylamine, Nt-amyloxycarbonyl-1-adamantylamine, Nt-butoxycarbonyl-2-adamantylamine, Nt-amyloxycarbonyl-2-adamantylamine, N t-butoxycarbonyl-N-methyl-1-adamantylamine, Nt-amyloxycarbonyl-N-methyl-1-adamantylamine, (S)-( ⁇ )-1- (t-butoxycarbonyl) -2- Pyrrolidinemethanol, (S)
  • examples of the acid diffusion controller include a tertiary amine compound, a quaternary ammonium hydroxide compound, a photodegradable base compound, and other nitrogen-containing heterocyclic compounds. Can be mentioned.
  • tertiary amine compound examples include triethylamine, tri-n-propylamine, tri-n-butylamine, tri-n-pentylamine, tri-n-hexylamine, tri-n-heptylamine, tri-n-octylamine.
  • Tri (cyclo) alkylamines such as cyclohexyldimethylamine, dicyclohexylmethylamine, and tricyclohexylamine; Fragrances such as aniline, N-methylaniline, N, N-dimethylaniline, 2-methylaniline, 3-methylaniline, 4-methylaniline, 4-nitroaniline, 2,6-dimethylaniline, 2,6-diisopropylaniline Group amines; Alkanolamines such as triethanolamine, N, N-di (hydroxyethyl) aniline; N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetrakis (2-hydroxypropyl) ethylenediamine, 1,3-bis [1- (4-aminophenyl) -1- Methylethyl] benzenetetramethylenediamine, bis (2-dimethylaminoethyl) ether, bis (2-diethyla
  • Examples of the quaternary ammonium hydroxide compound include tetra-n-propylammonium hydroxide and tetra-n-butylammonium hydroxide.
  • the content of the acid diffusion controller is preferably 10 parts by mass or less, more preferably 8 parts by mass or less, with respect to 100 parts by mass of the [B] polymer. When content exceeds 10 mass parts, it exists in the tendency for the sensitivity as a resist to fall.
  • the radiation-sensitive resin composition usually contains an [E] solvent.
  • the solvent include alcohol solvents, ketone solvents, amide solvents, ether solvents, ester solvents, and mixed solvents thereof.
  • alcohol solvent examples include methanol, ethanol, n-propanol, iso-propanol, n-butanol, iso-butanol, sec-butanol, tert-butanol, n-pentanol, iso-pentanol, 2-methylbutanol, sec-pentanol, tert-pentanol, 3-methoxybutanol, n-hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, 3-heptanol, n-octanol, 2-ethylhexanol , Sec-octanol, n-nonyl alcohol, 2,6-dimethyl-4-heptanol, n-decanol, sec-undecyl alcohol, trimethylnonyl alcohol, sec-tetradecyl alcohol, sec -und
  • ketone solvent examples include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-iso-butyl ketone, methyl-n-pentyl ketone, ethyl-n-butyl ketone, methyl-n- Examples include hexyl ketone, di-iso-butyl ketone, trimethylnonanone, cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, methylcyclohexanone, 2,4-pentanedione, acetonyl acetone, diacetone alcohol, acetophenone, and the like. .
  • amide solvents include N, N′-dimethylimidazolidinone, N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, Examples thereof include N-methylpropionamide and N-methylpyrrolidone.
  • ester solvents include diethyl carbonate, methyl acetate, ethyl acetate, n-propyl acetate, iso-propyl acetate, n-butyl acetate, iso-butyl acetate, sec-butyl acetate, n-pentyl acetate, sec-pentyl acetate.
  • solvents examples include n-pentane, iso-pentane, n-hexane, iso-hexane, n-heptane, iso-heptane, 2,2,4-trimethylpentane, n-octane, iso-octane, cyclohexane, Aliphatic hydrocarbon solvents such as methylcyclohexane; Fragrances such as benzene, toluene, xylene, mesitylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, iso-propylbenzene, diethylbenzene, iso-butylbenzene, triethylbenzene, di-iso-propylbenzene, n-amylnaphthalene Group hydrocarbon solvents; And halogen-containing solvents such as dichloromethane, chloroform
  • propylene glycol monomethyl ether acetate propylene glycol monomethyl ether
  • propylene glycol monomethyl ether propylene glycol monomethyl ether
  • ethyl lactate propylene glycol monomethyl ether
  • cyclohexanone cyclohexanone
  • the said radiation sensitive resin composition can contain a [F] uneven distribution promoter, an alicyclic skeleton compound, surfactant, a sensitizer, etc. in the range which does not impair the effect of this invention.
  • a [F] uneven distribution promoter an alicyclic skeleton compound, surfactant, a sensitizer, etc. in the range which does not impair the effect of this invention.
  • these other optional components will be described in detail. These other optional components can be used alone or in admixture of two or more. Further, the content of other optional components can be appropriately determined according to the purpose.
  • the radiation-sensitive resin composition can be blended with an [F] uneven distribution accelerator when a resist pattern is formed using an immersion exposure method.
  • [F] an uneven distribution promoter By blending [F] an uneven distribution promoter, [A] the fluorine atom-containing polymer can be further unevenly distributed in the vicinity of the surface layer.
  • the [F] uneven distribution promoter include low molecular compounds having a relative dielectric constant of 30 to 200 and a boiling point of 100 ° C. at 1 atm. Specific examples of such compounds include lactone compounds, carbonate compounds, nitrile compounds, and polyhydric alcohols.
  • lactone compound examples include ⁇ -butyrolactone, valerolactone, mevalonic lactone, norbornane lactone, and the like.
  • Examples of the carbonate compound include propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate and the like.
  • Examples of the nitrile compound include succinonitrile.
  • Examples of the polyhydric alcohol include glycerin.
  • the content of the [F] uneven distribution accelerator is preferably 10 to 500 parts by mass, more preferably 30 to 300 parts by mass with respect to 100 parts by mass of the total amount of the polymer.
  • the [F] uneven distribution promoter only 1 type may be contained and 2 or more types may be contained.
  • An alicyclic skeleton compound is a component that exhibits an action of further improving dry etching resistance, pattern shape, adhesion to a substrate, and the like.
  • Examples of the alicyclic skeleton compound include adamantane derivatives such as 1-adamantanecarboxylic acid, 2-adamantanone, and 1-adamantanecarboxylic acid t-butyl; deoxycholic acid t-butyl, deoxycholic acid t-butoxycarbonylmethyl, Deoxycholic acid esters such as 2-ethoxyethyl deoxycholate; Lithocholic acid esters such as tert-butyl lithocholic acid, t-butoxycarbonylmethyl lithocholic acid, 2-ethoxyethyl lithocholic acid; 3- [2-hydroxy-2 , 2-Bis (trifluoromethyl) ethyl] tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodecane
  • Surfactants are components that have the effect of improving coatability, striation, developability, and the like.
  • examples of the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene n-octylphenyl ether, polyoxyethylene n-nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol diacrylate.
  • nonionic surfactants such as stearate
  • the following trade names are KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), Polyflow No. 75, no.
  • the sensitizer absorbs radiation energy and transmits the energy to the [C] acid generator, thereby increasing the amount of acid produced. It has the effect of improving the “apparent sensitivity”.
  • the sensitizer include carbazoles, acetophenones, benzophenones, naphthalenes, phenols, biacetyl, eosin, rose bengal, pyrenes, anthracenes, phenothiazines and the like.
  • the [A] fluorine atom-containing polymer, the [C] acid generator, the [B] polymer as a suitable component, and, if necessary, the radiation sensitive resin composition are added in the [E] solvent [ D]
  • the radiation-sensitive resin composition is usually dissolved in an [E] solvent so that the total solid content concentration is 1% by mass to 50% by mass, preferably 2% by mass to 25% by mass.
  • it is prepared by filtering with a filter having a pore diameter of about 5 nm.
  • the material of the filter is not particularly limited, and examples thereof include nylon 6,6, nylon 6, polyethylene, and combinations thereof.
  • the resist film of the present invention is formed on a substrate using a radiation-sensitive resin composition for forming a resist pattern, and has a surface free energy of 30 mN / m or more and 40 mN / m or less. Since the resist film has a surface free energy in the specific range described above, it is considered that the water repellency of the resist film surface can be increased, enabling high-speed scanning exposure and suppressing the occurrence of defects such as bridge defects. Thus, a good resist pattern can be formed.
  • NMR analysis was performed using a nuclear magnetic resonance apparatus (JNM-ECX400, manufactured by JEOL Ltd.).
  • reaction solution 300 g of hexane, 1,200 g of methanol, and 60 g of water were poured into a separatory funnel and stirred vigorously, and then allowed to stand. The mixed solution was separated into two layers and allowed to stand for 3 hours, and then the lower layer (resin solution) was collected.
  • the resin solution fractionated using an evaporator was solvent-substituted with a propylene glycol monomethyl ether acetate solution. 239.2 g of a propylene glycol monomethyl ether acetate solution of the copolymer was obtained.
  • the copolymer concentration was 20.9%, and the yield was 50%.
  • This copolymer was designated as polymer (A-1).
  • This copolymer had Mw of 4,200 and Mw / Mn of 1.4.
  • the content ratio of the structural unit derived from the compound (M-1): the structural unit derived from the compound (M-3): the structural unit derived from the compound (M-7) was 40.5: 54. It was 1: 5.4 (mol%).
  • Polymers (A-2) to (A-8) and polymers (B-1) were prepared in the same manner as in Synthesis Example 1 except that the types and amounts of monomers shown in Tables 1 and 2 were used. ) To (B-3) were synthesized. Table 3 shows the content ratio (mol%) of the structural unit given by each monomer, and the Mw, Mw / Mn and yield of each synthesized polymer.
  • Table 3 shows various physical property values of the polymers obtained in Synthesis Examples 1 to 12.
  • Example 1 100 parts by mass of the polymer (B-4) obtained in Synthesis Example 12, 5 parts by mass of the polymer (A-1) obtained in Synthesis Example 1, 12 parts by mass of (C-1) as an acid generator, acid 6.2 parts by mass of (D-1) as a diffusion control agent and 100 parts by mass of (F-1) as an uneven distribution promoter were mixed, and (E-1) 2,900 was used as the solvent [E] to this mixture. Part by mass and 1,250 parts by mass of (E-2) were added so that each would be contained in the composition, and the mixture was dissolved to obtain a mixed solution. The obtained mixed solution was filtered through a nylon filter having a pore diameter of 10 nm and a 5 nm polyethylene filter to prepare a radiation sensitive resin composition. This radiation-sensitive resin composition was designated as composition (J-1).
  • the wafer stage position adjusts the wafer stage position.
  • the wafer is set on the stage. Inject water into the needle of “DSA-10”.
  • the position of the needle is finely adjusted.
  • water is discharged from the needle to form a 25 ⁇ L water droplet on the wafer, and then the needle is once pulled out of the water droplet.
  • the needle is pulled down again to the finely adjusted position.
  • a water droplet is sucked with a needle at a speed of 10 ⁇ L / min for 90 seconds, and the contact angle is measured every second (total 90 times).
  • the average value is calculated for the contact angles of a total of 20 points from the time when the contact angle is stabilized, and is set as the receding contact angle (°) of water.
  • TMAH water aqueous solution in which tetraammonium hydroxide was dissolved in water to a pH of 13.
  • the contact angle obtained here was the receding contact angle (°) of TMAH water (pH 10).
  • the surface free energy of water is 72.8 mN / m (dispersion term: 21.8 mN / m, polar term: 51.0 mN / m) and the surface free energy of methylene iodide is 50.8 mN / m (dispersion term: 48.
  • NSR S610C ArF excimer laser immersion exposure apparatus
  • the resist film was developed with a 2.38 mass% tetramethylammonium hydroxide aqueous solution, washed with water, and dried to form a positive resist pattern.
  • the exposure amount for forming a line and space having a width of 45 nm was defined as sensitivity (optimum exposure amount) (mJ / cm 2 ).
  • defects A line and space having a line width of 45 nm was formed on the entire surface of the wafer by the same method as described above at the optimum exposure amount to obtain a wafer for defect inspection.
  • a scanning electron microscope (“CC-4000”, manufactured by Hitachi High-Technologies Corporation) was used. Thereafter, the number of defects on the defect inspection wafer was measured using “KLA2810” manufactured by KLA-Tencor. Further, the number of defects (repeat defects) detected at the same position in each shot determined to be derived from the mask was subtracted from the number of defects measured by “KLA2810”. This subtracted value was defined as the number of defects (pieces).
  • LWR line width roughness
  • a 75 nm-thick film is formed from a radiation-sensitive resin composition on a 12-inch silicon wafer on which an underlayer antireflection film (“ARC66”, manufactured by Nissan Chemical Industries) is formed, and soft baking (120 ° C. for 60 seconds) SB).
  • ARC66 underlayer antireflection film
  • SB soft baking
  • PEB post-baking
  • the resist film was developed with a 2.38 mass% tetramethylammonium hydroxide aqueous solution, washed with water, and dried to form a positive resist pattern.
  • the exposure amount for forming a line and space having a width of 45 nm was determined as the optimum exposure amount.
  • LS patterns with a pitch of 90 nm were formed using mask patterns with target sizes of 40 nm, 42 nm, 44 nm, 46 nm, 48 nm, and 50 nm, respectively.
  • the slope of the straight line when the target size (nm) was plotted on the horizontal axis and the line width (nm) formed on the resist film using each mask pattern was plotted on the vertical axis was calculated as MEF.
  • MEF straight line
  • the receding contact angle of water showed a high value of 76 to 80 ° in any of Examples 1 to 8 and Comparative Examples 1 to 3, but Comparative Examples 1 and 2
  • the scanning speed was as low as 500,510 mm / s. It was found that Examples 1 to 8 and Comparative Example 3 exhibited sufficiently high hydrophobicity during immersion exposure. However, it was found that Comparative Examples 1 and 2 did not show sufficient hydrophobicity during immersion exposure. Further, when attention is paid to the surface free energy, Examples 1 to 8 show a low value of 40 or less, and show sufficient barrier properties against water, while Comparative Examples 1 to 3 show high values of 44 and 45. It was shown that the barrier property to water was poor.
  • both Examples 1 to 8 and Comparative Example 2 showed values in the range of 32 to 40 ° and 30 to 40 °. From this, it was found that the resist films of Examples 1 to 8 and Comparative Example 2 exhibited appropriate developer wettability during development. However, Comparative Example 1 showed a low value of 27 °, and it was found that excessive developer wettability was exhibited during development. Comparative Example 3 showed a high value of 75 °, and it was found that sufficient developer wettability was not exhibited during development.
  • the resist pattern forming method of the present invention it is possible to form a good resist pattern while enabling high-speed scanning exposure and suppressing the occurrence of defects such as bridge defects.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Materials For Photolithography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

 本発明は、(1)感放射線性樹脂組成物を用い、基板上に表面自由エネルギーが30mN/m以上40mN/m以下のレジスト膜を形成する工程、(2)マスクを介した放射線照射により、上記レジスト膜を露光する工程、及び(3)上記露光されたレジスト膜を現像する工程を有するレジストパターン形成方法である。上記工程(2)における露光を、上記レジスト膜上に液浸露光液を配置し、この液浸露光液を介して行うことが好ましい。上記感放射線性樹脂組成物は、[A]フッ素原子含有重合体、及び[C]酸発生体を含有することが好ましい。

Description

レジストパターン形成方法、感放射線性樹脂組成物及びレジスト膜
 本発明はレジストパターン形成方法、感放射線性樹脂組成物及びレジスト膜に関する。
 集積回路素子の製造に代表される微細加工の分野においては、酸解離性基を有する重合体を含む樹脂組成物によって基板上にレジスト膜を形成し、マスクパターンを介してそのレジスト膜にエキシマレーザー等の短波長の放射線を露光し、露光部をアルカリ現像液で除去することにより微細なレジストパターンを形成することが行われている。
 近年、線幅45nm程度のより微細なレジストパターンを形成する方法として、液浸露光法の利用が拡大しつつある。液浸露光法ではレンズの開口数(NA)を増大させた場合でも焦点深度が低下し難く、かつ高い解像性が得られるという利点がある。液浸露光法において用いられる樹脂組成物には、レジスト膜から液浸媒体への酸発生剤等の溶出の抑制により塗膜性能の低下やレンズ等の汚染を防止すると共に、レジスト膜表面の水切れ性を良くして、ウォーターマークの残存を防止し、高速スキャン露光を可能にすることが要求される。
 それらを達成する手段として、特開2005-352384号公報には、レジスト膜上に上層膜(保護膜)を形成する技術が提案されているが、成膜工程が別途必要になり煩雑である。そのため、レジスト膜表面の疎水性を高める方法が検討されており、国際公開第2007/116664号には、疎水性が高いフッ素含有重合体を含有せしめた樹脂組成物を用いるレジストパターン形成方法が提案されている。
特開2005-352384号公報 国際公開第2007/116664号
 しかしながら、上記従来のレジストパターン形成方法においては、ブリッジ欠陥等の欠陥発生を十分に抑制することができず、また、スキャン露光の速度も十分満足できるものではない。
 本発明は、上述のような事情に基づいてなされたものであり、その目的は、高速スキャン露光を可能にすると共に、ブリッジ欠陥等の欠陥の発生を抑制して、良好なレジストパターンを形成できるレジストパターン形成方法を提供することである。
 本発明者らは、上記のような従来技術の課題を認識し、該課題を解決すべく鋭意検討した結果、特定範囲の表面自由エネルギーを有するレジスト膜を形成した後に、該レジスト膜を露光、現像することで、上記課題を解決可能であることを見出し、本発明を完成するに至った。
 本発明のレジストパターン形成方法は、
 (1)感放射線性樹脂組成物を用い、基板上に表面自由エネルギーが30mN/m以上40mN/m以下のレジスト膜を形成する工程、
 (2)マスクを介した放射線照射により、上記レジスト膜を露光する工程、及び
 (3)上記露光されたレジスト膜を現像する工程
を有する。
 当該レジストパターン形成方法によれば、上述の性質を有するレジスト膜を形成することにより、レジスト膜表面の撥水性が適度となり、高速スキャン露光を可能にすると共に、ブリッジ欠陥等の欠陥の発生を抑制して、良好なレジストパターンを形成できる。
 上記工程(2)における露光は、上記レジスト膜上に液浸露光液を配置し、この液浸露光液を介して行うことが好ましい。当該レジストパターン形成方法は、上述の性質を有するレジスト膜を形成することにより特に液浸露光法に好適に用いることができ、スキャン速度と欠陥発生の抑制性を共に向上させることができる。
 上記感放射線性樹脂組成物は、[A]フッ素原子含有重合体、及び[C]酸発生体を含有することが好ましい。このような感放射線性樹脂組成物を用いることで、レジスト膜の表面自由エネルギーの制御が容易となり、効果的にスキャン速度と欠陥発生の抑制性を共に向上させることができる。
 [A]フッ素原子含有重合体は、アルカリ解離性基を含む構造単位(a1)を有することが好ましい。[A]フッ素原子含有重合体が構造単位(a1)を有することで、アルカリ現像時のアルカリ現像液との親和性を高めることができ、その結果、より効果的に欠陥発生の抑制性を向上させることができる。
 [A]フッ素原子含有重合体は、酸解離性基を含む構造単位(a2)を有することが好ましい。[A]フッ素原子含有重合体が構造単位(a2)を有することで、露光部における[A]フッ素原子含有重合体のアルカリ現像液に対する溶解性を向上させること等により、レジスト膜の露光部で生じる欠陥の発生をより抑制することができる。
 [A]フッ素原子含有重合体は、アルカリ解離性基を有さず、かつフッ素原子を含む構造単位(a3)を有することが好ましい。[A]フッ素原子含有重合体が構造単位(a3)を有することで、レジスト膜の撥水性や[A]フッ素原子含有重合体のレジスト膜における偏在化を効果的に促進することができ、その結果、より効果的にスキャン速度と欠陥発生の抑制性を共に向上させることができる。
 上記感放射線性樹脂組成物は、
 [B]酸解離性基を有し、[A]フッ素原子含有重合体よりもフッ素原子含有率が小さいベース重合体(以下、「[B]重合体」ともいう)
をさらに含有することが好ましい。上記感放射線性樹脂組成物が[A]フッ素原子含有重合体と[B]重合体とを有することで、[A]フッ素原子含有重合体のレジスト膜における偏在化をより促進することができ、その結果、より効果的にスキャン速度と欠陥発生の抑制性を共に向上させることができる。
 上記感放射線性樹脂組成物は、[D]酸拡散制御体をさらに含有することが好ましい。上記感放射線性樹脂組成物が、[D]酸拡散制御体をさらに含有することで、フォトレジストとしての解像度等がより向上する。
 本発明は、形成されるレジスト膜の表面自由エネルギーが30mN/m以上40mN/m以下であるレジストパターン形成用感放射線性樹脂組成物を含む。本発明のレジストパターン形成用感放射線性樹脂組成物から形成されるレジスト膜の表面自由エネルギーが上記特定範囲であるため、レジスト膜表面の撥水性が適度となり、高速スキャン露光を可能にすると共に、ブリッジ欠陥等の欠陥の発生を抑制して、良好なレジストパターンを形成できる。
 本発明のレジストパターン形成用感放射線性樹脂組成物は、上述の性質を有しているので、液浸露光に好適に用いられる。当該レジストパターン形成用感放射線性樹脂組成物は、高速スキャン露光を可能にすると共に、ブリッジ欠陥等の欠陥の発生を抑制して、良好なレジストパターンを形成できる。
 本発明は、レジストパターン形成用感放射線性樹脂組成物を用いて基板上に形成され、表面自由エネルギーが30mN/m以上40mN/m以下のレジスト膜を含む。当該レジスト膜は、表面自由エネルギーが上記特定範囲であるため、レジスト膜表面の撥水性が適度となり、高速スキャン露光を可能にすると共に、ブリッジ欠陥等の欠陥の発生を抑制して、良好なレジストパターンを形成できる。
 本発明のレジストパターン形成方法によれば、高速スキャン露光を可能にすると共に、ブリッジ欠陥等の欠陥の発生を抑制して、良好なレジストパターンを形成できる。
<レジストパターン形成方法>
 本発明のレジストパターン形成方法は、
 (1)感放射線性樹脂組成物を用い、基板上に表面自由エネルギーが30mN/m以上40mN/m以下のレジスト膜を形成する工程(以下、「工程(1)」ともいう)、
 (2)マスクを介した放射線照射により、上記レジスト膜を露光する工程(以下、「工程(2)」ともいう)、及び
 (3)上記露光されたレジスト膜を現像する工程(以下、「工程(3)」ともいう)
を有する。以下、各工程を詳述する。
[工程(1)]
 本工程では、感放射線性樹脂組成物を回転塗布、流延塗布、ロール塗布等の塗布手段によって、シリコンウエハー、二酸化シリコン、下層反射防止膜で被覆されたウエハー等の基板上に所定の膜厚となるように塗布し、次いでプレベークすることにより塗膜中の溶媒を揮発させることにより、表面自由エネルギーが30mN/m以上40mN/m以下のレジスト膜を形成する。形成されるレジスト膜の表面自由エネルギーは、32mN/m以上40mN/m以下が好ましく、35mN/m以上40mN/m以下がより好ましい。なお、形成されるレジスト膜の表面自由エネルギーは、下記の方法により測定することができる。
 形成した被膜について、クリーンルーム内(室温23℃、湿度45%、常圧の環境下)で、KRUS製の「DSA-10」等の接触角計を用い以下の手順に代表される方法で静的接触角を算出する。まず、ウエハステージ位置を調整する。次に、ウエハをステージにセットする。「DSA-10」の針に水を注入する。次に、針の位置を微調整する。次に、針から水を排出してウエハ上に5μLの水滴を形成した後、水滴から針を引き抜く。次に、接触角を測定し、水の静的接触角(°)とする。水滴の変わりにヨウ化メチレンを用いて同様の操作を行い、ヨウ化メチレンの静的接触角(°)とする。そして、得られた各静的接触角から簡易的には以下の方法を用いることで表面自由エネルギー(mN/m)は算出される。表面自由エネルギーγは分散項γdと極性項γpに分けられ、
γ=γd+γp
である。液体の表面自由エネルギーをγL、分散項をγdL、極性項をγpLとし、固体表面の表面自由エネルギーをγS、分散項をγdS、極性項をγpSとし、静的接触角をΘとすると、フォークス式およびヤングの式、デュプレの式を用いると、
(γdL+γpL)×(1+cosΘ)=2√(γdS×γpL)+2√(γpS×γdL)
と導かれる。ここに、水の表面自由エネルギー72.8mN/m(分散項:21.8mN/m、極性項:51.0mN/m)およびヨウ化メチレンの表面自由エネルギー50.8mN/m(分散項:48.3mN/m、極性項:2.5mN/m)を用いることで、式が2つ導かれ、2元連立方程式を解くことで、未知数である固体の表面自由エネルギーの分散項γdSと極性項γpSが導かれ、足し合わせることでγSが求まる。なお、分散項、極性項の分かっている2種類の液体を用いて接触角を測定することで固体表面の表面自由エネルギーは求まるため、接触角測定に必要な液体は水、ヨウ化メチレンに限定するものではない。
 感放射線性樹脂組成物としては、後述するレジストパターン形成用感放射線性樹脂組成物を用いることができる。塗膜の膜厚としては、10nm~500nm程度が好ましい。プレベークの加熱条件としては、感放射線性樹脂組成物の配合組成によって変わるが、30℃~200℃程度が好ましく、50℃~150℃がより好ましい。プレベークの時間は通常、180秒以下である。なお、上記下層反射防止膜は、例えば下層反射防止膜形成剤を用いて、上記基板表面に形成することができる。
[工程(2)]
 本工程では、工程(1)で形成されたレジスト膜に(場合によっては、水等の液浸媒体を介して)、放射線を照射し露光させる。なお、この際所定のパターンを有するマスクを通して放射線を照射する。放射線としては、目的とするパターンの線幅に応じて、可視光線、紫外線、遠紫外線、X線、荷電粒子線等から適宜選択して照射する。これらの中で、遠赤外線が好ましく、ArFエキシマレーザー(波長193nm)、KrFエキシマレーザー(波長248nm)がより好ましく、ArFエキシマレーザーが特に好ましい。次いで、露光されたフォトレジスト膜をポストエクスポージャーベーク(PEB)することで、レジスト膜の露光された部分において酸発生体から発生した酸により、重合体が脱保護される。PEBの加熱条件としては、感放射線性樹脂組成物の配合組成によって適宜調整されるが、通常30℃~200℃であり、50℃~170℃が好ましい。PEBの時間は通常、180秒以下である。
[工程(3)]
 本工程では、露光されたレジスト膜を、現像液で現像することにより、所定のレジストパターンを形成する。現像後は、水で洗浄し、乾燥することが一般的である。現像液としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノネン等のアルカリ性化合物の少なくとも1種を溶解したアルカリ水溶液が好ましい。
 また、液浸露光を行う場合は、工程(2)の前に、液浸液とレジスト膜との直接の接触を保護するために、液浸液不溶性の液浸用保護膜をレジスト膜上に設けてもよい。液浸用保護膜としては、工程(3)の前に溶媒により剥離する溶媒剥離型保護膜(例えば、特開2006-227632号公報参照)、工程(3)の現像と同時に剥離する現像液剥離型保護膜(例えば、WO2005-069076号公報、WO2006-035790号公報参照)のいずれを用いてもよい。但し、スループットの観点からは、現像液剥離型液浸用保護膜を用いることが好ましい。
 このようにして得られるレジストパターンは、パターン形状に優れリソグラフィー技術を応用した微細加工に好適である。
<レジストパターン形成用感放射線性樹脂組成物>
 本発明のレジストパターン形成用感放射線性樹脂組成物は、形成されるレジスト膜の表面自由エネルギーが30mN/m以上40mN/m以下となる組成物であり、レジストパターン形成に好適に用いることができ、特に液浸露光に好適に用いることができる。なお、このレジストパターン形成用感放射線性樹脂組成物から形成されるレジスト膜は、以下の条件で形成されたものである。レジストパターン形成用感放射線性樹脂組成物を用いて基板(ウエハ)上に被膜を形成する。具体的には、例えば、室温23℃、湿度45%、常圧のクリーンルーム内にて8インチシリコンウエハ上に、東京エレクトロン製Act8を用いて、感放射線性樹脂組成物を1,500rpmにて塗布して、膜厚75nmの塗膜を形成し、120℃で60秒間ソフトベーク(SB)を行うことで被膜を形成する。
 本発明のレジストパターン形成用感放射線性樹脂組成物は、[A]フッ素原子含有重合体、及び[C]酸発生体を含有することが好ましい。また、当該レジストパターン形成用感放射線性樹脂組成物は、好適成分として[B]重合体、[D]酸拡散制御体を含有することができる。さらに、当該レジストパターン形成用感放射線性樹脂組成物は、本発明の効果を損なわない限り、その他の任意成分を含有してもよい。以下、各成分について詳述する。
<[A]フッ素原子含有重合体>
 [A]フッ素原子含有重合体は、アルカリ解離性基を含む構造単位(a1)、酸解離性基を含む構造単位(a2)、アルカリ解離性基を有さず、かつフッ素原子を含む構造単位(a3)、極性基を含む構造単位(a4)及びラクトン構造、スルトン構造又は環状カーボネート構造を含む構造単位(a5)からなる群より選ばれる少なくとも1種の構造単位を有することが好ましい。さらに、[A]フッ素原子含有重合体は、構造単位(a1)~(a5)以外の他の構造単位を有してもよい。なお、[A]フッ素原子含有重合体は、各構造単位を2種以上有していてもよい。以下、各構造単位を詳述する。
 [A]フッ素原子含有重合体におけるフッ素原子の含有率は、後述する[B]重合体よりも大きい。具体的には、[A]フッ素原子含有重合体におけるフッ素原子含有率は、通常、5質量%以上であり、5質量%~50質量%が好ましく、5質量%~40質量%がより好ましい。尚、このフッ素原子含有率は13C-NMRにより測定することができる。[A]フッ素原子含有重合体におけるフッ素原子含有率が上記範囲内であると、[A]フッ素原子含有重合体及び[A]フッ素原子含有重合体を含む感放射線性樹脂組成物によって形成されたレジスト膜表面の撥水性を高めることができ、液浸露光時に上層膜を別途形成する必要がない。[A]フッ素原子含有重合体は表面自由エネルギーが小さく撥水性を有するため、レジスト膜表面の撥水性を高めることができると考えられる。
[構造単位(a1)]
 構造単位(a1)は、アルカリ解離性基を含む構造単位である。構造単位(a1)としては、例えば下記式(x)で表される官能基(以下、「官能基(x)」ともいう)を含む構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 上記式(x)中、Aは酸素原子(但し、芳香環、カルボニル基及びスルホキシル基に直結するものを除く。)、イミノ基、-CO-O-*又は-SO-O-*である。(「*」はRに結合する結合手を示す。)である。即ち、官能基(x)は水酸基、アミノ基、カルボキシ基又はスルホキシル基がアルカリ解離性基によって修飾されたものである。
 また、上記式(x)において、Rはアルカリ解離性基を示す。「アルカリ解離性基」とは、極性官能基中の水素原子を置換する基であって、アルカリの存在下で解離する基をいう。
 このような官能基(x)は、アルカリ水溶液と下記に示すような反応を生じ、極性基を生じる。官能基(x)はアルカリ現像時には加水分解によりアルカリ解離性基が解離して極性基を生じるため、アルカリ現像時のアルカリ現像液との親和性を高めることができる。従って、スキャン速度と欠陥発生の抑制性とをより効果的に向上させることができると考えられる。また、アルカリ現像時にフェノール性水酸基を生じるものを用いた場合と比較して、現像後のパターン形状等に優れたレジスト膜を形成することができる。
Figure JPOXMLDOC01-appb-C000002
 このようなアルカリ解離性基としては、上記の性質を示すものであれば特に限定されないが、上記式(x)中、Aが酸素原子又はイミノ基の場合、下記式(R1-1)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000003
 上記式(R1-1)中、Rは、一部若しくは全部の水素原子がフッ素原子で置換された炭素数1~10の炭化水素基である。
 上記Rで表される一部若しくは全部の水素原子がフッ素原子で置換された炭素数1~10の炭化水素基としては、例えば一部若しくは全部の水素原子がフッ素原子で置換された炭素数1~10の直鎖状又は分岐状のアルキル基、一部若しくは全部の水素原子がフッ素原子で置換された炭素数3~10の脂環式炭化水素基が好ましい。
 上記アルキル基としては、例えばメチル基、エチル基、1-プロピル基、2-プロピル基、1-ブチル基、2-ブチル基、2-(2-メチルプロピル)基、1-ペンチル基、2-ペンチル基、3-ペンチル基、1-(2-メチルブチル)基、1-(3-メチルブチル)基、2-(2-メチルブチル)基、2-(3-メチルブチル)基、ネオペンチル基、1-ヘキシル基、2-ヘキシル基、3-ヘキシル基、1-(2-メチルペンチル)基、1-(3-メチルペンチル)基、1-(4-メチルペンチル)基、2-(2-メチルペンチル)基、2-(3-メチルペンチル)基、2-(4-メチルペンチル)基、3-(2-メチルペンチル)基、3-(3-メチルペンチル)基等が挙げられる。
 上記脂環式炭化水素基としては、例えばシクロペンチル基、シクロペンチルメチル基、1-(1-シクロペンチルエチル)基、1-(2-シクロペンチルエチル)基、シクロヘキシル基、シクロヘキシルメチル基、1-(1-シクロヘキシルエチル)基、1-(2-シクロヘキシルエチル基)、シクロヘプチル基、シクロヘプチルメチル基、1-(1-シクロヘプチルエチル)基、1-(2-シクロヘプチルエチル)基、2-ノルボルニル基等が挙げられる。
 Rとしては、上記炭化水素基が有する水素原子の全部がフッ素原子に置換された炭素数1~10の直鎖状又は分岐状のパーフルオロアルキル基がより好ましく、トリフルオロメチル基が特に好ましい。
 官能基(x)は、アルコール、アミン、カルボン酸を従来公知の方法によりフルオロアシル化することで形成することができる。例えば、1)酸の存在下、アルコールとフルオロカルボン酸を縮合させてエステル化する、2)塩基の存在下、アルコールとフルオロカルボン酸ハロゲン化物を縮合させてエステル化する等の方法が挙げられる。
 また、上記式(x)中、Aが-CO-O-*の場合、Rとしては、下記式(R1-2)~(R1-4)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 上記式(R1-2)及び(R1-3)中、R10は、ハロゲン原子、又は炭素数1~10のアルキル基、アルコキシル基、アシル基、若しくはアシロキシ基である。mは、0~5の整数である。mは、0~4の整数である。m又はmが2以上の場合、複数のR10は、それぞれ同一でも異なっていてもよい。
 上記式(R1-4)中、R11及びR12は、それぞれ独立して、水素原子又は炭素数1~10のアルキル基であり、互いに結合して、それらが結合する炭素原子と共に炭素数4~20の脂環式構造を形成してもよい。
 上記R10で表されるハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。これらのうち、フッ素原子が好ましい。
 上記R10で表される炭素数1~10のアルキル基としては、例えばメチル基、エチル基、1-プロピル基、2-プロピル基、1-ブチル基、2-ブチル基、2-(2-メチルプロピル)基、1-ペンチル基、2-ペンチル基、3-ペンチル基、1-(2-メチルブチル)基、1-(3-メチルブチル)基、2-(2-メチルブチル)基、2-(3-メチルブチル)基、ネオペンチル基、1-ヘキシル基、2-ヘキシル基、3-ヘキシル基、1-(2-メチルペンチル)基、1-(3-メチルペンチル)基、1-(4-メチルペンチル)基、2-(2-メチルペンチル)基、2-(3-メチルペンチル)基、2-(4-メチルペンチル)基、3-(2-メチルペンチル)基、3-(3-メチルペンチル)基等が挙げられる。
 上記R10で表される炭素数1~10のアルコキシル基としては、例えばメトキシ基、エトキシ基、n-ブトキシ基、t-ブトキシ基、プロポキシ基、イソプロポキシ基等が挙げられる。
 上記R10で表される炭素数1~10のアシル基としては、例えばアセチル基、エチルカルボニル基、プロピルカルボニル基等が挙げられる。
 上記R10で表される炭素数1~10のアシロキシ基としては、例えばアセトキシ基、エチリルオキシ基、ブチリルオキシ基、t-ブチリルオキシ基、t-アミリルオキシ基、n-ヘキサンカルボニロキシ基、n-オクタンカルボニロキシ基等が挙げられる。
 上記R11又はR12で表される炭素数1~10のアルキル基としては、例えば上記R10で例示した炭素数1~10のアルキル基と同様の基等が挙げられる。
 R11及びR12が互いに結合してそれらが結合する炭素原子とともに形成してもよい炭素数4~20の脂環式構造としては、例えばシクロペンチル基、シクロペンチルメチル基、1-(1-シクロペンチルエチル)基、1-(2-シクロペンチルエチル)基、シクロヘキシル基、シクロヘキシルメチル基、1-(1-シクロヘキシルエチル)基、1-(2-シクロヘキシルエチル基)、シクロヘプチル基、シクロヘプチルメチル基、1-(1-シクロヘプチルエチル)基、1-(2-シクロヘプチルエチル)基、2-ノルボルニル基等が挙げられる。
 上記式(R1-4)で表されるものの具体例としては、メチル基、エチル基、1-プロピル基、2-プロピル基、1-ブチル基、2-ブチル基、1-ペンチル基、2-ペンチル基、3-ペンチル基、1-(2-メチルブチル)基、1-(3-メチルブチル)基、2-(3-メチルブチル)基、ネオペンチル基、1-ヘキシル基、2-ヘキシル基、3-ヘキシル基、1-(2-メチルペンチル)基、1-(3-メチルペンチル)基、1-(4-メチルペンチル)基、2-(3-メチルペンチル)基、2-(4-メチルペンチル)基、3-(2-メチルペンチル)基等が挙げられる。これらの中でも、メチル基、エチル基、1-プロピル基、2-プロピル基、1-ブチル基、2-ブチル基が好ましい。
 上記官能基(x)を有する構造単位としては、下記式(c-1)で表される構造単位(以下、「構造単位(c-1)」ともいう。)を有するものが挙げられる。構造単位(c-1)は上記官能基(x)がX、R、R及びEを介して主鎖に結合された構造単位である。
Figure JPOXMLDOC01-appb-C000007
 上記式(c-1)中、Rは、アルカリ解離性基である。Aは、酸素原子、イミノ基、-CO-O-*又は-CO-O-*又は-SO-O-*である。「*」は、Rに結合する結合手を示す。Rは、単結合、メチレン基、炭素数2~10の直鎖状若しくは分岐状のアルキレン基又は炭素数4~20の環状炭化水素基である。Xは、単結合、ジフルオロメチレン基又は炭素数2~20の直鎖状若しくは分岐状のパーフルオロアルキレン基である。Rは、単結合又は炭素数1~20の(n+1)価の炭化水素基、又は該炭化水素基の炭素-炭素間結合又はR側の末端に酸素原子、硫黄原子、イミノ基、カルボニル基、-CO-O-又は-CO-NH-を有する構造を示す。Eは、酸素原子、-CO-O-*又は-CO-NH-*である。「*」は、Rに結合する結合手を示す。Rは、水素原子、メチル基又はトリフルオロメチル基である。nは1~3の整数である。但し、nが2又は3の場合、複数のR、R、X及びAは、それぞれ同一でも異なっていてもよい。
 上記Xとしては、例えば下記式(X-1)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000008
 上記式(X-1)中、pは1~4の整数である。Rfは相互に独立にフッ素原子又は炭素数1~10のパーフルオロアルキル基である。
 上記式(X-1)で表される構造としては、例えば下記式(X-2)及び(X-3)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 上記式(c-1)中、Rは、単結合又は炭素数1~20の(n+1)価の炭化水素基、又は該炭化水素基の炭素-炭素結合間又はR側の末端に酸素原子、硫黄原子、イミノ基、カルボニル基、-CO-O-又は-CO-NH-を有する構造を示す。nは、1~3の整数である。従って、構造単位(c-1)には官能基(x)が1~3個導入される。nが2又は3の場合、複数のR、R及びAは、それぞれ同一でも異なっていてもよい。即ち、nが2又は3の場合、複数の官能基(x)は同じ構造のものであってもよいし、異なる構造のものであってもよい。また、nが2又は3の場合、複数の官能基(x)がRの同一の炭素原子に結合していてもよいし、異なる炭素原子に結合していてもよい。
 鎖状構造のRとしては、例えばメタン、エタン、プロパン、ブタン、2-メチルプロパン、ペンタン、2-メチルブタン、2,2-ジメチルプロパン、ヘキサン、ヘプタン、オクタン、ノナン、デカン等の炭素数1~10の鎖状炭化水素から水素原子を(n+1)個取り除いた構造の(n+1)価炭化水素基等が挙げられる。
 また、環状構造のRとしては、例えばシクロブタン、シクロペンタン、シクロヘキサン、ビシクロ[2.2.1]ヘプタン、ビシクロ[2.2.2]オクタン、トリシクロ[5.2.1.02,6]デカン、トリシクロ[3.3.1.13,7]デカン等の脂環式炭化水素から水素原子を(n+1)個取り除いた構造の(n+1)価炭化水素基;ベンゼン、ナフタレン等の芳香族炭化水素から水素原子を(n+1)個取り除いた構造の(n+1)価炭化水素基等が挙げられる。
 また、RのR側の末端に酸素原子、硫黄原子、イミノ基、カルボニル基、-CO-O-又は-CO-NH-が結合された構造としては、例えば下記式で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000011
 また、環状構造の炭化水素基の炭素-炭素結合間に、酸素原子、硫黄原子、イミノ基、カルボニル基、-CO-O-又は-CO-NH-を有する構造、さらにこれらの構造に-CO-、-COO-、-OCO-、-O-、-NR-、-CS-、-S-、-SO-及び-SO-からなる群より選ばれる少なくとも1種の基が含まれるもの等が挙げられる。
 上記酸素原子と炭素数1~20の炭化水素基とから構成される環構造としては、炭素数3~8の環状エーテル構造等を挙げることができる。
 上記硫黄原子と炭素数1~20の炭化水素基とから構成される環構造としては、炭素数3~8の環状チオエーテル構造等をあげることができる。
 上記イミノと炭素数1~20の炭化水素基とから構成される環構造としては、炭素数3~8の環状アミン構造等を挙げることができる。
 上記カルボニル基と炭素数1~20の炭化水素基とから構成される環構造としては、炭素数3~8の環状ケトン構造等を挙げることができる。
 上記-CO-O-と炭素数1~20の炭化水素基とから構成される環構造としては、炭素数3~8のラクトン構造等を挙げることができる。
 上記-CO-NH-と炭素数1~20の炭化水素基とから構成される環構造としては、炭素数3~8の環状アミド構造等を挙げることができる。
 上記式(c-1)中、Rで表される基のうち、炭素数1~20の2価の直鎖状又は分岐状の飽和又は不飽和の炭化水素基としては、例えばメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、2-メチルプロピル基、1-メチルプロピル基、t-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等の炭素数1~20の直鎖状又は分岐状のアルキル基に由来する2価の炭化水素基等が挙げられる。
 また、2価の環状の飽和又は不飽和の炭化水素基としては、例えば炭素数3~20の脂環式炭化水素又は芳香族炭化水素に由来する基等が挙げられる。脂環式炭化水素としては、具体的には、シクロブタン、シクロペンタン、シクロヘキサン、ビシクロ[2.2.1]ヘプタン、ビシクロ[2.2.2]オクタン、トリシクロ[5.2.1.02,6]デカン、トリシクロ[3.3.1.13,7]デカン、テトラシクロ[6.2.1.13,6.02,7]ドデカン等のシクロアルカン類等が挙げられる。また、芳香族炭化水素としては、具体的には、ベンゼン、ナフタレン等が挙げられる。
 なお、上記式(c-1)中、Rで表される炭化水素基としては、少なくとも1つの水素原子を、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、2-メチルプロピル基、1-メチルプロピル基、t-ブチル基等の炭素数1~12の直鎖状、分岐状又は環状のアルキル基、ヒドロキシル基、シアノ基、炭素数1~10のヒドロキシアルキル基、カルボキシル基、酸素原子等の1種又は2種以上により置換されたものであってもよい。
 上記式(c-1)中、Rは水素原子、メチル基又はトリフルオロメチル基であり、Eは酸素原子、-CO-O-*又は-CO-NH-*(「*」はRに結合する結合手を示す。)である。中でも、Eが-CO-O-*のものが好ましい。即ち、[A]フッ素原子含有重合体は、構造単位(c-1)として下記式(c-1a)で表される構造単位(以下、「構造単位(c-1a)」と記す場合がある。)を有することが好ましい。
Figure JPOXMLDOC01-appb-C000012
 上記式(c-1a)中、R、R、R、R、A、X及びnは、上記式(c-1)と同義である。
 このような構造単位(c-1a)としては、下記式(c-1a-1)で表される構造単位(以下、「構造単位(c-1a-1)」と記す場合がある。)又は下記式(c-1a-2)で表される構造単位(以下、「構造単位(c-1a-2)」と記す場合がある。)が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 上記式(c-1a-1)中、R、R、R、X及びnは、上記式(c-1)と同義である。Rは、上記式(R1-1)と同義である。
Figure JPOXMLDOC01-appb-C000014
 上記式(c-1a-2)中、R、R及びXは、上記式(c-1)と同義である。R31はメチレン基、炭素数2~10の直鎖状若しくは分岐状のアルキレン基又は炭素数4~20の2価の環状炭化水素基を示し、R側の末端に酸素原子、硫黄原子、イミノ基、カルボニル基、-CO-O-又は-CO-NH-が結合された構造のものも含む。Rは、下記式(1)~(3)で表される基のうちいずれかを示す。
Figure JPOXMLDOC01-appb-C000015
 上記式(1)及び(2)中、R10は、ハロゲン原子又は炭素数1~10のアルキル基、アルコキシル基、アシル基若しくはアシロキシ基を示し、複数存在する場合は同一でも異なっていてもよい。mは0~5の整数を示し、mは0~4の整数を示す。上記式(3)中、R11及びR12は、それぞれ独立して、水素原子又は炭素数1~10のアルキル基を示し、R11及びR12が互いに結合して炭素数4~20の脂環式構造を形成してもよい。
 R31の具体例としては上記Rの説明においてn=1としたものと同義である。
 構造単位(c-1a-1)の具体例としては、例えば下記式(c-1a-1a)~(c-1a-1b)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 上記式(c-1a-1a)及び式(c-1a-1b)中、Rは、上記式(c-1)と同義である。Rは、上記式(R1-1)と同義である。n1は相互に独立に0~4の整数を示す。Rfは相互に独立にフッ素原子又は炭素数1~10のパーフルオロアルキル基を示し、好ましくはフッ素原子又はトリフルオロメチル基である。Rは、上記式(c-1)と同義である。R31は、上記式(c-1a-2)と同義である。R32は、炭素数1~10の直鎖状若しくは分岐状の3価の炭化水素基、又は炭素数4~20で3価の環状炭化水素基を示し、R側の末端に酸素原子、硫黄原子、カルボニル基又はイミノ基を有していてもよい。R32の具体例としては、上記Rの説明においてn=2としたものと同義である。
 上記式(c-1a-1a)及び上記式(c-1a-1b)においてn1が1以上のものは、アルカリ水溶液との反応によりα位にフッ素原子又はパーフルオロアルキル基を有するOH基が生じる。このようなOH基はアルコール性OH基と比較して低いpKa値を有するため、親水性の向上の観点から好ましい。
 上記式(c-1a-1a)で表される構造単位の具体例としては、下記式(c-1a-1c)~(c-1a-1f)で表されるものが挙げられる。また、上記式(c-1a-1b)で表される構造単位の具体例としては、下記式(c-1a-1g)又は(c-1a-1h)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 上記式(c-1a-1c)~(c-1a-1h)中、Rは、上記式(R1-1)と同義である。Rは、上記式(c-1)と同義である。
 構造単位(c-1a-2)の具体例としては、例えば、下記式(c-1a-2a)~(c-1a-2b)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 上記式(c-1a-2a)及び上記式(c-1a-2b)中、Rは、上記式(c-1)と同義である。Rは、上記式(c-1a-2)と同義である。n2は相互に独立に0~4の整数を示す。Rfは相互に独立にフッ素原子又は炭素数1~10のパーフルオロアルキル基を示し、好ましくはフッ素原子又はトリフルオロメチル基である。R21は相互に独立にメチレン基、炭素数2~10の直鎖状若しくは分岐状のアルキレン基、又は炭素数4~20の2価の環状炭化水素基を示す。R22は単結合又はR21の説明におけるものと同義のものを示す。
 上記式(c-1a-2a)及び一般式(c-1a-2b)においてn2が1以上のものは、カルボニルオキシ基のα位にフッ素原子又はパーフルオロアルキル基を有しており、アルカリ水溶液に対する反応性が高くなると考えられる。また、アルカリ解離性基が加水分解して生じるCOOH基のpKaも低いものとなり、親水性向上の観点から好ましい。
 上記式(c-1a-2a)で表される構造単位の具体例としては、下記式(c-1a-2e)~(c-1a-2f)で表されるものが挙げられる。また、上記式(c-1a-2b)で表される構造単位の具体例としては、下記式(c-1a-2c)~(c-1a-2d)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 上記式(c-1a-2c)~(c-1a-2f)中、Rは、上記式(c-1)と同義である。Rは、上記式(c-1a-2)と同義である。
 その他、上記官能基(x)を有する構造単位としては、下記式で表される構造単位も挙げられる。
Figure JPOXMLDOC01-appb-C000030
 上記式中、Ra6は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Ra9は、水素原子又はトリフルオロエトキシカルボニル基またはヘキサフルオロイソプロポキシカルボニル基である。Za1は単結合又はメチレン基である。Za2はメチレン基又は酸素原子である。bは0又は1である。
 上記式で表される構造単位の具体例として、下記式で表される構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000031
 上記式中、Ra6は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
 [A]フッ素原子含有重合体におけるアルカリ解離性基を含む構造単位(a1)の含有割合としては、[A]フッ素原子含有重合体を構成する全構造単位に対して、5モル%以上が好ましく、10モル%~90モル%がより好ましく、40モル%~90モル%が特に好ましい。構造単位(a1)の含有割合が5モル%未満では、現像性が低下し欠陥性能が悪化するおそれがある。
[酸解離性基を含む構造単位(a2)]
 酸解離性基を含む構造単位(a2)としては、例えば下記式(5)で表される構造単位が挙げられる。
 上記式(5)中、Ra1は、水素原子又はメチル基である。Ra2~Ra4は、それぞれ独立して、炭素数1~4のアルキル基又は炭素数4~20の脂環式炭化水素基である。但し、Ra3とRa4とは互いに結合して、それらが結合している炭素原子と共に、炭素数4~20の2価の脂環式炭化水素基を形成していてもよい。
 上記炭素数1~4のアルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、2-メチルプロピル基、1-メチルプロピル基、t-ブチル基等が挙げられる。
 上記炭素数4~20の脂環式炭化水素基、又はRa3とRa4が互いに結合して、それらが結合している炭素原子と共に形成する炭素数4~20の脂環式炭化水素基としては、アダマンタン骨格、ノルボルナン骨格等の有橋式骨格を有する多環の脂環式基;シクロペンタン、シクロヘキサン等のシクロアルカン骨格を有する単環の脂環式基が挙げられる。また、これらの基は、例えば炭素数1~10の直鎖状、分岐状又は環状のアルキル基の1種以上で置換されていてもよい。
 構造単位(a2)としては、下記式で表される構造単位が好ましい。
Figure JPOXMLDOC01-appb-C000033
 上記式中、Ra1は、上記式(5)と同義である。Ra5は炭素数1~4のアルキル基である。mは1~6の整数である。
 これらのうち、下記式(5-1)~(5-20)で表される構造単位がより好ましく、(5-4)及び(5-12)が特に好ましい。
Figure JPOXMLDOC01-appb-C000034
 上記式中、Ra1は上記式(5)と同義である。
 [A]フッ素原子含有重合体における構造単位(a2)の含有割合としては、[A]フッ素原子含有重合体を構成する全構造単位に対して、5モル%~80モル%が好ましく、10モル%~80モル%がより好ましく、10モル%~60モル%が特に好ましい。構造単位(a2)の含有割合が80モル%を超えると、液浸露光時のスキャン性が低下したり、欠陥性能が悪化するおそれがある。
 構造単位(a2)を与える単量体としては、例えば(メタ)アクリル酸-ビシクロ[2.2.1]ヘプト-2-イルエステル、(メタ)アクリル酸-ビシクロ[2.2.2]オクタ-2-イルエステル、(メタ)アクリル酸-トリシクロ[5.2.1.02,6]デカ-7-イルエステル、(メタ)アクリル酸-トリシクロ[3.3.1.13,7]デカ-1-イルエステル、(メタ)アクリル酸-トリシクロ[3.3.1.13,7]デカ-2-イルエステル等が挙げられる。
[構造単位(a3)]
 構造単位(a3)としては、例えば下記式(6)で表される構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000035
 上記式(6)中、Ra14は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Ra10はフッ素原子を有する炭素数1~6の直鎖状若しくは分岐状のアルキル基、又はフッ素原子を有する炭素数4~20の1価の脂環式炭化水素基である。但し、上記アルキル基及び脂環式炭化水素基は水素原子の一部又は全部が置換されていてもよい。
 上記炭素数1~6の直鎖状若しくは分岐状のアルキル基としては、例えばメチル基、エチル基、プロピル基、ブチル基等が挙げられる。
 炭素数4~20の1価の脂環式炭化水素基としては、例えばシクロペンチル基、シクロペンチルプロピル基、シクロヘキシル基、シクロヘキシルメチル基、シクロヘプチル基、シクロオクチル基、シクロオクチルメチル基等が挙げられる。
 上記式(6)で表される構造単位(a3)としては、下記式(6-1)及び(6-2)で表される構造単位が好ましい。
Figure JPOXMLDOC01-appb-C000036
 上記式(6-1)及び(6-2)中、Ra14は、上記式(6)と同義である。
 構造単位(a3)を与える単量体としては、例えばトリフルオロメチル(メタ)アクレート、2,2,2-トリフルオロエチル(メタ)アクリレート、パーフルオロエチル(メタ)アクリレート、パーフルオロn-プロピル(メタ)アクリレート、パーフルオロi-プロピル(メタ)アクリレート、パーフルオロn-ブチル(メタ)アクリレート、パーフルオロi-ブチル(メタ)アクリレート、パーフルオロt-ブチル(メタ)アクリレート、パーフルオロシクロヘキシル(メタ)アクリレート、2-(1,1,1,3,3,3-ヘキサフルオロ)プロピル(メタ)アクリレート、1-(2,2,3,3,4,4,5,5-オクタフルオロ)ペンチル(メタ)アクリレート、1-(2,2,3,3,4,4,5,5-オクタフルオロ)ヘキシル(メタ)アクリレート、パーフルオロシクロヘキシルメチル(メタ)アクリレート、1-(2,2,3,3,3-ペンタフルオロ)プロピル(メタ)アクリレート、1-(2,2,3,3,4,4,4-ヘプタフルオロ)ペンタ(メタ)アクリレート、1-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロ)デシル(メタ)アクリレート、1-(5-トリフルオロメチル-3,3,4,4,5,6,6,6-オクタフルオロ)ヘキシル(メタ)アクリレート等が挙げられる。
 構造単位(a3)としては、上記式(6)で表される構造単位以外に下記式(7)で表される構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000037
 上記式(7)中、Ra11は、水素原子、メチル基又はトリフルオロメチル基である。Ra12は、(k+1)価の連結基である。Xは、フッ素原子を有する2価の連結基である。Ra13は、水素原子又は1価の有機基である。kは、1~3の整数である。但し、kが2又は3の場合、複数のX及びRa13は、それぞれ同一でも異なっていてもよい。
 上記Ra12で表される(k+1)価の連結基としては、例えば炭素数1~30の直鎖状又は分岐状の炭化水素基、炭素数3~30の脂環式炭化水素基、炭素数6~30の芳香族炭化水素基、又はこれらの基と酸素原子、硫黄原子、エーテル基、エステル基、カルボニル基、イミノ基及びアミド基からなる群より選ばれる1種以上の基とを組み合わせた基が挙げられる。また、上記(k+1)価の連結基は置換基を有していてもよい。
 炭素数1~30の直鎖状又は分岐状の炭化水素基としては、例えばメタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、デカン、イコサン、トリアコンタン等の炭化水素基から(k+1)個の水素原子を除いた基が挙げられる。
 炭素数3~30の脂環式炭化水素基としては、例えば
 シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、シクロデカン、メチルシクロヘキサン、エチルシクロヘキサン等の単環式飽和炭化水素;
 シクロブテン、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロオクテン、シクロデセン、シクロペンタジエン、シクロヘキサジエン、シクロオクタジエン、シクロデカジエン等の単環式不飽和炭化水素;
 ビシクロ[2.2.1]ヘプタン、ビシクロ[2.2.2]オクタン、トリシクロ[5.2.1.02,6]デカン、トリシクロ[3.3.1.13,7]デカン、テトラシクロ[6.2.1.13,6.02,7]ドデカン、アダマンタン等の多環式飽和炭化水素;
 ビシクロ[2.2.1]ヘプテン、ビシクロ[2.2.2]オクテン、トリシクロ[5.2.1.02,6]デセン、トリシクロ[3.3.1.13,7]デセン、テトラシクロ[6.2.1.13,6.02,7]ドデセン等の多環式炭化水素基から(m+1)個の水素原子を除いた基等が挙げられる
 炭素数6~30の芳香族炭化水素基としては、例えばベンゼン、ナフタレン、フェナントレン、アントラセン、テトラセン、ペンタセン、ピレン、ピセン、トルエン、キシレン、エチルベンゼン、メシチレン、クメン等の芳香族炭化水素基から(m+1)個の水素原子を除いた基等が挙げられる。
 上記Xで表されるフッ素原子を有する2価の連結基としては、フッ素原子を有する炭素数1~20の2価の直鎖状炭化水素基が挙げられる。Xとしては、例えば下記式(X-1)~(X-6)で表される構造等が挙げられる。
Figure JPOXMLDOC01-appb-C000038
 Xとしては、上記式(X-1)及び(X-2)で表される構造が好ましい。
 上記Ra13で表される1価の有機基としては、例えば炭素数1~30の直鎖状又は分岐状の炭化水素基、炭素数3~30の脂環式炭化水素基、炭素数6~30の芳香族炭化水素基、又はこれらの基と酸素原子、硫黄原子、エーテル基、エステル基、カルボニル基、イミノ基及びアミド基からなる群より選ばれる1種以上の基とを組み合わせた基等が挙げられる。
 構造単位(a3)としては、例えば下記式(7-1)及び(7-2)で表される構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000039
 上記式(7-1)中、Ra18は炭素数1~20の2価の直鎖状、分岐状又は環状の飽和若しくは不飽和の炭化水素基である。Ra11、X及びRa13は上記式(7)と同義である。
 上記式(7-2)中、Ra11、X、Ra13及びkは上記式(7)と同義である。但し、kが2又は3の場合、複数のX及びRa13はそれぞれ同一でも異なっていてもよい。
 上記式(7-1)及び式(7-2)で表される構造単位としては、例えば下記式(7-1-1)、式(7-1-2)及び式(7-2-1)で表される構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000040
 上記式(7-1-1)、(7-1-2)及び(7-2-1)中、Ra11は上記式(7)と同義である。
 構造単位(a3)を与える単量体としては、例えば(メタ)アクリル酸(1,1,1-トリフルオロ-2-トリフルオロメチル-2-ヒドロキシ-3-プロピル)エステル、(メタ)アクリル酸(1,1,1-トリフルオロ-2-トリフルオロメチル-2-ヒドロキシ-4-ブチル)エステル、(メタ)アクリル酸(1,1,1-トリフルオロ-2-トリフルオロメチル-2-ヒドロキシ-5-ペンチル)エステル、(メタ)アクリル酸(1,1,1-トリフルオロ-2-トリフルオロメチル-2-ヒドロキシ-4-ペンチル)エステル、(メタ)アクリル酸2-{[5-(1’,1’,1’-トリフルオロ-2’-トリフルオロメチル-2’-ヒドロキシ)プロピル]ビシクロ[2.2.1]ヘプチル}エステル等が挙げられる。
 [A]フッ素原子含有重合体における構造単位(a3)の含有割合としては、[A]フッ素原子含有重合体を構成する全構造単位に対して、2モル%~70モル%が好ましく、2モル%~30モル%がより好ましい。構造単位(a3)の含有割合が2モル%未満では、撥水性が低く欠陥性能が悪化するおそれがある。なお、[A]フッ素原子含有重合体は、構造単位(a3)を2種以上有してもよい。
 [A]フッ素原子含有重合体におけるフッ素原子を有する構造単位の含有割合としては、[A]フッ素原子含有重合体を構成する全構造単位に対して、20モル%以上90モル%以下が好ましく、30モル%以上80モル%以下が好ましく、40モル%以上70モル%がより好ましい。フッ素原子を有する構造単位の含有割合を上記範囲とすることで、形成されるレジスト膜の表面自由エネルギーをより適度なものとすること等ができる。
[極性基を有する構造単位(a4)]
 極性基を有する構造単位(a4)としては、例えば下記式で表される構造単位が挙げられる。
 上記式中、Ra15は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
 これらのうち、上記式(a4-12)で表される構造単位が好ましい。
 [A]フッ素原子含有重合体における構造単位(a4)の含有割合としては、[A]フッ素原子含有重合体を構成する全構造単位に対して、80モル%以下が好ましく、40モル%以下がより好ましい。なお、[A]フッ素原子含有重合体は構造単位(a4)を2種以上有してもよい。
[ラクトン構造、スルトン構造又は環状カーボネート構造を有する構造単位(a5)]
 [A]フッ素原子含有重合体は、ラクトン構造、スルトン構造又は環状カーボネート構造を有する構造単位(a5)をさらに含むことができる。構造単位(a5)を有することで、レジスト膜の基板への密着性を向上できる。
 構造単位(a5)としては、例えば下記式で表される構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000042
 上記式中、Ra16は水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Ra7は水素原子又はメチル基である。Ra8は水素原子又はメトキシ基である。Za1は単結合又はメチレン基である。Za2はメチレン基又は酸素原子である。a及びbは0又は1である。
 構造単位(a5)としては、下記式で表される構造単位が好ましい。
Figure JPOXMLDOC01-appb-C000043
 上記式中、Ra16は水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
 [A]フッ素原子含有重合体における構造単位(a5)の含有割合としては、[A]フッ素原子含有重合体を構成する全構造単位に対して、50モル%以下が好ましく、30モル%以下がより好ましい。
 構造単位(a5)を与える好ましい単量体としては、例えば国際公開2007/116664号パンフレットに記載の単量体が挙げられる。
 [A]フッ素原子含有重合体の含有量としては、後述する[B]重合体100質量部に対して、0.1質量部~20質量部が好ましく、1質量部~15質量部がより好ましく、1質量部~10質量部が特に好ましい。0.1質量部未満であると、[A]フッ素原子含有重合体を含有させる効果が十分ではない場合がある。一方、20質量部を超えると、レジストとしてのパターン形成能が悪化する場合がある。
<[A]フッ素原子含有重合体の合成方法>
 [A]フッ素原子含有重合体は、ラジカル重合等の常法に従って合成できる。例えば、
 単量体及びラジカル開始剤を含有する溶液を、反応溶媒又は単量体を含有する溶液に滴下して重合反応させる方法;
 単量体を含有する溶液と、ラジカル開始剤を含有する溶液とを各別に、反応溶媒又は単量体を含有する溶液に滴下して重合反応させる方法;
 各々の単量体を含有する複数種の溶液と、ラジカル開始剤を含有する溶液とを各別に、反応溶媒又は単量体を含有する溶液に滴下して重合反応させる方法;
単量体及びラジカル開始剤を含有する溶液を無溶媒中や反応溶媒中で重合反応させる方法;
等の方法で合成することが好ましい。なお、単量体溶液に対して、単量体溶液を滴下して反応させる場合、滴下される単量体溶液中の単量体量は、重合に用いられる単量体総量に対して30モル%以上が好ましく、50モル%以上がより好ましく、70モル%以上が特に好ましい。
 これらの方法における反応温度は開始剤種によって適宜決定すればよい。通常30℃~180℃であり、40℃~160℃が好ましく、50℃~140℃がさらに好ましい。滴下時間は、反応温度、開始剤の種類、反応させる単量体等の条件によって異なるが、通常、30分~8時間であり、45分~6時間が好ましく、1時間~5時間がより好ましい。また、滴下時間を含む全反応時間も、滴下時間と同様に条件により異なるが、通常、30分~8時間であり、45分~7時間が好ましく、1時間~6時間がより好ましい。
 上記重合に使用されるラジカル開始剤としては、アゾビスイソブチロニトリル(AIBN)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-シクロプロピルプロピオニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等が挙げられる。これらの開始剤は単独で又は2種以上を混合して使用できる。
 上記重合に使用される溶媒としては、例えば
 メタノール、エタノール、1-プロパノール、2-プロパノール、4-メチル-2-ペンタノール等のアルコール類;
 アセトン、2-ブタノン、4-メチル-2-ペンタノン、2-ヘプタノン等のケトン類;
 酢酸エチル、酢酸n-ブチル、酢酸i-ブチル、プロピオン酸メチル等の飽和カルボン酸エステル類;
 n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカン等のアルカン類;
 シクロヘキサン、シクロヘプタン、シクロオクタン、デカリン、ノルボルナン等のシクロアルカン類;
 ベンゼン、トルエン、キシレン、エチルベンゼン、クメン等の芳香族炭化水素類;
 クロロブタン類、ブロモヘキサン類、ジクロロエタン類、ヘキサメチレンジブロミド、クロロベンゼン等のハロゲン化炭化水素類;
 テトラヒドロフラン、ジメトキシエタン類、ジエトキシエタン類等のエーテル類;
等が挙げられる。これらの溶媒は、単独で使用してもよく2種以上を併用してもよい。
 重合反応により得られた樹脂は、再沈殿法により回収することが好ましい。すなわち、重合反応終了後、重合液を再沈溶媒に投入することにより、目的の樹脂を粉体として回収する。再沈溶媒としては、アルコール類やアルカン類等を単独で又は2種以上を混合して使用することができる。再沈殿法の他に、分液操作やカラム操作、限外ろ過操作等により、単量体、オリゴマー等の低分子成分を除去して、樹脂を回収することもできる。
 [A]フッ素原子含有重合体のゲルパーミエーションクロマトグラフィ(GPC)によるポリスチレン換算重量平均分子量(Mw)は、特に限定されないが、1,000以上500,000以下が好ましく、2,000以上400,000以下がより好ましく、3,000以上300,000以下が特に好ましい。なお、[A]フッ素原子含有重合体のMwが1,000未満であると、レジストとしたときの耐熱性が低下する傾向がある。一方、[A]フッ素原子含有重合体のMwが500,000を超えると、レジストとしたときの現像性が低下する傾向がある。
 また、[A]フッ素原子含有重合体のGPCによるポリスチレン換算数平均分子量(Mn)に対するMwの比(Mw/Mn)は、通常、1以上5以下であり、1以上3以下が好ましく、1以上2以下がより好ましい。Mw/Mnをこのような範囲とすることで、フォトレジスト膜が解像性能に優れたものとなる。
 本明細書のMw及びMnは、GPCカラム(東ソー製、G2000HXL 2本、G3000HXL 1本、G4000HXL 1本)を用い、流量1.0mL/分、溶出溶媒テトラヒドロフラン、カラム温度40℃の分析条件で、単分散ポリスチレンを標準とするGPCにより測定した値をいう。
<[B]重合体>
 [B]重合体は、酸解離性基を有し、[A]フッ素原子含有重合体よりもフッ素原子含有率が小さいベース重合体である。[B]重合体におけるフッ素原子含有率が[A]フッ素原子含有重合体におけるフッ素原子含有率よりも小さいので、[B]重合体及び[A]フッ素原子含有重合体を含有する感放射線性樹脂組成物によって形成されたレジスト膜において、[A]フッ素原子含有重合体がその表層に偏在化する傾向がより強くなるため、[A]フッ素原子含有重合体の疎水性及びその低下に起因する動的接触角に関する特性がより効果的に発揮される。「ベース重合体」とは、感放射線性樹脂組成物から形成されるレジスト膜の主成分となる重合体をいい、好ましくは、レジスト膜を構成する全重合体に対して50質量%以上を占める重合体をいう。なお、このフッ素原子含有率(質量%)は、[B]重合体及び[A]フッ素原子含有重合体の構造単位の組成比から算出して求めることができる。
 [B]重合体は、アルカリ解離性基を有さないことが好ましい。これにより、[B]重合体は、酸解離性基を有するアルカリ不溶性又はアルカリ難溶性の樹脂であって、酸解離性基が解離した時にアルカリ可溶性となる樹脂となる。また、アルカリ解離性基を有さないことにより、未露光部においてはアルカリ現像液には不溶性となる。なお、本発明において「アルカリ不溶性又はアルカリ難溶性である」とは、当該感放射線性樹脂組成物から形成されたレジスト膜からレジストパターンを形成する際に採用されるアルカリ現像条件下で、レジスト膜の代わりに[B]重合体のみを用いた被膜を現像した場合に、当該被膜の初期膜厚の50%以上が現像後に残存する性質を有することを言う。
 [B]重合体は、構造単位として、酸解離性基を含む構造単位(b1)を有し、ラクトン構造又は環状カーボネート構造を有する構造単位(b2)、極性基を含む構造単位(b3)を有することができる。
 構造単位(b1)としては、[A]フッ素原子含有重合体における構造単位(a2)として挙げたものと同様の構造単位が挙げられる。構造単位(b2)としては、[A]フッ素原子含有重合体における構造単位(a5)として挙げたものと同様の構造単位が挙げられる。また、構造単位(b3)としては、[A]フッ素原子含有重合体における構造単位(a4)として挙げたものと同様の構造単位が挙げられる。
 [B]重合体における構造単位(b1)の含有割合としては、[B]重合体を構成する全構造単位に対して、5モル%~90モル%が好ましく、10モル%~80モル%がより好ましく、20モル%~70モル%が特に好ましい。構造単位(b1)の含有割合が90モル%を超えると、レジスト膜の密着性が低下し、パターン倒れやパターン剥れを起こすおそれがある。なお、[B]重合体は、構造単位(b1)を2種以上有してもよい。
 [B]重合体における構造単位(b2)の含有割合としては、[B]重合体を構成する全構造単位に対して、0モル%~70モル%が好ましく、10モル%~60モル%がより好ましい。このような含有割合とすることによって、基板との密着性を向上させることができる。一方、70モル%を超えると、レジストとしての解像性やLWRが低下するおそれがある。
 [B]重合体における構造単位(b3)の含有割合としては、[B]重合体を構成する全構造単位に対して、0モル%~30モル%が好ましく、5モル%~20モル%がより好ましい。
<[B]重合体の合成方法>
 [B]重合体は、例えば所定の各構造単位に対応する単量体を、ラジカル重合開始剤を使用し、適当な溶媒中で重合することにより製造できる。
 上記重合に使用される溶媒としては、例えば[A]フッ素原子含有重合体の合成方法で挙げたものと同様の溶媒が挙げられる。
 上記重合における反応温度としては、通常40℃~150℃、50℃~120℃が好ましい。反応時間としては、通常1時間~48時間、1時間~24時間が好ましい。
 [B]重合体のGPC法によるMwとしては、1,000~100,000が好ましく、1,000~50,000がより好ましく、1,000~30,000が特に好ましい。[B]重合体のMwを上記範囲とすることで、これを含有する当該感放射線性樹脂組成物はリソグラフィー性能に優れる。
 [B]重合体のMwとMnとの比(Mw/Mn)としては、通常1~3であり、好ましくは1~2である。
 当該感放射線性樹脂組成物における[B]重合体の含有量としては、全固形分に対して、通常、50質量%以上であり、60質量%以上が好ましい。含有量が50質量%未満だと、レジストとしての解像性能が低下する場合がある。
<[C]酸発生体>
 [C]酸発生体は、露光により酸を発生し、その酸により[A]フッ素原子含有重合体及び[B]重合体中に存在する酸解離性基を解離させる。その結果、[A]フッ素原子含有重合体及び[B]重合体が現像液に溶解性となる。当該感放射線性樹脂組成物における[C]酸発生体の含有形態としては、後述するような化合物の形態(以下「[C]酸発生剤」ともいう)でも、重合体の一部として組み込まれた形態でも、これら両方の形態でもよい。
 [C]酸発生体としては、スルホニウム塩やヨードニウム塩等のオニウム塩化合物、有機ハロゲン化合物、ジスルホン類やジアゾメタンスルホン類等のスルホン化合物が挙げられる。これらのうち、[C]酸発生体の好適な具体例としては、例えば、特開2009-134088号公報の段落[0080]~[0113]に記載されている化合物等が挙げられる。
 [C]酸発生体としては、具体的には、ジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムノナフルオロ-n-ブタンスルホネート、ジフェニルヨードニウムパーフルオロ-n-オクタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムノナフルオロ-n-ブタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムパーフルオロ-n-オクタンスルホネート、トリフェニルスルホニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムノナフルオロ-n-ブタンスルホネート、トリフェニルスルホニウムパーフルオロ-n-オクタンスルホネート、シクロヘキシル・2-オキソシクロヘキシル・メチルスルホニウムトリフルオロメタンスルホネート、ジシクロヘキシル・2-オキソシクロヘキシルスルホニウムトリフルオロメタンスルホネート、2-オキソシクロヘキシルジメチルスルホニウムトリフルオロメタンスルホネート、4-ヒドロキシ-1-ナフチルジメチルスルホニウムトリフルオロメタンスルホネート、
 4-ヒドロキシ-1-ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4-ヒドロキシ-1-ナフチルテトラヒドロチオフェニウムノナフルオロ-n-ブタンスルホネート、4-ヒドロキシ-1-ナフチルテトラヒドロチオフェニウムパーフルオロ-n-オクタンスルホネート、1-(1-ナフチルアセトメチル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(1-ナフチルアセトメチル)テトラヒドロチオフェニウムノナフルオロ-n-ブタンスルホネート、1-(1-ナフチルアセトメチル)テトラヒドロチオフェニウムパーフルオロ-n-オクタンスルホネート、1-(3,5-ジメチル-4-ヒドロキシフェニル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(3,5-ジメチル-4-ヒドロキシフェニル)テトラヒドロチオフェニウムノナフルオロ-n-ブタンスルホネート、1-(3,5-ジメチル-4-ヒドロキシフェニル)テトラヒドロチオフェニウムパーフルオロ-n-オクタンスルホネート、
 トリフルオロメタンスルホニルビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボジイミド、ノナフルオロ-n-ブタンスルホニルビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボジイミド、パーフルオロ-n-オクタンスルホニルビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボジイミド、N-ヒドロキシスクシイミドトリフルオロメタンスルホネート、N-ヒドロキシスクシイミドノナフルオロ-n-ブタンスルホネート、N-ヒドロキシスクシイミドパーフルオロ-n-オクタンスルホネート、1,8-ナフタレンジカルボン酸イミドトリフルオロメタンスルホネートが好ましい。
 これらの[C]酸発生剤は、単独で使用してもよく2種以上を併用してもよい。[C]酸発生体の含有量としては、レジストとしての感度および現像性を確保する観点から、[B]重合体100質量部に対して、通常、0.1質量部以上20質量部以下、好ましくは0.5質量部以上15質量部以下である。この場合、[C]酸発生剤の含有量が0.1質量部未満では、感度および現像性が低下する傾向があり、一方20質量部を超えると、放射線に対する透明性が低下し、所望のレジストパターンを得られ難くなるおそれがある。
<[D]酸拡散制御体>
 [D]酸拡散制御体は、露光により[C]酸発生体から生じる酸のレジスト膜中における拡散現象を制御し、非露光領域における好ましくない化学反応を抑制する効果を奏し、レジストとしての解像度がより向上するとともに、得られる感放射線性樹脂組成物の貯蔵安定性が向上する。[D]酸拡散制御体の当該感放射線性樹脂組成物における含有形態としては、遊離の化合物の形態(以下、適宜「[D]酸拡散制御剤」ともいう)でも、重合体の一部として組み込まれた形態でも、これらの両方の形態でもよい。
 [D]酸拡散制御剤としては、例えば下記式で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000044
 上記式中、Rd1~Rd5はそれぞれ独立して、水素原子、又は直鎖状、分岐状、環状の炭素数1~20のアルキル基、アリール基、若しくはアラルキル基である。但し、これらの基は置換基を有していてもよい。また、Rd1とRd2とがそれぞれが結合する窒素原子と共に、及び/又はRd3とRd4とがそれぞれが結合する炭素原子と共に、互いに結合して、炭素数4~20の2価の飽和若しくは不飽和の炭化水素基又はその誘導体を形成してもよい。
 上記式で表される[D]酸拡散制御剤としては、例えばN-t-ブトキシカルボニルジ-n-オクチルアミン、N-t-アミロキシカルボニルジ-n-オクチルアミン、N-t-ブトキシカルボニルジ-n-ノニルアミン、N-t-アミロキシカルボニルジ-n-ノニルアミン、N-t-ブトキシカルボニルジ-n-デシルアミン、N-t-アミロキシカルボニルジ-n-デシルアミン、N-t-ブトキシカルボニルジシクロヘキシルアミン、N-t-アミロキシカルボニルジシクロヘキシルアミン、N-t-ブトキシカルボニル-1-アダマンチルアミン、N-t-アミロキシカルボニル-1-アダマンチルアミン、N-t-ブトキシカルボニル-2-アダマンチルアミン、N-t-アミロキシカルボニル-2-アダマンチルアミン、N-t-ブトキシカルボニル-N-メチル-1-アダマンチルアミン、N-t-アミロキシカルボニル-N-メチル-1-アダマンチルアミン、(S)-(-)-1-(t-ブトキシカルボニル)-2-ピロリジンメタノール、(S)-(-)-1-(t-アミロキシカルボニル)-2-ピロリジンメタノール、(R)-(+)-1-(t-ブトキシカルボニル)-2-ピロリジンメタノール、(R)-(+)-1-(t-アミロキシカルボニル)-2-ピロリジンメタノール、N-t-ブトキシカルボニル-4-ヒドロキシピペリジン、N-t-アミロキシカルボニル-4-ヒドロキシピペリジン、N-t-ブトキシカルボニルピロリジン、N-t-アミロキシカルボニルピロリジン、N,N’-ジ-t-ブトキシカルボニルピペラジン、N,N’-ジ-t-アミロキシカルボニルピペラジン、N,N-ジ-t-ブトキシカルボニル-1-アダマンチルアミン、N,N-ジ-t-アミロキシカルボニル-1-アダマンチルアミン、N-t-ブトキシカルボニル-4,4’-ジアミノジフェニルメタン、N-t-アミロキシカルボニル-4,4’-ジアミノジフェニルメタン、N,N’-ジ-t-ブトキシカルボニルヘキサメチレンジアミン、N,N’-ジ-t-アミロキシカルボニルヘキサメチレンジアミン、N,N,N’,N’-テトラ-t-ブトキシカルボニルヘキサメチレンジアミン、N,N,N’,N’-テトラ-t-アミロキシカルボニルヘキサメチレンジアミン、N,N’-ジ-t-ブトキシカルボニル-1,7-ジアミノヘプタン、N,N’-ジ-t-アミロキシカルボニル-1,7-ジアミノヘプタン、N,N’-ジ-t-ブトキシカルボニル-1,8-ジアミノオクタン、N,N’-ジ-t-アミロキシカルボニル-1,8-ジアミノオクタン、N,N’-ジ-t-ブトキシカルボニル-1,9-ジアミノノナン、N,N’-ジ-t-アミロキシカルボニル-1,9-ジアミノノナン、N,N’-ジ-t-ブトキシカルボニル-1,10-ジアミノデカン、N,N’-ジ-t-アミロキシカルボニル-1,10-ジアミノデカン、N,N’-ジ-t-ブトキシカルボニル-1,12-ジアミノドデカン、N,N’-ジ-t-アミロキシカルボニル-1,12-ジアミノドデカン、N,N’-ジ-t-ブトキシカルボニル-4,4’-ジアミノジフェニルメタン、N,N’-ジ-t-アミロキシカルボニル-4,4’-ジアミノジフェニルメタン、N-t-ブトキシカルボニルベンズイミダゾール、N-t-ブトキシカルボニルベンズイミダゾール、N-t-アミロキシカルボニル-2-メチルベンズイミダゾール、N-t-ブトキシカルボニル-2-フェニルベンズイミダゾール、N-t-アミロキシカルボニル-2-フェニルベンズイミダゾール等のN-t-アルキルアルコキシカルボニル基含有アミノ化合物等が挙げられる。
 また、酸拡散制御剤としては、上記式で表される酸拡散制御剤以外にも、例えば3級アミン化合物、4級アンモニウムヒドロキシド化合物、光崩壊性塩基化合物、その他含窒素複素環化合物等が挙げられる。
 3級アミン化合物としては、例えば
 トリエチルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミン、トリ-n-ペンチルアミン、トリ-n-ヘキシルアミン、トリ-n-ヘプチルアミン、トリ-n-オクチルアミン、シクロヘキシルジメチルアミン、ジシクロヘキシルメチルアミン、トリシクロヘキシルアミン等のトリ(シクロ)アルキルアミン類;
 アニリン、N-メチルアニリン、N,N-ジメチルアニリン、2-メチルアニリン、3-メチルアニリン、4-メチルアニリン、4-ニトロアニリン、2,6-ジメチルアニリン、2,6-ジイソプロピルアニリン等の芳香族アミン類;
 トリエタノールアミン、N,N-ジ(ヒドロキシエチル)アニリン等のアルカノールアミン類;
 N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラキス(2-ヒドロキシプロピル)エチレンジアミン、1,3-ビス[1-(4-アミノフェニル)-1-メチルエチル]ベンゼンテトラメチレンジアミン、ビス(2-ジメチルアミノエチル)エーテル、ビス(2-ジエチルアミノエチル)エーテル等が挙げられる。
 4級アンモニウムヒドロキシド化合物としては、例えばテトラ-n-プロピルアンモニウムヒドロキシド、テトラ-n-ブチルアンモニウムヒドロキシド等が挙げられる。
 [D]酸拡散制御剤の含有量としては、[B]重合体100質量部に対して、10質量部以下が好ましく、8質量部以下がより好ましい。含有量が10質量部を超えると、レジストとしての感度が低下する傾向にある。
<[E]溶媒>
 当該感放射線性樹脂組成物は、通常、[E]溶媒を含有する。[E]溶媒としては、例えばアルコール系溶媒、ケトン系溶媒、アミド系溶媒、エーテル系溶媒、エステル系溶媒及びその混合溶媒等が挙げられる。
 アルコール系溶媒としては、例えば
 メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、iso-ブタノール、sec-ブタノール、tert-ブタノール、n-ペンタノール、iso-ペンタノール、2-メチルブタノール、sec-ペンタノール、tert-ペンタノール、3-メトキシブタノール、n-ヘキサノール、2-メチルペンタノール、sec-ヘキサノール、2-エチルブタノール、sec-ヘプタノール、3-ヘプタノール、n-オクタノール、2-エチルヘキサノール、sec-オクタノール、n-ノニルアルコール、2,6-ジメチル-4-ヘプタノール、n-デカノール、sec-ウンデシルアルコール、トリメチルノニルアルコール、sec-テトラデシルアルコール、sec-ヘプタデシルアルコール、フルフリルアルコール、フェノール、シクロヘキサノール、メチルシクロヘキサノール、3,3,5-トリメチルシクロヘキサノール、ベンジルアルコール、ジアセトンアルコール等のモノアルコール系溶媒;
 エチレングリコール、1,2-プロピレングリコール、1,3-ブチレングリコール、2,4-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2,5-ヘキサンジオール、2,4-ヘプタンジオール、2-エチル-1,3-ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等の多価アルコール系溶媒;
 エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノ-2-エチルブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノヘキシルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル等の多価アルコール部分エーテル系溶媒等が挙げられる。
 ケトン系溶媒としては、例えばアセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチル-iso-ブチルケトン、メチル-n-ペンチルケトン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-iso-ブチルケトン、トリメチルノナノン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン、2,4-ペンタンジオン、アセトニルアセトン、ジアセトンアルコール、アセトフェノン等が挙げられる。
 アミド系溶媒としては、例えばN,N’-ジメチルイミダゾリジノン、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド、N-メチルピロリドン等が挙げられる。
 エステル系溶媒としては、例えばジエチルカーボネート、酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸iso-プロピル、酢酸n-ブチル、酢酸iso-ブチル、酢酸sec-ブチル、酢酸n-ペンチル、酢酸sec-ペンチル、酢酸3-メトキシブチル、酢酸メチルペンチル、酢酸2-エチルブチル、酢酸2-エチルヘキシル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸n-ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸エチレングリコールモノメチルエーテル、酢酸エチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノ-n-ブチルエーテル、酢酸プロピレングリコールモノメチルエーテル、酢酸プロピレングリコールモノエチルエーテル、酢酸プロピレングリコールモノプロピルエーテル、酢酸プロピレングリコールモノブチルエーテル、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリグリコール、プロピオン酸エチル、プロピオン酸n-ブチル、プロピオン酸iso-アミル、シュウ酸ジエチル、シュウ酸ジ-n-ブチル、乳酸メチル、乳酸エチル、乳酸n-ブチル、乳酸n-アミル、マロン酸ジエチル、フタル酸ジメチル、フタル酸ジエチル等が挙げられる。
 その他の溶媒としては、例えば
 n-ペンタン、iso-ペンタン、n-ヘキサン、iso-ヘキサン、n-ヘプタン、iso-ヘプタン、2,2,4-トリメチルペンタン、n-オクタン、iso-オクタン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素系溶媒;
 ベンゼン、トルエン、キシレン、メシチレン、エチルベンゼン、トリメチルベンゼン、メチルエチルベンゼン、n-プロピルベンゼン、iso-プロピルベンゼン、ジエチルベンゼン、iso-ブチルベンゼン、トリエチルベンゼン、ジ-iso-プロピルベンセン、n-アミルナフタレン等の芳香族炭化水素系溶媒;
 ジクロロメタン、クロロホルム、フロン、クロロベンゼン、ジクロロベンゼン等の含ハロゲン溶媒等が挙げられる。
 これらの溶媒のうち、酢酸プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、乳酸エチル、シクロヘキサノンが好ましい。
 [E]溶媒の含有量は、必要とするレジスト膜の膜厚に応じて適宜調整されるべきである。
<その他の任意成分>
 当該感放射線性樹脂組成物は、本発明の効果を損なわない範囲で、[F]偏在化促進剤、脂環式骨格化合物、界面活性剤、増感剤等を含有できる。以下、これらのその他の任意成分について詳述する。これらのその他の任意成分は、それぞれ単独で又は2種以上を混合して使用することができる。また、その他の任意成分の含有量は、その目的に応じて適宜決定することができる。
[[F]偏在化促進剤]
 当該感放射線性樹脂組成物は、液浸露光法を使用しレジストパターンを形成する場合等に、[F]偏在化促進剤を配合することができる。[F]偏在化促進剤を配合することで、[A]フッ素原子含有重合体をさらに表層近傍に偏在化させることができる。このような[F]偏在化促進剤として用いることができるものとしては、比誘電率が30以上200以下で、1気圧における沸点が100℃以上の低分子化合物が挙げられる。このような化合物としては、具体的には、ラクトン化合物、カーボネート化合物、ニトリル化合物、多価アルコール等が挙げられる。
 上記ラクトン化合物としては、例えばγ-ブチロラクトン、バレロラクトン、メバロニックラクトン、ノルボルナンラクトン等が挙げられる。
 上記カーボネート化合物としては、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等が挙げられる。
 上記ニトリル化合物としては、例えばスクシノニトリル等が挙げられる。上記多価アルコールとしては、例えばグリセリン等が挙げられる。
 当該感放射線性樹脂組成物において、上記[F]偏在化促進剤の含有量は、重合体の総量100質量部に対して、10~500質量部が好ましく、30~300質量部がより好ましい。上記[F]偏在化促進剤としては、1種類のみ含有されていてもよいし、2種以上含有されていてもよい。
[脂環式骨格化合物]
 脂環式骨格化合物は、ドライエッチング耐性、パターン形状、基板との接着性等をさらに改善する作用を示す成分である。脂環式骨格化合物としては、例えば1-アダマンタンカルボン酸、2-アダマンタノン、1-アダマンタンカルボン酸t-ブチル等のアダマンタン誘導体類;デオキシコール酸t-ブチル、デオキシコール酸t-ブトキシカルボニルメチル、デオキシコール酸2-エトキシエチル等のデオキシコール酸エステル類;リトコール酸t-ブチル、リトコール酸t-ブトキシカルボニルメチル、リトコール酸2-エトキシエチル等のリトコール酸エステル類;3-[2-ヒドロキシ-2,2-ビス(トリフルオロメチル)エチル]テトラシクロ[4.4.0.12,5.17,10]ドデカン、2-ヒドロキシ-9-メトキシカルボニル-5-オキソ-4-オキサ-トリシクロ[4.2.1.03,7]ノナン等が挙げられる。
[界面活性剤]
 界面活性剤は塗布性、ストリエーション、現像性等を改良する作用を示す成分である。界面活性剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンn-オクチルフェニルエーテル、ポリオキシエチレンn-ノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のノニオン系界面活性剤の他、以下商品名として、KP341(信越化学工業製)、ポリフローNo.75、同No.95(以上、共栄社化学製)、エフトップEF301、同EF303、同EF352(以上、トーケムプロダクツ製)、メガファックF171、同F173(以上、大日本インキ化学工業製)、フロラードFC430、同FC431(以上、住友スリーエム製)、アサヒガードAG710、サーフロンS-382、同SC-101、同SC-102、同SC-103、同SC-104、同SC-105、同SC-106(以上、旭硝子製)等が挙げられる。
[増感剤]
 増感剤は、放射線のエネルギーを吸収して、そのエネルギーを[C]酸発生体に伝達しそれにより酸の生成量を増加する作用を示すものであり、当該感放射線性樹脂組成物の「みかけの感度」を向上させる効果を有する。増感剤としては、例えばカルバゾール類、アセトフェノン類、ベンゾフェノン類、ナフタレン類、フェノール類、ビアセチル、エオシン、ローズベンガル、ピレン類、アントラセン類、フェノチアジン類等が挙げられる。
<感放射線性樹脂組成物の調製>
 当該感放射線性樹脂組成物は、例えば[E]溶媒中で、[A]フッ素原子含有重合体、[C]酸発生体、好適成分である[B]重合体、必要に応じて加えられる[D]酸拡散制御剤及びその他の任意成分を所定の割合で混合することにより調製できる。当該感放射線性樹脂組成物は、通常、その使用に際して、全固形分濃度が1質量%~50質量%、好ましくは2質量%~25質量%となるように[E]溶媒に溶解した後、例えば孔径5nm程度のフィルターでろ過することによって調製される。フィルターの材質は特に制限されることは無いが、例えば、ナイロン6,6やナイロン6、ポリエチレンあるいはこれらの組み合わせ等が挙げられる。
<レジスト膜>
 本発明のレジスト膜は、レジストパターン形成用感放射線性樹脂組成物を用いて基板上に形成され、表面自由エネルギーが30mN/m以上40mN/m以下である。当該レジスト膜は、表面自由エネルギーが上記特定範囲であるため、レジスト膜表面の撥水性を高めることができると考えられ、高速スキャン露光を可能にすると共に、ブリッジ欠陥等の欠陥の発生を抑制して、良好なレジストパターンを形成できる。
 以下、本発明につき、具体例を挙げて説明するが、本発明は以下に例示する具体例に限定されるものではない。なお、実施例、合成例及び比較例中の「部」及び「%」は、特に断らない限りモル基準である。各種物性値の測定方法を以下に示す。
[ポリスチレン換算重量平均分子量(Mw)]
 東ソー製GPCカラム(G2000HXL 2本、G3000HXL 1本、G4000HXL 1本)を用い、流量1.0ミリリットル/分、溶出溶媒テトラヒドロフラン、カラム温度40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(GPC)により測定した。
[ポリスチレン換算数平均分子量(Mn)]
 東ソー製GPCカラム(G2000HXL 2本、G3000HXL 1本、G4000HXL 1本)を用い、流量1.0ミリリットル/分、溶出溶媒テトラヒドロフラン、カラム温度40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(GPC)により測定した。
13C-NMR分析]
 NMR分析は、核磁気共鳴装置(JNM-ECX400、日本電子製)を使用して測定した。
<[A]フッ素原子含有重合体及び[B]重合体の合成>
 [A]フッ素原子含有重合体及び[B]重合体の合成に用いた各単量体を下記に示す。
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
<合成例1:重合体(A-1)>
 単量体(M-1)38.77g(40モル%)、単量体(M-3)56.13g(55モル%)、単量体(M-7)5.10g(5モル%)を2-ブタノン100gに溶解し、更に開始剤としてAIBN4.97g(単量体の合計モル数に対して7モル%)を添加し溶解した単量体溶液を準備した。
 次に、温度計および滴下漏斗を備えた500mLの三口フラスコに100gの2-ブタノンを投入し、30分窒素パージした。窒素パージの後、フラスコ内をマグネティックスターラーで攪拌しながら80℃になるように加熱した。滴下漏斗を用い、上記調製した単量体溶液を3時間かけて滴下した。滴下開始を重合反応開始時間とし、重合反応を6時間実施した。重合反応終了後、重合溶液を水冷して30℃以下に冷却した。冷却後、分液漏斗へ反応溶液、300gのヘキサン、1,200gのメタノール、60gの水を注ぎ激しく攪拌した後、静置した。混合溶液は2層に分離し、3時間静置した後に下層(樹脂溶液)を分取した。エバポレーターを用いて分取した樹脂溶液をプロピレングリコールモノメチルエーテルアセテート溶液へと溶媒置換した。共重合体のプロピレングリコールモノメチルエーテルアセテート溶液239.2gを得た。ホットプレートを用いて固形分濃度を求めた結果、共重合体濃度は20.9%、収率は50%であった。この共重合体を重合体(A-1)とした。この共重合体は、Mwが4,200であり、Mw/Mnが1.4であった。13C-NMR分析の結果、化合物(M-1)由来の構造単位:化合物(M-3)由来の構造単位:化合物(M-7)由来の構造単位の含有割合は40.5:54.1:5.4(モル%)であった。
 表1及び表2に示す種類及び量の単量体を用いた以外は、合成例1と同様に操作して、重合体(A-2)~(A-8)及び重合体(B-1)~(B-3)を合成した。各単量体が与える構造単位の含有割合(モル%)、合成した各重合体のMw、Mw/Mn及び収率を表3に示す。
<合成例12:重合体(B-4)>
 単量体(M-8)13.42g(30モル%)、単量体(M-9)6.10g(10モル%)、単量体(M-10)3.20g(10モル%)、単量体(M-11)27.28g(50モル%)を2-ブタノン100gに溶解し、更に開始剤としてAIBN4.03g(単量体の合計モル数に対して10モル%)を添加し溶解した単量体溶液を準備した。
 次に、温度計及び滴下漏斗を備えた500mLの三口フラスコに50gの2-ブタノン、単量体(M-10)6.10g(10モル%)を添加、溶解し、30分窒素パージした。窒素パージの後、フラスコ内をマグネティックスターラーで攪拌しながら80℃になるように加熱した。滴下漏斗を用い、上記調製した単量体溶液を3時間かけて滴下した。滴下開始を重合反応開始時間とし、重合反応を6時間実施した。重合反応終了後、重合溶液を水冷して30℃以下に冷却した。冷却後、800gのメタノール及び200gの水の混合用液へ添加し、析出した白色粉末をろ別した。ろ別された白色粉末を200gのメタノールにてスラリー状で2回洗浄した。その後、ろ別し、60℃にて17時間乾燥し、白色粉末の重合体(B-4)を合成した(34.2g、収率68%)。
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
 上記合成例1~12で得られた各重合体の各種物性値を表3に示す。
Figure JPOXMLDOC01-appb-T000050
[感放射線性樹脂組成物の調製]
 上記合成例にて合成した重合体(A-1)~(A-8)、重合体(B-1)~(B-4)以外の感放射線性樹脂組成物を構成する各成分([C]酸発生剤、[D]酸拡散制御剤、[E]溶媒、[F]偏在化促進剤)について以下に示す。
<[C]酸発生剤>
C-1:下記式で表される化合物
Figure JPOXMLDOC01-appb-C000051
<[D]酸拡散制御剤>
D-1:トリフェニルスルホニウムサリチル酸塩
<[E]溶媒>
E-1:酢酸プロピレングリコールモノメチルエーテル
E-2:シクロヘキサノン
<[F]偏在化促進剤>
F-1:γ-ブチロラクトン
<実施例1>
 合成例12で得られた重合体(B-4)100質量部、合成例1で得られた重合体(A-1)5質量部、酸発生剤として(C-1)12質量部、酸拡散制御剤として(D-1)6.2質量部、偏在化促進剤として(F-1)100質量部を混合し、この混合物に、[E]溶媒として、(E-1)2,900質量部及び(E-2)1,250質量部をそれぞれが組成物に含まれる量となるように添加し、上記混合物を溶解させて混合溶液を得た。得られた混合溶液を孔径10nmのナイロン材質のフィルターおよび5nmのポリエチレン材質のフィルターでろ過して感放射線性樹脂組成物を調製した。この感放射線性樹脂組成物を組成物(J-1)とした。
<実施例2~8及び比較例1~3>
 実施例1と同様にして、表4に示す配合にて感放射線性樹脂組成物(J-2)~(J-8)、(K-1)~(K-3)を調製した。なお、「-」は、該当する成分を使用しなかったことを示す。
Figure JPOXMLDOC01-appb-T000052
[リソグラフィ性能の評価]
 得られた実施例1~8及び比較例1~3の組成物(J-1)~(J-8)及び(K-1)~(K-3)について、後退接触角の測定、表面自由エネルギーの測定、スキャン速度の測定、感度、欠陥、LWR及びMEFについて評価を行った。各種物性値の測定方法を以下に示す。
[後退接触角の測定]:
 まず、感放射線性樹脂組成物によって基板(ウエハ)上に被膜を形成した。その後、形成した被膜について、室温23℃、湿度45%、常圧の環境下で、KRUS製の「DSA-10」を用いて以下の手順で後退接触角を算出した。
 まず、ウエハステージ位置を調整する。次に、ウエハをステージにセットする。「DSA-10」の針に水を注入する。次に、針の位置を微調整する。次に、針から水を排出してウエハ上に25μLの水滴を形成した後、水滴から針を一旦引き抜く。次に、針を、上記微調整した位置に再び引き下げる。次に、針によって水滴を10μL/分の速度で90秒間吸引するとともに、接触角を毎秒(計90回)測定する。次に、接触角が安定した時点から計20点の接触角について平均値を算出して水の後退接触角(°)とする。
 上記水の静的後退接触角の測定において水にテトラアンモニウムヒドロキシドを溶解させpH13とした水溶液(TMAH水)に変えて同様の操作を行った。ここで得られた接触角について、TMAH水(pH10)の後退接触角(°)とした。
[表面自由エネルギーの測定]:
 まず、室温23℃、湿度45%、常圧のクリーンルーム内にて8インチシリコンウエハ上に、東京エレクトロン製Act8を用いて、感放射線性樹脂組成物によって、1,500rpmにて膜厚75nmの被膜を形成し、120℃で60秒間ソフトベーク(SB)を行った。その後、形成した被膜について、室温23℃、湿度45%、常圧の環境下で、KRUS製の「DSA-10」を用いて以下の手順で静的接触角を算出した。
 まず、ウエハステージ位置を調整する。次に、ウエハをステージにセットする。「DSA-10」の針に水を注入する。次に、針の位置を微調整する。次に、針から水を排出してウエハ上に5μLの水滴を形成した後、水滴から針を引き抜く。次に、接触角を測定し、水の静的接触角(°)とする。水滴の変わりにヨウ化メチレンを用いて同様の操作を行い、ヨウ化メチレンの(静的接触角°)とする。フォークス式およびヤングの式、デュプレの式を用いて、レジスト膜の表面自由エネルギーを算出した。なお、水の表面自由エネルギー72.8mN/m(分散項:21.8mN/m、極性項:51.0mN/m)およびヨウ化メチレンの表面自由エネルギー50.8mN/m(分散項:48.3mN/m、極性項:2.5mN/m)の値を用いた。
[スキャン速度の測定]:
 まず、感放射線性樹脂組成物によって基板(ウエハ)上に被膜を形成した。その後、形成した被膜について、室温23℃、湿度45%、常圧の環境下で、NIKON製の「ピンスキャン速度測定装置」を用いて以下の手順でスキャン速度を算出した。
 得られた感放射線性樹脂組成物被膜を有するウエハーとピンスキャンヘッド(直径4mm)との間に水を満たした。なお、感放射線性樹脂組成物被膜を有するウエハーとピンスキャンヘッドとの距離は1mmとした。この状態にてウエハーの面に対して平行に一方向に移動(スキャン)させ、それに追随する水の様子を目視で観測した。ウエハーのスキャン速度を徐々に上げていき、水がウエハーのスキャン速度に追随できず、後退側で水滴が残り始める限界のスキャン速度を求めることで、スキャン速度の評価を行った。この限界スキャン可能速度が大きいほど、より高速なスキャンスピードに対して水が追随可能であり、当該レジスト膜上での液浸プロセスマージンが良好であることを示す。
[感度]:
 まず、東京エレクトロン製Act12にて下層反射防止膜(「ARC66」、日産化学製)を形成した12インチシリコンウエハ上に、感放射線性樹脂組成物によって、膜厚75nmの被膜を形成し、120℃で60秒間ソフトベーク(SB)を行った。次に、この被膜を、ArFエキシマレーザー液浸露光装置(「NSR S610C」、NIKON製)を用い、NA=1.3、iNA=1.27、ratio=0.750、Dipoleの条件により、マスクパターンを介して露光した。露光後、東京エレクトロン製Lithius Pro iにて85℃で60秒間ポストベーク(PEB)を行った。その後、2.38質量%のテトラメチルアンモニウムヒドロキシド水溶液により現像し、水洗し、乾燥して、ポジ型のレジストパターンを形成した。このとき、幅45nmのラインアンドスペースを形成する露光量を感度(最適露光量)(mJ/cm)とした。
[欠陥]:
 上記最適露光量にて上記と同様の方法でウエハ全面に線幅45nmのラインアンドスペースを形成し、欠陥検査用ウエハとした。なお、測長には走査型電子顕微鏡(「CC-4000」、日立ハイテクノロジーズ製)を用いた。
 その後、欠陥検査用ウエハ上の欠陥数を、KLA-Tencor製の「KLA2810」を用いて測定した。更に、「KLA2810」にて測定された欠陥数から、マスク由来と判断される各ショット中の同じ位置に検出される欠陥(リピーター欠陥)の数を差し引いた。この差し引いた値を欠陥数(個)とした。
[LWR(ラインウィドゥスラフネス)]:
 上記欠陥検査用ウエハを前記走査型電子顕微鏡を用い、最適露光量にて解像した45nmのラインアンドスペースのパターンをパターン上部から観察し、任意の10点ポイントで線幅を測定した。線幅の測定値の3シグマ値(ばらつき)をLWR(nm)とした。
[MEF(マスクエラーファクター)]:
 まず、下層反射防止膜(「ARC66」、日産化学製)を形成した12インチシリコンウエハ上に、感放射線性樹脂組成物によって、膜厚75nmの被膜を形成し、120℃で60秒間ソフトベーク(SB)を行った。次に、この被膜を、ArFエキシマレーザー液浸露光装置(「NSR S610C」、NIKON製)を用い、NA=1.3、iNA=1.27、ratio=0.750、Dipoleの条件により、マスクパターンを介して露光した。
 露光後、85℃で60秒間ポストベーク(PEB)を行った。その後、2.38質量%のテトラメチルアンモニウムヒドロキシド水溶液により現像し、水洗し、乾燥して、ポジ型のレジストパターンを形成した。このとき、幅45nmのラインアンドスペースを形成する露光量を最適露光量とした。上記Eopにて、ライン幅のターゲットサイズを40nm、42nm、44nm、46nm、48nm、50nmとするマスクパターンをそれぞれ用い、ピッチ90nmのLSパターンを形成した。
 このとき、ターゲットサイズ(nm)を横軸に、各マスクパターンを用いてレジスト膜に形成されたライン幅(nm)を縦軸にプロットしたときの直線の傾きをMEFとして算出した。MEF(直線の傾き)は、その値が1に近いほどマスク再現性が良好である。
 結果について表5に示す。
Figure JPOXMLDOC01-appb-T000053
 まず、水の後退接触角については、表5に示すように、実施例1~8及び比較例1~3のいずれにおいても76~80°と高い値を示したが、比較例1及び2はスキャン速度が500,510mm/sと低い値を示した。実施例1~8、比較例3は、液浸露光時において十分に高い疎水性を示すことが分かった。しかし、比較例1及び2は、液浸露光時において十分な疎水性を示さないことが分かった。また、表面自由エネルギーに注目すると、実施例1~8は40以下と低い値を示し、水に対して十分にバリア性を示すのに対し、比較例1~3は44、45と高い値を示し、水へのバリア性に乏しいことが分かった。
 pH10のTMAH水溶液の後退接触角については、表5に示すように、実施例1~8及び比較例2のいずれにおいても32~40°と30~40°の範囲に入る値を示した。このことから、実施例1~8及び比較例2のレジスト膜は、現像時において適度な現像液の濡れ性を示すことが分かった。しかし、比較例1は27°と低い値を示し、現像時において過度な現像液の濡れ性を示すことが分かった。比較例3は75°と高い値を示し、現像時において十分な現像液の濡れ性を示さないことが分かった。
 次に、欠陥数について比較すると、比較例1~3ともに、数多くの欠陥が確認された。これに対し、実施例1~8では、いずれも、比較例より大幅に欠陥数が少なかった。低欠陥性には液浸露光時において十分に高い疎水性と適度な現像液の濡れ性が必要なことが分かった。
 また、実施例1~8及び比較例1~3のいずれにおいても、矩形状のラインアンドスペースパターンが確認された。
 本発明のレジストパターン形成方法によれば、高速スキャン露光を可能にすると共に、ブリッジ欠陥等の欠陥の発生を抑制して、良好なレジストパターンを形成できる。

Claims (11)

  1.  (1)感放射線性樹脂組成物を用い、基板上に表面自由エネルギーが30mN/m以上40mN/m以下のレジスト膜を形成する工程、
     (2)マスクを介した放射線照射により、上記レジスト膜を露光する工程、及び
     (3)上記露光されたレジスト膜を現像する工程
    を有するレジストパターン形成方法。
  2.  上記工程(2)における露光を、上記レジスト膜上に液浸露光液を配置し、この液浸露光液を介して行う請求項1に記載のレジストパターン形成方法。
  3.  上記感放射線性樹脂組成物が、
     [A]フッ素原子含有重合体、及び
     [C]酸発生体
    を含有する請求項1又は請求項2に記載のレジストパターン形成方法。
  4.  [A]フッ素原子含有重合体が、アルカリ解離性基を含む構造単位(a1)を有する請求項3に記載のレジストパターン形成方法。
  5.  [A]フッ素原子含有重合体が、酸解離性基を含む構造単位(a2)を有する請求項3又は請求項4に記載のレジストパターン形成方法。
  6.  [A]フッ素原子含有重合体が、アルカリ解離性基を有さず、かつフッ素原子を含む構造単位(a3)を有する請求項3、請求項4又は請求項5に記載のレジストパターン形成方法。
  7.  上記感放射線性樹脂組成物が、
     [B]酸解離性基を有し、[A]フッ素原子含有重合体よりもフッ素原子含有率が小さいベース重合体
    をさらに含有する請求項3から請求項6のいずれか1項に記載のレジストパターン形成方法。
  8.  上記感放射線性樹脂組成物が、[D]酸拡散制御体をさらに含有する請求項3から請求項7のいずれか1項に記載のレジストパターン形成方法。
  9.  形成されるレジスト膜の表面自由エネルギーが30mN/m以上40mN/m以下であるレジストパターン形成用感放射線性樹脂組成物。
  10.  液浸露光用である請求項9に記載のレジストパターン形成用感放射線性樹脂組成物。
  11.  レジストパターン形成用感放射線性樹脂組成物を用いて基板上に形成され、表面自由エネルギーが30mN/m以上40mN/m以下のレジスト膜。
PCT/JP2012/058265 2011-03-31 2012-03-28 レジストパターン形成方法、感放射線性樹脂組成物及びレジスト膜 WO2012133595A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013507703A JP5835319B2 (ja) 2011-03-31 2012-03-28 レジストパターン形成方法、感放射線性樹脂組成物及びレジスト膜
US14/037,659 US9046765B2 (en) 2011-03-31 2013-09-26 Resist pattern-forming method, resist pattern-forming radiation-sensitive resin composition, and resist film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011081331 2011-03-31
JP2011-081331 2011-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/037,659 Continuation US9046765B2 (en) 2011-03-31 2013-09-26 Resist pattern-forming method, resist pattern-forming radiation-sensitive resin composition, and resist film

Publications (1)

Publication Number Publication Date
WO2012133595A1 true WO2012133595A1 (ja) 2012-10-04

Family

ID=46931302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058265 WO2012133595A1 (ja) 2011-03-31 2012-03-28 レジストパターン形成方法、感放射線性樹脂組成物及びレジスト膜

Country Status (4)

Country Link
US (1) US9046765B2 (ja)
JP (1) JP5835319B2 (ja)
TW (1) TW201245241A (ja)
WO (1) WO2012133595A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130260312A1 (en) * 2012-03-28 2013-10-03 Tokyo Ohka Kogyo Co., Ltd. Resist composition, method of forming resist pattern, and polymeric compound
WO2015151765A1 (ja) * 2014-03-31 2015-10-08 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物の製造方法及び感活性光線性又は感放射線性樹脂組成物
JP2017021342A (ja) * 2015-07-14 2017-01-26 住友化学株式会社 レジスト組成物
JP2017021343A (ja) * 2015-07-14 2017-01-26 住友化学株式会社 レジスト組成物及びレジストパターン製造方法
JP2017027040A (ja) * 2015-07-24 2017-02-02 住友化学株式会社 レジスト組成物
JP2017045037A (ja) * 2015-08-27 2017-03-02 住友化学株式会社 レジスト組成物及びレジストパターン製造方法
JP2017090898A (ja) * 2015-11-06 2017-05-25 住友化学株式会社 化合物、樹脂、レジスト組成物及びレジストパターンの製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101943860B (zh) * 2009-06-08 2013-12-11 罗门哈斯电子材料有限公司 平版印刷方法
CN111902773B (zh) * 2018-03-26 2024-09-06 富士胶片株式会社 感光性树脂组合物及其制造方法、抗蚀剂膜、图案形成方法以及电子器件的制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297590A (ja) * 2006-04-04 2007-11-15 Shin Etsu Chem Co Ltd レジスト材料及びこれを用いたパターン形成方法
JP2010061116A (ja) * 2008-08-04 2010-03-18 Fujifilm Corp レジスト組成物及びそれを用いたパターン形成方法
JP2010277043A (ja) * 2009-06-01 2010-12-09 Tokyo Ohka Kogyo Co Ltd ポジ型レジスト組成物及びレジストパターン形成方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006227632A (ja) 2003-02-20 2006-08-31 Tokyo Ohka Kogyo Co Ltd 液浸露光プロセス用レジスト保護膜形成用材料、複合膜、およびレジストパターン形成方法
KR101426181B1 (ko) 2004-01-15 2014-07-31 제이에스알 가부시끼가이샤 액침용 상층막 형성 조성물 및 포토레지스트 패턴 형성 방법
JP4551701B2 (ja) 2004-06-14 2010-09-29 富士フイルム株式会社 液浸露光用保護膜形成組成物及びそれを用いたパターン形成方法
US7781142B2 (en) 2004-09-30 2010-08-24 Jsr Corporation Copolymer and top coating composition
EP1720072B1 (en) * 2005-05-01 2019-06-05 Rohm and Haas Electronic Materials, L.L.C. Compositons and processes for immersion lithography
TWI403843B (zh) * 2005-09-13 2013-08-01 Fujifilm Corp 正型光阻組成物及使用它之圖案形成方法
CN102109760B (zh) 2006-03-31 2015-04-15 Jsr株式会社 抗蚀剂图案形成方法
KR101054158B1 (ko) * 2006-07-06 2011-08-03 신에쓰 가가꾸 고교 가부시끼가이샤 포지티브형 레지스트 조성물 및 패턴 형성 방법
US8257902B2 (en) * 2007-11-05 2012-09-04 Deyan Wang Compositons and processes for immersion lithography
JP2009134088A (ja) 2007-11-30 2009-06-18 Jsr Corp 感放射線性樹脂組成物
US7704674B1 (en) * 2008-12-31 2010-04-27 Gilles Amblard Method for patterning a photo-resist in an immersion lithography process
US8841058B2 (en) * 2010-08-03 2014-09-23 Taiwan Semiconductor Manufacturing Company, Ltd. Photolithography material for immersion lithography processes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297590A (ja) * 2006-04-04 2007-11-15 Shin Etsu Chem Co Ltd レジスト材料及びこれを用いたパターン形成方法
JP2010061116A (ja) * 2008-08-04 2010-03-18 Fujifilm Corp レジスト組成物及びそれを用いたパターン形成方法
JP2010277043A (ja) * 2009-06-01 2010-12-09 Tokyo Ohka Kogyo Co Ltd ポジ型レジスト組成物及びレジストパターン形成方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130260312A1 (en) * 2012-03-28 2013-10-03 Tokyo Ohka Kogyo Co., Ltd. Resist composition, method of forming resist pattern, and polymeric compound
US9170487B2 (en) * 2012-03-28 2015-10-27 Tokyo Ohka Kogyo Co., Ltd. Resist composition, method of forming resist pattern, and polymeric compound
WO2015151765A1 (ja) * 2014-03-31 2015-10-08 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物の製造方法及び感活性光線性又は感放射線性樹脂組成物
JP2015197509A (ja) * 2014-03-31 2015-11-09 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物の製造方法及び感活性光線性又は感放射線性樹脂組成物
JP2017021342A (ja) * 2015-07-14 2017-01-26 住友化学株式会社 レジスト組成物
JP2017021343A (ja) * 2015-07-14 2017-01-26 住友化学株式会社 レジスト組成物及びレジストパターン製造方法
JP2017027040A (ja) * 2015-07-24 2017-02-02 住友化学株式会社 レジスト組成物
JP2017045037A (ja) * 2015-08-27 2017-03-02 住友化学株式会社 レジスト組成物及びレジストパターン製造方法
JP2017090898A (ja) * 2015-11-06 2017-05-25 住友化学株式会社 化合物、樹脂、レジスト組成物及びレジストパターンの製造方法

Also Published As

Publication number Publication date
US9046765B2 (en) 2015-06-02
US20140023968A1 (en) 2014-01-23
JP5835319B2 (ja) 2015-12-24
JPWO2012133595A1 (ja) 2014-07-28
TW201245241A (en) 2012-11-16

Similar Documents

Publication Publication Date Title
JP5835319B2 (ja) レジストパターン形成方法、感放射線性樹脂組成物及びレジスト膜
WO2010007993A1 (ja) ポジ型感放射線性組成物及びレジストパターン形成方法
JP6064990B2 (ja) フォトレジスト組成物及びレジストパターン形成方法
JP2012078405A (ja) 感放射線性樹脂組成物、パターン形成方法及び化合物
JP5724791B2 (ja) 感放射線性樹脂組成物及びレジストパターンの形成方法
TWI476212B (zh) Sensitive radiation linear resin composition, polymer and photoresist pattern formation method
JP6648452B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
WO2015045739A1 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物
JP5609980B2 (ja) 感放射線性樹脂組成物、重合体及び化合物
JP5729114B2 (ja) 感放射線性樹脂組成物、パターン形成方法、重合体及び化合物
US20130260315A1 (en) Radiation-sensitive resin composition, pattern-forming method, polymer, and compound
JP6060967B2 (ja) フォトレジスト組成物及びレジストパターン形成方法
JP5540818B2 (ja) 感放射線性樹脂組成物及び重合体
JP5569402B2 (ja) 感放射線性樹脂組成物、重合体及び化合物
JP5655579B2 (ja) 感放射線性樹脂組成物、パターン形成方法、重合体及び化合物
JP5867298B2 (ja) フォトレジスト組成物及びレジストパターン形成方法
JP2011180385A (ja) 感放射線性組成物及びレジストパターン形成方法
JP6528692B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物
JP2012203401A (ja) 感放射線性樹脂組成物
JP5790382B2 (ja) フォトレジスト組成物
JP5573730B2 (ja) 感放射線性樹脂組成物及びこれを用いたパターン形成方法
JP2013088763A (ja) フォトレジスト組成物
JP5655352B2 (ja) 感放射線性樹脂組成物及びそれに用いる重合体
JP6507853B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP6094574B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764667

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507703

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12764667

Country of ref document: EP

Kind code of ref document: A1