WO2012133414A1 - 凹凸構造を有する基板の製造方法及びそれを用いた有機el素子の製造方法 - Google Patents

凹凸構造を有する基板の製造方法及びそれを用いた有機el素子の製造方法 Download PDF

Info

Publication number
WO2012133414A1
WO2012133414A1 PCT/JP2012/057945 JP2012057945W WO2012133414A1 WO 2012133414 A1 WO2012133414 A1 WO 2012133414A1 JP 2012057945 W JP2012057945 W JP 2012057945W WO 2012133414 A1 WO2012133414 A1 WO 2012133414A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
manufacturing
film
organic
concavo
Prior art date
Application number
PCT/JP2012/057945
Other languages
English (en)
French (fr)
Inventor
祐輔 佐藤
涼 西村
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to JP2013507617A priority Critical patent/JP5680742B2/ja
Priority to EP12764995.2A priority patent/EP2693241A4/en
Priority to CN201280016402.XA priority patent/CN103460084B/zh
Priority to CA2830078A priority patent/CA2830078C/en
Priority to AU2012233865A priority patent/AU2012233865B2/en
Priority to KR1020137024220A priority patent/KR101552172B1/ko
Publication of WO2012133414A1 publication Critical patent/WO2012133414A1/ja
Priority to US14/029,371 priority patent/US9023668B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0284Diffusing elements; Afocal elements characterized by the use used in reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1842Gratings for image generation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a substrate having irregular irregularities used for manufacturing an organic electroluminescent element and the like, and a method for manufacturing an organic EL using the same.
  • Organic electroluminescent elements (or organic light emitting diodes, hereinafter referred to as “organic EL elements”) are known as self-luminous display elements.
  • Organic EL elements have higher visibility than liquid crystal elements and can be reduced in weight because a backlight is unnecessary. For this reason, research and development have been actively conducted as next-generation display elements.
  • the present applicant applies a solution obtained by dissolving a block copolymer satisfying a predetermined condition in a solvent onto a base material, and dries it to form a microphase separation structure of the block copolymer.
  • a method for obtaining a matrix (metal substrate) on which a fine and irregular concavo-convex pattern is formed is disclosed.
  • a matrix used for nanoimprinting or the like can be obtained by using the phenomenon of block copolymer self-organization.
  • a liquid mixture of a silicone polymer and a curing agent is dropped onto the obtained matrix and cured to obtain a transfer pattern
  • a glass substrate coated with a curable resin is pressed against the transfer pattern, and the curable resin is applied by ultraviolet rays.
  • a diffraction grating in which the transfer pattern is duplicated is produced.
  • the organic EL element obtained by laminating a transparent electrode, an organic layer, and a metal electrode on this diffraction grating has a sufficiently high emission efficiency and a sufficiently high external extraction efficiency, but also has a light emission wavelength. It has been confirmed that the dependency and directivity are sufficiently low and the power efficiency is sufficiently high.
  • the organic EL element using the diffraction grating manufactured in Patent Document 2 as described above is used as a display device or a lighting device such as a mobile phone or a TV screen, the luminance is uniform from the entire display surface. It is desirable to irradiate with light. For this reason, after completion of the organic EL element, it is necessary to confirm that the irradiation from the organic EL element is uniform, that is, that the luminance unevenness is within an allowable range. However, if it is determined that the luminance unevenness of the completed organic EL element is outside the allowable range, the organic EL element becomes a defective product, and the multilayer stacking process on the diffraction grating as described above is wasted. In particular, the lamination of transparent electrodes, organic layers, metal electrodes, and the like is a manufacturing cost and laborious process, which can reduce such defective products, improve yield, and reduce waste of materials and manufacturing costs. There is a strong demand.
  • an object of the present invention is to provide a method for producing an organic EL element having a diffraction grating substrate having an irregular uneven surface with high throughput.
  • Another object of the present invention is to provide a substrate manufacturing method including a step of evaluating luminance unevenness of a substrate having an irregular uneven surface used as an optical component.
  • a method of manufacturing a substrate having an irregular surface for scattering light Producing a substrate having the irregular uneven surface; Irradiation of the inspection light onto the concavo-convex surface of the produced substrate from a direction inclined with respect to the normal direction of the concavo-convex surface, and the return light of the inspection light from the concavo-convex surface in the normal direction of the concavo-convex surface Detecting with the installed light receiving element;
  • a method for manufacturing a substrate having an irregular concavo-convex surface which includes determining luminance unevenness of the concavo-convex surface based on received light intensity.
  • the method for producing the substrate having the irregular concavo-convex surface may be any method including the use of phase separation of the block copolymer.
  • the phase separation of the polymer may be promoted by phase separation by heating or solvent phase separation.
  • phase separation by heating a step of applying a block copolymer solution comprising at least the first and second polymers to the surface of the substrate, a step of drying the coating film on the substrate, and a dry coating
  • a first heating step step of phase-separating the block copolymer that heats the film at a temperature higher than the glass transition temperature of the block copolymer, and a second coating layer etching process after the first heating step.
  • an etching step of removing the polymer to form an uneven structure on the substrate may include a second heating step of heating the etched concavo-convex structure at a temperature higher than the glass transition temperature of the first polymer. Further, a step of forming a seed layer on the concavo-convex structure after the second heating step, a step of laminating a metal layer on the seed layer by electroforming, and the concavo-convex structure from the metal layer and the seed layer. The process of obtaining a metal substrate by peeling the base material which has can be included.
  • the convex portion of the concavo-convex structure is chevronized, and the metal layer can be easily peeled from the concavo-convex structure even if a metal layer as a mold is laminated on the concavo-convex structure by electroforming.
  • the obtained metal substrate may be a substrate having the irregular uneven surface.
  • the obtained metal substrate is pressed on a transparent substrate coated with a curable resin to cure the curable resin, and the substrate having the irregular uneven surface is obtained by removing the metal substrate. Also good.
  • the obtained metal substrate is pressed onto a substrate coated with a curable resin to cure the curable resin, and the substrate having a concavo-convex structure is formed on the substrate by removing the metal substrate,
  • a substrate having an irregular uneven surface made of a sol-gel material may be obtained by pressing a substrate having an uneven structure onto a transparent substrate coated with a sol-gel material, curing the sol-gel material, and removing the substrate.
  • the micro phase separation structure of the block copolymer can be generated in the drying step or the first heating step, and the micro phase separation structure is preferably a lamellar type.
  • the production of the substrate having the irregular concavo-convex surface can be achieved by forming a deposited film on the surface of a polymer film made of a polymer whose volume is changed by heat under a temperature condition of 70 ° C. or higher. After forming, the polymer film and the deposited film are cooled to form irregularities due to wrinkles on the surface of the deposited film, and after the matrix material is attached and cured on the deposited film, after the curing A step of removing the matrix material from the deposited film to obtain a matrix. Even by such a method, an irregular uneven surface can be effectively produced.
  • the polymer whose volume is changed by the heat may be a silicone-based polymer.
  • the irregular irregularities when the irregular irregularities have a quasi-periodic structure, when the average period of irregularities is d and the center wavelength of the inspection light is ⁇ , 0.5d ⁇ ⁇ ⁇ 2. It is preferable to satisfy 0d. Further, it is desirable that the inspection light is blue band light. Furthermore, it is preferable to irradiate the surface with the inspection light so that an incident angle ⁇ inclined to the surface with respect to the normal direction satisfies 30 ° ⁇ ⁇ 90 °.
  • the light receiving element is an imaging device, and the maximum value and the minimum value of the scattered light intensity are obtained from the output of each pixel of the imaging device, and the maximum value / minimum value is less than 1.5. It can be determined whether or not. Based on this criterion, the luminance unevenness of the substrate can be determined effectively.
  • the substrate having the irregular concavo-convex surface is a film substrate (for example, a film substrate made of a resin) or a glass substrate, and the film substrate or the glass substrate is inspected. While moving continuously with respect to light, the moving film-like substrate or the glass substrate may be irradiated with inspection light.
  • substrate can be manufactured efficiently continuously with a line installation.
  • the irregular uneven surface may be formed of a metal, a resin, or a sol-gel material.
  • a diffraction grating substrate having a concavo-convex surface is produced using the method for producing a substrate of the present invention, and a transparent electrode, an organic layer, and a metal are formed on the concavo-convex surface of the diffraction grating substrate.
  • a method for producing an organic EL element wherein electrodes are sequentially laminated to produce an organic EL element. In this method of manufacturing an organic EL element, only when the uneven brightness of the produced diffraction grating substrate is determined to be within a predetermined range, on the uneven surface of the diffraction grating substrate having the uneven brightness within the predetermined range.
  • the transparent electrode, the organic layer, and the metal electrode can be sequentially laminated to manufacture an organic EL element.
  • an organic EL element that generates uniform illuminance with high throughput by excluding a diffraction grating substrate having high luminance unevenness in advance. Whether or not the luminance unevenness of the produced diffraction grating substrate is within a predetermined range, obtain the maximum value and the minimum value of the scattered light intensity from the output of each pixel of the imaging device used as the light receiving element, the maximum value It can be determined by whether or not the minimum value is less than 1.5.
  • the substrate manufacturing method of the present invention it is possible to efficiently manufacture such a substrate while effectively measuring the luminance unevenness of the substrate having an irregular concavo-convex structure used for an element such as an organic EL element. .
  • the method for producing an organic EL element of the present invention it is possible to produce an organic EL element with high throughput by associating the characteristics of luminance unevenness between the organic EL element and a substrate having an irregular uneven surface used for the organic EL element.
  • an organic EL element having uniform illuminance can be obtained by using a substrate that has passed the determination of uneven brightness. It can be manufactured more reliably.
  • even when there is a defect in the illuminance uniformity (brightness unevenness) of the organic EL element it can be determined whether the defect generation stage is the substrate formation stage or the element formation stage. It can correspond to.
  • FIG. 1 It is a flowchart which shows the manufacturing method of the board
  • FIG. 3 is a diagram showing a concavity and convexity analysis image by an atomic force microscope on the resin surface of the diffraction grating substrate produced in Example 1.
  • 3 is a diagram illustrating a Fourier transform image obtained from an unevenness analysis image obtained by an atomic force microscope on a resin surface of a diffraction grating substrate manufactured in Example 1.
  • FIG. 11A is a photograph showing an image from the substrate surface observed in Example 1
  • FIG. 11B is a graph showing pixel positions and pixel values on the straight line L1 in the photograph of FIG. 11A. It is a graph which shows a profile.
  • FIG. 12A is a photograph showing an image from the surface of the substrate observed in Example 1, and FIG.
  • FIG. 12B is a graph showing pixel positions and pixel values on the straight line L1 in the photograph of FIG. It is a graph which shows a profile.
  • FIG. 6 is a diagram showing an unevenness analysis image by an atomic force microscope on the resin surface of the diffraction grating substrate produced in Example 2. It is a figure which shows the Fourier-transform image obtained from the unevenness
  • FIG. FIG. 15A is a photograph showing an image from the substrate surface observed in Example 2
  • FIG. 15B is a graph showing pixel positions and pixel values on the straight line L2 in the photograph of FIG. It is a graph which shows a profile.
  • FIG. 15A is a photograph showing an image from the substrate surface observed in Example 2
  • FIG. 15B is a graph showing pixel positions and pixel values on the straight line L2 in the photograph of FIG. It is a graph which shows a profile
  • FIG. 16A is a photograph showing an image from the substrate surface observed in Example 2, and FIG. 16B is a graph showing pixel positions and pixel values on the straight line L2 in the photograph of FIG. It is a graph which shows a profile. It is a figure which shows the outline
  • FIG. 20A is a photograph showing an image from the substrate surface observed in Example 1
  • FIG. 20B is a graph showing pixel positions and pixel values on the straight line L3 in the photograph of FIG. It is a graph which shows a profile.
  • a substrate having an irregular concavo-convex structure is manufactured according to the substrate manufacturing process exemplified below (S1).
  • the luminance of the substrate surface is inspected according to the inspection process described later (S2). It is determined whether or not the substrate has a uniform luminance distribution according to a predetermined determination process described later based on the inspection result (S3).
  • S3 the inspection result
  • an organic EL is manufactured using this substrate (S4). If it is not determined that the substrate has a uniform luminance distribution, post-processing described later is performed (S5).
  • Substrate manufacturing step In the substrate manufacturing method of the present invention, a substrate having an irregular uneven surface is manufactured.
  • “Substrate having an irregular surface” means a substrate in which the uneven pattern formed on the substrate is not regular, particularly a substrate in which the uneven pitch is not uniform and the direction of the unevenness is not directional. .
  • Light scattered and / or diffracted from such a substrate has a relatively broad wavelength band rather than a single or narrow band wavelength, and the scattered and / or diffracted light is directional. There is no, going in all directions.
  • a Fourier transform image obtained by performing a two-dimensional fast Fourier transform process on an unevenness analysis image obtained by analyzing the shape of the surface unevenness is circular or annular.
  • a quasi-periodic structure having a pitch distribution of the concaves and convexes is included although the pattern has a directivity in the direction of the concaves and convexes. Therefore, a substrate having such a quasi-periodic structure is suitable for a diffraction substrate used for a surface light-emitting element such as an organic EL element as long as the uneven pitch distribution diffracts visible light.
  • a substrate in which all recording tracks (grooves) found in an optical recording medium or a magnetic recording medium are formed in the same direction and at the same pitch is not a manufacturing object of the present invention.
  • the block copolymer used for the BCP method has at least a first polymer segment composed of a first homopolymer and a second polymer segment composed of a second homopolymer different from the first homopolymer.
  • the second homopolymer desirably has a solubility parameter that is 0.1 to 10 (cal / cm 3 ) 1/2 higher than the solubility parameter of the first homopolymer.
  • the difference between the solubility parameters of the first and second homopolymers is less than 0.1 (cal / cm 3 ) 1/2, it is difficult to form a regular microphase separation structure of the block copolymer, and the difference is 10 When it exceeds (cal / cm 3 ) 1/2 , it is difficult to prepare a uniform solution of the block copolymer.
  • Examples of the monomer that can be used as the first homopolymer and the second homopolymer as a raw material for the homopolymer include styrene, methylstyrene, propylstyrene, butylstyrene, hexylstyrene, octylstyrene, methoxystyrene, ethylene, Propylene, butene, hexene, acrylonitrile, acrylamide, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, hexyl methacrylate, octyl methacrylate, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, hexyl acrylate, octyl methacrylate, methyl acrylate, ethyl acrylate, propyl acrylate, buty
  • styrene methyl methacrylate, ethylene oxide, butadiene, isoprene, vinyl pyridine, and lactic acid from the viewpoint that phase-separation formation easily occurs and unevenness is easily formed by etching.
  • the combination of the first homopolymer and the second homopolymer includes styrene-based polymer (more preferably polystyrene), polyalkyl methacrylate (more preferably polymethyl methacrylate), polyethylene oxide, polybutadiene, polyisoprene, and polyvinylpyridine. And two combinations selected from the group consisting of polylactic acid.
  • styrenic polymer and poly More preferred are combinations of alkyl methacrylates, combinations of styrenic polymers and polyethylene oxide, combinations of styrenic polymers and polyisoprene, combinations of styrenic polymers and polybutadiene, combinations of styrenic polymers and polymethyl methacrylate, styrenic polymers and polyisoprene.
  • the combination of styrene polymer and polybutadiene is particularly preferred. More preferably, it is a combination of polystyrene (PS) and polymethyl methacrylate (PMMA).
  • the number average molecular weight (Mn) of the block copolymer is preferably 500,000 or more, more preferably 1,000,000 or more, and particularly preferably 1,000,000 to 5,000,000.
  • the average pitch of the unevenness formed by the microphase separation structure of the block copolymer becomes small, and the average pitch of the unevenness of the obtained diffraction grating becomes insufficient.
  • the average pitch is preferably 100 to 600 nm.
  • the number average molecular weight (Mn) is preferably 500,000 or more.
  • the molecular weight distribution (Mw / Mn) of the block copolymer is preferably 1.5 or less, more preferably 1.0 to 1.35. When the molecular weight distribution exceeds 1.5, it becomes difficult to form a regular microphase separation structure of the block copolymer.
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) of the block copolymer are values measured by gel permeation chromatography (GPC) and converted to the molecular weight of standard polystyrene.
  • the volume ratio of the first polymer segment to the second polymer segment (first polymer segment: second polymer segment) in the block copolymer is used to create a lamellar structure by self-assembly.
  • the ratio is preferably 3: 7 to 7: 3, more preferably 4: 6 to 6: 4.
  • the volume ratio is out of the above range, it becomes difficult to form a concavo-convex pattern resulting from the lamellar structure.
  • the block copolymer solution used for the BCP method is prepared by dissolving the block copolymer in a solvent.
  • solvents include aliphatic hydrocarbons such as hexane, heptane, octane, decane, and cyclohexane; aromatic hydrocarbons such as benzene, toluene, xylene, and mesitylene; ethers such as diethyl ether, tetrahydrofuran, and dioxane.
  • Ketones such as acetone, methyl ethyl ketone, isophorone and cyclohexanone; ether alcohols such as butoxyethyl ether, hexyloxyethyl alcohol, methoxy-2-propanol and benzyloxyethanol; ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triglyme, propylene glycol monomethyl Glycol ethers such as ether and propylene glycol monomethyl ether acetate; ethyl acetate, ethyl lactate, ⁇ Esters such as butyrolactone; phenols such as phenol and chlorophenol; amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone; chloroform, methylene chloride, tetrachloroethane, monochlorobenzene, di Halogen-based solvents such as chlorobenzene; hetero-
  • the block copolymer solution may contain other homopolymer (a homopolymer other than the first homopolymer and the second homopolymer in the block copolymer contained in the solution: for example, block copolymer
  • a homopolymer other than the first homopolymer and the second homopolymer in the block copolymer contained in the solution for example, block copolymer
  • the combination of the first homopolymer and the second homopolymer in the combination is a combination of polystyrene and polymethyl methacrylate
  • it may be a homopolymer of a type other than polystyrene and polymethyl methacrylate.
  • It may further contain a surfactant, an ionic compound, an antifoaming agent, a leveling agent and the like.
  • the microphase separation structure of the block copolymer can be improved.
  • polyalkylene oxide can be used to deepen the depth of the unevenness formed by the microphase separation structure.
  • polyalkylene oxide polyethylene oxide and polypropylene oxide are more preferable, and polyethylene oxide is particularly preferable.
  • polyethylene oxide the following formula: HO— (CH 2 —CH 2 —O) n —H [Wherein, n represents an integer of 10 to 5000 (more preferably an integer of 50 to 1000, still more preferably an integer of 50 to 500). ] The thing represented by these is preferable.
  • n is less than the lower limit, the molecular weight is too low, lost by volatilization / evaporation, etc. by heat treatment at high temperature, the effect of containing another homopolymer becomes poor, and when the upper limit is exceeded, Since the molecular weight is too high and the molecular mobility is low, the speed of phase separation becomes slow, which adversely affects the formation of a microphase separation structure.
  • the number average molecular weight (Mn) of such other homopolymer is preferably 460 to 220,000, and more preferably 2200 to 46000. If the number average molecular weight is less than the lower limit, the molecular weight is too low and lost due to volatilization / evaporation, etc. by heat treatment at high temperature, the effect of containing other homopolymers becomes poor, and if the upper limit is exceeded, the molecular weight Is too high and the molecular mobility is low, the phase separation speed becomes slow, which adversely affects the formation of the microphase separation structure.
  • Such other homopolymers preferably have a molecular weight distribution (Mw / Mn) of 1.5 or less, more preferably 1.0 to 1.3. If the molecular weight distribution exceeds the above upper limit, it is difficult to maintain the uniformity of the microphase separation shape.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • the combination of the first homopolymer and the second homopolymer in the block copolymer is a combination of polystyrene and polymethyl methacrylate (polystyrene-polymethyl methacrylate).
  • the other homopolymer is preferably a polyalkylene oxide.
  • the content thereof is preferably 100 parts by mass or less, more preferably 5 parts by mass to 100 parts by mass with respect to 100 parts by mass of the block copolymer. preferable. If the content of such other homopolymer is less than the lower limit, the effect obtained by including the other homopolymer becomes poor.
  • the content is 10 mass parts or less with respect to 100 mass parts of said block copolymers. Furthermore, when using the said ionic compound, it is preferable that the content is 10 mass parts or less with respect to 100 mass parts of said block copolymers.
  • the total content of the block copolymer and the other homopolymer is 0.1% in the block copolymer solution. It is preferably ⁇ 15% by mass, more preferably 0.3 to 5% by mass.
  • the total content is less than the lower limit, it is not easy to uniformly apply the solution with a sufficient film thickness in order to obtain a required film thickness.
  • the upper limit is exceeded, the solution is uniformly dissolved in the solvent. Is relatively difficult to prepare.
  • the block copolymer solution prepared as described above is applied onto the base material 10 to form the thin film 30.
  • resin substrates such as a polyimide, polyphenylene sulfide (PPS), polyphenylene oxide, polyether ketone, polyethylene naphthalate, polyethylene terephthalate, polyarylate, triacetyl cellulose, polycycloolefin;
  • inorganic substrates such as glass, octadecyldimethylchlorosilane (ODS) -treated glass, octadecyltrichlorosilane (OTS) -treated glass, organosilicate-treated glass, and silicon substrate; and metal substrates such as aluminum, iron, and copper.
  • the base material 10 may be subjected to a surface treatment such as an orientation treatment.
  • a surface treatment such as an orientation treatment.
  • the microphase separation structure such as a lamellar structure, a cylinder structure, or a spherical structure is perpendicular to the surface. It becomes easy to arrange. This is because the domain of each block constituting the block copolymer is easily aligned in the vertical direction by reducing the difference in interfacial energy between the block copolymer component and the substrate surface.
  • the method for applying the block copolymer solution is not particularly limited.
  • spin coating, spray coating, dip coating, dropping, gravure printing, screen printing, letterpress printing, die coating, A curtain coating method or an ink jet method can be employed.
  • the thickness of the thin film 30 of the block copolymer is preferably 10 to 3000 nm, more preferably 50 to 500 nm, as described later.
  • the thin film 30 made of the block copolymer solution is applied on the base material 10
  • the thin film 30 on the base material 10 is dried. Drying can be performed in an air atmosphere.
  • the drying temperature is not particularly limited as long as the solvent can be removed from the thin film 30, but is preferably 30 to 200 ° C, and more preferably 40 to 100 ° C.
  • corrugation may be seen on the surface of the thin film 30 when the said block copolymer begins to form a micro phase-separation structure by drying.
  • First heating step After the drying step, the thin film 30 is heated at a temperature equal to or higher than the glass transition temperature (Tg) of the block copolymer (first heating step or annealing step).
  • Tg glass transition temperature
  • first heating step or annealing step By this heating step (an example of a step for producing a microphase separation structure), self-assembly of the block copolymer proceeds, and the block copolymer is divided into the first polymer segment 32 and the second polymer as shown in FIG. Microphase separation occurs in the polymer segment 34. If the heating temperature is lower than the glass transition temperature of the block copolymer, the molecular mobility of the polymer will be low, and the self-assembly of the block copolymer will not proceed sufficiently, making it impossible to form a sufficient microphase separation structure.
  • the heating time for sufficiently producing a microphase separation structure is lengthened.
  • the upper limit of the heating temperature is not particularly limited as long as the block copolymer is not thermally decomposed.
  • the first heating step can be performed in an air atmosphere using an oven or the like. Note that the drying and heating steps may be continuously performed by gradually increasing the heating temperature. By doing so, the drying step is included in the heating step.
  • the thin film 30 is etched. Since the first polymer segment 32 and the second polymer segment 34 have different molecular structures, they are easily etched. Therefore, one polymer segment constituting the block copolymer (first polymer segment 32) can be selectively removed by etching treatment according to the polymer segment, that is, the type of homopolymer. By removing the first polymer segment 32 from the microphase-separated structure by the etching process, a remarkable uneven structure appears in the coating film.
  • etching treatment for example, an etching method using a reactive ion etching method, an ozone oxidation method, a hydrolysis method, a metal ion staining method, an ultraviolet etching method, or the like can be employed. Further, as the etching treatment, the covalent bond of the block copolymer is treated with at least one selected from the group consisting of an acid, a base and a reducing agent to cut the covalent bond, and then only one polymer segment A method of removing only one polymer segment while maintaining the microphase separation structure may be adopted by washing the coating film on which the microphase separation structure is formed with a solvent or the like that dissolves. In the embodiments described later, ultraviolet etching is used from the viewpoint of ease of operation.
  • ⁇ Second heating step> The concavo-convex structure 36 of the thin film 30 obtained by the etching process is subjected to a second heating or annealing treatment.
  • the heating temperature in the second heat treatment is desirably equal to or higher than the glass transition temperature of the first polymer segment 32 remaining after the etching, that is, equal to or higher than the glass transition temperature of the first homopolymer. It is desirable that the temperature is not lower than the transition temperature and not higher than 70 ° C. higher than the glass transition temperature of the first homopolymer. If the heating temperature is lower than the glass transition temperature of the first homopolymer, a desired uneven structure, that is, a smooth chevron structure cannot be obtained after electroforming, or a long time is required for heating.
  • the first polymer segment 32 is melted and its shape is greatly collapsed, which is not preferable. In this respect, it is desirable to heat in the range of about 70 ° C. from the glass transition temperature to the glass transition temperature.
  • the second heat treatment can be performed in an air atmosphere using an oven or the like.
  • the concavo-convex structure 36 of the coating film obtained by the etching process was used as a master (mother mold), and the concavo-convex structure was transferred to a metal mold by electroforming described later, but it was difficult to obtain a desired transfer pattern. I understood. In particular, this problem becomes more pronounced as the molecular weight of the block copolymer increases. As described above, the molecular weight of the block copolymer is deeply related to the microphase separation structure and thus the pitch of the diffraction grating obtained therefrom.
  • a pitch distribution is required so that diffraction occurs in a wavelength range including a relatively long wavelength band such as a visible range.
  • a metal substrate (mold) in which the concavo-convex structure is sufficiently reflected in the subsequent electroforming process can be obtained by heat-treating the concavo-convex structure obtained by etching.
  • the reason for this is considered by the inventors as follows.
  • the etched concavo-convex structure 36 is considered to be a complex cross-sectional structure in which the side surface of the groove defined by the concavo-convex structure is rough, and the concavo-convex (including overhang) is generated in the direction perpendicular to the thickness direction.
  • Such a complicated cross-sectional structure causes the following three problems. i) In a complicated cross-sectional structure, a portion where a seed layer for electroforming does not adhere is generated, and it is difficult to deposit a metal layer uniformly by electroforming. As a result, it is considered that the obtained metal substrate has a low mechanical strength and causes defects such as deformation of the metal substrate and pattern defects.
  • the plating thickness of each part differs depending on the shape of the object to be plated.
  • the plated metal is easily attracted to the convex part or protruding corner of the object, and the concave part or the concave part. It is hard to be attracted to. For this reason as well, it is difficult to obtain an electroformed film having a uniform film thickness in the cross-sectional structure of complicated irregularities after etching.
  • the first polymer segment 32 constituting the side surface of the groove is annealed by heating the concavo-convex structure after etching, and the cross-sectional shape defined by the first polymer segment 32 is shown in FIG. ), which is formed of a relatively smooth inclined surface and tapered upward from the base material (referred to as “mountain structure” in the present application).
  • mountain structure a relatively smooth inclined surface and tapered upward from the base material
  • the base material 10 having the chevron structure 38 obtained in the second heating process is used as a master for transfer in a subsequent process.
  • the average pitch of the irregularities representing the chevron structure 38 is preferably in the range of 100 to 600 nm, and more preferably in the range of 200 to 600 nm. If the average pitch of the irregularities is less than the lower limit, the pitch is too small with respect to the wavelength of visible light, so that it is difficult to cause visible light diffraction in a diffraction grating obtained using such a matrix, and exceeds the upper limit. The diffraction angle of the diffraction grating obtained by using such a matrix becomes small, and the function as the diffraction grating cannot be fully exhibited.
  • corrugation calculates
  • the obtained uneven analysis image is subjected to flat processing including primary inclination correction, and then subjected to two-dimensional fast Fourier transform processing to obtain a Fourier transform image. For each point of the Fourier transform image, the distance (unit: ⁇ m ⁇ 1 ) and intensity from the origin of the Fourier transform image are obtained. Subsequently, for the points at the same distance, the average value of the intensities is obtained.
  • the relationship between the distance from the origin of the obtained Fourier transform image and the average value of the intensity is plotted, and fitting is performed using a spline function, and the wave number at which the intensity reaches the peak is expressed as the average wave number ( ⁇ m ⁇ 1 ).
  • the average pitch another method, for example, measuring an arbitrary 3 ⁇ m square (3 ⁇ m in length, 3 ⁇ m in width) measurement region of a diffraction grating to obtain an unevenness analysis image, an arbitrary adjacent convexity in the unevenness analysis image is obtained.
  • the average pitch of the unevenness may be obtained by measuring 100 or more intervals between adjacent portions or adjacent recesses and calculating the average.
  • the average height of the irregularities representing the mountain structure 38 is preferably in the range of 5 to 200 nm, more preferably in the range of 20 to 200 nm, and still more preferably in the range of 50 to 150 nm. If the average height of the irregularities is less than the lower limit, the diffraction becomes insufficient because the height is insufficient with respect to the wavelength of visible light. If the upper limit is exceeded, the obtained diffraction grating is placed on the light extraction port side of the organic EL element. When used as an optical element, the electric field distribution inside the EL layer becomes non-uniform, and the element is likely to be destroyed by heat generated by the concentration of the electric field at a specific location, and the life is likely to be shortened.
  • the average height of the unevenness means an average value of the height of the unevenness when the height of the unevenness on the surface of the cured resin layer (the distance in the depth direction between the recess and the protrusion) is measured.
  • the average height of such irregularities is obtained by analyzing the irregularities on the surface using a scanning probe microscope (for example, product name “E-sweep” manufactured by SII Nano Technology Co., Ltd.). After measuring the image, 100 or more distances in the depth direction from the arbitrary concave and convex portions in the unevenness analysis image are measured, and a value calculated by calculating the average is adopted.
  • a seed layer 40 to be a conductive layer for subsequent electroforming is formed on the surface of the master chevron structure 38 obtained as described above, as shown in FIG. 2E.
  • the seed layer 40 can be formed by electroless plating, sputtering, or vapor deposition.
  • the thickness of the seed layer 40 is preferably 10 nm or more, more preferably 100 nm or more in order to make the current density uniform in the subsequent electroforming process and to make the thickness of the metal layer deposited by the subsequent electroforming process constant. is there.
  • seed layer materials include nickel, copper, gold, silver, platinum, titanium, cobalt, tin, zinc, chromium, gold / cobalt alloy, gold / nickel alloy, boron / nickel alloy, solder, copper / nickel / chromium An alloy, a tin-nickel alloy, a nickel-palladium alloy, a nickel-cobalt-phosphorus alloy, or an alloy thereof can be used.
  • the seed layer adheres to the relatively smooth structure of the mountain shape as shown in FIG. 2 (D) with a uniform thickness compared to the complicated cross-sectional structure as shown in FIG. 2 (C). It is thought that it becomes easy to do.
  • a metal layer is deposited on the seed layer 40 by electroforming (electroplating) (FIG. 2F).
  • the thickness of the metal layer 50 can be set to a total thickness of 10 to 3000 ⁇ m including the thickness of the seed layer 40, for example.
  • Any of the above metal species that can be used as the seed layer 40 can be used as the material of the metal layer 50 deposited by electroforming. From the viewpoints of wear resistance as a mold of the metal substrate, releasability and the like, nickel is preferable. In this case, it is preferable to use nickel for the seed layer 40 as well.
  • the current density in electroforming can be set to, for example, 0.03 to 10 A / cm 2 from the viewpoint of shortening the electroforming time while suppressing the bridge to form a uniform metal layer.
  • the formed metal layer 50 has an appropriate hardness and thickness in view of the ease of processing such as pressing, peeling and cleaning of the subsequent resin layer.
  • the surface of the metal layer may be subjected to diamond-like carbon (DLC) treatment or Cr plating treatment.
  • the metal layer may be further heat treated to increase its surface hardness.
  • the metal layer 50 including the seed layer obtained as described above is peeled from the base material having the concavo-convex structure to obtain a metal substrate that becomes a father.
  • the peeling method may be physically peeled off, and the first homopolymer and the remaining block copolymer are removed by dissolving them using an organic solvent such as toluene, tetrahydrofuran (THF) or chloroform. May be.
  • ⁇ Washing process> When the metal substrate is peeled from the base material 10 having the mountain structure 38 as described above, a part of the polymer 60 such as the first polymer segment remains on the metal substrate as shown in FIG. There is a case. In such a case, those remaining portions 60 can be removed by washing.
  • a cleaning method wet cleaning or dry cleaning can be used.
  • the wet cleaning can be removed by cleaning with an organic solvent such as toluene or tetrahydrofuran, a surfactant, or an alkaline solution.
  • ultrasonic cleaning may be performed. Further, it may be removed by electrolytic cleaning.
  • As the dry cleaning it can be removed by ashing using ultraviolet rays or plasma.
  • a combination of wet cleaning and dry cleaning may be used. After such washing, rinsing with pure water or purified water may be performed, followed by ozone irradiation after drying. Thus, a metal substrate (mold) 70 having a desired uneven structure is obtained (FIG. 2H).
  • a release treatment may be performed on the metal substrate 70 in order to improve the release from the resin.
  • a mold release treatment a prescription for lowering the surface energy is generally used, and there is no particular limitation.
  • a mold release agent such as a fluorine-based material or a silicone resin may be used as the unevenness of the metal substrate 70 as shown in FIG. Examples of the method include coating the surface 70a, treating with a fluorine-based silane coupling agent, and forming a diamond-like carbon film on the surface.
  • the concavo-convex structure (pattern) of the metal substrate is transferred to the resin layer 80 to manufacture a mother.
  • a transfer processing method as shown in FIG. 3B, for example, after applying a curable resin to the transparent support substrate 90, the resin layer 80 is cured while pressing the uneven structure of the metal substrate 70 against the resin layer 80.
  • the transparent support substrate 90 for example, a base material made of a transparent inorganic material such as glass; polyethylene terephthalate (PET), polyethylene terephthalate (PEN), polycarbonate (PC), cycloolefin polymer (COP), polymethyl methacrylate (PMMA)
  • a base material made of resin such as polystyrene (PS); a gas barrier layer made of an inorganic material such as SiN, SiO 2 , SiC, SiO x N y , TiO 2 , Al 2 O 3 on the surface of the base material made of these resins
  • the thickness of the transparent support substrate can be in the range of 1 to 500 ⁇ m.
  • the curable resin examples include epoxy resin, acrylic resin, urethane resin, melamine resin, urea resin, polyester resin, phenol resin, and cross-linked liquid crystal resin.
  • the thickness of the curable resin is preferably in the range of 0.5 to 500 ⁇ m. If the thickness is less than the lower limit, the height of the irregularities formed on the surface of the cured resin layer tends to be insufficient, and if the thickness exceeds the upper limit, the influence of the volume change of the resin that occurs during curing increases and the irregular shape is well formed. It may not be possible.
  • Examples of the method for applying the curable resin include spin coating, spray coating, dip coating, dropping, gravure printing, screen printing, letterpress printing, die coating, curtain coating, ink jet, and sputtering.
  • Various coating methods such as a method can be employed.
  • conditions for curing the curable resin vary depending on the type of resin used, but for example, the curing temperature is in the range of room temperature to 250 ° C., and the curing time is in the range of 0.5 minutes to 3 hours. Is preferred.
  • a method of curing by irradiating energy rays such as ultraviolet rays or electron beams may be used. In that case, the irradiation amount is preferably in the range of 20 mJ / cm 2 to 5 J / cm 2 .
  • the metal substrate 70 is removed from the cured resin layer 80 after curing.
  • the method for removing the metal substrate 70 is not limited to the mechanical peeling method, and any known method can be adopted.
  • a resin film structure 100 having a cured resin layer 90 in which irregularities are formed on a transparent support substrate 90 can be obtained.
  • the resin structure 100 can be used as it is as a diffraction grating.
  • the substrate manufacturing method by the BCP method can be used not only for manufacturing a diffraction grating provided on the light extraction port side of an organic EL element but also for manufacturing an optical component having a fine pattern used in various devices. .
  • it can be used for producing an optical element for imparting a light confinement effect to the inside of a solar cell by being installed on the photoelectric conversion surface side of the wire grid polarizer, antireflection film, or solar cell.
  • the resin film structure 100 having a desired pattern can be obtained.
  • the reverse pattern of the resin film structure 100 is used as a diffraction grating, the resin film obtained through the above-described metal substrate transfer process.
  • the curable resin layer 82 is applied onto another transparent support base 92 as shown in FIG.
  • the resin film structure 100 is pressed against the curable resin layer 82 to cure the curable resin layer 82.
  • the resin film structure 100 is peeled from the cured curable resin layer 82, whereby a replica 110 which is another resin film structure as shown in FIG. 3E can be obtained.
  • the above-described transfer process may be performed using the replica 110 as a master to manufacture a reverse pattern replica of the replica 110, and the transfer process may be repeated again using the reverse pattern as a master to form a child replica. Also good.
  • the method for forming a substrate having a concavo-convex pattern using a sol-gel material mainly includes a solution preparation step for preparing a sol solution, a coating step for applying the prepared sol solution to the substrate, and a coating film of the sol solution applied to the substrate.
  • Drying process pressing process for pressing the mold on which the transfer pattern is formed, temporary baking process for temporarily baking the coating film on which the mold is pressed, peeling process for peeling the mold from the coating film, and main baking of the coating film It has a main firing step.
  • each process is demonstrated in order.
  • a sol solution is prepared in order to form a coating film on which a pattern is transferred by a sol-gel method (solution preparation step).
  • a sol solution of a metal alkoxide sica precursor
  • tetramethoxysilane MTES
  • tetraethoxysilane TEOS
  • tetra-i-propoxysilane tetra-n-propoxysilane
  • tetra-i-butoxysilane tetra-n-butoxysilane
  • tetra-n-butoxysilane tetra-n-butoxysilane
  • tetra- Tetraalkoxide monomers such as sec-butoxysilane and tetra-t-butoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, isopropyltrimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane Ethoxysilane, propyltriethoxysilane, isopropyltriethoxysilane
  • metal acetylacetonate metal carboxylate, oxychloride, chloride, a mixture thereof and the like can be mentioned, but not limited thereto.
  • the metal species include, but are not limited to, Ti, Sn, Al, Zn, Zr, In, and a mixture thereof in addition to Si. What mixed suitably the precursor of the said metal oxide can also be used.
  • the mixing ratio thereof can be 1: 1, for example, in a molar ratio.
  • This sol solution produces amorphous silica by performing hydrolysis and polycondensation reactions.
  • an acid such as hydrochloric acid or an alkali such as ammonia is added.
  • the pH is preferably 4 or less or 10 or more.
  • the amount of water to be added can be 1.5 times or more in molar ratio with respect to the metal alkoxide species.
  • the solvent examples include alcohols such as methanol, ethanol, isopropyl alcohol (IPA) and butanol, aliphatic hydrocarbons such as hexane, heptane, octane, decane and cyclohexane, and aromatic carbonization such as benzene, toluene, xylene and mesitylene.
  • alcohols such as methanol, ethanol, isopropyl alcohol (IPA) and butanol
  • aliphatic hydrocarbons such as hexane, heptane, octane, decane and cyclohexane
  • aromatic carbonization such as benzene, toluene, xylene and mesitylene.
  • Ethers such as hydrogen, diethyl ether, tetrahydrofuran and dioxane, ketones such as acetone, methyl ethyl ketone, isophorone and cyclohexanone, ether alcohols such as butoxyethyl ether, hexyloxyethyl alcohol, methoxy-2-propanol and benzyloxyethanol; Glycols such as ethylene glycol and propylene glycol, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, propylene glycol Glycol ethers such as nomethyl ether acetate, esters such as ethyl acetate, ethyl lactate and ⁇ -butyrolactone, phenols such as phenol and chlorophenol, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl Amides such as pyrrolidone, halogen-based solvents such as chloroform, methylene
  • Additives include polyethylene glycol, polyethylene oxide, hydroxypropyl cellulose, polyvinyl alcohol for viscosity adjustment, alkanolamines such as triethanolamine which is a solution stabilizer, ⁇ -diketones such as acetylacetone, ⁇ -ketoesters, formamide, Dimethylformamide, dioxane and the like can be used.
  • the sol solution prepared as described above is applied on the substrate (application process).
  • Substrates made of inorganic materials such as glass, quartz and silicon substrates, polyethylene terephthalate (PET), polyethylene terephthalate (PEN), polycarbonate (PC), cycloolefin polymer (COP), polymethyl methacrylate (PMMA), polystyrene Resin substrates such as (PS), polyimide (PI), and polyarylate can be used.
  • the substrate may be transparent or opaque. If the concavo-convex pattern substrate obtained from this substrate is used for the production of an organic EL element described later, the substrate is preferably a substrate having heat resistance and light resistance against UV light and the like.
  • a substrate made of an inorganic material such as glass, quartz, or a silicon substrate is more preferable.
  • a surface treatment or an easy-adhesion layer may be provided on the substrate, or a gas barrier layer may be provided for the purpose of preventing the ingress of gases such as moisture and oxygen.
  • a coating method any coating method such as a bar coating method, a spin coating method, a spray coating method, a dip coating method, a die coating method, and an ink jet method can be used, but the sol solution is uniformly applied to a relatively large area substrate.
  • the bar coating method, the die coating method and the spin coating method are preferable because the coating can be completed quickly before the sol solution is gelled.
  • the substrate surface including surface treatment and an easily adhesive layer, if any
  • the substrate surface may be flat. Has no pattern.
  • the substrate is held in the air or under reduced pressure in order to evaporate the solvent in the coated film (hereinafter also referred to as “sol-gel material layer” as appropriate) (drying step).
  • the resin film structure 100 (mold) is pressed against the coating film (pressing step).
  • the resin film structure 100 may be pressed using a pressing roll. In the roll process, compared to the press type, the time for contact between the mold and the coating film is short, so that the pattern breakage due to the difference in the thermal expansion coefficient of the mold, the substrate and the stage on which the substrate is installed can be prevented.
  • the coating film may be temporarily fired (temporary firing step).
  • Pre-baking promotes gelation of the coating film, solidifies the pattern, and makes it difficult to collapse during peeling.
  • pre-baking it is preferably heated in the atmosphere at a temperature of 40 to 150 ° C. Note that the preliminary firing is not necessarily performed.
  • the resin film structure 100 is peeled from the coating film (sol-gel material layer) after the pressing step or the pre-baking step.
  • the peel force may be smaller than that of a plate-shaped mold, and the mold can be easily peeled off from the coating film without remaining in the mold.
  • the coating film is baked (main baking process).
  • the main baking is preferably performed at a temperature of 200 to 1200 ° C. for about 5 minutes to 6 hours.
  • the coating film is cured to directly form a sol-gel structure (diffraction grating) having a concavo-convex pattern film corresponding to the concavo-convex pattern of the resin film structure 100, that is, a sol-gel material layer having an irregular concavo-convex pattern on a flat substrate.
  • a formed sol-gel structure (diffraction grating) is obtained.
  • the silica that is the sol-gel material layer becomes amorphous or crystalline, or a mixed state of amorphous and crystalline depending on the firing temperature and firing time.
  • the resin film structure A film may be laminated on the surface of the body 100 or the replica 110 on which the concavo-convex pattern is formed by a vapor phase method such as vapor deposition or sputtering.
  • a vapor phase method such as vapor deposition or sputtering.
  • the thickness of such a film is preferably 5 to 500 nm. If the thickness is less than the lower limit, it is difficult to obtain a uniform film, and the effect of sufficiently reducing the adhesiveness is reduced. If the thickness exceeds the upper limit, the shape of the matrix tends to be distorted.
  • post curing may be appropriately performed by irradiating ultraviolet light again after the resin is cured.
  • the curable resins 80 and 82 are applied to the transparent support substrates 90 and 92, respectively.
  • the surface of the metal substrate 70 or the cured resin layer 80 as a matrix is used. It is also possible to apply a curable resin directly to the substrate and remove it after curing.
  • a concave / convex film of a cured resin obtained by pressing the mother die against the resin coating and curing the resin may be used as the mother die.
  • the BKL method forms a deposited film on the surface of a polymer film made of a polymer whose volume changes by heat under a temperature condition of 70 ° C. or higher. Then, by cooling the polymer film and the vapor deposition film, a step of forming irregularities by wrinkles on the surface of the vapor deposition film (uneven shape forming step), and a matrix material is attached and cured on the vapor deposition film. And a step of removing the matrix material after curing from the vapor deposition film to obtain a matrix (matrix forming step).
  • FIGS. 5A to 5D are schematic views for explaining a preferred embodiment of a method for manufacturing a mother die in a method for manufacturing a diffraction grating by the BKL method.
  • FIG. 5A is a cross-sectional view schematically showing a state in which a vapor deposition film is formed on the surface of the polymer film in the manufacturing method of the matrix
  • FIG. 5B is a cooling of the polymer film and the vapor deposition film.
  • FIG. 5C is a cross-sectional view schematically showing a state in which irregularities due to wrinkles are formed on the surface of the vapor deposition film
  • FIG. 5C shows a state in which the matrix material is attached and cured on the vapor deposition film on which the irregularities are formed.
  • FIG. 5 (D) is a cross-sectional view schematically showing a state where the matrix after curing is removed from the vapor deposition film.
  • a polymer film made of a polymer whose volume is changed by heat is prepared.
  • a polymer whose volume changes by heat a polymer whose volume changes by heating or cooling (for example, a coefficient of thermal expansion of 50 ppm / K or more) can be used as appropriate.
  • a silicone-based polymer is more preferable and contains polydimethylsiloxane.
  • a silicone polymer is particularly preferable.
  • Examples of methods for forming the polymer film in this way include, for example, spin coating, dip coating, dropping, gravure printing, screen printing, letterpress printing, die coating, curtain coating, ink jet, and spraying.
  • a coating method, a sputtering method, a vacuum deposition method, or the like can be employed.
  • the thickness of such a polymer film is preferably in the range of 10 to 5000 ⁇ m, and more preferably in the range of 10 to 2000 ⁇ m.
  • a deposited film 28 is formed on the surface of the polymer film 27 under a temperature condition of 70 ° C. or higher (see FIG. 5A).
  • the temperature at the time of forming the vapor deposition film 28 needs to be 70 degreeC or more, it is more preferable that it is 90 degreeC or more. If the said temperature is less than 70 degreeC, the unevenness
  • a known method such as a vapor deposition method or a sputtering method can be appropriately employed.
  • the material of the vapor deposition film 28 is not particularly limited, and examples thereof include metals such as aluminum, gold, silver, platinum and nickel, and metal oxides such as aluminum oxide.
  • the polymer film 27 and the vapor deposition film 28 are then cooled to form irregularities due to wrinkles on the surface of the vapor deposition film 28 (see FIG. 5B).
  • the thermal expansion coefficient of the polymer film 27 and the thermal expansion coefficient of the vapor deposition film 28 As shown in FIG. 5B, unevenness (so-called buckling pattern or so-called Turing pattern) due to wrinkles can be formed on the surface of the deposited film 28 as shown in FIG.
  • membrane 28 after cooling is 40 degrees C or less.
  • the cooling rate when the polymer film 27 and the deposited film 28 are cooled is preferably in the range of 1 to 80 ° C./min.
  • the temperature lowering rate is less than the lower limit, the unevenness tends to be relaxed, and when it exceeds the upper limit, scratches such as cracks tend to occur on the surface of the polymer film or the deposited film.
  • a mother die material 29 is attached on the vapor deposition film 28 and cured.
  • matrix material 29 is not particularly limited, and examples thereof include inorganic substances such as nickel, silicon, silicon carbide, tantalum, glassy carbon, quartz, silica, etc .; silicone polymers (silicone rubber), urethane rubber, norbornene resin, Examples of the resin composition include polycarbonate, polyethylene terephthalate, polystyrene, polymethyl methacrylate, acrylic, and liquid crystal polymer.
  • silicone-based polymers nickel, silicon, silicon carbide, tantalum, glassy carbon, quartz, and silica are more preferable from the viewpoint of moldability, followability of fine shapes, and mold separation, and silicone-based polymers. Is more preferable, and a silicone-based polymer containing polydimethylsiloxane is particularly preferable.
  • the method for attaching the matrix material 29 in this way is not particularly limited, and for example, vacuum deposition method; spin coating method, spray coating method, dip coating method, dropping method, gravure printing method, screen printing method, Various coating methods such as a relief printing method, a die coating method, a curtain coating method, an ink jet method, and a sputtering method can be employed.
  • the conditions for curing the matrix material 29 vary depending on the type of the matrix material used.
  • the curing temperature is in the range of room temperature to 250 ° C.
  • the curing time is in the range of 0.5 minutes to 3 hours. It is preferable that Further, a method of curing by irradiating energy rays such as ultraviolet rays or electron beams may be used. In that case, the irradiation amount is preferably in the range of 20 mJ / cm 2 to 10 J / cm 2 .
  • the mother material 29 after curing is removed from the vapor deposition film 28 to obtain the mother mold 29.
  • the method for removing the matrix 29 from the vapor deposition film 28 is not particularly limited, and a known method can be adopted as appropriate.
  • the uneven shape forming step and the mother die forming step may be repeated using the mother die 29 obtained as a polymer film. In this way, the wrinkles formed on the surface of the mother die can be deepened, and the average height of the irregularities formed on the surface of the mother die can be increased.
  • a resin (a material used for the matrix material) is applied to the surface of the obtained matrix 29 and cured, and then removed from the matrix 29 may be used as a matrix. Further, the obtained matrix 29 is obtained. Instead of applying the resin to the surface, a concave / convex film of a cured resin obtained by pressing the matrix 29 against the resin coating and curing the resin may be used as the matrix. In this way, a resin film with the irregularities reversed can also be used as a matrix.
  • the final master die may be manufactured by repeating the inversion and transfer of irregularities from the master die 29 through one or more intermediate master dies.
  • an intermediate matrix a structure in which the concavo-convex structure is appropriately reversed or transferred as described above can be used.
  • a non-flexible substrate for example, a glass substrate
  • it is also possible to temporarily transfer it to a flexible material for example, plastic film or silicone rubber. It tends to be easy to match (match even-odd).
  • a polymer film obtained by applying a polymer whose volume is changed by heat to these intermediate mother molds and curing is used as a mother mold 29, and the uneven shape forming process and the mother mold forming process are repeated. May be.
  • the intermediate matrix is made of a UV curable resin
  • post-cure may be performed by irradiating the ultraviolet light again. Good. In this way, by carrying out post-cure by irradiating UV light to the mother mold made of UV curable resin again, the degree of cross-linking of the mother mold tends to improve, and mechanical strength and chemical resistance tend to improve. .
  • the mother die may be plated using a known method to form the mother die as a metal die.
  • a metal mold By plating in this way to form a metal mold, there is a tendency to obtain a matrix that has excellent mechanical strength and can be used repeatedly.
  • the matrix thus plated as a mold such as nanoimprint, it is possible to mass-produce a resin substrate having a predetermined concavo-convex pattern by repeatedly transferring it to a cured resin substrate.
  • materials that can be used for such plating include nickel, copper, iron, nickel cobalt alloy, nickel iron alloy, and the like.
  • the thickness of such a plating layer is preferably 50 ⁇ m to 1 mm from the viewpoint of mechanical strength, time required for mold production, and the like.
  • corrugated shape formation process and the said mother mold formation process using the mother mold (matrix 29 obtained by implementing BKL method in this way and the mother mold 29 obtained as a polymer film) can be used as a matrix for forming the diffraction grating.
  • a sol-gel structure having irregularities made of a sol-gel material may be produced using as a matrix.
  • a matrix obtained by heating the BKL method for about 1 to 48 hours under a temperature condition of about 80 to 200 ° C. under atmospheric pressure may be used as a matrix used for manufacturing a diffraction grating.
  • a diffraction grating having a good concavo-convex structure can be obtained as a diffraction grating, particularly for an organic EL element.
  • Substrates obtained by the BCP method or BKL method have an irregular concavo-convex surface.
  • a process for inspecting the optical characteristics, particularly luminance unevenness (step S2 in FIG. 1) will be described. Note that the luminance unevenness is considered to be caused by a local distribution of specific pitches of the substrate unevenness, a local distribution of the unevenness direction in a specific direction, unevenness of the unevenness depth, and the like. Scattered light from the irregular surface of the substrate 100 having an irregular irregular surface is observed using an apparatus 200 as shown in FIG.
  • the apparatus 200 includes a stage 104 composed of a pair of black blocks 102 arranged on the floor at a predetermined distance, and a pair of light sources 122 arranged obliquely above the stage 104 and symmetrically with respect to the stage center.
  • the image pickup device 124 is disposed above the center of the stage 104 at a predetermined distance, and the image processing device 126 is connected to the image pickup device 124.
  • the light source 122 any light source that has high directivity and can irradiate light 122a that illuminates a predetermined width (area) can be used.
  • an LED bar light in which a plurality of LEDs are embedded in an array in one direction can be used.
  • the imaging element 124 may be any imaging element as long as it has pixels that can two-dimensionally receive scattered light from the entire area of the substrate 100, and a digital camera, a two-dimensional color luminance meter, or the like is preferably used. Note that the number of pixels in the image sensor is preferably at least 30 or more.
  • the image processing device 126 is a computer that processes pixel data detected by the image sensor 124. Using such an apparatus 200, scattered light from the uneven surface 100a of the substrate 100 is observed in the following procedure. The luminance distribution is obtained from the observed scattered light.
  • the substrate 100 is placed on the stage 104 so that the uneven surface 100a faces upward, and the light from the light source 122 is obliquely upward on the uneven surface 100a of the substrate 100, for example, the normal direction of the uneven surface 100a of the substrate 100 Is irradiated at an incident angle of about 80 °.
  • Light is scattered in various directions from the uneven surface 100a of the substrate 100 irradiated with light.
  • the scattered light includes diffracted light from the uneven surface.
  • the image sensor 124 receives light that travels substantially in the normal direction from the entire region of the uneven surface 100 a of the substrate 100.
  • the image sensor 124 is arranged with respect to the substrate 100 so that the edge of the uneven surface 100 a of the substrate 100 is included in the field of view of the image sensor 124.
  • the image data detected for each pixel is subjected to image processing by the image processing device 126, and the light intensity corresponding to the two-dimensional position of the uneven surface 100a of the substrate 100 is obtained.
  • substrate may be in the state where it stood upright with the support body etc., or the state inclined at a certain angle.
  • the unevenness of the uneven surface 100a of the substrate 100 is a rectangular unevenness pattern as shown in FIG. 7, diffraction occurs according to Bragg diffraction conditions.
  • the angle (incident angle) formed between the incident light and the normal line of the diffraction grating surface is ⁇
  • the angle (diffraction angle) formed between the diffracted light and the normal line of the diffraction grating is ⁇
  • d is the period (pitch) of the diffraction grating
  • N is the number of grooves per mm
  • is the wavelength.
  • the diffraction angle .beta When m.noteq.0, the diffraction angle .beta. Satisfying the above relational expression differs for each wavelength .lamda., And also changes depending on the diffraction grating period d and the incident angle .alpha .. Therefore, diffracted light may not be observed depending on the wavelength ⁇ , the incident angle ⁇ , and the number of grooves N (or the period d).
  • the first-order diffracted light with high diffraction efficiency is introduced into the image sensor in the normal direction of the substrate without causing higher-order diffraction ( ⁇ 2, ⁇ 3,...)
  • Wavelength of the same order as the period of the grating specifically, a wavelength ⁇ of 0.5 to 2.0 times the period d of the diffraction grating (0.5d ⁇ ⁇ ⁇ 2.0d), particularly from 0.5 times
  • the concavo-convex pitch of the irregular concavo-convex surface is desirably 100 nm to 600 nm, particularly 150 nm to 600 nm. (See, for example, WO2011 / 007878A1).
  • the incident angle ⁇ is preferably 30 ° ⁇ ⁇ 90 °.
  • the inventors' experiments have revealed that 60 ° ⁇ ⁇ 85 ° is more preferable.
  • the incident angle is less than 30 °, the diffraction efficiency is low and the luminance is lowered, so that the luminance unevenness is not clearly observed.
  • the evaluation area becomes narrow, and there is a possibility that specular reflection light may enter the image sensor.
  • the lower limit of the incident angle ⁇ is more preferably 60 °.
  • the incident angle ⁇ exceeds 90 °, the back surface of the substrate is irradiated and the amount of reflected light decreases. If it is an opaque body such as a metal plate, observation itself becomes impossible.
  • the incident angle ⁇ exceeds 85 °, the sample surface cannot be irradiated efficiently even if a highly directional light source is used, and the amount of light entering the image sensor is insufficient.
  • step S3 in FIG. 1 An evaluation / determination method when a digital camera is used as the image sensor will be described.
  • a pixel value is read from the output of each pixel of the image sensor obtained in the inspection step.
  • the pixel value corresponds to the intensity or luminance of the scattered (diffracted) light of each pixel.
  • the maximum value, the minimum value, and the average value are obtained for the pixel values in the entire uneven surface of the substrate. It is determined whether the maximum value, the minimum value, and the average value are within a desired allowable range. It is also determined whether the intensity distribution is within a desired range.
  • the ratio of the maximum value to the minimum value determines the luminance unevenness based on the size of the maximum value / minimum value.
  • the organic EL element of the present invention in which the electrode and the organic layer are laminated so that the unevenness is retained on the substrate, when the maximum value / minimum value of the pixel value is 1.5 or more, The present inventor has found that the uniformity of light emission of the organic EL element is clearly deteriorated, that is, the luminance unevenness exceeds the allowable range. Lighting and displays using such organic EL elements are not suitable as products.
  • the maximum value / minimum value of the pixel value which is a threshold value, can be set according to the allowable limit of luminance unevenness, that is, the required luminance uniformity and application.
  • the average pixel value can be evaluated by the following method.
  • a process of converting the measured pixel value into a gray tone is performed.
  • a gray-scaled pixel value for a pixel value of each pixel on a straight line in a predetermined direction (X or Y direction) on the captured image By obtaining a gray-scaled pixel value for a pixel value of each pixel on a straight line in a predetermined direction (X or Y direction) on the captured image, a (cross-section) profile of the scattered light intensity on the straight line is obtained. .
  • the maximum pixel value 255 for a general digital camera
  • the average value is preferably 0.2 MAX to 0.8 MAX.
  • an organic EL element is formed using this substrate according to the process described later.
  • post-processing is performed (step S5 in FIG. 1). As post-processing, it is analyzed whether the substrate defect (luminance unevenness) is caused by dust, scratches, periodic errors, or random errors. If the deposit is caused by dust or the like, it can be repaired by applying pressurized air to the substrate surface to blow off the deposit, and then the above inspection is performed again.
  • the ratio of the maximum value to the minimum value, the scattering intensity difference, or the average pixel value is within a desired range based on the inspection result.
  • a step of separating out of the range can be provided.
  • the organic EL elements can be sequentially manufactured by supplying them to a production line such as an organic EL element. Those outside the range can be collectively analyzed for defects and discarded.
  • the transparent electrode 3 As a material of the transparent electrode 3, for example, indium oxide, zinc oxide, tin oxide, and indium tin oxide (ITO) that is a composite thereof, gold, platinum, silver, and copper are used. Among these, ITO is preferable from the viewpoints of transparency and conductivity.
  • the thickness of the transparent electrode 3 is preferably in the range of 20 to 500 nm. If the thickness is less than the lower limit, the conductivity tends to be insufficient, and if it exceeds the upper limit, the transparency may be insufficient and the emitted EL light may not be sufficiently extracted to the outside.
  • a known method such as a vapor deposition method or a sputtering method can be appropriately employed. Among these methods, the sputtering method is preferable from the viewpoint of improving adhesion.
  • a glass substrate may be attached to the opposite side of the resin film 100 from the resin layer 80.
  • an organic layer represented by reference numeral 4 shown in FIG. 8 is laminated on the transparent electrode 3 so as to maintain the uneven shape formed on the surface of the resin 80.
  • the organic layer 4 is not particularly limited as long as it can be used for the organic layer of the organic EL element, and a known organic layer can be appropriately used.
  • Such an organic layer 4 may be a laminate of various organic thin films.
  • a laminate comprising an anode buffer layer 11, a hole transport layer 12, and an electron transport layer 13 as shown in FIG. It may be a body.
  • examples of the material of the anode buffer layer 11 include copper phthalocyanine and PEDOT.
  • Examples of the material for the hole transport layer 12 include derivatives such as triphenylamine, triphenyldiamine derivative (TPD), benzidine, pyrazoline, styrylamine, hydrazone, triphenylmethane, and carbazole. Furthermore, examples of the material for the electron transport layer 13 include an aluminum quinolinol complex (Alq), a phenanthroline derivative, an oxadiazole derivative, a triazole derivative, a phenylquinoxaline derivative, and a silole derivative.
  • Such an organic layer 4 is, for example, a laminate of a hole injection layer made of a triphenylamine derivative or the like and a light emitting layer made of a fluorescent organic solid such as anthracene, or such a light emitting layer.
  • a laminate with an electron injection layer made of a perylene derivative or the like, or a laminate with these hole injection layer, light emitting layer, and electron injection layer may be used.
  • the organic layer 4 may be a laminate including a hole transport layer, a light emitting layer, and an electron transport layer.
  • the material for the hole transport layer includes phthalocyanine derivatives, naphthalocyanine derivatives, porphyrin derivatives, N, N′-bis (3-methylphenyl)-(1,1′-biphenyl) -4,4′-diamine (TPD).
  • the light emitting layer is provided to recombine holes injected from the transparent electrode and electrons injected from the metal electrode to emit light
  • materials usable for the light emitting layer include anthracene, naphthalene, Organometallic complexes such as pyrene, tetracene, coronene, perylene, phthaloperylene, naphthaloperylene, diphenylbutadiene, tetraphenylbutadiene, coumarin, oxadiazole, bisbenzoxazoline, bisstyryl, cyclopentadiene, aluminum quinolinol complex (Alq3), tri- ( p-terphenyl-4-yl) amine, 1-aryl-2,5-di (2-thienyl) pyrrole derivative, pyran, quinacridone, rubrene, distyrylbenzene derivative, distyrylarylene derivative, distyrylamine derivative and various Fluorescent color Or the like can
  • the light emitting material selected from these compounds suitably.
  • a material system that emits light from a spin multiplet for example, a phosphorescent material that emits phosphorescence, and a compound that includes a portion formed of these in a part of the molecule can be preferably used.
  • the phosphorescent material preferably contains a heavy metal such as iridium.
  • nitro-substituted fluorene derivatives diphenylquinone derivatives, thiopyran dioxide derivatives, heterocyclic tetracarboxylic anhydrides such as naphthaleneperylene, carbodiimide, fluorenylidenemethane derivatives, anthraquinodimethane and And organometallic complexes such as anthrone derivatives, oxadiazole derivatives, and aluminum quinolinol complexes (Alq3).
  • heterocyclic tetracarboxylic anhydrides such as naphthaleneperylene, carbodiimide, fluorenylidenemethane derivatives, anthraquinodimethane and And organometallic complexes such as anthrone derivatives, oxadiazole derivatives, and aluminum quinolinol complexes (Alq3).
  • a thiadiazole derivative in which an oxygen atom of the oxadiazole ring is substituted with a sulfur atom, or a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • the hole transport layer or the electron transport layer may also serve as the light emitting layer.
  • the organic layer between a transparent electrode and the metal electrode mentioned later becomes two layers.
  • a metal fluoride such as lithium fluoride (LiF) or Li 2 O 3 is formed on the transparent electrode 3 or the organic layer 4.
  • a layer made of a highly active alkaline earth metal such as a chemical compound, Ca, Ba, or Cs, an organic insulating material, or the like may be provided.
  • the organic layer 4 is a laminate composed of the anode buffer layer 11, the hole transport layer 12, and the electron transport layer 13, from the viewpoint of maintaining the uneven shape formed on the surface of the cured resin layer, the anode buffer
  • the thicknesses of the layer 11, the hole transport layer 12, and the electron transport layer 13 are preferably in the range of 1 to 50 nm, 5 to 200 nm, and 5 to 200 nm, respectively.
  • the organic layer 4 is a laminate composed of a hole transport layer, a light emitting layer, and an electron transport layer
  • the thicknesses of the hole transport layer, the light emitting layer, and the electron transport layer are each in the range of 1 to 200 nm, 5 A range of ⁇ 100 nm and a range of 5 ⁇ 200 nm are preferred.
  • a known method such as a vapor deposition method, a sputtering method, or a die coating method can be appropriately employed. Among these methods, the vapor deposition method is preferable from the viewpoint of maintaining the shape of the unevenness formed on the surface of the resin 80.
  • the metal electrode represented by the reference numeral 5 is formed on the organic layer 4 so that the uneven shape formed on the surface of the resin 80 is maintained. And laminate.
  • a material of the metal electrode 5 a substance having a small work function can be used as appropriate, and is not particularly limited, and examples thereof include aluminum, MgAg, MgIn, and AlLi.
  • the thickness of the metal electrode 5 is preferably in the range of 50 to 500 nm. If the thickness is less than the lower limit, the conductivity tends to decrease, and if the thickness exceeds the upper limit, it may be difficult to maintain the uneven shape.
  • the metal electrode 5 can be laminated by employing a known method such as vapor deposition or sputtering. Among these methods, the vapor deposition method is preferable from the viewpoint of maintaining the uneven structure formed on the surface of the resin 80. Thus, an organic EL element 400 having a structure as shown in FIG. 8 is obtained.
  • the transparent electrode 3, the organic layer 4, and the metal electrode 5 are easily laminated so that the chevron structure of the resin 80 is maintained. It is possible to sufficiently suppress the light generated in the organic layer 4 from being totally reflected at each interface and repeating multiple reflections inside the element. Further, the light totally reflected at the interface between the transparent support substrate and the air can be re-emitted by the diffraction effect. Furthermore, since the transparent electrode 3, the organic layer 4, and the metal electrode 5 are also likely to have a structure similar to the mountain structure formed on the surface of the resin layer 80, as a result, the electrode between the transparent electrode 3 and the metal electrode 5 is obtained. The distance is partially shortened. Therefore, as compared with a case where the distance between the transparent electrode 3 and the metal electrode 5 is uniform, an increase in electric field strength can be expected when a voltage is applied, and the light emission efficiency of the organic EL element can also be improved.
  • the average height of the unevenness formed on the surface of the diffraction grating (cured curable resin surface) is as described above.
  • it is preferably in the range of 5 to 200 nm, more preferably in the range of 20 to 200 nm, and still more preferably in the range of 50 to 150 nm.
  • the average pitch of the irregularities formed on the surface of the diffraction grating (cured curable resin surface) is 100 to 600 nm as described above. Is preferable, and a range of 200 to 600 nm is more preferable.
  • a substrate having a concavo-convex surface is manufactured using the BCP method, and then an organic EL element is manufactured using the manufactured substrate.
  • a block copolymer manufactured by Polymer Source was prepared, which was composed of the following polystyrene (hereinafter abbreviated as “PS” where appropriate) and polymethyl methacrylate (hereinafter abbreviated as “PMMA” where appropriate).
  • PS polystyrene
  • PMMA polymethyl methacrylate
  • the volume ratio of the first and second polymer segments in the block copolymer is such that the density of polystyrene is 1.05 g / cm 3 and the density of polymethyl methacrylate is It was calculated as 1.19 g / cm 3 .
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) of the polymer segment or polymer are gel permeation chromatography (manufactured by Tosoh Corporation, model number “GPC-8020”, TSK-GEL SuperH1000, SuperH2000, SuperH3000, and SuperH4000 in series.
  • the glass transition point (Tg) of the polymer segment was determined by using a differential scanning calorimeter (manufactured by Perkin-Elmer, product name “DSC7”) at a temperature increase rate of 20 ° C./min in the temperature range of 0 to 200 ° C. Measurement was performed while raising the temperature.
  • the solubility parameters of polystyrene and polymethylmethacrylate are 9.0 and 9.3, respectively (see Chemical Handbook, Application, 2nd revised edition).
  • This solution was filtered through a membrane filter having a pore size of 0.5 ⁇ m to obtain a block copolymer solution.
  • the obtained block copolymer solution was applied on a polyphenylene sulfide film (Torreina manufactured by Toray Industries, Inc.) as a substrate to a thickness of 200 to 250 nm by spin coating.
  • the spin coating was performed at a rotational speed of 500 rpm for 10 seconds, and subsequently at 800 rpm for 30 seconds.
  • the thin film applied by spin coating was left to dry at room temperature for 10 minutes.
  • the base material on which the thin film was formed was heated in an oven at 170 ° C. for 5 hours (first annealing treatment). Unevenness was observed on the surface of the thin film after heating, and it was found that the block copolymer constituting the thin film was micro-layer separated (see FIG. 2B).
  • the thin film heated as described above is etched as follows to selectively decompose and remove PMMA on the substrate.
  • the thin film was irradiated with ultraviolet rays at an irradiation intensity of 30 J / cm 2 using a high-pressure mercury lamp.
  • the thin film was immersed in acetic acid, washed with ion exchange water, and then dried.
  • a concavo-convex pattern clearly deeper than the concavo-convex appearing on the surface of the thin film was formed on the substrate by the heat treatment (see FIG. 2C).
  • the substrate was subjected to a heat treatment (second annealing process) for 1 hour in an oven at 140 ° C. (FIG. 2D). reference).
  • a thin nickel layer of about 10 nm was formed as a current seed layer on the surface of the thin film subjected to the chevron treatment (see FIG. 2E).
  • the substrate with the thin film was placed in a nickel sulfamate bath, and electrocasting (maximum current density 0.05 A / cm 2 ) was performed at a temperature of 50 ° C. to deposit nickel until the thickness reached 250 ⁇ m (FIG. 2F). reference).
  • the substrate with a thin film was mechanically peeled from the nickel electroformed body thus obtained (see FIG. 2G).
  • the nickel electroformed body was immersed in Chemisol 2303 manufactured by Nippon CB Chemical Co., Ltd. and washed with stirring at 50 ° C. for 2 hours. Thereafter, an acrylic UV curable resin was applied to the nickel electroformed body, cured, and peeled three times to remove the polymer component partially attached to the surface of the electroformed body (FIG. 2H). reference).
  • the nickel electroformed body was immersed in HD-2101TH manufactured by Daikin Chemicals Sales Co., Ltd. for about 1 minute, dried, and allowed to stand overnight.
  • the nickel electroformed body was immersed in HDTH manufactured by Daikin Chemicals Sales Co., Ltd. and subjected to ultrasonic treatment for about 1 minute.
  • a nickel mold (nickel substrate) subjected to the mold release treatment was obtained (see FIG. 3A).
  • a fluorine-based UV curable resin is applied onto a PET substrate (Toyobo Co., Ltd., Cosmo Shine A-4100), and irradiated with ultraviolet rays at 600 mJ / cm 2 while pressing a nickel mold, the fluorine-based UV curable resin.
  • a PET substrate Toyobo Co., Ltd., Cosmo Shine A-4100
  • the fluorine-based UV curable resin was cured (see FIG. 3B).
  • the nickel mold was peeled from the cured resin (see FIG. 3C). In this way, a diffraction grating composed of a PET substrate with a resin film onto which the surface shape of the nickel mold was transferred was obtained.
  • an analysis image of the uneven shape of the resin surface was obtained using an atomic force microscope (scanning probe microscope with an environmental control unit “Nonavi II station / E-sweep” manufactured by SII Nanotechnology).
  • the analysis conditions of the atomic force microscope are as follows.
  • Measurement mode Dynamic force mode Cantilever: SI-DF40 (material: Si, lever width: 40 ⁇ m, tip diameter: 10 nm)
  • Measurement atmosphere in the air Measurement temperature: 25 ° C.
  • FIG. 9 shows an unevenness analysis image of the resin surface of the obtained diffraction grating.
  • ⁇ Average height of irregularities> A measurement region of 3 ⁇ m square (3 ⁇ m in length and 3 ⁇ m in width) was measured at an arbitrary position of the diffraction grating, and an unevenness analysis image was obtained as described above. In such an unevenness analysis image, 100 or more distances in the depth direction from arbitrary concave portions and convex portions are measured, and the average is calculated as the average height (depth) of the unevenness. From the analysis image obtained in this example, the average height of the concavo-convex pattern was 62 nm.
  • ⁇ Fourier transform image> An irregularity analysis image is obtained as described above by measuring an arbitrary measurement area of 3 ⁇ m square (vertical 3 ⁇ m, horizontal 3 ⁇ m) of the diffraction grating.
  • the obtained unevenness analysis image was subjected to flat processing including primary inclination correction, and then subjected to two-dimensional fast Fourier transform processing to obtain a Fourier transform image.
  • the obtained Fourier transform image is shown in FIG.
  • the Fourier transform image shows a circular pattern whose center is the origin where the absolute value of the wave number is 0 ⁇ m ⁇ 1 , and the circular pattern has the wave number. It was confirmed that the absolute value was in a region within a range of 10 ⁇ m ⁇ 1 or less.
  • the circular pattern of the Fourier transform image is a pattern that is observed when bright spots are gathered in the Fourier transform image.
  • “Circular” as used herein means that the pattern of bright spots appears to be almost circular, and is a concept that includes a part of the outer shape that appears to be convex or concave. .
  • a pattern in which bright spots are gathered may appear to be almost circular, and this case is expressed as “annular”.
  • annular includes those in which the outer circle of the ring and the inner circle appear to be substantially circular, and the outer circle of the ring and a part of the outer shape of the inner circle are convex or concave. It is a concept including what appears to be.
  • the term “present in” means that 30% or more (more preferably 50% or more, even more preferably 80% or more, particularly preferably 90% or more) of luminescent spots constituting the Fourier transform image have wavenumbers. It means that the absolute value is within a range of 10 ⁇ m ⁇ 1 or less (more preferably 1.25 to 10 ⁇ m ⁇ 1 , more preferably 1.25 to 5 ⁇ m ⁇ 1 ).
  • the concavo-convex structure itself has neither pitch distribution nor directivity, the Fourier transform image also appears as a random pattern (no pattern), but the concavo-convex structure is isotropic in the XY direction as a whole, but the pitch distribution is In some cases, a circular or annular Fourier transform image appears. Further, when the concavo-convex structure has a single pitch, the ring appearing in the Fourier transform image tends to be sharp.
  • the two-dimensional fast Fourier transform processing of the unevenness analysis image can be easily performed by electronic image processing using a computer equipped with two-dimensional fast Fourier transform processing software.
  • the wave number 2.38 ⁇ m ⁇ 1 was the strongest. That is, the average pitch was 420 nm.
  • the average pitch can be obtained as follows. For each point of the Fourier transform image, the distance (unit: ⁇ m ⁇ 1 ) and intensity from the origin of the Fourier transform image are obtained. Subsequently, for the points at the same distance, the average value of the intensities is obtained. As described above, the relationship between the distance from the origin of the obtained Fourier transform image and the average value of the intensity is plotted, and fitting is performed using a spline function, and the wave number at which the intensity reaches the peak is expressed as the average wave number ( ⁇ m ⁇ 1 ). did.
  • the average pitch another method, for example, measuring an arbitrary 3 ⁇ m square (vertical 3 ⁇ m, horizontal 3 ⁇ m) measurement region of a diffraction grating to obtain an unevenness analysis image, and arbitrary adjacent convex portions in the unevenness analysis image Or you may calculate from the method of measuring the space
  • the apparatus shown in FIG. 6 was installed in a dark room, and the scattered light intensity distribution of the substrate was observed under the following conditions.
  • the height of the pair of black rectangular parallelepiped blocks of the stage device 104 was 40 mm, and the distance between the black blocks was 27 mm.
  • the substrate was a square substrate of 30 mm ⁇ 30 mm.
  • a pair of highly directional LED bar lights (LDL2-119 ⁇ 16BL manufactured by CCS Co., Ltd.) having a light emission center wavelength of 470 nm and a light emitting portion area of 119 mm ⁇ 160 mm were installed at a position 160 mm high from the floor surface.
  • the LED bar lighting was installed in a state where it was tilted 10 ° from the horizontal toward the floor surface, and the distance between the two LED bar lightings was set to 307 mm.
  • a digital camera was used as the image sensor 124 and was installed at a distance of 770 mm from the substrate surface. Images were taken with LED illumination at maximum output (5.7 W each).
  • the model and imaging conditions of the digital camera are as follows. Camera: Canon EOS Kiss X3, Lens: EF-S18-55mm F3.5-5.6 IS, Shutter speed: 1/100 second, ISO sensitivity: 3200, Aperture value: F5.6, White balance: Standard, Picture Style: Standard, Pixel value 0-255.
  • the blue pixel value was extracted from the obtained image from the digital camera, and the pixel value was displayed in gray gradation. Also, as shown in FIG. 11A, only pixel values on the straight line L1 extending in the X direction at the approximate center position in the Y direction of the image are extracted, and a profile of pixel values with respect to the pixel position in the X direction is obtained. Output. Note that the cross-sectional profile was output only in a portion (within the wavy frame in FIG. 11A) that was made into an element as an organic EL element described later.
  • FIG. 11B shows a profile of pixel values with respect to the obtained pixel positions in the X direction. The average pixel value was 113, the maximum pixel value was 128, and the minimum pixel value was 100. From these values, it was found that the maximum pixel value / minimum pixel value was 1.28, which was less than the criterion value of 1.5.
  • a transparent electrode (ITO, thickness: 120 nm) is sputtered on the resin layer of the obtained diffraction grating to form a hole transport layer [N, N′-diphenyl-N, N′-bis (3-methylphenyl). ) -1,1′-diphenyl-4,4′-diamine, thickness: 40 nm], electron transport layer (8-hydroxyquinoline aluminum, thickness: 30 nm), lithium fluoride layer (thickness: 1.5 nm), and metal An electrode (aluminum, thickness: 150 nm) was laminated by an evaporation method so that the uneven shape formed on the surface of the cured resin layer was maintained to obtain an organic EL element.
  • a DC power supply was connected so that a negative voltage was applied to the metal electrode side of the obtained organic EL element and a positive voltage was applied to the transparent electrode side, a voltage of 3 V was applied, and the light emission state was imaged with a digital camera.
  • the organic EL element emitted light having a central wavelength of 520 nm.
  • the imaging conditions for the digital camera were the same as the imaging conditions for the substrate except that the shutter speed was changed to 1/1600 seconds.
  • FIG. 12A For the obtained image from the digital camera, a green pixel value was extracted, and the pixel value was displayed in gray.
  • FIG. 12B shows a pixel value profile with respect to the obtained pixel position in the X direction.
  • the average pixel value was 99
  • the maximum pixel value was 105
  • the minimum pixel value was 89.
  • the maximum pixel value / minimum pixel value was 1.18, which was less than the criterion value of 1.5.
  • the profile of FIG. 12B almost coincides with the tendency of the profile of FIG. 11B, and it has been found that the scattered light distribution of the substrate reflects the scattered light distribution of the organic EL element. From this, in the manufacturing process of the organic EL element, before inspecting the luminance unevenness of the completed organic EL element, the light emission characteristic (the luminance unevenness of the organic EL element is inspected and evaluated by inspecting and evaluating the scattered light of the diffraction grating substrate. ) Can be understood in advance.
  • the organic EL element can be manufactured with high throughput by associating the characteristics of luminance unevenness between the organic EL element and the substrate having an irregular uneven surface used for the organic EL element.
  • an organic EL element having uniform illuminance can be more reliably manufactured.
  • a substrate having an uneven surface is manufactured using the BKL method, and then an organic EL element is manufactured using the manufactured substrate.
  • a mixed resin composition of 90% by mass of a silicone-based polymer [silicone rubber (manufactured by Wacker Chemi, product name “Elastosil RT601”) and 10% by mass of a curing agent on a base material (material: glass, size: 20 mm ⁇ 12 mm). The material] was applied by spin coating and cured by heating at 100 ° C. for 1 hour to form a silicone polymer film.
  • an aluminum vapor-deposited film (thickness: 10 nm) is formed on the silicone polymer film by a vapor deposition method under conditions where the temperature is 100 ° C. and the pressure is 1 ⁇ 10 ⁇ 3 Pa. After cooling to room temperature (25 ° C.), the pressure was returned to atmospheric pressure (1.013 ⁇ 10 5 Pa). Irregularities were formed on the surface of the aluminum vapor deposition film formed on the silicone polymer film.
  • a silicone-based polymer [a mixed resin composition of 90% by mass of silicone rubber (product name “Elastosil RT601”, manufactured by Wacker Chemi Co., Ltd.) and a curing agent of 10% by mass] is applied onto the aluminum vapor-deposited film by a dropping method. After being cured by heating at 1 hour, it was removed from the aluminum deposited film to obtain a mother mold (M-1B).
  • An aluminum vapor deposition film (thickness: 10 nm) was formed on the obtained matrix (M-1B) by vapor deposition under the conditions of a temperature of 100 ° C. and a pressure of 1 ⁇ 10 ⁇ 3 Pa. After cooling to room temperature (25 ° C.) over 30 minutes, the pressure was returned to atmospheric pressure (1.013 ⁇ 10 5 Pa). Concavities and convexities were formed on the surface of the aluminum vapor deposition film formed on the matrix (M-1B).
  • a silicone-based polymer [a mixed resin composition of 90% by mass of silicone rubber (product name “Elastosil RT601”, manufactured by Wacker Chemi Co., Ltd.) and a curing agent of 10% by mass] is applied onto the aluminum vapor-deposited film by a dropping method. After being cured by heating for 1 hour, the matrix (M-2B) was obtained by removing from the aluminum deposited film. Further, an aluminum vapor deposition film (thickness: under the condition that the temperature is 100 ° C. and the pressure is 1 ⁇ 10 ⁇ 3 Pa by vapor deposition on the mother mold (M-2B) having irregularities formed on the surface.
  • ⁇ Average height of irregularities> A measurement area of 3 ⁇ m square (3 ⁇ m in length and 3 ⁇ m in width) was measured at an arbitrary position of the diffraction grating, and an unevenness analysis image was obtained as described above. In such an unevenness analysis image, 100 or more distances in the depth direction from arbitrary concave portions and convex portions are measured, and the average is calculated as the average height (depth) of the unevenness. From the analysis image obtained in this example, the average height of the concavo-convex pattern was 35 nm.
  • ⁇ Fourier transform image> A measurement area of 3 ⁇ m square (3 ⁇ m in length and 3 ⁇ m in width) is measured at an arbitrary position of the diffraction grating, and an unevenness analysis image is obtained as described above.
  • the obtained unevenness analysis image was subjected to flat processing including primary inclination correction, and then subjected to two-dimensional fast Fourier transform processing to obtain a Fourier transform image.
  • the obtained Fourier transform image is shown in FIG.
  • the Fourier transform image shows a circular pattern whose center is the origin where the absolute value of the wave number is 0 ⁇ m ⁇ 1 , and the circular pattern has the wave number. It was confirmed that the absolute value was in a region within a range of 10 ⁇ m ⁇ 1 or less.
  • the wave number of 2.67 ⁇ m ⁇ 1 was the strongest. That is, the average pitch was 375 nm.
  • the scattered light intensity distribution of the substrate was observed using the apparatus shown in FIG. 6 under the same conditions as in Example 1 except that the size of the glass substrate was different.
  • the glass was arranged so that the center of the region where the irregularities were formed and the center of the imaging area coincided.
  • the used digital camera and imaging conditions are the same as those in the first embodiment.
  • the blue pixel value was extracted from the obtained image from the digital camera, and the pixel value was displayed in gray gradation. Further, as shown in FIG. 15A, only the pixel value on the straight line L2 extending in the X direction at the approximate center position in the Y direction of the image is extracted, and the profile of the pixel value with respect to the pixel position in the X direction is obtained. Output. Note that FIG. 15A is an image of only a portion that is formed as an organic EL element to be described later. FIG. 15B shows a pixel value profile with respect to the obtained pixel position in the X direction. The average pixel value was 118, the maximum pixel value was 149, and the minimum pixel value was 69. From these values, it can be seen that the maximum pixel value / minimum pixel value is 2.16, which exceeds the allowable range of 1.5.
  • the organic EL elements were obtained by laminating each by vapor deposition so that the shape was maintained (see FIG. 8).
  • a DC power supply was connected so that a negative voltage was applied to the metal electrode side of the obtained organic EL element and a positive voltage was applied to the transparent electrode side, a voltage of 3 V was applied, and the light emission state was imaged with a digital camera.
  • the organic EL element emitted light having a central wavelength of 520 nm.
  • the imaging conditions for the digital camera were the same as the imaging conditions for the substrate except that the shutter speed was changed to 1/1600 seconds.
  • the green pixel value was extracted from the obtained image from the digital camera, and the pixel value was displayed in gray.
  • FIG. 16A only pixel values on the straight line L2 (same position as the straight line L2 on the substrate) extending in the X direction at the approximate center position in the Y direction of the image are extracted, and the X direction A pixel value profile with respect to the pixel position was output.
  • FIG. 16B shows a pixel value profile with respect to the obtained pixel position in the X direction.
  • the average pixel value was 151, the maximum pixel value was 183, and the minimum pixel value was 114. From these values, it was found that the maximum pixel value / minimum pixel value was 1.61, which exceeded the criterion value of 1.5.
  • the profile of FIG. 16B almost coincides with the tendency of the profile of FIG. 15B, and it has been found that the scattered light distribution of the substrate reflects the scattered light distribution of the organic EL element.
  • the scattered light of the diffraction grating substrate is inspected and evaluated, and the substrate that does not satisfy the luminance unevenness standard.
  • an organic EL element having uniform illuminance can be more reliably manufactured.
  • Example 3 In Examples 1 and 2, a blue light source having an emission center wavelength of 470 nm was used as a light source in the inspection process, but the resin substrate obtained in Example 1 was evaluated for the appearance of scattered light using white LEDs and red LEDs. Went.
  • FIG. 19 shows a photograph of an image of the uneven surface of the substrate imaged using LED bar illumination of a blue LED (Example 1), a white LED, and a red LED. From this photograph, pattern irregularity (brightness irregularity) is hardly observed in the red LED, and the foreign matter on the resin substrate is emphasized. In the white LED, an intermediate appearance between blue and red, that is, pattern irregularity and resin are observed. An image in which both foreign matters on the substrate are emphasized is obtained.
  • the unevenness of brightness is caused by pattern unevenness. Therefore, the light source of the inspection system predicts the unevenness of brightness of the diffraction grating substrate for organic EL elements having a pitch of 100 to 600 nm.
  • a blue light source for example, a center wavelength of 430 nm to 485 nm is suitable.
  • Example 4 In this example, a nickel mold (nickel substrate) subjected to release treatment using the BCP method in the same manner as in Example 1 was obtained. Next, a fluorine-based UV curable resin is applied on a PET substrate (Toyobo Co., Ltd., easy-adhesion PET film, Cosmo Shine A-4100), and while pressing a nickel mold, UV light is applied at 600 mJ / cm 2 . The fluorine-based UV curable resin was cured by irradiation. After the resin was cured, the nickel mold was peeled off from the cured resin. Thus, a diffraction grating mold composed of a PET substrate with a resin film onto which the surface shape of the nickel mold was transferred was obtained.
  • a fluorine-based UV curable resin is applied on a PET substrate (Toyobo Co., Ltd., easy-adhesion PET film, Cosmo Shine A-4100), and while pressing a nickel mold, UV light is applied at 600 mJ / cm
  • TEOS tetraethoxysilane
  • MTES methyltriethoxysilane
  • This doctor blade was designed to have a coating film thickness of 5 ⁇ m, but an imide tape with a thickness of 35 ⁇ m was attached to the doctor blade so that the coating film thickness was adjusted to 40 ⁇ m.
  • a diffraction grating mold made of a PET substrate with a resin film onto which the surface shape of a nickel mold produced in the same manner as in Example 1 was transferred was pressed by the method described below. It pressed against the coating film on a glass plate with the roll.
  • the surface on which the mold pattern was formed was pressed against the coating film on the glass substrate while rotating a pressing roll at 23 ° C. from one end of the glass substrate toward the other end.
  • the substrate was moved onto a hot plate, and the substrate was heated at 100 ° C. (preliminary firing). After heating was continued for 5 minutes, the substrate was removed from the hot plate, and the mold was manually peeled from the end from the substrate. Peeling was performed so that the mold angle (peeling angle) with respect to the substrate was about 30 °.
  • the substrate was heated at 300 ° C. for 60 minutes using an oven to perform main baking, thereby obtaining a diffraction grating substrate. Thereafter, the pattern transferred to the coating film was evaluated.
  • Example 2 With respect to this diffraction grating, an analysis image was obtained using the atomic force microscope in which the surface irregularities were used in Example 1. The analysis conditions of the atomic force microscope were the same as in Example 1. A measurement region of 3 ⁇ m square (3 ⁇ m length, 3 ⁇ m width) was measured at an arbitrary position of the diffraction grating, and an unevenness analysis image was obtained in the same manner as in Example 1. From the obtained analysis image, the average height of the concavo-convex pattern was 56 nm. The Fourier transform image shows a circular pattern whose center is the origin where the absolute value of the wave number is 0 ⁇ m ⁇ 1 , and the circular pattern has an absolute value of the wave number of 10 ⁇ m ⁇ 1 or less.
  • the wave number 2.38 ⁇ m ⁇ 1 was the strongest. That is, the average pitch was 420 nm.
  • the digital camera and imaging conditions were the same as in Example 1, and the scattered light intensity distribution of the substrate was observed using the apparatus shown in FIG. A blue pixel value was extracted from the obtained image from the digital camera, and the pixel value was displayed in gray gradation. As shown in FIG. 20A, only the pixel value on the straight line L3 extending in the X direction at the approximate center position in the Y direction of the image is extracted and output as a pixel value profile for the pixel position in the X direction. It was.
  • FIG. 20A only the pixel value on the straight line L3 extending in the X direction at the approximate center position in the Y direction of the image is extracted and output as a pixel value profile for the pixel position in the X direction. It was.
  • FIG. 20A only the pixel value on the straight line L3 extending in the X direction at the approximate center position in the Y direction of the image is
  • the substrate is manufactured by the BCP method and the BKL method, but another method can be used as long as it can manufacture a substrate having an irregular uneven surface.
  • substrate for electroforming, the metal substrate (mold) formed by electroforming, and the resin substrate formed from the metal substrate were flat plates, a curved-surface shape may be sufficient.
  • a metal substrate can be formed in a drum shape by electroforming to form a drum with an uneven pattern.
  • the scattered light intensity was measured with the apparatus shown in FIG. 6, but the line sensor camera was installed in the upper part of the film conveyance system, and scattered light was measured. By monitoring the strength, it can be applied to a large glass substrate or a film on a roll in which a long film is wound around a core.
  • the target substrate in the inspection process and the evaluation / judgment process of the above example was a resin substrate molded using a metal substrate formed by electroforming in the BCP method, and this resin substrate is manufactured. Therefore, any substrate obtained at any stage (process step) as long as it has an irregular uneven surface can be used as an inspection target.
  • a substrate before the second heating step of the BCP method see FIG. 2C
  • a substrate having a chevron-shaped uneven surface obtained in the second heating step see FIGS. 2D and 2E
  • a metal substrate (see FIG. 2H) having an uneven surface obtained in the electroforming process can also be used as an object of the inspection process and the subsequent processes.
  • a resin substrate molded using a metal substrate or a resin substrate or a sol-gel material substrate obtained directly by transfer using the same as a mother mold or indirectly obtained by repeating transfer may also be targeted. it can.
  • a substrate having an uneven surface at any stage where unevenness is formed can be an object of the inspection process and subsequent processes.
  • a substrate or a sol-gel material substrate obtained directly or indirectly by performing transfer using a matrix of a polymer film obtained by the BKL method can also be a target of the inspection step and subsequent steps. .
  • the film 131 coated with the UV curable resin is sent to the transfer Ni (nickel) roll 136 through the intermediate roller 142, and the uneven pattern is transferred from the transfer Ni roll 136. Is transferred to the UV curable resin and cured by the UV light of the UV irradiator 133 installed in the vicinity of the transfer Ni roll 136 to continuously form the transfer film 141.
  • the molded portion of the transfer film 141 is sent to the downstream side through the intermediate roller 144, and illuminated by the incident light 146 from the inspection illumination 132 installed on the downstream side of the transport line for observing unevenness of the uneven shape. Then, the diffracted light / scattered light intensity is measured by the line sensor camera 134 arranged to face the transfer film 141.
  • the transfer film 141 is conveyed by being wound up by a winding unit 138. In this way, the substrate production line facility 250 can continuously inspect a predetermined portion of the transfer film 141 while the concavo-convex pattern is continuously transferred, and determine whether or not it is acceptable.
  • the transfer unit 150 shows a substrate production line facility 300 obtained by improving the substrate production line facility 250 shown in FIG.
  • the UV curable resin applied on the film 131 is transferred to the Ni roll 136 for transfer while the irradiating shape is transferred to the Ni roll 136 for transfer, and the UV irradiator 133 disposed opposite to the Ni roll 136 for transfer.
  • the transfer film 141 is continuously molded by being cured by the UV light.
  • an area camera (or two-dimensional color luminance meter) 134 that measures the intensity distribution of the diffracted light / scattered light of the incident light 146 projected from the pair of inspection illuminations 132 is provided. is set up.
  • the film storage mechanism 160 is provided between the transfer unit 150 and the inspection unit 170 so that the film 141 is continuously conveyed in the transfer unit 150 while the film 141 is intermittently conveyed in the inspection unit 170.
  • the film storage mechanism 160 includes, for example, an upper lifting rolls 166, 168, a lower lifting roll 164, and intermediate rollers 162, 172, and the upper lifting rolls 166, 168 and the lower lifting roll 164 are moved up and down as appropriate.
  • the film 141 sent out from the storage mechanism 160 can be intermittently stopped.
  • the uniformity of the chromaticity of the organic EL element can also be evaluated by evaluating the uniformity of the uneven pattern on the substrate.
  • a two-dimensional color luminance meter can be used as the image sensor.
  • the manufacture of a substrate for an organic EL element has been described.
  • the present invention is not limited to this, and the present invention can also be applied to manufacture of a substrate having an uneven surface used for a solar cell.
  • a substrate having a concavo-convex structure is considered to have a function of changing the traveling direction of sunlight to the horizontal direction, so prediction of conversion efficiency of such a solar cell,
  • the in-plane distribution can be evaluated in the inspection process and the evaluation / determination process.
  • a substrate having an irregular uneven surface used for a device such as an organic EL element can be efficiently manufactured while inspecting luminance unevenness. Further, when manufacturing an organic EL element having a diffraction grating substrate having an irregular concavo-convex surface, by associating characteristics of luminance unevenness between the organic EL element and a substrate having an irregular concavo-convex surface used therefor, Since it is possible to predict the occurrence of uneven brightness in the finished product and to evaluate the finished product at the manufacturing stage, it is possible to obtain uniform illuminance by using only the passed board, excluding rejected boards for determining brightness unevenness. The organic EL element which has it can be manufactured more reliably and with a high throughput. Furthermore, even if there is a defect in the uniformity of the illuminance of the organic EL element, it is possible to know whether the defect occurs at the substrate formation stage or the element formation stage. Can do.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

 光を散乱するための不規則な凹凸表面を有する基板を製造する方法は、不規則な凹凸表面を有する基板100を作製することと、作製した基板の凹凸表面100aに法線方向に対して傾斜した方向から検査光122aを照射し、検査光の凹凸表面からの戻り光を凹凸表面の法線方向に設置した受光素子124により検出することと、受光した光強度に基づいて前記凹凸表面の輝度ムラを処理装置126で判定することを含む。不規則な凹凸表面を有する回折格子基板を有する有機EL素子を高いスループットで生産する。

Description

凹凸構造を有する基板の製造方法及びそれを用いた有機EL素子の製造方法
 有機エレクトロルミネッセント素子などの製造に使用される不規則な凹凸を有する基板の製造方法及びそれを用いた有機ELの製造方法に関する。
 自己発光型の表示素子として有機エレクトロルミネッセント素子(または、有機発光ダイオードともいう。以下、「有機EL素子」と称する)が知られている。有機EL素子は、液晶素子に比べ、視認性が高く、バックライトが不要であるために軽量化が可能である。このため、次世代の表示素子として研究開発が盛んに行われている。
 有機EL素子では、正孔注入層から入った正孔と、電子注入層から入った電子が、それぞれ、発光層へ運ばれて、発光層内の有機分子上でそれらが再結合して有機分子を励起して、それにより光が放出される。それゆえ、有機EL素子を表示装置として使用するには、発光層からの光を素子表面から効率よく取り出す必要がある。このために、回折格子基板を有機EL素子の光取り出し面に設けることが特許文献1等で知られている。
特開2006-236748 WO2011/007878A1
 ところで、本出願人は、特許文献2において、所定の条件を満たすブロック共重合体を溶媒に溶解した溶液を基材上に塗布し、乾燥させてブロック共重合体のミクロ相分離構造を形成することにより、微細で不規則な凹凸パターンが形成された母型(金属基板)を得る方法を開示している。この方法は、ブロック共重合体の自己組織化する現象を用いてナノインプリント等に使用される母型を得ることができる。得られた母型にシリコーン系ポリマーと硬化剤の混合液を滴下して硬化させて転写パターンを得た後、この転写パターンに硬化性樹脂を塗布したガラス基板を押しつけて紫外線により硬化性樹脂を硬化させることで、転写パターンが複製された回折格子が作製される。この回折格子上に、透明電極、有機層及び金属電極を積層することで得られた有機EL素子は、発光効率が十分に高く、十分に高度な外部取り出し効率を有しつつも、発光の波長依存性及び指向性が十分に低く、しかも電力効率が十分に高いことが確認されている。
 上記のような特許文献2において製造された回折格子を用いた有機EL素子であっても、携帯電話やテレビ画面などの表示装置や照明装置として使用する際には、表示面全体から均一な輝度で光が照射されることが望ましい。このため、有機EL素子の完成後に、有機EL素子からの照射が均一であること、すなわち、輝度ムラが許容範囲内であることを確認する必要がある。しかし、完成した有機EL素子の輝度ムラが許容範囲外であると判定されると、有機EL素子が欠陥品となり、前述のような回折格子上への多層の積層工程は無駄となってしまう。特に、透明電極、有機層及び金属電極などの積層は、製造コストや手間のかかるプロセスであり、そのような欠陥品を低減して歩留まりを向上し、材料や製造コストの無駄を削減することが強く要望されている。
 そこで、本発明の目的は、不規則な凹凸表面を有する回折格子基板を有する有機EL素子を高いスループットで生産する方法を提供することにある。また、本発明の別の目的は、光学部品として用いられる不規則な凹凸表面を有する基板の輝度ムラを評価する工程を備えた基板の製造方法を提供することにある。
 本発明に従えば、光を散乱するための不規則な凹凸表面を有する基板を製造する方法であって、
 前記不規則な凹凸表面を有する基板を作製することと、
 前記作製した基板の凹凸表面に、該凹凸表面の法線方向に対して傾斜した方向から検査光を照射し、該検査光の前記凹凸表面からの戻り光を、前記凹凸表面の法線方向に設置した受光素子により検出することと、
 受光した光強度に基づいて前記凹凸表面の輝度ムラを判定することを含む不規則な凹凸表面を有する基板の製造方法が提供される。
 本発明の基板の製造方法において、前記不規則な凹凸表面を有する基板を作製することは、ブロック共重合体の相分離を利用することを含めばその方法を問わないが、一例として、ブロック共重合体の相分離を加熱による相分離や溶媒相分離により進めることが挙げられる。加熱による相分離の場合、基材の表面に、少なくとも第1及び第2のポリマーからなるブロック共重合体溶液を塗布する工程と、前記基材上の塗膜を乾燥させる工程と、乾燥した塗膜を、前記ブロック共重合体のガラス転移温度より高い温度で加熱する第1加熱工程(ブロック共重合体を相分離する工程)と、前記第1加熱工程後に、塗膜のエッチング処理により第2ポリマーを除去して基材上に凹凸構造を形成するエッチング工程とを含み得る。さらに、前記エッチング処理された凹凸構造を、前記第1ポリマーのガラス転移温度より高い温度で加熱する第2加熱工程を含み得る。さらには、第2加熱工程後の前記凹凸構造上にシード層を形成する工程と、前記シード層上に電鋳により金属層を積層する工程と、前記金属層及び前記シード層から前記凹凸構造を有する基材を剥離することにより金属基板を得る工程を含み得る。第2加熱工程により、凹凸構造の凸部が山形化して、凹凸構造に電鋳によりモールドとしての金属層を積層しても金属層を容易に凹凸構から剥離することができる。前記得られた金属基板が前記不規則な凹凸表面を有する基板であってもよい。あるいは、前記得られた金属基板を、硬化性樹脂が塗布された透明基板上に押し付けて前記硬化性樹脂を硬化させ、前記金属基板を取り外すことにより前記不規則な凹凸表面を有する基板を得てもよい。あるいは、前記得られた金属基板を、硬化性樹脂が塗布された基板上に押し付けて前記硬化性樹脂を硬化させ、前記金属基板を取り外すことにより基板上に凹凸構造を有する基板を形成し、当該凹凸構造を有する基板をゾルゲル材料が塗布された透明基板上に押しつけてゾルゲル材料を硬化させ、該基板を取り外すことによって、ゾルゲル材料からなる前記不規則な凹凸表面を有する基板を得てもよい。
 前記乾燥工程または第1加熱工程でブロック共重合体のミクロ相分離構造が生じ得、前記ミクロ相分離構造がラメラ型であることが好適である。
 本発明の基板の製造方法において、前記不規則な凹凸表面を有する基板を作製することが、70℃以上の温度条件下において、熱により体積が変化するポリマーからなるポリマー膜の表面に蒸着膜を形成した後、前記ポリマー膜及び前記蒸着膜を冷却することにより、前記蒸着膜の表面に皺による凹凸を形成する工程と、前記蒸着膜上に母型材料を付着させ硬化させた後に、硬化後の母型材料を前記蒸着膜から取り外して母型を得る工程を含んでもよい。このような方法によっても不規則な凹凸表面を有効に作製することができる。この場合、前記熱により体積が変化するポリマーがシリコーン系ポリマーであってもよい。
 本発明の基板の製造方法において、上記不規則な凹凸が疑似周期構造を有するときに、凹凸の平均周期をd、検査光の中心波長をλとしたときに、0.5d≦λ≦2.0dを満足することが好ましい。また、上記検査光が青色帯域の光であることが望ましい。さらに、前記検査光を前記表面へ法線方向に対して傾斜する入射角αが30°<α<90°となるように前記表面に照射することが好ましい。
 本発明の基板の製造方法において、前記受光素子が撮像装置であり、撮像装置の画素毎の出力から散乱光強度の最大値及び最小値を求め、最大値/最小値が1.5未満であるか否かを判定し得る。この基準により基板の輝度ムラを有効に判定することができる。
 本発明の基板の製造方法において、前記不規則な凹凸表面を有する基板がフィルム状基板(例えば、樹脂からなるフィルム状基板)、もしくはガラス基板であり、該フィルム状基板、もしくはガラス基板を前記検査光に対して連続的に移動させながら、該移動するフィルム状基板、もしくはガラス基板に検査光を照射してもよい。このような方法により基板をライン設備で連続的に効率よく製造することができる。
 本発明の基板の製造方法において、前記不規則な凹凸表面は、金属、樹脂またはゾルゲル材料から形成されていてもよい。
 本発明の第2の態様に従えば、本発明の基板を製造する方法を用いて凹凸表面を有する回折格子基板を作製し、前記回折格子基板の凹凸表面上に、透明電極、有機層及び金属電極を、順次積層して有機EL素子を製造することを特徴とする有機EL素子の製造方法が提供される。この有機EL素子の製造方法において、前記作製した回折格子基板の輝度ムラが所定の範囲内であると判定された場合にのみ、当該所定の範囲内の輝度ムラを有する回折格子基板の凹凸表面上に、前記透明電極、前記有機層及び前記金属電極を、順次積層して有機EL素子を製造することができる。こうすることで、輝度ムラが高い回折格子基板を予め除外し、均一な照度を生じる有機EL素子を高いスループットで製造することができる。前記作製した回折格子基板の前記輝度ムラが所定の範囲内であるか否かは、前記受光素子として用いた撮像装置の画素毎の出力から散乱光強度の最大値及び最小値を求め、最大値/最小値が1.5未満であるか否かにより判定することができる。
 本発明の基板の製造方法によれば、有機EL素子などの素子に用いられる不規則な凹凸構造を有する基板の輝度ムラを有効に計測しつつ、そのような基板を効率よく製造することができる。本発明の有機EL素子の製造方法によれば、有機EL素子とそれに用いる不規則な凹凸表面を有する基板との輝度ムラの特性を関連付けることによって高いスループットで有機EL素子を製造することができる。特に、基板の製造段階で、完成品の輝度ムラの発生の予測及び完成品の評価をすることができるので、輝度ムラの判定に合格した基板を用いることで均一な照度を有する有機EL素子を一層確実に製造することができる。また、有機EL素子の照度の均一性(輝度ムラ)に不良があった場合でも、不良の発生段階が基板形成段階かあるいは素子そのものの形成段階であるかが分かるので、そのような事態に迅速に対応することができる。
本発明の基板の製造方法を示すフローチャートである。 BCP法による基板の作製プロセスを概念的に示す図である。 電鋳後の基板の作製プロセスを概念的に示す図である。 BCP法による基板の作製プロセスを示すフローチャートである。 BKL法による基板の製造方法を示す概念的に示す図である。 本発明の方法における基板の検査工程を概念的に示す図である。 凹凸表面を有する基板の回折条件を概念的に示す図である。 有機EL素子の断面構造を示す図である。 実施例1で作製された回折格子基板の樹脂表面の原子間力顕微鏡による凹凸解析画像を示す図である。 実施例1で作製された回折格子基板の樹脂表面の原子間力顕微鏡による凹凸解析画像から得られたフーリエ変換像を示す図である。 図11(A)は、実施例1で観測された基板表面から像を示す写真であり、図11(B)は、図11(A)の写真の直線L1上の画素位置とそのピクセル値のプロファイルを示すグラフである。 図12(A)は、実施例1で観測された基板表面から像を示す写真であり、図12(B)は、図12(A)の写真の直線L1上の画素位置とそのピクセル値のプロファイルを示すグラフである。 実施例2で作製された回折格子基板の樹脂表面の原子間力顕微鏡による凹凸解析画像を示す図である。 実施例2で作製された回折格子基板の樹脂表面の原子間力顕微鏡による凹凸解析画像から得られたフーリエ変換像を示す図である。 図15(A)は、実施例2で観測された基板表面から像を示す写真であり、図15(B)は、図15(A)の写真の直線L2上の画素位置とそのピクセル値のプロファイルを示すグラフである。 図16(A)は、実施例2で観測された基板表面から像を示す写真であり、図16(B)は、図16(A)の写真の直線L2上の画素位置とそのピクセル値のプロファイルを示すグラフである。 フィルム状基板の連続成型及び検査ラインの概要を示す図である。 フィルム状基板の連続成型及び検査ラインの概要を示す図である。 青色LED、白色LED及び赤色LEDのLEDバー照明を用いて撮像された基板の凹凸表面の像の写真である。 図20(A)は、実施例1で観測された基板表面から像を示す写真であり、図20(B)は、図20(A)の写真の直線L3上の画素位置とそのピクセル値のプロファイルを示すグラフである。
 以下、本発明に従う基板の製造方法及び有機ELの製造方法の好適な実施形態について、図面を参照しながら詳細に説明する。
 本発明の基板の製造方法及び有機ELの製造方法の概要を図1のフローチャートに示す。最初に、以下に例示する基板作製工程に従って、不規則な凹凸構造を有する基板を製造する(S1)。次いで、得られた基板を後述する検査工程に従って基板表面の輝度を検査する(S2)。検査結果を後述する所定の判定工程に従って基板が均一な輝度分布を有するかどうかを判定する(S3)。基板が均一な輝度分布を有する場合には、この基板を用いて有機ELを製造する(S4)。基板が均一な輝度分布を有すると判定されなかった場合には、後述する後処理を施す(S5)。以下、各工程について図面を参照しながら説明する。
1.基板作製工程
 本発明の基板の製造方法では、不規則な凹凸表面を有する基板が作製される。「不規則な凹凸表面を有する基板」とは、基板に形成された凹凸のパターンに規則性のない基板、特に、凹凸のピッチが均一ではなく、凹凸の向きに指向性がない基板を意味する。このような基板から散乱及び/または回折される光は、単一のまたは狭い帯域の波長の光ではなく、比較的広域の波長帯を有し、散乱光及び/または回折される光は指向性がなく、あらゆる方向に向かう。但し、上記「不規則な凹凸表面を有する基板」には、表面の凹凸の形状を解析して得られる凹凸解析画像に2次元高速フーリエ変換処理を施して得られるフーリエ変換像が円もしくは円環状の模様を示すような、すなわち、上記凹凸の向きの指向性はないものの凹凸のピッチの分布を有するような疑似周期構造を含む。それゆえ、このような疑似周期構造を有する基板においては、その凹凸ピッチの分布が可視光線を回折する限り、有機EL素子のような面発光素子などに使用される回折基板に好適である。一方で、光記録媒体や磁気記録媒体に見られる記録トラック(グルーブ)の全てが、同一方向に且つ同一ピッチで配列して形成されているような基板は、本発明の製造対象とならない。
 上記のような不規則な凹凸表面を有する基板を製造するには、以下に説明するような本出願人らによる特願2011-006487号に記載されたブロック共重合体の自己組織化(ミクロ相分離)を利用する方法(以下、適宜「BCP(Block Copolymer)法」という)や、本出願人らによるPCT/JP2010/062110号(WO2011/007878A1)に開示された蒸着膜上のポリマー膜を加熱・冷却することにポリマー表面の皺による凹凸を形成する方法(以下、適宜「BKL(Buckling)法」という)を用いることが好適である。各方法について説明する。
A.BCP法による基板の製造 
 BCP法による基板の製造について、図2~4を参照しながら説明する。
<ブロック共重合体溶液の調製工程>
 BCP法に用いるブロック共重合体は、少なくとも、第1のホモポリマーからなる第1のポリマーセグメントと、第1のホモポリマーとは異なる第2のホモポリマーからなる第2のポリマーセグメントとを有する。第2のホモポリマーは、第1のホモポリマーの溶解度パラメーターよりも0.1~10(cal/cm1/2高い溶解度パラメーターを有することが望ましい。第1及び第2のホモポリマー溶解度パラメーターの差が0.1(cal/cm1/2未満では、ブロック共重合体の規則的なミクロ相分離構造を形成し難たく、前記差が10(cal/cm1/2を超える場合はブロック共重合体の均一な溶液を調製することが難しくなる。
 第1のホモポリマー及び第2のホモポリマーとして用いることができるホモポリマーの原料となるモノマーとしては、例えば、スチレン、メチルスチレン、プロピルスチレン、ブチルスチレン、ヘキシルスチレン、オクチルスチレン、メトキシスチレン、エチレン、プロピレン、ブテン、ヘキセン、アクリロニトリル、アクリルアミド、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、ブチルメタクリレート、ヘキシルメタクリレート、オクチルメタクリレート、メチルアクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、ヘキシルアクリレート、オクチルアクリレート、メタクリル酸、アクリル酸、ヒドロキシエチルメタクリレート、ヒドロキシエチルアクリレート、エチレンオキシド、プロピレンオキシド、ジメチルシロキサン、乳酸、ビニルピリジン、ヒドロキシスチレン、スチレンスルホネート、イソプレン、ブタジエン、εカプロラクトン、イソプロピルアクリルアミド、塩化ビニル、エチレンテレフタレート、テトラフルオロエチレン、ビニルアルコールが挙げられる。これらの中でも、相分離形成が生じやすいことと、エッチングで凹凸を形成しやすいという観点から、スチレン、メチルメタクリレート、エチレンオキシド、ブタジエン、イソプレン、ビニルピリジン、乳酸を用いることが好ましい。
 また、第1のホモポリマー及び第2のホモポリマーの組合せとしては、スチレン系ポリマー(より好ましくはポリスチレン)、ポリアルキルメタクリレート(より好ましくはポリメチルメタクリレート)、ポリエチレンオキシド、ポリブタジエン、ポリイソプレン、ポリビニルピリジン、及びポリ乳酸からなる群から選択される2種の組合せを挙げることができる。これらの組合せの中でも、エッチング処理により一方のホモポリマーを優先的に除去することにより、ブロック共重合体に形成される凹凸の深さを更に深くすることができるという観点から、スチレン系ポリマー及びポリアルキルメタクリレートの組合せ、スチレン系ポリマー及びポリエチレンオキシドの組合せ、スチレン系ポリマー及びポリイソプレンの組合せ、スチレン系ポリマー及びポリブタジエンの組合せがより好ましく、スチレン系ポリマー及びポリメチルメタクリレートの組合せ、スチレン系ポリマー及びポリイソプレンの組合せ、スチレン系ポリマー及びポリブタジエンの組合せが特に好ましい。より好ましくは、ポリスチレン(PS)とポリメチルメタクリレート(PMMA)の組合せである。
 前記ブロック共重合体の数平均分子量(Mn)は、500000以上であることが好ましく、1000000以上であることがより一層好ましく、1000000~5000000であることが特に好ましい。数平均分子量が500000未満では、ブロック共重合体のミクロ相分離構造により形成される凹凸の平均ピッチが小さくなり、得られる回折格子の凹凸の平均ピッチが不十分となる。特に、有機ELに使用される回折格子の場合は、可視領域の波長範囲に渡って照明光を回折する必要があることから、平均ピッチとして100~600nmが望ましく、この点からブロック共重合体の数平均分子量(Mn)は、500000以上であることが好ましい。一方、出願人の実験によると、後述するように、ブロック共重合体の数平均分子量(Mn)が500000以上になると、エッチング工程後に第2加熱工程を行わないと、電鋳によって所望の凹凸パターンを得ることが難しくなることが分かっている。
 前記ブロック共重合体の分子量分布(Mw/Mn)は1.5以下であることが好ましく、1.0~1.35であることがより好ましい。このような分子量分布が1.5を超えると、ブロック共重合体の規則的なミクロ相分離構造を形成することが容易でなくなる。
 なお、前記ブロック共重合体の数平均分子量(Mn)及び重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィ(GPC)により測定し、標準ポリスチレンの分子量に換算した値である。
 前記ブロック共重合体における前記第1のポリマーセグメントと前記第2のポリマーセグメントとの体積比(第1のポリマーセグメント:第2のポリマーセグメント)は、自己組織化によりラメラ構造を創生させるために、3:7~7:3であることが望ましく、4:6~6:4であることがより好ましい。体積比が前記範囲外である場合には、ラメラ構造に起因する凹凸パターンを形成することが困難となる。
 BCP法に用いるブロック共重合体溶液は、前記ブロック共重合体を溶媒中に溶解して調製する。そのような溶媒としては、例えば、ヘキサン、ヘプタン、オクタン、デカン、シクロヘキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、メシチレン等の芳香族炭化水素類;ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類;アセトン、メチルエチルケトン、イソホロン、シクロヘキサノン等のケトン類;ブトキシエチルエーテル、ヘキシルオキシエチルアルコール、メトキシ-2-プロパノール、ベンジルオキシエタノール等のエーテルアルコール類;エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリグライム、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のグリコールエーテル類;酢酸エチル、乳酸エチル、γ-ブチロラクトン等のエステル類;フェノール、クロロフェノール等のフェノール類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類;クロロホルム、塩化メチレン、テトラクロロエタン、モノクロロベンゼン、ジクロロベンゼン等のハロゲン系溶媒;2硫化炭素等の含ヘテロ元素化合物;これらの混合溶媒が挙げられる。前記ブロック共重合体溶液における前記ブロック共重合体の含有率は、ブロック共重合体溶液100質量%に対して、0.1~15質量%であることが好ましく、0.3~5質量%であることがより好ましい。
 また、前記ブロック共重合体溶液は、他のホモポリマー(その溶液中に含まれるブロック共重合体中の前記第1のホモポリマー及び前記第2のホモポリマー以外のホモポリマー:例えば、ブロック共重合体中の前記第1のホモポリマー及び前記第2のホモポリマーの組合せがポリスチレン及びポリメチルメタクリレートの組合せである場合には、ポリスチレンとポリメチルメタクリレート以外の種類のホモポリマーであればよい。)、界面活性剤、イオン性化合物、消泡剤、レベリング剤等を更に含有していてもよい。
 他のホモポリマーを含有することにより、ブロック共重合体のミクロ相分離構造を改良することできる。例えば、ミクロ相分離構造により形成される凹凸の深さをより深くするために、ポリアルキレンオキシドを用いることができる。このようなポリアルキレンオキシドとしては、ポリエチレンオキシド、ポリプロピレンオキシドがより好ましく、ポリエチレンオキシドが特に好ましい。また、このようなポリエチレンオキシドとしては、下記式:
   HO-(CH-CH-O)-H
[式中、nは10~5000の整数(より好ましくは50~1000の整数、更に好ましくは50~500の整数)を示す。]
で表されるものが好ましい。
 このようなnの値が前記下限未満では、分子量が低すぎて、高温での熱処理で揮発・蒸発などにより失われ、他のホモポリマーを含有させる前記効果が乏しくなり、前記上限を超えると、分子量が高すぎて分子運動性が低いため、相分離の速度が遅くなりミクロ相分離構造の形成に悪影響を及ぼす。
 また、このような他のホモポリマーの数平均分子量(Mn)は460~220000であることが好ましく、2200~46000であることがより好ましい。このような数平均分子量が前記下限未満では、分子量が低すぎて、高温での熱処理で揮発・蒸発などにより失われ、他のホモポリマーを含有させる前記効果が乏しくなり、前記上限を超えると分子量が高すぎて分子運動性が低いため、相分離の速度が遅くなりミクロ相分離構造の形成に悪影響を及ぼす。
 このような他のホモポリマーの分子量分布(Mw/Mn)は1.5以下であることが好ましく、1.0~1.3であることがより好ましい。分子量分布が前記上限を超えるとミクロ相分離の形状の均一性が保持され難くなる。なお、このような数平均分子量(Mn)及び重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィ(GPC)により測定し、標準ポリスチレンの分子量に換算した値である。
 また、BCP法において他のホモポリマーを用いる場合、前記ブロック共重合体中の前記第1のホモポリマー及び前記第2のホモポリマーの組合せがポリスチレン及びポリメチルメタクリレートの組合せ(ポリスチレン-ポリメチルメタクリレート)であり、且つ前記他のホモポリマーがポリアルキレンオキシドであることが好ましい。このように、ポリスチレン-ポリメチルメタクリレートのブロック共重合体とポリアルキレンオキシドとを組み合わせて用いることにより、垂直方向の配向性が更に向上して、表面の凹凸の深さを更に深くすることが可能となるとともに、製造時の熱処理時間を短縮することも可能となる。
 前記他のホモポリマーを用いる場合には、その含有量は、前記ブロック共重合体100質量部に対して、100質量部以下であることが好ましく、5質量部~100質量部であることがより好ましい。このような他のホモポリマーの含有量が前記下限未満では他のホモポリマーを含有させることにより得られる効果が乏しくなる。
 また、前記界面活性剤を用いる場合には、その含有量は、前記ブロック共重合体100質量部に対して、10質量部以下であることが好ましい。さらに、前記イオン性化合物を用いる場合には、その含有量は、前記ブロック共重合体100質量部に対して、10質量部以下であることが好ましい。
 また、前記ブロック共重合体溶液中に前記他のホモポリマーを含有させる場合、前記ブロック共重合体と前記他のホモポリマーとの総量の含有率は、ブロック共重合体溶液中に、0.1~15質量%であることが好ましく、0.3~5質量%であることがより好ましい。このような総量の含有率が前記下限未満では必要な膜厚を得るために前記溶液を十分な膜厚で均一に塗布することが容易でなく、前記上限を超えると溶媒に均一に溶けた溶液を調製することが比較的困難となる。
<ブロック共重合体溶液の塗布工程>
 BCP法を用いた基板の製造方法に従えば、図2(A)に示すように、上記のように調製したブロック共重合体溶液を基材10上に塗布して薄膜30を形成する。基材10としては特に制限はないが、例えば、ポリイミド、ポリフェニレンスルフィド(PPS)、ポリフェニレンオキシド、ポリエーテルケトン、ポリエチレンナフタレート、ポリエチレンテレフタレート、ポリアリレート、トリアセチルセルロース、ポリシクロオレフィン等の樹脂基板;ガラス、オクタデシルジメチルクロロシラン(ODS)処理ガラス、オクタデシルトリクロロシラン(OTS)処理ガラス、オルガノシリケート処理ガラス、シリコン基板等の無機基板;アルミニウム、鉄、銅等の金属基板が挙げられる。また、基材10は、配向処理等の表面処理を施したものであってもよい。なお、このようにガラスなどの基板表面を、ODSやオルガノシリケートなどで処理することで、後述の加熱工程において、ラメラ構造、シリンダー構造、球状構造などのミクロ相分離構造が表面に対して垂直に配列しやすくなる。これはブロック共重合体成分と基材表面との間の界面エネルギー差を小さくすることで、ブロック共重合体を構成する各ブロックのドメインが垂直配向しやすくなるからである。
 前記ブロック共重合体溶液を塗布する方法としては、特に限定されず、例えば、スピンコート法、スプレーコート法、ディップコート法、滴下法、グラビア印刷法、スクリーン印刷法、凸版印刷法、ダイコート法、カーテンコート法、インクジェット法を採用することができる。
 前記ブロック共重合体の薄膜30の厚みとしては、後述する乾燥後の塗膜の厚みが、10~3000nmであることが好ましく、50~500nmであることがより好ましい。
<乾燥工程>
 ブロック共重合体溶液よりなる薄膜30を基材10上に塗布した後に、基材10上の薄膜30を乾燥させる。乾燥は、大気雰囲気中で行うことができる。乾燥温度は、薄膜30から溶媒を除去できる温度であれば特に制限はないが、例えば、30~200℃が好ましく、40~100℃がより好ましい。なお、乾燥により、前記ブロック共重合体がミクロ相分離構造を形成し始めることにより薄膜30の表面に凹凸が見られることがある。
<第1加熱工程>
 乾燥工程後に、薄膜30をブロック共重合体のガラス転移温度(Tg)以上の温度で加熱する(第1加熱工程またはアニール工程)。この加熱工程(ミクロ相分離構造を生じさせる工程の一例)によってブロック共重合体の自己組織化が進行し、図2(B)に示すようにブロック共重合体が第1ポリマーセグメント32と第2ポリマーセグメント34の部分にミクロ相分離する。加熱温度が、ブロック共重合体のガラス転移温度未満であるとポリマーの分子運動性が低く、ブロック共重合体の自己組織化が十分に進行せず、ミクロ相分離構造を十分に形成できなくなるか、あるいはミクロ相分離構造を十分に生じさせるための加熱時間が長くなる。また、この加熱温度の上限は、前記ブロック共重合体が熱分解しない温度であればよく特に制限はない。第1加熱工程は、オーブンなどを用いて大気雰囲気下で行うことができる。なお、加熱温度を徐々に高めて乾燥及び加熱工程を連続的に行ってもよい。こうすることで乾燥工程は加熱工程に含まれることになる。
<エッチング工程>
 第1加熱工程後に、薄膜30のエッチング処理を行う。第1ポリマーセグメント32と第2ポリマーセグメント34は分子構造が相違するため、エッチングされ易さも異なる。それゆえ、それらのポリマーセグメント、すなわちホモポリマーの種類に応じたエッチング処理によりブロック共重合体を構成する一方のポリマーセグメント(第1ポリマーセグメント32)を選択的に除去することができる。エッチング処理により、ミクロ相分離構造から第1ポリマーセグメント32が除去されることにより、塗膜に顕著な凹凸構造が現れる。前記エッチング処理としては、例えば、反応性イオンエッチング法、オゾン酸化法、加水分解法、金属イオン染色法、紫外線エッチング法等を用いたエッチング法を採用することができる。また、前記エッチング処理として、前記ブロック共重合体の共有結合を酸、塩基及び還元剤からなる群から選択される少なくとも1種で処理して前記共有結合を切断し、その後、一方のポリマーセグメントだけを溶解する溶媒等でミクロ相分離構造が形成された塗膜を洗浄することにより、ミクロ相分離構造を保ったまま、一方のポリマーセグメントのみを除去する方法を採用してもよい。後述する実施形態においては、操作の容易性などの観点から紫外線エッチングを用いた。
<第2加熱工程>
 上記エッチング工程により得られた薄膜30の凹凸構造36に第2の加熱またはアニール処理を施す。第2の加熱処理における加熱温度は、エッチング後に残留した第1ポリマーセグメント32のガラス転移温度以上、すなわち、第1ホモポリマーのガラス転移温度以上であることが望ましく、例えば、第1ホモポリマーのガラス転移温度以上で且つ第1ホモポリマーのガラス転移温度より70℃高い温度以下であることが望ましい。この加熱温度が、第1ホモポリマーのガラス転移温度未満であると、電鋳後に所望の凹凸構造、すなわち、なめらかな山形構造が得られないか、あるいは加熱に長時間を要することになる。第1ホモポリマーのガラス転移温度よりかなり高いと第1ポリマーセグメント32が溶融したり、形状が大きく崩れるので好ましくない。この点でガラス転移温度~ガラス転移温度より70℃程度の範囲で加熱するのが望ましい。第2の加熱処理も第1の加熱処理と同様に、オーブン等を用いて大気雰囲気下で行うことができる。
 本発明者の実験によると、エッチング工程により得られた塗膜の凹凸構造36をマスター(母型)として後述する電鋳により金属型に凹凸構造を転写したが、所望の転写パターンが得難いことが分かった。特に、この問題はブロック共重合体の分子量が大きいほど顕著であった。前述のように、ブロック共重合体の分子量はミクロ相分離構造、ひいてはそこから得られる回折格子のピッチに深く関係している。それゆえ、有機EL素子のような用途に回折格子を用いる場合、可視領域のように広範囲で且つ比較的長波長の波長帯を含む波長領域で回折が生じるようなピッチの分布が必要となる。これを実現するためには、比較的高い分子量のブロック共重合体を用いた場合であっても、電鋳によりそのような所望のピッチ分布を有する凹凸構造を確実に得る必要がある。本発明では、エッチングにより得られた凹凸構造を加熱処理することで、その後の電鋳工程でも凹凸構造が十分に反映された金属基板(モールド)を得ることができた。
 この理由として本発明者は以下のように考察している。エッチング後の凹凸構造36では、凹凸構造により画定される溝の側面が粗く、厚み方向と直交する方向に向かって凹凸(オーバーハングを含む)が発生している複雑な断面構造と考えられる。このような複雑な断面構造により以下のような三つの問題が生じる。
 i)複雑な断面構造には、電鋳のためのシード層が付着しない部分が生じ、電鋳によって金属層を均一に堆積させることが困難となる。この結果、得られる金属基板は機械的強度が低くなるとともに、金属基板の変形およびパターン欠損などの欠陥の発生原因となると考えられる。
 ii)電鋳(電気めっき)では、めっきされる物体の形状によって各部分のめっきの厚さが異なり、特に、めっき金属は物体の凸部や出っ張った角に引き寄せられやすく、凹部やへこんだ部分には引き寄せられにくい。このような理由からもエッチング後の複雑な凹凸の断面構造は、均一な膜厚の電鋳膜を得難い。
 iii)たとえ、上記のような複雑な断面構造が電鋳により金属基板に転写することができたとしても、その金属基板を硬化性樹脂に押し付けて凹凸形状を転写しようとすると、硬化性樹脂は金属基板の複雑な断面構造の隙間に侵入するために、金属基板を硬化後の樹脂から剥離することができないか、あるいは、金属基板の強度の弱い部分が破断し、パターン欠損が起こる。なお、従来はこの問題を防止するためにポリジメチルシロキサン(PDMS)で転写を繰り返していた。
 このBCP法では、エッチング後の凹凸構造を加熱することで、溝の側面を構成する第1ポリマーセグメント32がアニール処理されて、第1ポリマーセグメント32により画成される断面形状が図2(D)に概念的に示すように比較的滑らかな傾斜面からなり、基材から上方に向かって先細りの山形(本願では「山形構造」と称する)になしている。このような山形構造では、オーバーハングは現れず、第1ポリマーセグメント32に堆積された金属層は、その逆パターンに複製されるので、容易に剥離される。このような第2加熱工程の作用により、上記3つの問題点は解決することができることが明らかとなった。本出願人によると、ブロック共重合体のエッチング処理後に加熱処理して得られた凹凸構造からNi電鋳により形成した金属基板の断面構造を示す走査型電子顕微鏡(SEM)写真を撮影したところ、凹凸は滑らかで凸はなだらかな山形であり、オーバーハングは全く見られないことが分かっている。一方、ブロック共重合体のエッチング処理後に第2加熱処理せずに得られた凹凸構造からNi(ニッケル)電鋳により形成した金属基板の断面構造を示すSEM写真では、Ni部分がオーバーハング構造を含む複雑な形状の溝を形成しており、その内部に樹脂が浸入している様子が確認されている。
 こうして第2加熱工程で得られた山形構造38を有する基材10は、後工程の転写用のマスターとして使用される。山形構造38を表す凹凸の平均ピッチとしては、100~600nmの範囲であることが好ましく、200~600nmの範囲であることがより好ましい。凹凸の平均ピッチが前記下限未満では、可視光の波長に対してピッチが小さくなりすぎるため、かかる母型を用いて得られる回折格子において必要な可視光の回折が生じにくく、前記上限を超えると、かかる母型を用いて得られる回折格子の回折角が小さくなり、回折格子としての機能を十分に発揮できなくなる。なお、凹凸の平均ピッチは、回折格子の任意の3μm角(縦3μm、横3μm)の測定領域を原子間力顕微鏡で測定して凹凸解析画像を求める(詳細は後述する)。得られた凹凸解析画像に対し、1次傾き補正を含むフラット処理を施した後に、2次元高速フーリエ変換処理を施すことによりフーリエ変換像を得る。フーリエ変換像の各点について、フーリエ変換像の原点からの距離(単位:μm-1)と強度を求める。続いて、同じ距離にある点については強度の平均値を求める。以上のようにして、求められたフーリエ変換像の原点からの距離と強度の平均値の関係をプロットし、スプライン関数によりフィッティングをかけ、強度がピークとなる波数を平均波数(μm-1)とした。平均ピッチについては、別の方法、たとえば、回折格子の任意の3μm角(縦3μm、横3μm)の測定領域を測定して凹凸解析画像を求め、かかる凹凸解析画像中における、任意の隣り合う凸部同士又は隣り合う凹部同士の間隔を100点以上測定し、その平均を算出して凹凸の平均ピッチを求めてもよい。
 また、山形構造38を表す凹凸の平均高さは5~200nmの範囲であることが好ましく、20~200nmの範囲であることがより好ましく、50~150nmの範囲であることが更に好ましい。凹凸の平均高さが前記下限未満では、可視光の波長に対し高さが不足するため回折が不十分となり、前記上限を超えると、得られた回折格子を有機EL素子の光取り出し口側の光学素子として利用した場合に、EL層内部の電界分布が不均一となり特定の箇所に電界が集中することによる発熱によって素子が破壊されやすくなり、また寿命が短くなり易くなる。なお、凹凸の平均高さとは、硬化樹脂層の表面における凹凸の高さ(凹部及び凸部との深さ方向の距離)を測定した場合において、凹凸の高さの平均値のことをいう。また、このような凹凸の高さの平均値は、表面の凹凸の形状を走査型プローブ顕微鏡(例えば、エスアイアイ・ナノテクノロジー株式会社製の製品名「E-sweep」等)を用いて凹凸解析画像を測定した後に、かかる凹凸解析画像中における、任意の凹部及び凸部との深さ方向の距離を100点以上測定し、その平均を求めて算出される値を採用する。
<シード層形成工程及び電鋳工程>
 上記のようにして得られたマスターの山形構造38の表面に、図2(E)に示すように、後続の電鋳処理のための導電層となるシード層40を形成する。シード層40は、無電解めっき、スパッタまたは蒸着により形成することができる。シード層40の厚みとして、後続の電鋳工程における電流密度を均一にして後続の電鋳工程により堆積される金属層の厚みを一定にするために、10nm以上が好ましく、より好ましくは100nm以上である。シード層の材料として、例えば、ニッケル、銅、金、銀、白金、チタン、コバルト、錫、亜鉛、クロム、金・コバルト合金、金・ニッケル合金、ホウ素・ニッケル合金、はんだ、銅・ニッケル・クロム合金、錫ニッケル合金、ニッケル・パラジウム合金、ニッケル・コバルト・リン合金、またはそれらの合金などを用いることができる。なお、シード層は、図2(C)に示したような複雑な断面構造に比べて、図2(D)に示したような山形の比較的滑らかな構造に漏れなくしかも均一な厚みで付着し易くなると考えられる。
 次に、シード層40上に電鋳(電界メッキ)により金属層を堆積させる図2(F)。金属層50の厚みは、例えば、シード層40の厚みを含めて全体で10~3000μmの厚さにすることができる。電鋳により堆積させる金属層50の材料として、シード層40として用いることができる上記金属種のいずれかを用いることができる。金属基板のモールドとしての耐摩耗性や、剥離性などの観点からは、ニッケルが好ましく、この場合、シード層40についてもニッケルを用いることが好ましい。電鋳における電流密度は、ブリッジを抑制して均一な金属層を形成するとともに、電鋳時間の短縮の観点から、例えば、0.03~10A/cmにし得る。なお、形成した金属層50は、後続の樹脂層の押し付け、剥離及び洗浄などの処理の容易性からすれば、適度な硬度及び厚みを有することが望ましい。電鋳により形成される金属層の硬度を向上させる目的で、金属層の表面にダイヤモンドライクカーボン(DLC)処理やCrめっき加工処理を実施してもよい。あるいは、金属層をさらに熱処理してその表面硬度を高くしても良い。
<剥離工程>
 上記のようにして得られたシード層を含む金属層50を、凹凸構造を有する基材から剥離してファザーとなる金属基板を得る。剥離方法は物理的に剥がしても構わないし、第1ホモポリマー及び残留するブロック共重合体を、それらを溶解する有機溶媒、例えば、トルエン、テトラヒドロフラン(THF)、クロロホルムなどを用いて溶解して除去してもよい。
<洗浄工程>
 上記のように金属基板を山型構造38を有する基材10から剥離するときに、図2(G)に示すように、第1ポリマーセグメントのようなポリマーの一部60が金属基板に残留する場合がある。このような場合には、それらの残留した部分60を洗浄にて除去することができる。洗浄方法としては、湿式洗浄や乾式洗浄を用いることができる。湿式洗浄としてはトルエン、テトラヒドロフラン等の有機溶剤、界面活性剤、アルカリ系溶液での洗浄などにより除去することができる。有機溶剤を用いる場合には、超音波洗浄を行ってもよい。また電解洗浄を行うことにより除去しても良い。乾式洗浄としては、紫外線やプラズマを使用したアッシングにより除去することができる。湿式洗浄と乾式洗浄を組み合わせて用いてもよい。このような洗浄後に、純水や精製水でリンスし、乾燥後にオゾン照射してもよい。こうして所望の凹凸構造を有する金属基板(モールド)70が得られる(図2(H))。
 次に、得られた金属基板70を用いて、有機EL素子などに用いられる回折格子を製造する方法について図3(A)~図3(E)を参照して説明する。
<金属基板の離型処理工程>
 モールドとしての金属基板70を用いてその凹凸構造を樹脂に転写する際に、樹脂からの離型を向上させるために金属基板70に離型処理を行っても良い。離型処理としては、表面エネルギーを下げる処方が一般的であり、特に制限はないが、フッ素系の材料やシリコーン樹脂等の離型剤を図3(A)に示すように金属基板70の凹凸表面70aにコーティングしたり、フッ素系のシランカップリング剤で処理する方法、ダイヤモンドライクカーボンを表面に成膜することなどが挙げられる。
<金属基板の樹脂層への転写工程>
 得られた金属基板70を用いて、金属基板の凹凸構造(パターン)を樹脂層80に転写することでマザーを製造する。この転写処理の方法として、図3(B)に示すように、例えば、硬化性樹脂を透明支持基板90に塗布した後、金属基板70の凹凸構造を樹脂層80に押し付けつつ樹脂層80を硬化させる。透明支持基板90として、例えば、ガラス等の透明無機材料からなる基材;ポリエチレンテレフタレート(PET)、ポリエチレンテレナフタレート(PEN)、ポリカーボネート(PC)、シクロオレフィンポリマー(COP)、ポリメチルメタクリレート(PMMA)、ポリスチレン(PS)等の樹脂からなる基材;これらの樹脂からなる基材の表面にSiN、SiO、SiC、SiO、TiO、Al等の無機物からなるガスバリア層を形成してなる積層基材;これらの樹脂からなる基材及びこれらの無機物からなるガスバリア層を交互に積層してなる積層基材が挙げられる。また、透明支持基板の厚みは、1~500μmの範囲にし得る。
 硬化性樹脂としては、例えば、エポキシ樹脂、アクリル樹脂、ウレタン樹脂、メラミン樹脂、ウレア樹脂、ポリエステル樹脂、フェノール樹脂、架橋型液晶樹脂が挙げられる。硬化性樹脂の厚みは0.5~500μmの範囲であることが好ましい。厚みが前記下限未満では、硬化樹脂層の表面に形成される凹凸の高さが不十分となり易く、前記上限を超えると、硬化時に生じる樹脂の体積変化の影響が大きくなり凹凸形状が良好に形成できなくなる可能性がある。
 硬化性樹脂を塗布する方法としては、例えば、スピンコート法、スプレーコート法、ディップコート法、滴下法、グラビア印刷法、スクリーン印刷法、凸版印刷法、ダイコート法,カーテンコート法、インクジェット法、スパッタ法等の各種コート方法を採用することができる。さらに、硬化性樹脂を硬化させる条件としては、使用する樹脂の種類により異なるが、例えば、硬化温度が室温~250℃の範囲であり、硬化時間が0.5分~3時間の範囲であることが好ましい。また、紫外線や電子線のようなエネルギー線を照射することで硬化させる方法でもよく、その場合には、照射量は20mJ/cm~5J/cmの範囲であることが好ましい。
 次いで、硬化後の硬化樹脂層80から金属基板70を取り外す。金属基板70を取り外す方法としては、機械的な剥離法に限定されず、任意の知られた方法を採用することができる。こうして図3(C)に示すように、透明支持基板90上に凹凸が形成された硬化樹脂層90を有する樹脂フィルム構造体100を得ることができる。樹脂構造体100はそのまま回折格子として使用し得る。
 BCP法による基板の製造方法は、有機EL素子の光取り出し口側に設けられる回折格子を製造するためだけではなく、各種のデバイスに使用される微細パターンを有する光学部品の製造に用いることができる。例えば、ワイヤグリッド偏光子、反射防止フィルム、あるいは太陽電池の光電変換面側に設置することにより太陽電池内部への光閉じ込め効果を付与するための光学素子を製造するために使用することができる。
 こうして所望のパターンを有する樹脂フィルム構造体100を得ることができるが、樹脂フィルム構造体100の反転パターンを回折格子として使用する場合には、上記の金属基板の転写工程を経て得られた樹脂フィルム構造体100をマザーとして用いて、樹脂フィルム構造体100を作成したときと同様に、図3(D)に示すように別の透明支持基材92上に硬化性樹脂層82を塗布して、樹脂フィルム構造体100を硬化性樹脂層82に押し付けて硬化性樹脂層82を硬化させる。次いで、樹脂フィルム構造体100を、硬化した硬化性樹脂層82から剥離することにより、図3(E)に示すような別の樹脂フィルム構造体であるレプリカ110を得ることができる。さらに、レプリカ110を母型として上記転写工程を実施してレプリカ110の反転パターンのレプリカを製造してもよく、反転パターンのレプリカを母型として上記転写工程を再度繰り返して子レプリカを形成してもよい。
 次に、得られた樹脂フィルム構造体100をさらに母型として用いてゾルゲル材料からなる凹凸を有する構造体(以下、適宜、「ゾルゲル構造体」または「ゾルゲル材料基板」という)を作製する方法を説明する。ゾルゲル材料を用いて凹凸パターンを有する基板の形成方法は、主に、ゾル溶液を調製する溶液調製工程、調製されたゾル溶液を基板に塗布する塗布工程、基板に塗布されたゾル溶液の塗膜を乾燥する乾燥工程、転写パターンが形成されたモールドを押し付ける押圧工程、モールドが押し付けられた塗膜を仮焼成する仮焼成工程、モールドを塗膜から剥離する剥離工程、及び塗膜を本焼成する本焼成工程を有する。以下、各工程について順に説明する。
 ゾルゲル法によりパターンが転写される塗膜を形成するため、最初にゾル溶液を調製する(溶液調製工程)。例えば、基板上に、シリカをゾルゲル法で合成する場合は、金属アルコキシド(シリカ前駆体)のゾル溶液を調製する。シリカの前駆体として、テトラメトキシシラン(MTES)、テトラエトキシシラン(TEOS)、テトラ-i-プロポキシシラン、テトラ-n-プロポキシシラン、テトラ-i-ブトキシシラン、テトラ-n-ブトキシシラン、テトラ-sec-ブトキシシラン、テトラ-t-ブトキシシラン等のテトラアルコキシドモノマーや、メチルトリメトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、イソプロピルトリメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、プロピルトリエトキシシラン、イソプロピルトリエトキシシラン、フェニルトリエトキシシラン、メチルトリプロポキシシラン、エチルトリプロポキシシラン、プロピルトリプロポキシシラン、イソプロピルトリプロポキシシラン、フェニルトリプロポキシシラン、メチルトリイソプロポキシシラン、エチルトリイソプロポキシシラン、プロピルトリイソプロポキシシラン、イソプロピルトリイソプロポキシシラン、フェニルトリイソプロポキシシラン等のトリアルコキシドモノマーや、これらモノマーを少量重合したポリマー、前記材料の一部に官能基やポリマーを導入したことを特徴とする複合材料などの金属アルコキシドが挙げられる。さらに、金属アセチルアセトネート、金属カルボキシレート、オキシ塩化物、塩化物や、それらの混合物などが挙げられるが、これらに限定されない。また、金属種としては、Si以外にTi、Sn、Al、Zn、Zr、Inなどや、これらの混合物などが挙げられるが、これらに限定されない。上記酸化金属の前駆体を適宜混合したものを用いることもできる。
 TEOSとMTESの混合物を用いる場合には、それらの混合比は、例えばモル比で1:1にすることができる。このゾル溶液は、加水分解及び重縮合反応を行わせることによって非晶質シリカを生成する。合成条件として溶液のpHを調整するために、塩酸等の酸またはアンモニア等のアルカリを添加する。pHは4以下もしくは10以上が好ましい。また、加水分解を行うために水を加えてもよい。加える水の量は、金属アルコキシド種に対してモル比で1.5倍以上にすることができる。
 溶媒としては、例えばメタノール、エタノール、イソプロピルアルコール(IPA)、ブタノール等のアルコール類、ヘキサン、ヘプタン、オクタン、デカン、シクロヘキサン等の脂肪族炭化水素類、ベンゼン、トルエン、キシレン、メシチレン等の芳香族炭化水素類、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、アセトン、メチルエチルケトン、イソホロン、シクロヘキサノン等のケトン類、ブトキシエチルエーテル、ヘキシルオキシエチルアルコール、メトキシ-2-プロパノール、ベンジルオキシエタノール等のエーテルアルコール類、エチレングリコール、プロピレングリコール等のグリコール類、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のグリコールエーテル類、酢酸エチル、乳酸エチル、γ-ブチロラクトン等のエステル類、フェノール、クロロフェノール等のフェノール類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類、クロロホルム、塩化メチレン、テトラクロロエタン、モノクロロベンゼン、ジクロロベンゼン等のハロゲン系溶媒、2硫化炭素等の含ヘテロ元素化合物、水、およびこれらの混合溶媒が挙げられる。特に、エタノールおよびイソプロピルアルコールが好ましく、またそれらに水を混合したものも好ましい。
 添加物としては、粘度調整のためのポリエチレングリコール、ポリエチレンオキシド、ヒドロキシプロピルセルロース、ポリビニルアルコールや、溶液安定剤であるトリエタノールアミンなどのアルカノールアミン、アセチルアセトンなどのβ―ジケトン、β―ケトエステル、ホルムアミド、ジメチルホルムアミド、ジオキサンなどを用いることが出来る。
 上記のように調製したゾル溶液を基板上に塗布する(塗布工程)。基板として、ガラスや石英、シリコン基板等の無機材料からなる基板やポリエチレンテレフタレート(PET)、ポリエチレンテレナフタレート(PEN)、ポリカーボネート(PC)、シクロオレフィンポリマー(COP)、ポリメチルメタクリレート(PMMA)、ポリスチレン(PS)、ポリイミド(PI)、ポリアリレート等の樹脂基板を用い得る。基板は透明でも不透明でもよい。この基板から得られた凹凸パターン基板を後述する有機EL素子の製造に用いるのであれば、基板は耐熱性、UV光等に対する耐光性を備える基板が望ましい。この観点から、基板として、ガラスや石英、シリコン基板等の無機材料からなる基板がより好ましい。基板上には密着性を向上させるために、表面処理や易接着層を設けるなどをしてもよいし、水分や酸素等の気体の浸入を防ぐ目的で、ガスバリア層を設けるなどしてもよい。塗布方法として、バーコート法、スピンコート法、スプレーコート法、ディップコート法、ダイコート法、インクジェット法などの任意の塗布方法を使用することができるが、比較的大面積の基板にゾル溶液を均一に塗布可能であること、ゾル溶液がゲル化する前に素早く塗布を完了させることができることからすれば、バーコート法、ダイコート法及びスピンコート法が好ましい。なお、後の工程でゾルゲル材料層による所望の凹凸パターンが形成されるため基板表面(表面処理や易接着層がある場合にはそれらも含めて)は平坦でよく、この基板自体は所望の凹凸パターンを有さない。
 塗布工程後、塗布した塗膜(以下、適宜、「ゾルゲル材料層」とも言う)中の溶媒を蒸発させるために基板を大気中もしくは減圧下で保持する(乾燥工程)。次いで樹脂フィルム構造体100(モールド)を塗膜に押し付ける(押圧工程)。この際、押圧ロールを用いて樹脂フィルム構造体100を押し付けてもよい。ロールプロセスでは、プレス式と比較して、モールドと塗膜とが接する時間が短いため、モールドや基板及び基板を設置するステージなどの熱膨張係数の差によるパターンくずれを防ぐことができること、ゲル溶液中の溶媒の突沸によってパターン中にガスの気泡が発生したり、ガス痕が残ることを防止することができること、基板(塗膜)と線接触するため、転写圧力及び剥離力を小さくでき、大面積化に対応し易いこと、押圧時に気泡をかみ込むことがないなどの利点を有する。また、樹脂フィルム構造体100を押し付けながら加熱してもよい。
 塗膜(ゾルゲル材料層)にモールドとしての樹脂フィルム構造体100を押し付けた後、塗膜を仮焼成してもよい(仮焼成工程)。仮焼成することにより塗膜のゲル化を進め、パターンを固化し、剥離の際に崩れにくくする。仮焼成を行う場合は、大気中で40~150℃の温度で加熱することが好ましい。なお、仮焼成は必ずしも行う必要はない。
 押圧工程または仮焼成工程後の塗膜(ゾルゲル材料層)から樹脂フィルム構造体100を剥離する。押圧の際にロールを使用すると、プレート状モールドに比べて剥離力は小さくてよく、塗膜がモールドに残留することなく容易にモールドを塗膜から剥離することができる。
 基板の塗膜(ゾルゲル材料層)から樹脂フィルム構造体100が剥離された後、塗膜を本焼成する(本焼成工程)。本焼成により塗膜を構成するシリカ(アモルファスシリカ)中に含まれている水酸基などが脱離して塗膜がより強固となる。本焼成は、200~1200℃の温度で、5分~6時間程度行うのが良い。こうして塗膜は硬化して樹脂フィルム構造体100の凹凸パターンに対応する凹凸パターン膜を有するゾルゲル構造体(回折格子)、すなわち、平坦な基板上に不規則な凹凸パターンを有するゾルゲル材料層が直接形成されたゾルゲル構造体(回折格子)が得られる。この時、ゾルゲル材料層であるシリカは、焼成温度、焼成時間に応じて非晶質または結晶質、または非晶質と結晶質の混合状態となる。
 樹脂フィルム構造体100を用いてレプリカ110(またはゾルゲル構造体)を複製する際、または得られたレプリカ110(またはゾルゲル構造体)を用いてさらに別のレプリカを複製する際には、樹脂フィルム構造体100またはレプリカ110の凹凸パターンが形成された面に蒸着法またはスパッタ法などの気相法により膜を積層してもよい。このように膜を積層することにより、その表面に樹脂を塗布する等して転写等を行う際に、その樹脂(例えばUV硬化樹脂)との密着性を低下させることができ、母型を剥がし易くなる。また、このような蒸着膜は、例えば、アルミニウム、金、銀、白金、ニッケル等の金属、酸化アルミニウム等の金属酸化物が挙げられる。また、このような膜の厚みとしては5~500nmであることが好ましい。このような厚みが前記下限未満では均一な膜が得られにくく十分な密着性の低下効果が薄れ、前記上限を超えると母型の形状がなまり易くなる。樹脂フィルム構造体100またはレプリカ110の硬化樹脂層がUV硬化樹脂からなる場合には、樹脂硬化後に、再度、紫外光を照射するなどして、適宜ポストキュアを行ってもよい。
 また、図3(B)及び(D)に示した工程では透明支持基板90,92に硬化性樹脂80,82をそれぞれ塗布したが、母型である金属基板70または硬化した樹脂層80の表面に直接、硬化性樹脂を塗布し、硬化後に取り外したものを母型としてもよい。あるいは、母型の表面に樹脂を塗布する代わりに、樹脂の塗膜に母型を押し付け、かかる樹脂を硬化させて得られる硬化樹脂の凹凸膜を母型としてもよい。
 B.BKL法による基板の製造方法
 BKL法は、WO2011/007878A1に詳しく記載されているように、70℃以上の温度条件下において、熱により体積が変化するポリマーからなるポリマー膜の表面に蒸着膜を形成した後、前記ポリマー膜及び前記蒸着膜を冷却することにより、前記蒸着膜の表面に皺による凹凸を形成する工程(凹凸形状形成工程)と、前記蒸着膜上に母型材料を付着させ硬化させた後に、硬化後の母型材料を前記蒸着膜から取り外して母型を得る工程(母型形成工程)とを含む。
 図5(A)~(D)は、BKL法による回折格子の製造方法における母型の製造方法の好適な一実施形態を説明するための模式図である。図5(A)は、母型の製造方法においてポリマー膜の表面に蒸着膜を形成した状態を模式的に示す断面図であり、図5(B)は、ポリマー膜及び蒸着膜を冷却することにより蒸着膜の表面に皺による凹凸を形成した状態を模式的に示す断面図であり、図5(C)は、凹凸が形成された蒸着膜上に母型材料を付着させ硬化させた状態を模式的に示す断面図であり、図5(D)は、硬化後の母型を蒸着膜から取り外した状態を模式的に示す断面図である。
 凹凸形状形成工程においては、先ず、熱により体積が変化するポリマーからなるポリマー膜を準備する。熱により体積が変化するポリマーとしては、加熱又は冷却により体積が変化するもの(例えば、熱膨張係数が50ppm/K以上のもの)を適宜使用することができるが、ポリマーの熱膨張係数と蒸着膜の熱膨張係数との差が大きく、高い柔軟性を有しているために、蒸着膜の表面に皺による凹凸が形成しやすいという観点から、シリコーン系ポリマーがより好ましく、ポリジメチルシロキサンを含有するシリコーン系ポリマーであることが特に好ましい。また、このようにポリマー膜を形成する方法としては、例えば、スピンコート法、ディップコート法、滴下法、グラビア印刷法、スクリーン印刷法、凸版印刷法、ダイコート法,カーテンコート法、インクジェット法、スプレーコート法、スパッタ法、真空蒸着法等を採用することができる。さらに、このようなポリマー膜の厚みとしては、10~5000μmの範囲であることが好ましく、10~2000μmの範囲であることがより好ましい。
 凹凸形状形成工程においては、次に、70℃以上の温度条件下において、ポリマー膜27の表面に蒸着膜28を形成する(図5(A)参照)。蒸着膜28を形成する際の温度は70℃以上であることが必要であるが、90℃以上であることがより好ましい。前記温度が70℃未満では、蒸着膜の表面に皺による凹凸を十分に形成することができない。蒸着膜28を形成する方法としては、蒸着法、スパッタ法等の公知の方法を適宜採用することができる。これらの方法の中でも、ポリマー膜の表面に形成されている凹凸の形状を維持するという観点から、蒸着法を採用することが好ましい。また、蒸着膜28の材質は特に限定されないが、例えば、アルミニウム、金、銀、白金、ニッケル等の金属、酸化アルミニウム等の金属酸化物が挙げられる。
 凹凸形状形成工程においては、次いで、ポリマー膜27及び蒸着膜28を冷却することにより、蒸着膜28の表面に皺による凹凸を形成する(図5(B)参照)。このように、ポリマー膜27の熱膨張係数と蒸着膜28の熱膨張係数との間には差があるため、図5(A)に示すようなポリマー膜27及び蒸着膜28がそれぞれ熱により体積が変化して、図5(B)に示すように、蒸着膜28の表面に皺による凹凸(いわゆるバックリングパターン、又は、いわゆるチューリングパターン)を形成することができる。また、冷却後のポリマー膜27及び蒸着膜28の温度は40℃以下であることが好ましい。冷却後のポリマー膜27及び蒸着膜28の温度が前記上限を超える場合には、蒸着膜の表面に皺による凹凸を形成しにくくなる傾向にある。さらに、ポリマー膜27及び蒸着膜28を冷却する際の降温速度は1~80℃/分の範囲内とすることが好ましい。前記降温速度が前記下限未満では、凹凸が緩和されてしまう傾向にあり、他方、前記上限を超えると、ポリマー膜又は蒸着膜の表面にクラック等の傷が発生しやすくなる傾向にある。
 母型形成工程においては、先ず、図5(C)に示すように、蒸着膜28上に母型材料29を付着させ硬化させる。このような母型材料29としては、特に限定されず、例えば、ニッケル、ケイ素、炭化ケイ素、タンタル、グラッシーカーボン、石英、シリカ等の無機物;シリコーン系ポリマー(シリコーンゴム)、ウレタンゴム、ノルボルネン樹脂、ポリカーボネート、ポリエチレンテレフタレート、ポリスチレン、ポリメタクリル酸メチル、アクリル、液晶ポリマー等の樹脂組成物が挙げられる。これらの母型材料29の中でも、成形性、微細形状の追従性、型離れという観点から、シリコーン系ポリマー、ニッケル、ケイ素、炭化ケイ素、タンタル、グラッシーカーボン、石英、シリカがより好ましく、シリコーン系ポリマーが更により好ましく、ポリジメチルシロキサンを含有するシリコーン系ポリマーであることが特に好ましい。また、このように母型材料29を付着させる方法としては、特に限定されず、例えば、真空蒸着法;スピンコート法、スプレーコート法、ディップコート法、滴下法、グラビア印刷法、スクリーン印刷法、凸版印刷法、ダイコート法,カーテンコート法、インクジェット法、スパッタ法等の各種コート方法を採用することができる。また、母型材料29を硬化させる条件としては、使用する母型材料の種類により異なるが、例えば、硬化温度が室温~250℃の範囲であり、硬化時間が0.5分~3時間の範囲であることが好ましい。また、紫外線や電子線のようなエネルギー線を照射することで硬化させる方法でもよく、その場合には、照射量は20mJ/cm~10J/cmの範囲であることが好ましい。
 母型形成工程においては、その後、図5(D)に示すように、硬化後の母型材料29を蒸着膜28から取り外して母型29を得る。このように母型29を蒸着膜28から取り外す方法としては、特に限定されず、適宜公知の方法を採用することができる。
 BKL法においては、ポリマー膜として得られた母型29を用いて前記凹凸形状形成工程及び前記母型形成工程を繰り返してもよい。このようにして、母型の表面に形成されている皺を深くすることができ、母型の表面に形成されている凹凸の平均高さを大きくすることができる。
 また、得られた母型29の表面に樹脂(母型材料に用いた材料)を塗布して硬化させた後、これを取り外したものを母型としてもよく、更に、得られた母型29の表面に樹脂を塗布する代わりに、樹脂の塗膜に前記母型29を押し付け、かかる樹脂を硬化させて得られる硬化樹脂の凹凸膜を母型としてもよい。このように、凹凸を反転させた樹脂膜も母型として利用できる。
 さらに、母型29から1以上の中間的な母型を介して、凹凸の反転や転写を繰り返すことにより最終的な母型を製造してもよい。このような中間的な母型としては、上述のようにして適宜凹凸構造を反転又は転写させたものを利用できる。また、このように、凹凸の反転や転写を繰り返して母型を製造した場合には、母型の凹凸構造を転写する際に、樹脂膜等の剥離が困難な柔軟性のない基板(例えばガラス)を用いた場合にも凹凸構造の転写を容易にするために、一旦柔軟性のある材料(例えばプラスチックフィルムやシリコーンゴム)への転写を介することも可能となり、用いた母型と凹凸構造を合わせる(偶奇を合わせる)ことが容易になる傾向にある。また、これらの中間的な母型に熱により体積が変化するポリマーを塗布し、硬化させて得られたポリマー膜を母型29とし、更に、前記凹凸形状形成工程及び前記母型形成工程を繰り返してもよい。また、中間的な母型がUV硬化樹脂からなる場合には、その製造時に紫外光を照射して中間的な母型を得た後、再度、紫外光を照射してポストキュアを行ってもよい。このようにして、UV硬化樹脂からなる母型に再度、紫外光を照射してポストキュアを行うことにより、母型の架橋度が向上し、機械的強度や耐薬品性が向上する傾向にある。
 また、母型(中間的な母型を含む)に対して、公知の方法を利用してメッキ処理を施して母型を金属金型化してもよい。このようにしてメッキ化して金属金型化することにより、機械的強度に優れ、繰り返し使用が可能な母型を得られる傾向にある。このようにしてメッキ化した母型をナノインプリント等のモールドとして使用することで、硬化樹脂基板に繰り返し転写して所定の凹凸パターンを有する樹脂基板を量産することが可能となる。このようなメッキ化に利用できる材料としては、ニッケル、銅、鉄、ニッケルコバルト合金、ニッケル鉄合金等が挙げられる。なお、このようなメッキ層の厚みは、機械的な強度や金型作製に要する時間等の観点から、50μm~1mmであることが好ましい。
 そして、本発明においては、このようにしてBKL法を実施して得られる母型(母型29や、ポリマー膜として得られた母型29を用いて前記凹凸形状形成工程及び前記母型形成工程を繰り返して得られる母型等)を、前記回折格子を形成するための母型として用いることができる。また、前記BCP法を得られた樹脂フィルム構造体をさらに母型として用いてゾルゲル材料からなる凹凸を有するゾルゲル構造体を作製したのと同様にして、BKL法を実施して得られた樹脂基板をさらに母型としてゾルゲル材料からなる凹凸を有するゾルゲル構造体を作製してもよい。
 また、BKL法得られた母型を大気圧下において80~200℃程度の温度条件で1~48時間程度加熱したものを、回折格子の製造に用いる母型として用いてもよい。このようにして母型を加熱することにより、回折格子として、特に、有機EL素子用として良好な凹凸構造を有する回折格子が得られる。
2.基板の検査工程
 上記のようなBCP法やBKL法により得られた基板(ゾルゲル材料から形成された凹凸構造を有する基板を含む)は、不規則な凹凸表面を有しており、そのような基板の光学特性、特に、輝度ムラについて検査する工程(図1の工程S2)について説明する。なお、輝度ムラは、基板の凹凸の特定のピッチの局所的分布、特定方向の凹凸の向きの局所的分布、凹凸の深さのムラなどにより生じるものと考えられる。図6に示すような装置200を用いて不規則な凹凸表面を有する基板100の凹凸面からの散乱光を観測する。装置200は、所定の距離を隔てて床面に配置された一対の黒色ブロック102からなるステージ104と、ステージ104の斜め上方にステージ中心に対して対称な位置に配置された一対の光源122と、ステージ104の中心の上方に所定距離を隔てて配置された撮像素子124と、撮像装置124に接続された画像処理装置126とを有する。光源122は、指向性が高く且つ所定の幅(面積)を照明する光122aを照射できる任意の光源を用い得る。例えば、複数のLEDが一方向にアレイ状に埋設されたLEDバーライトを用いることができる。撮像素子124は、基板100の全域からの散乱光を2次元的に受光できる画素を有する素子であれば任意の撮像素子でよく、デジタルカメラや二次元色彩輝度計などが好適に用いられる。なお、撮像素子における画素数は少なくとも30個以上あることが好ましい。画像処理装置126は、撮像素子124により検出された画素データを処理するコンピュータである。このような装置200を用いて以下のような手順で基板100の凹凸表面100aからの散乱光を観測する。観測した散乱光から輝度分布を求める。
 基板100をステージ104上にその凹凸表面100aが上向きになるように配置し、基板100の凹凸表面100aに、光源122からの光が斜め上方から、例えば、基板100の凹凸表面100aの法線方向に対して80°前後の入射角で照射する。光照射された基板100の凹凸表面100aからは種々の方向に光が散乱する。散乱光には凹凸表面からの回折光も含まれている。散乱光のうち基板100の凹凸表面100aの全ての領域からほぼ法線方向に向かう光が撮像素子124により受光されるようにする。このためには撮像素子124の視野の中に基板100の凹凸表面100aの端部が含まれるように撮像素子124を基板100に対して配置する。画素毎に検出された画像データを画像処理装置に126により画像処理して、基板100の凹凸表面100aの2次元的な位置に対応する光強度を求める。なお、ここでは基板100が床面に対して平行に配置されている図を例示したが、基板は支持体等により直立した状態、あるいはある角度で傾斜した状態であってもかまわない。
 ここで、基板100の凹凸表面100aの凹凸が、図7に示すような矩形の凹凸パターンであると、ブラッグの回折条件に従って回折が起こる。入射光と回折格子面の法線とのなす角(入射角)をα、回折光と回折格子の法線とのなす角(回折角)をβとすると、以下の関係式が成り立つ。
 d(sinα±sinβ)=mλ
あるいは、
 sinα±sinβ=Nmλ
 ここで、dは回折格子の周期(ピッチ)、Nは1mmあたりの溝本数、mは回折次数(m=0、±1、±2・・・)、λは波長である。
 上記関係式により、m=0の回折光(0次光)は、波長λに拘わらず正反射する。このため、斜め入射する入射光の0次光は、撮像素子124の方向に向かわず、撮像素子124には入射しない。またm≠0のときは、上記関係式を満足する回折角βは波長λごとに異なり、回折格子の周期dと入射角αによっても変化する。したがって波長λ、入射角α、溝本数N(または周期d) によっては回折光が観測できない場合がある。たとえば、入射角α=80°、溝本数N =3000 本/mm(d=333nm)の回折格子からの+1次回折光(m=+1)を想定すると、波長λ=700nmではsinβ=1.12となり、回折光が得られないことが分かる。それゆえ、図6に示すような装置200の構成において、比較的浅い角度で(すなわち、大きい入射角で)光を斜め入射し、正面方向に向かって1次回折光を得るためには、上記関係式に基づいて回折格子の周期dに対する入射角αの比が制限されることが分かる。特に、1次より高次の回折(±2、±3、・・・)を生じさせずに、回折効率の高い1次回折光を基板の法線方向にある撮像素子に導入させるという理由により、格子の周期と同程度の波長、具体的には、回折格子の周期dの0.5倍から2.0倍の波長λ(0.5d≦λ≦2.0d)、特に0.5倍から1.5倍の波長λ(0.5d≦λ≦1.5d)の光を用いることが好ましい。検査光が単一波長ではなく、波長域を有する場合は、λは中心波長を意味する。 
 一方、入射角については、例えば、本発明の対象である不規則な凹凸表面を有する基板を、有機EL素子に適用する場合を検討してみる。そのような不規則な凹凸構造を有する基板を有機ELに用いる場合には、不規則な凹凸表面の凹凸ピッチが100nm~600nm、特に、150nm~600nmであることが望ましいことが望ましいことが発明者らの実験により分かっている(例えば、WO2011/007878A1を参照)。150nm~600nmの範囲のピッチを有する不規則な凹凸表面を有する基板に対して、光源波長として例えば、470nmの波長の光を用いたときには、入射角αは、30°<α<90°が好ましく、より好ましくは60°<α<85°であることが発明者の実験より明らかとなった。入射角が30°未満だと回折効率が低く、輝度が下がるために輝度ムラが明瞭に観察されない。また、均一に光照射できる面積が狭くなるため評価エリアが狭くなる、さらには正反射光が撮像素子に入る恐れが出てくる、などの問題が生じる。回折効率及び輝度ムラの点では入射角αの下限は60°であることが一層好ましい。一方、入射角αが90°を超えると、基板裏面に照射されることになり、反射光量が低下する。金属板などの不透明体だと観察自体が不可能となる。また、入射角αが85°を超えると、高指向性光源を用いてもサンプル表面を効率よく照射できず、撮像素子に入る光量が不十分である。
3.判定工程
 次に、上の検査工程で得られた結果に基いて、基板が均一な輝度分布を有するかどうかを評価・判定する(図1の工程S3)。以下では、撮像素子にデジタルカメラを用いた場合の評価・判定方法について説明する。上記検査工程で得られた撮像素子の各画素の出力からピクセル値を読み取る。ピクセル値は各画素の散乱(回折)光の強度または輝度に対応する。基板の凹凸表面全域のピクセル値について、最大値、最小値及び平均値を求める。最大値、最小値及び平均値が所望の許容範囲内であるかを判断する。また、その強度分布についても所望の範囲であるかを判断する。例えば、最小値に対する最大値の比を求め、最大値/最小値の大きさによって輝度ムラを判定することができる。本発明の基板およびこの基板にその凹凸が保持されるように電極と有機層を積層した本発明の有機EL素子においては、前記ピクセル値の最大値/最小値が1.5以上になると、該有機EL素子の発光の均一性が明らかに悪化する、すなわち輝度ムラが許容範囲を超えることを本発明者は見出した。そのような有機EL素子を用いた照明やディスプレイなどは製品として不適である。ただし、輝度ムラの許容限度、すなわち要求される輝度の均一性や用途に応じて、閾値たる前記ピクセル値の最大値/最小値を設定することができる。あるいは、散乱強度差(散乱強度のばらつき)を下記式のように表わして、予め定めた値と比較することで判定してもよい。
 散乱強度差=(最大値―最小値)/(最大値+最小値)×100
 平均ピクセル値については次のような方法で評価することができる。測定されたピクセル値についてグレー諧調に変換する処理を行う。撮像画像上で所定の方向(XまたはY方向)の直線上の各画素のピクセル値についてのグレー諧調されたピクセル値を求めることで、当該直線上の散乱光光度の(断面)プロファイルが求められる。輝度ムラの評価を容易にするには、撮像素子に記録することができる最大ピクセル値(一般的なデジタルカメラであれば255)をMAXとしたときに、上記直線上におけるピクセル値(諧調後)の平均値(ピクセル平均値)は、0.2MAX~0.8MAXであることが好ましい。
 上記評価及び判定工程において、最小値に対する最大値の比、散乱強度差、もしくは平均ピクセル値が所望の範囲内である判定された場合には、この基板を用いて後述のプロセスに従って有機EL素子を製造する。散乱強度差や平均ピクセル値が所望の範囲外である判定された場合には、後処理を施す(図1の工程S5)。後処理として、基板の欠陥(輝度ムラ)がゴミ、キズ、周期的エラー、ランダムエラーによるものかを分析する。ゴミなどの付着物に起因する場合には、基板表面に加圧エアーを適用して付着物を吹き飛ばすなどしてリペアを行うことができ、その後、再度上記検査を行う。なお、上記検査を複数の基板について連続式またはバッチ式で行う場合には、検査結果に基づいて最小値に対する最大値の比、散乱強度差、もしくは平均ピクセル値が所望の範囲内であるものと範囲外であるものを分別する工程を設けることができる。範囲内であるものについて、例えば、有機EL素子等の製造ラインに供給して有機EL素子を順次製造することができる。範囲外のものについては、まとめて欠陥分析や廃棄を行うことができる。
<有機EL素子の製造方法>
 次に、BCP法やBKL法に例示されるような方法を用いて得られた樹脂フィルム基板(または、ガラス基板またはゾルゲル材料で凹凸が形成された基板)のうち、前記の判定工程で合格した基板を用いて有機EL素子を製造する。この製造方法のうち、樹脂フィルム基板からなる回折格子について、図8を参照しながら説明する。
 先ず、図8に示すように、樹脂フィルム100(基板)の樹脂層80(図3(C)参照)上に、符号3で表される透明電極を、樹脂80の表面に形成されている凹凸構造が維持されるようにして積層する。透明電極3の材料としては、例えば、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウム・スズ・オキサイド(ITO)、金、白金、銀、銅が用いられる。これらの中でも、透明性と導電性の観点から、ITOが好ましい。透明電極3の厚みは20~500nmの範囲であることが好ましい。厚みが前記下限未満では、導電性が不十分となり易く、前記上限を超えると、透明性が不十分となり発光したEL光を十分に外部に取り出せなくなる可能性がある。透明電極3を積層する方法としては、蒸着法、スパッタ法等の公知の方法を適宜採用することができる。これらの方法の中でも、密着性を上げるという観点から、スパッタ法が好ましい。なお、透明電極3を樹脂層80上に設ける前に、樹脂フィルム100の樹脂層80と反対側にガラス基板を張り付けてもよい。
 次に、透明電極3上に、図8に示す符号4で表される有機層を、樹脂80の表面に形成されている凹凸の形状が維持されるようにして積層する。このような有機層4は、有機EL素子の有機層に用いることが可能なものであればよく、特に制限されず、公知の有機層を適宜利用することができる。また、このような有機層4は、種々の有機薄膜の積層体であってもよく、例えば、図8に示すような陽極バッファー層11、正孔輸送層12、及び電子輸送層13からなる積層体であってもよい。ここで、陽極バッファー層11の材料としては、例えば、銅フタロシアニン、PEDOT等が挙げられる。また、正孔輸送層12の材料としては、例えば、トリフェニルアミン、トリフェニルジアミン誘導体(TPD)、ベンジジン、ピラゾリン、スチリルアミン、ヒドラゾン、トリフェニルメタン、カルバゾール等の誘導体が挙げられる。さらに、電子輸送層13の材料としては、例えば、アルミニウムキノリノール錯体(Alq)、フェナンスロリン誘導体、オキサジアゾール誘導体、トリアゾール誘導体、フェニルキノキサリン誘導体、シロール誘導体が挙げられる。また、このような有機層4は、例えば、トリフェニルアミン誘導体等からなる正孔注入層と、アントラセン等の蛍光性の有機固体からなる発光層との積層体や、或いはこのような発光層とペリレン誘導体等からなる電子注入層との積層体や、またはこれらの正孔注入層、発光層、及び電子注入層との積層体であってもよい。
 有機層4は、正孔輸送層、発光層及び電子輸送層からなる積層体であってもよい。この場合、正孔輸送層の材料としては、フタロシアニン誘導体、ナフタロシアニン誘導体、ポルフィリン誘導体、N,N’-ビス(3ーメチルフェニル)-(1,1’-ビフェニル)-4,4’-ジアミン(TPD)や4,4’-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル(α-NPD)等の芳香族ジアミン化合物、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、イミダゾロン、スチルベン誘導体、ピラゾリン誘導体、テトラヒドロイミダゾール、ポリアリールアルカン、ブタジエン、4,4’,4”-トリス(N-(3-メチルフェニル)N-フェニルアミノ)トリフェニルアミン(m-MTDATA)が挙げられるが、これらに限定されるものではない。
 また、発光層は、透明電極から注入された正孔と金属電極から注入された電子とを再結合させて発光させるために設けられており、発光層に使用できる材料としては、アントラセン、ナフタレン、ピレン、テトラセン、コロネン、ペリレン、フタロペリレン、ナフタロペリレン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、ビスベンゾキサゾリン、ビススチリル、シクロペンタジエン、アルミニウムキノリノール錯体(Alq3)などの有機金属錯体、トリ-(p-ターフェニル-4-イル)アミン、1-アリール-2,5-ジ(2-チエニル)ピロール誘導体、ピラン、キナクリドン、ルブレン、ジスチリルベンゼン誘導体、ジスチリルアリーレン誘導体、ジスチリルアミン誘導体及び各種蛍光色素等を用いることができる。またこれらの化合物のうちから選択される発光材料を適宜混合して用いることも好ましい。また、スピン多重項からの発光を示す材料系、例えば燐光発光を生じる燐光発光材料、およびそれらからなる部位を分子内の一部に有する化合物も好適に用いることができるが挙げられる。なお、前記燐光発光材料はイリジウムなどの重金属を含むことが好ましい。
 上述した発光材料をキャリア移動度の高いホスト材料中にゲスト材料としてドーピングして、双極子-双極子相互作用(フェルスター機構)、電子交換相互作用(デクスター機構)を利用して発光させても良い。また、電子輸送層の材料としては、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレンなどの複素環テトラカルボン酸無水物、カルボジイミド、フルオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体、アルミニウムキノリノール錯体(Alq3)などの有機金属錯体などが挙げられる。さらに上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。なお、正孔輸送層もしくは電子輸送層が発光層の役割を兼ねていてもよい。この場合、透明電極と後述する金属電極の間の有機層は2層となる。
 さらに、このような有機層4への電荷注入又は正孔注入を容易にするという観点から、透明電極3上或いは有機層4上に、フッ化リチウム(LiF)、Li等の金属フッ化物、Ca、Ba、Cs等の活性の高いアルカリ土類金属、有機絶縁材料等からなる層を設けてもよい。
 有機層4が陽極バッファー層11、正孔輸送層12、及び電子輸送層13からなる積層体である場合、硬化樹脂層の表面に形成されている凹凸の形状を維持するという観点から、陽極バッファー層11、正孔輸送層12、及び電子輸送層13の厚みは、それぞれ1~50nmの範囲、5~200nmの範囲、及び5~200nmの範囲であることが好ましい。また、有機層4が正孔輸送層、発光層、及び電子輸送層からなる積層体である場合、正孔輸送層、発光層、及び電子輸送層の厚みは、それぞれ1~200nmの範囲、5~100nmの範囲、及び5~200nmの範囲であることが好ましい。有機層4を積層する方法としては、蒸着法、スパッタ法、ダイコート法等の公知の方法を適宜採用することができる。これらの方法の中でも、樹脂80の表面に形成されている凹凸の形状を維持するという観点から、蒸着法が好ましい。
 有機EL素子形成工程においては、次いで、図8に示すように、有機層4上に符号5で表される金属電極を、樹脂80の表面に形成されている凹凸の形状が維持されるようにして積層する。金属電極5の材料としては、仕事関数の小さな物質を適宜用いることができ、特に限定されないが、例えば、アルミニウム、MgAg、MgIn、AlLiが挙げられる。また、金属電極5の厚みは50~500nmの範囲であることが好ましい。厚みが前記下限未満では、導電性が低下し易く、前記上限を超えると、凹凸形状の維持が困難となる可能性がある。金属電極5は、蒸着法、スパッタ法等の公知の方法を採用して積層することができる。これらの方法の中でも、樹脂80の表面に形成されている凹凸構造を維持するという観点から、蒸着法が好ましい。こうして、図8に示すような構造の有機EL素子400が得られる。
 BCP法で製造した基材100上の樹脂80が山形構造を有しているので、透明電極3、有機層4及び金属電極5がそれぞれ樹脂80の山形構造が維持されるようにして積層され易く、有機層4で生じた光が各界面において全反射して素子の内部において多重反射を繰り返すことを十分に抑制できる。また、透明支持基板と空気との界面において全反射してしまった光を、回折効果により再出射させることもできる。さらに、透明電極3、有機層4及び金属電極5もまた樹脂層80の表面に形成されている山型構造と同様の構造になり易いので、その結果、透明電極3と金属電極5との電極間距離が部分的に短くなる。そのため、透明電極3と金属電極5との電極間距離が均一なものと比較して、電圧印加時において電界強度の増加を見込むことができ、有機EL素子の発光効率を向上させることもできる。
 本発明の基板の製造方法に従って製造された回折格子(基板)及びそれを含む有機EL素子において、回折格子の表面(硬化した硬化性樹脂表面)に形成されている凹凸の平均高さは、前述のように5~200nmの範囲であることが好ましく、20~200nmの範囲であることがより好ましく、50~150nmの範囲であることが更に好ましい。
 本発明に従って製造された回折格子(基板)及びそれを含む有機EL素子において、回折格子の表面(硬化した硬化性樹脂表面)に形成されている凹凸の平均ピッチは、前述のように100~600nmの範囲であることが好ましく、200~600nmの範囲であることがより好ましい。
 以下、本発明を、実施例及び比較例により、具体的に説明するが、本発明はそれらの実施例に限定されるものではない。
<実施例1>
 この実施例では、BCP法を用いて凹凸表面を有する基板を製造し、次いで、製造された基板を用いて有機EL素子を製造する。最初に、下記のようなポリスチレン(以下、適宜「PS」と略する)とポリメチルメタクリレート(以下、適宜「PMMA」と略する)とからなるPolymer Source社製のブロック共重合体を用意した。
PSセグメントのMn=868,000、
PMMAセグメントのMn=857,000、
ブロック共重合体のMn=1,725,000、
PSセグメントとPMMAセグメントの体積比(PS:PMMA)=53:47、
分子量分布(Mw/Mn)=1.30、
PSセグメントのTg=96℃、
PMMAセグメントのTg=110℃
 ブロック共重合体における第1及び第2のポリマーセグメントの体積比(第1のポリマーセグメント:第2のポリマーセグメント)は、ポリスチレンの密度が1.05g/cmであり、ポリメチルメタクリレートの密度が1.19g/cmであるものとして算出した。ポリマーセグメント又はポリマーの数平均分子量(Mn)及び重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィ(東ソー(株)製、型番「GPC-8020」、TSK-GEL SuperH1000、SuperH2000、SuperH3000及びSuperH4000を直列に接続したもの)を用いて測定した。ポリマーセグメントのガラス転移点(Tg)は、示差走査熱量計(Perkin-Elmer社製、製品名「DSC7」)を用いて、0~200℃の温度範囲について20℃/minの昇温速度にて昇温しつつ測定した。ポリスチレン及びポリメチルメタクリレートの溶解度パラメーターはそれぞれ9.0及び9.3である(化学便覧 応用編 改定2版参照)。
 このブロック共重合体150mgとポリエチレンオキシドとして38mgの東京化成製ポリエチレングリコール4,000(Mw=3000、Mw/Mn=1.10)に、トルエンを、総量が10gになるように加えて溶解させた。この溶液を孔径0.5μmのメンブレンフィルターでろ過してブロック共重合体溶液を得た。得られたブロック共重合体溶液を、基材としてのポリフェニレンスルフィドフィルム(東レ(株)製トレリーナ)上に、スピンコートにより200~250nmの膜厚で塗布した。スピンコートは、回転速度500rpmで10秒間行った後、引き続いて800rpmで30秒間行った。スピンコートで塗布された薄膜を室温で10分間放置して乾燥した。
 次いで、薄膜が形成された基材を、170℃のオーブン中で5時間加熱した(第1アニール処理)。加熱後の薄膜の表面には、凹凸が観察されて、薄膜を構成するブロック共重合体がミクロ層分離していることが分かった(図2B参照)。
 上記のように加熱された薄膜を、以下のようにしてエッチング処理して基材上のPMMAを選択的に分解除去する。薄膜に、高圧水銀灯を用いて30J/cmの照射強度で紫外線を照射した。次いで、薄膜を酢酸中に浸漬し、イオン交換水で洗浄した後、乾燥した。この結果、上記加熱処理により薄膜表面に現れた凹凸よりも明らかに深い凹凸パターンが基材上に形成された(図2C参照)。
 次いで、エッチング処理により形成された凹凸パターンを山形構造に変形(山形化処理)するために、基材を140℃のオーブン中で1時間の加熱処理(第2アニール処理)を行った(図2D参照)。
 上記山形化処理された薄膜の表面に、スパッタにより、電流シード層として10nm程度の薄いニッケル層を形成した(図2E参照)。次いで、この薄膜付き基材をスルファミン酸ニッケル浴中に入れ、温度50℃で、電鋳(最大電流密度0.05A/cm)処理してニッケルを厚み250μmになるまで析出させた(図2F参照)。こうして得られたニッケル電鋳体から薄膜付き基材を機械的に剥離した(図2G参照)。次に、ニッケル電鋳体を日本シービーケミカル製ケミゾール2303中に浸漬し、50℃にて2時間攪拌しながら洗浄した。その後、ニッケル電鋳体に、アクリル系UV硬化樹脂を塗布して硬化し、剥離することを3回繰り返すことで、電鋳体の表面に一部付着していたポリマー成分を除去した(図2H参照)。
 次いで、ニッケル電鋳体をダイキン化成品販売社製HD-2101THに約1分浸し、乾燥した後、一晩静置した。翌日、ニッケル電鋳体を、ダイキン化成品販売社製HDTH中に浸漬して約1分間超音波処理洗浄を行った。こうして離型処理されたニッケルモールド(ニッケル基板)を得た(図3A参照)。
 次に、PET基板(東洋紡製、コスモシャインA-4100)上にフッ素系UV硬化性樹脂を塗布し、ニッケルモールドを押し付けながら、紫外線を600mJ/cmで照射することでフッ素系UV硬化性樹脂を硬化させた(図3B参照)。樹脂が硬化後、ニッケルモールドを硬化した樹脂から剥離した(図3C参照)。こうしてニッケルモールドの表面形状が転写された樹脂膜付きPET基板からなる回折格子を得た。
 この回折格子について、樹脂表面の凹凸形状を原子間力顕微鏡(SIIナノテクノロジー社製の環境制御ユニット付走査型プローブ顕微鏡「NanonaviIIステーション/E-sweep」)を用いて解析画像を得た。原子間力顕微鏡の解析条件は、以下の通りである。
 測定モード:ダイナミックフォースモード
 カンチレバー:SI-DF40(材質:Si、レバー幅:40μm、チップ先端の直径:10nm)
 測定雰囲気:大気中
 測定温度:25℃。
 得られた回折格子の樹脂表面の凹凸解析画像を図9に示す。
 <凹凸の平均高さ>
 回折格子の任意の位置に3μm角(縦3μm、横3μm)の測定領域を測定して、上記のようにして凹凸解析画像を求めた。かかる凹凸解析画像中における、任意の凹部及び凸部との深さ方向の距離を100点以上測定し、その平均を算出して凹凸の平均高さ(深さ)とする。この例で得られた解析画像より凹凸パターンの平均高さは62nmであった。
 <フーリエ変換像>
 回折格子の任意の3μm角(縦3μm、横3μm)の測定領域を測定して上記のようにして凹凸解析画像を求める。得られた凹凸解析画像に対し、1次傾き補正を含むフラット処理を施した後に、2次元高速フーリエ変換処理を施すことによりフーリエ変換像を得た。得られたフーリエ変換像を図10に示す。図10に示す結果からも明らかなように、フーリエ変換像は波数の絶対値が0μm-1である原点を略中心とする円状の模様を示しており、且つ前記円状の模様が波数の絶対値が10μm-1以下の範囲内となる領域内に存在することが確認された。
 なお、フーリエ変換像の円状の模様は、フーリエ変換像において輝点が集合することにより観測される模様である。ここにいう「円状」とは、輝点が集合した模様がほぼ円形の形状に見えることを意味し、外形の一部が凸状又は凹状となっているように見えるものも含む概念である。輝点が集合した模様がほぼ円環状に見えることもあり、この場合を「円環状」として表現する。なお、「円環状」は、環の外側の円や内側の円の形状がほぼ円形の形状に見えるものも含み且つかかる環の外側の円や内側の円の外形の一部が凸状又は凹状となっているように見えるものも含む概念である。また、「円状又は円環状の模様が波数の絶対値が10μm-1以下(より好ましくは1.25~10μm-1、更に好ましくは1.25~5μm-1)の範囲内となる領域内に存在する」とは、フーリエ変換像を構成する輝点のうちの30%以上(より好ましくは50%以上、更により好ましくは80%以上、特に好ましくは90%以上)の輝点が波数の絶対値が10μm-1以下(より好ましくは1.25~10μm-1、更に好ましくは1.25~5μm-1)の範囲内となる領域内に存在することをいう。なお、凹凸構造のパターンとフーリエ変換像との関係について、次のことが分かっている。凹凸構造自体にピッチの分布や指向性もない場合には、フーリエ変換像もランダムなパターン(模様がない)で現れるが、凹凸構造がXY方向に全体として等方的であるがピッチに分布がある場合には、円または円環状のフーリエ変換像が現れる。また、凹凸構造が単一のピッチを有する場合には、フーリエ変換像に現れる円環がシャープになる傾向がある。
 前記凹凸解析画像の2次元高速フーリエ変換処理は、2次元高速フーリエ変換処理ソフトウエアを備えたコンピュータを用いた電子的な画像処理によって容易に行うことができる。
 得られたフーリエ変換像を画像解析した結果、波数2.38μm-1が最も強かった。すなわち平均ピッチは420nmであった。平均ピッチは以下のようにして求めることができる。フーリエ変換像の各点について、フーリエ変換像の原点からの距離(単位:μm-1)と強度を求める。続いて、同じ距離にある点については強度の平均値を求める。以上のようにして、求められたフーリエ変換像の原点からの距離と強度の平均値の関係をプロットし、スプライン関数によりフィッティングをかけ、強度がピークとなる波数を平均波数(μm-1)とした。平均ピッチについては別の方法、たとえば、回折格子の任意の3μm角(縦3μm、横3μm)の測定領域を測定して凹凸解析画像を求め、かかる凹凸解析画像中における任意の隣り合う凸部同士又は隣り合う凹部同士の間隔を100点以上測定し、その平均を算出して凹凸の平均ピッチを求めるなどの方法から計算しても構わない。
 上記のようにして得られた基板について、図6に示した装置を暗室内に設置して以下のような条件で基板の散乱光強度分布を観測した。ステージ装置104の一対の黒色の直方体状ブロックの高さは40mmであり、黒色のブロックの距離は27mmであった。基板は30mm×30mmの正方形の基板を設置した。床面からの高さ160mmの位置に発光中心波長470nm、発光部面積119mm×160mmの一対の高指向性LEDバー照明(CCS株式会社製LDL2-119×16BL)を設置した。LEDバー照明は水平より床面に向け10°傾けた状態で設置し、2本のLEDバー照明の距離は307mmとなるようにした。撮像素子124としてデジタルカメラを用い、基板表面からの距離770mmの位置に設置した。LED照明を最大出力(各5.7W)で発光させて撮影した。デジタルカメラの型式及び撮像条件は以下の通りである。
カメラ:Canon EOS Kiss X3、
レンズ:EF-S18-55mm F3.5-5.6 IS、
シャッター速度:1/100秒、
ISO感度:3200、
絞り値:F5.6、
ホワイトバランス:スタンダード、
ピクチャースタイル:スタンダード、
ピクセル値 0~255。
 得られたデジタルカメラからの像について青のピクセル値を抽出し、そのピクセル値をグレー階調表示した。また、図11(A)に示すように、画像のY方向の略中心位置におけるX方向に延在する直線L1上のピクセル値だけを抽出して、X方向の画素位置に対するピクセル値のプロファイルとして出力させた。なお、断面プロファイルは、後述する有機EL素子として素子化される部分(図11(A)の波線枠内)のみを出力させた。得られたX方向の画素位置に対するピクセル値のプロファイルを図11(B)に示す。平均ピクセル値は113であり、最大ピクセル値は128であり、最小ピクセル値は100であった。これらの値より、最大ピクセル値/最小ピクセル値は1.28であり、判定基準値の1.5未満であることが分かった。
 次いで、得られた回折格子の樹脂層上に透明電極(ITO、厚み:120nm)をスパッタ法にて、正孔輸送層[N,N’-ジフェニル-N,N’-ビス(3-メチルフェニル)-1,1’-ジフェニル-4,4’-ジアミン、厚み:40nm]、電子輸送層(8-ヒドロキシキノリンアルミニウム、厚み:30nm)、フッ化リチウム層(厚み:1.5nm)、及び金属電極(アルミニウム、厚み:150nm)を、硬化樹脂層の表面に形成されている凹凸の形状が維持されるようにして、それぞれ蒸着法により積層して有機EL素子を得た。得られた有機EL素子の金属電極側にマイナスの、透明電極側にプラスの電圧が印加されるように直流電源を接続し、3Vの電圧を印加し、発光状態をデジタルカメラにて撮像した。有機EL素子の発光は520nmを中心波長とする発光であった。デジタルカメラによる撮像条件は、シャッター速度を1/1600秒に変更した以外は、上記基板の撮像条件と同様であった。
 得られたデジタルカメラからの像について、緑のピクセル値を抽出し、そのピクセル値をグレー階調表示した。図12(A)に示すように、画像のY方向の略中心位置におけるX方向に延在する直線L1(基板上の直線L1と同位置)上のピクセル値だけを抽出して、X方向の画素位置に対するピクセル値のプロファイルとして出力させた。得られたX方向の画素位置に対するピクセル値のプロファイルを図12(B)に示す。平均ピクセル値は99であり、最大ピクセル値は105であり、最小ピクセル値は89であった。これらの値より、最大ピクセル値/最小ピクセル値は1.18であり、判定基準値の1.5未満であることが分かった。また、図12(B)のプロファイルは図11(B)のプロファイルの傾向とほぼ一致しており、基板の散乱光の分布は有機EL素子の散乱光分布を反映していることが分かった。このことからすれば、有機EL素子の製造プロセスにおいて、完成した有機EL素子の輝度ムラを検査する前に、回折格子基板の散乱光を検査及び評価することで有機EL素子の発光特性(輝度ムラ)を予め把握することができることが分かる。このようにして、有機EL素子とそれに用いる不規則な凹凸表面を有する基板との輝度ムラの特性を関連付けることによって高いスループットで有機EL素子を製造することができる。特に、基板の製造段階で、完成品の輝度ムラの発生の予測及び完成品の評価をすることができるので、輝度ムラの判定に不合格の基板を除外して、合格した基板のみを用いることで、均一な照度を有する有機EL素子を一層確実に製造することができる。
<実施例2>
 この実施例では、BKL法を用いて凹凸表面を有する基板を製造し、次いで、製造された基板を用いて有機EL素子を製造する。先ず、基材(材質:ガラス、大きさ:20mm×12mm)上にシリコーン系ポリマー[シリコーンゴム(ワッカーケミ社製、製品名「Elastosil RT601」)90質量%と硬化剤10質量%との混合樹脂組成物]をスピンコート法により塗布し、100℃にて1時間加熱して硬化させてシリコーン系ポリマー膜を形成した。
 次に、シリコーン系ポリマー膜上に蒸着法により、温度が100℃であり、圧力が1×10-3Paである条件下において、アルミニウム蒸着膜(厚み:10nm)を形成し、その後、30分かけて室温(25℃)まで冷却した後に、圧力を大気圧(1.013×10Pa)に戻した。シリコーン系ポリマー膜上に形成されたアルミニウム蒸着膜の表面には凹凸が形成されていた。次いで、アルミニウム蒸着膜上にシリコーン系ポリマー[シリコーンゴム(ワッカーケミ社製、製品名「Elastosil RT601」)90質量%と硬化剤10質量%との混合樹脂組成物]を滴下法により塗布し、100℃にて1時間加熱して硬化させた後に、アルミニウム蒸着膜から取り外して母型(M-1B)を得た。
 得られた母型(M-1B)上に蒸着法により、温度が100℃であり、圧力が1×10-3Paである条件下において、アルミニウム蒸着膜(厚み:10nm)を形成し、その後、30分かけて室温(25℃)まで冷却した後に、圧力を大気圧(1.013×10Pa)に戻した。母型(M-1B)上に形成されたアルミニウム蒸着膜の表面には凹凸が形成されていた。次いで、アルミニウム蒸着膜上にシリコーン系ポリマー[シリコーンゴム(ワッカーケミ社製、製品名「Elastosil RT601」)90質量%と硬化剤10質量%との混合樹脂組成物]を滴下法により塗布し、100℃にて1時間加熱して硬化させた後に、アルミニウム蒸着膜から取り外して母型(M-2B)を得た。更に、表面に凹凸が形成されている母型(M-2B)上に蒸着法により、温度が100℃であり、圧力が1×10-3Paである条件下において、アルミニウム蒸着膜(厚み:10nm)を形成し、その後、30分かけて室温(25℃)まで冷却した後に、圧力を大気圧(1.013×10Pa)に戻した。母型(M-2B)上に形成されたアルミニウム蒸着膜の表面には凹凸が形成されていた。次いで、アルミニウム蒸着膜上にシリコーン系ポリマー[シリコーンゴム(ワッカーケミ社製、製品名「Elastosil RT601」)90質量%と硬化剤10質量%との混合樹脂組成物]を滴下法により塗布し、100℃にて1時間加熱して硬化させた後に、アルミニウム蒸着膜から取り外して母型(M-3B)を得た。
 (i)回折格子の作製
 50mm×50mmのガラス基板(Matsunami社製、製品名「Micro slide glass」)及び硬化性樹脂(Norland Optical Adhesive社製、製品名「NOA 61」)を準備し、ガラス基板上に硬化性樹脂を塗布し、その後、ステップアンドリピート方式により、母型(M-3B)を縦、横方向にそれぞれ2回ずつを押し付けつつ硬化性樹脂2’に紫外線を1時間照射して硬化させ、ガラス基板1の略中央部の40mm×24mmの領域に凹凸が形成された硬化樹脂層2を有する回折格子を得た。このプロセスの詳細は、例えば、谷口 淳著 ビギナーズブック38 「はじめてのナノインプリント技術」 興業調査会 p51を参照することができる。こうして得られた回折格子の樹脂表面について、実施例1で用いた原子間力顕微鏡により凹凸解析画像を求め、図13に示す。原子間力顕微鏡による観測及び解析条件は実施例1と同様である。
 <凹凸の平均高さ>
 回折格子の任意の位置で3μm角(縦3μm、横3μm)の測定領域を測定して、上記のようにして凹凸解析画像を求めた。かかる凹凸解析画像中における、任意の凹部及び凸部との深さ方向の距離を100点以上測定し、その平均を算出して凹凸の平均高さ(深さ)とする。この例で得られた解析画像より凹凸パターンの平均高さは35nmであった。
 <フーリエ変換像>
 回折格子の任意の位置で3μm角(縦3μm、横3μm)の測定領域を測定して上記のようにして凹凸解析画像を求める。得られた凹凸解析画像に対し、1次傾き補正を含むフラット処理を施した後に、2次元高速フーリエ変換処理を施すことによりフーリエ変換像を得た。得られたフーリエ変換像を図14に示す。図14に示す結果からも明らかなように、フーリエ変換像は波数の絶対値が0μm-1である原点を略中心とする円状の模様を示しており、且つ前記円状の模様が波数の絶対値が10μm-1以下の範囲内となる領域内に存在することが確認された。
 得られたフーリエ変換像を画像解析した結果、波数2.67μm-1が最も強かった。すなわち平均ピッチは375nmであった。
 上記のようにして得られた基板について、ガラス基板のサイズが異なる以外は、実施例1と同様の条件で、図6に示す装置を用いて基板の散乱光強度分布を観測した。なお、ガラスは凹凸が形成された領域の中心と、撮像エリアの中心とが一致するように配置した。用いたデジタルカメラ及び撮像条件は実施例1と同条件である。
 得られたデジタルカメラからの像について青のピクセル値を抽出し、そのピクセル値をグレー階調表示した。また、図15(A)に示すように、画像のY方向の略中心位置におけるX方向に延在する直線L2上のピクセル値だけを抽出して、X方向の画素位置に対するピクセル値のプロファイルとして出力させた。なお、図15(A)は後述する有機EL素子として素子化される部分のみの像である。得られたX方向の画素位置に対するピクセル値のプロファイルを図15(B)に示す。平均ピクセル値は118であり、最大ピクセル値は149であり、最小ピクセル値は69であった。これらの値より、最大ピクセル値/最小ピクセル値は2.16であり、許容範囲の1.5を超えていることが分かる。
 (ii)有機EL素子の作製
 上記のようにして得られた回折格子基板の散乱強度差は許容値を超えていたが、この基板の硬化樹脂層上に、透明電極(ITO、厚み:120nm)をスパッタ法により、正孔輸送層[N,N’-ジフェニル-N,N’-ビス(3-メチルフェニル)-1,1’-ジフェニル-4,4’-ジアミン、厚み:40nm]、電子輸送層(8-ヒドロキシキノリンアルミニウム、厚み:30nm)、フッ化リチウム層(厚み:1.5nm)、及び金属電極(アルミニウム、厚み:150nm)を、硬化樹脂層の表面に形成されている凹凸の形状が維持されるようにして、それぞれ蒸着法により積層して有機EL素子を得た(図8参照)。得られた有機EL素子の金属電極側にマイナスの、透明電極側にプラスの電圧が印加されるように直流電源を接続し、3Vの電圧を印加し、発光状態をデジタルカメラにて撮像した。有機EL素子の発光は520nmを中心波長とする発光であった。デジタルカメラによる撮像条件は、シャッター速度を1/1600秒に変更した以外は、上記基板の撮像条件と同様であった。
 得られたデジタルカメラからの像について緑のピクセル値を抽出し、そのピクセル値をグレー階調表示した。図16(A)に示すように、画像のY方向の略中心位置におけるX方向に延在する直線L2(基板上の直線L2と同位置)上のピクセル値だけを抽出して、X方向の画素位置に対するピクセル値のプロファイルとして出力させた。得られたX方向の画素位置に対するピクセル値のプロファイルを図16(B)に示す。平均ピクセル値は151であり、最大ピクセル値は183であり、最小ピクセル値は114であった。これらの値より、最大ピクセル値/最小ピクセル値は1.61であり、判定基準値である1.5を超えていることが分かった。しかし、図16(B)のプロファイルは図15(B)のプロファイルの傾向とほぼ一致しており、基板の散乱光の分布は有機EL素子の散乱光分布を反映していることが分かった。このことからすれば、有機EL素子の製造プロセスにおいて、完成した有機EL素子の輝度ムラを検査する前に、回折格子基板の散乱光を検査及び評価して、輝度ムラの基準を満たしていない基板を除外して、輝度ムラの基準を満たした基板のみを用いることで、均一な照度を有する有機EL素子を一層確実に製造することができる。
<実施例3>
 実施例1及び2においては、検査工程における光源として発光中心波長470nmの青色光源を用いたが、実施例1で得られた樹脂基板について白色LED及び赤色LEDを用いて散乱光の見え方について評価を行った。図19に青色LED(実施例1)、白色LED及び赤色LEDのLEDバー照明を用いて撮像された基板の凹凸表面の像の写真を示す。この写真より赤色LEDにおいては、パターンムラ(輝度ムラ)はほとんど観察されず、樹脂基板上の異物が強調されており、白色LEDにおいては青色と赤色の中間的な見え方、すなわちパターンムラと樹脂基板上の異物の両方が強調された像が得られる。実施例1および実施例2からわかる通り、輝度ムラに起因するのはパターンムラであるため、ピッチが100~600nmのような有機EL素子用の回折格子基板の輝度ムラを予測する検査系の光源としては、青色光源(例えば、中心波長が430nm~485nm)が好適であることがわかる。
<実施例4>
 この実施例では、実施例1と同様にしてBCP法を用いて離型処理されたニッケルモールド(ニッケル基板)を得た。次に、PET基板(東洋紡績(株)社製易接着PETフィルム、コスモシャインA-4100)上にフッ素系UV硬化性樹脂を塗布し、ニッケルモールドを押し付けながら、UV光を600mJ/cmで照射することでフッ素系UV硬化性樹脂を硬化させた。樹脂が硬化後、ニッケルモールドを硬化した樹脂から剥離した。こうしてニッケルモールドの表面形状が転写された樹脂膜付きPET基板からなる回折格子モールドを得た。次いで、エタノール24.3g、水2.16g及び濃塩酸0.0094gを混合した液に、テトラエトキシシラン(TEOS)2.5gとメチルトリエトキシシラン(MTES)2.1gを滴下して加え、23℃、湿度45%で2時間攪拌してゾル溶液を得た。このゾル溶液を、15×15×0.11cmのソーダライム製ガラス板上にバーコートした。バーコーターとしてドクターブレード(YOSHIMITSU SEIKI社製)を用いた。このドクターブレードは塗膜の膜厚が5μmとなるような設計であったがドクターブレードに35μmの厚みのイミドテープを張り付けて塗膜の膜厚が40μmとなるように調整した。塗布後、60秒経過後、次に、実施例1と同様にして作製したニッケルモールドの表面形状が転写された樹脂膜付きPET基板からなる回折格子モールドを、以下に記載するような方法で押圧ロールによりガラス板上の塗膜に押し付けた。
 最初に、モールドのパターンが形成された面を、ガラス基板の一端から他端に向かって23℃の押圧ロールを回転させながらガラス基板上の塗膜に押し付けた。押圧終了直後に、基板をホットプレート上へ移動し、基板を100℃で加熱した(仮焼成)。加熱を5分間続けた後、ホットプレート上から基板を取り外し、基板からモールドを端から手作業で剥離した。基板に対するモールドの角度(剥離角度)が約30°になるように剥離した。
 次いで基板をオーブンを用いて300℃で60分加熱して本焼成を行うことで回折格子基板を得た。この後、塗膜に転写されたパターンを評価した。
 この回折格子について、表面の凹凸形状を実施例1で用いた原子間力顕微鏡を用いて解析画像を得た。原子間力顕微鏡の解析条件は、実施例1と同様であった。回折格子の任意の位置に3μm角(縦3μm、横3μm)の測定領域を測定して、実施例1と同様にして凹凸解析画像を求めた。得られた解析画像より凹凸パターンの平均高さは56nmであった。フーリエ変換像については、波数の絶対値が0μm-1である原点を略中心とする円状の模様を示しており、且つ前記円状の模様が波数の絶対値が10μm-1以下の範囲内となる領域内に存在することが確認された。得られたフーリエ変換像を画像解析した結果、波数2.38μm-1が最も強かった。すなわち平均ピッチは420nmであった。上記のようにして得られた基板について、デジタルカメラ及び撮像条件は実施例1と同様として、図6に示す装置を用いて基板の散乱光強度分布を観測した。得られたデジタルカメラからの像について青のピクセル値を抽出し、そのピクセル値をグレー階調表示した。図20(A)に示すように、画像のY方向の略中心位置におけるX方向に延在する直線L3上のピクセル値だけを抽出して、X方向の画素位置に対するピクセル値のプロファイルとして出力させた。得られたX方向の画素位置に対するピクセル値のプロファイルを図20(B)に示す。デジタルカメラの像から、実施例1と同様にして、出力させた断面プロファイルより平均ピクセル値および最大ピクセル値、最小ピクセルを算出したところ、平均ピクセル値は205.6であり、最大ピクセル値は221.0であり、最小ピクセル値は181.0であった。これらの値より、最大ピクセル値/最小ピクセル値は1.22であり、判定基準値の1.5未満であることが分かった。
 以上、本発明の方法を実施例により説明してきたが、本発明はそれらに限定されず、種々の態様で実施することができる。上記実施例では、BCP法及びBKL法で基板を製造したが不規則な凹凸表面を有する基板を製造できる方法であれば、別の方法を用い得る。また、上記実施例では、電鋳用の基板、電鋳により形成された金属基板(モールド)、金属基板から形成された樹脂基板は平板であったが、曲面状であってもよい。例えば、電鋳により金属基板をドラム状に形成して凹凸パターン付きのドラムとすることができる。また、製造した基板及びそれを用いて製造した有機EL素子について、図6に示した装置で散乱光強度を測定して評価したが、フィルム搬送系の上部にラインセンサカメラを設置し、散乱光の強度をモニタすることで、大型のガラス基板、または長尺のフィルムがコアに巻き取られたロール上のフィルムにも適用できる。
 また、上記実施例の検査工程及び評価・判定工程における対象とする基板は、BCP法において電鋳により形成された金属基板を用いて成型された樹脂基板であったが、この樹脂基板を製造するために得られる不規則な凹凸表面を有する基板であればどの段階(プロセスステップ)で得られた基板でも検査対象とすることができる。例えば、BCP法の第2加熱工程前の基板(図2(C)参照)、第2加熱工程で得られた山形の凹凸表面を有する基板(図2(D)、図2(E)参照)、電鋳工程で得られた凹凸表面を有する金属基板(図2(H)参照)もまた検査工程及びその後の工程の対象とすることができる。あるいは、金属基板を用いて成型された樹脂基板やそれを母型として転写により直接的に得られまたは転写を繰り返すことで間接的に得られた樹脂基板やゾルゲル材料基板もまた対象とすることができる。BKL法についても、凹凸が形成されたいかなる段階における凹凸表面を有する基板(例えば図5(B)参照)も検査工程及びその後の工程の対象とすることができる。さらには、BKL法により得られたポリマー膜の母型を用いて転写を行って直接的または間接的に得られた基板やゾルゲル材料基板も上記検査工程及びその後の工程の対象とすることができる。
 上記のような電鋳で形成された凹凸付きドラム(ロール)を用いて基板及び有機EL素子を量産のために連続的に製造する場合には、以下のようなインライン評価も可能である。例えば、図17に示す基板製造ライン設備250では、UV硬化樹脂が塗布されたフィルム131が、中間ローラ142を経て、転写用Ni(ニッケル)ロール136に送られ、転写用Niロール136より凹凸パターンがUV硬化樹脂に転写されつつ、転写用Niロール136近傍に設置されたUV照射機133のUV光により硬化されて転写フィルム141を連続的に成型する。転写フィルム141の成型された部分は、中間ローラ144を経て下流側に送られ、凹凸形状のムラ観察のために、搬送ラインの下流側に設置された検査用照明132から入射光146により照明されて、回折光・散乱光強度が転写フィルム141と対向配置されたラインセンサカメラ134で測定される。転写フィルム141は巻取り部138で巻き取られることで搬送される。このようにして、基板製造ライン設備250では凹凸パターンが連続的に転写されつつ、転写フィルム141の所定箇所を連続的に検査してその良否を判定することができる。
 図18に、図17に示した基板製造ライン設備250を改良した基板製造ライン設備300を示す。転写部150では、フィルム131上に塗布されたUV硬化樹脂が、転写用Niロール136により凹凸形状が転写されつつ、転写用Niロール136対してフィルム131を挟んで対向配置されたUV照射機133のUV光により硬化されて転写フィルム141が連続成型される。搬送方向下流側の検査部170では、一対の検査用照明132及びそこから投光された入射光146の回折光・散乱光の強度分布を測定するエリアカメラ(もしくは二次元色彩輝度計)134が設置されている。転写部150ではフィルム141が連続的に搬送されつつも、検査部170ではフィルム141が間欠的に搬送されるように、フィルム蓄積機構160が転写部150と検査部170の間に設けられている。フィルム蓄積機構160には、例えば、上側昇降ロール166,168、下側昇降ロール164及び中間ローラ162,172を備え、上側昇降ロール166,168及び下側昇降ロール164を適宜上下移動させることでフィルム蓄積機構160から送り出すフィルム141を断続的に停止させることができる。
 上記実施例では、検査工程において散乱光強度を測定して輝度ムラを観測したが、基板の凹凸パターンの均一性評価により有機EL素子の色度の均一性を評価することもできる。この場合、撮像素子として二次元色彩輝度計を用いることができる。
 上記実施例では、有機EL素子用の基板の製造について説明したが、それに限らず、本発明は太陽電池に用いられる凹凸表面を有する基板の製造にも適用することができる。太陽電池パネルの正面からの太陽光に対しては、凹凸構造を有する基板は、太陽光の進行方向を横方向に変える機能があると考えられるので、そのような太陽電池の変換効率の予測、面内分布の評価を検査工程及び評価・判定工程で行うことができる。
 本発明によれば、有機EL素子などのデバイスに使用される不規則な凹凸表面を有する基板を、輝度ムラの検査を行いつつ、効率よく製造することができる。また、不規則な凹凸表面を有する回折格子基板を有する有機EL素子を製造する際に、有機EL素子とそれに用いる不規則な凹凸表面を有する基板との輝度ムラの特性を関連付けることによって、基板の製造段階で完成品の輝度ムラの発生の予測及び完成品の評価をすることができるので、輝度ムラの判定に不合格の基板を除外して、合格した基板のみを用いることで均一な照度を有する有機EL素子を一層確実に且つ高いスループットで製造することができる。さらに、有機EL素子の照度の均一性に不良があった場合でも、不良の発生段階が基板形成段階かあるいは素子そのものの形成段階であるかが分かるので、そのような事態に迅速に対応することができる。

Claims (21)

  1.  光を散乱するための不規則な凹凸表面を有する基板を製造する方法であって、
     前記不規則な凹凸表面を有する基板を作製することと、
     前記作製した基板の凹凸表面に、該凹凸表面の法線方向に対して傾斜した方向から検査光を照射し、該検査光の前記凹凸表面からの戻り光を、前記凹凸表面の法線方向に設置した受光素子により検出することと、
     受光した光強度に基づいて前記凹凸表面の輝度ムラを判定することを含む不規則な凹凸表面を有する基板の製造方法。
  2.  前記基板上の不規則な凹凸表面は、凹凸の平均ピッチが100nm~600nmであり、平均高さが5~200nmの範囲であることを特徴とする請求項1に記載の基板の製造方法。
  3.  前記不規則な凹凸表面を有する基板を作製することは、
     基材の表面に、少なくとも第1及び第2のポリマーからなるブロック共重合体溶液を塗布する工程と、
     前記基材上の塗膜を乾燥させる工程と、
     前記乾燥したブロック共重合体塗膜のミクロ相分離構造を生じせしめる工程を含むことを特徴とする請求項1または2に記載の基板の製造方法。
  4.  前記ミクロ相分離構造を生じせしめる工程が、前記乾燥した塗膜を、前記ブロック共重合体のガラス転移温度より高い温度で加熱する第1加熱工程を含み、
     さらに、前記基板の製造方法が、前記第1加熱工程後に、塗膜のエッチング処理により第2ポリマーを除去して基材上に凹凸構造を形成するエッチング工程とを含むことを特徴とする請求項3に記載の基板の製造方法。
  5.  さらに、前記エッチング工程によりエッチング処理された凹凸構造を、前記第1ポリマーのガラス転移温度より高い温度で加熱する第2加熱工程を含む請求項4に記載の基板の製造方法。
  6.  さらに、前記エッチング工程後、前記凹凸構造上にシード層を形成する工程と、
     前記シード層上に電鋳により金属層を積層する工程と、
     前記金属層及び前記シード層から前記凹凸構造を有する基材を剥離することにより金属基板を得る工程を含むことを特徴とする請求項4または5に記載の基板の製造方法。
  7.  さらに、シード層を形成する工程の前に、前記エッチング処理された凹凸構造を、前記第1ポリマーのガラス転移温度より高い温度で加熱する第2加熱工程を含む請求項6に記載の基板の製造方法。
  8.  前記得られた金属基板を、硬化性樹脂が塗布された透明基板上に押し付けて前記硬化性樹脂を硬化させ、前記金属基板を取り外すことによって、前記不規則な凹凸表面を有する基板を得ることを特徴とする請求項6または7に記載の基板の製造方法。
  9.  前記得られた金属基板を、硬化性樹脂が塗布された基板上に押し付けて前記硬化性樹脂を硬化させ、前記金属基板を取り外すことにより基板上に凹凸構造を有する基板を形成し、当該凹凸構造を有する基板をゾルゲル材料が塗布された透明基板上に押しつけてゾルゲル材料を硬化させ、該基板を取り外すことによって、ゾルゲル材料からなる前記不規則な凹凸表面を有する基板を得ることを特徴とする請求項6または7に記載の基板の製造方法。
  10.  前記不規則な凹凸表面を有する基板が金属から形成されていることを特徴とする請求項6または7に記載の基板の製造方法。
  11.  前記ミクロ相分離構造がラメラ型であることを特徴とする請求項3~10のいずれか一項に記載の基板の製造方法。
  12.  前記不規則な凹凸表面を有する基板を作製することが、
     70℃以上の温度条件下において、熱により体積が変化するポリマーからなるポリマー膜の表面に蒸着膜を形成した後、前記ポリマー膜及び前記蒸着膜を冷却することにより、前記蒸着膜の表面に皺による凹凸を形成する工程と、
     前記蒸着膜上に母型材料を付着させ硬化させた後に、硬化後の母型材料を前記蒸着膜から取り外して母型を得る工程を含むことを特徴とする請求項1または2に記載の基板の製造方法。
  13.  前記熱により体積が変化するポリマーがシリコーン系ポリマーであることを特徴とする請求項12に記載の基板の製造方法。
  14.  上記不規則な凹凸が疑似周期構造を有し、凹凸の平均周期をd、検査光の中心波長をλとしたときに、0.5d≦λ≦2.0dを満足することを特徴とする請求項1~13のいずれか一項に記載の基板の製造方法。
  15.  上記検査光が青色帯域の光であることを特徴とする請求項1~14のいずれか一項に記載の基板の製造方法。
  16.  前記検査光を前記表面へ法線方向に対して傾斜する入射角αが30°<α<90°となるように前記表面に照射することを特徴とする請求項1~15のいずれか一項に記載の基板の製造方法。
  17.  前記受光素子が撮像装置であり、撮像装置の画素毎の出力から散乱光強度の最大値及び最小値を求め、最大値/最小値が1.5未満であるか否かを判定することを特徴とする請求項1~16のいずれか一項に記載の基板の製造方法。
  18.  前記不規則な凹凸表面を有する基板がフィルム状もしくは板状基板であり、該フィルム状基板を前記検査光に対して連続的に移動させながら、該移動するフィルム状基板に検査光を照射する請求項1~17のいずれか一項に記載の基板の製造方法。
  19.  請求項1~18のいずれか一項に記載の基板を製造する方法を用いて凹凸表面を有する回折格子基板を作製し、
     前記回折格子基板の凹凸表面上に、透明電極、有機層及び金属電極を、順次積層して有機EL素子を製造することを特徴とする有機EL素子の製造方法。
  20.  前記作製した回折格子基板の輝度ムラが所定の範囲内であると判定された場合にのみ、当該所定の範囲内の輝度ムラを有する回折格子基板の凹凸表面上に、前記透明電極、前記有機層及び前記金属電極を、順次積層して有機EL素子を製造することを特徴とする請求項19に記載の有機EL素子の製造方法。
  21.  前記受光素子が撮像装置であり、撮像装置の画素毎の出力から散乱光強度の最大値及び最小値を求め、最大値/最小値が1.5未満であるとき、前記作製した回折格子基板の前記輝度ムラが所定の範囲内であると判定することを特徴とする請求項20に記載の有機EL素子の製造方法。
PCT/JP2012/057945 2011-03-28 2012-03-27 凹凸構造を有する基板の製造方法及びそれを用いた有機el素子の製造方法 WO2012133414A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2013507617A JP5680742B2 (ja) 2011-03-28 2012-03-27 凹凸構造を有する基板の製造方法及びそれを用いた有機el素子の製造方法
EP12764995.2A EP2693241A4 (en) 2011-03-28 2012-03-27 METHOD FOR MANUFACTURING SUBSTRATE WITH TEXTURED STRUCTURE, AND METHOD FOR MANUFACTURING ORGANIC ELECTROLUMINESCENT ELEMENTS USING THE SAME
CN201280016402.XA CN103460084B (zh) 2011-03-28 2012-03-27 具有凹凸结构的基板的制造方法及使用该基板的有机el元件的制造方法
CA2830078A CA2830078C (en) 2011-03-28 2012-03-27 Method for manufacturing substrate having textured structure and method for manufacturing organic el elements using same
AU2012233865A AU2012233865B2 (en) 2011-03-28 2012-03-27 Method for manufacturing substrate having textured structure and method for manufacturing organic el elements using same
KR1020137024220A KR101552172B1 (ko) 2011-03-28 2012-03-27 요철 구조를 가지는 기판 제조 방법 및 이것을 사용한 유기 el 소자의 제조 방법
US14/029,371 US9023668B2 (en) 2011-03-28 2013-09-17 Method for producing substrate having concavity and convexity structure and method for producing organic EL element using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011070258 2011-03-28
JP2011-070258 2011-03-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/029,371 Continuation US9023668B2 (en) 2011-03-28 2013-09-17 Method for producing substrate having concavity and convexity structure and method for producing organic EL element using the same

Publications (1)

Publication Number Publication Date
WO2012133414A1 true WO2012133414A1 (ja) 2012-10-04

Family

ID=46931130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057945 WO2012133414A1 (ja) 2011-03-28 2012-03-27 凹凸構造を有する基板の製造方法及びそれを用いた有機el素子の製造方法

Country Status (9)

Country Link
US (1) US9023668B2 (ja)
EP (1) EP2693241A4 (ja)
JP (1) JP5680742B2 (ja)
KR (1) KR101552172B1 (ja)
CN (1) CN103460084B (ja)
AU (1) AU2012233865B2 (ja)
CA (1) CA2830078C (ja)
TW (1) TWI544673B (ja)
WO (1) WO2012133414A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130124864A (ko) * 2012-05-07 2013-11-15 엘지디스플레이 주식회사 나노구조의 미세패턴을 갖는 실리카 박막 제조방법
JP2014175262A (ja) * 2013-03-12 2014-09-22 Kaneka Corp 有機el装置
EP2990197A4 (en) * 2013-04-26 2016-11-02 Jx Nippon Oil & Energy Corp SUBSTRATE HAVING CANNEL STRUCTURE OBTAINED FROM FLOOR / HYDROPHOBIC GEL MATERIAL
TWI586015B (zh) * 2012-12-28 2017-06-01 王子控股股份有限公司 有機發光二極體、有機發光二極體用基板及其製造方法
EP3094160A4 (en) * 2014-01-10 2017-08-30 JX Nippon Oil & Energy Corporation Optical substrate, mold to be used in optical substrate manufacture, and light emitting element including optical substrate
WO2019064367A1 (ja) * 2017-09-27 2019-04-04 シャープ株式会社 表示デバイスの製造方法、表示デバイスの製造装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2888616A4 (en) * 2012-08-22 2016-04-27 Gen Hospital Corp SYSTEM, METHOD AND COMPUTER-ACCESSIBLE MEDIA FOR MANUFACTURING MINIATURE ENDOSCOPES USING SOFT LITHOGRAPHY
JP5934665B2 (ja) 2013-02-22 2016-06-15 東京エレクトロン株式会社 成膜方法、プログラム、コンピュータ記憶媒体及び成膜システム
AU2014227157B2 (en) * 2013-03-06 2016-09-22 Jx Nippon Oil And Energy Corporation Method of manufacturing member having relief structure, and member having relief structure manufactured thereby
CN103943652B (zh) * 2013-08-29 2017-02-08 上海天马微电子有限公司 一种oled像素及其显示装置的制作方法
US20150179987A1 (en) * 2013-09-30 2015-06-25 Universal Display Corporation Novel substrate and process for high efficiency oled devices
KR102354019B1 (ko) * 2015-03-06 2022-01-21 유니버셜 디스플레이 코포레이션 고효율 oled 소자를 위한 신규 기판 및 공정
KR102262895B1 (ko) * 2015-05-28 2021-06-09 삼성전자주식회사 디스플레이 모듈 및 이를 구비한 디스플레이 장치
TWI596375B (zh) * 2015-06-30 2017-08-21 旭東機械工業股份有限公司 自動化顯微取像設備及方法
CN105405983B (zh) * 2015-12-14 2017-05-10 吉林大学 具有周期性规则褶皱结构的可拉伸有机电致发光器件
JP2017111356A (ja) * 2015-12-18 2017-06-22 株式会社東芝 パターン形成方法
JP6779701B2 (ja) * 2016-08-05 2020-11-04 東京エレクトロン株式会社 基板処理装置、基板処理方法及び基板処理方法を実行させるプログラムが記録された記憶媒体
CN106601933B (zh) * 2016-12-12 2018-02-23 吉林大学 一种具有规则褶皱结构的可拉伸电子器件的制备方法
CN108987413B (zh) * 2017-06-02 2023-12-29 信越化学工业株式会社 半导体用基板及其制造方法
KR102426957B1 (ko) * 2017-10-17 2022-08-01 캐논 가부시끼가이샤 임프린트 장치, 및 물품의 제조 방법
CN108231672A (zh) * 2018-01-19 2018-06-29 昆山国显光电有限公司 柔性显示面板的制作方法及柔性显示面板
US10490682B2 (en) 2018-03-14 2019-11-26 National Mechanical Group Corp. Frame-less encapsulated photo-voltaic solar panel supporting solar cell modules encapsulated within multiple layers of optically-transparent epoxy-resin materials
CN110534017B (zh) * 2018-12-26 2021-03-26 友达光电股份有限公司 显示面板
CN110739334A (zh) * 2019-10-16 2020-01-31 深圳市华星光电技术有限公司 显示面板、显示面板的制作方法和显示面板的检测方法
US11316134B2 (en) 2019-11-12 2022-04-26 Tcl China Star Optoelectronics Technology Co., Ltd. Display panel, method for manufacturing the same, and method for detecting the same
CN111081743B (zh) * 2019-12-11 2022-06-07 深圳市华星光电半导体显示技术有限公司 显示面板的制造方法及显示面板
CN111952345B (zh) * 2020-08-24 2022-10-14 湖北长江新型显示产业创新中心有限公司 显示面板和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10241856A (ja) * 1997-02-25 1998-09-11 Denso Corp El素子の製造方法
JP2000321406A (ja) * 1999-03-11 2000-11-24 Hitachi Chem Co Ltd 転写フィルム及び拡散反射板の製造方法
JP2004342522A (ja) * 2003-05-16 2004-12-02 Toyota Industries Corp 自発光デバイス
JP2006236748A (ja) 2005-02-24 2006-09-07 Konica Minolta Holdings Inc 有機電界発光装置
JP2011006487A (ja) 2001-06-22 2011-01-13 Cpex Pharmaceuticals Inc 医薬組成物
WO2011007878A1 (ja) 2009-07-16 2011-01-20 Jx日鉱日石エネルギー株式会社 回折格子及びそれを用いた有機el素子、並びにそれらの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101054338B1 (ko) 2003-12-18 2011-08-04 삼성전자주식회사 규소 결정화 검사 시스템
JP3826145B2 (ja) * 2004-07-16 2006-09-27 株式会社クラレ 集光フィルム、液晶パネルおよびバックライト並びに集光フィルムの製造方法
JP3892882B2 (ja) 2005-06-13 2007-03-14 三菱電機株式会社 半透過型液晶表示装置
JP2008286920A (ja) * 2007-05-16 2008-11-27 Konica Minolta Holdings Inc 感光性基板に凹凸パターンを形成する方法及び干渉縞パターン露光装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10241856A (ja) * 1997-02-25 1998-09-11 Denso Corp El素子の製造方法
JP2000321406A (ja) * 1999-03-11 2000-11-24 Hitachi Chem Co Ltd 転写フィルム及び拡散反射板の製造方法
JP2011006487A (ja) 2001-06-22 2011-01-13 Cpex Pharmaceuticals Inc 医薬組成物
JP2004342522A (ja) * 2003-05-16 2004-12-02 Toyota Industries Corp 自発光デバイス
JP2006236748A (ja) 2005-02-24 2006-09-07 Konica Minolta Holdings Inc 有機電界発光装置
WO2011007878A1 (ja) 2009-07-16 2011-01-20 Jx日鉱日石エネルギー株式会社 回折格子及びそれを用いた有機el素子、並びにそれらの製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUN TANIGUCHI: "Beginner's book", vol. 38, KOGYO CHOSAKAI PUBLISHING INC., article "Hajimete no nano-imprint gijutsu (Introduction to nano-imprint technology", pages: 51
See also references of EP2693241A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130124864A (ko) * 2012-05-07 2013-11-15 엘지디스플레이 주식회사 나노구조의 미세패턴을 갖는 실리카 박막 제조방법
KR101886303B1 (ko) 2012-05-07 2018-08-07 엘지디스플레이 주식회사 나노구조의 미세패턴을 갖는 실리카 박막 제조방법
TWI586015B (zh) * 2012-12-28 2017-06-01 王子控股股份有限公司 有機發光二極體、有機發光二極體用基板及其製造方法
JP2014175262A (ja) * 2013-03-12 2014-09-22 Kaneka Corp 有機el装置
EP2990197A4 (en) * 2013-04-26 2016-11-02 Jx Nippon Oil & Energy Corp SUBSTRATE HAVING CANNEL STRUCTURE OBTAINED FROM FLOOR / HYDROPHOBIC GEL MATERIAL
KR101797633B1 (ko) * 2013-04-26 2017-11-15 제이엑스티지 에네루기 가부시키가이샤 소수성 졸겔 재료를 사용한 요철 구조를 가지는 기판
US9859512B2 (en) 2013-04-26 2018-01-02 Jxtg Nippon Oil & Energy Corporation Substrate having rugged structure obtained from hydrophobic sol/gel material
EP3094160A4 (en) * 2014-01-10 2017-08-30 JX Nippon Oil & Energy Corporation Optical substrate, mold to be used in optical substrate manufacture, and light emitting element including optical substrate
AU2014376585B2 (en) * 2014-01-10 2017-08-31 Jx Nippon Oil & Energy Corporation Optical substrate, mold to be used in optical substrate manufacture, and light emitting element including optical substrate
US9823392B2 (en) 2014-01-10 2017-11-21 Jx Nippon Oil & Energy Corporation Optical substrate, mold to be used in optical substrate manufacture, and light emitting element including optical substrate
WO2019064367A1 (ja) * 2017-09-27 2019-04-04 シャープ株式会社 表示デバイスの製造方法、表示デバイスの製造装置
US10811642B2 (en) 2017-09-27 2020-10-20 Sharp Kabushiki Kaisha Manufacturing method of display device and manufacturing apparatus of display device

Also Published As

Publication number Publication date
AU2012233865A1 (en) 2013-10-10
JPWO2012133414A1 (ja) 2014-07-28
TW201304229A (zh) 2013-01-16
US20140030833A1 (en) 2014-01-30
CA2830078A1 (en) 2012-10-04
KR101552172B1 (ko) 2015-09-10
KR20130130047A (ko) 2013-11-29
JP5680742B2 (ja) 2015-03-04
TWI544673B (zh) 2016-08-01
CA2830078C (en) 2016-05-03
US9023668B2 (en) 2015-05-05
CN103460084B (zh) 2016-06-01
EP2693241A4 (en) 2014-08-27
EP2693241A1 (en) 2014-02-05
AU2012233865B2 (en) 2014-08-07
CN103460084A (zh) 2013-12-18

Similar Documents

Publication Publication Date Title
JP5680742B2 (ja) 凹凸構造を有する基板の製造方法及びそれを用いた有機el素子の製造方法
JP5707541B2 (ja) 不規則な凹凸表面を有する基板を検査する装置及びそれを用いた検査方法
KR101871538B1 (ko) 유기 el 소자용의 광 취출 투명 기판 및 그것을 사용한 유기 el 소자
KR101927569B1 (ko) 유기 el 소자
JP5695799B2 (ja) 微細パターン転写用のモールドの製造方法及びそれを用いた凹凸構造を有する基板の製造方法、並びに該凹凸構造を有する基板を有する有機el素子の製造方法
JP5755662B2 (ja) 微細パターン転写用のモールドの製造方法及びそれを用いた回折格子の製造方法、並びに該回折格子を有する有機el素子の製造方法
JP6013945B2 (ja) 凹凸パターンを有する基板を備えたデバイスの製造方法
JP5763517B2 (ja) 有機el素子
JP5763506B2 (ja) 有機el素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764995

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137024220

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2830078

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2013507617

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012764995

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012233865

Country of ref document: AU

Date of ref document: 20120327

Kind code of ref document: A