WO2012133203A1 - 蒸着膜パターンの形成方法および有機エレクトロルミネッセンス表示装置の製造方法 - Google Patents

蒸着膜パターンの形成方法および有機エレクトロルミネッセンス表示装置の製造方法 Download PDF

Info

Publication number
WO2012133203A1
WO2012133203A1 PCT/JP2012/057547 JP2012057547W WO2012133203A1 WO 2012133203 A1 WO2012133203 A1 WO 2012133203A1 JP 2012057547 W JP2012057547 W JP 2012057547W WO 2012133203 A1 WO2012133203 A1 WO 2012133203A1
Authority
WO
WIPO (PCT)
Prior art keywords
vapor deposition
film
region
layer
organic
Prior art date
Application number
PCT/JP2012/057547
Other languages
English (en)
French (fr)
Inventor
通 園田
伸一 川戸
智 井上
智志 橋本
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012133203A1 publication Critical patent/WO2012133203A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • C23C14/5813Thermal treatment using lasers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/221Changing the shape of the active layer in the devices, e.g. patterning by lift-off techniques
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition

Definitions

  • the present invention relates to a method for forming a vapor deposition film pattern for forming a patterned vapor deposition film on a film formation substrate, and a method for manufacturing an organic electroluminescence display device using the method for forming the vapor deposition film pattern.
  • flat panel displays have been used in various products and fields, and further flat panel displays are required to have larger sizes, higher image quality, and lower power consumption.
  • an organic EL display device including an organic EL element using electroluminescence (electroluminescence; hereinafter referred to as “EL”) of an organic material is an all-solid-state type, driven at a low voltage and has a high-speed response.
  • EL electroluminescence
  • the organic EL display device has a configuration in which, for example, an organic EL element electrically connected to a TFT is provided on a substrate made of a glass substrate or the like provided with a TFT (thin film transistor).
  • organic EL elements including light emitting layers of red (R), green (G), and blue (B) are arranged and formed on a substrate as sub-pixels. Color images are displayed by selectively emitting light from these organic EL elements with a desired luminance using TFTs.
  • an organic EL display device it is necessary to form a light emitting layer made of an organic light emitting material that emits light of each color in a predetermined pattern for each organic EL element.
  • a vacuum deposition method for example, an ink jet method, a laser transfer method and the like are known.
  • a vacuum deposition method for example, in a low molecular organic EL display (OLED), a vacuum deposition method is often used.
  • a mask also referred to as a shadow mask in which openings of a predetermined pattern are formed is used, and the deposition surface of the substrate on which the mask is closely fixed is opposed to the deposition source.
  • the vapor deposition particles (film forming material) from the vapor deposition source are vapor-deposited on the surface to be vapor-deposited through the opening of the mask, thereby forming a thin film having a predetermined pattern.
  • Vapor deposition is performed for each color of the light emitting layer, and this is called “separate vapor deposition”.
  • Patent Document 1 and Patent Document 2 describe a method in which the mask is moved little by little with respect to the substrate and the light emitting layers of the respective colors are separately deposited.
  • a mask having the same size as the substrate is used, and the mask is fixed so as to cover the deposition surface of the substrate during vapor deposition.
  • the vapor deposition apparatus and its associated apparatus are similarly enlarged and complicated, so that the apparatus design becomes difficult and the installation cost becomes high.
  • a vapor deposition apparatus in which a mask having an opening and a vapor deposition source are integrated is used.
  • FIG. 16 is a plan view showing a state of a vapor deposition film formed on the film formation surface 101a (deposition surface) of the substrate by scanning vapor deposition.
  • a vapor deposition region R10 that requires formation of a vapor deposition film (for example, a light emitting layer) and a terminal portion that does not require the vapor deposition film to be formed.
  • a vapor deposition unnecessary region R20 There is a vapor deposition unnecessary region R20.
  • the tip of the vapor deposition mask 102 is placed on the vapor deposition OFF line (that is, no vapor deposition is required).
  • the vapor deposition flow emitted from the vapor deposition source injection port 103a by, for example, a shutter.
  • the vapor deposition flow injected into the vapor deposition region R10 is also interrupted, so that the film thickness of the vapor deposition film 106 in the vapor deposition region R10 decreases.
  • the scan vapor deposition method in order to form the vapor deposition film 106 having a uniform film thickness in the vapor deposition region R10, as shown in FIG. 16, the vapor deposition film in the vapor deposition region R10 is also formed in the vapor deposition unnecessary region R20. It is necessary to form the vapor deposition film 106 having the same pattern as the pattern.
  • FIG. 18 is a diagram illustrating a problem caused by the vapor deposition film 106 formed in the vapor deposition unnecessary region R20.
  • FIG. 18 is a diagram showing a schematic configuration of an organic EL display device 113 provided with a vapor deposition film 106 formed by a scan vapor deposition method as a light emitting layer.
  • the vapor deposition film 106 having a stripe pattern is formed not only in the vapor deposition region R10 but also in the vapor deposition unnecessary region R20. That is, the vapor deposition film 106 is also formed on the wiring terminal portion 107a which is the vapor deposition unnecessary region R20.
  • connection terminal 111 of the circuit board 112 and the terminal portion 107a of the wiring formed in the vapor deposition unnecessary region R20 are electrically connected via an anisotropic conductive film (ACF) (not shown).
  • ACF anisotropic conductive film
  • the conductivity of the vapor deposition film 106 when the conductivity of the vapor deposition film 106 is low, conduction failure between the connection terminal 111 and the terminal portion 107a of the circuit board 112 occurs. On the other hand, when the conductivity of the deposited film is high, a short circuit occurs between the adjacent terminal portions 107a. That is, in any case, the presence of the vapor deposition film 106 on the terminal portion 107a causes a malfunction. In general, the vapor deposition film 106 has low conductivity and causes poor conduction.
  • a sealing resin 109 is formed in a frame shape in the vapor deposition unnecessary region R20 at the four side ends of the vapor deposition region R10, and the organic EL element 108 formed on the substrate 101 is sealed through the sealing resin 109.
  • the substrate 101 and the sealing substrate 110 are bonded together. This prevents the organic EL element 108 from being deteriorated by moisture or oxygen in the atmosphere.
  • an organic EL display device manufactured by such a vapor deposition method has a low yield and it is difficult to ensure reliability.
  • the present invention has been made in view of the above problems, and provides a deposition film pattern forming method and an organic electroluminescence display device manufacturing method capable of easily removing a deposition film deposited on a deposition unnecessary region.
  • the purpose is to do.
  • a vapor deposition film pattern forming method is a vapor deposition film pattern forming method for forming a vapor deposition film patterned on a film formation substrate, wherein the film formation substrate is Heat generation to form a heat generation layer that generates heat at a temperature equal to or higher than the temperature at which the deposited film becomes a gas (for example, evaporation temperature or sublimation temperature) by applying energy from the outside to the deposition unnecessary region of the film formation surface
  • a layer forming step, a vapor deposition film forming step of forming a vapor deposition film on a film formation surface of the film formation substrate including the vapor deposition unnecessary region so as to cover at least a part of the heat generation layer, and the heat generation layer By generating heat at a temperature equal to or higher than the temperature at which the vapor-deposited film becomes gas, the vapor-deposited film formed in the vapor deposition-unnecessary region is selectively gasified (for example, once melted and then evaporate
  • the heat generation layer is formed in an area where no vapor deposition is required, and after the vapor deposition film is deposited, the heat generation layer is gasified from the heat generation layer by applying energy to the heat generation layer from the outside.
  • the vapor deposition film formed in the vapor deposition unnecessary region can be gasified and removed.
  • the vapor deposition film in the vapor deposition unnecessary region can be easily removed.
  • the vapor deposition film in the vapor deposition unnecessary region can be removed after vapor deposition, so that maskless vapor deposition can be performed.
  • the method for manufacturing an organic electroluminescence display device according to the present invention is characterized in that the vapor deposition film of the organic electroluminescence display device is formed by using the above-mentioned vapor deposition film pattern forming method.
  • an organic electroluminescent display apparatus in order to prevent vapor deposition to a vapor deposition unnecessary area
  • the heat generation layer is formed in an area where vapor deposition is not required, and after the vapor deposition film is deposited, the heat generation layer is energized from the outside to form the vapor deposition film from the heat generation layer.
  • the heat generation layer By generating heat at a temperature equal to or higher than the temperature at which the gas becomes gas, the vapor deposition film formed in the vapor deposition unnecessary region can be gasified and removed.
  • the vapor deposition film in the vapor deposition unnecessary region can be easily removed.
  • (A)-(c) is sectional drawing which shows the process of removing the organic film of the vapor deposition unnecessary area
  • FIG. 5 is a cross-sectional view showing a schematic configuration of a main part in a cross section taken along line AA of the semiconductor substrate shown in FIG. 4.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of a main part taken along line BB of the semiconductor substrate shown in FIG. 4;
  • It is an exploded sectional view showing a schematic structure of a principal part of an organic EL display manufactured by Embodiment 1 of the present invention.
  • It is a perspective view which shows schematic structure of the principal part of the vapor deposition apparatus used in Embodiment 1 of this invention.
  • (A)-(c) is sectional drawing which shows the process of removing the organic film of the sealing area
  • (A)-(c) is sectional drawing which shows the process of removing the organic film of the 2nd electrode connection area
  • (A)-(c) is sectional drawing which shows the process of removing a part of organic film in the display area
  • a deposited film is formed on a deposition target surface of a deposition target substrate including a deposition unnecessary region, and then the deposited film formed in the deposition unnecessary region is formed.
  • This is a method of forming a predetermined vapor deposition film pattern by selectively removing the gas by evaporating or sublimating it.
  • a semiconductor substrate used in an organic EL display device is used as a film formation substrate on which a vapor deposition film pattern is formed, and an organic film pattern is formed on the semiconductor substrate as the vapor deposition film pattern.
  • the case of forming will be described as an example.
  • the present embodiment a method for manufacturing an organic EL display panel and an organic EL display device using the above-described deposition film pattern forming method will be described.
  • the present embodiment is not limited to this.
  • FIG. 7 is an exploded sectional view showing a schematic configuration of a main part of the organic EL display device 100 manufactured in the present embodiment.
  • the organic EL display device 100 manufactured in the present embodiment includes an organic EL display panel 1 (display panel), a circuit board provided with a drive circuit for driving the organic EL display device 100, and the like. 52.
  • the organic EL display panel 1 includes an organic EL element 12 connected to the TFT 2, a sealing element on a semiconductor substrate 10 (film formation substrate, TFT substrate) provided with a TFT 2 (see FIG. 5) as an active element (drive element).
  • the stop resin layer 18 and the sealing substrate 13 have a configuration provided in this order.
  • the organic EL element 12 includes a sealing substrate 13 that includes a semiconductor substrate 10 on which the organic EL element 12 is stacked via a sealing resin layer 18 provided in a frame-shaped sealing region L. Is attached between the pair of substrates (semiconductor substrate 10 and sealing substrate 13).
  • the organic EL element 12 is sealed between the semiconductor substrate 10 and the sealing substrate 13 as described above, so that oxygen and moisture can enter the organic EL element 12 from the outside. It is prevented.
  • a terminal portion region R3 in which electric wiring terminals 15 (electric connection portions, connection terminals) and the like are formed is provided outside the frame-shaped sealing region L of the semiconductor substrate 10.
  • the circuit board 52 is provided with wiring such as a flexible film cable, a drive circuit such as a driver, and the like.
  • the circuit board 52 is connected to the organic EL display panel 1 via the electrical wiring terminals 15 provided in the terminal area R3.
  • a glass substrate is used as the sealing substrate 13, and as described above, the semiconductor substrate 10 and the sealing substrate 13 are attached to each other through the sealing resin layer 18 having adhesiveness. Together, the organic EL element 12 is sealed.
  • the sealing method of the organic EL element 12 is not limited to this.
  • a dense sealing film that hardly transmits moisture or oxygen is formed on the upper surface of the organic EL element 12 by CVD (chemical vapor deposition).
  • the organic EL element 12 may be sealed by forming a sealing resin or frit glass (powder glass) in a frame shape on the side surface of the organic EL element 12.
  • FIG. 4 is a plan view illustrating the configuration of the semiconductor substrate 10 in the organic EL display device 100 manufactured in the present embodiment.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of a main part in a cross section taken along line AA of the semiconductor substrate 10 shown in FIG.
  • a display region R1 As shown in FIG. 4, on one main surface which is an active surface (active element formation surface) of the semiconductor substrate 10, a display region R1, a second electrode connection region R2, a terminal region R3, and the frame shape described above
  • the sealing region L is provided on one main surface which is an active surface (active element formation surface) of the semiconductor substrate 10.
  • the display region R1 is provided in the central portion of the semiconductor substrate 10, and is formed in a rectangular shape, for example.
  • a pixel array unit 30 including a plurality of sub-pixels is formed in the display region R1.
  • a vapor deposition film made of an organic film constituting the organic EL element 12 is formed.
  • the configuration of the pixel array unit 30 will be described in detail later.
  • the organic film is formed from end to end of the semiconductor substrate 10 by scanning vapor deposition. Therefore, the organic film is not only the pixel array section 30 in the display area R1, but also other areas, that is, the second electrode connection area R2, the terminal area R3, It is also formed in the sealing region L.
  • the second electrode connection region R2 is a region to which the second electrode 11 (see FIG. 5) of the pixel array unit 30 is connected.
  • the second electrode connection region R2 is formed on the outer side of the pair of sides of the pair of display regions R1 and along the opposite sides.
  • connection portions 17 are formed in the second electrode connection regions R2, respectively.
  • the connection part 17 is a part to which the second electrode 11 of the pixel array part 30 is connected, and is formed of a metal material.
  • the sealing region L is formed in a frame shape so as to surround the display region R1 and the second electrode connection region R2, as shown in FIG.
  • the terminal region R3 is a region used for connection between the organic EL display panel 1 and the circuit board 52 as described above.
  • the terminal region R3 is provided outside the frame-shaped sealing region L along the frame-shaped sealing region L.
  • the terminal region R3 is formed outside each second electrode connection region R2 and along each second electrode connection region R2. Further, the terminal region R3 is formed along the opposing sides on the outside of the other pair of sides in the display region R1 where the second electrode connection region R2 is not provided.
  • the organic film formed in the pixel array portion 30 of the display region R1 is also formed in the terminal portion region R3.
  • the terminal portion region R3 is a vapor deposition unnecessary region, and thus, the terminal portion region R3 used for connecting the organic EL display panel 1 and the circuit substrate 52, in particular, the circuit substrate 52 as shown in FIG. If an organic film is formed on the electrical wiring terminal 15 used as a connection terminal, the conduction failure between the organic EL display panel 1 and the circuit board 52 is caused.
  • the organic EL display panel 1 is, for example, a full-color active matrix organic EL display device, and the pixel array unit 30 includes red (R), green (G), and blue (B) as shown in FIG.
  • the sub-pixels RSP, GSP, and BSP of each color composed of the organic EL elements 12 having the respective emission colors are arranged in a matrix.
  • these sub-pixels RSP, GSP, and BSP are collectively referred to as “sub-pixel SP”.
  • each of the sub-pixels RSP, GSP, and BSP is in one of the horizontal and vertical directions on the active surface of the semiconductor substrate 10 (for example, the x-axis direction that is the horizontal direction: see FIG. 4).
  • the sub-pixels SP of the same light emission color are adjacent to each other, and the sub-pixels SP of different light emission colors are adjacent to each other in the other direction (for example, the vertical y-axis direction: see FIG. 4).
  • the semiconductor substrate 10 includes an insulating substrate 3 as a base substrate.
  • the semiconductor substrate 10 has a configuration in which the TFT 2, the wiring H, the interlayer insulating film 4, the edge cover 6 and the like are formed on a transparent insulating substrate 3 such as a glass substrate. Have.
  • TFT2 is provided corresponding to each of the sub-pixels RSP, GSP, and BSP.
  • the structure of the TFT is conventionally well known. Therefore, illustration and description of each layer in the TFT 2 are omitted.
  • the interlayer insulating film 4 is laminated on the insulating substrate 3 over the entire region of the insulating substrate 3 so as to cover the subpixels RSP, GSP, BSP and the wiring H.
  • the first electrode 5 in the organic EL element 12 is formed on the interlayer insulating film 4.
  • the interlayer insulating film 4 is provided with a contact hole 4 a for electrically connecting the first electrode 5 in the organic EL element 12 to the TFT 2.
  • the TFT 2 is electrically connected to the organic EL element 12 through the contact hole 4a.
  • the edge cover 6 prevents the first electrode 5 and the second electrode 11 in the organic EL element 12 from being short-circuited when the organic EL layer becomes thin or the electric field concentration occurs at the end of the first electrode 5. This is an insulating layer.
  • the edge cover 6 is formed on the interlayer insulating film 4 so as to cover the end portion of the first electrode 5.
  • the first electrode 5 is exposed at a portion without the edge cover 6 as shown in FIG. This exposed portion becomes a light emitting portion of each sub-pixel RSP / GSP / BSP.
  • the sub-pixels RSP, GSP, and BSP are partitioned by the edge cover 6 having insulating properties.
  • the edge cover 6 also functions as an element isolation film.
  • the insulating substrate 3 for example, non-alkali glass or plastic can be used.
  • alkali-free glass having a thickness of 0.7 mm is used.
  • the interlayer insulating film 4 and the edge cover 6 a known photosensitive resin can be used.
  • the photosensitive resin include acrylic resin and polyimide resin.
  • the TFT 2 is manufactured by a known method.
  • the active matrix organic EL display device 100 in which the TFT 2 is formed in each of the sub-pixels RSP, GSP, and BSP is taken as an example.
  • the present embodiment is not limited to this, and the present embodiment can also be applied to the manufacture of a passive matrix organic EL display device in which TFTs are not formed.
  • the organic EL element 12 is a light emitting element capable of emitting light with high luminance by low voltage direct current drive, and the first electrode 5, the organic EL layer, and the second electrode 11 are laminated in this order.
  • the first electrode 5 is a layer having a function of injecting (supplying) holes into the organic EL layer. As described above, the first electrode 5 is connected to the TFT 2 via the contact hole 4a.
  • a hole injection layer 7 a, a hole transport layer 7 b, and a light emitting layer are formed as an organic EL layer from the first electrode 5 side.
  • 8R ⁇ 8G ⁇ 8B, the electron transport layer 9a, and the electron injection layer 9b have a configuration formed in this order.
  • a carrier blocking layer for blocking the flow of carriers such as holes and electrons may be inserted as necessary.
  • one layer may have a plurality of functions.
  • one layer serving as both the hole injection layer 7a and the hole transport layer 7b may be formed.
  • the hole injection layer 7a and the hole transport layer 7b are formed as independent layers.
  • the hole injection layer and the hole transport layer are formed as a positive hole injection layer and a positive hole transport layer.
  • a hole injection layer / hole transport layer integrated with the hole transport layer may be provided.
  • the stacking order is such that the first electrode 5 is an anode and the second electrode 11 is a cathode.
  • the stacking order of the organic EL layers is reversed.
  • the hole injection layer 7a is a layer having a function of increasing the efficiency of hole injection from the first electrode 5 to the organic EL layer.
  • the hole transport layer 7b is a layer having a function of improving the hole transport efficiency to the light emitting layers 8R, 8G, and 8B.
  • the hole injection layer 7 a and the hole transport layer 7 b are uniformly formed on the entire display region of the semiconductor substrate 10 so as to cover the first electrode 5 and the edge cover 6.
  • light emitting layers 8R, 8G, and 8B are formed corresponding to the pixels RSP, GSP, and BSP, respectively.
  • the light emitting layers 8R, 8G, and 8B are layers having a function of emitting light by recombining holes injected from the first electrode 5 side with electrons injected from the second electrode 11 side.
  • the light emitting layers 8R, 8G, and 8B are each formed of a material having high light emission efficiency, such as a low molecular fluorescent dye or a metal complex.
  • the electron transport layer 9a is a layer having a function of increasing the efficiency of electron transport to the light emitting layers 8R, 8G, and 8B.
  • the electron injection layer 9b is a layer having a function of increasing the efficiency of electron injection from the second electrode 11 to the organic EL layer.
  • the electron transport layer 9a covers the entire surface of the display region of the semiconductor substrate 10 on the light emitting layers 8R, 8G, and 8B and the hole transport layer 7b so as to cover the light emitting layers 8R, 8G, and 8B and the hole transport layer 7b. Are uniformly formed.
  • the electron injection layer 9b is uniformly formed on the entire surface of the display region of the semiconductor substrate 10 on the electron transport layer 9a so as to cover the electron transport layer 9a.
  • the electron transport layer 9a and the electron injection layer 9b may be formed as independent layers as described above, or may be provided integrally with each other. That is, the organic EL display panel 1 may include an electron transport layer / electron injection layer instead of the electron transport layer 9a and the electron injection layer 9b.
  • the second electrode 11 is a layer having a function of injecting electrons into the organic EL layer composed of the organic layers as described above.
  • the second electrode 11 is uniformly formed on the entire surface of the display region of the semiconductor substrate 10 on the electron injection layer 9b so as to cover the electron injection layer 9b.
  • the organic layers other than the light emitting layers 8R, 8G, and 8B are not essential layers as the organic EL layer, and may be appropriately formed according to the required characteristics of the organic EL element 12.
  • one layer may have a plurality of functions, such as a hole injection layer / hole transport layer and an electron transport layer / electron injection layer.
  • a carrier blocking layer can be added to the organic EL layer as necessary.
  • a hole blocking layer as a carrier blocking layer between the light emitting layers 8R, 8G, and 8B and the electron transport layer 9a, it is possible to prevent holes from escaping to the electron transport layer 9a and improve the light emission efficiency. can do.
  • layers other than the first electrode 5 (anode), the second electrode 11 (cathode), and the light emitting layers 8R, 8G, and 8B may be inserted as appropriate.
  • the first electrode 5 is formed in a pattern corresponding to each pixel RSP / GSP / BSP by photolithography and etching after an electrode material is formed by sputtering or the like.
  • the first electrode 5 various conductive materials can be used. However, in the case of a bottom emission type organic EL element that emits light to the insulating substrate 3, the first electrode 5 needs to be transparent or translucent.
  • the second electrode 11 needs to be transparent or translucent.
  • Examples of the conductive film material used for the first electrode 5 and the second electrode 11 include ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), gallium-doped zinc oxide (A transparent conductive material such as GZO) or a metal material such as gold (Au), nickel (Ni), or platinum (Pt) can be used.
  • ITO Indium Tin Oxide
  • IZO Indium Zinc Oxide
  • GZO gallium-doped zinc oxide
  • a transparent conductive material such as GZO
  • a metal material such as gold (Au), nickel (Ni), or platinum (Pt) can be used.
  • a sputtering method a vacuum deposition method, a CVD (chemical vapor deposition) method, a plasma CVD method, a printing method, or the like can be used.
  • a sputtering method a vacuum deposition method, a CVD (chemical vapor deposition) method, a plasma CVD method, a printing method, or the like.
  • Each of the light emitting layers 8R, 8G, and 8B may use a single material, or may use a mixed material obtained by mixing one material as a host material and another material as a guest material or a dopant. .
  • Examples of the material for the hole injection layer 7a, the hole transport layer 7b, or the hole injection / hole transport layer include anthracene, azatriphenylene, fluorenone, hydrazone, stilbene, triphenylene, benzine, styrylamine, triphenylamine, Chain systems or rings such as porphyrins, triazoles, imidazoles, oxadiazoles, oxazoles, polyarylalkanes, phenylenediamines, arylamines, and their derivatives, thiophene compounds, polysilane compounds, vinylcarbazole compounds, aniline compounds Examples thereof include a monomer, oligomer, or polymer of the formula conjugated system.
  • materials having high light emission efficiency such as low molecular fluorescent dyes and metal complexes are used.
  • tris (8- Quinolinolato) aluminum complex, bis (benzoquinolinolato) beryllium complex, tri (dibenzoylmethyl) phenanthroline europium complex, ditoluylvinylbiphenyl, hydroxyphenyloxazole, hydroxyphenylthiazole and the like.
  • Examples of the material for the electron transport layer 9a, the electron injection layer 9b, or the electron transport layer / electron injection layer include tris (8-quinolinolato) aluminum complex, oxadiazole derivative, triazole derivative, phenylquinoxaline derivative, silole derivative, and the like. Can be mentioned.
  • scan vapor deposition is used for vapor deposition of the organic film.
  • a vapor deposition film is formed using a mask having an opening region (opening group forming region) having a size smaller than the vapor deposition region of the deposition target substrate.
  • the relative positions of the mask and the vapor deposition source are fixed by, for example, integrating them using a holder (not shown).
  • a mask is not necessarily required in the case where an organic film is formed over the entire deposition surface of a deposition substrate.
  • FIG. 8 is a perspective view showing a schematic configuration of a main part of the vapor deposition apparatus 150 used in the present embodiment.
  • the vapor deposition apparatus 150 includes a vapor deposition mask 102 (vapor deposition mask), a vapor deposition source 103, and a limiting plate 300 disposed between the mask 102 and the vapor deposition source 103. .
  • the relative positions of these mask 102, vapor deposition source 103, and limiting plate 300 are fixed.
  • the mask 102, the vapor deposition source 103, and the limiting plate 300 may be integrally formed as a mask unit using a holding member such as the same holder, for example.
  • the vapor deposition source 103 is disposed opposite to the mask 102 and the limiting plate 300 with a certain gap (that is, spaced apart by a certain distance).
  • the vapor deposition source 103 generates gaseous vapor deposition particles by heating and vaporizing the vapor deposition material (when the vapor deposition material is a liquid material) or sublimating (when the vapor deposition material is a solid material).
  • the vapor deposition source 103 has an injection port 103a (through port) for injecting vapor deposition particles on the surface facing the limiting plate 300 and the mask 102, and the vaporized vapor deposition material is injected from the injection port 103a as vapor deposition particles.
  • the vapor deposition source 103 has a plurality of injection ports 103a is illustrated as an example, but the number of the injection ports 103a is not particularly limited, and at least one is formed. It only has to be done.
  • injection ports 103a may be arranged one-dimensionally (that is, in a line shape) as shown in FIG. 8, or may be arranged two-dimensionally (that is, in a planar shape).
  • the vapor deposition source 103 may have a configuration including a heating container called a crucible that directly accommodates the vapor deposition material.
  • the vapor deposition source 103 includes a load lock type pipe (not shown) and a vapor deposition particle supply source (not shown) connected to the pipe, and an injection port 103a is provided.
  • the vapor deposition particles may be ejected from the injection port 103a by supplying the vapor deposition particles to the nozzle portion.
  • An opening 102a (through hole) is formed in the mask 102 at a desired position and shape, and only the vapor deposition particles that have passed through the opening 102a of the mask 102 reach the deposition target substrate 20 to form a vapor deposition film.
  • an organic film having a desired film formation pattern is vapor-deposited as a vapor deposition film only at a desired position of the film formation substrate 20 corresponding to the opening 102a.
  • the mask 102 is provided with a plurality of strip-like (striped, slit-like) openings 102 a extending in a direction parallel to the scanning direction. Shown with illustrations.
  • a fine mask in which an opening 102 a is formed for each subpixel SP is used as the mask 102.
  • a light emitting layer can be cited.
  • vapor deposition is performed for each color of the light emitting layer (this is referred to as “separate vapor deposition”).
  • the light emitting layers 8R, 8G, and 8B are separately formed on the semiconductor substrate 10 shown in FIG. It is formed according to the size and pitch of the same color row of 8B.
  • the film is formed using the fine mask having an opening only in the region where the red light emitting material is deposited as the deposition mask 102. Do.
  • examples of forming the deposited film pattern on the entire display area include a hole injection layer 7a, a hole transport layer 7b, an electron transport layer 9a, an electron injection layer 9b, and the like.
  • film formation is performed using an open mask having an opening in the entire display region and only in a region where film formation is necessary as the evaporation mask 102. The same applies to the second electrode 11.
  • the mask 102 is not always necessary.
  • the restriction plate 300 has a plurality of openings 301 (through holes) penetrating in the vertical direction.
  • the vapor deposition particles injected from the injection port 103a of the vapor deposition source 103 reach the deposition target substrate 20 through the opening 301 of the limiting plate 300 and the opening 102a of the mask 102.
  • the vapor deposition particles ejected from the ejection port 103a of the vapor deposition source 103 are ejected radially with a certain extent.
  • the angle of the vapor deposition particles incident on the deposition target substrate 20 is limited to a certain angle or less.
  • the limiting plate 300 is not heated or cooled by a heat exchanger (not shown) in order to cut the vapor deposition particles having an oblique component. For this reason, the limiting plate 300 is at a lower temperature than the injection port 103 a of the vapor deposition source 103.
  • a shutter (not shown) between the limiting plate 300 and the vapor deposition source 103.
  • the position of the limiting plate 300 in the direction perpendicular to the film formation surface 20 a of the film formation substrate 20 is provided between the mask 102 and the vapor deposition source 103 so as to be separated from the vapor deposition source 103.
  • the limiting plate 300 may be provided in close contact with the mask 102.
  • the width of the long side of the limiting plate 300 is formed to be approximately the same as the width of the long side of the mask 102, for example, and the width of the short side of the limiting plate 300 is the same as the width of the short side of the mask 102, for example. It is formed to a size of about.
  • the limiting plate 300 is provided between the mask 102 and the vapor deposition source 103 is shown as an example, but the limiting plate 300 is not necessarily required.
  • the deposition source 103 is disposed below the deposition target substrate 20, and the deposition target substrate 20 is deposited from the deposition source 103 with the deposition target surface 20 a facing downward.
  • An example in which particles are ejected upward and evaporated (up-deposition) on the deposition target substrate 20 is shown as an example.
  • the vapor deposition method is not limited to this, and the vapor deposition source 103 is provided above the deposition target substrate 20, and the vapor deposition particles are ejected downward from the deposition source 103 to the deposition target substrate 20. Vapor deposition (downdeposition) may be performed.
  • the vapor deposition source 103 has, for example, a mechanism for injecting vapor deposition particles in the lateral direction, and the film formation surface 20a side of the film formation substrate 20 is set up in the vertical direction facing the vapor deposition source 103 side. In this state, the vapor deposition particles may be ejected in the lateral direction and vapor deposited (side deposition) on the deposition target substrate 20.
  • the vapor deposition unnecessary area is continued from the vapor deposition area.
  • a vapor deposition film is also formed on at least a part of the film by scanning vapor deposition.
  • a vapor deposition film is formed on the film formation surface 20a (that is, the active surface) including the vapor deposition unnecessary region of the semiconductor substrate 10 that is the film formation substrate 20.
  • each of the stripe-shaped light emitting layers 8R, 8G, and 8B is formed, for example, from end to end of the semiconductor substrate 10.
  • At least one of the organic films such as the light emitting layers 8R, 8G, and 8B formed in the terminal region R3. Parts need to be removed.
  • FIG. 6 is a cross-sectional view showing a schematic configuration of a main part in a cross section taken along line BB of the semiconductor substrate 10 shown in FIG.
  • an electrical wiring terminal 15, an island-like structure part 16, and a protective insulating film 19 are formed in the terminal part region R3, for example, as shown in FIGS. 4 and 6, an electrical wiring terminal 15, an island-like structure part 16, and a protective insulating film 19 (see FIG. 6) are formed. 4 and 6, the protective insulating film 19 is not shown for the convenience of drawing.
  • the electrical wiring terminal 15 is a connection terminal to which the connection terminal 52a of the circuit board 52 is connected, and is formed of a wiring material such as metal.
  • a plurality of electrical wiring terminals 15 are formed at intervals from each other along the longitudinal direction of the terminal portion region R3.
  • the protective insulating film 19 is provided with a terminal opening 19 a that exposes the electric wiring terminal 15.
  • the connection terminal 52a of the circuit board 52 and the electric wiring terminal 15 are connected through, for example, an ACF 51 (anisotropic conductive film, see FIG. 1C).
  • the organic film is present on the terminal opening 19a, poor conduction between the circuit board 52 and the electric wiring terminal 15 occurs when the conductivity of the organic film is low.
  • the conductivity of the organic film is high, a short circuit occurs between the adjacent electrical wiring terminals 15. That is, in any case, the presence of the organic film on the terminal portion opening 19a causes a malfunction.
  • the organic film has low electrical conductivity and causes poor conduction.
  • the light emitting layer is a vapor deposition film laminated on the terminal portion region R3 (in this case, on the electric wiring terminal 15) by applying energy from the outside to the electric wiring terminal 15. It is formed of a material that generates heat at a temperature equal to or higher than the temperature at which the organic film such as 8R, 8G, and 8B becomes a gas.
  • the temperature at which the organic film becomes a gas indicates a temperature at which the organic film is gasified, such as an evaporation temperature or a sublimation temperature of the organic film.
  • the organic layers such as the light emitting layers 8R, 8G, and 8B are provided.
  • An island-like structure 16 made of a material that generates heat at a temperature equal to or higher than the temperature at which the film becomes gas is provided.
  • the said organic film in this case shows organic films, such as light emitting layer 8R * 8G * 8B laminated
  • the electric wiring terminal 15 and the island-shaped structure portion 16 function as a heat generation layer that generates heat at a temperature equal to or higher than the temperature at which the vapor deposition film to be removed becomes gas by applying energy from the outside.
  • the vapor deposition film formed in the terminal region R3 specifically Can selectively remove the deposited film overlapping the electrical wiring terminal 15 and the island-like structure 16.
  • the energy examples include light energy and electric energy.
  • the heat generation layer has a temperature equal to or higher than the temperature at which the vapor deposition film to be removed becomes gas. There is no particular limitation as long as heat can be generated.
  • a laser as an energy supply source for supplying the energy.
  • a laser By using a laser, local light irradiation is possible.
  • a mask having an opening corresponding to the irradiation region may be used.
  • the material it is preferable to use a material having a light absorption rate or a heat conversion rate higher than that of the adjacent layer, and a time for reaching the temperature higher than the temperature at which the vapor deposition film becomes a gas, faster than the adjacent layer.
  • the heat generation layer is preferably a layer having a light absorption rate or a heat conversion rate higher than that of the adjacent layer, and a time for reaching a temperature higher than the temperature at which the vapor deposition film becomes a gas, faster than the adjacent layer.
  • the adjacent layer is an adjacent layer before the vapor deposition film is formed, and the vapor deposition film itself is excluded.
  • the island-shaped structure portion 16 is formed of the same material as that of the electrical wiring terminal 15, for example.
  • the island structure portion 16 is formed between the electric wiring terminals 15 so as not to contact the electric wiring terminals 15.
  • the island-shaped structure portion 16 and the electric wiring terminal 15 can be formed by the same process, and the same energy supply source is used. The same conditions can be used to generate heat. However, the island-shaped structure 16 and the electric wiring terminal 15 may be formed of different materials.
  • the terminal region R ⁇ b> 3 covers the periphery of the electrical wiring terminal 15 and the entire island-shaped structure portion 16, and exposes other than the periphery of the electrical wiring terminal 15.
  • a protective insulating film 19 made of an insulating material is formed.
  • the protective insulating film 19 is not always essential.
  • the electric wiring terminal 15 and the island-like structure portion 16 are illustrated only in a part of the terminal portion region R3, but the electric wiring terminal 15 and the island shape are included in all the terminal portion regions R3.
  • a structure portion 16 is formed.
  • Examples of the heat generating layer include a light absorbing layer having light absorptivity or a conductive layer having conductivity.
  • the light absorption layer is a layer that generates heat by absorbing light such as laser light as light energy.
  • the light absorptance ⁇ is a value obtained by subtracting 1 from the reflectance or / and transmittance of light of a wavelength such as laser light supplied from an energy supply source.
  • the electrical wiring terminal 15 and the island-like structure portion 16 if these materials are metals, they are generally opaque and thus become a light absorption layer, and their light absorption rate ⁇ is such that their reflectance is 1 Close to the subtracted value.
  • the light absorption layer a material having a low transmittance and a low reflectance is suitable, and a material having a high thermal conductivity is preferable.
  • a light absorbing material having a light absorbing property used for the light absorbing layer for example, metal nitride such as titanium nitride, tantalum nitride, molybdenum nitride, tungsten nitride, chromium nitride, manganese nitride, molybdenum, titanium, Examples include tungsten and carbon.
  • the electrical wiring terminal 15 When the electrical wiring terminal 15 is used as a heat generation layer in this way, it may be selected in consideration of contact resistance and electrical resistance.
  • the electrical wiring terminal 15 and the island-shaped structure portion 16 are light absorption layers as described above, but the layers around the electrical wiring terminal 15 and the island-shaped structure portion 16 are not light absorption layers.
  • a non-light-absorbing layer refers to a layer that has a sufficiently small light absorption amount compared to the light absorption layer.
  • Such a non-light-absorbing layer has a small light absorption rate and cannot generate heat at a temperature higher than the temperature at which the deposited film to be removed becomes a gas even when light energy is applied from the outside.
  • the electrical wiring terminal 15 and the island-shaped structure portion 16 have a higher light absorption rate than the adjacent layers, and the time to reach a temperature equal to or higher than the temperature at which the vapor deposition film becomes a gas is faster than the adjacent layers.
  • Examples of the light energy supply source that is an energy supply source include a laser such as a YAG (yttrium aluminum garnet) laser, and a light irradiation device such as a flash lamp ( Excitation light generation device).
  • a laser such as a YAG (yttrium aluminum garnet) laser
  • a light irradiation device such as a flash lamp ( Excitation light generation device).
  • laser light in a wavelength region of 200 nm to 1200 nm such as laser light of an Nd: YAG laser with a wavelength of 1064 nm, is hardly absorbed by glass, only a few percent is absorbed, and the rest is almost transmitted.
  • the light absorption rate of the light absorption layer is ⁇
  • the specific heats of the light absorption layer and the organic film thereon are respectively C m and C e (J / g ⁇ K)
  • the densities are ⁇ m and ⁇ e , respectively.
  • is a correction coefficient considering loss of reflection or absorption by members other than the light absorption layer and the non-light absorption layer, heat escaping in the direction of the substrate, and the like.
  • the light absorption rate of the non-light absorption layer is ⁇ 0
  • the temperature rise is ⁇ T 0
  • the specific heat is C n
  • the density ⁇ is n
  • the thickness d n in the formula (1) may be interchanged with each physical properties of each of these physical properties and the light-absorbing layer. That, ⁇ T, ⁇ , C m, the ⁇ m, d m, sequentially, ⁇ T 0, ⁇ 0, C n, may be replaced with ⁇ n, d n.
  • the right side of the formula (2) may be set to 2 or more.
  • the required heating amount in the non-light absorption layer region is larger than the sum of the required heating amounts in the light absorption layer region. If the sum is larger (K ⁇ 1), the ratio of heat generation ( ⁇ T / ⁇ T 0 ) can be simply estimated only by the ratio of light absorption ( ⁇ / ⁇ 0 ).
  • the temperature rise ⁇ T 0 of the non-light absorption layer is set to 150 ° C. and the temperature rise ⁇ T of the light absorption layer is set to 300 ° C. or more (that is, ⁇ T / ⁇ T 0 ⁇ 2)
  • the light absorption ratio ( ⁇ / ⁇ 0 ) may be set to 2 or more from the equation (3).
  • the required heating amount does not vary greatly depending on the substance, so that K does not significantly decrease or increase.
  • Equation (2) ⁇ T 0 of the non-light absorption layer
  • K 0.5
  • the protective insulating film 19 covering the island-shaped structure portion 16 can prevent electrical wiring terminals 15 from being short-circuited via the island-shaped structure portion 16 due to conductive foreign matter.
  • the influence of the protective insulating film 19 is taken into consideration, it is necessary to add the product of specific heat, density, and film thickness of the protective insulating film 19 in the equation (1).
  • the protective insulating film 19 is not provided. Therefore, the prevention of the short circuit between the electrical wiring terminals 15 described above and the securing of the temperature increase difference between the light absorbing layer and the non-light absorbing layer described above are in a trade-off relationship, and which is given priority depending on the importance. You just have to decide.
  • the difference in temperature rise between the light absorbing layer and the non-light absorbing layer described above can be secured.
  • a metal material such as molybdenum is used as a material for the light absorption layer (electrical wiring terminal 15 and island-like structure portion 16), and a non-light absorption layer (for example, the insulating substrate 3 or the protective insulating film 19).
  • a transparent film that is, a film having a relatively small light absorption rate ⁇ 0
  • the light absorption rate ⁇ 0 of the non-light absorption layer is significantly smaller than the light absorption rate ⁇ of the light absorption layer.
  • FIGS. 1A to 1C are cross-sectional views showing, in the order of steps, a process of removing an organic film in a vapor deposition unnecessary region in the semiconductor substrate 10 of the organic EL display device 100 manufactured in the present embodiment.
  • FIG. 2 is a flowchart showing a schematic manufacturing process of the organic EL display device 100 according to the present embodiment.
  • FIG. 3 is a plan view for explaining a laser light irradiation region in the semiconductor substrate 10 of the organic EL display device 100 manufactured in the present embodiment.
  • one deposition target substrate 20 is divided into four in the vertical and horizontal directions, and the semiconductor substrate 10 is formed from each of the divisions.
  • the display area R1, the second electrode connection area R2, the terminal area R3, and the sealing area L are set (illustrated) only in the upper left section.
  • a display region R1, a second electrode connection region R2, a terminal region R3, and a sealing region L are set.
  • step S1 as shown in FIG. 5, the TFT 2, the wiring H, the interlayer insulating film 4, the first electrode 5, and the edge are formed on the display region R1 of the deposition target substrate 20 in FIG. Cover 6 is formed.
  • the deposition target substrate 20 corresponds to the insulating substrate 3 in the semiconductor substrate 10 shown in FIG.
  • a pattern is formed so that the wiring H such as a scanning line and a signal line for driving the TFT 2 is drawn out to the terminal region R3.
  • connection portion 17 is pattern-formed in the second electrode connection region R2.
  • a light absorption layer (heat generation layer) is formed in the deposition unnecessary region of the deposition target substrate 20.
  • a frame region 41 non-display region on the periphery of the semiconductor substrate 10 including at least the terminal region R3, which is indicated by hatching (hatching) in FIGS. 4 and 3, is set as a vapor deposition unnecessary region.
  • the electric wiring terminal 15 and the island-shaped structure portion 16 are patterned in the terminal portion region R3 by the known method (evaporation method using a mask) as the heat generation layer. Forming.
  • the electrical wiring terminal 15 is formed of a light absorbing material
  • the island-shaped structure portion 16 is formed of the same material as the electrical wiring terminal 15 in a region other than the electrical wiring terminal 15 in the terminal portion region R3.
  • the TFT 2, the wiring H, the interlayer insulating film 4, the first electrode 5, and the edge cover 6 are formed in step S1, and then the light absorption layer (heat generation layer) is formed in step S2.
  • the order of formation can be appropriately changed according to the order of the laminated structure.
  • the interlayer insulating film 4 after the formation of the wiring H, the island-shaped structure 16, and the electric wiring terminal 15, The first electrode 5 and the edge cover 6 are formed.
  • the processing order may be appropriately adjusted so that the formation procedure is most efficient.
  • the protective insulating film 19 is covered with a known method (covering the periphery of the electrical wiring terminal 15 and the entire island-shaped structure 16, and exposing other than the periphery of the electrical wiring terminal 15 ( A pattern is formed in the terminal region R3 by a vapor deposition method using a vapor deposition mask.
  • the protective insulating film 19 may be omitted.
  • the protective insulating film 19 is formed in a process different from the interlayer insulating film 4 and the edge cover 6, but may be formed together in the same process as the interlayer insulating film 4 or the edge cover 6. In that case, the electrical wiring terminal 15 and the island-shaped structure portion 16 are formed before the interlayer insulating film 4 or the edge cover 6, and the protective insulating film 19 is formed in the same process as the interlayer insulating film 4 or the edge cover 6. What is necessary is just to form together.
  • step S3 the hole injection layer 7a is formed in a pattern so as to cover the first electrode 5 and the edge cover 6 on the entire surface of the display region R1 of the deposition target substrate 20.
  • a vapor deposition apparatus 150 shown in FIG. 8 is used, and scan vapor deposition using an open mask as a vapor deposition mask 102 is used.
  • step S4 the hole transport layer 7b is patterned in the same pattern as the hole injection layer 7a so as to cover the hole injection layer 7a in the same manner as the hole injection layer 7a.
  • step S5 stripe-shaped light emitting layers 8R, 8G, and 8B are pattern-formed on the display region R1 of the deposition target substrate 20.
  • the vapor deposition apparatus 150 shown in FIG. 8 is used, and the light emitting layers 8R, 8G, and 8B are separately deposited by vacuum vapor deposition using a fine mask as the vapor deposition mask 102. Thereby, the pattern film according to each sub pixel RSP * GSP * BSP is formed by this.
  • each of the stripe-shaped light emitting layers 8R, 8G, and 8B is formed from end to end of the deposition target substrate 20, and not only a deposition required region (a desired place where an organic film such as the display region R1 is to be formed). Further, it is also formed in a vapor deposition unnecessary region (here, the frame region 41 of the semiconductor substrate 10 including the terminal region R3).
  • red vapor deposition particles are ejected from the ejection port 103a of the vapor deposition source 103. Then, vapor deposition is performed while scanning using a mask 102 having an opening 102a only in a predetermined region corresponding to the light emitting region of the red sub-pixel RSP.
  • a striped red light emitting layer 8R is formed.
  • the stripe-shaped light emitting layers 8G and 8R are formed in the same manner as in the case of the red light emitting layer 8R, as shown in FIG. It is formed.
  • steps S6 and S7 the electron transport layer 9a and the electron injection layer 9b are formed on the deposition target substrate 20 on which the light emitting layers 8R, 8G, and 8B are formed, using an open mask as the evaporation mask 102.
  • the pattern is formed in order.
  • the electron transport layer 9a covers the light emitting layers 8R, 8G, and 8B and the edge cover 6 formed in the display region R1 on the deposition target substrate 20, and the portions other than the display region R1 are exposed.
  • the pattern is formed as follows.
  • the electron injection layer 9b is patterned on the electron transport layer 9a in the same pattern as the electron transport layer 9a in the same manner as the electron transport layer 9a.
  • the second electrode 11 is formed by a known method. Specifically, the second electrode 11 is formed on the entire surface of the display region R1, and is electrically connected to the connection portion 17 of the second electrode connection region R2, for example, vapor deposition so as to expose other regions. A pattern is formed by a vapor deposition method using a mask for use.
  • the vapor deposition apparatus is set to a vacuum reach of 1.0 ⁇ 10 ⁇ 4 Pa or more by a vacuum pump. In other words, it is desirable that the pressure in the vacuum chamber is set to 1.0 ⁇ 10 ⁇ 4 Pa or less.
  • the average free path of the vapor-deposited particles can provide a necessary and sufficient value when the degree of vacuum is higher than 1.0 ⁇ 10 ⁇ 3 Pa.
  • the degree of vacuum is lower than 1.0 ⁇ 10 ⁇ 3 Pa, the mean free path is shortened, so that the vapor deposition particles are scattered and the arrival efficiency to the deposition target substrate 20 is reduced. Or less. For this reason, it is desirable that the vacuum chamber is set to the above-mentioned vacuum reachability.
  • step S9 the light emitting layers 8R, 8G, and 8B formed in the vapor deposition unnecessary region are removed.
  • the electrical wiring terminal 15 and the island-like structure portion 16 which are light absorption layers from an external light energy supply source, thereby causing the electrical wiring terminal 15 and the island-like structure portion 16 to be irradiated with the light emitting layer 8R.
  • the light emitting layers 8R, 8G, and 8B formed on the terminal portion region R3 are gasified and removed.
  • a laser beam irradiation device such as a YAG laser is used as the optical energy supply source, and the display region R1, the sealing region L, and the second electrode connection region R2 are excluded as shown by hatching in FIG.
  • the frame region 41 of the semiconductor substrate 10 is used as a laser beam irradiation region R4, and the laser beam 50 (see FIG. 1A) is irradiated.
  • FIG. 1 shows a state in which the laser beam 50 is irradiated to the electric wiring terminal 15 and the island-shaped structure portion 16 in the terminal portion region R3 in the laser beam irradiation region R4.
  • the irradiation with the laser beam 50 is performed in a vacuum, for example.
  • the electrical wiring terminal 15 and the island-shaped structure portion 16 are formed as a light absorption layer as described above, but the periphery of the electrical wiring terminal 15 and the island-shaped structure portion 16 is not a light absorption layer. (Non-light absorbing layer (heat conducting part other than heat generating layer)).
  • the laser light 50 when the laser light irradiation region R4 is irradiated with the laser light 50, the laser light 50 includes the electric wiring terminal 15 of the terminal portion opening 19a in the terminal portion region R3 and the terminal portion region R3, which are light absorption layers. Although it is absorbed by the island-like structure portion 16 in the irradiation region R4, it is hardly absorbed by other portions than the non-light absorbing layer.
  • step S 10 the sealing substrate 13 is disposed on the deposition target substrate 20.
  • the sealing resin layer 18 is formed in the frame-shaped sealing region L surrounding the display region R1 and the second electrode connection region R2 in the deposition target substrate 20 shown in FIG. Thereafter, the deposition target substrate 20 and the sealing substrate 13 are bonded together via the sealing resin layer 18.
  • the organic EL element 12 is sealed by the deposition target substrate 20, the sealing substrate 13, and the sealing resin layer 18.
  • step S11 the deposition target substrate 20 is divided into four in the vertical and horizontal directions, and four semiconductor substrates 10 are manufactured.
  • step S12 the connection terminal 52a of the circuit board 52 is connected to the electric wiring terminal 15 in the terminal portion region R3 of each semiconductor substrate 10 through, for example, the ACF 51.
  • the organic EL display device 100 is manufactured.
  • the heat generation layer (in this case, the electric wiring terminal 15 and the island-like structure portion 16) is formed in the vapor deposition unnecessary region (particularly, the terminal portion region R3), and the vapor deposition film (in this case)
  • the heat generation layer is heated to generate heat, thereby vaporizing and removing the vapor deposition film formed in the vapor deposition unnecessary region. Therefore, the vapor deposition film formed in the said vapor deposition unnecessary area
  • the terminal portion region R3 is set as the above-described deposition unnecessary region, most of the organic films (here, the light emitting layers 8R, 8G, and 8B) on the electric wiring terminal 15 are removed. Therefore, the adhesion force of the ACF 51 that adheres the circuit board 52 and the electrical wiring terminal 15 to the semiconductor substrate 10 is improved, and defects due to the peeling of the ACF 51 can be prevented.
  • the electrical wiring terminal 15 also serves as the heat generation layer (that is, the electrical wiring terminal 15 is formed of a light absorption layer material)
  • the organic on the terminal portion region R3 can be obtained without adding a special design pattern or device.
  • the film here, the light emitting layers 8R, 8G, and 8B
  • the island-like structure portion 16 that is a heat generation layer in a region other than the terminal portion opening 19a (for example, a region between the electric wiring terminals 15) in the terminal portion region R3, a region other than the terminal portion opening 19a is formed.
  • the organic film formed in the region can be removed. Thereby, the adhesiveness of the semiconductor substrate 10 and ACF51 in terminal part area
  • the island-like structure portion 16 is covered with the protective insulating film 19, it is possible to prevent the electrical wiring terminals 15 from being short-circuited via the island-like structure portion 16 due to conductive foreign matter.
  • island-shaped structure portion 16 does not necessarily have to be formed as long as adhesion between the ACF 51 and the terminal portion region R3 can be secured.
  • one island-like structure portion 16 is formed between the electric wiring terminals 15, but the island-like structure portion 16 is divided into fine islands, A plurality of island-like structures 16 may be formed between the electric wiring terminals 15.
  • the probability that a film residue will occur between two adjacent electrical wiring terminals 15 and the plurality of island-like structures 16 between the electrical wiring terminals 15 to cause a short circuit between the electrical wiring terminals 15 is further reduced.
  • the island-like structure 16 is formed in the same layer as the layer in which the electric wiring terminal 15 is formed, but the layer in which the electric wiring terminal 15 is formed May be formed in a separate layer. Thereby, the probability that the electrical wiring terminals 15 are short-circuited can be reduced.
  • the electrical wiring terminal 15 and the island-shaped structure portion 16 are formed in separate layers, the electrical wiring terminal 15 and the island-shaped structure portion 16 are electrically connected so that no gap is generated between the electrical wiring terminal 15 and the island-shaped structure portion 16 in plan view.
  • the wiring terminal 15 and a part of the island-like structure portion 16 adjacent to the electrical wiring terminal 15 may be overlapped.
  • the organic film on the terminal portion region R3 can be more reliably removed.
  • the laser beam irradiation to the deposition unnecessary region is performed in a vacuum, but the present embodiment is not limited to this.
  • the laser light irradiation may be performed not in a vacuum but in an inert gas atmosphere or in the air. In that case, laser light irradiation can also be performed after the sealing of the organic EL element 12 by the sealing substrate 13 is completed, for example.
  • the organic EL element 12 When laser light is irradiated after the organic EL element 12 is sealed, the organic EL element 12 is prevented from being exposed to the atmosphere, so that laser light irradiation in the atmosphere is possible. Further, it is possible to prevent the organic material scattered by the laser light from reattaching to the organic EL element 12 and causing damage.
  • a flash lamp may be used as the light irradiation device as described above.
  • a mask having an opening corresponding to the irradiation area In order to control light transmission and shielding, a mask having an opening corresponding to the irradiation area. Or a light absorption layer made of a material having a higher light absorption rate with respect to light of the wavelength of the flash lamp than the adjacent layers.
  • a flash lamp when used as a heating method of the light absorption layer, it is preferable to irradiate from the back surface (surface opposite to the organic EL element 12 side) side of the semiconductor substrate 10. This is because ultraviolet light that damages the organic film of the organic EL element 12 in the display region R1 can be absorbed by the insulating substrate 3 or the transparent electrode.
  • the heating time of the light absorption layer is preferably as short as possible. If the heating time is long, for example, the heat given to the light absorption layer by laser light irradiation will escape through the insulating substrate 3, so that the light absorption layer is sufficiently large that the organic film on the light absorption layer becomes a gas. It is because it is not heated.
  • the heating time is desirably 1 second or less.
  • the organic film is removed from the deposition unnecessary region (particularly, the terminal region R3) by laser light irradiation.
  • the present embodiment is not limited to this. Not.
  • the organic film on the deposition unnecessary region may be removed at any stage.
  • the present embodiment the case where the organic film in the terminal region R3 is removed has been described as an example.
  • the present embodiment is not limited to this.
  • the method described in this embodiment can also be applied to the case where the alignment marker for alignment between the sealing substrate 13 and the semiconductor substrate 10 formed on the deposition target substrate 20 is removed.
  • the deposition target substrate 20 is used for the sealing substrate 13 in order to align the deposition target substrate 20 and the sealing substrate 13.
  • An alignment marker is formed.
  • the alignment marker is image-recognized by an image sensor, and the deposition target substrate 20 and the sealing substrate are sealed based on the position of the recognized alignment marker.
  • the position with respect to the substrate 13 is adjusted, and the sealing substrate 13 is bonded to the sealing region L of the deposition target substrate 20.
  • an alignment marker is formed with a light-absorbing material in the alignment marker forming region of the deposition target substrate 20, and an unnecessary organic film on the alignment marker is laser-beamed before the sealing substrate 13 is bonded. Remove by irradiation.
  • the alignment marker can be reliably detected by the image sensor, and the sealing substrate 13 can be accurately bonded to the sealing region L of the deposition target substrate 20.
  • the heat generation layer may be, for example, a conductive layer having conductivity.
  • the conductive layer preferably has a high heat conversion rate as described above.
  • eddy current can be used as electric energy.
  • Induction heating is a method in which an eddy current is generated in the material by exposing the conductive material to magnetic lines of force, and the material is heated by Joule heat generated by the eddy current.
  • the material to be heated (that is, the electrical wiring terminal 15 and the island-like structure portion 16 in this embodiment) may be formed of a conductive material.
  • the electrical wiring terminal 15 and the island-shaped structure 16 are conductive layers because they are formed of the same material as the wiring.
  • a conductive material that can flow an eddy current may be used.
  • the present invention can be applied as it is if the light absorption rate is replaced with the heat conversion rate.
  • FIG. 9 is a principal plan view showing a part of the sealing region L in the semiconductor substrate 10 of the organic EL display device 100 manufactured in the present embodiment.
  • FIG. 10 is a plan view for explaining a laser light irradiation region in the semiconductor substrate 10 of the organic EL display device 100 manufactured in the present embodiment.
  • FIGS. 11A to 11C are cross-sectional views showing the steps of removing the organic film in the sealing region L in the order of steps.
  • the sealing region L is further set as a vapor deposition unnecessary region.
  • the region excluding the display region R1 and the second electrode connection region R2 that is, the frame region 41 including the terminal region R3 and the sealing region L.
  • a plurality of island-like structures 16 are formed as heat generation layers also in the sealing region L, and each wiring H intersecting the sealing region L Also serves as a heat generation layer.
  • Each wiring H is, for example, a scanning line or a signal line for driving the TFT 2 provided in each subpixel SP.
  • Each island-like structure portion 16 is formed in the sealing region L so as not to contact each wiring H intersecting the sealing region L.
  • the sealing region L of the sealing region L is covered so as to cover the island-shaped structure portion 16 and the portion of the wiring H that overlaps the sealing region L.
  • a protective insulating film 19 is formed throughout. The protective insulating film 19 prevents the wiring H and the island-shaped structure portion 16 from being short-circuited by a conductive foreign matter.
  • the island-like structure portion 16 and the wiring H are preferably formed of the same material as that of the electric wiring terminal 15 for the same reason as in the first embodiment.
  • the island-shaped structure portion 16, the wiring H, and the electrical wiring terminal 15 are light absorption layers made of the same light absorption material, and a laser is used as an energy supply source.
  • a laser is used as an energy supply source.
  • the wiring H is formed of a light absorbing material in step S1 shown in FIG. 2, and the electrical wiring terminals and the island-like structures 16 are absorbed by the same light as the wiring H in step S2 shown in FIG. A pattern is formed by the material.
  • it is the same as that of the above that the order of formation of each layer in step S1 * S2 can be adjusted suitably.
  • the protective insulating film 19 covers the periphery of the electrical wiring terminal 15 and the entire island-shaped structure portion 16, and exposes other than the periphery of the electrical wiring terminal 15. As shown in FIG. 11C, a pattern is formed so as to cover the island-shaped structure portion 16 and the portion of the wiring H that overlaps the sealing region L. Note that the protective insulating film 19 may not be provided in this embodiment mode.
  • step S9 shown in FIG. 2 before the organic EL element 12 is sealed, the laser light irradiation region R5 is irradiated with the laser light.
  • the sealing region L is irradiated with a laser beam 50 from, for example, the back surface side of the deposition target substrate 20.
  • the laser beam 50 irradiated to the sealing region L is absorbed by the island-like structure portion 16 and the wiring H which are light absorption layers. As a result, heat is generated in the island-shaped structure portion 16 and the wiring H, and the light emitting layers 8R, 8G, and 8B formed on the island-shaped structure portion 16 and the wiring H are gas as shown in FIG. Turn into.
  • the light emitting layers 8R, 8G, and 8B formed in the vapor deposition unnecessary regions are removed.
  • a sealing resin layer 18 is formed in the sealing region L from which the light emitting layers 8R, 8G, and 8B have been removed, as shown in FIG.
  • the deposition target substrate 20 and the sealing substrate 13 are bonded to each other through the layer 18.
  • the other steps are the same as those in the first embodiment, and thus description thereof is omitted.
  • the organic EL display device 100 from which the organic film in the terminal region R3 and the sealing region L has been removed is manufactured.
  • the sealing region L is set as a vapor deposition unnecessary region, so that the sealing region L is also formed in the sealing region L.
  • Most of the organic film here, the light emitting layers 8R, 8G, and 8B) can be removed.
  • the adhesiveness between the sealing resin layer 18 and the sealing region L is increased, thereby improving the sealing performance of the organic EL element 12 by the sealing resin layer 18 and being resistant to moisture and oxygen inflow from the outside. Can be further improved. Therefore, a highly reliable organic EL display device can be realized.
  • the organic film on the sealing region L can be removed later, the organic film may cover the sealing region L when the organic film is formed in the display region R1, and the display region R1 and the sealing region The gap between L can be reduced. Therefore, an organic EL display device with a narrow frame can be realized.
  • the second electrode 11 is patterned so as not to be formed in a deposition unnecessary region (for example, the terminal region R3 and the sealing region L), but is formed on the entire surface of the deposition target substrate 20 (that is, It may also be formed in a deposition unnecessary region).
  • a deposition unnecessary region for example, the terminal region R3 and the sealing region L
  • the second electrode 11 formed in the vapor deposition unnecessary region is peeled off together with the removal of the organic film in the vapor deposition unnecessary region by laser beam irradiation. Thereby, pattern formation with an organic film and the 2nd electrode 11 can be performed simultaneously.
  • Embodiments 1 and 2 differences from Embodiments 1 and 2 will be mainly described, and the same components as those used in Embodiments 1 and 2 have the same functions. A number is assigned and description thereof is omitted.
  • FIG. 12 is a plan view for explaining a laser light irradiation region in the semiconductor substrate 10 of the organic EL display device 100 manufactured in the present embodiment.
  • FIGS. 13A to 13C are cross-sectional views showing the process of removing the organic film in the second electrode connection region R2 in the semiconductor substrate 10 of the organic EL display device 100 manufactured in the present embodiment in the order of steps. .
  • the second electrode connection region R2 is set as a vapor deposition unnecessary region.
  • the region excluding the display region R1 (that is, the frame region 41 including the terminal region R3, the sealing region L, and the second electrode connection region) R2) is set in the laser light irradiation region R6.
  • connection portion 17 in the second electrode connection region R2 also functions as a heat generation layer.
  • connection portion 17 is formed of the same material as the island-like structure portion 16, the wiring H, and the electrical wiring terminal 15 for the same reason as in the first embodiment.
  • the second electrode connection region R ⁇ b> 2 covers the entire periphery of the second electrode connection region R ⁇ b> 2 so as to cover the periphery of the connection portion 17 and expose the periphery of the connection portion 17.
  • a protective insulating film 19 is formed.
  • the island-shaped structure part 16, the wiring H, the electrical wiring terminal 15, and the connection part 17 are light absorption layers made of the same light absorption material, and a case where a laser is used as an energy supply source is given as an example.
  • the flow of the manufacturing process of the organic EL display device 100 according to the present embodiment will be described.
  • connection portion 17 and the wiring H of the second electrode connection region R2 are formed of the light absorbing material, and in step S2 shown in FIG.
  • the pattern structure 16 is patterned with the same light absorbing material as the connection 17 and the wiring H.
  • it is the same as that of the above that the order of formation of each layer in step S1 * S2 can be adjusted suitably.
  • the protective insulating film 19 covers the periphery of the electrical wiring terminal 15 and the entire island-shaped structure portion 16, and exposes other than the periphery of the electrical wiring terminal 15. 11 (c), the island-shaped structure 16 and the portion of the wiring H that overlaps the sealing region L are covered, and as shown in FIG. A pattern is formed so as to cover and expose the portions other than the peripheral edge of the connection portion 17. Note that the protective insulating film 19 may not be provided in this embodiment mode.
  • connection portion 17 is formed in a different process from the electrical wiring terminal 15, but together in the same process as the electrical wiring terminal 15. It may be formed.
  • step S9 shown in FIG. 2 before the organic EL element 12 is sealed, the laser light irradiation region R6 is irradiated with the laser light.
  • connection portion 17 which is a light absorption layer.
  • heat is generated in the connecting portion 17 and the light emitting layers 8R, 8G, and 8B formed on the connecting portion 17 are gasified as shown in FIG.
  • the light emitting layers 8R, 8G, and 8B on the connecting portion 17 are removed.
  • the light emitting layers 8R, 8G, and 8B formed in the vapor deposition unnecessary regions are removed.
  • step S8 shown in FIG. 2 as shown in FIG. 13C, the second electrode 11 is patterned by a known method.
  • the second electrode 11 is formed on the entire surface of the display region R1, and is electrically connected to the connection portion 17 of the second electrode connection region R2, and the other regions.
  • a pattern is formed by a vapor deposition method using a vapor deposition mask.
  • the organic EL display device 100 from which the organic films in the terminal region R3, the sealing region L, and the second electrode connection region R2 are removed is manufactured.
  • the second electrode connection region R2 is also set as a vapor deposition unnecessary region, the second electrode connection region R2 is also formed of the organic formed in the second electrode connection region R2.
  • membrane here light emitting layer 8R * 8G * 8B
  • the organic film when the organic film is formed in the display region R1, the organic film may cover the second electrode connection region R2, and the gap between the display region R1 and the sealing region L can be reduced. Therefore, an organic EL display device with a narrow frame can be realized.
  • all the regions (especially the second electrode connection region R2, the terminal region R3, and the sealing region L) that do not require an organic film are removed by laser light irradiation. Further, it can be made maskless with respect to the organic film to be deposited on the entire surface. Thereby, the mask for the organic film deposited on the entire surface can be reduced, so that the equipment cost can be reduced and the processing tact can be improved.
  • Embodiments 1 to 3 differences from Embodiments 1 to 3 will be mainly described, and the same components as those used in Embodiments 1 to 3 have the same functions. A number is assigned and description thereof is omitted.
  • FIG. 14 is a plan view for explaining a laser light irradiation region in the semiconductor substrate 10 of the organic EL display device 100 manufactured in the present embodiment.
  • 15A to 15C are cross-sectional views showing a process of removing a part of the organic film in the display region R1 in order of processes.
  • auxiliary electrodes are formed between the light emitting regions of the sub-pixels SP (that is, exposed portions of the first electrodes 5) in the display region R1, and the auxiliary electrode forming region is It is set in the vapor deposition unnecessary area.
  • the second electrode connection region R2, the terminal portion region R3, and the sealing region L are not set as vapor deposition unnecessary regions. For this reason, the island-shaped structure part 16 is not formed in this Embodiment.
  • the organic EL display device 100 manufactured in the present embodiment is not provided with the island-shaped structure portion 16 formed in the terminal portion region R3. Instead, an auxiliary is provided between the light emitting regions of the sub-pixels SP.
  • This embodiment is different from the first embodiment in that an electrode 37 (see FIG. 15C) is formed. Other than that, the configuration is the same as in the first embodiment.
  • the organic EL display device 100 is configured as a top emission type organic EL display device.
  • the auxiliary electrode 37 is formed on the interlayer insulating film 4 between the adjacent first electrodes 5 in each subpixel SP, for example.
  • a protective insulating film 38 is formed on the interlayer insulating film 4.
  • the protective insulating film 38 is formed between the first electrode 5 and the auxiliary electrode 37 so as to cover the periphery of the first electrode 5 and the periphery of the auxiliary electrode 37.
  • the protective insulating film 38 functions as, for example, the edge cover 6 shown in FIG.
  • No organic film (hole transport layer 7b, hole injection layer 7a, electron injection layer 9b and electron transport layer 9a) is formed on the auxiliary electrode 37, and the auxiliary electrode 37 is electrically connected to the second electrode 11. Connected.
  • the auxiliary electrode 37 is electrically connected to the second electrode 11 and used to reduce the resistance of the second electrode 11.
  • This structure is particularly effective for a top emission type organic EL display device in which the second electrode 11 needs to be thinned to be a semitransparent electrode.
  • the second electrode 11 is thin and has high resistance, but is connected to the auxiliary electrode 37, so that it is actually prevented from becoming high resistance.
  • the wiring H and the auxiliary electrode 37 form a capacitance through the interlayer insulating film 4. Therefore, the electric potential stored in the capacitance may affect the potential of each wiring or electrode. Therefore, by appropriately adjusting the film thickness of the interlayer insulating film 4 between the wiring H and the auxiliary electrode 37 and the overlapping area of the wiring H and the auxiliary electrode 37 in a plan view of the deposition target substrate 20, It is preferable to make the electric capacity as small as possible.
  • the formation region of the auxiliary electrode 37 is set as a vapor deposition unnecessary region, and the auxiliary electrode 37 also serves as a heat generation layer.
  • the flow of the manufacturing process of the organic EL display device 100 according to the present embodiment will be described by taking as an example the case where the auxiliary electrode 37 is a light absorption layer and a laser is used as an energy supply source.
  • the first electrode 5 is a reflective electrode in which a transparent electrode is laminated on Al (aluminum) or Ag (silver). It is formed.
  • an auxiliary electrode 37 is formed on the interlayer insulating film 4 by a known method. Specifically, for example, the auxiliary electrode 37 made of the light absorption layer material is positioned between the first electrodes 5 of the sub-pixels SP in a plan view on the interlayer insulating film 4 by a vapor deposition method using a vapor deposition mask. A pattern is formed.
  • the island-shaped structure portion 16 is not formed in the terminal portion region R3.
  • a protective insulating film 38 is formed on the interlayer insulating film 4 by a known method. Specifically, the protective insulating film 38 is patterned on the interlayer insulating film 4 so as to cover the peripheral edge of the first electrode 5 and the peripheral edge of the auxiliary electrode 37 by, for example, an evaporation method using an evaporation mask.
  • the hole injection layer 7a and the holes are formed so that the entire surface of the display region R1 on the deposition target substrate 20 is covered with the first electrode 5, the auxiliary electrode 37, and the protective insulating film 38.
  • a transport layer 7b is formed.
  • the light emitting layers 8R, 8G, and 8B are formed in a pattern on the hole transport layer 7b in the region that becomes the light emitting region of each subpixel SP.
  • the electron transport layer 9a and the electron injection layer are formed so as to cover the entire surface of the display region R1 on the deposition target substrate 20 with the hole transport layer 7b and the light emitting layers 8R, 8G, and 8B. 9b is formed in order.
  • the laser light irradiation region R7 (that is, the display region R1 in which the pixel array unit 30 is formed) indicated by oblique lines (hatching) in FIG.
  • the organic film (hole injection layer 7a, hole transport layer 7b, electron transport layer 9a, and electron injection layer 9b) on the formation region is removed.
  • the auxiliary electrode 37 that is a light absorption layer is formed by irradiating the laser light irradiation region R7 with, for example, the laser light 50 from the film formation substrate 20 side.
  • the organic film (hole transport layer 7b, hole injection layer 7a, electron injection layer 9b and electron transport layer 9a) on the auxiliary electrode 37 is vaporized and removed by heating.
  • the first electrode 5 in the laser beam irradiation region R7 is also irradiated with the laser beam 50.
  • the first electrode 5 is formed as a reflective electrode, so that the laser beam is reflected.
  • the temperature rise is small. Therefore, the organic film (the hole injection layer 7a, the hole transport layer 7b, the light emitting layer 8R ⁇ 8G ⁇ 8B, the electron transport layer 9a and the electron injection layer 9b) on the first electrode 5 is not gasified (that is, , Not removed).
  • the auxiliary electrode 37 since the auxiliary electrode 37 is formed as a light absorption layer, the auxiliary electrode 37 generates a temperature increase sufficient to gasify the organic film. Therefore, the organic film on the auxiliary electrode 37 is gasified and removed. As described above, in the present embodiment, the organic film on the auxiliary electrode 37 is selectively removed by the difference in the light absorption rate of the material between the auxiliary electrode 37 and the first electrode 5.
  • the organic films (the hole injection layer 7a, the hole transport layer 7b, the light emitting layers 8R, 8G, and 8B, the electron transport layer 9a, and the first electrode 5)
  • the electron injection layer 9b) is not removed, and only the organic films (the hole injection layer 7a, the hole transport layer 7b, the electron transport layer 9a, and the electron injection layer 9b) on the auxiliary electrode 37 are removed.
  • the second electrode 11 is formed on the entire surface of the display region R1 in the same manner as in the first embodiment. That is, the second electrode 11 is formed so as to cover the electron injection layer 9b and the auxiliary electrode 37 and to be connected to the connection portion 17 of the second electrode connection region R2.
  • the auxiliary electrode 37 is formed between the light emitting regions of the sub-pixels SP, and the auxiliary electrode 37 functions as a heat generation layer (here, a light absorption layer).
  • the organic film on the auxiliary electrode 37 can be removed only by applying energy from the outside to the auxiliary electrode 37 to generate heat (that is, by an inexpensive method). As a result, it is possible to reduce the manufacturing cost and the organic EL display panel 1 and further the organic EL display device 100.
  • Embodiments 1 to 3 can be used in combination.
  • the laser light irradiation region is set on the entire surface of the film formation substrate 20, so that the flash lamp is used rather than irradiating the laser light while scanning the entire surface of the film formation substrate 20. Therefore, it is more convenient and more preferable to irradiate the entire surface of the deposition target substrate 20 in a lump (or divided into several regions).
  • the back surface of the deposition target substrate 20 (the organic EL element) It is preferable to irradiate light from a surface not formed).
  • the film formation substrate 20 is prevented in order to prevent damage to the organic EL element due to high energy light irradiation. It is preferable to irradiate light from the back surface of 20.
  • both the electrical wiring terminal 15 and the island-like structure part 16 are heat generation layers, but either one may be a heat generation layer.
  • both the island-like structure 16 and the wiring H are preferably heat generation layers, but either one may be the heat generation layer.
  • the vapor deposition film pattern forming method is a vapor deposition film pattern forming method for forming a patterned vapor deposition film on the film formation substrate.
  • a heat generation layer that forms a heat generation layer that generates heat at a temperature equal to or higher than a temperature at which the vapor deposition film becomes a gas (e.g., evaporation temperature or sublimation temperature) by applying energy from the outside to a deposition unnecessary region of the film formation surface.
  • the vapor-deposited film formed in the vapor deposition-unnecessary region is selectively gasified (for example, once melted and then evaporated or directly sublimated).
  • Evaporated film to be removed includes a process to, the.
  • the vapor deposition film in the vapor deposition unnecessary region can be easily removed by gasification, and there is no need to use a large vapor deposition mask or a high precision fine mask.
  • the electrical connection portion in the vapor deposition unnecessary region also serves as the heat generation layer.
  • the electric connection portion in the vapor deposition unnecessary region is externally connected. It is desirable to form with the material which generate
  • the heat generation layer can be formed without adding a special design pattern or apparatus.
  • Examples of the electrical connection portion include an electrical wiring terminal connected to a circuit board (for example, a drive circuit), or an auxiliary electrode for lowering the resistance of the electrode disposed on the deposition target substrate.
  • a circuit board for example, a drive circuit
  • an auxiliary electrode for lowering the resistance of the electrode disposed on the deposition target substrate.
  • the heat generating layer is formed in an island shape in the heat generating layer forming step.
  • heat can be locally generated by forming the heat generation layer in an island shape. For this reason, the deposited film at a desired position can be removed.
  • the wiring intersecting with the vapor deposition unnecessary region also serves as the heat generation layer.
  • the wiring intersecting with the vapor deposition unnecessary region is given energy from the outside.
  • the heat generation layer can be formed without adding a special design pattern or apparatus.
  • the wiring includes, for example, each pixel (sub-pixel) in the display device. Wiring such as a signal line or a scanning line for driving is used.
  • the heat generation layer is a light absorption layer that generates light by absorbing light of a specific wavelength, and in the vapor deposition film removing step, by irradiating the heat generation layer with light of a specific wavelength, It is desirable to generate heat from the heat generating layer.
  • heat can be generated by irradiating the heat generating layer with light as the energy, heat can be generated from the heat generating layer by a simple means.
  • the ratio of the light absorption rate of the heat generation layer to the light absorption rate of the layer adjacent to the heat generation layer is preferably 2 or more.
  • the temperature can be locally increased due to the large temperature difference between adjacent layers. For this reason, the vapor deposition film in a desired position can be locally removed.
  • the energy is light energy, and it is desirable that the heat generation layer is irradiated with light by laser light in the vapor deposition film removing step.
  • the foreign matter adhering to the deposition unnecessary region during the deposition can be removed by the laser beam.
  • the yield and reliability of the film formation substrate on which the vapor deposition film pattern is formed and the electronic apparatus such as a display device using the film formation substrate on which the vapor deposition film pattern is formed can be improved.
  • the laser light is irradiated in a vacuum or in an inert gas atmosphere in the vapor deposition film removing step.
  • the energy is light energy, and it is desirable that the heat generation layer is irradiated with light by a flash lamp in the deposited film removing step.
  • the entire heat generating layer can be heated at one time or divided into several parts, so that the heat generating layer can be heated in a short time. Can do.
  • the film formation substrate is a transparent substrate, and in the vapor deposition film removing step, It is preferable that the heat generation layer is irradiated with light from a surface opposite to the surface on which the heat generation layer is formed in the deposition substrate.
  • the deposition target substrate absorbs ultraviolet light that damages the organic film. be able to.
  • the heat generating layer is irradiated with laser light, as described above, light is applied to the heat generating layer from the surface opposite to the surface on which the heat generating layer is formed on the deposition target substrate.
  • the strength is weakened by the deposition target substrate. Therefore, when the laser beam is high energy, it is possible to prevent the deposited film in the region other than the heat generating layer from being damaged by the laser beam.
  • the energy is electric energy, and it is desirable to generate heat from the heat generation layer by induction heating by eddy current in the deposited film removal step.
  • the entire heat generating layer can be heated at one time or divided into several parts, so that the heat generating layer can be heated in a short time. Can do.
  • the above method can be suitably used when the deposited film is an organic film.
  • an organic electroluminescence display device it is necessary to form a light emitting layer made of an organic light emitting material that emits light in each color in a predetermined pattern for each organic electroluminescence element.
  • a vapor deposition method such as a vacuum vapor deposition method is used.
  • a large-scale vapor deposition mask or a high-precision fine film is used.
  • An organic electroluminescence display device can be manufactured without using a mask.
  • the organic film generally has low conductivity, and if the organic film is present in the electrical connection portion, poor conduction will occur.
  • regions, such as an electrical connection part, can be removed easily.
  • the manufacturing method of the organic electroluminescence display device is a method of forming a vapor deposition film of the organic electroluminescence display device using the above-described vapor deposition film pattern forming method.
  • the deposition target substrate is a substrate used for an organic electroluminescence display device in which an organic electroluminescence element is sealed between a pair of substrates
  • the vapor deposition film removing step includes: It is desirable to be performed after sealing the pair of substrates.
  • the method for forming a vapor deposition film pattern and the method for manufacturing an organic electroluminescence display device have the following configurations.
  • the deposition target substrate is a substrate used in an organic electroluminescence display device in which an organic electroluminescence element is sealed between a pair of substrates, and the heat generation layer is one of the pair of substrates.
  • a plurality of electrical wiring terminals for connection to the circuit board and at least one island-like structure disposed between the electrical wiring terminals formed in a terminal portion forming region for connection to the circuit board provided in At least one of them is preferable.
  • the deposition target substrate is a substrate used in an organic electroluminescence display device in which an organic electroluminescence element is sealed between a pair of substrates, and the heat generation layer is one of the pair of substrates. It is preferable that it is a connection part connected with one electrode among a pair of electrodes which are provided in and hold the organic electroluminescent layer in the said organic electroluminescent element.
  • the deposition target substrate is a substrate used in an organic electroluminescence display device in which an organic electroluminescence element is sealed between a pair of substrates, and the heat generation layer is a seal that seals the pair of substrates. It is preferable that at least one of the wiring formed in the stop region and at least one island-like structure portion.
  • the deposition target substrate is a substrate used in an organic electroluminescence display device in which an organic electroluminescence element is sealed between a pair of substrates, and the heat generation layer is a light absorption layer that absorbs specific light.
  • the vapor deposition film forming step a vapor deposition film is formed on the entire surface of one of the pair of substrates, and then in the vapor deposition film removing step, the heat generation layer is irradiated with laser light to form the vapor deposition film. It is preferable to gasify and remove a part of.
  • the deposition substrate is a substrate used for an organic electroluminescence display device in which an organic electroluminescence element is sealed between a pair of substrates.
  • the deposition substrate is bonded to the deposition substrate.
  • a matrix-like light emitting layer is formed as a vapor deposition film, and in the heat generation layer forming step, one of a pair of electrodes sandwiching the organic electroluminescent layer in the organic electroluminescent element between the light emitting layer forming regions.
  • the auxiliary electrode that is electrically connected to the electrode is preferably formed of a material that generates heat at a temperature equal to or higher than the temperature at which the deposited film becomes a gas by applying energy from the outside.
  • the resistance of the electrode of the organic electroluminescent element can be lowered by forming the auxiliary electrode electrically connected to the electrode of the organic electroluminescent element between the formation regions of the light emitting layer.
  • the said auxiliary electrode can be used as a heat generating layer by forming the said auxiliary electrode with the said material.
  • the heat generation layer can be formed without adding a special design pattern or apparatus, and the organic film on the auxiliary electrode can be easily removed.
  • auxiliary electrode for example, it is not necessary to use a fiman mask having an opening only at a position corresponding to each vapor deposition region, and the manufacturing cost can be reduced.
  • the present invention can be applied not only to the manufacture of an organic EL display device but also to the general formation of a vapor deposition film pattern in which vapor deposition is performed by scanning.
  • the vapor deposition apparatus and the vapor deposition method of the present invention can be suitably used for, for example, a manufacturing apparatus and a manufacturing method of an organic EL display device used in a film forming process such as separate formation of an organic layer in an organic EL display device. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 蒸着膜パターンの形成方法は、被成膜基板(20)の蒸着不要領域(R3)に熱発生層を形成する工程と、熱発生層の少なくとも一部を覆うように、蒸着不要領域(R3)を含む被成膜基板(20)の被成膜面に蒸着膜を形成する工程と、熱発生層から、除去する蒸着膜が気体になる温度以上の温度の熱を発生させることで、蒸着不要領域(R3)に形成された蒸着膜を選択的に気体化させて除去する工程とを備える。

Description

蒸着膜パターンの形成方法および有機エレクトロルミネッセンス表示装置の製造方法
 本発明は、被成膜基板にパターン化された蒸着膜を形成する蒸着膜パターンの形成方法および該蒸着膜パターンの形成方法を用いた有機エレクトロルミネッセンス表示装置の製造方法に関するものである。
 近年、様々な商品や分野でフラットパネルディスプレイが活用されており、フラットパネルディスプレイのさらなる大型化、高画質化、低消費電力化が求められている。
 そのような状況下において、有機材料の電界発光(エレクトロルミネッセンス;以下、「EL」と記す)を利用した有機EL素子を備えた有機EL表示装置は、全固体型で、低電圧駆動、高速応答性、自発光性、広視野角特性等の点で優れたフラットパネルディスプレイとして、高い注目を浴びている。
 有機EL表示装置は、例えば、TFT(薄膜トランジスタ)が設けられたガラス基板等からなる基板上に、TFTに電気的に接続された有機EL素子が設けられた構成を有している。
 例えば、フルカラーの有機EL表示装置では、一般的に、赤(R)、緑(G)、青(B)の各色の発光層を備えた有機EL素子がサブ画素として基板上に配列形成され、TFTを用いて、これら有機EL素子を選択的に所望の輝度で発光させることによりカラー画像表示を行うようになっている。
 したがって、有機EL表示装置を製造するためには、各色に発光する有機発光材料からなる発光層を有機EL素子毎に所定パターンで形成する必要がある。
 このような発光層を所定パターンで形成する方法としては、例えば、真空蒸着法、インクジェット法、レーザ転写法等が知られている。そして、例えば、低分子型有機EL表示装置(OLED)では、真空蒸着法が用いられることが多い。
 真空蒸着法では、所定パターンの開口が形成されたマスク(シャドウマスクとも称される)が使用され、マスクが密着固定された基板の被蒸着面を蒸着源に対向させる。
 そして、蒸着源からの蒸着粒子(成膜材料)を、マスクの開口を通して被蒸着面に蒸着させることにより、所定パターンの薄膜が形成される。蒸着は発光層の色毎に行われ、これを「塗り分け蒸着」という。
 特許文献1および特許文献2には、基板に対してマスクを少しずつ移動させて各色の発光層の塗り分け蒸着を行う方法が記載されている。
 このような従来の塗り分け蒸着法においては、基板と同等の大きさのマスクが使用され、蒸着時にはマスクは基板の被蒸着面を覆うように固定されるようになっている。
 したがって、従来の塗り分け蒸着法においては、基板が大きくなればそれに伴ってマスクも大型化する必要がある。
 しかしながら、マスクを大きくすると、マスクの自重撓みや伸びにより、基板とマスクとの間に隙間が生じ易くなるとともに、その隙間の大きさは、基板の被蒸着面の位置によってそれぞれ異なる。
 よって、従来の塗り分け蒸着法を用いては、高精度なパターニングを行うのが難しく、蒸着位置のズレや混色が発生してしまうという問題があった。
 また、従来の塗り分け蒸着法においては、マスクを大きくすると、マスク等を保持するフレーム等も巨大になってしまい、その重量も増加するため、取り扱いが困難になり、生産性や安全性に支障をきたすおそれがある。
 そして、従来の塗り分け蒸着法においては、蒸着装置やそれに付随する装置も同様に巨大化、複雑化するため、装置設計が困難になり、設置コストも高額になってしまう。
 以上のように、従来の塗り分け蒸着法では、大型基板へ高精細にパターニングされた蒸着膜を形成するのが困難であり、例えば、60インチサイズを超えるようなマスクが用いられる大型基板に対しては量産レベルで塗り分け蒸着が実現できていないのが現状である。
日本国公開特許公報「特開平8-227276号公報(1996年9月3日公開)」 日本国公開特許公報「特開2000-188179号公報(2000年7月4日公開)」 日本国公開特許公報「特開2004-349101号公報(2004年12月9日公開)」
 そこで、近年、基板よりも小さなマスクを用いて走査しながら蒸着を行うスキャン蒸着法が提案されている(例えば、特許文献3参照)。
 スキャン蒸着法では、開口部を有するマスクと蒸着源とが一体化された蒸着装置が用いられる。
 スキャン蒸着法では、従来のように基板と同等の大きさのマスクを用いる必要がないので、マスクサイズが大きくなることで生じる上述の問題を改善することができる。しかしながら、このような蒸着法においては、以下のような問題が新たに生じる。
 図16は、スキャン蒸着によって、基板の被成膜面101a(被蒸着面)に形成された蒸着膜の様子を示す平面図である。
 図16に示すように、大型の基板101には、各有機EL表示装置において、蒸着膜(例えば、発光層等)の形成が必要となる蒸着領域R10と、蒸着膜の形成が必要でない端子部となる蒸着不要領域R20と、がそれぞれ存在する。
 本来であれば、蒸着不要領域R20には、蒸着膜を形成する必要はない。
 しかしながら、図17に示すように、スキャン蒸着法を用いた場合、図16に示すように、蒸着領域R10だけでなく、蒸着不要領域R20にも、蒸着領域R10における蒸着膜パターンと同じパターンを有する蒸着膜106が形成される。
 以下、図17に基づいて、ストライプ状のパターンを有する蒸着膜106が蒸着不要領域R20にも形成される理由について説明する。
 図17に示すように、スキャン蒸着法を用いた場合に蒸着不要領域R20に蒸着膜106が形成されないようにするためには、蒸着用のマスク102の先端部が蒸着OFFライン(すなわち、蒸着不要領域R20の端部)に達した際に、蒸着源の射出口103aから射出される蒸着流を、例えばシャッタにより遮断することが考えられる。
 しかし、そのようにすると、マスク102の開口部102a上に蒸着不要領域R20が存在する状態においても、蒸着領域R10の端部がまだ開口部102a上に残っている。
 そのため、上記のように蒸着流を遮断すると、蒸着領域R10に射出される蒸着流も遮断されるため、蒸着領域R10の蒸着膜106の膜厚が低下する。
 したがって、スキャン蒸着法を用いた場合、蒸着領域R10に均一な膜厚を有する蒸着膜106を形成するためには、図16に示すように、蒸着不要領域R20にも、蒸着領域R10における蒸着膜パターンと同じパターンを有する蒸着膜106を形成する必要がある。
 図18は、蒸着不要領域R20に形成された蒸着膜106によって生じる問題点を説明する図である。
 図18は、発光層として、スキャン蒸着法で形成された蒸着膜106を備えた有機EL表示装置113の概略構成を示す図である。
 図18に示す有機EL表示装置113に備えられた基板101においては、蒸着領域R10だけでなく、蒸着不要領域R20にも、ストライプ状のパターンを有する蒸着膜106が形成されている。すなわち、蒸着不要領域R20である配線の端子部107aにも、蒸着膜106が形成されている。
 そして、回路基板112の接続端子111と、蒸着不要領域R20に形成されている配線の端子部107aとは、図示しない異方性導電膜(ACF)を介して電気的に接続される。
 しかし、図18に示すように、端子部107a上に蒸着膜106が形成されていると、導通不良または短絡が発生するという問題がある。
 すなわち、蒸着膜106の導電性が低い場合には、回路基板112の接続端子111と端子部107aとの導通不良が発生する。一方、蒸着膜の導電性が高いと、隣接する端子部107a間で短絡が生じる。すなわち、いずれの場合においても、端子部107a上に蒸着膜106が存在することで動作不良を発生させる。一般に、蒸着膜106は導電性が低く、導通不良を発生させることになる。
 また、蒸着領域R10の4辺端部の蒸着不要領域R20には、封止樹脂109が枠状に形成され、封止樹脂109を介して、基板101上に形成された有機EL素子108を密封するように、基板101と封止基板110とが貼り合わされる。これにより、有機EL素子108が大気中の水分や酸素により劣化することが防止される。
 しかし、図18に示されるように、蒸着不要領域R20において封止樹脂109が形成される領域に蒸着膜106が存在すると、封止不良が生じ易くなるという問題がある。
 したがって、例えば、このような蒸着方法によって製造された有機EL表示装置は、歩留まりが低く、信頼性を確保するのも困難であった。
 本発明は、上記の問題点に鑑みてなされたものであり、蒸着不要領域に蒸着した蒸着膜を簡便に除去することができる蒸着膜パターンの形成方法並びに有機エレクトロルミネッセンス表示装置の製造方法を提供することを目的とする。
 上記の課題を解決するために、本発明に係る蒸着膜パターンの形成方法は、被成膜基板にパターン化された蒸着膜を形成する蒸着膜パターンの形成方法であって、上記被成膜基板における被成膜面の蒸着不要領域に、外部からエネルギーを与えることで上記蒸着膜が気体になる温度(例えば蒸発温度または昇華温度)以上の温度の熱を発生させる熱発生層を形成する熱発生層形成工程と、上記熱発生層の少なくとも一部を覆うように、上記蒸着不要領域を含む上記被成膜基板の被成膜面に蒸着膜を形成する蒸着膜形成工程と、上記熱発生層から上記蒸着膜が気体になる温度以上の温度の熱を発生させることで、上記蒸着不要領域に形成された蒸着膜を選択的に気体化(例えば、一旦溶融した後に蒸発、または、直接、昇華)させて除去する蒸着膜除去工程と、を備えることを特徴としている。
 上記の方法によれば、蒸着不要領域に上記熱発生層を形成しておき、蒸着膜の蒸着後に上記熱発生層に外部からエネルギーを与えて上記熱発生層から上記蒸着膜が気体になる温度以上の温度の熱を発生させることで、蒸着不要領域に形成された蒸着膜を気体化させて除去することができる。
 したがって、蒸着後に、蒸着不要領域の蒸着膜を簡便に除去することができる。
 このため、蒸着不要領域への蒸着を防止するために、大型の被成膜基板を用いる場合に、大型の蒸着マスクを用いたり、高精度のファインマスクを用いたりする必要がない。
 また、スキャン蒸着を行う場合に、蒸着不要領域に蒸着膜が存在することで生じる、例えば端子部領域での導通不良の発生や短絡等の問題を回避することができる。
 さらには、上記方法によれば、蒸着後に、蒸着不要領域の蒸着膜を除去することができるので、マスクレス蒸着を行うことも可能となる。
 また、本発明に係る有機エレクトロルミネッセンス表示装置の製造方法は、上記蒸着膜パターンの形成方法を用いて、有機エレクトロルミネッセンス表示装置の蒸着膜を形成することを特徴としている。
 上記の方法によれば、蒸着不要領域への蒸着を防止するために、大型の蒸着マスクを用いたり、高精度のファインマスクを用いたりすることなく、有機エレクトロルミネッセンス表示装置を製造することができる。
 また、上記の方法によれば、例えばスキャン蒸着を行う場合に、蒸着不要領域に蒸着膜が存在することで生じる、例えば端子部領域での導通不良の発生や短絡等の問題を回避することができる。
 したがって、そのような問題を招来しない高性能の有機エレクトロルミネッセンス表示装置を、安価かつ安全に製造することができる。
 以上のように、本発明によれば、蒸着不要領域に上記熱発生層を形成しておき、蒸着膜の蒸着後に上記熱発生層に外部からエネルギーを与えて上記熱発生層から上記蒸着膜が気体になる温度以上の温度の熱を発生させることで、蒸着不要領域に形成された蒸着膜を気体化させて除去することができる。
 したがって、蒸着後に、蒸着不要領域の蒸着膜を簡便に除去することができる。
(a)~(c)は、本発明の実施の形態1で製造する有機EL表示装置の半導体基板における蒸着不要領域の有機膜を除去する工程を工程順に示す断面図である。 本発明の実施の形態1に係る有機EL表示装置の概略的な製造工程を示すフローチャートである。 本発明の実施の形態1で製造する有機EL表示装置の半導体基板におけるレーザ光照射領域を説明する平面図である。 本発明の実施の形態1で製造する有機EL表示装置における半導体基板の構成を説明する平面図である。 図4に示す半導体基板のA-A線矢視断面における要部の概略構成を示す断面図である。 図4に示す半導体基板のB-B線矢視断における要部の概略構成を示す断面図である。 本発明の実施の形態1で製造する有機EL表示装置の要部の概略構成を示す分解断面図である。 本発明の実施の形態1で用いられる蒸着装置の要部の概略構成を示す斜視図である。 本発明の実施の形態2で製造する有機EL表示装置の半導体基板における封止領域の一部を示す要部平面図である。 本発明の実施の形態2で製造する有機EL表示装置の半導体基板におけるレーザ光照射領域を説明する平面図である。 (a)~(c)は、本発明の実施の形態2で製造する有機EL表示装置の半導体基板における封止領域の有機膜を除去する工程を工程順に示す断面図である。 本発明の実施の形態3で製造する有機EL表示装置の半導体基板におけるレーザ光照射領域を説明する平面図である。 (a)~(c)は、本発明の実施の形態3で製造する有機EL表示装置の半導体基板における第2電極接続領域の有機膜を除去する工程を工程順に示す断面図である。 本発明の実施の形態4で製造する有機EL表示装置の半導体基板におけるレーザ光照射領域を説明する平面図である。 (a)~(c)は、本発明の実施の形態4で製造する有機EL表示装置の半導体基板の表示領域における有機膜の一部を除去する工程を工程順に示す断面図である。 スキャン蒸着を用いて基板に形成された従来の蒸着膜の様子を示す図である。 ストライプ状のパターンを有する蒸着膜が蒸着不要領域にも形成されてしまう理由について説明する図である。 蒸着不要領域に形成された蒸着膜によって生じる問題点を説明する図である。
 以下、本発明の実施の形態について、詳細に説明する。
 〔実施の形態1〕
 本発明の実施の一形態について、図1の(a)~(c)から図8に基づいて説明すれば、以下の通りである。
 本発明の実施の一形態に係る蒸着膜パターンの形成方法は、蒸着不要領域を含む被成膜基板の被成膜面に蒸着膜を形成した後、上記蒸着不要領域に形成された蒸着膜を選択的に蒸発または昇華させる等して気体にして除去することで所定の蒸着膜パターンを形成する方法である。
 以下、本実施の形態では、蒸着膜パターンを形成する被成膜基板として、有機EL表示装置に用いられる半導体基板を使用し、上記蒸着膜のパターンとして、上記半導体基板に、有機膜のパターンを形成する場合を例に挙げて説明する。
 すなわち、本実施の形態では、上記蒸着膜パターンの形成方法を用いて有機EL表示パネルおよび有機EL表示装置を製造する方法について説明する。しかしながら、本実施の形態はこれに限定されるものではない。
 <有機EL表示装置の構成>
 まず、上記有機EL表示装置の概略構成について説明する。
 図7は、本実施の形態で製造する有機EL表示装置100の要部の概略構成を示す分解断面図である。
 図7に示すように、本実施の形態で製造される有機EL表示装置100は、有機EL表示パネル1(表示パネル)と、有機EL表示装置100を駆動する駆動回路等が設けられた回路基板52とを備えている。
 有機EL表示パネル1は、能動素子(駆動素子)としてTFT2(図5参照)が設けられた半導体基板10(被成膜基板、TFT基板)上に、TFT2に接続された有機EL素子12、封止樹脂層18、封止基板13が、この順に設けられた構成を有している。
 図7に示すように、有機EL素子12は、該有機EL素子12が積層された半導体基板10を、枠状の封止領域Lに設けられた封止樹脂層18を介して封止基板13と貼り合わせることで、これら一対の基板(半導体基板10、封止基板13)間に封入されている。
 上記有機EL表示パネル1は、このように有機EL素子12が半導体基板10と封止基板13との間に封入されていることで、有機EL素子12への酸素や水分の外部からの浸入が防止されている。
 半導体基板10における上記枠状の封止領域Lの外側には、電気配線端子15(電気接続部、接続端子)等が形成された端子部領域R3が設けられている。
 回路基板52には、例えば、フレキシブルフィルムケーブル等の配線や、ドライバ等の駆動回路等が設けられている。回路基板52は、端子部領域R3に設けられた電気配線端子15を介して有機EL表示パネル1と接続されている。
 なお、本実施の形態においては、封止基板13としてガラス基板を用いており、上記したように、接着性を有する封止樹脂層18を介して、半導体基板10と封止基板13とを貼り合わせることによって、有機EL素子12の封止を行っている。
 しかしながら、有機EL素子12の封止方法はこれに限定されることはなく、例えば、有機EL素子12の上面には、水分や酸素の透過しにくい緻密な封止膜を、CVD(chemical vapor deposition、化学蒸着)法等で形成し、有機EL素子12の側面には、封止樹脂やフリットガラス(粉末ガラス)を、枠状に形成して有機EL素子12の封止を行ってもよい。
 次に、上記有機EL表示パネル1における半導体基板10および有機EL素子12の構成について詳述する。
 <半導体基板10の構成>
 図4は、本実施の形態で製造する有機EL表示装置100における半導体基板10の構成を説明する平面図である。また、図5は、図4に示す半導体基板10のA-A線矢視断面における要部の概略構成を示す断面図である。
 図4に示すように、半導体基板10の能動面(能動素子形成面)である一方の主面には、表示領域R1、第2電極接続領域R2、端子部領域R3、および、前記した枠状の封止領域Lが設けられている。
 <表示領域R1>
 表示領域R1は、半導体基板10の中央部に設けられており、例えば矩形状に形成されている。表示領域R1には、複数のサブ画素からなる画素アレイ部30が形成される。
 画素アレイ部30には、有機EL素子12を構成する有機膜からなる蒸着膜が形成される。なお、画素アレイ部30の構成については後で詳述する。
 上記有機膜は、スキャン蒸着により、上記半導体基板10の端から端まで形成される。したがって、上記有機膜は、該有機膜からなる蒸着膜の形成工程において、表示領域R1の画素アレイ部30だけでなく、その他の領域、つまり、第2電極接続領域R2、端子部領域R3、および封止領域Lにも形成される。
 <第2電極接続領域R2>
 第2電極接続領域R2は、画素アレイ部30の第2電極11(図5参照)が接続される領域である。
 第2電極接続領域R2は、表示領域R1の2組の対となる辺のうち、一方の組の対となる辺の外側に、それぞれ対向する辺に沿って形成されている。
 また、これら第2電極接続領域R2には、それぞれ接続部17(接続電極)が形成されている。接続部17は、画素アレイ部30の第2電極11が接続される部分であり、金属材料により形成されている。
 <封止領域L>
 前記したように、封止領域Lには、半導体基板10と封止基板13とを貼り合わせるための封止樹脂層18が形成されている。
 封止領域Lは、図4に示すように、表示領域R1および第2電極接続領域R2を囲むように枠状に形成されている。
 <端子部領域R3>
 端子部領域R3は、前記したように、有機EL表示パネル1と回路基板52との接続に用いられる領域である。
 端子部領域R3は、枠状の封止領域Lの外側に、この枠状の封止領域Lに沿って設けられている。
 具体的には、図4に示すように、端子部領域R3は、各第2電極接続領域R2の外側に、各第2電極接続領域R2に沿って形成されている。また、端子部領域R3は、表示領域R1における、上記第2電極接続領域R2が設けられていない、他方の組の対となる辺の外側に、それぞれ対向する辺に沿って形成されている。
 前記したように、表示領域R1の画素アレイ部30に形成される有機膜は、端子部領域R3にも形成される。
 しかしながら、端子部領域R3は、蒸着不要領域であり、このように、有機EL表示パネル1と回路基板52との接続に用いられる端子部領域R3、特に、図7に示したように回路基板52との接続端子として用いられる電気配線端子15上に有機膜が形成されていると、有機EL表示パネル1と回路基板52との導通不良を招く。
 このため、端子部領域R3に形成された上記有機膜は、有機EL表示パネル1と回路基板52との導通不良を招かないように、その少なくとも一部を除去する必要がある。
 そこで、端子部領域R3の構成の詳細については後で詳述するものとし、先に、画素アレイ部30の構成、並びに、本実施の形態で用いられる蒸着装置および蒸着方式について説明する。
 <画素アレイ部30の構成>
 まず、画素アレイ部30の構成について説明する。
 有機EL表示パネル1は、例えば、フルカラーのアクティブマトリクス型の有機EL表示装置であり、画素アレイ部30には、図5に示すように、赤(R)、緑(G)、青(B)の各色の発光色を有する有機EL素子12からなる各色のサブ画素RSP・GSP・BSPが、マトリクス状に配列されている。なお、以下、これらサブ画素RSP・GSP・BSPを総称して「サブ画素SP」と記す。
 本実施の形態では、各サブ画素RSP・GSP・BSPは、半導体基板10の能動面における横方向および縦方向のうちの一方の方向(例えば横方向であるx軸方向:図4参照)に、同じ発光色のサブ画素SPが隣り合い、他方の方向(例えば縦方向であるy軸方向:図4参照)に、異なる発光色のサブ画素SPが隣り合うように配列されている。
 図4および図5に示すように、半導体基板10は、ベース基板として絶縁基板3を備えている。
 図5に示すように、画素アレイ部30において、半導体基板10は、ガラス基板等の透明な絶縁基板3上に、TFT2および配線H、層間絶縁膜4、エッジカバー6等が形成された構成を有している。
 TFT2は、それぞれ、各サブ画素RSP・GSP・BSPに対応して設けられている。なお、TFTの構成は従来よく知られている。したがって、TFT2における各層の図示並びに説明は省略する。
 層間絶縁膜4は、各サブ画素RSP・GSP・BSPおよび配線Hを覆うように、上記絶縁基板3上に、該絶縁基板3の全領域に渡って積層されている。
 層間絶縁膜4上には、有機EL素子12における第1電極5が形成されている。
 また、層間絶縁膜4には、有機EL素子12における第1電極5をTFT2に電気的に接続するためのコンタクトホール4aが設けられている。これにより、TFT2は、上記コンタクトホール4aを介して、有機EL素子12に電気的に接続されている。
 エッジカバー6は、第1電極5の端部で有機EL層が薄くなったり電界集中が起こったりすることで、有機EL素子12における第1電極5と第2電極11とが短絡することを防止するための絶縁層である。
 エッジカバー6は、層間絶縁膜4上に、第1電極5の端部を覆うように形成されている。
 第1電極5は、図5に示すように、エッジカバー6のない部分で露出している。この露出部分が各サブ画素RSP・GSP・BSPの発光部となる。
 言い換えれば、各サブ画素RSP・GSP・BSPは、絶縁性を有するエッジカバー6によって仕切られている。エッジカバー6は、素子分離膜としても機能する。
 絶縁基板3としては、例えば、無アルカリガラスやプラスチック等を用いることができる。本実施の形態においては、板厚0.7mmの無アルカリガラスを使用した。
 層間絶縁膜4およびエッジカバー6としては、既知の感光性樹脂を用いることができる。上記感光性樹脂としては、例えば、アクリル樹脂やポリイミド樹脂等が挙げられる。
 また、TFT2は既知の方法にて作製される。なお、本実施の形態においては、上記したように、TFT2を各サブ画素RSP・GSP・BSPに形成したアクティブマトリクス型の有機EL表示装置100を例に挙げている。
 しかしながら、本実施の形態はこれに限定されるものではなく、TFTが形成されていないパッシブマトリクス型の有機EL表示装置の製造についても、本実施の形態を適用することができる。
 <有機EL素子12の構成>
 次に、上記画素アレイ部における有機EL素子12の構成について説明する。
 有機EL素子12は、低電圧直流駆動による高輝度発光が可能な発光素子であり、第1電極5、有機EL層、第2電極11が、この順に積層されている。
 第1電極5は、上記有機EL層に正孔を注入(供給)する機能を有する層である。第1電極5は、前記したようにコンタクトホール4aを介してTFT2と接続されている。
 第1電極5と第2電極11との間には、図5に示すように、有機EL層として、第1電極5側から、例えば、正孔注入層7a、正孔輸送層7b、発光層8R・8G・8B、電子輸送層9a、および電子注入層9bが、この順に形成された構成を有している。
 なお、図示してないが、必要に応じて正孔、電子といったキャリアの流れをせき止めるキャリアブロッキング層が挿入されていてもよい。
 また、一つの層が複数の機能を有していてもよく、例えば、正孔注入層7aと正孔輸送層7bとを兼ねた一つの層を形成してもよい。本実施の形態では、上記したように、正孔注入層7aと正孔輸送層7bとを互いに独立した層として形成したが、正孔注入層および正孔輸送層として、正孔注入層と正孔輸送層とが一体化された正孔注入層兼正孔輸送層を設けてもよい。
 なお、上記積層順は、第1電極5を陽極とし、第2電極11を陰極としたものである。第1電極5を陰極とし、第2電極11を陽極とする場合には、有機EL層の積層順は反転する。
 正孔注入層7aは、第1電極5から有機EL層への正孔注入効率を高める機能を有する層である。また、正孔輸送層7bは、発光層8R・8G・8Bへの正孔輸送効率を高める機能を有する層である。正孔注入層7aおよび正孔輸送層7bは、第1電極5およびエッジカバー6を覆うように、上記半導体基板10における表示領域全面に一様に形成されている。
 正孔輸送層7b上には、発光層8R・8G・8Bが、それぞれ、画素RSP・GSP・BSPに対応して形成されている。
 発光層8R・8G・8Bは、第1電極5側から注入された正孔と第2電極11側から注入された電子とを再結合させて光を出射する機能を有する層である。発光層8R・8G・8Bは、それぞれ、低分子蛍光色素、金属錯体等の、発光効率が高い材料で形成されている。
 電子輸送層9aは、発光層8R・8G・8Bへの電子輸送効率を高める機能を有する層である。また、電子注入層9bは、第2電極11から有機EL層への電子注入効率を高める機能を有する層である。
 電子輸送層9aは、発光層8R・8G・8Bおよび正孔輸送層7b上を覆うように、これら発光層8R・8G・8Bおよび正孔輸送層7b上に、上記半導体基板10における表示領域全面に渡って一様に形成されている。
 また、電子注入層9bは、電子輸送層9aを覆うように、電子輸送層9a上に、上記半導体基板10における表示領域全面に渡って一様に形成されている。
 なお、電子輸送層9aと電子注入層9bとは、上記したように互いに独立した層として形成されていてもよく、互いに一体化して設けられていてもよい。すなわち、有機EL表示パネル1は、電子輸送層9aおよび電子注入層9bに代えて、電子輸送層兼電子注入層を備えていてもよい。
 第2電極11は、上記のような有機層で構成される有機EL層に電子を注入する機能を有する層である。第2電極11は、電子注入層9bを覆うように、電子注入層9b上に、上記半導体基板10における表示領域全面に渡って一様に形成されている。
 なお、発光層8R・8G・8B以外の有機層は有機EL層として必須の層ではなく、要求される有機EL素子12の特性に応じて適宜形成すればよい。
 また、正孔注入層兼正孔輸送層および電子輸送層兼電子注入層のように、一つの層は、複数の機能を有していてもよい。
 また、有機EL層には、必要に応じ、キャリアブロッキング層を追加することもできる。例えば、発光層8R・8G・8Bと電子輸送層9aとの間にキャリアブロッキング層として正孔ブロッキング層を追加することで、正孔が電子輸送層9aに抜けるのを阻止し、発光効率を向上することができる。
 上記構成において、第1電極5(陽極)、第2電極11(陰極)、および発光層8R・8G・8B以外の層は、適宜挿入すればよい。
 第1電極5は、電極材料をスパッタ法等で形成した後、フォトリソグラフィ技術およびエッチングにより、個々の画素RSP・GSP・BSPに対応してパターン形成されている。
 第1電極5としては、様々な導電性材料を用いることができるが、絶縁基板3側に光を放射するボトムエミッション型の有機EL素子の場合、透明または半透明の必要がある。
 一方、基板とは反対側から光を放射するトップエミッション型有機EL素子の場合には、第2電極11が透明または半透明の必要がある。
 これら第1電極5および第2電極11に用いられる導電膜材料としては、例えば、ITO(Indium Tin Oxide:インジウム錫酸化物)、IZO(Indium Zinc Oxide:インジウム亜鉛酸化物)、ガリウム添加酸化亜鉛(GZO)等の透明導電材料、金(Au)、ニッケル(Ni)、白金(Pt)等の金属材料を用いることができる。
 また、上記第1電極5および第2電極11の積層方法としては、スパッタ法、真空蒸着法、CVD(chemical vapor deposition、化学蒸着)法、プラズマCVD法、印刷法等を用いることができる。例えば、上記第1電極5の積層に、後述する蒸着装置150を用いてもよい。
 有機EL層の材料としては、既知の材料を用いることができる。なお、発光層8R・8G・8Bには、それぞれ、単一の材料を用いてもよく、ある材料をホスト材料とし、他の材料をゲスト材料またはドーパントとして混ぜ込んだ混合材料を用いてもよい。
 正孔注入層7a、正孔輸送層7b、あるいは正孔注入層兼正孔輸送層の材料としては、例えば、アントラセン、アザトリフェニレン、フルオレノン、ヒドラゾン、スチルベン、トリフェニレン、ベンジン、スチリルアミン、トリフェニルアミン、ポルフィリン、トリアゾール、イミダゾール、オキサジアゾール、オキザゾール、ポリアリールアルカン、フェニレンジアミン、アリールアミン、およびこれらの誘導体、チオフェン系化合物、ポリシラン系化合物、ビニルカルバゾール系化合物、アニリン系化合物等の鎖状式あるいは環式共役系のモノマー、オリゴマー、またはポリマー等が挙げられる。
 発光層8R・8G・8Bの材料としては、低分子蛍光色素、金属錯体等の発光効率が高い材料が用いられる。例えば、アントラセン、ナフタレン、インデン、フェナントレン、ピレン、ナフタセン、トリフェニレン、ペリレン、ピセン、フルオランテン、アセフェナントリレン、ペンタフェン、ペンタセン、コロネン、ブタジエン、クマリン、アクリジン、スチルベン、およびこれらの誘導体、トリス(8-キノリノラト)アルミニウム錯体、ビス(ベンゾキノリノラト)ベリリウム錯体、トリ(ジベンゾイルメチル)フェナントロリンユーロピウム錯体、ジトルイルビニルビフェニル、ヒドロキシフェニルオキサゾール、ヒドロキシフェニルチアゾール等が挙げられる。
 電子輸送層9a、電子注入層9b、あるいは電子輸送層兼電子注入層の材料としては、例えば、トリス(8-キノリノラト)アルミニウム錯体、オキサジアゾール誘導体、トリアゾール誘導体、フェニルキノキサリン誘導体、シロール誘導体等が挙げられる。
 <蒸着方式並びに蒸着装置>
 次に、本実施の形態で用いられる蒸着方式並びに蒸着装置の一例について説明する。
 上記有機膜の蒸着には、例えばスキャン蒸着が用いられる。
 スキャン蒸着では、蒸着用のマスクと被成膜基板との間に一定の空隙を設けた状態で、被成膜基板と、マスクおよび蒸着源との少なくとも一方を相対移動させて走査することで、被成膜基板の蒸着領域よりも小さいサイズの開口領域(開口部群形成領域)を有するマスクを用いて蒸着膜を形成する。
 このために、マスクと蒸着源とは、図示しないホルダ等を用いて一体化させる等してその相対的な位置が固定される。なお、有機膜を被成膜基板の被成膜面全面に成膜する場合には、マスクは必ずしも必要ではない。
 ここで、スキャン蒸着に用いられる、本実施の形態に係る蒸着装置について、図8を参照して以下に説明する。
 図8は、本実施の形態で用いられる蒸着装置150の要部の概略構成を示す斜視図である。
 図8に示すように、蒸着装置150は、蒸着用のマスク102(蒸着マスク)と、蒸着源103と、これらマスク102と蒸着源103との間に配置された制限板300とを備えている。
 これらマスク102、蒸着源103、および制限板300は、互いに相対的な位置が固定されている。なお、これらマスク102、蒸着源103、および制限板300は、例えば、同一のホルダ等の保持部材を用いてマスクユニットとして一体的に形成されていてもよい。
 蒸着源103は、マスク102および制限板300との間に一定の空隙を有して(つまり、一定距離離間して)対向配置されている。
 蒸着源103は、蒸着材料を加熱して蒸発(蒸着材料が液体材料である場合)または昇華(蒸着材料が固体材料である場合)させることで気体状の蒸着粒子を発生させる。
 蒸着源103は、制限板300およびマスク102との対向面に、蒸着粒子を射出させる射出口103a(貫通口)を有しており、気体にした蒸着材料を、蒸着粒子として射出口103aから射出させる。
 なお、図8では、蒸着源103が複数の射出口103aを有している場合を例に挙げて図示しているが、射出口103aの数は特に限定されるものではなく、少なくとも1つ形成されていればよい。
 また、射出口103aは、図8に示すように一次元(すなわち、ライン状)に配列されていてもよく、二次元(すなわち、面状)に配列されていても構わない。
 また、蒸着源103は、るつぼと称される、内部に蒸着材料を直接収容する加熱容器を備えた構成を有していてもよい。
 あるいは、別の構成として、上記蒸着源103は、ロードロック式の配管(図示せず)と、該配管に接続された蒸着粒子供給源(図示せず)とを備え、射出口103aが設けられたノズル部に蒸着粒子を供給することで該射出口103aから蒸着粒子を射出する構成を有していてもよい。
 マスク102には、所望の位置・形状に、開口部102a(貫通口)が形成されており、マスク102の開口部102aを通過した蒸着粒子のみが、被成膜基板20に到達して蒸着膜を形成する。
 これにより、開口部102aに対応する、被成膜基板20の所望の位置にのみ、所望の成膜パターンを有する有機膜が、蒸着膜として蒸着形成される。
 なお、図8では、一例として、マスク102に、走査方向と平行な方向に延設された帯状(ストライプ状、スリット状)の開口部102aが、複数配列して設けられている場合を例に挙げて図示している。
 被成膜基板20に、前記したようにサブ画素SP毎に蒸着膜パターンを形成する場合には、マスク102として、サブ画素SP毎に開口部102aが形成されたファインマスクを使用する。
 一方、被成膜基板20における表示領域全面に蒸着膜パターンを形成する場合には、表示領域全面が開口したオープンマスクを使用する。
 サブ画素SP毎に成膜パターンを形成する例としては、例えば発光層が挙げられる。この場合、蒸着は、発光層の色毎に行われる(これを「塗り分け蒸着」と言う)。
 開口部102aは、被成膜基板20への蒸着膜のパターン形成として、例えば図5に示す半導体基板10における発光層8R・8G・8Bの塗り分け形成を行う場合、これら発光層8R・8G・8Bの同色列のサイズとピッチとに合わせて形成される。
 例えば、図5において赤色を表示するサブ画素RSPの発光層8Rの成膜を行う場合、赤色の発光材料を蒸着させる領域のみが開口したファインマスクを蒸着用のマスク102として用いて、成膜を行う。
 また、表示領域全面に蒸着膜パターンを形成する例としては、正孔注入層7a、正孔輸送層7b、電子輸送層9a、電子注入層9b等がある。この場合、表示領域全面および成膜が必要な領域のみ開口しているオープンマスクを蒸着用のマスク102として用いて成膜を行う。なお、第2電極11についても同様である。
 但し、有機膜を被成膜基板20の被成膜面20aの全面に成膜する場合には、マスク102は必ずしも必要ではない。
 制限板300には、上下方向に貫通する複数の開口部301(貫通口)が形成されている。
 蒸着源103の射出口103aから射出された蒸着粒子は、制限板300の開口部301およびマスク102の開口部102aを通って被成膜基板20に達する。
 蒸着源103の射出口103aからから射出された蒸着粒子は、ある程度の広がりを持って放射状に射出される。
 しかしながら、蒸着源103の射出口103aから射出された蒸着粒子が制限板300の開口部301を通ることで、被成膜基板20に入射される蒸着粒子の角度は、一定の角度以下に制限される。
 すなわち、制限板300を用いてスキャン蒸着を行う場合、制限板300によって制限された蒸着粒子の広がり角度よりも大きい射出角度を有する蒸着粒子は、制限板300によって全て遮蔽される。
 なお、制限板300は、斜め成分の蒸着粒子をカットするため、加熱しないか、図示しない熱交換器により冷却される。このため、制限板300は、蒸着源103の射出口103aよりも低い温度になっている。
 また、被成膜基板20の方向に蒸着粒子を飛来させないときには、図示しないシャッタを、制限板300と蒸着源103との間に配置する必要がある。
 このため、被成膜基板20の被成膜面20aに垂直な方向における制限板300の位置は、制限板300が、マスク102と蒸着源103との間に、蒸着源103から離間して設けられてさえいれば、特に限定されるものではない。制限板300は、例えばマスク102に密着して設けられていてもよい。
 制限板300の長辺の幅は、例えば、マスク102の長辺の幅と同程度の大きさに形成され、制限板300の短辺の幅は、例えば、マスク102の短辺の幅と同程度の大きさに形成される。
 なお、図8では、マスク102と蒸着源103との間に上記したように制限板300が設けられている場合を例に挙げて図示しているが、制限板300は、必ずしも必須ではない。
 また、図8では、蒸着源103が被成膜基板20の下方に配されており、被成膜基板20が、その被成膜面20aが下方を向いている状態で、蒸着源103から蒸着粒子を上方に向かって射出して被成膜基板20に蒸着(アップデポジション)させる場合を例に挙げて示している。
 しかしながら、上記蒸着方法はこれに限定されるものではなく、蒸着源103を、被成膜基板20の上方に設け、蒸着源103から蒸着粒子を下方に向かって射出して被成膜基板20に蒸着(ダウンデポジション)させてもよい。
 また、蒸着源103は、例えば、横方向に向けて蒸着粒子を射出する機構を有し、被成膜基板20の被成膜面20a側が蒸着源103側を向いて垂直方向に立てられている状態で、蒸着粒子を横方向に射出して被成膜基板20に蒸着(サイドデポジション)させてもよい。
 本実施の形態では、このようにスキャン蒸着を行う場合に、蒸着不要領域に隣り合う蒸着領域端部で蒸着膜の膜厚が薄くなることを防止するために、蒸着領域に引き続き、蒸着不要領域の少なくとも一部にもスキャン蒸着により蒸着膜を形成する。
 すなわち、本実施の形態では、被成膜基板20である半導体基板10の蒸着不要領域を含む被成膜面20a(すなわち能動面)に、蒸着膜を形成する。
 このため、例えばストライプ状の各発光層8R・8G・8Bは、半導体基板10の例えば端から端まで形成される。
 したがって、有機EL表示パネル1と回路基板52との導通不良を防止するためには、前記したように、端子部領域R3に形成された上記発光層8R・8G・8B等の有機膜の少なくとも一部を除去する必要がある。
 <端子部領域R3の構成>
 ここで、あらためて端子部領域R3の構成について説明する。
 図6は、図4に示す半導体基板10のB-B線矢視断面における要部の概略構成を示す断面図である。
 端子部領域R3には、例えば図4および図6に示すように、電気配線端子15と、島状構造部16と、保護絶縁膜19(図6参照)とが形成されている。なお、図4および図6では、作図の便宜上、保護絶縁膜19の図示を省略している。
 図7に示すように、電気配線端子15は、回路基板52の接続端子52aが接続される接続端子であり、金属等の配線材料により形成されている。
 また、図4に示すように、電気配線端子15は、端子部領域R3の長手方向に沿って互いに間隔を空けて複数形成されている。
 保護絶縁膜19には、図6に示すように、上記電気配線端子15を露出する端子部開口19aが設けられている。この端子部開口19aにより、回路基板52の接続端子52aと上記電気配線端子15とが、例えばACF51(異方性導電膜、図1の(c)参照)を介して接続される。
 このとき、有機膜が端子部開口19a上に存在すると、有機膜の導電性が低い場合には、回路基板52と電気配線端子15との導通不良が発生する。一方、有機膜の導電性が高いと、隣接する電気配線端子15間で短絡が生じる。すなわち、何れの場合においても、端子部開口19a上に有機膜が存在することで動作不良を発生させる。一般に、有機膜は導電性が低く、導通不良を発生させることになる。
 そこで、本実施の形態では、電気配線端子15を、外部から、エネルギーを与えることで、端子部領域R3(この場合には電気配線端子15上)に積層された蒸着膜である、上記発光層8R・8G・8B等の有機膜が気体になる温度以上の温度の熱を発生させる材料で形成している。
 なお、ここで、上記有機膜が気体になる温度とは、例えば上記有機膜の蒸発温度または昇華温度等、上記有機膜が気体化する温度を示す。
 また、図4および図6に示すように、上記端子部開口19a間(言い換えれば、各電気配線端子15間)に、外部からエネルギーを与えることで、上記発光層8R・8G・8B等の有機膜が気体になる温度以上の温度の熱を発生させる材料からなる島状構造部16を設けている。なお、この場合における上記有機膜とは、島状構造部16上に積層された発光層8R・8G・8B等の有機膜を示す。
 すなわち、電気配線端子15および島状構造部16は、外部からエネルギーを与えることで、除去すべき蒸着膜が気体になる温度以上の温度の熱を発生させる熱発生層として機能する。
 このように電気配線端子15および島状構造部16から、除去すべき蒸着膜が気体になる温度以上の温度の熱を発生させることで、端子部領域R3に形成された蒸着膜、具体的には、上記電気配線端子15および島状構造部16に重なる蒸着膜を、選択的に除去することができる。
 上記エネルギーとしては、例えば、光エネルギー、電気エネルギー等が挙げられるが、上記したように熱発生層にエネルギーを与えることで熱発生層から、除去すべき蒸着膜が気体になる温度以上の温度の熱を発生させることができさえすれば、特に限定されるものではない。
 この場合、上記電気配線端子15および島状構造部16に重なる蒸着膜を選択的に除去するためには、例えば、上記エネルギーを供給するエネルギー供給源として、例えばレーザを使用することが好ましい。レーザを使用することで、局所的な光照射が可能となる。
 また、照射領域だけを加熱するために、照射領域に対応した開口部を有するマスクを用いてもよい。
 さらには、上記材料として、隣接する層よりも光吸収率あるいは熱変換率が高く、隣接する層よりも上記蒸着膜が気体になる温度以上の温度に達する時間が早い材料を使用することが好ましい。
 すなわち、上記熱発生層は、隣接する層よりも光吸収率あるいは熱変換率が高く、隣接する層よりも上記蒸着膜が気体になる温度以上の温度に達する時間が早い層であることが好ましい。
 なお、ここで、隣接する層とは、蒸着膜を形成する前において隣接する層であり、蒸着膜そのものは除外される。
 島状構造部16は、例えば電気配線端子15と同じ材料により形成されている。島状構造部16は、各電気配線端子15の間に、各電気配線端子15に接触しない様に形成されている。
 島状構造部16を電気配線端子15と同じ材料で形成することで、島状構造部16と電気配線端子15とを同一の工程により形成することができるとともに、同じエネルギー供給源を使用し、同じ条件を用いて熱を発生させることができる。但し、島状構造部16と電気配線端子15とは、異なる材料で形成されていても構わない。
 なお、本実施の形態では、図6に示すように、端子部領域R3に、電気配線端子15の周縁および島状構造部16の全体を被覆し、電気配線端子15の周縁以外を露出する様に、絶縁材料からなる保護絶縁膜19が形成されている。しかしながら、保護絶縁膜19は必ずしも必須ではない。
 また、図4では、作図の便宜上、一部の端子部領域R3だけ、電気配線端子15および島状構造部16を図示しているが、全ての端子部領域R3に電気配線端子15および島状構造部16が形成されている。
 上記熱発生層としては、例えば光吸収性を有する光吸収層、あるいは導電性を有する導電層等が挙げられる。
 <光吸収層>
 以下では、上記熱発生層として、光吸収層を用いる場合について説明する。
 光吸収層とは、上記したように、光エネルギーとして、レーザ光等の光を吸収して熱を発生する層である。
 光吸収率をαとすると、光吸収率αは、レーザ光等、エネルギー供給源から供給された波長の光の反射率または/および透過率を1から引いた値を示す。
 電気配線端子15および島状構造部16の場合、それらの材料を金属とすると、それらは一般的に不透明となるので光吸収層となり、それらの光吸収率αは、それらの反射率を1から引いた値に近くなる。
 なお、光吸収層としては、透過率が低く、且つ反射率が低い材料が適しており、熱伝導率が高い材料であることが好ましい。
 光吸収層に用いられる、光吸収性を有する光吸収材料の一例としては、例えば、窒化チタン、窒化タンタル、窒化モリブデン、窒化タングステン、窒化クロム、窒化マンガン等の金属窒化物や、モリブデン、チタン、タングステン、カーボン等が挙げられる。
 電気配線端子15をこのように熱発生層として用いる場合には、接触抵抗や電気抵抗を加味して選択すればよい。
 本実施の形態では、電気配線端子15および島状構造部16は、上記したように光吸収層であるが、電気配線端子15および島状構造部16の周辺の層は、光吸収層ではなく、非光吸収層である。なお、ここで、非光吸収層とは、光吸収層に比べて十分に光吸収量が小さいものを示す。
 すなわち、光吸収層である電気配線端子15および島状構造部16では上記光エネルギー供給源から光エネルギーとして供給された光が吸収されるが、非光吸収層であるそれら以外の部位では殆ど吸収されない。
 このような非光吸収層は、光吸収率が小さく、外部から光エネルギーを与えても、除去すべき蒸着膜が気体になる温度以上の温度の熱を発生させることはできない。
 言い換えれば、上記電気配線端子15および島状構造部16は、隣接する層よりも光吸収率が高く、隣接する層よりも上記蒸着膜が気体になる温度以上の温度に達する時間が早い。
 このため、このように、電気配線端子15および島状構造部16に、上記光吸収層で吸収される波長の光を照射することで、局所的に、上記蒸着膜が気体になる温度以上の温度の熱が発生し、局所的に、上記蒸着膜を気体化(例えば、一旦溶融した後に蒸発、または、直接昇華)させて除去することができる。
 <光エネルギー供給源>
 上記したように外部から供給するエネルギーが光エネルギーである場合、エネルギー供給源である光エネルギー供給源としては、例えば、YAG(yttrium aluminum garnet)レーザ等のレーザや、フラッシュランプ等の光照射装置(励起光生成装置)が挙げられる。
 波長1064nmのNd:YAGレーザのレーザ光等、例えば200nm~1200nmの波長領域のレーザ光は、ガラスに対して吸収され難く、数%しか吸収されず、残りはほぼ透過する。
 このようにガラス基板における吸収率が低いレーザを光エネルギー供給源(光照射装置)として用いた場合、ガラス基板に水平方向に対しては熱が広がらず、レーザ照射領域に対して局部的に熱がかかる。一方、ガラス基板に垂直方向に対しては、ガラス基板の厚み方向全体に同時に熱をかけることができる。
 <光吸収層と非光吸収層との発熱量比の設定条件>
 以下では、光吸収層および非光吸収層のうち、光吸収層だけで局所的に熱を発生させるための光吸収層および非光吸収層の条件を考察する。
 光吸収層の光吸収率をαとし、光吸収層とその上の有機膜との各々の比熱をそれぞれC、C(J/g・K)とし、密度をそれぞれρ、ρとし、膜厚をそれぞれd、d(nm)とすると、光吸収層とその上の有機膜との全体を温度ΔT(K)だけ上げるのに必要なエネルギー密度E(J/cm)は、次式(1)
 E=(C×ρ×d+C×ρ×d)×ΔT/(α×β)・・・・・(1)
で示される。
 ここで、βは、光吸収層および非光吸収層以外の部材による反射や吸収等のロス、基板方向へ逃げる熱等を考慮した補正係数である。
 C=0.5、C=2.0、ρ=7.2、ρ=1.0、d=100×10-9、d=50×10-9、ΔT=300、α=0.4、β=0.1とすると、必要なエネルギー密度Eは、3.45mJ/cmとなる。
 一方、非光吸収層とその上の有機膜との全体のエネルギー密度Eについては、非光吸収層の光吸収率をαとし、温度上昇をΔTとし、比熱をCとし、密度ρとし、膜厚dとし、式(1)において、それら各物性値と光吸収層の各物性値とを入れ替えればよい。すなわち、ΔT、α、C、ρ、dを、順に、ΔT、α、C、ρ、dと置きかえればよい。
 この時、光吸収層の温度上昇ΔTと非吸収層の温度上昇ΔTの比を取れば、次式(2)
 ΔT/ΔT=α/α×K・・・・・(2)
 (但し、K=(C×ρ×d+C×ρ×d)/(C×ρ×d+C×ρ×d))
のようになる。
 したがって、非光吸収層の温度上昇ΔTを150℃とし、光吸収層の温度上昇ΔTを300℃以上にしたい時には、式(2)の右辺を2以上になるようにすればよい。
 式(2)の右辺において、K≧1となるように、各層の構成を調整すれば、式(2)は、さらに単純となり、式(3)
 ΔT/ΔT≧α/α・・・・・・(3)
となる。
 すなわち、比熱と密度と膜厚との積(C×ρ×d)を必要加熱量と称すると、光吸収層の領域の必要加熱量の和よりも非光吸収層の領域の必要加熱量の和のほうが大きい(K≧1)としておけば、光吸収率の比(α/α)のみで単純に熱発生量の比(ΔT/ΔT)を見積ることができる。
 そして、K≧1であれば、上述したように、非光吸収層の温度上昇ΔTを150℃とし、光吸収層の温度上昇ΔTを300℃以上にしたい時(すなわち、ΔT/ΔT≧2にしたい時)には、式(3)より、光吸収率の比(α/α)を2以上とすればよい。
 例えば、光吸収層をモリブデンとしてα=0.4とし、非光吸収層をアルミニウムとしてα=0.15とすれば、α/α=2.7が得られるので、上記のような温度上昇の差を実現できる。
 さらに、一般的に必要加熱量は物質により大きな差異がないため、Kは著しく小さくなったり、大きくなったりはしない。
 そのため、非光吸収層の光吸収率αが光吸収層の光吸収率αに比べて著しく小さい場合(α≫α)には、K≧1の条件を満たさなくとも、式(2)の右辺は十分に大きくなる。
 すなわち、αが比較的小さい場合には、特別な設計考慮をすることなく、光吸収層のみに大きな熱を発生させることが可能となる。
 例えば、α=0.4、α=0.05、K=0.5とすれば、式(2)より、ΔT/ΔT=4が得られる。これは非光吸収層の温度上昇ΔTを100℃とした時、光吸収層の温度上昇ΔTを400℃にすることができることを意味する。
 また、上述のように、島状構造部16を覆う保護絶縁膜19は、導電性の異物によって、島状構造部16を介して電気配線端子15同士が短絡することを防止することができる。この保護絶縁膜19の影響を考慮する場合は、式(1)において、さらに、保護絶縁膜19の比熱、密度、膜厚の積を足す必要がある。
 島状構造部16上の有機膜を十分に温度上昇させ、的確に除去するためには、保護絶縁膜19は無い方が好ましい。したがって、上述した電気配線端子15同士の短絡の防止と、上述した光吸収層と非光吸収層との温度上昇の差の確保とは、トレードオフの関係にあり、重要度によってどちらを優先するかを決定すればよい。
 また、絶縁性を保持した上で保護絶縁膜19の膜厚をできるだけ薄くすることによって、上述した光吸収層と非光吸収層との温度上昇の差を確保することができる。
 また、本実施の形態では、光吸収層(電気配線端子15および島状構造部16)の材料に、モリブデン等の金属材料を使用し、非光吸収層(例えば絶縁基板3や保護絶縁膜19)の材料には、金属材料を使用せずに、透明膜(すなわち、光吸収率αが比較的小さい膜)のみを使用している。すなわち、非光吸収層の光吸収率αが光吸収層の光吸収率αよりも著しく小さい。
 したがって、このような場合は、上述のα≫αの場合の考察を容易に満たすので、特別な設計考慮をすることなく、光吸収層のみに大きな熱を発生させることができる。
 実際に、例えば30mJ/cmのレーザ光の照射を行うと、光吸収層(電気配線端子15および島状構造部16)は瞬間的に400℃の熱が発生したが、非光吸収層(例えば被成膜基板20)は100℃以下の熱の発生に留まり、そのため、光吸収層の上の有機膜のみが気体化した。
 <有機EL表示パネル1の製造方法>
 次に、上記電気配線端子15および島状構造部16を光吸収材料で形成した場合における有機EL表示パネル1の製造方法について、図1の(a)~(c)から図3を参照して以下に説明する。
 図1の(a)~(c)は、本実施の形態で製造する有機EL表示装置100の半導体基板10における蒸着不要領域の有機膜を除去する工程を工程順に示す断面図である。図2は、本実施の形態に係る有機EL表示装置100の概略的な製造工程を示すフローチャートである。また、図3は、本実施の形態で製造する有機EL表示装置100の半導体基板10におけるレーザ光照射領域を説明する平面図である。
 以下では、1枚の大型の被成膜基板20から4枚の半導体基板10を作製する場合を例に挙げて説明する。
 図3では、1枚の被成膜基板20は縦横に4つに区画され、各区画からそれぞれ半導体基板10が形成される。なお、図3では、作図の便宜上、左上の区画だけに表示領域R1、第2電極接続領域R2、端子部領域R3、封止領域Lが設定(図示)されているが、他の区画も同様に表示領域R1、第2電極接続領域R2、端子部領域R3、封止領域Lが設定されている。
 また、以下では、図2に示すフローチャートに示すステップS1~S12にしたがって、有機EL表示装置100の製造工程の流れについて説明する。
 先ず、ステップS1において、既知の方法で、図3の被成膜基板20の表示領域R1上に、図5に示すように、TFT2、配線H、層間絶縁膜4、第1電極5、およびエッジカバー6を形成する。なお、ここでは、被成膜基板20は、図5に示す半導体基板10における絶縁基板3に相当する。
 なお、この工程で、TFT2を駆動するための走査線および信号線等の配線Hも、端子部領域R3まで引き出されるようにパターン形成する。
 また、この工程で、例えば、図3に示すように、第2電極接続領域R2に、接続部17をパターン形成する。
 次に、ステップS2において、被成膜基板20の蒸着不要領域に光吸収層(熱発生層)を形成する。ここでは、図4、および図3に斜線(ハッチング)で示す、端子部領域R3を少なくとも含む、半導体基板10の周縁の額縁領域41(非表示領域)が蒸着不要領域に設定されている。但し、額縁領域41全体に熱発生層を形成する必要はなく、少なくとも端子部領域R3に熱発生層が形成されていればよい。
 本実施の形態では、図3に示すように、端子部領域R3に、上記熱発生層として、既知の方法(マスクを用いた蒸着法)により、電気配線端子15および島状構造部16をパターン形成している。
 その際、電気配線端子15は、光吸収材料により形成され、島状構造部16は、電気配線端子15と同じ材料により、端子部領域R3内の電気配線端子15以外の領域に形成される。
 なお、ステップS1にてTFT2、配線H、層間絶縁膜4、第1電極5、およびエッジカバー6を形成し、その後、ステップS2にて光吸収層(熱発生層)を形成するとしたが、これらの形成順は、積層構成の順番にしたがい、適宜前後させることができる。
 例えば、島状構造部16と電気配線端子15とを配線Hと同じ材料で同時に形成する場合には、配線H、島状構造部16、および電気配線端子15の形成後に、層間絶縁膜4、第1電極5、およびエッジカバー6を形成する。
 すなわち、ステップS1・S2で形成されるパターンに関しては、形成手順が最も効率良くなるように処理順を適宜調整すればよい。
 その後、図6に示すように、保護絶縁膜19を、電気配線端子15の周縁および島状構造部16の全体を被覆し、電気配線端子15の周縁以外を露出する様に、既知の方法(蒸着マスクを用いた蒸着法)により、端子部領域R3にパターン形成する。但し、この保護絶縁膜19は無くても構わない。
 なお、ここでは、電気配線端子15および島状構造部16は、同じ工程で一緒に形成されるが、別々の工程で形成してもよい。
 また、ここでは、保護絶縁膜19は、層間絶縁膜4およびエッジカバー6とは別の工程で形成されるが、層間絶縁膜4またはエッジカバー6と同じ工程で一緒に形成してもよい。その場合、電気配線端子15および島状構造部16を、層間絶縁膜4またはエッジカバー6よりも先に形成しておき、保護絶縁膜19を、層間絶縁膜4またはエッジカバー6と同じ工程で一緒に形成すればよい。
 そして、ステップS3において、図5に示すように、被成膜基板20の表示領域R1の全面に、第1電極5およびエッジカバー6を被覆するように、正孔注入層7aをパターン形成する。
 なお、上記パターン形成には、例えば図8に示す蒸着装置150を使用し、オープンマスクを蒸着用のマスク102として用いたスキャン蒸着が用いられる。
 次いで、ステップS4において、正孔輸送層7bを、正孔注入層7aを被覆するように、正孔注入層7aと同じパターンで、正孔注入層7aと同様にしてパターン形成する。
 次いで、ステップS5において、図3に示すように、被成膜基板20の表示領域R1上に、ストライプ状の各色の発光層8R・8G・8Bをパターン形成する。
 具体的には、例えば図8に示す蒸着装置150を使用し、ファインマスクを蒸着用のマスク102として用いて、発光層8R・8G・8Bを真空蒸着法により塗り分け蒸着する。これにより、これにより、各サブ画素RSP・GSP・BSPに応じたパターン膜を形成する。
 このとき、ストライプ状の各発光層8R・8G・8Bは、被成膜基板20の端から端まで形成され、蒸着必要領域(表示領域R1等の有機膜を形成したい所望の場所)だけでなく、蒸着不要領域(ここでは端子部領域R3を含む半導体基板10の額縁領域41)にも形成される。
 具体的には、赤色の発光層8Rを形成する場合は、蒸着源103の射出口103aから赤色の蒸着粒子が射出される。そして、赤色のサブ画素RSPの発光領域に対応する所定領域のみに開口部102aを有するマスク102を用いて走査しながら蒸着を行う。
 これにより、図3に示すように、ストライプ状の赤色の発光層8Rが形成される。
 なお、緑色の発光層8Gおよび青色の発光層8Bを形成する場合も、赤色の発光層8Rの場合と同様にすることで、図3に示すように、ストライプ状の各発光層8G・8Rが形成される。
 その後、ステップS6・S7において、上記発光層8R・8G・8Bが形成された被成膜基板20上に、オープンマスクを蒸着用のマスク102として用いて、電子輸送層9a、電子注入層9bを、順にパターン形成する。
 具体的には、先ず、電子輸送層9aを、被成膜基板20上において、表示領域R1に形成された発光層8R・8G・8Bおよびエッジカバー6を被覆し、表示領域R1以外は露出するようにパターン形成する。そして、電子注入層9bを、電子輸送層9a上に、電子輸送層9aと同じパターンで、電子輸送層9aと同様にしてパターン形成する。
 その後、ステップS8において、既知の方法で、第2電極11を形成する。具体的には、第2電極11を、表示領域R1の全面に形成するとともに、第2電極接続領域R2の接続部17と電気的に接続し、それら以外の領域を露出するように、例えば蒸着用のマスクを用いた蒸着法によりパターン形成する。
 なお、上記したように蒸着装置を用いて蒸着膜を成膜する場合、該蒸着装置は、真空ポンプによって、1.0×10-4Pa以上の真空到達率に設定されていることが望ましい。言い換えれば、真空チャンバ内の圧力は、1.0×10-4Pa以下に設定されていることが望ましい。
 蒸着粒子の平均自由行程は、1.0×10-3Paよりも高い真空度となることで、必要十分な値が得られる。一方、真空度が1.0×10-3Paよりも低いと、同平均自由行程が短くなるため、蒸着粒子が散乱されて、被成膜基板20への到達効率が低下したり、コリメート成分が少なくなったりする。このため、真空チャンバは、上記真空到達率に設定されていることが望ましい。
 次いで、ステップS9において、蒸着不要領域に形成された発光層8R・8G・8Bを除去する。
 具体的には、外部の光エネルギー供給源により、光吸収層である電気配線端子15および島状構造部16に光を照射して電気配線端子15および島状構造部16を、上記発光層8R・8G・8Bが気体になる温度以上の温度の熱を発生させる。これにより、端子部領域R3上に形成された発光層8R・8G・8Bを気体化させて除去する。
 ここでは、上記光エネルギー供給源として、例えばYAGレーザ等のレーザ光照射装置を使用し、図3に斜線で示すように、表示領域R1、封止領域Lおよび第2電極接続領域R2を除く、半導体基板10の額縁領域41をレーザ光照射領域R4として、レーザ光50(図1の(a)参照)を照射する。
 図1の(a)は、レーザ光照射領域R4のうち、端子部領域R3内の電気配線端子15および島状構造部16にレーザ光50を照射する様子を示している。なお、このレーザ光50の照射は、例えば、真空中で行われる。
 その際、電気配線端子15と島状構造部16は、上述のように光吸収層として形成されているが、電気配線端子15および島状構造部16の周辺は、光吸収層となっていない(非光吸収層(熱発生層以外の熱伝導部))。
 そのため、レーザ光照射領域R4にレーザ光50を照射すると、レーザ光50は、光吸収層である、端子部領域R3における端子部開口19aの電気配線端子15、および端子部領域R3を含むレーザ光照射領域R4内の島状構造部16では吸収されるが、非光吸収層であるそれら以外の部位では殆ど吸収されない。
 その結果、電気配線端子15および島状構造部16だけで局所的に高熱が発生し、図1の(b)に示すように、電気配線端子15および島状構造部16上に形成された発光層8R・8G・8Bが気体化し、電気配線端子15が露出する。また島状構造部16上の発光層8R・8G・8Bも気体化する。
 したがって、端子部領域R3においては、該端子部領域R3の大部分の発光層8R・8G・8Bが除去される。
 その後、ステップS10において、被成膜基板20に封止基板13が配設される。
 すなわち、まず、図3に示す被成膜基板20における表示領域R1および第2電極接続領域R2を囲む枠状の封止領域Lに、図7に示すように封止樹脂層18を形成する。その後、この封止樹脂層18を介して、被成膜基板20と封止基板13とを貼り合わせる。
 これにより、被成膜基板20と封止基板13と封止樹脂層18とにより、有機EL素子12が密封される。
 次いで、ステップS11において、被成膜基板20が縦横に4分割されて4個の半導体基板10が製作される。
 その後、ステップS12において、図1の(c)に示すように、各半導体基板10の端子部領域R3の電気配線端子15に、例えばACF51を介して、回路基板52の接続端子52aを接続する。このようにして、有機EL表示装置100が製造される。
 〔効果〕
 以上のように、本実施の形態によれば、蒸着不要領域(特に端子部領域R3)に熱発生層(ここでは電気配線端子15および島状構造部16)を形成し、蒸着膜(ここでは発光層8R・8G・8B)の蒸着後に上記熱発生層を加熱して熱を発生させることで、上記蒸着不要領域に形成された蒸着膜を気体化させて除去する。よって、上記蒸着不要領域に形成された蒸着膜を簡便に除去できる。
 また、端子部領域R3が上記蒸着不要領域として設定されるので、電気配線端子15上の有機膜(ここでは発光層8R・8G・8B)の大部分が除去される。よって、回路基板52と電気配線端子15とを接着させるACF51の半導体基板10上への密着力が向上し、ACF51の剥がれによる不良を防止できる。
 また、電気配線端子15が上記熱発生層を兼ねる(すなわち、電気配線端子15を光吸収層材料で形成する)ので、特別な設計パターンや装置を追加することなく、端子部領域R3上の有機膜(ここでは発光層8R・8G・8B)の除去を的確に行うことができる。
 また、端子部領域R3に、端子部開口19a以外の領域(例えば電気配線端子15間の領域)に熱発生層である島状構造部16が形成されることで、該端子部開口19a以外の領域に形成された有機膜を除去することができる。これにより、端子部領域R3における半導体基板10とACF51との密着性をより向上できる。なお、島状構造部16がある場合でも、設計パターンの簡単な変更だけで、特別な装置を追加することなく、端子部領域R3上の有機膜の除去を行うことができる。
 また、蒸着不要領域に照射する光としてレーザ光が使用することで、レーザ光により、蒸着時に蒸着不要領域に付着した異物等を除去できる。これにより、有機EL表示パネル1、さらには、有機EL表示装置100の歩留まりおよび信頼性を向上できる。
 また、島状構造部16は保護絶縁膜19により被覆されているので、導電性の異物によって、島状構造部16を介して電気配線端子15同士が短絡することを防止することができる。
 なお、ACF51と端子部領域R3との密着性が確保できるのであれば、必ずしも島状構造部16を形成しなくてもよい。
 また、本実施の形態では、図4に示すように、一例として、各電気配線端子15間に1つの島状構造部16を形成したが、島状構造部16を細かい島に分割して、各電気配線端子15間に複数の島状構造部16を形成してもよい。
 その場合、隣り合う2つの電気配線端子15と、これら電気配線端子15間の複数の島状構造部16との間に膜残りが生じて電気配線端子15間が短絡する確率をより低減することができる。すなわち、島状構造部16が小さくなればなるほど、平面視で(すなわち、半導体基板10の基板面に垂直な方向から見たときに)、隣り合う2つの電気配線端子15間に有機膜の膜残りが発生する確率は減る。
 また、本実施の形態では、図6に示すように、島状構造部16は、電気配線端子15が形成される層と同じ層に形成されるが、電気配線端子15が形成される層とは別の層に形成してもよい。それにより、電気配線端子15間が短絡する確率を低減することができる。
 また、電気配線端子15と島状構造部16とを別々の層に形成する場合には、平面視で、電気配線端子15と島状構造部16との間に隙間が生じないように、電気配線端子15と該電気配線端子15に隣り合う島状構造部16の一部とを重ねてもよい。このように電気配線端子15と島状構造部16とを部分的に重畳させることにより、より確実に端子部領域R3上の有機膜を除去することができる。
 なお、本実施の形態では、蒸着不要領域へのレーザ光照射は、真空中で行われたが、本実施の形態はこれに限定されない。
 例えば、有機膜が気体化し得る条件であれば、真空中ではなく、不活性ガス雰囲気中または大気中で当該レーザ光照射を行ってもよい。その場合、レーザ光照射は、例えば封止基板13による有機EL素子12の封止が完了した後に行うこともできる。
 有機EL素子12の封止後にレーザ光を照射する場合、有機EL素子12の大気暴露が防止されるので、大気中でのレーザ光照射が可能となる。また、レーザ光により飛散した有機材料が有機EL素子12に再付着して損傷を招くことを防止することができる。
 <変形例>
 なお、上記説明では、光照射装置としてレーザ(レーザ光照射装置)を用いた場合を例に挙げて説明した。
 しかしながら、本実施の形態は、これに限定されるものではなく、光照射装置としては、前記したように例えばフラッシュランプを用いてもよい。
 但し、フラッシュランプを用いる場合は、レーザ光のように照射領域だけを限定的に加熱することができないので、光の透過・遮蔽を制御するために、その照射領域に対応した開口部を有するマスクを用いたり、隣接する層よりも、上記フラッシュランプの波長の光に対する光吸収率が高い材料からなる光吸収層を形成したりする必要がある。
 なお、上記マスクとしては、有機EL表示パネル1の各有機膜を形成する際に使用する蒸着用のマスクを併用してもよい。このようにマスクを用いて光を照射することで、照射領域だけを、除去すべき蒸着材料が気体になる温度以上の温度に昇温させることができる。
 また、光吸収層の加熱方法としてフラッシュランプを用いる場合には、半導体基板10の裏面(有機EL素子12側と反対側の面)側から照射する方が好ましい。これは、表示領域R1の有機EL素子12の有機膜に損傷を与えるような紫外光を絶縁基板3や透明電極等に吸収させることができるためである。
 なお、レーザ光であれば、所望の場所のみに照射領域を制限し易いこと、また、紫外光以上の波長で照射することができ、有機EL素子12に損傷を与える可能性が少ないことから、必ずしも基板裏面から照射する必要性はない。
 また、光吸収層の加熱方法として、フラッシュランプを用いる場合は、上述のK≧1の場合の考察、および、上述のα≫αの場合の考察がそのまま適用できる。
 なお、光吸収層の加熱時間は、できる限り短いほうがよい。加熱時間が長いと、例えばレーザ光照射によって光吸収層に与えられた熱は、絶縁基板3を伝熱して逃げてしまうため、光吸収層上の有機膜が気体になるほど十分に光吸収層が加熱されないからである。加熱時間は1秒以下が望ましい。
 また、本実施の形態では、第2電極11の形成後に、レーザ光照射による蒸着不要領域(特に端子部領域R3)における有機膜の除去が行われたが、本実施の形態は、これに限定されない。
 例えば、電気配線端子15に回路基板52の接続端子52aを接続する前であれば、どの段階で、蒸着不要領域(特に端子部領域R3)上の有機膜の除去が行われてもよい。
 また、本実施の形態では、特に端子部領域R3における有機膜を除去する場合を例に挙げて説明したが、本実施の形態はこれに限定されるものではない。
 例えば、被成膜基板20に形成された、封止基板13と半導体基板10とのアライメント用のアライメントマーカの除去を行う場合にも、本実施の形態に記載の方法を適用することができる。
 すなわち、被成膜基板20と封止基板13とを貼り合わせる場合、被成膜基板20と封止基板13との位置合わせのために、被成膜基板20には、封止基板13用のアライメントマーカが形成されている。
 このため、被成膜基板20と封止基板13とを貼り合わせるときには、上記アライメントマーカをイメージセンサで画像認識し、その画像認識したアライメントマーカの位置に基づいて、被成膜基板20と封止基板13との位置を調整し、封止基板13を被成膜基板20の封止領域Lに貼り合わせる。
 したがって、被成膜基板20における上記アライメントマーカの形成領域に、光吸収材料でアライメントマーカを形成しておき、封止基板13の貼り合わせ前に、上記アライメントマーカ上の不要な有機膜をレーザ光照射により除去する。
 これにより、イメージセンサで上記アライメントマーカを確実に検出でき、被成膜基板20の封止領域Lに封止基板13を正確に貼り合わせることができる。
 <誘導加熱>
 また、前記したように、熱発生層は、例えば導電性を有する導電層であってもよい。
 なお、この場合の導電層としては、前記したように、熱変換率が高いことが好ましい。
 熱発生層として導電層を形成する場合、電気エネルギーとして渦電流を利用することができる。
 誘導加熱とは、導電性の材料を磁力線に曝すことによって、当該材料内に渦電流を発生させ、渦電流によるジュール熱で当該材料を加熱する方法である。
 この方法においては、加熱する材料(すなわち、本実施の形態では、電気配線端子15および島状構造部16)が導電性を有する材料で形成されていればよい。
 なお、本実施の形態では、電気配線端子15および島状構造部16は、配線と同材料で形成されているので、導電層である。
 なお、誘導加熱されるための熱発生層の材料としては、渦電流が流れ得るような導電材料(導電体)であればよい。
 上記したように熱発生層から熱を発生させるために誘導加熱を用いる場合、言い換えれば、熱発生層に与えるエネルギーとして電気エネルギーを利用する場合には、上述のK≧1の場合の考察、および、上述のα≫αの場合の考察において、光吸収率を熱変換率に入れ替えれば、そのまま適用できる。
 〔実施の形態2〕
 本実施の形態について主に図9から図11の(a)~(c)に基づいて説明すれば、以下の通りである。
 なお、本実施の形態では、主に、実施の形態1との相違点について説明するものとし、実施の形態1で用いた構成要素と同一の機能を有する構成要素には同一の番号を付し、その説明を省略する。
 図9は、本実施の形態で製造する有機EL表示装置100の半導体基板10における封止領域Lの一部を示す要部平面図である。図10は、本実施の形態で製造する有機EL表示装置100の半導体基板10におけるレーザ光照射領域を説明する平面図である。図11の(a)~(c)は、上記封止領域Lにおける有機膜を除去する工程を工程順に示す断面図である。
 本実施の形態では、実施の形態1と比べて、さらに、封止領域Lが蒸着不要領域に設定されている。
 すなわち、本実施の形態では、図10に斜線(ハッチング)で示すように、表示領域R1および第2電極接続領域R2を除く領域(すなわち、端子部領域R3を含む額縁領域41および封止領域L)がレーザ光照射領域R5に設定されている。
 このため、本実施の形態では、図9に示すように封止領域Lにも、熱発生層として島状構造部16が複数形成されているとともに、封止領域Lに交差する各配線Hが、熱発生層を兼ねている。
 各配線Hは、例えば、各サブ画素SPに設けられたTFT2を駆動するための走査線または信号線である。
 各島状構造部16は、封止領域Lにおいて、封止領域Lに交差する各配線Hと接触しないように形成されている。
 また、封止領域Lには、図11の(c)に示すように、島状構造部16、および、配線Hのうち封止領域Lと重なる部分を被覆するように、封止領域Lの全体に渡って保護絶縁膜19が形成されている。この保護絶縁膜19により、導電性の異物によって、配線Hと島状構造部16とが短絡することが防止される。
 島状構造部16および配線Hは、実施の形態1と同様の理由で電気配線端子15と同じ材料で形成されていることが好ましい。
 以下では、島状構造部16、配線H、および電気配線端子15が、同じ光吸収材料からなる光吸収層であり、エネルギー供給源としてレーザを使用する場合を例に挙げて、本実施の形態にかかる有機EL表示装置100の製造工程の流れについて説明する。
 なお、以下では、実施の形態1と異なる点について説明する。
 <有機EL表示装置100の製造工程の流れの抜粋>
 本実施の形態では、図2に示すステップS1で、配線Hを光吸収材料で形成するとともに、図2に示すステップS2で、電気配線端子および島状構造部16を、配線Hと同じ光吸収材料によりパターン形成する。なお、ステップS1・S2における各層の形成順を適宜調整できることは、前述と同様である。
 そして、保護絶縁膜19を、図1の(a)に示すように、電気配線端子15の周縁および島状構造部16の全体を被覆し、電気配線端子15の周縁以外を露出するとともに、図11の(c)に示すように、島状構造部16、および、配線Hのうち封止領域Lと重なる部分を被覆するようにパターン形成する。なお、本実施の形態でも、保護絶縁膜19は無くても構わない。
 その後、図2に示すステップS9で、有機EL素子12の封止前に、レーザ光照射領域R5にレーザ光を照射する。
 その際、図11の(a)に示すように、封止領域Lに、例えば被成膜基板20の裏面側からレーザ光50が照射される。
 封止領域Lに照射されたレーザ光50は、光吸収層である島状構造部16および配線Hに吸収される。その結果、島状構造部16および配線Hで熱が発生し、図11の(b)に示すように、島状構造部16および配線H上に形成された発光層8R・8G・8Bが気体化する。
 これにより、封止領域Lにおける大部分の発光層8R・8G・8Bが除去される。
 また、端子部領域R3における発光層8R・8G・8Bについても、実施の形態1と同様に、大部分が除去される。なお、端子部領域R3における発光層8R・8G・8Bの除去工程については、図1の(a)~(c)と同じであるため、本実施の形態では、その図示を省略する。
 このようにして、蒸着不要領域(特に端子部領域R3および封止領域L)に形成された発光層8R・8G・8Bが除去される。
 その後、図2に示すステップS10で、図11の(c)に示すように、発光層8R・8G・8Bが除去された封止領域Lに封止樹脂層18が形成され、該封止樹脂層18を介して、被成膜基板20と封止基板13とが貼り合わせられる。
 なお、その他の工程については、実施の形態1と同じであるので、説明は省略する。このようにして、端子部領域R3および封止領域Lにおける有機膜が除去された有機EL表示装置100が製造される。
 <効果>
 以上のように、本実施の形態によれば、端子部領域R3だけでなく、封止領域Lも蒸着不要領域に設定されるので、封止領域Lについても、該封止領域Lに形成された有機膜(ここでは発光層8R・8G・8B)の大部分を除去できる。
 よって、封止樹脂層18と封止領域Lとの接着性が高まり、これにより、封止樹脂層18による有機EL素子12の封入性能が向上し、外部からの水分や酸素流入に対して耐性をより向上させることができる。したがって、高信頼性の有機EL表示装置が実現できる。
 また、封止領域L上の有機膜を後から除去できるので、表示領域R1での有機膜の形成の際に有機膜が封止領域Lに被ってもよくなり、表示領域R1と封止領域Lとの間の隙間を小さくすることができる。したがって、狭額縁の有機EL表示装置が実現できる。
 なお、本実施の形態では、第2電極11は、蒸着不要領域(例えば端子部領域R3および封止領域L)に形成されないようにパターン形成されるが、被成膜基板20の全面に(すなわち蒸着不要領域にも)形成されてもよい。
 蒸着不要領域に形成された第2電極11は、蒸着不要領域における有機膜のレーザ光照射による除去とともに剥離される。これにより、有機膜と第2電極11とのパターン形成とを同時に行うことができる。
 〔実施の形態3〕
 本実施の形態について主に図12および図13の(a)~(c)に基づいて説明すれば、以下の通りである。
 なお、本実施の形態では、主に、実施の形態1、2との相違点について説明するものとし、実施の形態1、2で用いた構成要素と同一の機能を有する構成要素には同一の番号を付し、その説明を省略する。
 図12は、本実施の形態で製造する有機EL表示装置100の半導体基板10におけるレーザ光照射領域を説明する平面図である。図13の(a)~(c)は、本実施の形態で製造する有機EL表示装置100の半導体基板10における第2電極接続領域R2の有機膜を除去する工程を工程順に示す断面図である。
 本実施の形態では、実施の形態2と比べて、さらに、第2電極接続領域R2が蒸着不要領域に設定されている。
 すなわち、本実施の形態では、図12に斜線(ハッチング)で示すように、表示領域R1を除く領域(すなわち、端子部領域R3を含む額縁領域41、封止領域L、および第2電極接続領域R2)がレーザ光照射領域R6に設定されている。
 このため、本実施の形態では、島状構造部16、配線H、および電気配線端子15に加え、第2電極接続領域R2における接続部17も、熱発生層として機能する。
 なお、本実施の形態でも、接続部17は、実施の形態1、と同じ理由で、島状構造部16、配線H、および電気配線端子15と同じ材料で形成されていることが好ましい。
 図13の(c)に示すように、第2電極接続領域R2には、接続部17の周縁を被覆し、接続部17の周縁以外を露出するように、第2電極接続領域R2の全体に渡って、保護絶縁膜19が形成されている。
 以下では、島状構造部16、配線H、電気配線端子15、および接続部17が、同じ光吸収材料からなる光吸収層であり、エネルギー供給源としてレーザを使用する場合を例に挙げて、本実施の形態にかかる有機EL表示装置100の製造工程の流れについて説明する。
 なお、以下では、実施の形態1、2と異なる点について説明する。
 <有機EL表示装置100の製造工程の流れの抜粋>
 本実施の形態では、図2に示すステップS1で、第2電極接続領域R2の接続部17および配線Hを光吸収材料で形成するとともに、図2に示すステップS2で、電気配線端子15および島状構造部16を、接続部17および配線Hと同じ光吸収材料によりパターン形成する。なお、ステップS1・S2における各層の形成順を適宜調整できることは、前述と同様である。
 そして、保護絶縁膜19を、図1の(a)に示すように、電気配線端子15の周縁および島状構造部16の全体を被覆し、電気配線端子15の周縁以外を露出するとともに、図11の(c)に示すように、島状構造部16、および、配線Hのうち封止領域Lと重なる部分を被覆し、図13の(a)に示すように、接続部17の周縁を被覆し、接続部17の周縁以外を露出するようにパターン形成する。なお、本実施の形態でも、保護絶縁膜19は無くても構わない。
 なお、本実施の形態では、実施の形態1の製造方法に準拠しているので、接続部17は、電気配線端子15と異なる工程で形成されるが、電気配線端子15と同じ工程で一緒に形成してもよい。
 その後、図2に示すステップS9で、有機EL素子12の封止前に、レーザ光照射領域R6にレーザ光を照射する。
 その際、図13の(a)に示されるように、第2電極接続領域R2にレーザ光50が照射されると、レーザ光50は、光吸収層である接続部17に吸収される。その結果、接続部17で熱が発生し、図13の(b)に示すように、接続部17上に形成された発光層8R・8G・8Bが気体化する。これにより、接続部17上の発光層8R・8G・8Bが除去される。
 また、端子部領域R3および封止領域Lにおける発光層8R・8G・8Bについても、実施の形態2と同様に、大部分が除去される。なお、端子部領域R3における発光層8R・8G・8Bの除去工程については、図1の(a)~(c)と同じである。また、封止領域Lにおける発光層8R・8G・8Bの除去工程については、図11の(a)~(c)と同じである。
 このようにして、蒸着不要領域(特に端子部領域R3、封止領域L、および第2電極接続領域R2)に形成された発光層8R・8G・8Bが除去される。
 その後、図2に示すステップS8で、図13の(c)に示すように、既知の方法で、第2電極11をパターン形成する。
 具体的には、被成膜基板20上において、第2電極11を、表示領域R1の全面に形成するとともに、第2電極接続領域R2の接続部17と電気的に接続し、それら以外の領域を露出するように、例えば蒸着用のマスクを用いた蒸着法によりパターン形成する。
 なお、その他の工程については、実施の形態2と同じであるので、説明は省略する。このようにして、端子部領域R3、封止領域L、および第2電極接続領域R2における有機膜が除去された有機EL表示装置100が製造される。
 <効果>
 以上のように、本実施の形態によれば、第2電極接続領域R2も蒸着不要領域に設定されるので、第2電極接続領域R2についても、該第2電極接続領域R2に形成された有機膜(ここでは発光層8R・8G・8B)を、有機膜の形成後に除去できる。
 よって、表示領域R1での有機膜の形成の際に有機膜が第2電極接続領域R2に被ってもよくなり、表示領域R1と封止領域Lとの間の隙間を小さくすることができる。したがって、狭額縁の有機EL表示装置が実現できる。
 また、本実施の形態によれば、有機膜が不要な全ての領域(特に第2電極接続領域R2、端子部領域R3、および封止領域L)に対してレーザ光照射による除去が行われるので、全面蒸着を行う有機膜に対して、マスクレスとすることもできる。これにより、全面蒸着の有機膜用のマスク削減が行えるので、設備コストの低減、処理タクトの向上が可能となる。
 〔実施の形態4〕
 本実施の形態について主に図14から図16に基づいて説明すれば、以下の通りである。
 なお、本実施の形態では、主に、実施の形態1~3との相違点について説明するものとし、実施の形態1~3で用いた構成要素と同一の機能を有する構成要素には同一の番号を付し、その説明を省略する。
 図14は、本実施の形態で製造する有機EL表示装置100の半導体基板10におけるレーザ光照射領域を説明する平面図である。図15の(a)~(c)は、表示領域R1における有機膜の一部を除去する工程を、工程順に示す断面図である。
 前記実施の形態1~3では、表示領域R1以外の領域に形成された有機膜を除去する場合について説明した。
 これに対し、本実施の形態では、表示領域R1における、各サブ画素SPの発光領域(すなわち、第1電極5の露出部分)間に補助電極が形成されており、この補助電極の形成領域が蒸着不要領域に設定されている。
 <有機EL表示装置100の構成>
 本実施の形態に係る有機EL表示装置100では、第2電極接続領域R2、端子部領域R3、および封止領域Lを蒸着不要領域に設定していない。このため、本実施の形態では、島状構造部16は形成されていない。
 したがって、本実施の形態で製造される有機EL表示装置100は、端子部領域R3に島状構造部16が形成されて設けられておらず、代わりに、各サブ画素SPの発光領域間に補助電極37(図15の(c)参照)が形成されている点で、実施の形態1と異なっている。なお、それ以外は、実施の形態1と同様に構成されている。
 また、本実施の形態に係る有機EL表示装置100は、トップエミッション型の有機EL表示装置として構成されている。
 補助電極37は、図15の(c)に示すように、例えば層間絶縁膜4上において、各サブ画素SPにおける隣り合う第1電極5間に形成されている。
 また、図15の(c)に示すように、層間絶縁膜4上には、保護絶縁膜38が形成されている。この保護絶縁膜38は、第1電極5と補助電極37との間において、第1電極5の周縁および補助電極37の周縁を被覆するように形成されている。なお、保護絶縁膜38は、例えば、図4に示すエッジカバー6として機能している。
 補助電極37上には、有機膜(正孔輸送層7b、正孔注入層7a、電子注入層9bおよび電子輸送層9a)は形成されておらず、補助電極37は、第2電極11と電気的に接続されている。
 なお、補助電極37は、第2電極11と電気的に接続されて第2電極11の抵抗を下げるために用いられる。この構造は、第2電極11を薄くして半透明電極とする必要があるトップエミッション型の有機EL表示装置に特に有効である。この場合は、第2電極11は、薄くされるので高抵抗になるが、補助電極37と接続されるので、実際には高抵抗になることが防止される。
 配線Hと補助電極37とは、層間絶縁膜4を介して静電容量を形成する。そのため、その静電容量に蓄えられた電荷によって、各配線や電極の電位が影響を受けるおそれがある。したがって、配線Hと補助電極37との間の層間絶縁膜4の膜厚や、被成膜基板20の平面視において、配線Hと補助電極37との重なり面積を適宜調整することによって、その静電容量ができるだけ小さくなるようにすることが好ましい。
 本実施の形態では、補助電極37の形成領域が蒸着不要領域に設定されており、補助電極37が熱発生層を兼ねている。
 以下では、補助電極37が光吸収層であり、エネルギー供給源としてレーザを使用する場合を例に挙げて、本実施の形態にかかる有機EL表示装置100の製造工程の流れについて説明する。
 <有機EL表示装置100の製造工程の流れの抜粋>
 まず図15の(a)に示すように、実施の形態1と同様にして、被成膜基板20上に、TFT2、配線H、層間絶縁膜4、および第1電極5を形成する。
 なお、ここでは、有機EL表示装置100は、トップエミッション型の有機EL表示装置であるので、第1電極5は、Al(アルミニウム)またはAg(銀)の上に透明電極を積層した反射電極として形成される。
 次に、層間絶縁膜4上に、既知の方法で補助電極37を形成する。具体的には、例えば蒸着マスクを用いた蒸着法により、光吸収層材料からなる補助電極37を、層間絶縁膜4上に、平面視で各サブ画素SPの第1電極5間に位置するようにパターン形成する。
 なお、本実施の形態では、端子部領域R3に島状構造部16を形成しない。
 その後、層間絶縁膜4上に、既知の方法で保護絶縁膜38を形成する。具体的には、例えば蒸着マスクを用いた蒸着法により、層間絶縁膜4上に、保護絶縁膜38を、第1電極5の周縁および補助電極37の周縁を被覆するようにパターン形成する。
 次いで、実施の形態1と同様に、被成膜基板20上の表示領域R1全面に、第1電極5、補助電極37および保護絶縁膜38を被覆するように、正孔注入層7aおよび正孔輸送層7bを形成する。
 続いて、実施の形態1と同様に、正孔輸送層7b上における、各サブ画素SPの発光領域となる領域に、発光層8R・8G・8Bをパターン形成する。
 その後、実施の形態1と同様に、被成膜基板20上の表示領域R1全面に、正孔輸送層7bおよび発光層8R・8G・8Bを被覆するように、電子輸送層9aおよび電子注入層9bを順に形成する。
 その後、図14に斜線(ハッチング)で示す、レーザ光照射領域R7(すなわち、画素アレイ部30が形成される表示領域R1)にレーザ光を照射して、蒸着不要領域である、補助電極37の形成領域上の有機膜(正孔注入層7a、正孔輸送層7b、電子輸送層9aおよび電子注入層9b)の除去を行う。
 本実施の形態では、図15の(a)に示すように、レーザ光照射領域R7に、例えば被成膜基板20側からレーザ光50を照射することで、光吸収層である補助電極37を加熱して補助電極37上の有機膜(正孔輸送層7b、正孔注入層7a、電子注入層9bおよび電子輸送層9a)を気体化させて除去する。
 その際、レーザ光照射領域R7内の第1電極5にもレーザ光50が照射されるが、トップエミッション型の場合は、第1電極5は反射電極として形成されているので、レーザ光が反射されて温度上昇が少ない。そのため、第1電極5上の有機膜(正孔注入層7a、正孔輸送層7b、発光層8R・8G・8B、電子輸送層9aおよび電子注入層9b)は気体化することはない(すなわち、除去されない)。
 これに対し、補助電極37は、光吸収層として形成されているので、補助電極37では、上記有機膜を気体化させるに足る温度上昇が発生する。そのため、補助電極37上の有機膜は気体化して除去される。このように、本実施の形態では、補助電極37と第1電極5との材料の光吸収率の差によって、補助電極37上の有機膜を選択的に除去している。
 このようにして、図15の(b)に示すように、第1電極5上の有機膜(正孔注入層7a、正孔輸送層7b、発光層8R・8G・8B、電子輸送層9aおよび電子注入層9b)は除去されず、補助電極37上の有機膜(正孔注入層7a、正孔輸送層7b、電子輸送層9aおよび電子注入層9b)だけが除去される。
 その後、図15の(c)に示すように、表示領域R1全面に、実施の形態1と同様に第2電極11を形成する。すなわち、電子注入層9bおよび補助電極37を被覆するとともに第2電極接続領域R2の接続部17に接続するように、第2電極11を形成する。
 その際、補助電極37上の有機膜は上述のように除去されているので、補助電極37と第2電極11とは良好に電気接続される。
 なお、その他の工程については、実施の形態1と同じであるので、説明は省略する。このようにして、上記補助電極37上の有機膜が除去された有機EL表示装置100が製造される。
 <効果>
 以上のように、本実施の形態によれば、各サブ画素SPの発光領域間に補助電極37が形成されており、その補助電極37が熱発生層(ここでは光吸収層)として機能する。
 補助電極37上に有機膜を形成しないように発光領域だけに有機膜をパターン形成するには、有機膜の全層に対し発光領域だけに開口部を有するファインマスクを用いる必要があるが、ファインマスクは高価であるので、高コストの原因となる。
 これに対し、本実施の形態によれば、補助電極37に外部からエネルギーを与えて熱を発生させるだけで(すなわち安価な方法で)、補助電極37上の有機膜を除去できる。これにより、製造コストの低コスト化および有機EL表示パネル1、さらには有機EL表示装置100の低コスト化を実現できる。
 <変形例>
 なお、この実施の形態において、実施の形態1~3を併用することも可能である。特に実施の形態3と併用した場合は、レーザ光照射領域は、被成膜基板20の全面に設定されるので、レーザ光を被成膜基板20全面に走査しながら照射するよりも、フラッシュランプで被成膜基板20全面に一括して(もしくは幾つかの領域に分割して)照射する方がより簡便であり、より好ましい。
 但し、実施の形態1で述べたように、フラッシュランプを用いる場合には、ランプ光に含まれる紫外線による有機EL素子の劣化を防止するために、被成膜基板20の裏面(有機EL素子の形成されていない面)から光を照射することが好ましい。
 また、このように被成膜基板20の全面に光を照射する場合には、レーザ光を用いた場合でも、高エネルギーの光照射による有機EL素子の損傷を防止するために、被成膜基板20の裏面から光を照射することが好ましい。
 また、端子部領域R3において、電気配線端子15および島状構造部16は、その両方が熱発生層であることが望ましいが、何れか一方を熱発生層としてもよい。また、封止領域Lにおいて、島状構造部16および配線Hは、その両方が熱発生層であることが望ましいが、何れか一方を熱発生層としてもよい。
 <要点概要>
 以上のように、上記各実施の形態に係る蒸着膜パターンの形成方法は、被成膜基板にパターン化された蒸着膜を形成する蒸着膜パターンの形成方法であって、上記被成膜基板における被成膜面の蒸着不要領域に、外部からエネルギーを与えることで上記蒸着膜が気体になる温度(例えば蒸発温度または昇華温度)以上の温度の熱を発生させる熱発生層を形成する熱発生層形成工程と、上記熱発生層の少なくとも一部を覆うように、上記蒸着不要領域を含む上記被成膜基板の被成膜面に蒸着膜を形成する蒸着膜形成工程と、上記熱発生層から上記蒸着膜が気体になる温度以上の温度の熱を発生させることで、上記蒸着不要領域に形成された蒸着膜を選択的に気体化(例えば、一旦溶融した後に蒸発、または、直接、昇華)させて除去する蒸着膜除去工程と、を備えている。
 したがって、蒸着後に、上記蒸着不要領域の蒸着膜を気体化させて簡便に除去することができ、大型の蒸着マスクを用いたり、高精度のファインマスクを用いたりする必要がない。また、端子部領域での導通不良の発生や短絡等の問題を回避することができるとともに、マスクレス蒸着を行うことも可能となる。
 また、上記蒸着膜パターンの形成方法は、上記蒸着不要領域内の電気接続部が上記熱発生層を兼ねており、上記熱発生層形成工程では、上記蒸着不要領域内の電気接続部を、外部からエネルギーを与えることで上記蒸着膜が気体になる温度以上の温度の熱を発生させる材料で形成することが望ましい。
 上記の方法によれば、蒸着不要領域内の電気接続部が熱発生層を兼ねるので、特別な設計パターンや装置を追加することなく、熱発生層を形成できる。
 上記電気接続部としては、例えば、回路基板(例えば駆動回路等)と接続される電気配線端子、または、上記被成膜基板に配された電極の抵抗を下げるための補助電極が挙げられる。
 上記蒸着膜パターンの形成方法において、上記熱発生層形成工程では、上記熱発生層を島状に形成することが望ましい。
 上記の方法によれば、上記熱発生層を島状に形成することで、局所的に熱を発生させることができる。このため、所望の位置の蒸着膜を除去することができる。
 また、上記蒸着膜パターンの形成方法は、上記蒸着不要領域と交わる配線が上記熱発生層を兼ねており、上記熱発生層形成工程では、上記蒸着不要領域と交わる配線を、外部からエネルギーを与えることで上記蒸着膜が気体になる温度以上の温度の熱を発生材料で形成することが望ましい。
 上記の方法によれば、蒸着不要領域と交わる配線が熱発生層を兼ねているので、特別な設計パターンや装置を追加することなく、熱発生層を形成できる。
 なお、上記被成膜基板が有機エレクトロルミネッセンス表示装置等、複数の画素(サブ画素)を有する表示装置における半導体基板である場合は、上記配線としては、例えば、表示装置における各画素(サブ画素)を駆動する信号線または走査線等の配線が挙げられる。
 また、上記熱発生層は、特定の波長の光を吸収して熱を発生する光吸収層であり、上記蒸着膜除去工程では、上記熱発生層に特定の波長の光を照射することで、上記熱発生層から熱を発生させることが望ましい。
 上記の方法によれば、上記熱発生層に上記エネルギーとして光を照射することで熱を発生させることができるので、簡便な手段で熱発生層から熱を発生させることができる。
 この場合、上記熱発生層に隣り合う層の光吸収率に対する上記熱発生層の光吸収率の比は2以上であることが望ましい。
 上記の方法によれば、隣り合う層との間の温度上昇の差が大きいことで、局所的に温度上昇させることができる。このため、局所的に所望の位置の蒸着膜を除去することができる。
 また、上記エネルギーは光エネルギーであり、上記蒸着膜除去工程では、レーザ光により上記熱発生層に光を照射することが望ましい。
 レーザ光を用いることで、容易に局所的に光照射を行うことができる。したがって、上記の方法によれば、所望の位置の熱発生層のみに光エネルギーを与えることができるので、局所的に所望の位置の蒸着膜を除去することができる。
 また、レーザ光を使用することで、レーザ光により、蒸着時に蒸着不要領域に付着した異物等を除去できる。これにより、上記蒸着膜パターンが形成された被成膜基板、さらには、上記蒸着膜パターンが形成された被成膜基板を用いた表示装置等の電子機器の歩留まりおよび信頼性を向上できる。
 また、このようにレーザ光を用いる場合、上記蒸着膜除去工程では、上記レーザ光は、真空中または不活性ガス雰囲気中で照射されることが望ましい。
 これにより、レーザ光照射の際に、被成膜基板に塵等が付着することを防止できる。
 また、上記エネルギーは光エネルギーであり、上記蒸着膜除去工程では、フラッシュランプにより上記熱発生層に光を照射することが望ましい。
 上記の方法によれば、フラッシュランプにより熱発生層に光を照射するので、熱発生層全体を一度に、または幾つかに分割して加熱できるので、短時間で熱発生層の加熱を行うことができる。
 また、上記したように上記熱発生層に光を照射することで上記熱発生層に光エネルギーを与える場合、上記被成膜基板は、透明性を有する基板であり、上記蒸着膜除去工程では、上記被成膜基板において上記熱発生層が形成された面の反対側の面から上記熱発生層に光を照射することが好ましい。
 これにより、例えば、フラッシュランプにより上記熱発生層に光を照射する場合、例えば上記蒸着膜が有機膜である場合に該有機膜に損傷を与えるような紫外光を上記被成膜基板に吸収させることができる。
 また、レーザ光により上記熱発生層に光を照射する場合にも、上記したように上記被成膜基板において上記熱発生層が形成された面の反対側の面から上記熱発生層に光を照射することで、その強度が、上記被成膜基板により弱められる。したがって、レーザ光が高エネルギーの場合において、熱発生層以外の領域の蒸着膜がレーザ光により破損されることを防止できる。
 また、上記エネルギーは電気エネルギーであり、上記蒸着膜除去工程では、渦電流による誘導加熱により上記熱発生層から熱を発生させることが望ましい。
 上記の方法によれば、誘導加熱により熱発生層から熱を発生させるので、熱発生層全体を一度に、または幾つかに分割して加熱できるので、短時間で熱発生層の加熱を行うことができる。
 また、上記方法は、上記蒸着膜が有機膜である場合に好適に用いることができる。
 例えば、有機エレクトロルミネッセンス表示装置を製造するためには、各色に発光する有機発光材料からなる発光層を有機エレクトロルミネッセンス素子毎に所定パターンで形成する必要があり、このようなパターンの形成には、一般的に真空蒸着法等の蒸着法が用いられる。
 このため、上記蒸着膜パターンの形成方法を用いて有機エレクトロルミネッセンス素子の有機膜を形成することで、蒸着不要領域への蒸着を防止するために、大型の蒸着マスクを用いたり、高精度のファインマスクを用いたりすることなく、有機エレクトロルミネッセンス表示装置を製造することができる。
 また、例えばスキャン蒸着を行う場合に、蒸着不要領域に蒸着膜が存在することで生じる、例えば端子部領域での導通不良の発生や短絡等の問題を回避することができる。
 したがって、そのような問題を招来しない高性能の有機エレクトロルミネッセンス表示装置を、安価かつ安全に製造することができる。
 特に、有機膜は一般的に導電性が低く、電気接続部に有機膜が存在すると、導通不良を発生させることになる。しかしながら、上記の方法によれば、電気接続部等の蒸着不要領域に形成された有機膜を簡便に除去することができる。
 また、上記各実施の形態に係る有機エレクトロルミネッセンス表示装置の製造方法は、上記蒸着膜パターンの形成方法を用いて、有機エレクトロルミネッセンス表示装置の蒸着膜を形成する方法である。
 上記の方法によれば、蒸着不要領域への蒸着を防止するために、大型の蒸着マスクを用いたり、高精度のファインマスクを用いたりする必要がない。また、例えば端子部領域での導通不良の発生や短絡等の問題を回避することができる。
 したがって、そのような問題を招来しない高性能の有機エレクトロルミネッセンス表示装置を、安価かつ安全に製造することができる。
 上記有機エレクトロルミネッセンス表示装置の製造方法において、被成膜基板は、一対の基板間に有機エレクトロルミネッセンス素子が封止される有機エレクトロルミネッセンス表示装置に用いられる基板であり、上記蒸着膜除去工程は、上記一対の基板を封止した後に行われることが望ましい。
 上記の方法によれば、気体化した蒸着有機材料が有機エレクトロルミネッセンス素子に再付着して損傷を招くことを防止することができる。また、有機エレクトロルミネッセンス素子の大気暴露が防止されるので、例えば大気中での光照射が可能となる。
 また、上記蒸着膜パターンの形成方法および有機エレクトロルミネッセンス表示装置の製造方法は、以下の構成を有していることが望ましい。
 例えば、上記被成膜基板は、一対の基板間に有機エレクトロルミネッセンス素子が封止される有機エレクトロルミネッセンス表示装置に用いられる基板であり、上記熱発生層は、上記一対の基板のうち一方の基板に設けられる回路基板との接続用の端子部形成領域に形成される、上記回路基板との接続用の複数の電気配線端子および各電気配線端子間に配置される少なくとも1つの島状構造物のうち少なくとも一方であることが好ましい。
 また、上記被成膜基板は、一対の基板間に有機エレクトロルミネッセンス素子が封止される有機エレクトロルミネッセンス表示装置に用いられる基板であり、上記熱発生層は、上記一対の基板のうち一方の基板に設けられて上記有機エレクトロルミネッセンス素子における有機エレクトロルミネッセンス層を挟持する一対の電極のうち一方の電極と接続される接続部であることが好ましい。
 また、上記被成膜基板は、一対の基板間に有機エレクトロルミネッセンス素子が封止される有機エレクトロルミネッセンス表示装置に用いられる基板であり、上記熱発生層は、上記一対の基板を封止する封止領域に形成される配線および少なくとも一つの島状構造部のうち少なくとも一方であることが好ましい。
 また、上記被成膜基板は、一対の基板間に有機エレクトロルミネッセンス素子が封止される有機エレクトロルミネッセンス表示装置に用いられる基板であり、上記熱発生層は、特定の光を吸収する光吸収層であり、上記蒸着膜形成工程で、上記一対の基板のうち一方の基板の全面に蒸着膜を形成した後、上記蒸着膜除去工程で、上記熱発生層にレーザ光を照射して上記蒸着膜の一部を気体化させて除去することが好ましい。
 また、上記被成膜基板は、一対の基板間に有機エレクトロルミネッセンス素子が封止される有機エレクトロルミネッセンス表示装置に用いられる基板であり、上記蒸着膜形成工程では、上記被成膜基板に、上記蒸着膜としてマトリクス状の発光層を形成するとともに、上記熱発生層形成工程では、上記発光層の形成領域間に、上記有機エレクトロルミネッセンス素子における有機エレクトロルミネッセンス層を挟持する一対の電極のうち一方の電極と電気的に接続される補助電極を、外部からエネルギーを与えることで上記蒸着膜が気体になる温度以上の温度の熱を発生させる材料で形成することが望ましい。
 なお、このように上記発光層の形成領域間に、上記有機エレクトロルミネッセンス素子の電極と電気的に接続する補助電極を形成することで、上記有機エレクトロルミネッセンス素子の電極の抵抗を下げることができる。
 そして、上記補助電極を、上記材料で形成することで、上記補助電極を熱発生層として用いることができる。
 したがって、特別な設計パターンや装置を追加することなく、熱発生層を形成することができるとともに、上記補助電極上の有機膜を容易に除去することができる。
 このため、上記補助電極を形成するために、例えば各蒸着領域に対応する箇所のみに開口を有するファイマンマスクを用いる必要がなく、製造コストの低コスト化を図ることができる。
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 また、本発明は、有機EL表示装置の製造だけでなく、走査によって蒸着を行う蒸着膜パターンの形成全般に適用が可能である。
 本発明の蒸着装置並びに蒸着方法は、例えば、有機EL表示装置における有機層の塗り分け形成等の成膜プロセスに用いられる、有機EL表示装置の製造装置並びに製造方法等に好適に用いることができる。
  1  有機EL表示パネル
  2  TFT
  3  絶縁基板
  4  層間絶縁膜
  4a コンタクトホール
  5  第1電極
  6  エッジカバー
  7a 正孔注入層
  7b 正孔輸送層
  8R・8G・8B  発光層(蒸着膜、有機膜)
  9a 電子輸送層
  9b 電子注入層
 10  半導体基板
 11  第2電極
 12  有機EL素子
 13  封止基板
 15  電気配線端子(電気接続部、熱発生層、光吸収層)
 16  島状構造部(熱発生層、光吸収層)
 17  接続部(電気接続部、熱発生層、光吸収層)
 18  封止樹脂層
 19  保護絶縁膜
 19a 端子部開口
 20  被成膜基板
 20a 被成膜面
 30  画素アレイ部
 37  補助電極(電気接続部、熱発生層、光吸収層)
 38  保護絶縁膜
 41  額縁領域
 50  レーザ光
 52  回路基板
 52a 接続端子
100  有機EL表示装置
102  マスク
102a 開口部
103  蒸着源
103a 射出口
150  蒸着装置
300  制限板
301  開口部
 H   配線(熱発生層、光吸収層)
 SP  サブ画素
 R1  表示領域(蒸着不要領域)
 R2  第2電極接続領域(蒸着不要領域)
 R3  端子部領域(蒸着不要領域)
 L   封止領域

Claims (14)

  1.  被成膜基板にパターン化された蒸着膜を形成する蒸着膜パターンの形成方法であって、
     上記被成膜基板における被成膜面の蒸着不要領域に、外部からエネルギーを与えることで上記蒸着膜が気体になる温度以上の温度の熱を発生させる熱発生層を形成する熱発生層形成工程と、
     上記熱発生層の少なくとも一部を覆うように、上記蒸着不要領域を含む上記被成膜基板の被成膜面に蒸着膜を形成する蒸着膜形成工程と、
     上記熱発生層から上記蒸着膜が気体になる温度以上の温度の熱を発生させることで、上記蒸着不要領域に形成された蒸着膜を選択的に気体化させて除去する蒸着膜除去工程と、
    を備えることを特徴とする蒸着膜パターンの形成方法。
  2.  上記蒸着不要領域内の電気接続部が上記熱発生層を兼ねており、
     上記熱発生層形成工程では、上記蒸着不要領域内の電気接続部を、外部からエネルギーを与えることで上記蒸着膜が気体になる温度以上の温度の熱を発生させる材料で形成することを特徴とする請求項1に記載の蒸着膜パターンの形成方法。
  3.  上記熱発生層形成工程では、上記熱発生層を島状に形成することを特徴とする請求項1または2に記載の蒸着膜パターンの形成方法。
  4.  上記蒸着不要領域と交わる配線が上記熱発生層を兼ねており、
     上記熱発生層形成工程では、上記蒸着不要領域と交わる配線を、外部からエネルギーを与えることで上記蒸着膜が気体になる温度以上の温度の熱を発生させる材料で形成することを特徴とする請求項1~3の何れか1項に記載の蒸着膜パターンの形成方法。
  5.  上記熱発生層は、特定の波長の光を吸収して熱を発生する光吸収層であり、
     上記蒸着膜除去工程では、上記熱発生層に特定の波長の光を照射することで、上記熱発生層から熱を発生させることを特徴とする請求項1~4の何れか1項に記載の蒸着膜パターンの形成方法。
  6.  上記熱発生層に隣り合う層の光吸収率に対する上記熱発生層の光吸収率の比が2以上であることを特徴とする請求項5に記載の蒸着膜パターンの形成方法。
  7.  上記エネルギーは光エネルギーであり、
     上記蒸着膜除去工程では、レーザ光により上記熱発生層に光を照射することを特徴とする請求項5または6に記載の蒸着膜パターンの形成方法。
  8.  上記蒸着膜除去工程では、上記レーザ光は、真空中または不活性ガス雰囲気中で照射されることを特徴とする請求項7に記載の蒸着膜パターンの形成方法。
  9.  上記エネルギーは光エネルギーであり、
     上記蒸着膜除去工程では、フラッシュランプにより上記熱発生層に光を照射することを特徴とする請求項5または6に記載の蒸着膜パターンの形成方法。
  10.  上記被成膜基板は、透明性を有する基板であり、
     上記蒸着膜除去工程では、上記被成膜基板において上記熱発生層が形成された面の反対側の面から上記熱発生層に光を照射することを特徴とする請求項7~9の何れか1項に記載の蒸着膜パターンの形成方法。
  11.  上記エネルギーは電気エネルギーであり、
     上記蒸着膜除去工程では、渦電流による誘導加熱により上記熱発生層から熱を発生させることを特徴とする請求項1~4の何れか1項に記載の蒸着膜パターンの形成方法。
  12.  上記蒸着膜は、有機膜であることを特徴とする請求項1~11の何れか1項に記載の蒸着膜パターンの形成方法。
  13.  請求項1~12の何れか1項に記載の蒸着膜パターンの形成方法を用いて、有機エレクトロルミネッセンス表示装置の蒸着膜を形成することを特徴とする有機エレクトロルミネッセンス表示装置の製造方法。
  14.  上記被成膜基板は、一対の基板間に有機エレクトロルミネッセンス素子が封止される有機エレクトロルミネッセンス表示装置に用いられる基板であり、
     上記蒸着膜除去工程は、上記一対の基板を封止した後に行われることを特徴とする請求項13に記載の有機エレクトロルミネッセンス表示装置の製造方法。
PCT/JP2012/057547 2011-03-30 2012-03-23 蒸着膜パターンの形成方法および有機エレクトロルミネッセンス表示装置の製造方法 WO2012133203A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011076490 2011-03-30
JP2011-076490 2011-03-30

Publications (1)

Publication Number Publication Date
WO2012133203A1 true WO2012133203A1 (ja) 2012-10-04

Family

ID=46930926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057547 WO2012133203A1 (ja) 2011-03-30 2012-03-23 蒸着膜パターンの形成方法および有機エレクトロルミネッセンス表示装置の製造方法

Country Status (1)

Country Link
WO (1) WO2012133203A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016113948A1 (ja) * 2015-01-13 2016-07-21 コニカミノルタ株式会社 電子デバイスの製造方法と製造装置
EP3336919A1 (en) * 2016-12-13 2018-06-20 Novaled GmbH Method for preparing an organic electronic device, organic electronic device, and a device comprising the same
CN113025964A (zh) * 2021-03-08 2021-06-25 昆山工研院新型平板显示技术中心有限公司 蒸镀方法及蒸镀装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09204984A (ja) * 1996-01-26 1997-08-05 Pioneer Electron Corp 有機elディスプレイの製造方法
JP2003257634A (ja) * 2002-02-28 2003-09-12 Sanyo Electric Co Ltd エレクトロルミネッセンス表示装置の製造方法
JP2004071403A (ja) * 2002-08-07 2004-03-04 Fujitsu Ltd 有機el素子の製造方法、有機el素子、及び有機el表示装置
JP2008305730A (ja) * 2007-06-11 2008-12-18 Fuji Electric Holdings Co Ltd 多色発光デバイスの製造方法
JP2009009935A (ja) * 2007-06-01 2009-01-15 Semiconductor Energy Lab Co Ltd 製造装置および発光装置の作製方法
JP2009211890A (ja) * 2008-03-03 2009-09-17 Toshiba Corp 有機el表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09204984A (ja) * 1996-01-26 1997-08-05 Pioneer Electron Corp 有機elディスプレイの製造方法
JP2003257634A (ja) * 2002-02-28 2003-09-12 Sanyo Electric Co Ltd エレクトロルミネッセンス表示装置の製造方法
JP2004071403A (ja) * 2002-08-07 2004-03-04 Fujitsu Ltd 有機el素子の製造方法、有機el素子、及び有機el表示装置
JP2009009935A (ja) * 2007-06-01 2009-01-15 Semiconductor Energy Lab Co Ltd 製造装置および発光装置の作製方法
JP2008305730A (ja) * 2007-06-11 2008-12-18 Fuji Electric Holdings Co Ltd 多色発光デバイスの製造方法
JP2009211890A (ja) * 2008-03-03 2009-09-17 Toshiba Corp 有機el表示装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016113948A1 (ja) * 2015-01-13 2016-07-21 コニカミノルタ株式会社 電子デバイスの製造方法と製造装置
EP3336919A1 (en) * 2016-12-13 2018-06-20 Novaled GmbH Method for preparing an organic electronic device, organic electronic device, and a device comprising the same
WO2018108874A1 (en) * 2016-12-13 2018-06-21 Novaled Gmbh Method for preparing an organic electronic device, organic electronic device, and a device comprising the same
CN110140228A (zh) * 2016-12-13 2019-08-16 诺瓦尔德股份有限公司 制备有机电子器件的方法、有机电子器件和包含该有机电子器件的装置
CN110140228B (zh) * 2016-12-13 2022-02-11 诺瓦尔德股份有限公司 制备有机电子器件的方法、有机电子器件和包含该有机电子器件的装置
CN113025964A (zh) * 2021-03-08 2021-06-25 昆山工研院新型平板显示技术中心有限公司 蒸镀方法及蒸镀装置

Similar Documents

Publication Publication Date Title
JP5384751B2 (ja) 蒸着膜の形成方法及び表示装置の製造方法
JP5722453B2 (ja) 表示装置の製造方法
JP5623598B2 (ja) 蒸着装置、蒸着方法、並びに、有機エレクトロルミネッセンス表示装置の製造方法
JP5384752B2 (ja) 蒸着膜の形成方法及び表示装置の製造方法
JP5003826B2 (ja) ドナー基板、パターニング方法およびデバイスの製造方法
EP2251906B1 (en) Method of fabricating organic light emitting diode display
US20150217319A1 (en) Organic Layer Deposition Apparatus, Frame Sheet Assembly For The Organic Layer Deposition Apparatus, And Method Of Manufacturing Organic Light Emitting Display Device Using The Frame Sheet Assembly
US20130298829A1 (en) Thin film deposition apparatus and method of manufacturing organic light-emitting display apparatus using the same
US20120009332A1 (en) Method of manufacturing organic light-emitting display device
JP5384755B2 (ja) 被成膜基板、有機el表示装置
WO2012099011A1 (ja) 被成膜基板、製造方法、および有機el表示装置
WO2012090777A1 (ja) 蒸着方法、蒸着膜および有機エレクトロルミネッセンス表示装置の製造方法
KR20130128012A (ko) 증착 방법 및 증착 장치
JP6087267B2 (ja) 蒸着装置、蒸着方法、及び、有機エレクトロルミネッセンス素子の製造方法
WO2013047621A1 (ja) 表示装置及び表示装置の製造方法
JP5478954B2 (ja) 有機エレクトロルミネッセンス表示装置
WO2012133203A1 (ja) 蒸着膜パターンの形成方法および有機エレクトロルミネッセンス表示装置の製造方法
WO2013047457A1 (ja) 表示装置の製造方法および表示装置
JP2009064631A (ja) 表示装置の製造装置
JP2008147016A (ja) 蒸着薄膜のパターン形成方法およびそれを用いた有機elパネルの製造方法
JP2012094500A (ja) 転写用ドナー基板およびこれを用いたデバイスの製造方法
KR20090132723A (ko) 유기전계 발광소자 및 그 제조방법
WO2012108363A1 (ja) 坩堝、蒸着装置、蒸着方法、有機エレクトロルミネッセンス表示装置の製造方法
KR101818255B1 (ko) 유기전계 발광 표시장치 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12764322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP