WO2012133545A1 - ガス拡散層、燃料電池用電極、膜電極接合体、及び燃料電池 - Google Patents

ガス拡散層、燃料電池用電極、膜電極接合体、及び燃料電池 Download PDF

Info

Publication number
WO2012133545A1
WO2012133545A1 PCT/JP2012/058173 JP2012058173W WO2012133545A1 WO 2012133545 A1 WO2012133545 A1 WO 2012133545A1 JP 2012058173 W JP2012058173 W JP 2012058173W WO 2012133545 A1 WO2012133545 A1 WO 2012133545A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas diffusion
cross
layer
paste
section
Prior art date
Application number
PCT/JP2012/058173
Other languages
English (en)
French (fr)
Inventor
高見 洋史
Original Assignee
株式会社Eneosセルテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Eneosセルテック filed Critical 株式会社Eneosセルテック
Priority to EP12763587.8A priority Critical patent/EP2693543A4/en
Priority to CN2012800158599A priority patent/CN103460468A/zh
Priority to US14/007,393 priority patent/US20140017589A1/en
Publication of WO2012133545A1 publication Critical patent/WO2012133545A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell that generates power by an electrochemical reaction between hydrogen and oxygen, a gas diffusion layer, a fuel cell electrode, and a membrane electrode assembly.
  • a polymer electrolyte fuel cell has a basic structure in which a polymer electrolyte membrane, which is an electrolyte membrane, is arranged between an anode and a cathode, and supplies a fuel gas containing hydrogen to the anode and an oxidant gas containing oxygen to the cathode.
  • a polymer electrolyte membrane which is an electrolyte membrane
  • it is an apparatus that generates electricity by the following electrochemical reaction.
  • the anode and the cathode each have a structure in which a catalyst layer and a gas diffusion layer (GDL) are laminated.
  • the catalyst layers of the electrodes are arranged opposite to each other with the solid polymer film interposed therebetween, thereby constituting a fuel cell.
  • the catalyst layer is a layer formed by binding carbon particles carrying a catalyst with an ion exchange resin.
  • the gas diffusion layer becomes a passage for the oxidant gas and the fuel gas.
  • hydrogen contained in the supplied fuel is decomposed into hydrogen ions and electrons as shown in the above formula (1).
  • hydrogen ions move inside the solid polymer electrolyte membrane toward the air electrode, and electrons move to the air electrode through an external circuit.
  • oxygen contained in the oxidant gas supplied to the cathode reacts with hydrogen ions and electrons that have moved from the fuel electrode, and water is generated as shown in the above formula (2). In this way, in the external circuit, electrons move from the fuel electrode toward the air electrode, so that electric power is taken out.
  • Patent Document 1 describes a gas diffusion electrode for a fuel cell in which the amount of water repellent material in a porous substrate continuously changes from the side in contact with the catalyst layer toward the other side. ing. Further, in Patent Document 2, in the gas diffusion layer, by making more than half of the second exposed surface of the substrate non-contact with the support, or by providing the support surface of the support with water repellency, There is described a technique for suppressing the fluid on the first exposed surface side of the base material from being excessively impregnated in the thickness direction of the base material.
  • the conventional fuel cell has a problem in that it is not sufficient to secure a water discharge path in the gas diffusion layer, and the water discharge property and the gas diffusion property are not compatible in the gas diffusion layer.
  • the present invention has been made in view of such problems, and can achieve both gas discharge properties and gas diffusibility, and can improve voltage characteristics, a gas diffusion layer, a fuel cell electrode, a membrane electrode assembly, and a fuel.
  • An object is to provide a battery.
  • a gas diffusion layer includes a gas diffusion base material having a first surface and a second surface formed on the opposite side of the first surface; A conductive layer and a microporous layer disposed on the first surface of the gas diffusion base material and in the gas diffusion base material, the microporous layer having a thickness of the gas diffusion base material.
  • the amount of the microporous layer on the cross section that is continuous in the direction and perpendicular to the thickness direction is maximized at the first cross section position in the thickness direction and is directed from the first cross section position to the second surface.
  • the amount of the microporous layer included in the first surface side region from the center position of the gas diffusion base material in the thickness direction is 80% or more of the total amount of the microporous layer, Extends to the second side.
  • the microporous layer is continuous in the thickness direction of the gas diffusion base material. Since the microporous layer constitutes a discharge path for the generated water, a continuous discharge path in the thickness direction is maintained in the gas diffusion layer, and thus the generated water is efficiently discharged. Further, the amount of the microporous layer on the cross section perpendicular to the thickness direction becomes maximum at the first cross section position in the thickness direction and decreases as it goes from the first cross section position to the second surface. Thereby, it can be set as the structure which does not generate
  • the amount of the microporous layer included in the region on the first surface side from the center position of the gas diffusion base material in the thickness direction is 80% or more of the total amount of the microporous layer.
  • the microporous layer extends to the second surface, the microporous layer is continuous from the first surface to the second surface in the gas diffusion base material, and the generated water is discharged until reaching the gas flow path. A route can be secured.
  • the curve obtained by plotting the amount of the microporous layer on the cross section with respect to the cross section position in the thickness direction of the cross section is the first cross section position and the second cross section position. There is no minimum point between the surface. As a result, the amount of the microporous layer decreases from the first cross-sectional position toward the second surface, and a structure that does not cause water retention in the middle of the discharge path of the generated water can be obtained.
  • the curve in which the amount of the microporous layer on the cross section is plotted with respect to the cross section position in the thickness direction of the cross section is the first cross section position and the second cross section position.
  • the difference between the maximum value on the second surface side from the minimum point and the value at the minimum point is 5% or less of the value at the first cross-sectional position.
  • the curve obtained by plotting the amount of the microporous layer on the cross section with respect to the cross sectional position in the thickness direction of the cross section is first than the first cross sectional position. There is no minimum point on the face side.
  • the amount of the microporous layer increases from the first surface side toward the first cross-sectional position on the first surface side than the first cross-sectional position, and in the middle of the discharge path of the generated water, It can be set as the structure which does not generate
  • An electrode for a fuel cell according to one aspect of the present invention includes the above gas diffusion layer and a catalyst layer. This makes it possible to achieve both water discharge and gas diffusibility as a fuel cell and improve voltage characteristics.
  • a membrane electrode assembly includes an electrolyte membrane, an anode provided on one surface of the electrolyte membrane, and a cathode provided on the other surface of the electrolyte membrane. At least one of the above gas diffusion layers is employed.
  • the cathode it is possible to improve the discharge of water generated in the cathode catalyst layer.
  • the anode it is possible to improve the discharge performance of the water that is back-diffused from the cathode to the anode through the electrolyte membrane.
  • Reverse diffusion is a phenomenon in which water moves from the cathode to the anode due to the concentration gradient of water in the anode and the cathode. This makes it possible to achieve both water discharge and gas diffusibility as a fuel cell and improve voltage characteristics.
  • a fuel cell according to one aspect of the present invention includes the gas diffusion layer described above. This makes it possible to achieve both water discharge and gas diffusibility as a fuel cell and improve voltage characteristics.
  • FIG. 1 is a perspective view schematically showing the structure of a fuel cell according to an embodiment. It is sectional drawing on the AA line of FIG. It is a perspective view which shows the structure of the electrode for fuel cells typically, and the figure which shows the mode of the cross section in the predetermined cross-sectional position of the said electrode for fuel cells. It is a schematic block diagram which shows the paste coating device which concerns on embodiment. It is an enlarged view of the removal part of the paste of a doctor bar. It is an enlarged view of the removal part of the paste of the doctor bar which concerns on a modification. It is an enlarged view of the removal part of the paste of the doctor bar which concerns on a comparative example. It is an image which shows the catalyst layer and microporous layer which exist in a cathode.
  • FIG. 1 is a perspective view schematically showing the structure of a fuel cell 10 according to an embodiment.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • the fuel cell 10 includes a flat membrane electrode assembly 50, and a separator 34 and a separator 36 are provided on both sides of the membrane electrode assembly 50.
  • a plurality of membrane electrode assemblies 50 may be stacked via the separator 34 or the separator 36 to constitute a fuel cell stack.
  • the membrane electrode assembly 50 includes a solid polymer electrolyte membrane 20, an anode (fuel cell electrode) 22, and a cathode (fuel cell electrode) 24.
  • the anode 22 has a laminate composed of a catalyst layer 26 and a gas diffusion layer 28.
  • the cathode 24 has a laminate composed of a catalyst layer 30 and a gas diffusion layer 32.
  • the catalyst layer 26 of the anode 22 and the catalyst layer 30 of the cathode 24 are provided to face each other with the solid polymer electrolyte membrane 20 interposed therebetween.
  • a gas flow path 38 is provided in the separator 34 provided on the anode 22 side. Fuel gas is distributed to a gas flow path 38 from a fuel supply manifold (not shown), and the fuel gas is supplied to the membrane electrode assembly 50 through the gas flow path 38. Similarly, a gas flow path 40 is provided in the separator 36 provided on the cathode 24 side.
  • Oxidant gas is distributed to the gas flow path 40 from an oxidant supply manifold (not shown), and the oxidant gas is supplied to the membrane electrode assembly 50 through the gas flow path 40.
  • a reformed gas containing a fuel gas for example, hydrogen gas
  • the fuel gas is supplied to 22.
  • an oxidant gas for example, air flows through the gas flow path 40 from the upper side to the lower side along the surface of the gas diffusion layer 32, whereby the oxidant gas is supplied to the cathode 24.
  • a reaction occurs in the membrane electrode assembly 50.
  • hydrogen gas is supplied to the catalyst layer 26 via the gas diffusion layer 28
  • hydrogen in the gas becomes protons, and these protons move through the solid polymer electrolyte membrane 20 to the cathode 24 side.
  • the emitted electrons move to the external circuit and flow into the cathode 24 from the external circuit.
  • air is supplied to the catalyst layer 30 through the gas diffusion layer 32, oxygen is combined with protons to become water. As a result, electrons flow from the anode 22 toward the cathode 24 in the external circuit, and power can be taken out.
  • the solid polymer electrolyte membrane 20 exhibits good ionic conductivity in a wet state, and functions as an ion exchange membrane that moves protons between the anode 22 and the cathode 24.
  • the solid polymer electrolyte membrane 20 is formed of a solid polymer material such as a fluorine-containing polymer or a non-fluorine polymer, and is, for example, a sulfonic acid type perfluorocarbon polymer, polysulfone resin, a phosphonic acid group or a carboxylic acid group-containing perfluorocarbon polymer.
  • a fluorocarbon polymer or the like can be used.
  • sulfonic acid type perfluorocarbon polymer examples include Nafion (manufactured by DuPont: registered trademark) 112.
  • non-fluorine polymers include sulfonated aromatic polyetheretherketone and polysulfone.
  • the film thickness of the solid polymer electrolyte membrane 20 is 20 to 50 ⁇ m.
  • the catalyst layer 26 constituting the anode 22 is composed of an ion conductor (ion exchange resin) and carbon particles carrying a metal catalyst, that is, catalyst-carrying carbon particles.
  • the film thickness of the catalyst layer 26 is 10 to 30 ⁇ m.
  • the ion conductor connects the carbon particles carrying the alloy catalyst and the solid polymer electrolyte membrane 20, and has a role of transmitting protons between the two.
  • the ionic conductor may be formed from the same polymer material as the solid polymer electrolyte membrane 20.
  • Examples of the metal catalyst used for the catalyst layer 26 include an alloy catalyst made of noble metal and ruthenium.
  • Examples of the noble metal used in the alloy catalyst include platinum and palladium.
  • Examples of the carbon particles supporting the metal catalyst include acetylene black, ketjen black, carbon nanotube, and carbon nano-onion.
  • the gas diffusion layer 28 constituting the anode 22 has a gas diffusion base material 27 and a microporous layer 29 (microporous layer: MPL) applied to the gas diffusion base material.
  • the gas diffusion base material 27 is preferably composed of a porous body having electronic conductivity, and for example, carbon paper, carbon woven fabric or nonwoven fabric can be used.
  • the microporous layer 29 applied to the gas diffusion base material 27 is a kneaded product (paste) obtained by kneading a conductive powder and a water repellent.
  • a conductive powder can be used as the conductive powder.
  • a fluorine resin such as tetrafluoroethylene resin (PTFE) or tetrafluoroethylene / hexafluoropropylene copolymer (FEP) can be used as the water repellent agent preferably has binding properties.
  • the binding property refers to a property that can be made sticky (state) by joining things that are less sticky or those that tend to break apart.
  • the gas diffusion base material 27 has a first surface S1 formed on the electrolyte membrane 20 side and a second surface S2 formed on the opposite side of the electrolyte membrane (that is, the gas flow path 38 side).
  • the first surface S1 and the second surface S2 face each other in the thickness direction D1 of the anode and the gas diffusion layer.
  • the microporous layer 29 is applied from the first surface S1 (front surface), and a predetermined amount of the microporous layer 29 penetrates into the thickness direction D1 up to the second surface S2 (back surface). It arrange
  • the microporous layer 29 has continuity at the boundary portion with the gas diffusion base material 27 and also has continuity in the gas diffusion base material 27 from the first surface S1 toward the second surface S2. That is, it is formed so as not to be interrupted in the middle. As a result, a carbon path, which is a discharge path of generated water generated by the electrochemical reaction, can be formed, and the discharge capacity of the generated water in the gas diffusion layer 28 can be enhanced.
  • the detailed structure of the gas diffusion layer 28 will be described later.
  • the catalyst layer 30 constituting the cathode 24 is composed of an ion conductor (ion exchange resin) and carbon particles carrying a catalyst, that is, catalyst-carrying carbon particles.
  • the ionic conductor connects the carbon particles carrying the catalyst and the solid polymer electrolyte membrane 20, and has a role of transmitting protons between the two.
  • the ionic conductor may be formed from the same polymer material as the solid polymer electrolyte membrane 20.
  • platinum or a platinum alloy can be used as the supported catalyst.
  • the metal used for the platinum alloy include cobalt, nickel, iron, manganese, iridium and the like.
  • Examples of the carbon particles supporting the catalyst include acetylene black, ketjen black, carbon nanotube, and carbon nano-onion.
  • the gas diffusion layer 32 constituting the cathode 24 has a gas diffusion base material 31 and a microporous layer 33 applied to the gas diffusion base material 31.
  • the gas diffusion base material 31 is preferably composed of a porous body having electronic conductivity, and for example, carbon paper, carbon woven fabric or nonwoven fabric can be used. In consideration of productivity, it is preferable to use a common carbon paper as a base material for the gas diffusion layer 32 and the gas diffusion layer 28.
  • the gas diffusion base material 31 has a first surface S3 formed on the electrolyte membrane 20 side and a second surface S4 formed on the opposite side of the electrolyte membrane (that is, the gas flow path 40 side). The first surface S3 and the second surface S4 face each other in the thickness direction D1 of the cathode and the gas diffusion layer.
  • the microporous layer 33 is applied from the first surface S3 (front surface), and a predetermined amount of the microporous layer 33 enters the thickness direction D1 up to the second surface S4 (back surface). It arrange
  • the microporous layer 33 has continuity at the boundary portion with the gas diffusion base material 31 and also has continuity in the gas diffusion base material 31 from the first surface S3 toward the second surface S4. That is, it is formed so as not to be interrupted. As a result, a carbon path, which is a discharge path of generated water generated by the electrochemical reaction, can be formed, and the discharge capacity of the generated water in the gas diffusion layer 32 can be enhanced.
  • the detailed structure of the gas diffusion layer 32 will be described later.
  • L is the size of the gas diffusion base materials 27 and 31 in the thickness direction D1.
  • the amount of the microporous layers 29 and 33 in the gas diffusion layers 28 and 32 is acquired by analysis by three-dimensional measurement X-ray CT.
  • the white background portions are the gas diffusion base materials 27 and 31
  • the spots scattered in the spot shape are the microporous layers 29 and 33, which are the portions constituting the discharge path of the generated water. .
  • Area ratio the total area of the microporous layer 29, 33 on the cross section CS x, refers to the ratio of the area of the cross section CS x.
  • a value obtained by summing all the area ratios of the cross-sectional positions t 0 to END, that is, a value corresponding to the total amount of all the microporous layers 29 and 33 included in the fuel cell electrodes 22 and 24 is obtained as a standard value. .
  • the existence frequency (%) at the cross-sectional position t is acquired as the existence frequency (%) at the cross-sectional position t.
  • Such presence frequency (%) can be treated as a value indicating how many microporous layers 29 and 33 are present at a predetermined cross-sectional position t. Since the existence frequency (%) is a value normalized by the standard value, the fuel cell electrodes 22 and 24 having different total amounts of the microporous layers 29 and 33 can be compared.
  • a value obtained by dividing the area ratio cumulative value at the predetermined cross-sectional position t by the standard value (total of all area ratios) is obtained as the existence frequency cumulative value (%) at the cross-sectional position t.
  • the method for calculating the existence frequency cumulative value is not limited to the above.
  • the amount of the microporous layers 29, 33 included in the region on the catalyst layer 26, 30 side from the predetermined cross-sectional position t in the thickness direction D1 is relative to the total amount of the microporous layers 29, 33. Any value can be used as long as it is a value that can indicate whether or not there is a ratio, as well as the above-described cumulative existence frequency.
  • the microporous layers 29 and 33 are continuous along the thickness direction D1.
  • the microporous layers 29 and 33 continuously penetrate from the first surfaces S1 and S3 into the gas diffusion base materials 27 and 31 in the thickness direction D1 and reach the second surfaces S2 and S4. Yes. That is, in the first surfaces S1, S3 and the gas diffusion base materials 27, 31, the particles constituting the microporous layers 29, 33 are from the first surfaces S1, S3 to the second surfaces S2, S4.
  • a portion where the microporous layers 29 and 33 are completely divided in the thickness direction D1 is not formed in the entire region (for example, a portion divided in a part of the region at a predetermined cross-sectional position is not formed). Even if it exists, it is continuous in other parts).
  • the discharge path is configured to be continuous in the thickness direction D1 in the gas diffusion base materials 27 and 31, and the first surfaces S1 and S3. And a path communicating with the second surfaces S2 and S4.
  • the generated water is efficiently discharged by maintaining the continuous discharge path in the thickness direction D1 in the gas diffusion layers 28 and 32.
  • the area where (%) partially decreases that is, the divided area that is large enough to cause water retention is not formed (or even if there is a small divided area, the drainage performance is not affected). Structure). Therefore, a structure in which water retention does not occur in the middle of the generated water discharge path can be achieved.
  • the drainage performance is not affected, and it can be handled as being within the range of manufacturing errors.
  • the value of the maximum point PK3 and the minimum point PK2 If the difference between the values is 5% or less of the value of the maximum point PK1, it can be handled as being within the range of manufacturing errors.
  • inflection points that occur locally within the range of 2 ⁇ m or less in the thickness direction D1 for example, a data portion that protrudes by one or two points in the three-dimensional data analysis) are also within the error range. Can be treated as a thing.
  • a curved portion that curves upward and then curves downward is projected as in the layer side portion.
  • the amount of the microporous layers 29, 33 included in the region on the catalyst layer 26, 30 side (first surface S1, S3 side) from the center position of the gas diffusion base material 27, 31 in the thickness direction D1 is for the fuel cell.
  • the total amount of the microporous layers 29 and 33 in the electrodes 22 and 24 is preferably 80% or more, and more preferably 85% or more.
  • the ratio of the amount of the microporous layers 29 and 33 in the gas diffusion layers 28 and 32 is indicated by the cumulative existence frequency (%) of the microporous layers 29 and 33 shown in FIG.
  • region of the interface side of the catalyst layers 26 and 30 and the microporous layers 29 and 33 can fully be ensured, and the said interface High production water drawing ability from can be demonstrated.
  • the microporous layers 29 and 33 have continuity with respect to the region on the gas flow path side from the center position of the gas diffusion base materials 27 and 31, and the amount is sufficient to reach the second surfaces S2 and S4. It is necessary to secure. Therefore, the amount of the fine pore layers 29, 33 included in the region on the catalyst layer 26, 30 side from the center position of the gas diffusion base materials 27, 31 in the thickness direction D1 is the fine pores in the fuel cell electrodes 22, 24.
  • the total amount of the layers 29 and 33 is preferably 98% or less, more preferably 95% or less.
  • the microporous layers 29 and 33 extend to the second surfaces S2 and S4 of the gas diffusion base materials 27 and 31, respectively.
  • the microporous layers 29 and 33 are formed in the gas diffusion base materials 27 and 31 from the first surfaces S1 and S3 to the second surfaces S2 and S2, respectively. It is possible to secure a discharge path of the generated water that continues to S4 and reaches the gas flow paths 38 and 40.
  • the confirmation that the microporous layers 29 and 33 reach the second surfaces S2 and S4 of the gas diffusion base materials 27 and 31 corresponds to the second surfaces S2 and S4 in the three-dimensional data analysis. This can be done by confirming the presence of the microporous layers 29, 33 on the cross section or by observing the appearance of the second surfaces S2, S4 of the actual fuel cell electrode.
  • a continuous discharge path in the thickness direction D ⁇ b> 1 is maintained in the gas diffusion layers 28, 32.
  • the generated water is efficiently discharged.
  • it can be set as the structure which does not generate
  • it is possible to exert a high ability to withdraw generated water from the interface. Can do.
  • the microporous layers 29 and 33 are continued to the second surfaces S2 and S4, and reach the gas flow paths 38 and 40. It is possible to secure a discharge path for generated water. While the gas diffusibility can be maintained as described above, the water generated by the electrochemical reaction can be drained efficiently. As a result, it is possible to achieve both water discharge and gas diffusibility as the fuel cell 10 and improve voltage characteristics.
  • the fuel cell 10 it is preferable to employ a gas diffusion layer structure that satisfies the above-described conditions in both the anode 22 and the cathode 24, but it is sufficient that only one of them is employed.
  • the cathode it is possible to improve the discharge of water generated in the cathode catalyst layer.
  • the anode it is possible to improve the discharge performance of the water that is back-diffused from the cathode to the anode through the electrolyte membrane.
  • Reverse diffusion is a phenomenon in which water moves from the cathode to the anode due to the concentration gradient of water in the anode and the cathode.
  • FIG. 4 is a schematic configuration diagram showing the paste coating apparatus 100 according to the present embodiment.
  • the paste applying apparatus 100 is an apparatus that applies a paste for the microporous layers 29 and 33 to the gas diffusion base materials 27 and 31 constituting the anode 22 and the cathode 24 of the fuel cell 10.
  • the gas diffusion layers 28 and 32 having a high drainage property as described above can be produced.
  • the paste coating apparatus 100 can be used for both the gas diffusion layers 28 and 32 of the anode 22 and the cathode 24, in the description of the paste coating apparatus 100, the gas diffusion base material in the manufacturing process is CP.
  • the paste will be described as PS.
  • the paste coating apparatus 100 includes a transport unit 101 that transports the gas diffusion base material CP in the transport direction D2, a first roll coater coating unit 102A and a second roll coater coating unit 102A that apply the paste PS to the gas diffusion base material CP by roll coater coating.
  • a roll coater coating unit 102B and a surface finishing unit 103 that performs surface finishing of the paste PS applied to the gas diffusion base material CP are provided.
  • the paste coating apparatus 100 includes a first roll coater coating unit 102A, a second roll coater coating unit 102B, and a surface finishing unit 103 in this order from the upstream side to the downstream side in the transport direction D2 of the transport unit 101. It has.
  • the transport unit 101 has the gas diffusion base material CP placed on the upper surface 101a, and moves in the transport direction D2 by the rotation of a back roll (not shown) disposed on the lower surface side.
  • the first roll coater application unit 102A and the second roll coater application unit 102B are disposed on the upper surface 101a side of the transport unit 101, and apply the paste PS to the gas diffusion base material CP.
  • a roll coater coating device manufactured by Furness Co., Ltd.
  • the first roll coater application unit 102A and the second roll coater application unit 102B are performed by single-sided application from the catalyst layer side of the gas diffusion base material CP. That is, it is applied from one surface on the catalyst layer side, and the paste PS is infiltrated into the gas diffusion base material CP to reach the surface on the gas flow path side. Further, the first roll coater application unit 102A and the second roll coater application unit 102B flatten the paste PS applied to the surface 110a of the application roll 110 without causing unevenness, streaks, lumps, or the like. In this state, it can be applied to the gas diffusion base material CP.
  • the viscosity of the paste PS is preferably 10,000 to 100,000 mPa ⁇ s.
  • the pressure is less than 10,000 mPa ⁇ s, the paste PS is likely to penetrate into the gas flow path side of the gas diffusion base material CP, and the amount of the fine pore layer on the catalyst layer side cannot be maintained.
  • it is larger than 100000 mPa ⁇ s, the paste PS becomes difficult to penetrate into the flow path side of the gas diffusion base material CP, and the amount of the microporous layer on the gas flow path side cannot be maintained.
  • the coating roll 110 is arranged so that the rotation center axis CL is parallel to the upper surface 101a of the transport unit 101 and is orthogonal to the transport direction D2.
  • the coating roll 110 rotates in the rotation direction D3 about the rotation center axis CL.
  • the surface 110a of the coating roll 110 is disposed so as to be separated from the upper surface 101a of the transport unit 101 at the lower end.
  • the gas diffusion base material CP passes between the surface 110a of the application roll 110 and the upper surface 101a of the transport unit 101, and the paste PS applied to the surface 110a of the application roll 110 is applied to the gas diffusion group at the application position 111. Transferred to material CP.
  • the doctor bar 120 is disposed upstream of the application position 111 in the rotation direction D3.
  • the paste PS applied to the surface 110a of the application roll 110 is applied at the application position 111 in a state where the film thickness (application amount) is adjusted and smoothed.
  • the material of the coating roll 110 is preferably urethane, but stainless steel (SUS) can also be used.
  • the surface finishing unit 103 includes a squeegee 104 disposed on the upper surface 101 a side of the transport unit 101.
  • the squeegee 104 is disposed so as to form a gap between the lower end portion and the upper surface 101a of the transport unit 101, and the paste PS that is applied to the gas diffusion substrate CP through which the gas diffusion substrate CP passes.
  • Surface finishing is performed.
  • the material of the squeegee 104 is preferably stainless steel (SUS), but polyethylene or urethane can also be used.
  • FIG. 5 is an enlarged view of the paste PS removing portion 125 of the doctor bar 120.
  • FIG. 5 is a view as seen from the direction of the rotation center axis of the coating roll 110.
  • the doctor bar 120 includes a removing unit 125 that removes excess paste PS from the paste PS applied to the surface 110 a of the application roll 110.
  • the removing unit 125 has a function of smoothing the paste PS applied to the surface 110a.
  • the material of the doctor bar 120 is preferably stainless steel (SUS), but urethane can also be used.
  • the removal unit 125 includes a removal surface 121 that extends so as to face the surface 110a of the application roll 110, a folded surface 122 that intersects with the removal surface 121 and extends away from the surface 110a of the application roll 110, and a removal surface 121. And an edge portion 123 formed between the folded surface 122.
  • a paste PS is supplied between the removal surface 121 and the coating roll 110.
  • the edge portion 123 constitutes the nearest point P1 closest to the surface 110a of the coating roll 110 in the removing portion 125.
  • a portion constituting the removal unit 125 is provided only on the virtual line L1 or on the upstream side in the rotation direction D3 from the virtual line L1.
  • the removal surface 121 extends on the upstream side in the rotation direction D3 with respect to the edge portion 123 that forms the closest point P1.
  • the edge portion 123 is formed at an acute angle, and the folded surface 122 is folded back in a direction away from the imaginary line L1 from the edge portion 123 toward the upstream side.
  • the folded surface 122 is disposed on the upstream side in the rotation direction D3 from the virtual line L1. Therefore, there is no portion of the removal portion 125 that protrudes downstream in the rotation direction D3 from the virtual line L1, and any portion is provided only on the virtual line L1 and upstream in the rotation direction D3 from the virtual line L1. ing.
  • the folded surface 122 constituting the removal portion 125 is a portion directly connected to the edge portion 123. A portion that is away from the edge portion 123, such as the surface 127 and the support portion 126 that are separated from the edge portion 123, does not affect the removal performance of the paste PS, and affects the smoothness of the paste PS after removal. The portion that cannot exert the influence on the value is not included in the removal unit 125.
  • the edge portion 123 may be formed with R and may be chamfered. As long as the R is chamfered or chamfered within the range formed in a normal machining process, the paste PS is not pulled even if the R 123 or chamfer is applied to the edge portion 123, and the coating performance is affected. It is because it does not reach.
  • an intersection point that is, the front end of the edge portion 123 before R-bending or chamfering is performed
  • the removal surface 121 and the folded surface 122 are extended to the front end side is recently set. Set as contact P1.
  • the configuration of the removing unit 125 may be changed as long as the removing unit 125 does not come downstream in the rotation direction D3 from the virtual line L1.
  • the angle A of the removal portion 125 that is, the angle A between the removal surface 121 and the folded surface 122 is preferably 30 ° to 90 °, and more preferably 60 ° or less. By setting the angle to 30 ° or more, it is possible to ensure the accuracy of creating the removal portion 125 and ensure the strength. By setting the acute angle to 60 ° or less, the folded surface 122 can be more reliably prevented from pulling the paste PS after film thickness adjustment.
  • the angle B between the removal surface 121 and the virtual line L1 is preferably 90 ° to 120 °.
  • the angle adjustment is performed within a range where “angle A + angle B” is 180 ° or less so that the removing unit 125 does not come out downstream from the virtual line L1 in the rotation direction D3.
  • the doctor bar 120 is set to an angle that does not interfere with the gas diffusion base material CP being conveyed.
  • the removal unit 125 may be configured as shown in FIG.
  • the removal surface 121 and the folded surface 122 are perpendicular to each other, and the folded surface 122 is arranged on the virtual line L1.
  • an arc surface 124 that is curved so as to be parallel to the surface 110 a of the coating roll 110 is formed at the tip of the removal surface 121.
  • the circular arc surface 124 is formed concentrically around the rotation center axis CL, the entire circular arc surface 124 has a closest point.
  • the imaginary line L1 is set to the most downstream closest point P1 (that is, the edge portion 123) in the rotation direction D3 among the plurality of closest points.
  • a gap is formed between the edge portion 123 constituting the closest point P ⁇ b> 1 and the surface 110 a of the coating roll 110.
  • the paste passing through the gap travels toward the coating position 111 in a state where the excess is removed and smoothed by the removal surface 121 and the edge portion 123.
  • the size of the gap d 5 by adjusting the amount of paste PS to be transferred to the gas diffusion substrate CP is adjusted.
  • the size d 5 of the gap than the first roll coater coating portion 102A on the upstream side in the transport direction D2, preferably towards the second roll coater coating portion 102B of the downstream side is set larger.
  • the size d 5 of the gap in the first roll coater coating unit 102A is preferably set to 80 to 100 ⁇ m, and the second roll coater coating The gap size d 5 in the portion 102B is preferably set to 100 to 120 ⁇ m.
  • the amount of the fine pore layer in the region on the catalyst layer side from the center position of the substrate is set to 80% or more. Can contribute.
  • the nearest point P1 is set in the middle of the removal surface 221, and the removal surface 221 is downstream from the virtual line L1 in the rotation direction D3. It has an extending surface 221a. Moreover, the edge part 223 and the folding
  • the edge part 323 between the removal surface 321 and the folding surface 322 comprises the nearest point P1
  • the folding surface 322 is The edge portion 323 extends toward the downstream side in the rotation direction D3.
  • the removal unit 325 has a portion that protrudes further downstream than the virtual line L1.
  • the said part turns into a part which is easy to pull the surface of paste PS after the edge part 323 passage.
  • the paste PS applied to the surface 110a of the coating roll 110 is downstream of the imaginary line L1 even after the film thickness is adjusted by passing through the edge portion 323 that is the closest contact P1. It is pulled by the folded surface 322 existing on the side, and unevenness, streaks, lumps and the like are generated.
  • the portion constituting the removing unit 125 is on the virtual line L1 or upstream in the rotational direction D3 from the virtual line L1 when viewed from the rotation center axis direction of the coating roll 110. It is provided only on the side. That is, the removal unit 125 has a structure that does not have a portion that protrudes downstream in the rotation direction D3 from the virtual line L1.
  • the removal surface 121 facing the surface 110a of the coating roll 110 can remove excess from the paste PS applied to the surface 110a of the coating roll 110.
  • the edge portion 123 formed between the removal surface 121 and the folded surface 122 is a portion constituting the closest point P1 closest to the surface 110a of the coating roll 110, and is a paste at the downstream end portion of the removal surface 121. While adjusting the thickness of PS, it has the function of smoothing the paste surface. Since the folded surface 122 connected to the edge portion 123 is disposed on the imaginary line L1 or on the upstream side in the rotation direction D3 from the imaginary line L1, the film thickness is adjusted and surface-finished at the edge portion 123. A smooth state can be maintained without pulling the paste surface. Thereby, the paste PS can go to the gas diffusion base material CP in a stable state (smooth state).
  • the doctor bar 120 has no portion protruding downstream from the imaginary line L1, and thus the paste PS after the film thickness adjustment is in a stable state without causing unevenness, streaks, lumps, or the like. In the (smooth state), it can go to the gas diffusion base material CP.
  • stabilizing (smoothing) the state of the paste to be applied it is possible to stabilize the application amount of the paste PS.
  • the paste PS in a stable state, the paste PS can penetrate well into the gas diffusion base CP without being interrupted, so that a highly continuous microporous layer can be formed in the gas diffusion base CP.
  • the paste application performance can be improved and the battery performance of the fuel cell can be improved.
  • a plurality of coating rolls 110 and doctor bars 120 are provided in the transport direction D2 of the transport unit 101, and the first roll coater coating unit 120A and the second roll.
  • a coater application unit 120B is provided.
  • a sufficient amount of paste PS can be applied to the gas diffusion base material CP even if the film thickness of the paste PS per application roll 110 is reduced.
  • the film thickness per coating roll 110 is kept small, the variation in the paste PS can be reduced as compared with the case where the film thickness is large.
  • a plurality of rolls are used in a state where unevenness, streaks, lumps, etc.
  • gas diffusion layers, fuel cell electrodes, and membrane electrode assemblies according to Examples and Comparative Examples were manufactured by the manufacturing method described below, and analyzed and verified.
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • the carbon paper is immersed in the FEP dispersion so as to be 60:40 (for the anode), dried at 60 ° C. for 1 hour, and then heat treated at 380 ° C. for 15 minutes (FEP water repellent) Process). Thereby, the carbon paper is subjected to water repellent treatment almost uniformly.
  • Vulcan XC-72R (manufactured by CABOT: Vulcan XC72R) and terpineol (manufactured by Kishida Chemical Co., Ltd.) as a solvent and Triton (manufactured by Kishida Chemical Co., Ltd.) as a solvent, and the weight ratio of Vulcan XC-72R: Terpineol:
  • the carbon paste is put into a hybrid mixer container and cooled until the carbon paste reaches 10 to 12 ° C.
  • the timing of stopping the mixing is until the paste temperature reaches 50 to 55 ° C., and the mixing time is appropriately adjusted. After the paste temperature reaches 50 to 55 ° C., the hybrid mixer is switched from the mixing mode to the defoaming mode and defoamed for 1 to 3 minutes. The paste after defoaming is naturally cooled to produce a cathode gas diffusion layer paste.
  • the cathode gas diffusion layer paste that has been cooled to room temperature is applied to the surface of the carbon paper that has been subjected to FEP water repellent treatment so that the coating state in the carbon paper surface is uniform.
  • the paste application apparatus 100 shown in FIG. 4 was used for the application of the cathode gas diffusion layer paste.
  • a roll coater coating device manufactured by Furness Co., Ltd.
  • the viscosity of the paste PS was 50000 mPa ⁇ s
  • the thickness d 1 of the gas diffusion base material CP was 190 ⁇ m.
  • the size of the gap d 5 between the coating roll 110 and the removing unit 125 was set to 100 ⁇ m, the angle A was 30 °, and the angle B was 90 °.
  • the angle ⁇ between the squeegee 104 and the transport unit 101 is set to 155 °. Dry at 60 ° C. for 60 minutes with a hot air dryer (manufactured by Thermal). Finally, heat treatment is performed at 360 ° C. for 2 hours to complete the cathode gas diffusion layer.
  • the catalyst dispersion solution was subjected to ultrasonic stirring and dispersion for 1 hour using an ultrasonic stirrer.
  • a predetermined SS700 solution was diluted with an equal amount of ultrapure water and stirred with a glass rod for 3 minutes. Thereafter, ultrasonic dispersion was performed using an ultrasonic cleaner for 1 hour to obtain an SS700 aqueous solution. Thereafter, the SS700 aqueous solution was slowly dropped into the catalyst dispersion. During the dropping, stirring was continuously performed using an ultrasonic stirrer.
  • the cathode catalyst slurry prepared by the above method was applied to the cathode gas diffusion layer by screen printing (150 mesh), dried at 80 ° C. for 3 hours, and heat treated at 180 ° C. for 45 minutes.
  • Carbon paper manufactured by Toray Industries, Inc .: TGP-H-060 serving as a base material for the anode gas diffusion layer is prepared, and water repellent treatment is performed in the same manner as the anode gas diffusion layer.
  • Vulcan XC-72R (manufactured by CABOT: Vulcan XC72R) and terpineol (manufactured by Kishida Chemical Co., Ltd.) as a solvent and Triton (manufactured by Kishida Chemical Co., Ltd.) as a solvent, and the weight ratio of Vulcan XC-72R: Terpineol:
  • anode fluororesin low molecular fluororesin
  • the anode gas diffusion layer paste cooled to room temperature was applied to the surface of the carbon paper subjected to FEP water repellent treatment so that the coating state in the carbon paper surface was uniform.
  • the paste coating apparatus 100 shown in FIG. 4 was used for applying the anode gas diffusion layer paste.
  • a roll coater coating device manufactured by Furness Co., Ltd.
  • the viscosity of the paste PS was 30000 mPa ⁇ s
  • the thickness d 1 of the gas diffusion base material CP was 190 ⁇ m.
  • the angle ⁇ between the squeegee 104 and the transport unit 101 is set to 155 °. Dry at 60 ° C. for 60 minutes with a hot air dryer (manufactured by Thermal). Finally, heat treatment is performed at 360 ° C. for 2 hours to complete the anode gas diffusion layer.
  • the anode catalyst slurry preparation method is the same as the cathode catalyst slurry preparation method except that platinum ruthenium (PtRu) -supported carbon (TEC61E54, Tanaka Kikinzoku Kogyo Co., Ltd.) is used as the catalyst.
  • PtRu platinum ruthenium
  • the cathode catalyst slurry prepared by the above method was applied to the anode gas diffusion layer by screen printing (150 mesh), dried at 80 ° C. for 3 hours, and heat-treated at 180 ° C. for 45 minutes.
  • Hot pressing is performed in a state where a solid polymer electrolyte membrane having a thickness of 50 ⁇ m is sandwiched between the anode and the cathode produced by the above method.
  • Aciplex registered trademark
  • SF7202 manufactured by Asahi Kasei E-Materials
  • a membrane electrode assembly according to the example was manufactured by hot pressing the anode, the solid polymer electrolyte membrane, and the cathode under the bonding conditions of 170 ° C. and 200 seconds.
  • the doctor bar shown in FIG. 7A was used as the doctor bar used in the first roll coater coating unit 102A and the second roll coater coating unit 102B. Except for the point, it is the same as the manufacturing method according to the example.
  • FIG. 8 is an image showing the catalyst layer 30 and the microporous layer 33 present in the cathode 24.
  • FIG. 8A is an image according to the example
  • FIG. 8B is an image according to the comparative example.
  • the image is produced based on the three-dimensional data, and is an internal image of the cathode 24 viewed from the direction orthogonal to the thickness direction D1 (viewed from the viewpoint VP in FIG. 3).
  • the image in FIG. 8 does not show only the catalyst layer 30 and the microporous layer 33 present on one cross section obtained by cutting a predetermined part when viewed from the viewpoint VP, but is tertiary in the depth direction viewed from the viewpoint VP. All of the catalyst layer 30 and the microporous layer 33 that originally exist are collectively shown on the two-dimensional image.
  • a divided portion DE in which the microporous layer 33 is largely divided in the thickness direction D1 is formed.
  • the divided portion DE is formed in substantially the entire left half region of the cathode 24 in the width direction.
  • substantially left half area of the cross section CS x is not at all present microporous layer 33 Not observed.
  • the discharge path of the generated water is not sufficiently secured, and water retention occurs.
  • the first-layer paste PS applied by the first roll coater application unit 102A is not kept smooth, and the second-layer paste PS that is not kept smooth is applied thereon.
  • a divided portion DE is formed by air mixing between the first layer and the second layer.
  • FIG. 8 (a) in the cathode 24 according to the example, a large divided portion as in the comparative example is not formed, and what is observed is a part of the gas flow path side. Only a small part is formed in the area.
  • a good microporous layer 33 with high continuity can be obtained by using the paste coating apparatus 100 according to the present embodiment.
  • the existence frequency (%) of the microporous layer 33 at each cross-sectional position is acquired.
  • the results are shown in FIG.
  • the result of the example is shown by a graph EL1
  • the result of the comparative example is shown by a graph EL2.
  • the results are shown in FIG.
  • the result of the example is shown by a graph ML1
  • the result of the comparative example is shown by a graph ML2.
  • the existence frequency greatly fluctuates because the divided portion DE is formed.
  • a minimum point PK2 and a maximum point PK3 are formed. It is understood that the difference between the values of the minimum point PK2 and the maximum point PK3 is large, and the existence frequency is not uniformly reduced.
  • a curve portion EP is formed such that the existence frequency cumulative value does not increase smoothly but protrudes downward.
  • the existence frequency cumulative value at the center position is 80% or more. That is, in the embodiment, the amount of the microporous layer 33 included in the region on the catalyst layer 30 side from the center position of the gas diffusion base material 31 is 80% or more of the total amount of the microporous layer 33 in the cathode 24. It is understood that On the other hand, as is clear from the value of the graph ML2 in FIG. 10, in the comparative example, the existence frequency cumulative value at the center position is less than 80%.
  • the amount of the microporous layer 33 included in the region on the catalyst layer 30 side from the central position of the gas diffusion base material 31 is less than 80% of the total amount of the microporous layer 33 in the cathode 24. It is understood that
  • the microporous layer 33 extends to the second surface S4 of the gas diffusion base material 31. That is, it is understood that a highly continuous discharge path is secured from the first surface S2 to the second surface S4 of the gas diffusion base material 31. In the comparative example, it extends to the second surface S4. However, as described above, the large divided portion DE is formed inside the gas diffusion base material 31, and the second surface S2 extends from the first surface S2. High continuity between the surfaces S4 is not ensured.
  • the cell voltage was measured using the membrane electrode assembly of an Example and a comparative example.
  • the measurement conditions are as follows.
  • the measurement result of the cell voltage is shown in “SRG / Air” of FIG.
  • oxygen gain was measured to verify the drainage performance of the cathode.
  • the oxygen gain is the difference between the cell voltage when the cathode gas is air and the cell voltage when the cathode gas is oxygen. The higher the cathode drainage, the smaller the oxygen gain.
  • the measurement result of the oxygen gain is shown as “O 2 gain” in FIG.
  • Anode gas Reformed hydrogen gas (CO concentration 10ppm)
  • Cathode gas Air cell temperature: 70 ° C
  • the example shows a lower oxygen gain than the comparative example, and it is understood that the example is superior in the discharge characteristic of the generated water. Also, the cell voltage is higher in the example than in the comparative example. From this, it can be understood that the battery performance of the example can be high. From the above, it can be understood that the membrane electrode assembly according to the example can improve the voltage characteristics while satisfying both the water discharging property and the gas diffusing property as the fuel cell. In addition, it is understood that by using the paste coating apparatus 100, the paste coating performance can be improved and the battery performance of the fuel cell can be improved.
  • a single-wafer product is used as a base material, but a continuous base material (a long base material that is cut into a desired size after applying a paste) may be used.
  • a continuous base material a long base material that is cut into a desired size after applying a paste
  • the catalyst layer is formed on the gas diffusion layer and the electrolyte membrane is joined to the electrode (CCS method). However, after the catalyst layer is formed on the electrolyte membrane, the gas diffusion layer is joined. (CCM method).
  • the present invention is applicable to gas diffusion layers, fuel cell electrodes, membrane electrode assemblies, and fuel cells.
  • SYMBOLS 10 Fuel cell, 20 ... Solid polymer electrolyte membrane, 22 ... Anode (electrode for fuel cells), 24 ... Cathode (electrode for fuel cells), 26, 30 ... Catalyst layer, 27, 31 ... Gas diffusion base material, 28 , 32 ... Gas diffusion layer, 29, 33 ... Microporous layer, 50 ... Membrane electrode assembly, 100 ... Paste coating device, 101 ... Conveying section, 102A ... First roll coater coating section, 102B ... Second roll coater Application part, 110 ... application roll, 110a ... surface, 120 ... doctor bar, 121 ... removal surface, 122 ... folding surface, 123 ... edge part, 125 ... removal part, P1 ... closest contact, L1 ... virtual line.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

 ガス拡散層は、第1の面、及び第1の面の反対側に形成される第2の面を有するガス拡散基材と、導電性粉末を含有すると共に、ガス拡散基材の第1の面上、及びガス拡散基材内に配置される微細孔層と、を有し、微細孔層は、ガス拡散基材の厚さ方向に連続しており、厚さ方向と垂直な断面上の微細孔層の量は、厚さ方向における第1の断面位置において最大となると共に、第1の断面位置から第2の面へ向かうに従って減少し、厚さ方向におけるガス拡散基材の中央位置から第1の面側の領域に含まれる微細孔層の量は、微細孔層の全体の量の80%以上であり、微細孔層は、第2の面まで及んでいる。

Description

ガス拡散層、燃料電池用電極、膜電極接合体、及び燃料電池
 本発明は、水素と酸素の電気化学反応により発電する燃料電池、ガス拡散層、燃料電池用電極、及び膜電極接合体に関する。
 近年、エネルギー変換効率が高く、かつ、発電反応により有害物質を発生しない燃料電池が注目を浴びている。こうした燃料電池の一つとして、100℃以下の低温で作動する固体高分子形燃料電池が知られている。
 固体高分子形燃料電池は、電解質膜である固体高分子膜をアノードとカソードとの間に配した基本構造を有し、アノードに水素を含む燃料ガス、カソードに酸素を含む酸化剤ガスを供給し、以下の電気化学反応により発電する装置である。
アノード:H→2H+2e ・・・(1)
カソード:1/2O+2H+2e→HO・・・(2)
 アノードおよびカソードは、それぞれ触媒層とガス拡散層(Gas Diffusion Layer:GDL)が積層した構造からなる。各電極の触媒層が固体高分子膜を挟んで対向配置され、燃料電池を構成する。触媒層は、触媒を担持した炭素粒子がイオン交換樹脂により結着されてなる層である。ガス拡散層は酸化剤ガスや燃料ガスの通過経路となる。
 アノードにおいては、供給された燃料中に含まれる水素が上記式(1)に示されるように水素イオンと電子に分解される。このうち水素イオンは固体高分子電解質膜の内部を空気極に向かって移動し、電子は外部回路を通って空気極に移動する。一方、カソードにおいては、カソードに供給された酸化剤ガスに含まれる酸素が燃料極から移動してきた水素イオンおよび電子と反応し、上記式(2)に示されるように水が生成する。このように、外部回路では燃料極から空気極に向かって電子が移動するため、電力が取り出される。
 たとえば、特許文献1には、多孔質基材内における撥水材の量が、触媒層と接する側から他方の側に向かって連続的に変化している燃料電池用のガス拡散電極が記載されている。また、特許文献2には、ガス拡散層において、基材の第2表出面のうちの半分以上を支持体と非接触状態とすることや、支持体の支持面を撥水性を有することにより、基材の第1表出面側の流動物が基材の厚さ方向に過剰に含浸することを抑制する技術が記載されている。
特開2003-109604号公報 特開2009-181718号公報
 燃料電池では、ガス拡散層において、電気化学反応により生じた水の排出とガスの拡散性を両立させることが必要である。しかし、従来の燃料電池では、ガス拡散層における水の排出経路の確保が十分でなく、ガス拡散層において水の排出性とガス拡散性が両立できていないという問題があった。
 たとえば引用文献1および2の燃料電池では、ガス拡散層に形成され、電気化学反応により生じた生成水の排出経路であるカーボン経路を定量的に把握することができていなかった。
 本発明はこうした課題に鑑みてなされたものであり、水の排出性とガス拡散性を両立させ、電圧特性を向上させることができるガス拡散層、燃料電池用電極、膜電極接合体、及び燃料電池を提供することを目的とする。
 上記課題を解決するために、本発明の一側面に係るガス拡散層は、第1の面、及び前記第1の面の反対側に形成される第2の面を有するガス拡散基材と、導電性粉末を含有すると共に、ガス拡散基材の第1の面上、及びガス拡散基材内に配置される微細孔層と、を有し、微細孔層は、ガス拡散基材の厚さ方向に連続しており、厚さ方向と垂直な断面上の微細孔層の量は、厚さ方向における第1の断面位置において最大となると共に、第1の断面位置から第2の面へ向かうに従って減少し、厚さ方向におけるガス拡散基材の中央位置から第1の面側の領域に含まれる微細孔層の量は、微細孔層の全体の量の80%以上であり、微細孔層は、第2の面まで及んでいる。
 本発明の一側面に係るガス拡散層において、微細孔層はガス拡散基材の厚さ方向に連続している。微細孔層は生成水の排出経路を構成しているため、ガス拡散層内で厚さ方向に連続した排出経路が維持され、これによって、生成水の排出が効率的に行われる。また、厚さ方向と垂直な断面上の微細孔層の量は、厚さ方向における第1の断面位置において最大となると共に、第1の断面位置から第2の面へ向かうに従って減少する。これによって、生成水の排出経路の途中において、水滞留を発生させない構造とすることができる。また、厚さ方向におけるガス拡散基材の中央位置から第1の面側の領域に含まれる微細孔層の量は、微細孔層の全体の量の80%以上である。このように、触媒層と微細孔層との界面側となる領域における微細孔層の量を十分に確保することによって、当該界面からの高い生成水引抜能力を発揮することができる。また、微細孔層が第2の面まで及んでいることにより、微細孔層はガス拡散基材内において第1の面から第2の面まで連続し、ガス流路に至るまで生成水の排出経路を確保することができる。以上によって、ガス拡散性を維持する一方で、電気化学反応によって生成した水を効率よく排水することができる。これによって、燃料電池としての水の排出性とガス拡散性を両立させ、電圧特性を向上させることができる。
 また、本発明の一側面に係るガス拡散層において、断面の厚さ方向における断面位置に対して、当該断面上の微細孔層の量をプロットした曲線は、第1の断面位置と第2の面との間に極小点を有さない。これによって、第1の断面位置から第2の面へ向かうに従って微細孔層の量が減少し、生成水の排出経路の途中において、水滞留を発生させない構造とすることができる。
 また、本発明の一側面に係るガス拡散層において、断面の厚さ方向における断面位置に対して、当該断面上の微細孔層の量をプロットした曲線が、第1の断面位置と第2の面との間に極小点を有する場合、極小点よりも第2の面側の最大値と極小点における値との差が、第1の断面位置における値の5%以下である。これによって、第1の断面位置から第2の面へ向かうに従って微細孔層の量が減少し、生成水の排出経路の途中において、水滞留を発生させない構造とすることができる。
 また、本発明の一側面に係るガス拡散層において、断面の厚さ方向における断面位置に対して、当該断面上の微細孔層の量をプロットした曲線は、第1の断面位置よりも第1の面側に極小点を有さない。これによって、第1の断面位置よりも第1の面側では、第1の面側から第1の断面位置へ向かうに従って微細孔層の量が増加し、生成水の排出経路の途中において、水滞留を発生させない構造とすることができる。
 本発明の一側面に係る燃料電池用電極は、上述のガス拡散層と、触媒層とを備える。これによって、燃料電池としての水の排出性とガス拡散性を両立させ、電圧特性を向上させることができる。
 本発明の一側面に係る膜電極接合体は、電解質膜と、電解質膜の一方の面に設けられたアノードと、電解質膜の他方の面に設けられたカソードと、を備え、アノード及びカソードの少なくとも一方に、上述のガス拡散層を採用する。カソードに採用することにより、カソード触媒層で生成した水の排出性を向上させることができる。またアノードに採用することにより、カソードから電解質膜を通してアノードに逆拡散した水の排出性を向上させることができる。逆拡散とは、アノードとカソードの水の濃度勾配により、カソードからアノードに水が移動する現象のことである。これによって、燃料電池としての水の排出性とガス拡散性を両立させ、電圧特性を向上させることができる。
 本発明の一側面に係る燃料電池は、上述のガス拡散層を備える。これによって、燃料電池としての水の排出性とガス拡散性を両立させ、電圧特性を向上させることができる。
 本発明によれば、燃料電池としての水の排出性とガス拡散性を両立させ、電圧特性を向上させることができる。
実施形態に係る燃料電池の構造を模式的に示す斜視図である。 図1のA-A線上の断面図である。 燃料電池用電極の構造を模式的に示す斜視図、及び当該燃料電池用電極の所定の断面位置における断面の様子を示す図である。 実施形態に係るペースト塗布装置を示す概略構成図である。 ドクターバーのペーストの除去部の拡大図である。 変形例に係るドクターバーのペーストの除去部の拡大図である。 比較例に係るドクターバーのペーストの除去部の拡大図である。 カソード内に存在する触媒層及び微細孔層を示す画像である。 実施例及び比較例について、厚さ方向における断面位置に対して、断面上の微細孔層の量をプロットしたグラフである。 実施例及び比較例について、断面位置に対して、当該断面位置から触媒層側の領域に存在する微細孔層の存在頻度累積値をプロットしたグラフである。 実施例及び比較例について、セル電圧及び酸素ゲインを計測した結果を示す図である。
 以下、本発明の実施の形態を図面を参照して説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
 (燃料電池)
 図1は、実施形態に係る燃料電池10の構造を模式的に示す斜視図である。図2は、図1のA-A線上の断面図である。燃料電池10は、平板状の膜電極接合体50を備え、この膜電極接合体50の両側にはセパレータ34およびセパレータ36が設けられている。この例では一つの膜電極接合体50のみを示すが、セパレータ34やセパレータ36を介して複数の膜電極接合体50を積層して燃料電池スタックが構成されてもよい。膜電極接合体50は、固体高分子電解質膜20、アノード(燃料電池用電極)22、およびカソード(燃料電池用電極)24を有する。
 アノード22は、触媒層26、およびガス拡散層28からなる積層体を有する。一方、カソード24は、触媒層30およびガス拡散層32からなる積層体を有する。アノード22の触媒層26とカソード24の触媒層30は、固体高分子電解質膜20を挟んで対向するように設けられている。
 アノード22側に設けられるセパレータ34にはガス流路38が設けられている。燃料供給用のマニホールド(図示せず)から燃料ガスがガス流路38に分配され、ガス流路38を通じて膜電極接合体50に燃料ガスが供給される。同様に、カソード24側に設けられるセパレータ36にはガス流路40が設けられている。
 酸化剤供給用のマニホールド(図示せず)から酸化剤ガスがガス流路40に分配され、ガス流路40を通じて膜電極接合体50に酸化剤ガスが供給される。具体的には、燃料電池10の運転時、燃料ガス、たとえば水素ガスを含有する改質ガスがガス流路38内をガス拡散層28の表面に沿って上方から下方へ流通することにより、アノード22に燃料ガスが供給される。
 一方、燃料電池10の運転時、酸化剤ガス、たとえば、空気がガス流路40内をガス拡散層32の表面に沿って上方から下方へ流通することにより、カソード24に酸化剤ガスが供給される。これにより、膜電極接合体50内で反応が生じる。ガス拡散層28を介して触媒層26に水素ガスが供給されると、ガス中の水素がプロトンとなり、このプロトンが固体高分子電解質膜20中をカソード24側へ移動する。このとき放出される電子は外部回路に移動し、外部回路からカソード24に流れ込む。一方、ガス拡散層32を介して触媒層30に空気が供給されると、酸素がプロトンと結合して水となる。この結果、外部回路においてはアノード22からカソード24に向かって電子が流れることとなり、電力を取り出すことができる。
 固体高分子電解質膜20は、湿潤状態において良好なイオン伝導性を示し、アノード22およびカソード24の間でプロトンを移動させるイオン交換膜として機能する。固体高分子電解質膜20は、含フッ素重合体や非フッ素重合体等の固体高分子材料によって形成され、たとえば、スルホン酸型パーフルオロカーボン重合体、ポリサルホン樹脂、ホスホン酸基又はカルボン酸基を有するパーフルオロカーボン重合体等を用いることができる。スルホン酸型パーフルオロカーボン重合体の例として、ナフィオン(デュポン社製:登録商標)112などがあげられる。また、非フッ素重合体の例として、スルホン化された、芳香族ポリエーテルエーテルケトン、ポリスルホンなどが挙げられる。固体高分子電解質膜20の膜厚は20~50μmである。
 アノード22を構成する触媒層26は、イオン伝導体(イオン交換樹脂)と、金属触媒を担持した炭素粒子すなわち触媒担持炭素粒子とから構成される。触媒層26の膜厚は10~30μmである。イオン伝導体は、合金触媒を担持した炭素粒子と固体高分子電解質膜20とを接続し、両者間においてプロトンを伝達する役割を持つ。イオン伝導体は、固体高分子電解質膜20と同様の高分子材料から形成されてよい。
 触媒層26に用いられる金属触媒は、たとえば、貴金属とルテニウムとからなる合金触媒が挙げられる。この合金触媒に用いられる貴金属として、たとえば、白金、パラジウムなどが挙げられる。また、金属触媒を担持する炭素粒子として、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ、カーボンナノオニオンなどが挙げられる。
 アノード22を構成するガス拡散層28は、ガス拡散基材27、およびガス拡散基材に塗布された微細孔層29(マイクロポーラス層:MPL)を有する。ガス拡散基材27は、電子伝導性を有する多孔体で構成されることが好ましく、たとえばカーボンペーパー、カーボンの織布または不織布などを用いることができる。
 ガス拡散基材27に塗布された微細孔層29は、導電性粉末と撥水剤とを混練して得られる混練物(ペースト)である。導電性粉末としては、たとえば、カーボンブラックを用いることができる。また、撥水剤としては、四フッ化エチレン樹脂(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)などのフッ素系樹脂を用いることができる。なお、撥水剤は結着性を有することが好ましい。ここで、結着性とは、粘りの少ないものやくずれやすいものをつなぎ合わせ、粘りのあるもの(状態)にすることができる性質をいう。撥水剤が結着性を有することにより、導電性粉末と撥水剤とを混練することにより、ペーストを得ることができる。ガス拡散基材27は、電解質膜20側に形成される第1の面S1と、電解質膜の反対側(すなわちガス流路38側)に形成される第2の面S2を有する。第1の面S1と第2の面S2は、アノード及びガス拡散層の厚さ方向D1に互いに対向している。
 微細孔層29は、第1の面S1(表面)から塗布されており、第2の面S2(裏面)まで所定量が厚さ方向D1に一部侵入する形で、触媒層26とガス拡散基材27との間(すなわち第1の面S1上)、及びガス拡散基材27内に配置される。微細孔層29は、ガス拡散基材27との境界部分において連続性を有すると共に、当該ガス拡散基材27内において第1の面S1から第2の面S2に向かって連続性を有するように、すなわち途中で途切れないように形成されている。これによって、電気化学反応により生じた生成水の排出経路であるカーボン経路を形成し、ガス拡散層28における生成水の排出性を高めることができる。ガス拡散層28の詳細な構造については後述する。
カソード24を構成する触媒層30は、イオン伝導体(イオン交換樹脂)と、触媒を担持した炭素粒子すなわち触媒担持炭素粒子とから構成される。イオン伝導体は、触媒を担持した炭素粒子と固体高分子電解質膜20を接続し、両者間においてプロトンを伝達する役割を持つ。イオン伝導体は、固体高分子電解質膜20と同様の高分子材料から形成されてよい。担持される触媒として、たとえば白金または白金合金を用いることができる。白金合金に用いられる金属として、コバルト、ニッケル、鉄、マンガン、イリジウムなどが挙げられる。また触媒を担持する炭素粒子には、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ、カーボンナノオニオンなどがある。
 カソード24を構成するガス拡散層32は、ガス拡散基材31、およびガス拡散基材31に塗布された微細孔層33を有する。ガス拡散基材31は、電子伝導性を有する多孔体で構成されることが好ましく、たとえばカーボンペーパー、カーボンの織布または不織布などを用いることができる。なお、生産性を考慮して、ガス拡散層32、ガス拡散層28の基材として共通のカーボンペーパーを用いることが好ましい。ガス拡散基材31は、電解質膜20側に形成される第1の面S3と、電解質膜の反対側(すなわちガス流路40側)に形成される第2の面S4を有する。第1の面S3と第2の面S4は、カソード及びガス拡散層の厚さ方向D1に互いに対向している。
 微細孔層33は、第1の面S3(表面)から塗布されており、第2の面S4(裏面)まで所定量が厚さ方向D1に一部侵入する形で、触媒層30とガス拡散基材31との間(すなわち第1の面S3上)、及びガス拡散基材31内に配置される。微細孔層33は、ガス拡散基材31との境界部分において連続性を有すると共に、ガス拡散基材31内において第1の面S3から第2の面S4に向かって連続性を有するように、すなわち途中で途切れないように形成されている。これによって、電気化学反応により生じた生成水の排出経路であるカーボン経路を形成し、ガス拡散層32における生成水の排出性を高めることができる。ガス拡散層32の詳細な構造については後述する。
 図3を参照して、ガス拡散層28,32の構成について説明する。図3は、燃料電池用電極(アノード22またはカソード24)の構造を模式的に示す斜視図、及び当該燃料電池用電極の所定の断面位置t=xにおける断面CSの様子を示す図である。以下の説明においては、厚さ方向D1におけるガス拡散基材27,31の大きさをLとする。厚さ方向D1における所定の断面位置をt=xとし、当該所定の断面位置t(=x)における断面をCSとする。断面CSは、当該断面位置t(=x)において厚さ方向D1と垂直をなす面である。
 ガス拡散層28,32内の微細孔層29,33の量は、三次元計測X線CTによる解析によって取得される。燃料電池用電極22,24の厚み方向D1における所定の領域(断面位置t=0から断面位置t=ENDまでの領域)を三次元計測X線CTでスキャンし、当該燃料電池用電極22,24内部構造の三次元データを取得する。このような三次元データを解析することによって、微細孔層29,33の量を取得することができる。なお、スキャンの開始点(断面位置t=0)と終点(断面位置t=END)は、任意に設定することができる。燃料電池用電極22,24内に含まれる全ての微細孔層29,33を解析するため、開始点(断面位置t=0)は、ガス拡散層28,32の端部より触媒層26,30側に設定し、終点(断面位置t=END)は、第2の面S2,S4よりガス流路38,40側に設定することが好ましい。
 三次元データを用いて、所定の断面位置t(=x)における断面CSの画像を取得する。図3に断面CSの画像の一例を示す。図3に示す例では、白地の部分がガス拡散基材27,31であり、斑点状に点在する領域が微細孔層29,33であって、生成水の排出経路を構成する部分である。当該断面CSの画像を解析することによって、断面位置t(=x)における微細孔層29,33の面積率を取得する。面積率は、断面CS上の微細孔層29,33の総面積が、断面CSの面積に対して占める割合をいう。このような断面CSの画像を、断面位置t=0から断面位置t=ENDに至るまで、厚さ方向D1に沿って所定ピッチで取得することによって、各断面位置tにおける面積率を取得する。ピッチは、0.1~2.0μmに設定することが好ましい。また、t=0~xにおける各断面位置における全ての面積率を合計した値を、断面位置t=xにおける面積率累計値として取得する。更に断面位置t=0~ENDの全ての面積率を合計した値、すなわち燃料電池用電極22,24に含まれる全ての微細孔層29,33の全量に対応する値を、規格値として取得する。
 上述の演算の後、所定の断面位置tにおける面積率を規格値(全ての面積率の合計)で割った値を、当該断面位置tにおける存在頻度(%)として取得する。このような存在頻度(%)を、所定の断面位置tにおいてどの程度の微細孔層29,33が存在しているかを示す値として扱うことができる。存在頻度(%)は、規格値によって規格化された値であるため、微細孔層29,33の総量が異なる燃料電池用電極22,24同士を比較することができる。当該存在頻度(%)を用いて、例えば、図9に示すように、厚さ方向D1における断面位置tに対して、断面CS上の微細孔層29,33の量をプロットした曲線を取得する。断面位置t=xmax(第1の断面位置)では、微細孔層29,33の量が最大となる。なお、存在頻度の演算方法は、上述のものに限られず、また、所定の断面位置t(=x)においてどの程度の微細孔層29,33が存在するのかを表すことができるならば、どのような値を用いてもよい。
 更に、所定の断面位置tにおける面積率累計値を規格値(全ての面積率の合計)で割った値を、当該断面位置tにおける存在頻度累積値(%)として取得する。このような存在頻度累積値(%)を、断面位置t=0と断面位置t=xとの間の領域に、どの程度の微細孔層29,33が存在しているかを示す値として扱うことができる。存在頻度累積値(%)は、規格値によって規格化された値であるため、微細孔層29,33の総量が異なる燃料電池用電極22,24同士を比較することができる。当該存在頻度累積値(%)を用いて、例えば、図10に示すように、断面位置tに対して、当該断面位置tから触媒層26,30側の領域に存在する微細孔層29,33の存在頻度累積値をプロットした曲線を取得する。当該存在頻度累積値は、断面位置t=0において0%となり、断面位置t=ENDにおいて100%となる。なお、存在頻度累積値の演算方法は、上述のものに限定されない。また、厚さ方向D1における所定の断面位置tから触媒層26,30側の領域に含まれる微細孔層29,33の量が、微細孔層29,33の全体の量に対してどの程度の割合存在しているかを表すことができる値であれば、上述のような存在頻度累積値に限らず、どのような値を用いてもよい。
 ガス拡散層28,32において、微細孔層29,33は、厚さ方向D1に沿って連続している。微細孔層29,33は、第1の面S1,S3からガス拡散基材27,31の中を厚さ方向D1に向かって浸透し、第2の面S2,S4に至るまで、連続している。すなわち、第1の面S1,S3及びガス拡散基材27,31内では、微細孔層29,33を構成する粒子同士が、第1の面S1,S3から第2の面S2,S4までの全領域において繋がっており、厚さ方向D1において微細孔層29,33が完全に分断されている部分が形成されていない(例えば、所定の断面位置において、一部の領域で分断される部分が存在していても、他の部分においては連続している)。微細孔層29,33は生成水の排出経路を構成しているため、当該排出経路は、ガス拡散基材27,31内で厚さ方向D1に連続する構成となり、第1の面S1,S3と第2の面S2,S4との間で連通した経路を確保する。このように、ガス拡散層28,32内で厚さ方向D1に連続した排出経路が維持されることによって、生成水の排出が効率的に行われる。
 厚さ方向D1と垂直な断面上の微細孔層29,33の量は、厚さ方向D1における断面位置t=xmax(第1の断面位置)において最大となると共に、断面位置t=xmaxから第2の面S2,S4へ向かうに従って減少する。断面位置t=xmaxから第2の面S2,S4側の領域においては、断面CSにおける微細孔層29,33の量が第2の面S2,S4に近づくに従って一様に低減している。すなわち、第2の面S2,S4に近づくに従って、断面CSにおける微細孔層29,33の量が減少するか、同じ量が維持されるか、増加するとしても極所的に増加するに留まる。例えば、ガス拡散層28,32中に、微細孔層29,33が厚さ方向D1に大きく分断された分断領域が存在すると、(他の部分で生成水の排出経路が確保されているとしても)当該分断領域にて水滞留が発生し、排水効率が低下する。このような分断領域では断面CSの微細孔層29,33の存在頻度(%)が部分的に減少し、分断領域より第2の面S2,S4側の部分で再び増加する。一方、断面位置t=xmaxから第2の面S2,S4へ向かうに従って、微細孔層29,33の存在頻度(%)が一様に減少する構造は、微細孔層29,33の存在頻度(%)が部分的に減少する領域、すなわち水滞留を発生させる程度の大きさの分断領域が形成されていない(あるいは、小さい分断領域が存在するとしても、排水性能に影響を及ぼさない程度の大きさである)構造となる。従って、生成水の排出経路の途中において、水滞留を発生させない構造とすることができる。
 具体的には、断面位置tに対して、断面CS上の微細孔層29,33の量をプロットした曲線は、断面位置t=xmaxと第2の面S2,S4との間に極小点を有さないことが好ましい(例えば、図9の例におけるグラフEL1では、断面位置t=xmaxよりガス流路側の領域では、グラフ全体の傾向として、極小点が形成されることなく、減少している)。あるいは、仮に極小点を有していたとしても、当該極小点よりも第2の面S2,S4側の最大値と極小点における値との差が、断面位置t=xmaxにおける値の5%以下であることが好ましい。5%以下であれば、排水性能に影響を及ぼさず、製造誤差の範囲内であるものとして扱うことができる。例えば、図9に示すグラフEL2のように最大となる極大点PK1よりもガス流路側において極小点PK2と極大点PK3を有するようなものであったとしても、極大点PK3の値と極小点PK2の値の差が、極大点PK1の値の5%以下であれば、製造誤差の範囲内であるものとして扱うことができる。また、厚さ方向D1において2μm以下の範囲内で極所的に発生する変極点(例えば、三次元データ解析においてプロットの一、二点だけ、突出するようなデータ部分)も誤差の範囲内のものと扱うことができる。
 また、微細孔層29,33の量が第2の面S2,S4に近づくに従って一様に低減する場合、存在頻度累積値のグラフは、図10のグラフML1のように、断面位置t=xmaxよりもガス流路側の領域において100%に向かって漸近的に湾曲する曲線を描く(断面位置t=xmaxよりもガス流路側の領域グラフが、上方に凸となるように湾曲する曲線のみによって構成されている)。一方、微細孔層29,33の量が第2の面S2,S4に近づくに従って一様に低減しない場合、存在頻度累積値のグラフは、図10のグラフML2においてEPで示される部分のように、断面位置t=xmaxよりもガス流路側の領域において、下方に凸となるように湾曲する曲線部分を描く場合がある。
 厚さ方向D1と垂直な断面上の微細孔層29,33の量は、断面位置t=xmaxより触媒層26,30側の領域では増加の態様は特に限定されないが、触媒層26,30側(第1の面S1,S3側)から断面位置t=xmaxへ向かうに従って増加することが好ましい。断面位置t=xmaxから第1の面S1,S3側の領域においては、断面CSにおける微細孔層29,33の量が断面位置t=xmaxに近づくに従って一様に増加している。すなわち、断面位置t=xmaxに近づくに従って、断面CSにおける微細孔層29,33の量が増加するか、同じ量が維持されるか、減少するとしても極所的に減少するに留まる。例えば、ガス拡散層28,32中に、微細孔層29,33が厚さ方向D1に大きく分断された分断領域が存在すると、(他の部分で生成水の排出経路が確保されているとしても)当該分断領域にて水滞留が発生し、排水効率が低下する。このような分断領域では断面CSの微細孔層29,33の存在頻度(%)が部分的に減少し、分断領域より断面位置t=xmax側の部分で再び増加する。一方、触媒層26,30側(第1の面S1,S3側)から断面位置t=xmaxへ向かうに従って、微細孔層29,33の存在頻度(%)が一様に増加する構造は、微細孔層29,33の存在頻度(%)が部分的に減少する領域、すなわち水滞留を発生させる程度の大きさの分断領域が形成されていない(あるいは、小さい分断領域が存在するとしても、排水性能に影響を及ぼさない程度の大きさである)構造となる。従って、生成水の排出経路の途中において、水滞留を発生させない構造とすることができる。
 例えば、断面位置tに対して、断面CS上の微細孔層29,33の量をプロットした曲線は、触媒層26,30と断面位置t=xmaxとの間に極小点を有さないことが好ましい(例えば、図9の例におけるグラフEL1では、断面位置t=xmaxより触媒層側の領域では、グラフ全体の傾向として、極小点が形成されることなく、増加している)。これによって、断面位置t=xmaxよりも触媒層26,30(第1の面S1,S3側)では、断面位置t=xmaxへ向かうに従って微細孔層29,33の量が増加し、生成水の排出経路の途中において、水滞留を発生させない構造とすることができる。
 あるいは、仮に極小点を有していたとしても、当該極小点よりも触媒層側の最大値と極小点における値との差が、断面位置t=xmaxにおける値の5%以下であることが好ましい。5%以下であれば、排水性能に影響を及ぼさず、製造誤差の範囲内であるものとして扱うことができる。また、厚さ方向D1において2μm以下の範囲内で極所的に発生する変極点(例えば、三次元データ解析においてプロットの一、二点だけ、突出するようなデータ部分)も誤差の範囲内のものと扱うことができる。
 また、微細孔層29,33の量が断面位置t=xmaxに近づくに従って一様に増加する場合、存在頻度累積値のグラフは、図10のグラフML1のように、断面位置t=xmaxよりも触媒層側の領域において0%に向かって漸近的に湾曲する曲線を描く(断面位置t=xmaxよりも触媒層側の領域グラフが、下方に凸となるように湾曲する曲線のみによって構成されている)。一方、微細孔層29,33の量が断面位置t=xmaxに近づくに従って一様に増加しない場合、存在頻度累積値のグラフは、図10のグラフML2において断面位置t=xmaxよりも触媒層側の部分のように、上方に凸となった後に下方に凸となるように湾曲する曲線部分を描く場合がある。
 厚さ方向D1におけるガス拡散基材27,31の中央位置から触媒層26,30側(第1の面S1,S3側)の領域に含まれる微細孔層29,33の量は、燃料電池用電極22,24中の微細孔層29,33の全体の量の80%以上であることが好ましく、85%以上であることがより好ましい。本実施形態では、ガス拡散層28,32中の微細孔層29,33の量の割合は、図10に示される微細孔層29,33の存在頻度累積値(%)で示される。このように、80%以上とすることによって、触媒層26,30と微細孔層29,33との界面側の領域における微細孔層29,33の量を十分に確保することができ、当該界面からの高い生成水引抜能力を発揮することができる。また、ガス拡散基材27,31の中央位置よりガス流路側の領域に対しても、微細孔層29,33が連続性を有すると共に、第2の面S2,S4にまで及ぶ程度の量を確保する必要がある。従って、厚さ方向D1におけるガス拡散基材27,31の中央位置から触媒層26,30側の領域に含まれる微細孔層29,33の量は、燃料電池用電極22,24中の微細孔層29,33の全体の量の98%以下であることが好ましく、95%以下であることがより好ましい。
 微細孔層29,33は、ガス拡散基材27,31の第2の面S2,S4にまで及んでいる。第2の面S2,S4まで微細孔層29,33を及ばせることで、微細孔層29,33がガス拡散基材27,31内において第1の面S1,S3から第2の面S2,S4まで連続し、ガス流路38,40に至るまで生成水の排出経路を確保することができる。なお、微細孔層29,33が、ガス拡散基材27,31の第2の面S2,S4にまで及んでいることの確認は、三次元データ解析において、第2の面S2,S4に対応する断面上に微細孔層29,33が存在していることの確認、あるいは実際の燃料電池電極の第2の面S2,S4の外観を観察することにより行うことができる。
 以上より、本実施形態に係る燃料電池用電極22,24、膜電極接合体50、及び燃料電池10によれば、ガス拡散層28,32内で厚さ方向D1に連続した排出経路を維持することで、生成水の排出が効率的に行われる。また、生成水の排出経路の途中において、水滞留を発生させない構造とすることができる。また、触媒層26,30と微細孔層29,33との界面側の領域における微細孔層29,33の量を十分に確保することによって、当該界面からの高い生成水引抜能力を発揮することができる。また、第2の面S2,S4にまで微細孔層29,33を及ばせることで、第2の面S2,S4まで微細孔層29,33を連続させ、ガス流路38,40に至るまで生成水の排出経路を確保することができる。以上によって、ガス拡散性も維持できる一方で、電気化学反応によって生成した水を効率よく排水することができる。これによって、燃料電池10としての水の排出性とガス拡散性を両立させ、電圧特性を向上させることができる。
 なお、上述した燃料電池10では、アノード22およびカソード24の両方において上述の条件を満たすガス拡散層の構造が採用されることが好ましいが、少なくとも一方のみで採用されればよい。カソードに採用することにより、カソード触媒層で生成した水の排出性を向上させることができる。またアノードに採用することにより、カソードから電解質膜を通してアノードに逆拡散した水の排出性を向上させることができる。逆拡散とは、アノードとカソードの水の濃度勾配により、カソードからアノードに水が移動する現象のことである。
 (ペースト塗布装置)
 図4は、本実施形態に係るペースト塗布装置100を示す概略構成図である。ペースト塗布装置100は、燃料電池10のアノード22、カソード24を構成するガス拡散基材27,31に微細孔層29,33用のペーストを塗布する装置である。ペースト塗布装置100を用いることによって、上述のような排水性の高いガス拡散層28,32を作製することができる。なお、ペースト塗布装置100はアノード22及びカソード24のガス拡散層28,32のいずれに対しても用いることができるので、ペースト塗布装置100の説明においては、製造工程におけるガス拡散基材をCPとし、ペーストをPSとして説明する。ペースト塗布装置100は、ガス拡散基材CPを搬送方向D2へ搬送する搬送部101と、ロールコータ塗布によってペーストPSをガス拡散基材CPに塗布する第1のロールコータ塗布部102A及び第2のロールコータ塗布部102Bと、ガス拡散基材CPに塗布されたペーストPSの表面仕上げを行う表面仕上げ部103と、を備えている。ペースト塗布装置100は、搬送部101の搬送方向D2における上流側から下流側に向かって、第1のロールコータ塗布部102A、第2のロールコータ塗布部102B、表面仕上げ部103の順で、各部を備えている。
 搬送部101は、上面101aにガス拡散基材CPが載置されており、下面側に配置される図示されないバックロールの回転によって、搬送方向D2へ移動する。第1のロールコータ塗布部102A及び第2のロールコータ塗布部102Bは、搬送部101の上面101a側に配置されてガス拡散基材CPにペーストPSを塗布する塗布ロール110と、塗布ロール110の表面110aに付与されるペーストPSの量を調整するドクターバー120と、を備える。第1のロールコータ塗布部102A及び第2のロールコータ塗布部102Bとして、例えば、ロールコータ塗布装置((株)ファーネス社製)を用いることができる。第1のロールコータ塗布部102A及び第2のロールコータ塗布部102Bは、ガス拡散基材CPの触媒層側からの片面塗布によって行う。すなわち、触媒層側の片面から塗布し、ペーストPSをガス拡散基材CP内部に浸透させ、ガス流路側の面まで至らせる。また、第1のロールコータ塗布部102A及び第2のロールコータ塗布部102Bは、塗布ロール110の表面110aに付与されたペーストPSを、ムラ、スジ、ダマなどを発生させることなく、平坦化させた状態にてガス拡散基材CPへ塗布することができる。従って、第1のロールコータ塗布部102Aで塗布するペーストPSと第2のロールコータ塗布部102Bで塗布するペーストPSとの間には空気が混入することなく、連続性の高い微細孔層を得ることができる。なお、ペーストPSの粘度は、10000~100000mPa・sであることが好ましい。10000mPa・s未満の場合、ペーストPSがガス拡散基材CPのガス流路側へ浸透し易くなりすぎ、触媒層側の微細孔層の量を維持できなくなる。一方、100000mPa・sより大きい場合、ペーストPSがガス拡散基材CPの流路側へ浸透し難くなりすぎ、ガス流路側の微細孔層の量を維持できなくなる。
 塗布ロール110は、その回転中心軸線CLが搬送部101の上面101aと平行をなすと共に搬送方向D2と直交するように配置される。塗布ロール110は、回転中心軸線CLを中心として回転方向D3に回転する。塗布ロール110の表面110aは、下端において搬送部101の上面101aから離間するように配置される。塗布ロール110の表面110aと搬送部101の上面101aとの間をガス拡散基材CPが通過し、当該塗布位置111にて、塗布ロール110の表面110aに付与されていたペーストPSがガス拡散基材CPに転写される。ドクターバー120は、塗布位置111よりも、回転方向D3における上流側に配置されている。これによって、塗布ロール110の表面110aに付与されるペーストPSは、膜厚(塗布量)が調整されると共に平滑にされた状態にて、塗布位置111で塗布される。塗布ロール110の材質は、ウレタンであることが好ましいが、ステンレス鋼(SUS)を使用することもできる。
 表面仕上げ部103は、搬送部101の上面101a側に配置されたスキージ104を備えている。スキージ104は、下端部と搬送部101の上面101aとの間に隙間を形成するように配置され、当該隙間をガス拡散基材CPが通過し、ガス拡散基材CPに塗布されているペーストPSの表面仕上げが行われる。スキージ104の材質は、ステンレス鋼(SUS)であることが好ましいが、ポリエチレンやウレタンを使用することもできる。
 図5を参照して、ドクターバー120の構成について詳細に説明する。図5は、ドクターバー120のペーストPSの除去部125の拡大図である。図5は、塗布ロール110の回転中心軸線方向から見た図である。図5に示すように、ドクターバー120は、塗布ロール110の表面110aに付与されたペーストPSのうち、過剰なペーストPSを除去する除去部125を有している。除去部125は、表面110aに付与されたペーストPSを平滑にする機能を有している。ドクターバー120の材質は、ステンレス鋼(SUS)であることが好ましいが、ウレタンを使用することもできる。
 除去部125は、塗布ロール110の表面110aと対向するように広がる除去面121と、除去面121と交差すると共に、塗布ロール110の表面110aから遠ざかる方向へ広がる折返し面122と、除去面121と折返し面122との間に形成されるエッジ部123と、を備えている。除去面121と塗布ロール110との間にペーストPSが供給される。
 エッジ部123は、除去部125のうち、塗布ロール110の表面110aに最も近い最近接点P1を構成する。当該最近接点P1と回転中心軸線CLとを仮想線L1で結んだ場合、除去部125を構成する部分は、仮想線L1上または仮想線L1よりも回転方向D3における上流側にのみ設けられている。本実施形態における除去部125において、除去面121は最近接点P1を構成するエッジ部123よりも回転方向D3における上流側で広がっている。また、エッジ部123が鋭角に形成されており、折返し面122はエッジ部123から上流側へ向かって仮想線L1より遠ざかる方向に折り返されている。これによって、折返し面122は、仮想線L1より回転方向D3における上流側に配置される。従って、除去部125において仮想線L1よりも回転方向D3における下流側へ出ている部分はなく、いずれの部分も仮想線L1上、及び仮想線L1よりも回転方向D3における上流側にのみ設けられている。なお、除去部125を構成する折返し面122は、エッジ部123と直接連結される部分である。エッジ部123から離れている面127や支持部126などのように、エッジ部123から離間しており、ペーストPSの除去性能に影響を及ぼさない部分や、除去後のペーストPSの平滑性に影響を及ぼし得ない部分は、除去部125には含まれない。従って、面127や支持部126は、仮想線L1より回転方向D3における下流側に出ていてもよい。エッジ部123には、Rが形成されていてもよく、面取りがなされていてもよい。通常の機械加工の工程において形成される範囲内のR付けや面取りであれば、エッジ部123にR付けや面取りがなされていても、ペーストPSを引っ張るようなことがなく、塗布性能に影響を及ぼさないためである。なお、R付けや面取りがなされている場合は、除去面121と折返し面122を先端側に延長させた場合の交点(すなわち、R付けや面取りがなされる前におけるエッジ部123の先端)を最近接点P1として設定する。
 除去部125が仮想線L1よりも回転方向D3における下流側に出ない限り、除去部125の構成を変更してもよい。除去部125の角度A、すなわち除去面121と折返し面122との角度Aは、30°~90°であることが好ましく、60°以下とすることがより好ましい。30°以上とすることで除去部125の作成精度を確保すると共に強度を確保することができる。60°以下の鋭角とすることで、折返し面122が膜厚調整後のペーストPSを引っ張ることをより確実に防止することができる。また、除去面121と仮想線L1との角度Bは、90°~120°であることが好ましい。120°以下とすることで、塗布ロール110へのダメージを小さくすることができる。ただし、除去部125が仮想線L1より回転方向D3における下流側に出ないように、「角度A+角度B」が180°以下の範囲内で角度調整を行う。また、ドクターバー120が、搬送されるガス拡散基材CPと干渉しない角度以下に設定される。
 例えば、除去部125を図6に示すような構成としてもよい。図6(a)に示す例では、除去面121と折返し面122が垂直をなしており、折返し面122が仮想線L1上に配置される構成となっている。図6(b)に示す例では、除去面121の先端部分に、塗布ロール110の表面110aと平行となるように湾曲した円弧面124が形成されている。円弧面124が回転中心軸線CLを中心として同心円に形成される場合、円弧面124全体が最近接点を有することとなる。このような場合は、複数の最近接点のうち、回転方向D3における最も下流側の最近接点P1(すなわちエッジ部123)に対して仮想線L1が設定される。
 図5に戻り、最近接点P1を構成するエッジ部123と塗布ロール110の表面110aとの間には、隙間が形成される。塗布ロール110に付与されるペーストPSのうち、当該隙間を通過するものは、除去面121及びエッジ部123で過剰分を除去されると共に平滑化された状態で、塗布位置111へ向かう。この隙間の大きさdを調整することで、ガス拡散基材CPに転写されるペーストPSの量が調整される。この隙間の大きさdは、搬送方向D2における上流側の第1のロールコータ塗布部102Aよりも、下流側の第2のロールコータ塗布部102Bの方が大きく設定されることが好ましい。ガス拡散基材CPの厚さdが150~230μmの場合、第1のロールコータ塗布部102Aにおける隙間の大きさdは、80~100μmに設定することが好ましく、第2のロールコータ塗布部102Bにおける隙間の大きさdは、100~120μmに設定することが好ましい。第1のロールコータ塗布部102Aに比して第2のロールコータ塗布部102Bの隙間を大きくすることで、基材中央位置から触媒層側の領域で微細孔層の量を80%以上とすることに寄与できる。
 ここで、図7を用いて、比較例に係るペースト塗布装置について説明する。図7(a)に示す比較例に係るドクターバー220の除去部225においては、最近接点P1が除去面221の途中に設定され、除去面221は仮想線L1よりも回転方向D3における下流側まで延びる面221aを有している。また、仮想線L1よりも下流側にエッジ部223及び折返し面222が形成される。このような構成においては、塗布ロール110の表面110aに付与されたペーストPSは、最近接点P1を通過することで膜厚の調整がされた後も、仮想線L1よりも下流側の面221aに引っ張られ、ムラ、スジ、ダマ等を発生してしまう。図7(b)に示す比較例に係るドクターバー320の除去部325においては、除去面321と折返し面322との間のエッジ部323が最近接点P1を構成しているが、折り返し面322が、エッジ部323から回転方向D3における下流側へ向かって広がっている。これによって、除去部325は、仮想線L1よりも下流側へ迫り出す部分を有することとなる。当該部分は、エッジ部323通過後のペーストPSの表面を引っ張り易い部分となる。このような構成においては、塗布ロール110の表面110aに付与されたペーストPSは、最近接点P1であるエッジ部323を通過することで膜厚の調整がされた後も、仮想線L1よりも下流側に存在する折返し面322に引っ張られ、ムラ、スジ、ダマ等を発生してしまう。
 一方、本実施形態に係るペースト塗布装置100において、除去部125を構成する部分は、塗布ロール110の回転中心軸線方向から見て、仮想線L1上、または仮想線L1よりも回転方向D3における上流側にのみ設けられている。すなわち、除去部125は、当該仮想線L1よりも回転方向D3における下流側に迫り出した部分を有さない構造となる。塗布ロール110の表面110aと対向する除去面121は、塗布ロール110の表面110aに付与されるペーストPSのうち、過剰分を除去することができる。また、除去面121と折返し面122との間に形成されるエッジ部123は、塗布ロール110の表面110aに最も近い最近接点P1を構成する部分であり、除去面121の下流側端部においてペーストPSの厚みを調整すると共に、ペースト表面を平滑にする機能を有する。当該エッジ部123に連結されている折返し面122は、仮想線L1上、または仮想線L1よりも回転方向D3における上流側に配置されているため、エッジ部123で膜厚調整及び表面仕上げされたペースト表面を引っ張ることなく、平滑な状態を維持することができる。これによって、ペーストPSは安定した状態(平滑な状態)にて、ガス拡散基材CPへ向かうことができる。
 以上より、ドクターバー120には、仮想線L1よりも下流側に迫り出す部分が存在しないため、膜厚調整された後のペーストPSは、ムラ、スジ、ダマ等を発生させることなく安定した状態(平滑な状態)にて、ガス拡散基材CPへ向かうことができる。このように、塗布されるペースト状態を安定化(平滑化)することによって、ペーストPSの塗布量の安定化を図ることができる。また、ペーストPSの塗布状態や、ガス拡散基材CPへの浸透深さの安定化を図ることができる。また、安定した状態でペーストPSを塗布することでペーストPSが途中で途切れることなくガス拡散基材CP内に良好に浸透することで、ガス拡散基材CP内に連続性の高い微細孔層を形成することが可能となる。また、ペーストPSの予備攪拌時間(ペーストをロールコータ塗布装置に投入後、塗布開始するまでにダマの発生等を抑制させるための攪拌時間)を低減することも可能となる。更に、このように良好なペースト塗布によって微細孔層を形成することが可能となることにより、当該ペースト塗布装置100によって作製された燃料電池用電極を用いることで、燃料電池の電池性能の安定化を図ることができる。以上により、ペーストの塗布性能を向上させ、燃料電池の電池性能を向上させることができる。
 また、本実施形態に係るペースト塗布装置100において、搬送部101の搬送方向D2に対して、塗布ロール110及びドクターバー120は、複数設けられ、第1のロールコータ塗布部120A及び第2のロールコータ塗布部120Bが設けられている。複数のロールコータ塗布部120A,120Bを用いる場合、塗布ロール110一つ当たりのペーストPSの膜厚を小さくしても、十分な量のペーストPSをガス拡散基材CPに塗布することが可能となる。塗布ロール110一つ当たりの膜厚を小さく抑える場合、膜厚が大きい場合に比して、ペーストPSのばらつきを少なくすることができる。ここで、従来のようにペーストにムラ、スジ、ダマ等が発生した状態で、複数のロールを用いた場合、一層目のペーストPSと二層目のペーストPSとの間に空気が入り込むことでペーストPSが分断され、連続性が欠かれてしまう。しかしながら本実施形態では、ペーストPSを平滑な状態で塗布することが可能であるため、複数の塗布ロール110を用いる場合であっても、一層目のペーストPSと二層目のペーストPSとの間に空気が入り込むことを防止し、高い連続性を維持することが可能となる。
 以下に示す製造方法によって、実施例及び比較例に係るガス拡散層、燃料電池用電極及び膜電極接合体を製造し、解析及び検証を行った。
(実施例:製造方法)
 <カソードガス拡散層の作製>
 カソードガス拡散層の基材となるカーボンペーパ(東レ社製:TGP‐H‐060)を用意し、重量比でカーボンペーパ:FEP(テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体)=95:5(カソード用)、60:40(アノード用)となるように、当該カーボンペーパをFEP分散液に浸漬した後、60℃にて1時間の乾燥後、380℃にて15分間の熱処理(FEP撥水処理)を行う。これにより、カーボンペーパがほぼ均一に撥水処理される。
 バルカンXC-72R(CABOT社製:Vulcan XC72R)と溶媒としてテルピネオール(キシダ化学社製)と非イオン性界面活性剤のトリトン(キシダ化学社製)とを、重量比がバルカンXC-72R:テルピネオール:トリトン=20:150:3となるように、万能混合機(DALTON社製)にて常温で60分間、均一になるように混合し、カーボンペーストを作製する。
 低分子フッ素樹脂(ダイキン社製:ルブロンLDW410)と高分子フッ素樹脂(デュポン社製:PTFE-31JR)とを、分散液中に含まれるフッ素樹脂の重量比が低分子フッ素樹脂:高分子フッ素樹脂=20:3となるように混合し、カソード用混合フッ素樹脂を作製する。ハイブリッドミキサ用容器に上記カーボンペーストを投入し、カーボンペーストが10~12℃になるまで冷却する。冷却したカーボンペーストに上記カソード用混合フッ素樹脂を、重量比がカーボンペースト:カソード用混合フッ素樹脂(分散液中に含まれるフッ素樹脂成分)=31:1となるように投入し、ハイブリッドミキサ(キーエンス社製:EC500)の混合モードにて12~18分間混合する。混合停止のタイミングはペーストの温度が50~55℃となるまでとし、混合時間を適宜調整する。ペーストの温度が50~55℃に達した後、ハイブリッドミキサを混合モードから脱泡モードへ切換え、1~3分間脱泡を行う。脱泡を終えたペーストを自然冷却してカソード用ガス拡散層ペーストを作製する。
 常温まで冷却したカソード用ガス拡散層ペーストをFEP撥水処理を施した上記カーボンペーパの表面にカーボンペーパ面内の塗布状態が均一になるように塗布する。カソード用ガス拡散層ペーストの塗布には、図4で示したペースト塗布装置100を使用した。本実施例では、ロールコータ塗布部102A,102Bとして、ロールコータ塗布装置((株)ファーネス社製)を用いた。ペーストPSの粘度は50000mPa・sであり、ガス拡散基材CPの厚さd=190μmであった。第1のロールコータ塗布部102Aでは、塗布ロール110と除去部125との間の隙間の大きさd=80μm、角度A=30°、角度B=90°、とした。第2のロールコータ塗布部102Bでは、塗布ロール110と除去部125との間の隙間の大きさd=100μm、角度A=30°、角度B=90°とした。表面仕上げ部103では、スキージ104と搬送部101との間の角度θ=155°とした。熱風乾燥機(サーマル社製)にて60℃で60分間乾燥する。最後に、360℃で2時間熱処理を行い、カソードガス拡散層を完成させる。
 <カソード触媒スラリー作製>
 カソード触媒として、白金担持カーボン(TEC36F52,田中貴金属工業株式会社)を用い、イオン伝導体として、SS700C溶液 (20%,Ew=780,含水率=36wt%(25℃),旭化成ケミカルズ製アイオノマー溶液Aciplex(登録商標) SS700C、以下SS700と略す)を用いた。白金担持カーボン5gに対し、10mLの超純水を添加し撹拌した後に、15mLエタノールを添加した。この触媒分散溶液について、超音波スターラーを用いて1時間超音波撹拌分散を行った。所定のSS700溶液を等量の超純水で希釈を行い、ガラス棒で3分間撹拌した。この後、超音波洗浄器を用いて1時間超音波分散を行い、SS700水溶液を得た。その後、SS700水溶液をゆっくりと触媒分散液中に滴下した。滴下中は、超音波スターラーを用いて連続的に撹拌を行った。SS700水溶液滴下終了後、1-プロパノールと1-ブタノールの混合溶液10g(重量比 1:1)の滴下を行い、得られた溶液を触媒スラリーとした。混合中は、すべて水温が約60℃になるように調整し、エタノールを蒸発、除去した。
 <カソードの作製>
 上記の方法で作製したカソード用触媒スラリーをスクリーン印刷(150メッシュ)によって、カソードガス拡散層に塗布し、80℃、3時間の乾燥および180℃、45分の熱処理を行った。
 <アノードガス拡散層の作製>
 アノードガス拡散層の基材となるカーボンペーパ(東レ社製:TGP‐H‐060)を用意し、アノードガス拡散層と同様に、撥水処理を施す。
 バルカンXC-72R(CABOT社製:Vulcan XC72R)と溶媒としてテルピネオール(キシダ化学社製)と非イオン性界面活性剤のトリトン(キシダ化学社製)とを、重量比がバルカンXC-72R:テルピネオール:トリトン=20:150:3となるように、万能混合機(DALTON社製)にて常温で60分間、均一になるように混合し、カーボンペーストを作製する。
 ハイブリッドミキサ用容器に上記カーボンペーストと上記低分子フッ素樹脂とを、重量比がカーボンペースト:低分子フッ素樹脂(以下、アノード用フッ素樹脂とする)(分散液中に含まれるフッ素樹脂成分)=26:3となるように投入し、ハイブリッドミキサの混合モードにて15分間混合する。混合した後、ハイブリッドミキサを混合モードから脱泡モードへ切換え、4分間脱泡を行う。脱泡を終えたペーストの上部に上澄み液が溜まった場合はこの上澄み液を廃棄し、ペーストを自然冷却してアノード用ガス拡散層ペーストを完成させる。
 常温まで冷却したアノード用ガス拡散層ペーストをFEP撥水処理を施した上記カーボンペーパの表面にカーボンペーパ面内の塗布状態が均一になるように塗布した。アノード用ガス拡散層ペーストの塗布には、図4で示したペースト塗布装置100を使用した。本実施例では、ロールコータ塗布部102A,102Bとして、ロールコータ塗布装置((株)ファーネス社製)を用いた。ペーストPSの粘度は30000mPa・sであり、ガス拡散基材CPの厚さd=190μmであった。第1のロールコータ塗布部102Aでは、塗布ロール110と除去部125との間の隙間の大きさd=100μm、角度A=30°、角度B=90°とした。第2のロールコータ塗布部102Bでは、塗布ロール110と除去部125との間の隙間の大きさd=120μm、角度A=30°、角度B=90°とした。表面仕上げ部103では、スキージ104と搬送部101との間の角度θ=155°とした。熱風乾燥機(サーマル社製)にて60℃にて60分間乾燥する。最後に、360℃にて2時間熱処理を行い、アノードガス拡散層を完成させる。
 <アノード用触媒スラリーの作製>
 アノード用触媒スラリーの作製方法は、触媒として白金ルテニウム(PtRu)担持カーボン(TEC61E54,田中貴金属工業株式会社)を使用する点を除き、カソード用触媒スラリーの作製方法と同様である。
 <アノードの作製>
 上記の方法で作製したカソード用触媒スラリーをスクリーン印刷(150メッシュ)によって、アノードガス拡散層に塗布し、80℃で3時間の乾燥および180℃で45分の熱処理を行った。
 <膜電極接合体の作製>
 上記の方法で作製したアノードとカソードとの間に50μm膜厚の固体高分子電解質膜を狭持した状態でホットプレスを行う。固体高分子電解質膜としてAciplex(登録商標)(SF7202、旭化成イーマテリアルズ製)を用いた。170℃、200秒の接合条件でアノード、固体高分子電解質膜、およびカソードをホットプレスすることによって実施例に係る膜電極接合体を作製した。
 (比較例:製造方法)
 カソードガス拡散層の作製及びアノードガス拡散層の作製において、第1のロールコータ塗布部102A及び第2のロールコータ塗布部102Bで用いるドクターバーとして、図7(a)に示すドクターバーを用いた点以外は、実施例に係る製造方法と同様である。仮想線L1から出ている部分の大きさd=10mmとした。
(微細孔層の解析)
 作製された実施例及び比較例に係るカソードを解析した。三次元データの取得及び解析には三次元計測X線CTであるSMX-160CTS(島津製作所社製)を用いた。断面位置t=0を触媒層30よりも固体高分子電解質膜側の位置に設定し、断面位置t=ENDをガス拡散層32よりもガス流路側の位置に設定し、300μmの範囲にわたる内部構造の三次元データを取得した。図8は、カソード24内に存在する触媒層30及び微細孔層33を示す画像である。図8(a)は実施例に係る画像であり、図8(b)は比較例に係る画像である。当該画像は、三次元データに基づいて作製されており、カソード24を厚さ方向D1と直交する方向から見た(図3において視点VPから見た)内部画像である。図8の画像は、視点VPから見たときに所定の一部分を切断した一つの断面上に存在する触媒層30及び微細孔層33のみを示すものではなく、視点VPから見て奥行き方向に三次元的に存在している触媒層30及び微細孔層33の全てを、二次元画像上に集約して示すものである。
 図8(b)から理解されるように、比較例に係るカソード24では、微細孔層33が厚さ方向D1において大きく分断された分断部分DEが形成されている。当該分断部分DEは、カソード24の幅方向の左半分の領域の略全体に形成されている。例えば、当該分断部分DEに対応する断面位置で図3の断面CSに示すような画像を取得した場合、当該断面CSの略左半分の領域には、微細孔層33が全く存在していないことが観察される。このように、微細孔層33が連続性を有していない部分が広範囲にわたっている分断部分DEでは、生成水の排出経路が十分に確保されず、水滞留が発生する。比較例においては、第1のロールコータ塗布部102Aで塗布された一層目のペーストPSが平滑に保たれておらず、その上から平滑に保たれていない二層目のペーストPSを塗布することで、一層目と二層目の間に空気が混入することによって、このような分断部分DEが形成されていると理解される。一方、図8(a)から理解されるように、実施例に係るカソード24では、比較例のような大きな分断部分は形成されておらず、観察されるものも、ガス流路側の一部の範囲において小さな分断部分が形成されているに過ぎない。このように、本実施形態に係るペースト塗布装置100を用いることで、連続性の高い良好な微細孔層33を得られることが理解される。
 次に、得られた三次元データを、断面位置t=0から断面位置t=ENDへ向かって、0.8μmピッチにて、各断面位置における断面画像を取得する。各断面画像を解析することによって、各断面位置における微細孔層33の存在頻度(%)を取得する。当該結果を図9に示す。実施例の結果はグラフEL1で示され、比較例の結果はグラフEL2で示される。また、断面位置t=0から断面位置t=ENDへ向かって存在頻度累積値(%)を取得する。当該結果を図10に示す。実施例の結果はグラフML1で示され、比較例の結果はグラフML2で示される。
 図9のグラフEL1から理解されるように、実施例において、存在頻度(断面上の微細孔層の量)は、断面位置t=xmax(第1の断面位置)において最大となる。また、存在頻度は、断面位置t=xmaxからガス流路側の第2の面S4へ向かうに従って減少する。すなわち、断面位置t=xmaxから第2の面S4側の領域においては、断面における微細孔層33の量が第2の面S4に近づくに従って一様に低減している。極所的に僅かに増減している部分が見られるものの、極めて微小な変化に過ぎず、グラフEL1全体として見ると、一様に低減している。このように一様に低減しているため、図10のグラフML1では、断面位置t=xmaxよりもガス流路側は、上方に凸となるような滑らかに増加する曲線のみが描かれている。一方、図9のグラフEL2から理解されるように、比較例では、存在頻度が極大点PK1で最大となった後も、分断部分DEが形成されているために、存在頻度が大きく変動し、極小点PK2や極大点PK3が形成されている。極小点PK2と極大点PK3の値の差は大きく、存在頻度が一様に低減していないことが理解される。このように一様に低減していない、図10のグラフML2では、存在頻度累積値が滑らかに増加せず、下方に凸となるような曲線部分EPが形成される。
 厚さ方向D1におけるガス拡散基材31の中央位置は、断面位置=150μmで示す位置である。図10のグラフML1の値から明らかなように、実施例では、当該中央位置における存在頻度累積値は80%以上となっている。すなわち、実施例では、ガス拡散基材31の中央位置から触媒層30側の領域に含まれる微細孔層33の量が、カソード24中の微細孔層33の全体の量の80%以上となっていることが理解される。一方、図10のグラフML2の値から明らかなように、比較例では、中央位置における存在頻度累積値は80%未満となっている。すなわち、比較例では、ガス拡散基材31の中央位置から触媒層30側の領域に含まれる微細孔層33の量が、カソード24中の微細孔層33の全体の量の80%未満となっていることが理解される。
 また、実施例では微細孔層33がガス拡散基材31の第2の面S4にまで及んでいることが、三次元データ解析及び外観の観察により確認された。すなわち、ガス拡散基材31の第1の面S2から第2の面S4まで連続性の高い排出経路が確保されていることが理解される。なお、比較例においても第2の面S4にまで及んでいたが、上述のように、ガス拡散基材31の内部に大きな分断部分DEが形成されており、第1の面S2から第2の面S4までの間の高い連続性は確保されていない。
(単セル性能試験)
 また、実施例及び比較例の膜電極接合体を用いてセル電圧を測定した。測定条件は、以下のとおりである。セル電圧の測定結果を図11の「SRG/Air」に示す。また、カソードの排水性能を検証するために、酸素ゲインを測定した。酸素ゲインとは、カソードガスが空気の場合のセル電圧と酸素の場合のセル電圧との差で、カソードの排水性が高いほど酸素ゲインは小さい値となる。酸素ゲインの測定結果を図11の「Ogain」に示す。
アノードガス:改質水素ガス(CO濃度10ppm)
カソードガス:空気
セル温度:70℃
カソードガス加湿温度:70℃
アノードガス加湿温度:70℃
電流密度:0.3A/cm
 図11に示すように、比較例に比して実施例の方が低い酸素ゲインを示しており、このことより、実施例が生成水の排出特性に優れていることが理解される。また、セル電圧についても、比較例に比して実施例の方が高くなっている。このことより、実施例が高い電池性能を発揮できることが理解される。以上より、実施例に係る膜電極接合体は、燃料電池としての水の排出性とガス拡散性を両立させ、電圧特性を向上させることができることが理解される。また、ペースト塗布装置100を用いることによって、ペーストの塗布性能を向上させ、燃料電池の電池性能を向上できることが理解される。
 本発明は、上述の各実施の形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうるものである。
 上述の製造方法では、基材として枚葉品を用いたが、連続した基材(長尺な基材であり、ペーストを塗布した後に所望の大きさに切断する)を用いてもよい。また、連続した基材を用いる場合は搬送部の構成を変更してもよい。すなわち、図4に示すように、コンベア上に基材を載せて移動させるタイプの搬送部に代えて、ロールとロールの間に連続した基材を載せて当該ロールの回転によって基材を搬送方向に送るタイプの搬送部を採用してもよい。更に、上述の製造方法では、ガス拡散層に触媒層を形成し、当該電極に電解質膜を接合していた(CCS法)が、電解質膜に触媒層を形成した後に、ガス拡散層を接合してもよい(CCM法)。
 本発明は、ガス拡散層、燃料電池用電極、膜電極接合体、及び燃料電池に利用可能である。
 10…燃料電池、20…固体高分子電解質膜、22…アノード(燃料電池用電極)、24…カソード(燃料電池用電極)、26,30…触媒層、27,31…ガス拡散基材、28,32…ガス拡散層、29,33…微細孔層、50…膜電極接合体、100…ペースト塗布装置、101…搬送部、102A…第1のロールコータ塗布部、102B…第2のロールコータ塗布部、110…塗布ロール、110a…表面、120…ドクターバー、121…除去面、122…折返し面、123…エッジ部、125…除去部、P1…最近接点、L1…仮想線。
 

Claims (7)

  1.  第1の面、及び前記第1の面の反対側に形成される第2の面を有するガス拡散基材と、
     導電性粉末を含有すると共に、前記ガス拡散基材の前記第1の面上、及び前記ガス拡散基材内に配置される微細孔層と、を有し、
     前記微細孔層は、前記ガス拡散基材の厚さ方向に連続しており、
     前記厚さ方向と垂直な断面上の前記微細孔層の量は、前記厚さ方向における第1の断面位置において最大となると共に、前記第1の断面位置から前記第2の面へ向かうに従って減少し、
     前記厚さ方向における前記ガス拡散基材の中央位置から前記第1の面側の領域に含まれる前記微細孔層の量は、前記微細孔層の全体の量の80%以上であり、
     前記微細孔層は、前記第2の面まで及んでいるガス拡散層。
  2.  前記断面の前記厚さ方向における断面位置に対して、当該断面上の前記微細孔層の量をプロットした曲線は、前記第1の断面位置と前記第2の面との間に極小点を有さない請求項1記載のガス拡散層。
  3.  前記断面の前記厚さ方向における断面位置に対して、当該断面上の前記微細孔層の量をプロットした曲線が、前記第1の断面位置と前記第2の面との間に極小点を有する場合、
     前記極小点よりも前記第2の面側の最大値と前記極小点における値との差が、前記第1の断面位置における値の5%以下である請求項1記載のガス拡散層。
  4.  前記断面の前記厚さ方向における断面位置に対して、当該断面上の前記微細孔層の量をプロットした曲線は、前記第1の断面位置よりも前記第1の面側に極小点を有さない請求項1~3のいずれか一項記載のガス拡散層。
  5.  請求項1~4の何れか一項に記載のガス拡散層と、触媒層とを備える燃料電池用電極。
  6.  電解質膜と、
     前記電解質膜の一方の面に設けられたアノードと、
     前記電解質膜の他方の面に設けられたカソードと、
    を備え、
     前記アノード及び前記カソードの少なくとも一方に、請求項1~4のいずれか一項に記載のガス拡散層を採用する膜電極接合体。
  7.  請求項1~4のいずれか一項に記載のガス拡散層を備える燃料電池。
     
PCT/JP2012/058173 2011-03-31 2012-03-28 ガス拡散層、燃料電池用電極、膜電極接合体、及び燃料電池 WO2012133545A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12763587.8A EP2693543A4 (en) 2011-03-31 2012-03-28 GAS DIFFUSION LAYER, ELECTRODE FOR FUEL CELL, MEMBRANE ELECTRODE JUNCTION, AND FUEL CELL
CN2012800158599A CN103460468A (zh) 2011-03-31 2012-03-28 气体扩散层、燃料电池用电极、膜电极接合体及燃料电池
US14/007,393 US20140017589A1 (en) 2011-03-31 2012-03-28 Gas diffusion layer, electrode for fuel cell, membrane electrode junction, and fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-079986 2011-03-31
JP2011079986A JP5612529B2 (ja) 2011-03-31 2011-03-31 ガス拡散層、燃料電池用電極、膜電極接合体、及び燃料電池

Publications (1)

Publication Number Publication Date
WO2012133545A1 true WO2012133545A1 (ja) 2012-10-04

Family

ID=46931253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058173 WO2012133545A1 (ja) 2011-03-31 2012-03-28 ガス拡散層、燃料電池用電極、膜電極接合体、及び燃料電池

Country Status (5)

Country Link
US (1) US20140017589A1 (ja)
EP (1) EP2693543A4 (ja)
JP (1) JP5612529B2 (ja)
CN (1) CN103460468A (ja)
WO (1) WO2012133545A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016015216A (ja) * 2014-07-01 2016-01-28 東レ株式会社 ガス拡散電極、その製造方法および製造装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6743805B2 (ja) 2015-12-11 2020-08-19 東レ株式会社 炭素シート、ガス拡散電極基材、および燃料電池
CN109690851B (zh) * 2016-09-07 2020-10-02 日产自动车株式会社 燃料电池系统及其控制方法
JP7431054B2 (ja) * 2020-02-21 2024-02-14 株式会社Soken 燃料電池用ガス拡散層

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109604A (ja) 2001-09-27 2003-04-11 Matsushita Electric Ind Co Ltd 燃料電池用ガス拡散電極およびその製造法
JP2007035350A (ja) * 2005-07-25 2007-02-08 Aisin Seiki Co Ltd 燃料電池用電極の製造方法および燃料電池
JP2008123866A (ja) * 2006-11-13 2008-05-29 Noritake Co Ltd 積層型燃料電池およびその製造方法
JP2009181718A (ja) 2008-01-29 2009-08-13 Aisin Seiki Co Ltd ガス拡散層の製造方法
JP2009199988A (ja) * 2008-02-25 2009-09-03 Toshiba Corp 直接メタノール型燃料電池用アノード電極及びそれを用いた直接メタノール型燃料電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5326185B2 (ja) * 2005-09-28 2013-10-30 日産自動車株式会社 ガス拡散電極用材料及びその製造方法
CN100533823C (zh) * 2006-10-26 2009-08-26 上海攀业氢能源科技有限公司 带致密微孔层的燃料电池电极及其制备方法
JP5145831B2 (ja) * 2007-09-12 2013-02-20 株式会社エクォス・リサーチ 燃料電池、燃料電池用拡散層及び燃料電池システム。
CN101393989B (zh) * 2008-09-27 2010-06-16 武汉理工新能源有限公司 一种带密封边框的核心组件及由此制备的膜电极

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109604A (ja) 2001-09-27 2003-04-11 Matsushita Electric Ind Co Ltd 燃料電池用ガス拡散電極およびその製造法
JP2007035350A (ja) * 2005-07-25 2007-02-08 Aisin Seiki Co Ltd 燃料電池用電極の製造方法および燃料電池
JP2008123866A (ja) * 2006-11-13 2008-05-29 Noritake Co Ltd 積層型燃料電池およびその製造方法
JP2009181718A (ja) 2008-01-29 2009-08-13 Aisin Seiki Co Ltd ガス拡散層の製造方法
JP2009199988A (ja) * 2008-02-25 2009-09-03 Toshiba Corp 直接メタノール型燃料電池用アノード電極及びそれを用いた直接メタノール型燃料電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016015216A (ja) * 2014-07-01 2016-01-28 東レ株式会社 ガス拡散電極、その製造方法および製造装置

Also Published As

Publication number Publication date
US20140017589A1 (en) 2014-01-16
JP2012216365A (ja) 2012-11-08
EP2693543A4 (en) 2014-10-08
JP5612529B2 (ja) 2014-10-22
EP2693543A1 (en) 2014-02-05
CN103460468A (zh) 2013-12-18

Similar Documents

Publication Publication Date Title
JP5534906B2 (ja) 膜電極接合体および燃料電池
JP5482066B2 (ja) 燃料電池用のマイクロポーラス層、マイクロポーラス層付きガス拡散電極、マイクロポーラス層付き触媒層、触媒層付きガス拡散電極及び膜−電極接合体、並びに固体高分子形燃料電池
JP5488254B2 (ja) 燃料電池用親水性多孔質層、ガス拡散電極およびその製造方法、ならびに膜電極接合体
JP5064679B2 (ja) 直接メタノール型燃料電池
JP5165205B2 (ja) 固体高分子型燃料電池用膜電極構造体
JP2007173225A (ja) 膜触媒層接合体、膜電極接合体、燃料電池および燃料電池スタック
JP5153130B2 (ja) 膜電極接合体
JP5612529B2 (ja) ガス拡散層、燃料電池用電極、膜電極接合体、及び燃料電池
JP2009238388A (ja) 微細孔層用ペースト、膜電極接合体および燃料電池
JP2003178780A (ja) 高分子電解質型燃料電池システム、および高分子電解質型燃料電池の運転方法
JP2008204664A (ja) 燃料電池用膜電極接合体、およびこれを用いた燃料電池
JP5441753B2 (ja) 膜電極接合体および燃料電池
US20120183878A1 (en) Manufacturing Method Of Electrode Catalyst Layer, Electrode Catalyst Layer, Membrane Electrode Assembly And Fuel Cell
JP5612528B2 (ja) ペースト塗布装置
US20130216700A1 (en) Manufacturing method of electrode catalyst layer
JP6205822B2 (ja) 燃料電池
JP4790239B2 (ja) 触媒層形成用インク、これを用いた電極及び膜電極接合体
JP5051203B2 (ja) 燃料電池の膜−電極接合体、電極製造用転写シート及びこれらの製造方法
WO2014155929A1 (ja) 燃料電池用触媒層の製造方法、燃料電池用触媒層および燃料電池
JP2009211953A (ja) 電極基材、電極、膜電極接合体、燃料電池および電極基材の製造方法
JP2009205917A (ja) 膜電極接合体および燃料電池
WO2024018802A1 (ja) 電極触媒層、膜電極接合体及び固体高分子形燃料電池
JP2006120402A (ja) 燃料電池
WO2014174973A1 (ja) ガス拡散電極体、その製造方法ならびにこれを用いる燃料電池用膜電極接合体および燃料電池
WO2013080421A1 (ja) 直接酸化型燃料電池およびこれに用いる膜触媒層接合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763587

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012763587

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14007393

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE