WO2012132948A1 - 電力変換システム - Google Patents

電力変換システム Download PDF

Info

Publication number
WO2012132948A1
WO2012132948A1 PCT/JP2012/056803 JP2012056803W WO2012132948A1 WO 2012132948 A1 WO2012132948 A1 WO 2012132948A1 JP 2012056803 W JP2012056803 W JP 2012056803W WO 2012132948 A1 WO2012132948 A1 WO 2012132948A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
period
booster circuit
current
value
Prior art date
Application number
PCT/JP2012/056803
Other languages
English (en)
French (fr)
Inventor
宮内 拓
安藤 隆史
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to CN201280015944.5A priority Critical patent/CN103477294B/zh
Priority to US14/006,905 priority patent/US20140008986A1/en
Priority to EP20120762921 priority patent/EP2693288A4/en
Priority to MYPI2013701777A priority patent/MY185077A/en
Priority to JP2013507379A priority patent/JP5903565B2/ja
Publication of WO2012132948A1 publication Critical patent/WO2012132948A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to a power conversion system in which DC power supplied from a solar cell is boosted, converted to AC power, and superimposed on a commercial power system.
  • the booster circuit performs an MPPT operation (Maximum Power Point Tracking) that increases or decreases the boosting ratio between the input voltage and the output voltage of the booster circuit so that the output power of the solar cell is maximized.
  • MPPT operation Maximum Power Point Tracking
  • a power conditioner power converter
  • an MPPT operation is performed in which the output DC power is maximized.
  • the MPPT operation of the booster circuit continues when the output power of the solar cell increases by increasing or decreasing the booster ratio of the booster circuit while monitoring the output power (product of current and voltage) of the solar cell. Change the boost ratio to the same (increase if the boost ratio is increased, decrease if it decreases), and if the power decreases, the opposite (decrease or decrease if the boost ratio is increased) Change the step-up ratio. With these controls, the boost ratio of the booster circuit converges toward a position where the output power of the solar cell becomes the maximum value.
  • the MPPT operation of the power conditioner is performed using the fact that the output power of the solar cell and the output power of the inverter circuit are almost equal even if the conversion efficiency is taken into account.
  • the target value of the current output to the system is increased / decreased so that the output power of the inverter circuit becomes the maximum value (that is, the power condition).
  • the target current value that is the maximum value of the input power to N) is used.
  • the step-up ratio of the step-up circuit in the power conditioner is controlled so that the target current value is output from the inverter circuit (steps up until the target current value flows).
  • the MPPT operation of the booster circuit When the MPPT operation of the booster circuit is performed, the output power of the solar cell fluctuates, and this fluctuation appears as a fluctuation of the output power (output current) of the power conditioner. For this reason, if the MPPT operation of the booster circuit and the MPPT operation of the power conditioner are simultaneously performed, the MPPT operation of the booster circuit and the MPPT operation of the power conditioner may interfere with each other, and each MPPT operation is difficult to converge. there were.
  • the power conversion system described in Patent Document 1 alternately performs the MPPT operation of the booster circuit and the MPPT operation of the power conditioner.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a power conversion system capable of suppressing the MPPT operation performed by the booster circuit from interfering with the MPPT operation performed by the power conditioner. .
  • each DC power line to which generated power is supplied from each of a plurality of solar cell strings formed by connecting a plurality of solar cell modules in series is combined into a single power line, and then the power is converted.
  • the power conversion system that converts the DC power after passing through the second booster circuit in which the boost ratio is controlled so that the DC power on the line reaches the maximum into the AC power by the inverter circuit
  • the boosting ratio of the first booster circuit is variably controlled by interposing a first booster circuit so that the generated power of the corresponding solar cell string reaches a maximum during the first period for each first period, and second And a first control unit that controls the step-up ratio to be maintained at a constant value during the period and causes the total time of the first period and the second period to correspond to the first period.
  • the boosting ratio of the second boosting circuit is variably controlled so that the DC power on the power line reaches the maximum during the third period every second period, and the boosting ratio is kept constant during the fourth period.
  • a second control unit that controls to maintain the value and makes the total time of the third period and the fourth period correspond to the first period, and makes the first period different from the second period Is.
  • the booster circuit is provided with a period during which the boost ratio is constant without performing the MPPT operation. Further, the start cycles of the MPPT operation between the booster circuit and the power conditioner are made different. Thereby, the batting of the time slot
  • the second period is shorter than the first period.
  • the second period is longer than the third period.
  • the fourth period is longer than the first period.
  • the second control unit uses the target value when at least one of the fluctuation range or fluctuation rate of the DC power on the power line is within the target value during the third period.
  • the boost value of the second booster circuit is set.
  • the second control unit may have at least one of a fluctuation range or a fluctuation rate of the DC power on the power line within the target value when shifting from the third period to the fourth period.
  • the fourth period is controlled by setting the boost value of the second boost circuit set using the target value as a constant value.
  • the variable control of the boost ratio of the first period and the first boost circuit that prohibits the variable control of the boost ratio of the first boost circuit is prohibited.
  • Dividing into the second period, during one period of the second period, the variable control of the boost ratio of the second period and the third period enabling the boost ratio of the second boost circuit is prohibited.
  • Dividing into 4th period, 4th period is made longer than 1st period, It is characterized by the above-mentioned.
  • the variable control of the boost ratio of the second period and the third period enabling the variable control of the boost ratio of the second boost circuit is prohibited during one period of the second period.
  • the target value of the output current of the AC power converted by the inverter circuit is It is characterized by being fixed to the value of.
  • the first booster circuit when the variable control is continued until the second period after the variable control of the boost ratio of the booster circuit is started, is near the start of the second period. And the second booster circuit starts the variable control of the booster ratio of the booster circuit and then continues the variable control until the fourth period. The operation of converting the DC power into the AC power is continued according to the target value of the output current of the inverter circuit calculated near the start of the fourth period.
  • each of the booster circuits includes a current sensor that detects a current input to the booster circuit or a current output from the booster circuit, and each of the booster circuits includes the current sensor. When the current detected by the sensor exceeds a predetermined value, variable control of the boost ratio of each booster circuit is started.
  • a line connected to each of a plurality of solar cells, and a booster circuit that is interposed in the lines and boosts the output voltage of the solar cell, the outputs of the respective lines are collected.
  • a power conversion system comprising: a current collection box that outputs power; and a power converter that inputs DC power output from the current collection box, converts the DC power to AC power, and superimposes the power on a commercial power system.
  • the booster circuit prohibits variable operation of the boosting ratio of the boosting circuit and a first period that enables variable operation of the boosting ratio of the boosting circuit that operates so that the output power of the solar cell is maximized.
  • the power converter allows a variable operation of the boost ratio of the booster circuit of the power converter that operates so that the DC power is maximized, and the booster circuit Variable step-up ratio operation Alternately with the 4th period prohibiting
  • the length of the third period is configured to be changeable, and the length of the fourth period is fixed to a certain length.
  • the current collection box of the present invention includes a line connected to each of a plurality of solar cells, and a booster circuit that is interposed in the line and boosts the output voltage of the solar cell, and collects the outputs of the lines.
  • the power conversion system includes: a current collection box that outputs power; and a power converter that inputs DC power output from the current collection box, converts the DC power into AC power, and superimposes the power on a commercial power system.
  • the booster circuit is configured by a non-insulated booster circuit, and includes a current sensor that detects a current flowing through the non-insulated booster circuit, and the non-isolated booster circuit includes the power converter. Starts, and when the current value detected by the current sensor is larger than the current threshold, the output voltage of the solar cell is boosted.
  • the power conditioner 2 when the current detected by the current sensor is larger than the current threshold value, the power conditioner 2 is started to start boosting the output voltage of the solar cell, and the power from the solar cell 1 is stabilized. After confirming that it can be taken out, the booster circuit 41 is activated. Thereby, it is possible to suppress the operation of the booster circuit 41 from becoming unstable.
  • the current collection box further includes a voltage sensor that detects an input voltage of the booster circuit, and stores a maximum voltage value detected by the voltage sensor after the boosting operation of the booster circuit is stopped.
  • a voltage sensor that detects an input voltage of the booster circuit, and stores a maximum voltage value detected by the voltage sensor after the boosting operation of the booster circuit is stopped.
  • the current collection box of the present invention includes a line connected to each of a plurality of solar cells, and a booster circuit that is interposed in the line and boosts the output voltage of the solar cell, and collects the outputs of the lines.
  • the power conversion system comprising: a current collection box that outputs power; and a power conversion device that inputs DC power output from the current collection box, converts the DC power into AC power, and superimposes the power on a commercial power system
  • the booster circuit is configured by a non-insulated booster circuit, a current sensor that detects a current flowing through the non-isolated booster circuit, and a voltage that detects an input voltage of the non-isolated booster circuit A sensor, and when the power calculated from the current value detected by the current sensor and the voltage value detected by the voltage sensor is greater than a power threshold, boosting the output voltage of the solar cell It is characterized by.
  • the power conditioner 2 when the power supplied to the booster circuit is larger than the power threshold, the power conditioner 2 is activated to stabilize the power from the solar cell 1 in order to start boosting the output voltage of the solar cell. After confirming that it can be taken out, the booster circuit 41 is activated. Thereby, it is possible to suppress the operation of the booster circuit 41 from becoming unstable.
  • the highest voltage value detected by the voltage sensor after the boosting operation of the non-insulated booster circuit is stopped is stored, and the voltage value detected by the voltage sensor is:
  • the output voltage of the solar cell is boosted when the value is smaller than the maximum value by a predetermined amount and the power is larger than the power threshold.
  • the current threshold value or the power threshold value is configured to be changeable.
  • the present invention it is possible to provide a power conversion system in which the MPPT operation performed by the booster circuit is prevented from interfering with the MPPT operation performed by the power conditioner.
  • FIG. It is a time chart at the time of performing MPPT operation
  • FIG. 1 is a configuration diagram illustrating a photovoltaic power generation system 100 according to the first embodiment.
  • the photovoltaic power generation system 100 includes solar cells 1a to 1d and a power conversion system 50.
  • the power conversion system 50 superimposes (supplies) the power supplied from the solar cells 1a to 1d on the commercial power system 30.
  • the solar cells 1a to 1d are each configured in a string shape by connecting a plurality of solar cell cells in series. Since the number of cells of each of the solar cells 1a to 1d varies depending on the area where the solar cells 1a to 1d are installed, the number of solar cells 1a to 1d varies depending on the installation state.
  • the power conversion system 50 can divide each component into the current collector box 4 and the power conditioner 2 and store them in different housings. It is also possible to store in one housing. In the first embodiment, for ease of explanation, each component will be described using a case in which the components are stored separately in the current collection box 4 and the power conditioner 2.
  • the current collecting box 4 includes power lines (hereinafter simply referred to as “lines”) La to Ld connected to the plurality of solar cells 1a to 1d, and boost units 40a to 40d interposed in the lines La to Ld, respectively. Have.
  • the current collection box 4 collectively outputs the outputs of the lines La to Ld.
  • Each of the boosting units 40a to 40d (corresponding to the first boosting circuit) includes boosting circuits 41a to 41d that boost the output voltage of each of the solar cells 1a to 1d.
  • Each of the booster circuits 41a to 41d includes boost control circuits 42a to 42d (corresponding to a first control unit) for controlling the boosting operation of the booster circuits 41a to 41d.
  • the respective booster circuits 41a to 41d are interposed in the lines La to Ld.
  • the respective boost control circuits 42a to 42d are connected to the boost circuits 41a to 41d.
  • the output sides of the booster circuits 41a to 41d are connected in a single manner in the current collection box 4.
  • the current collecting box 4 collects the electric power boosted and output by these booster circuits 41 a to 41 d into a single unit, and outputs the collected DC power to the power conditioner 2.
  • components having the same configuration are denoted by the same numerical symbol (1 for solar cells), and components having a connection relationship with each other are denoted by the same alphabetic symbol (solar).
  • the battery 1 and the booster circuit 41 are connected to each other by the reference numerals of the solar battery 1a and the booster circuit 41a).
  • FIG. 2 shows a circuit diagram of a booster circuit of a current collection box included in the power conversion system of the first embodiment.
  • the booster circuit 41 includes a pair of terminals 88 and 89, a reactor 81, a switching element 82 such as an IGBT (insulated gate bipolar transistor), a diode 83, and a capacitor 84.
  • a circuit is used.
  • the solar cell 1 is connected to the pair of terminals 88 and 89, and the reactor 81 and the diode 83 are connected in series to one terminal (positive side) 88 of the terminals 88 and 89.
  • Switch element 82 opens and closes between the connection point of reactor 81 and diode 83 and the other terminal of the pair of terminals.
  • the capacitor 84 is connected between the diode 83 and the other terminal.
  • the booster circuit 41 has a current sensor 85 that detects an input current, a voltage sensor 86 that detects an input voltage, and a voltage sensor 87 that detects an output voltage. Based on information obtained from these sensors, the booster circuit 41 periodically opens and closes the switch element 82 and controls the open time to obtain a predetermined boost ratio.
  • the power conditioner 2 includes a booster circuit 21 that boosts DC power output from the current collection box 4, an inverter circuit 23 that converts DC power output from the booster circuit 21 into AC power, and a booster circuit 21 (second booster). And a power-con control circuit 22 (corresponding to the second control unit) that controls the operation of the inverter circuit 23. Further, the power conditioner 2 converts the DC power output from the current collection box 4 into AC power and superimposes (supplies) it on the commercial power system 30.
  • FIG. 3 shows a circuit diagram of a power conditioner included in the power conversion system of the first embodiment.
  • a circuit configuration similar to that of the booster circuit 41 can be used, and thus the description thereof is omitted here.
  • the booster circuit 21 uses a similar circuit configuration, but another control is performed by the power control circuit 22.
  • the inverter circuit 23 is configured by connecting in parallel a first arm in which switch elements 51 and 52 are connected in series and a second arm in which switch elements 53 and 54 are connected in series.
  • semiconductor switches for example, switch elements such as IGBTs may be used.
  • the inverter circuit 23 periodically opens and closes the switch elements 51 to 54 according to PWM (Pulse Width Modulation) control of the power control circuit 22.
  • PWM Pulse Width Modulation
  • the inverter circuit 23 converts the DC power output from the booster circuit 21 into three-phase AC power by opening and closing the switch elements 51 to 54.
  • a filter circuit (low-pass filter) including reactors 61 and 62 and a capacitor 63 is provided at the subsequent stage of the inverter circuit 23, and a high frequency due to the switching operation of the switch elements 51 to 54 is removed.
  • the inverter circuit 23 includes a current sensor 91 that detects an output current of the inverter circuit 23 and a voltage sensor 92 that detects an output voltage of the inverter circuit 23. Then, the power control circuit 22 uses the voltage values 86 and 87 and the current sensor 85 included in the booster circuit 21, the voltage sensor 92 and the current sensor 91 included in the inverter circuit 23, and the current value and voltage value detected by the voltage sensor 86 and 87. The booster circuit 21 and the inverter circuit 23 are controlled.
  • the power conditioner 2 tends to be unstable because the electric power taken out from the solar cell 1 becomes unstable at the start of interconnection with low solar radiation (the input voltage to the power conditioner 2 fluctuates greatly).
  • the booster circuit 41 When the booster circuit 41 is operated in such a state, the operation of the booster circuit becomes unstable.
  • the booster circuit 41 confirms the start-up (interconnection) of the power conditioner 2 at the start-up. Start boosting from.
  • FIG. 4 shows a flowchart of the operation at the time of startup of the booster circuit 41 of the current collection box 4 in the first embodiment.
  • the input current Icin to the booster circuit 41 is detected using the current sensor 85 (step S11), and it is determined whether or not the input current Icin exceeds a predetermined value Icth (step S13).
  • the booster circuit 41 determines that the power conditioner is not activated, and proceeds to step S11. Further, when the input current Icin increases and exceeds the predetermined value Icth, it is determined that the power conditioner has been activated, the operation of the booster circuit 41 is started at a predetermined boost ratio r, and the activation process is terminated.
  • the power conditioner 2 is activated, and after confirming that power can be stably extracted from the solar cell 1, the booster circuit 41 is activated, so the operation of the booster circuit 41 becomes unstable. That can be suppressed.
  • the boost operation is not performed while the input current Icin is small at the time of startup, the number of times of opening / closing the switch element 82 of the boost circuit 41 can be reduced, and the life of the switch element 82 is extended. can do.
  • the booster circuit 41 starts the MPPT operation, which operates so as to maximize the output power of the solar cells 1 connected thereto, for each first period for the first period when the operation at the start-up ends. Specifically, during one period of the first period, the MPPT operation of the booster circuit and the MPPT operation of the booster circuit are prohibited (the booster ratio is maintained at a constant value without changing the booster ratio). ) To the second period. The booster circuit 41 performs an MPPT operation in the first period, and performs a constant boost ratio operation in which the boost ratio r is fixed (fixed) in the second period. As described above, the booster circuit 41 repeats the MPPT operation and the constant boost ratio operation of the booster circuit every first period.
  • FIG. 5 shows a flowchart of the operation when the MPPT operation of the booster circuit and the constant boost ratio operation are performed.
  • the input power Pc (output power of the solar cell) is detected by using the voltage sensor 86 and the current sensor 85 to detect the input voltage Vcin and the input current Icin of the booster circuit 41, and the input voltage Vcin and the input current Icin are obtained. It can be obtained by integrating.
  • step S22 the power difference
  • step S33 it is determined in advance whether to increase or decrease the boost ratio r, and the boost ratio r is changed according to the contents.
  • Step S25 is a step for controlling the period during which the MPPT operation is performed.
  • the count value T reaches a value Tth1 corresponding to the time of the first period B (set appropriately in accordance with the clock of the counter). Whether or not (T> Tth1).
  • the step-up ratio r is fixed when dPc ⁇ dPcth in step S24, and when T> Tth1 is determined, the process proceeds to the second period C and the step-up ratio r is continued as it is.
  • step-up ratio r may be changed by the MPPT operation until the first period B is measured without determining dPc ⁇ dPcth in step S22.
  • step S25 when the time measurement of the first period B is determined by the timer in step S25, if dPc ⁇ dPcth is not satisfied, the step-up ratio r at that time is fixed and the second period C is started. That is, the MPPT operation is temporarily terminated.
  • step-up ratio constant operation The operation in the second period C during which the MPPT operation is prohibited (step-up ratio constant operation) is executed in steps S26 to S28. Specifically, when the second period C is entered, the counter value T is first reset, and the boost ratio r at this time is stored (step S36). Thereafter, the power conditioner 2 is controlled while being fixed to the stored boost ratio r (step S37), and the period during which the boost ratio is constant is controlled (step S38). In step S38, it is determined whether or not the count value T has reached a value Tth2 corresponding to the time of the second period C (appropriately set according to the counter clock) (T> Tth2).
  • step S39 the count value of the timer T is reset to zero (step S39), and then the process returns to step S31 again to change the step-up ratio r and start the MPP operation.
  • the step-up ratio r when the time measurement in the first period B ends is fixed and used for control.
  • the booster circuit 41 repeats the steps S21 to S29, thereby repeating the MPPT operation and the constant boost ratio operation of the booster circuit.
  • the booster circuit 41 determines whether or not the output power Pc of the solar cell 1 is near the maximum value, and determines that the MPPT operation or the booster ratio is not changed (the booster ratio is constant) and the first period B has elapsed. Later, the MPPT operation is prohibited and the constant boost ratio operation is started. For this reason, the booster circuit 41 switches from the MPPT operation to the constant boost ratio operation when the output power of the solar cell 1 becomes close to the maximum value during the MPPT operation during the first period B (FIGS. 7, 9, and 12 described later). B '). By doing so, since the time for performing the constant boost ratio operation can be increased in the fixed first period A, the period for performing the MPPT operation of the boost circuit that affects the power conditioner MPPT operation is increased. Can be shortened.
  • the power conditioner 2 starts an initial operation before starting the interconnection.
  • a predetermined value for example, about 100 V
  • the booster circuit 21 in the power conditioner 2 starts boosting.
  • the power conditioner 2 starts generating AC power whose phase is synchronized with the commercial power system by the inverter circuit 23, and The system relay (not shown) is closed to start interconnection.
  • the power conditioner 2 starts the MPPT operation of the power conditioner 2 that operates so as to maximize the DC power obtained by collecting the power output from the solar cells 1a to 1d at every predetermined second period X during grid connection. To do. Specifically, one period of the second period X is divided into a third period Y in which the MPPT operation of the power conditioner 2 is enabled and a fourth period Z in which the MPPT operation of the power conditioner 2 is prohibited. The power conditioner 2 performs an MPPT operation in the third period Y, and performs a target current constant operation in which the target value of the output current of the inverter circuit 23 of the power conditioner 2 is maintained constant in the fourth period Z. Do. In this way, the power conditioner 2 repeats the MPPT operation and the target current constant operation of the power conditioner 2 every second period during grid connection.
  • the MPPT operation of the inverter 2 is performed as follows as an example.
  • the input power Ppin (product of the input current Ipin and the input voltage Vpin) supplied to the booster circuit 21 is substantially equal to the output power Ppo superimposed on the commercial power system 30 when the conversion efficiency of the power conditioner 2 is 100%. Is equal to (Hereinafter, the conversion efficiency is treated as 100%. However, when this conversion efficiency is taken into consideration, it is preferable to multiply by an appropriate constant). Since the power generation output of the solar cell 1 is supplied to the power conditioner 2 via the current collection box B and becomes the input power Ppin, when the power generation amount of the solar cell 1 fluctuates, the value of the input power Ppin also changes.
  • the input power Ppin and the output power Ppo are substantially the same, if the voltage of the commercial power system 30 is constant (for example, AC 200 V in the single-phase three-wire system), the input power Ppin is supplied to the commercial power system 30.
  • the output current Ipo can be obtained. Therefore, by changing the value of the output current Ipo, the output power Ppo value can be matched with the current generated power of the solar cell 1.
  • the inverter circuit 23 outputs ON / OFF control of the switching elements 51 to 54 with a switching signal based on a PWM method obtained by modulating a carrier wave and a sinusoidal modulated wave, and outputs a single-phase pseudo sine wave.
  • the output current Ipo can be controlled by changing the boost ratio of the booster circuit 21. Therefore, the current maximum value of the generated power of the solar cell 1 may be controlled by the target value It that maximizes the input power Ppin when the target value It of the output current Ipo is changed.
  • FIG. 6 shows a flowchart of the operation of the power conditioner during grid connection.
  • step S32 the power difference
  • the target current constant operation is performed when the input power Ppin is near the maximum value (
  • step S33 it is determined in advance whether the target value It should be increased or decreased, and the target value It is changed according to the contents.
  • Step S35 is a step for controlling the period during which this MPPT operation is performed.
  • the count value T reaches a value Tth3 corresponding to the time of the third period Y (set appropriately in accordance with the clock of the counter). Whether or not (T> Tth3).
  • the target value It of current is fixed when dPp ⁇ dPpth in step S34, and when T> Tth3 is determined, the process proceeds to the fourth period Z and is continued as it is.
  • the target current value It may be changed by the MPPT operation until the third period Y is measured without determining dPp ⁇ dPpth in step S32.
  • step S35 when the time measurement of the third period Y is determined by the timer in step S35, if dPp ⁇ dPpth is not satisfied, the target value It at that time is fixed and the fourth period Z is started. That is, the MPPT operation is temporarily terminated.
  • step S36 The operation in the fourth period Z in which the MPPT operation is prohibited (the target current constant operation) is executed in steps S36 to S38. Specifically, when the fourth period Z is entered, the counter value T is first reset, and the target value It at this time is stored (step S36). Thereafter, the power conditioner 2 is controlled to be fixed to the stored target value It (step S37), and the period during which the target current is constant is controlled (step S38). In step S38, it is determined whether or not the count value T has reached a value Tth4 corresponding to the time of the fourth period Z (set appropriately in accordance with the counter clock) (T> Tth4).
  • the count value of the timer T is reset to zero (step S39), and then the process returns to step S31 again to change the target value It of the output current Ipo and start the MPP operation.
  • the target value It when the time measurement in the third period Y ends is fixed and used for control.
  • the MPPT operation is continued over one period of the X period, and the target value It is always recalculated.
  • the input power Ppin is obtained by the product of the input voltage Vpin of the booster circuit 21 and the input current Ipin.
  • the input power Ppin can be replaced with the product of the input voltage of the inverter circuit 23 and the input current. It is.
  • the power conditioner 2 repeats steps S31 to S39, thereby performing an operation of repeating the MPPT operation and the target current constant operation of the power conditioner 2.
  • the power conditioner 41 determines whether or not the input power Ppin is near the maximum value, determines the operation without changing the MPPT operation or the target value of the output current (the target current is constant), and after the second period X has elapsed. The MPPT operation is prohibited and the target current constant operation is started. For this reason, the booster circuit 41 switches from the MPPT operation to the constant target current operation when the input power Ppin becomes close to the maximum value during the MPPT operation during the third period Y (see Y ′ in FIGS. 7 and 9 described later).
  • FIG. 7 shows a time chart when the current collection box and the power conditioner in the first embodiment operate.
  • 7A to 7D show time charts when the booster circuits 41a to 41d perform the MPPT operation, respectively.
  • FIG. 7E shows time charts when the power conditioner 2 performs the MPPT operation. Show.
  • the white period C corresponds to the second period C in which the MPPT operation of the booster circuit 41 described above is prohibited and the boost ratio is constant, and is hatched with diagonal lines.
  • the period B corresponds to the first period B in which the MPPT operation of the booster circuit 41 described above is performed.
  • a period A including the first period B and the second period C corresponds to the first period A.
  • a period E surrounded by a dotted line corresponds to a period in which the booster circuits 41a to 41d are not in operation or a period in which the operation at the time of activation is performed.
  • the white period Z corresponds to the fourth period Z in which the MPPT operation of the power conditioner 2 described above is prohibited and the target current constant operation is performed, and the hatched period Y is hatched.
  • a period X obtained by adding the third period Y and the fourth period Z corresponds to the second period X.
  • a period S hatched at a point corresponds to a period during which the power conditioner 2 performs an initial operation.
  • the period in which the power conditioner 2 is not operating is before the period in which the initial operation is performed, but is omitted here.
  • the first period A is divided into a first period B in which the MPPT operation of the booster circuit 41 is enabled and a second period C in which the MPPT operation of the booster circuit 41 is prohibited.
  • the cycle X is divided into a third period Y in which the MPPT operation of the power conditioner 2 is enabled and a fourth period Z in which the MPPT operation of the power conditioner 2 is prohibited.
  • the length of the first period A and the length of the second period X are made different. For this reason, the time zone for performing the MPPT operation of the booster circuit 41 and the MPPT operation of the power conditioner 2 can be shifted, and the MPPT operation of the booster circuit 41 can be prevented from interfering with the MPPT operation of the power conditioner 2. .
  • the booster circuit 41 and the power conditioner 2 are different only in the control cycle and do not operate in response to commands from other circuits. Therefore, it is necessary to make special settings in the control circuit that controls these circuits. However, it is possible to easily increase or decrease the number of lines through the booster circuit that boosts the output voltage of the solar cell and supplies power.
  • the length of the second period X is shorter than the length of the first period A.
  • the length of the second period C is longer than the length of the third period Y. For this reason, all the MPPT operations of the power conditioner 2 can be performed once in the second period C that is not affected by the MPPT operation of the booster circuit 41. For this reason, it is possible to further suppress the MPPT operation of the booster circuit 41 from interfering with the MPPT operation of the power conditioner 2.
  • the length of the fourth period Z is longer than the length of the first period B. For this reason, all the MPPT operations of the booster circuit can be performed within the fourth period. Thereby, it is possible to further suppress the MPPT operation of the booster circuit from interfering with the MPPT operation of the power conditioner 2.
  • the period for starting the MPPT operation of the booster circuit is different from the period for starting the MPPT operation of the other booster circuit 41 (in the first embodiment, all the first periods A have different lengths). Set to). Therefore, as shown in FIG. 7, the timing of performing the MPPT operation of the booster circuit 41 can be shifted for the booster circuits 41a to 41d. Further, it is possible to reduce the time period during which the plurality of booster circuits 41a to 41d perform the MPPT operation of the power conditioner 2 simultaneously. Thereby, it is possible to suppress the MPPT operation of the booster circuit 41 of the booster circuits 41a to 41d from interfering with the MPPT operation of the power conditioner 2 at the same time.
  • the cycle is lengthened, the opportunity to perform the MPPT operation on a solar cell having a large output and large fluctuations in output power when performing the MPPT operation of the booster circuit 41 is reduced.
  • the opportunity to perform the MPPT operation of the booster circuit 41 that greatly interferes with the MPPT operation of the power conditioner 2 is reduced, and the MPPT operation of the booster circuit 41 can be further prevented from interfering with the MPPT operation of the power conditioner 2.
  • the higher the output of the booster circuits 41a to 41d (for example, the rated output power or the number of solar cells in series) is the first.
  • the period A is shortened, the chance of performing the MPPT operation of the booster circuit 41 on the solar cell from which more power can be extracted increases, so that it is easy to extract a large amount of power from the solar cells 1a to 1d.
  • the length obtained by adding the lengths of the first periods B in the first periods A of the booster circuits 41a to 41d is shorter than the length of any second period C of the booster circuits 41a to 41d. It is set.
  • a time zone in which the MPPT operation of the booster circuit 41 is not performed in any of the booster circuits 41a to 41d can be created.
  • a time zone in which the MPPT operation of the booster circuit 41 does not interfere with the MPPT operation of the power conditioner 2 can be created. It is possible to prevent the MPPT operation from interfering with the MPPT operation of the power conditioner 2.
  • the booster circuits 41a to 41d of the present embodiment have a configuration for changing the first period A.
  • FIG. 8 shows an external view of the current collection box 4 of this embodiment.
  • the rotary switches 43a to 43d are provided in the number of the booster circuits 41, and the first cycles A of the booster circuits 41a to 41d are used by using the rotary switches 43a to 43d. It is good to change.
  • the booster circuits 41a to 41d are assigned to the rotary switches 43a to 43d, respectively, and the length of the first period A can be set according to the rotational position of the rotary switches 43a to 43d.
  • the first cycle A of the booster circuits 41a to 41d may be changed by operating the button 45 while looking at the display unit 44.
  • FIG. 9 shows a time chart when the current collection box and the power conditioner in the second embodiment operate.
  • 9A to 9D show time charts when the booster circuits 41a to 41d perform the MPPT operation, respectively.
  • FIG. 9E shows time charts when the power conditioner 2 performs the MPPT operation. Show.
  • the length of the second period X is longer than the length of the first period A.
  • the length of the fourth period is made longer than the length of the first cycle A of each booster circuit.
  • the booster circuit 41 starts boosting the output voltage of the solar cell 1 when the power conditioner 2 starts operating and the current Icin detected by the current sensor 85 is larger than the current threshold Icth.
  • the power conditioner 2 starts operating and detects the power Pc (output power of the solar cell) supplied to the booster circuit 41, and this power Pc is A method for starting boosting the output voltage of the solar cell 1 when the power threshold value Pcth is greater will be described.
  • FIG. 14 is a flowchart showing the operation of the booster circuits 41a to 41d of the current collection box 4 when starting up in the third embodiment.
  • Step S41 the input current Icin to the booster circuit 41 is detected using the current sensor 85
  • step S42 the input power Vcin to the booster circuit 41 is detected using the voltage sensor 86.
  • step S43 the booster circuit 41 updates the maximum value Vcmax of the voltage Vcin detected by the voltage sensor 86 after the boosting operation of the booster circuit 41 is stopped, and proceeds to step S44. Specifically, the booster circuit 41 compares the maximum value Vcmax with the input voltage Vcin, and updates the maximum value Vcmax with the detected voltage Vcin when the detected voltage Vcin is greater than the maximum value Vcmax (maximum value Vcmax). If the detected voltage Vcin is not large, no update is performed).
  • step S44 the booster circuit 41 determines whether or not the voltage Vcin is smaller than the maximum value Vcmax by a predetermined amount. When the booster circuit 41 determines that the voltage Vcin is not smaller than the maximum value Vcmax by a predetermined amount, the booster circuit 41 returns to step S41. If the booster circuit 41 determines that the voltage Vcin is smaller than the maximum value Vcmax by a predetermined amount, the booster circuit 41 proceeds to step S45.
  • whether the voltage Vcin is smaller than the maximum value Vcmax by a predetermined amount may be determined by determining whether Vcmax ⁇ Vcin is smaller than the predetermined value, or Vcin / Vc. It may be determined that max is smaller than a predetermined value or Vcmax / Vcin is larger than a predetermined value.
  • step S45 the booster circuit 41 calculates the input power Pc to the booster circuit 41 from the product of the input current Icin detected in step S41 and the input voltage Vcin detected in step S42.
  • the booster circuit 41 determines whether or not the power Pc is larger than the power threshold value Pcth (step S46). When the booster circuit 41 determines that the power Pc is not greater than the power threshold value Pcth, the process returns to step S41. On the other hand, when the booster circuit 41 determines that the power Pc is larger than the power threshold value Pcth, the booster circuit 41 starts the operation of the booster circuit 41 at a predetermined booster ratio r (step S47) and ends the startup process.
  • the operation of the booster circuit 41 (the output voltage of the solar cell 1) Boosting) has started.
  • the operation of the booster circuit 41 the output voltage of the solar cell 1. Boosting
  • the booster circuit 41 starts boosting the output voltage of the solar cell 1 when the input power Pc is larger than the power threshold value Pcth. For this reason, the operation of the booster circuit 41 can be started after confirming that the power conditioner 2 is activated (linked) and that a predetermined amount of power is supplied from the solar cell 1.
  • the output voltage of the solar cell 1 Has started boosting. Thereby, it is possible to prevent the booster circuit 41 from being activated when the amount of solar radiation decreases due to a change in weather and the output voltage Vcin of the solar cell 1 decreases.
  • the booster circuit 41 prohibits the MPPT operation after the fixed first period B and starts the constant boost ratio operation, but the output power Pc of the solar cell 1 is the maximum value.
  • the MPPT operation may be prohibited and a constant step-up ratio operation may be performed.
  • the length of the first period B is configured to be changeable according to the output power Pc of the solar cell 1, and the length of the second period C is fixed to a certain length.
  • the output power Pc of the solar cell 1 when the output power Pc of the solar cell 1 is close to the maximum value, it shifts to the second period B, so the length of the first period B is shortened and the length of the first period A is also shortened. (The length of the first period A changes).
  • the timing for starting the MPPT control of the booster circuit is shifted. For this reason, since the period during which the MPPT operation of the booster circuit and the MPPT operation of the power conditioner 2 are simultaneously performed can be shifted, the influence of the MPPT operation of the booster circuit 41 on the MPPT operation of the power conditioner 2 is suppressed. Can do.
  • the power conditioner 2 prohibits the MPPT operation and starts the target current constant operation after the fixed third period Y, but the input power Ppin is near the maximum value. If it is determined, the MPPT operation may be prohibited and the target current constant operation may be performed.
  • the length of the third period Y is configured to be changeable according to the input power Ppin, and the length of the fourth period Z is fixed to a certain length.
  • the period shifts to the fourth period Z. Therefore, the length of the third period Y is shortened and the length of the second period X is also shortened (second period X length changes).
  • the timing for starting the MPPT control of the power conditioner 2 is shifted. For this reason, since the period during which the MPPT operation of the booster circuit and the MPPT operation of the power conditioner 2 are simultaneously performed can be shifted, the influence of the MPPT operation of the booster circuit 41 on the MPPT operation of the power conditioner 2 is suppressed. Can do.
  • the booster circuit 21 is also provided in the power conditioner 2, but as shown in FIG. 10, a configuration in which the booster circuit 21 is not provided in the power conditioner 2 may be employed.
  • booster circuits 41a to 43c boost units 40a to 40d
  • boost units 40a to 40d boost units 40a to 40d
  • FIG. 4 For one solar cell 1, the booster circuit 41 (boost unit 40) may not be connected, and the solar cell 1 a may be directly connected to the output side of another booster circuit 41.
  • a constant second period X is set by providing a third period in which the MPPT operation of the power conditioner 2 is performed and a fourth period in which the MPPT operation of the power conditioner 2 is prohibited.
  • the fourth period may be zero (see FIG. 12).
  • the MPPT operation of the power conditioner 2 is substantially always performed.
  • the first cycle A a period for prohibiting the MPPT operation of the booster circuit 41 is provided, and there is a period in which the MPPT operation of the power conditioner 2 and the MPPT operation of the booster circuit 41 of the current collection box 4 are not performed simultaneously. Therefore, even if interference occurs in both MPPT operations, it will be resolved in this period. Therefore, the MPPT operation of the power conditioner 2 is repeated at the timing of the program incorporated in the main routine of the microcomputer program in the power conditioner 2, and the maximum power comparison operation is performed at each repetition period to update the boost ratio. It is what is done.
  • a non-insulated booster circuit is used for the booster circuit 41 of the current collection box 4, but an insulating booster circuit 140 using a transformer 141 is used as shown in FIG. You can also.
  • the booster circuit 140 has a circuit in which the primary winding of the transformer 141 and the switch element 142 are connected in series on the primary side. Further, the booster circuit 140 has a rectifier 144 on the secondary side, the secondary winding of the transformer 141 is connected to the AC side of the rectifier 144, and a diode 143 is connected in series to the DC side of the rectifier 144.
  • the capacitor 145 has a circuit connected in parallel to the series circuit of the rectifier 144 and the diode 143.
  • the booster circuit 140 includes a current sensor 85 that detects an input current, a voltage sensor 86 that detects an input voltage, and a voltage sensor 87 that detects an output voltage. Based on information obtained from these sensors. Thus, the switch element 142 is periodically opened and closed to obtain a predetermined step-up ratio.
  • the switch element 142 is opened, the output power of the solar cell 1 is not supplied to the power conditioner 2, so it is necessary to start from the current collection box 4.
  • the operation of the isolated booster circuit 140 can be handled by adding a step of operating with a constant boost ratio before step S11 of FIG.
  • the booster circuit 140 illustrated in FIG. 13 is an example of an isolated booster circuit, and the same may be applied to other isolated booster circuits.
  • the method of starting the booster circuit 41 using the current threshold value Icth and the power threshold value Pcth has been described.
  • the current threshold value Icth and the power threshold value Pcth may be configured to be changeable, These threshold values may be different in the booster circuits 41a to 41d.
  • the operation of the booster circuit 41 (boosting of the output voltage of the solar cell 1) is performed.
  • the present invention can also be applied to the first embodiment. In this case, it can be realized by adding steps S42 to S44 of the operation flow of FIG. 14 immediately before or immediately after step S11 of the operation flow of FIG. Thereby, it is possible to prevent the booster circuit 41 from being activated when the amount of solar radiation decreases due to a change in weather and the output voltage Vcin of the solar cell 1 decreases.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

直流電力ライン(La~Ld)の夫々に第1の昇圧回路(41a~41d)を介在させてこの第1の昇圧回路(41a~41d)の昇圧比を第1の周期毎に第1期間の間対応する太陽電池ストリング(1a~1d)の発電電力が最大に至るように可変制御すると共に、第2期間の間昇圧比を一定の値に維持するように制御し、第1期間と第2期間との合計時間を第1の周期に相当させる。

Description

電力変換システム
 本発明は、太陽電池から供給される直流電力を、昇圧した後、交流電力に変換して商用電力系統へ重畳する電力変換システムに関する。
 従来より、太陽電池の出力を、昇圧回路で昇圧して供給する電力ラインと、太陽電池の出力を昇圧せず直接供給する電源ラインとを有し、これらの両ラインから得られる太陽電池の出力をまとめた後これら太陽電池の出力を交流電力に変換して商用電力系統へ重畳するパワーコンディショナ(電力変換装置)を有する電力変換システムが提案されている。(特許文献1)。
特開2001-309560
 このような電力変換システムでは、昇圧回路が太陽電池の出力電力が最大になるように昇圧回路の入力電圧と出力電圧との昇圧比を増減させるMPPT動作(Maximum Power Point Tracking)を行う。また、パワーコンディショナ(電力変換装置)においても同様に、出力される直流電力が最大になるように動作するMPPT動作が行われている。
 昇圧回路のMPPT動作は、太陽電池の出力電力(電流と電圧の積の値)を監視しながら、昇圧回路の昇圧比を増加、或いは減少させて太陽電池の出力電力が増加する場合には引き続き同じ方(昇圧比を増加させていれば増加、減少させていれば減少)に昇圧比を変え、電力が減少する場合には反対の方(昇圧比を増加させていれば減少、減少させていれば増加)に昇圧比を変える。これらの制御により昇圧回路の昇圧比は、太陽電池の出力電力が最大値になる位置に向けて収束する。
 パワーコンディショナのMPPT動作は、太陽電池の出力電力とインバータ回路の出力電力とが変換効率を加味してもほぼ等しいことを利用して行う。このMPPT動作は、インバータ回路23の出力が重畳される系統の電圧が一定であれば系統へ出力する電流の目標値を増加・減少させて、インバータ回路の出力電力が最大値(即ち、パワーコンディショナへの入力電力の最大値)になる目標電流値を用いる。また、この際に、パワーコンディショナ内の昇圧回路の昇圧比は、目標電流値がインバータ回路から出力されるように制御される(目標電流値の電流が流れるまで昇圧する)。
 昇圧回路のMPPT動作を行うと、太陽電池の出力電力が変動し、この変動はパワーコンディショナの出力電力(出力電流)の変動として現れる。このため、昇圧回路のMPPT動作とパワーコンディショナのMPPT動作を同時に行うと、昇圧回路のMPPT動作とパワーコンディショナのMPPT動作とが干渉する場合があり夫々のMPPT動作が収束しにくくなることがあった。
 特許文献1に記載の電力変換システムは、このような干渉を取り除くために、昇圧回路のMPPT動作とパワーコンディショナのMPPT動作とを交互に行うものであった。
 しかしながら、このような電力変換システムにおいては、上述のように、共通の制御回路で、MPPT動作を行わせる回路を選択して順次MPPT動作を行うため、昇圧回路を有する電力ラインを増やしたり減らしたりする場合には、増減する昇圧回路の情報を、共通の制御回路に設定する必要があり、回路の変更や、ソフトウェアの更新など、煩わしい作業が必要になるという問題があった。
 本発明は上述の問題に鑑みて成された発明であり、昇圧回路が行うMPPT動作がパワーコンディショナの行うMPPT動作に干渉することを抑えることができる電力変換システムを提供することを目的とする。
本発明の電力変換システムは、複数の太陽電池モジュールを直列につないで成る複数の太陽電池ストリングの夫々から発電電力が供給される夫々の直流電力ラインを単一の電力ラインにまとめた後当該電力ライン上の直流電力が最大に至るように昇圧比が制御された第2の昇圧回路を経た後の直流電力をインバータ回路で交流電力に変換する電力変換システムにおいて、前記直流電力ラインの夫々に第1の昇圧回路を介在させてこの第1の昇圧回路の昇圧比を第1の周期毎に第1期間の間対応する太陽電池ストリングの発電電力が最大に至るように可変制御すると共に、第2期間の間昇圧比を一定の値に維持するように制御し、第1期間と第2期間との合計時間を第1の周期に相当させる第1の制御部とを備えるものである。
また、第2の昇圧回路の昇圧比を第2の周期毎に第3期間の間前記電力ライン上の直流電力が最大に至るように可変制御すると共に、第4期間の間昇圧比を一定の値に維持するように制御し、第3期間と第4期間との合計時間を第1の周期に相当させる第2の制御部とを備え、第1の周期と第2の周期とを異ならせるものである。
 本発明によれば、昇圧回路にMPPT動作を行わず昇圧比を一定とする期間を設けている。また昇圧回路とパワーコンディショナとのMPPT動作の開始周期を異ならせる。これにより、昇圧回路のMPPT動作とパワーコンディショナのMPPT動作を行う時間帯のバッティングを抑制することができる。このため、昇圧回路のMPPT動作がパワーコンディショナのMPPT動作に干渉することを抑えることができる。また、昇圧回路とパワーコンディショナは、MPPT動作の開始周期が異なるだけで、他の回路から指令を受けて動作するものではない。このため、昇圧回路やパワーコンディショナを制御する制御回路に特段の設定を行う必要がない。
 また、上述の発明において、前記第1周期よりも、前記第2周期が短いことを特徴とする。
 また、上述の発明において、前記第2期間を、前記第3期間よりも長くすることを特徴とする。
 また、上述の発明において、前記第4期間を、前記第1期間よりも長くすることを特徴とする。
 また、上述の発明において、第2の制御部は、第3期間の間に前記電力ライン上の直流電力の変動幅または変動率の少なくともいずれか一方が目標値以内の際に当該目標値を用いて第2の昇圧回路の昇圧値を設定することを特徴とすることを特徴とする。
 また、上述の発明において、第2の制御部は、第3期間から第4期間に移行する際に前記電力ライン上の直流電力の変動幅または変動率の少なくともいずれか一方が目標値以内であれば当該目標値を用いて設定された第2の昇圧回路の昇圧値を一定の値として第4期間を制御することを特徴とする。
 また、上述の発明において、第1の周期の1周期中を、第1の昇圧回路の昇圧比の可変制御を可能とする第1期間と第1の昇圧回路の昇圧比の可変制御を禁止する第2期間とに分け、 第2の周期の1周期中を、第2の昇圧回路の昇圧比の可変制御を可能とする第3期間と第2の昇圧回路の昇圧比の可変制御を禁止する第4期間とに分け、 第4期間を、第1期間よりも長くすることを特徴とする。
 また、上述の発明において、第2の周期の1周期中を、第2の昇圧回路の昇圧比の可変制御を可能とする第3期間と第2の昇圧回路の昇圧比の可変制御を禁止する第4期間とに分け、 第3期間において、第2の昇圧回路への入力電力の変動量が所定量より小さいときに、前記インバータ回路で変換される交流電力の出力電流の目標値をこのときの値に固定することを特徴とする。
 また、上述の発明において、第1の昇圧回路は、該昇圧回路の昇圧比の可変制御が開始されたあと、当該可変制御が第2期間まで継続された際は、前記第2期間の開始付近で算出された昇圧比で昇圧動作を継続し、 第2の昇圧回路は、該昇圧回路の昇圧比の可変制御が開始されたあと、当該可変制御が第4期間まで継続された際は、前記第4期間の開始付近で算出された前記インバータ回路の出力電流の目標値により前記直流電力を前記交流電力へ変換する動作を継続することを特徴とする。
 また、上述の発明において、前記夫々の昇圧回路は、該昇圧回路に入力される電流、或いは該昇圧回路から出力される電流を検出する電流センサを有し、前記夫々の昇圧回路は、前記電流センサの検出する電流が所定値を超えた場合に、前記夫々の昇圧回路の昇圧比の可変制御を開始することを特徴とする。
 また、本発明の別の形態において、複数の太陽電池に夫々接続されるライン、及び前記ラインに介在し前記太陽電池の出力電圧を昇圧する昇圧回路を有し、夫々の前記ラインの出力をまとめて出力する集電箱と、前記集電箱が出力する直流電力を入力し、該直流電力を交流電力に変換して商用電力系統へ重畳する電力変換器と、を備えた電力変換システムにおいて、 前記昇圧回路は、前記太陽電池の出力電力が最大になるように動作する前記昇圧回路の昇圧比の可変動作を可能にする第1期間と、前記昇圧回路の昇圧比の可変動作を禁止する第2期間とを交互に繰り返し、前記電力変換器は、前記直流電力が最大になるように動作する前記電力変換器の昇圧回路の昇圧比の可変動作を可能にする第3期間と、当該昇圧回路の昇圧比の可変動作を禁止する第4期間とを交互に繰り返し、
前記第3期間の長さは、変更可能に構成されるとともに、前記第4期間の長さは一定の長さに固定されることを特徴とする。
 また、本発明の集電箱は、複数の太陽電池に夫々接続されるライン、及び前記ラインに介在し前記太陽電池の出力電圧を昇圧する昇圧回路を有し、夫々の前記ラインの出力をまとめて出力する集電箱と、前記集電箱が出力する直流電力を入力し、該直流電力を交流電力に変換して商用電力系統へ重畳する電力変換器と、を備えた電力変換システムの前記集電箱において、前記昇圧回路を非絶縁型の昇圧回路で構成し、この非絶縁型の昇圧回路を流れる電流を検出する電流センサを備え、前記非絶縁型の昇圧回路は、前記電力変換器が作動を開始しかつ前記電流センサの検出する電流値が、電流閾値よりも大きい場合、前記太陽電池の出力電圧の昇圧を行うことを特徴とする。
 本発明によれば、電流センサにより検出した電流が、電流閾値よりも大きい場合、太陽電池の出力電圧の昇圧を開始するため、パワーコンディショナ2が起動し、太陽電池1から電力を安定して取り出せることを確認した上で、昇圧回路41を起動させる。これにより、昇圧回路41の動作が不安定になることを抑えることができる。
 また、上述の集電箱において、前記昇圧回路の入力電圧を検出する電圧センサ、を備え、前記昇圧回路の昇圧動作が停止して以降の前記電圧センサの検出する電圧値の最高値を記憶し、前記電圧センサの検出する電圧値が、前記最高値から所定量小さい値になり、且つ前記電流センサの検出する電流値が、前記電流閾値よりも大きい場合、前記太陽電池の出力電圧の昇圧を行うことを特徴とする。
 また、本発明の集電箱は、複数の太陽電池に夫々接続されるライン、及び前記ラインに介在し前記太陽電池の出力電圧を昇圧する昇圧回路を有し、夫々の前記ラインの出力をまとめて出力する集電箱と、前記集電箱が出力する直流電力を入力し、該直流電力を交流電力に変換して商用電力系統へ重畳する電力変換装置と、を備えた電力変換システムの前記集電箱において、前記昇圧回路を非絶縁型の昇圧回路で構成し、前記非絶縁型の昇圧回路を流れる電流を検出する電流センサと、前記非絶縁型の昇圧回路の入力電圧を検出する電圧センサと、を備え、前記電流センサの検出する電流値と、前記電圧センサの検出する電圧値とから演算される電力が電力閾値よりも大きい場合に、前記太陽電池の出力電圧の昇圧を行うことを特徴とする。
 本発明によれば、昇圧回路へ供給される電力が、電力閾値よりも大きい場合、太陽電池の出力電圧の昇圧を開始するため、パワーコンディショナ2が起動し、太陽電池1から電力を安定して取り出せることを確認した上で、昇圧回路41を起動させる。これにより、昇圧回路41の動作が不安定になることを抑えることができる。
 また、上述の集電箱において、前記非絶縁型の昇圧回路の昇圧動作が停止して以降の前記電圧センサの検出する電圧値の最高値を記憶し、前記電圧センサの検出する電圧値が、前記最高値から所定量小さい値になり、且つ前記電力が、前記電力閾値よりも大きい場合、前記太陽電池の出力電圧の昇圧を行うことを特徴とする。
 また、上述の集電箱において、前記電流閾値、或いは前記電力閾値は、変更可能に構成されることを特徴とする。
 本発明によれば、昇圧回路が行うMPPT動作がパワーコンディショナの行うMPPT動作に干渉することを抑えた電力変換システムを提供できる。
第1の実施形態に係る太陽光発電システム100を示す構成図である。 第1の実施形態の電力変換システムが有する集電箱の昇圧回路の回路図である。 第1の実施形態の電力変換システムが有するパワーコンディショナの回路図である。 第1の実施形態における、集電箱の昇圧回路の起動時の動作を示すフローチャートである。 昇圧回路のMPPT動作と昇圧比一定動作を行う際の集電箱の昇圧回路の動作を示すフローチャートである。 パワーコンディショナのMPPT動作と目標電流一定動作を行う際のパワーコンディショナの動作を示すフローチャートである。 第1の実施形態における集電箱及びパワーコンディショナが動作する際のタイムチャートである。 第1の実施形態に係る電力変換システムが有する集電箱4の外観図を示す。 第2の実施形態における集電箱及びパワーコンディショナが動作する際のタイムチャートである。 パワーコンディショナ2に、昇圧回路21を設けない構成を採用した太陽光発電システム100を示す構成図である。 太陽電池1aを直接他の昇圧回路41の出力側に接続するようにした太陽光発電システム100を示す構成図である。 第4期間をゼロにした場合の昇圧回路のMPPT動作及びパワーコンディショナのMPPT動作を実行する際のタイムチャートである。 絶縁型の昇圧回路の回路図である。 第3の実施形態における、集電箱の昇圧回路の起動時の動作を示すフローチャートである。
(第1の実施形態)
 以下、図面に基づき本発明の第1の実施形態を詳述する。図1は第1の実施形態に係る太陽光発電システム100を示す構成図である。この図に示すように太陽光発電システム100は、太陽電池1a~1d、及び電力変換システム50を備える。また、電力変換システム50は、太陽電池1a~1dの供給する電力を商用電力系統30へ重畳(供給)する。
 太陽電池1a~1dは、夫々、複数の太陽電池のセルを直列に接続してストリング状に構成される。各太陽電池1a~1dのセルの枚数は、太陽電池1a~1dを設置する面積等によって変わるため、太陽電池1a~1dは設置状態によって枚数が異なる。
 電力変換システム50は、各構成要素を集電箱4、及びパワーコンディショナ2に分け異なる筐体に収納することができるが、各構成要素は集電箱4及びパワーコンディショナ2に分けず単一の筐体に収納することも可能である。第1の実施形態では説明を容易にするため、各構成要素は集電箱4とパワーコンデョショナ2に分けて収納した場合を用いて説明する。
 集電箱4は、複数の太陽電池1a~1dに夫々接続される電力ライン(以下単に「ライン」と称す。)La~Ld、及びこのラインLa~Ldに夫々介在する昇圧ユニット40a~40dを有する。集電箱4は、このラインLa~Ldの出力をまとめて出力する。夫々の昇圧ユニット40a~40d(第1の昇圧回路に相当)は、夫々の太陽電池1a~1dの出力電圧を昇圧する昇圧回路41a~41dを有する。また、夫々の昇圧回路41a~41dは、昇圧回路41a~41dの昇圧動作の制御を行う昇圧制御回路42a~42d(第1の制御部に相当)を有している。夫々の昇圧回路41a~41dは、ラインLa~Ldに介在する。夫々の昇圧制御回路42a~42dは、昇圧回路41a~41dに接続される。また、昇圧回路41a~41dの出力側は、集電箱4内において単一に接続されている。集電箱4は、これらの昇圧回路41a~41dが昇圧して出力する電力を単一にまとめ、このまとめた直流電力をパワーコンディショナ2へ出力する。
 第1の実施形態では、同様の構成のものには同じ数字の符号(太陽電池であれば1)を、各構成同士で接続関係を有するものには同じ英字の符号を付している(太陽電池1と昇圧回路41とで接続関係にあるものを、夫々太陽電池1aと昇圧回路41aと符号を付している)。
 同様の構成において、同じ動作を行う場合、同じ説明を行うと冗長になるため、以後、同様の構成において、共通の動作を説明する場合は、末尾の符号のa、b、c、dを省いて説明する場合がある。
 図2に第1の実施形態の電力変換システムが有する集電箱の昇圧回路の回路図を示す。昇圧回路41には、一対の端子88、89、リアクトル81、IGBT(絶縁ゲートバイポーラトランジスタ)のようなスイッチ素子82、ダイオード83、及びコンデンサ84を有して構成される、所謂、非絶縁型昇圧回路が用いられる。一対の端子88、89には太陽電池1が接続され、この端子88、89の一方の端子(プラス側)88に直列にリアクトル81とダイオード83とが接続される。スイッチ素子82は、リアクトル81とダイオード83との接続点と一対の端子の他方の端子との間を開閉する。また、コンデンサ84は、ダイオード83と他方の端子との間に接続される。
 昇圧回路41は、入力電流を検出する電流センサ85、入力電圧を検出する電圧センサ86、及び出力電圧を検出する電圧センサ87を有している。昇圧回路41は、これらのセンサから得られる情報に基づいて、スイッチ素子82を周期的に開閉させかつ開である時間を制御して所定の昇圧比を得る。
 パワーコンディショナ2は、集電箱4の出力する直流電力を昇圧する昇圧回路21と、昇圧回路21が出力する直流電力を交流電力に変換するインバータ回路23と、昇圧回路21(第2の昇圧回路に相当)及びインバータ回路23の動作の制御を行うパワコン制御回路22(第2の制御部の相当)とを備えている。また、パワーコンディショナ2は、集電箱4の出力する直流電力を交流電力に変換して商用電力系統30へ重畳(供給)する。
 図3に第1の実施形態の電力変換システムが有するパワーコンディショナの回路図を示す。昇圧回路21の構成については、昇圧回路41と同様の回路構成を用いることができるため、ここでは説明を省略する。昇圧回路21は、同様の回路構成を用いているが、パワコン制御回路22により別の制御が行われる。
 インバータ回路23は、スイッチ素子51、52を直列接続した第1アームと、スイッチ素子53、54を直列接続した第2アームとを夫々並列に接続して構成される。スイッチ素子51~54には、半導体スイッチ例えば、IGBTのようなスイッチ素子を用いると良い。インバータ回路23は、パワコン制御回路22のPWM(Pulse Width Modulation)制御にしたがって各スイッチ素子51~54を周期的に開閉する。インバータ回路23は、このスイッチ素子51~54の開閉により、昇圧回路21から出力される直流電力を三相交流電力に変換する。また、インバータ回路23の後段には、リアクトル61、62、及びコンデンサ63からなるフィルタ回路(ローパスフィルタ)が設けられており、スイッチ素子51~54の開閉動作による高周波を除去している。
 また、インバータ回路23は、インバータ回路23の出力電流を検出する電流センサ91と、インバータ回路23の出力電圧を検出する電圧センサ92とを有している。そして、パワコン制御回路22は、昇圧回路21の有する電圧センサ86、87、及び電流センサ85、並びにインバータ回路23の有する電圧センサ92、電流センサ91から検出される電流値や電圧値を用いて、昇圧回路21とインバータ回路23を制御する。
 次に、第1の実施形態の電力変換システム50が有する集電箱4の昇圧回路41、パワーコンディショナ2の動作、及び電力変換システム50について説明する。
(集電箱の昇圧回路の動作)
 パワーコンディショナ2は、日射量が低い連系開始時には、太陽電池1から取り出す電力が不安定になるため動作が不安定になりやすい(パワーコンディショナ2への入力電圧が大きく変動する)。このような状態で、昇圧回路41を動作させると昇圧回路の動作も不安定になるため、本実施例では、昇圧回路41は、起動時にパワーコンディショナ2の起動(連系)を確認してから昇圧を開始する。
 集電箱4の昇圧回路41にトランス等を持ちいない非絶縁型昇圧回路を用いているため、昇圧回路41が昇圧動作をしていなくても太陽電池の出力電力はリアクトル81及びダイオード83を介して電力がパワーコンデョショナ2へ供給されるため、この電力が一定値以上になればパワーコンディショナ2は、昇圧回路41が動作していなくても運転を開始するものである。パワーコンディショナ2が運転の開始後、インバータ回路23が起動して連系を開始すると、昇圧回路41を介して流れる電流すなわち電流センサ85が検出する電流が増加する。このため、この電流を検出することで、パワーコンディショナ2の起動(連系)が確認できる。この昇圧回路41が起動する際の動作について図面を用いて説明する。図4に、第1の実施形態における集電箱4の昇圧回路41の起動時の動作のフローチャートを示す。
 昇圧回路41の起動処理は、昇圧回路41への入力電流Icinを電流センサ85を用いて検出し(ステップS11)、入力電流Icinが所定値Icthを超えたか否かを判断する(ステップS13)。
 昇圧回路41は、入力電流Icinが所定値Icthを超えていない場合、パワーコンディショナが起動していないと判断しステップS11へ移行する。また、入力電流Icinが増加して所定値Icthを超えた場合、パワーコンディショナが起動したと判断し、予め定めた昇圧比rで昇圧回路41の動作を開始し起動処理を終了する。
 このようにすることで、パワーコンディショナ2が起動し、太陽電池1から電力を安定して取り出せることを確認した上で、昇圧回路41を起動させるので、昇圧回路41の動作が不安定になることを抑えることができる。
 また、このようにすることで、起動時に入力電流Icinが小さいうちは昇圧動作を行うことが無いので、昇圧回路41のスイッチ素子82の開閉回数を減らすことができ、スイッチ素子82の寿命を長くすることができる。
 昇圧回路41は、起動時の動作が終了すると、夫々に接続される太陽電池1の出力電力が最大になるように動作するMPPT動作を第1周期毎に第1の期間開始する。具体的には、第1周期の1周期中を、昇圧回路のMPPT動作を可能とする第1期間と昇圧回路のMPPT動作を禁止(昇圧比の変更を行わず昇圧比を一定の値に維持)する第2期間とに分ける。昇圧回路41は、第1期間では、MPPT動作を行い、第2期間では、昇圧比rを一定(固定)に動作する昇圧比一定動作を行う。このように、昇圧回路41は、第1周期毎に、昇圧回路のMPPT動作及び昇圧比一定動作を繰り返す。
 昇圧回路41が、MPPT動作及び昇圧比一定動作を繰り返す際の動作について図面を用いて説明する。図5に昇圧回路のMPPT動作と昇圧比一定動作を行う際の動作のフローチャートを示す。昇圧回路41は、この繰り返し動作を開始すると加算型のタイマのカウンタ値Tをゼロ(T=0)にリセットした後計時を開始し、昇圧回路41への入力電力Pcを検出して記憶し(記憶している入力電力の値には符号Pcdを付する)、ステップS21で電力差dPc(=(現在の電力Pc)-(前回の電力Pcd))を求める。この入力電力Pc(太陽電池の出力電力)は、電圧センサ86、及び電流センサ85を用いて昇圧回路41の入力電圧Vcin、及び入力電流Icinを検出し、この入力電圧Vcinと入力電流Icinとを積算することで求めることができる。
 ステップS22で電力差|dPc|<dPcthの判断を行い電力差dPcが閾値dPcthより小さい時はこの時の昇圧比rを固定する(ステップS24)。電力差dPcが閾値dPcthより大きいときはステップS23に進みr=r+drとして新しい昇圧比rを設定する(昇圧回路41のMPPT動作)。即ち、太陽電池1の出力電力Pcが最大値付近である(|dPc|<dPcthがYes)場合に昇圧比一定動作を行い、太陽電池1の出力電力Pcが最大値付近でない(|dPc|<dPcthがNo)場合MPPT動作を行う。
 昇圧回路41のMPPT動作は、電力差dPcが正の場合、前回昇圧比rを変更した内容と同じ内容で昇圧比rを変更し(昇圧比rを増加させていれば増加、減少させていれば減少)、電力差dPcが負であれば、前回昇圧比rを変更した内容と異なる内容で昇圧比rを変更する(昇圧比rを増加させていれば減少、減少させていれば増加)。尚、最初にこのステップS33の処理を行う場合は、予め昇圧比rを増加するか減少するかを決めておき、昇圧比rはその内容にて変更する。
 ステップS25はこのMPPT動作を行う期間を制御するステップであり、ステップS25でこのカウント値Tが第1期間Bの時間に相当する値Tth1(カウンタのクロックに合わせて適に設定する)に達したか否かを判断する(T>Tth1)。本フローチャートではステップS24でdPc<dPcthの際に昇圧比rを固定しており、T>Tth1を判断すると第2期間Cに進みこの昇圧比rをそのまま継続する。
 尚、ステップS22でdPc<dPcthを判断することなくこの第1期間Bが計時されるまでMPPT動作による昇圧比rの変更を行っても良い。
 また、ステップS25でタイマにより第1期間Bの計時が判断された際に、dPc<dPcthを満たしていないときは、その時点の昇圧比rが固定され第2期間Cが開始される。すなわちMPPT動作は一旦終了する。
 MPPT動作を禁止する第2期間Cの動作(昇圧比一定動作)はステップS26~ステップS28で実行される。具体的には、第2期間Cに入るとまずカウンタの値Tがリセットされ、この時の昇圧比rが記憶される(ステップS36)。その後、記憶された昇圧比rに固定してパワーコンディショナ2を制御し(ステップS37)、昇圧比一定動作を行う期間を制御する(ステップS38)。ステップS38では、カウント値Tが第2期間Cの時間に相当する値Tth2(カウンタのクロックに合わせて適に設定する)に達したか否かを判断する(T>Tth2)
 この第2期間Cを経過すると、タイマTのカウント値をゼロにリセット(ステップS39)した後、再度ステップS31に戻り、昇圧比rを変えてMPP動作を開始する。この第2期間Cでは、第1期間Bの計時が終了した時の昇圧比rが固定されて制御に用いられる。
 昇圧回路41は、この様にして、ステップS21~S29を繰り返すことで、昇圧回路のMPPT動作及び昇圧比一定動作を繰り返す。
 昇圧回路41は、太陽電池1の出力電力Pcが最大値付近であるか否かを判断しMPPT動作、或いは昇圧比変更なし(昇圧比一定)で動作することを決定し、第1期間B経過後にMPPT動作を禁止して昇圧比一定動作を開始するようにしている。このため、昇圧回路41は、第1期間B中にMPPT動作中に太陽電池1の出力電力が最大値付近になるとMPPT動作から昇圧比一定動作に切り替わる(後述の図7、図9、図12のB’参照)。
 このようにすることで、固定された第1周期Aの中で、昇圧比一定動作を行う時間を増やすことができるため、パワーコンディショナMPPT動作に影響を与える昇圧回路のMPPT動作を行う期間を短くすることができる。
(パワーコンディショナの動作)
 パワーコンディショナ2は、入力電圧が所定値(例えば100V程度)を超えると連系開始前の初期動作を開始する。パワーコンディショナ2は、初期動作において、入力電圧が所定値(例えば100V程度)を超えるとパワーコンディショナ2内の昇圧回路21が昇圧を開始する。そして、パワーコンディショナ2は、昇圧回路21の昇圧電圧が所定値(例えば、300V程度)になると、インバータ回路23により、商用電力系統と位相が同期する交流電力の生成を開始して、系統連系用リレー(図示しない)を閉じて連系を開始する。
 パワーコンディショナ2は、系統連系時に、太陽電池1a~1dの出力する電力をまとめた直流電力が最大になるように動作するパワーコンディショナ2のMPPT動作を所定の第2周期X毎に開始する。具体的には、第2周期Xの1周期中を、パワーコンディショナ2のMPPT動作を可能とする第3期間Yとパワーコンディショナ2のMPPT動作を禁止する第4期間Zとに分ける。パワーコンディショナ2は、第3期間Yでは、MPPT動作を行い、第4期間Zでは、パワーコンディショナ2のインバータ回路23の出力電流の目標値を一定に保つように動作する目標電流一定動作を行う。このように、パワーコンディショナ2は、系統連系時において、第2周期毎に、パワーコンディショナ2のMPPT動作及び目標電流一定動作を繰り返す。
 パワーコンディショナ2のMPPT動作は一例として次のように行われる。昇圧回路21に供給される入力電力Ppin(入力電流Ipinと入力電圧Vpinとの積)は、パワーコンディショナ2の変換効率を100%とすると商用電力系統30へ重畳される出力電力Ppoと実質的に等しくなる。(以下、変換効率は100%として取り扱うが、この変換効率を考慮する場合は適当な定数を掛けて用いると良い)。太陽電池1の発電出力は集電箱Bを経てパワーコンディショナ2に供給され入力電力Ppinとなっているので、太陽電池1の発電量が変動するとこの入力電力Ppinの値も変化する。また、入力電力Ppinと出力電力Ppoとは実質的に同じであるので、商用電力系統30の電圧が一定(例えば単相3線式ではAC200V)であれば入力電力Ppinは商用電力系統30へ供給する出力電流Ipoから求めることができる。従って出力電流Ipoの値を変えることによって出力電力Ppo値を太陽電池1の現在の発電電力に会わせることができる。
 インバータ回路23は搬送波と正弦波状の変調波とを変調して得られるPWM方式に基づくスイッチング信号でスイッチング素子51~54をON/OFF制御して単相の疑似正弦波を出力する。この時この疑似正弦波の振幅は昇圧回路21から出力される電圧となるので、出力電流Ipoは昇圧回路21の昇圧比を変えることによって制御することができる。従って、この現在の太陽電池1の発電電力の最大値は出力電流Ipoの目標値Itを変えた際に入力電力Ppinが最大になる目標値Itで出力電流Ipoを制御すればよい。
 昇圧回路21は電流差dIp(=電流Ipo-目標値It)に基づいてスイッチング素子82のONデューティを制御する。電流差dIpが正であればONデューティの値を小さくし、負であればONデューティの値を大きくする。尚、この際のゲインは適に設定する。
 パワーコンディショナ2が、パワーコンディショナ2のMPPT動作及び目標電流一定動作を繰り返す際の動作(系統連系時の動作)について図面を用いて説明する。図6に系統連系時のパワーコンディショナの動作のフローチャートを示す。
 パワーコンディショナ2は、系統連系時の動作を開始すると加算型のタイマのカウンタ値Tをゼロ(T=0)にリセットした後計時を開始し、パワーコンディショナ2への入力電力Ppinを検出して記憶し、ステップS31で電力差dPp(=(現在の電力Ppin)-(前回の電力Ppind))を求める。
ステップS32で電力差|dPp|<dPpthの判断を行い電力差の絶対値|dPp|が閾値dPpthより小さい時はこの時の目標値Itを固定する(ステップS34)。電力差の絶対値|dPp|が閾値dPpthより大きいときはステップS33に進みIt=It+dIとして新しい電流の目標値Itを設定する(パワーコンディショナ2のMPPT動作)。即ち、入力電力Ppinが最大値付近である(|dPp|<dPpthがYes)場合に目標電流一定動作を行い、入力電力Ppinが最大値付近でない(|dPp|<dPpthがNo)場合にMPPT動作を行う。
 パワーコンディショナ2のMPPT動作は、電力差dPpが正の場合、前回目標値Itを変更した内容と同じ内容で目標値Itを変更し(目標値を増加させていれば増加、減少させていれば減少)、電力差dPpが負であれば、前回目標値Itを変更した内容と異なる内容で目標値Itを変更する(目標値を増加させていれば減少、減少させていれば増加)。尚、最初にこのステップS33の処理を行う場合は、予め目標値Itを増加するか減少するかを決めておき、目標値Itはその内容にて変更する。
 ステップS35はこのMPPT動作を行う期間を制御するステップであり、ステップS35でこのカウント値Tが第3期間Yの時間に相当する値Tth3(カウンタのクロックに合わせて適に設定する)に達したか否かを判断する(T>Tth3)。本フローチャートではステップS34でdPp<dPpthの際に電流の目標値Itを固定しており、T>Tth3を判断すると第4期間Zに進みこの目標値Itをそのまま継続する。
 尚、ステップS32でdPp<dPpthを判断することなくこの第3期間Yが計時されるまでMPPT動作による電流の目標値Itの変更を行っても良い。
 また、ステップS35でタイマにより第3期間Yの計時が判断された際に、dPp<dPpthを満たしていないときは、その時点の目標値Itが固定され第4期間Zが開始される。すなわちMPPT動作は一旦終了する。
 MPPT動作を禁止する第4期間Zの動作(目標電流一定動作)はステップS36~ステップS38で実行される。具体的には、第4期間Zに入るとまずカウンタの値Tがリセットされ、この時の目標値Itが記憶される(ステップS36)。その後、記憶された目標値Itに固定してパワーコンディショナ2を制御し(ステップS37)、目標電流一定動作を行う期間を制御する(ステップS38)。ステップS38では、カウント値Tが第4期間Zの時間に相当する値Tth4(カウンタのクロックに合わせて適に設定する)に達したか否かを判断する(T>Tth4)
 この第4期間Zを経過すると、タイマTのカウント値をゼロにリセット(ステップS39)した後、再度ステップS31に戻り、出力電流Ipoの目標値Itを変えてMPP動作を開始する。この第4期間Zでは、第3期間Yの計時が終了した時の目標値Itが固定されて制御に用いられる。
 尚、第4期間Zをゼロ時間とすれば、1周期のX期間にわたってこのMPPT動作が継続され常に目標値Itが再計算されることになる。
 また、第1の実施形態では入力電力Ppinを昇圧回路21の入力電圧Vpinと入力電流Ipinとの積で求めているが、インバータ回路23の入力電圧と入力電流との積に置換えることも可能である。
パワーコンディショナ2は、この様にして、ステップS31~S39を繰り返すことで、パワーコンディショナ2のMPPT動作及び目標電流一定動作を繰り返す動作を行う。
 パワーコンディショナ41は、入力電力Ppinが最大値付近であるか否かを判断し、MPPT動作、或いは出力電流の目標値変更なし(目標電流一定)で動作を決定し、第2周期X経過後にMPPT動作を禁止して目標電流一定動作を開始するようにしている。このため、昇圧回路41は、第3期間Y中にMPPT動作中に入力電力Ppinが最大値付近になるとMPPT動作から目標電流一定動作に切り替わる(後述の図7、図9のY’参照)。
 このようにすることで、固定された第3周期Xの中で、目標電流一定動作を行う時間を増やすことができるため、昇圧回路MPPT動作とパワーコンディショナMPPT動作とがバッティングする(同時に行われる)期間を短くすることができる。
 図7に第1の実施形態における集電箱及びパワーコンディショナが動作する際のタイムチャートを示す。図7(a)~(d)はそれぞれ、昇圧回路41a~41dがMPPT動作を行う際のタイムチャートを示し、図7(e)は、パワーコンディショナ2がMPPT動作を行う際のタイムチャートを示している。
 図7(a)~(d)において、白抜きの期間Cが上述した、昇圧回路41のMPPT動作を禁止し、昇圧比一定動作を行う第2期間Cに相当し、斜線にてハッチングされた期間Bが上述した昇圧回路41のMPPT動作を行う第1期間Bに相当する。第1期間B、第2期間Cを加えた期間Aが第1周期Aに相当する。また、点線で囲われている期間Eは昇圧回路41a~41dが動作していない期間、或いは起動時の動作を行っている期間に相当する。
 図7(e)においては、白抜きの期間Zが上述した、パワーコンディショナ2のMPPT動作を禁止し、目標電流一定動作を行う第4期間Zに相当し、斜線にてハッチングされた期間Yが上述したパワーコンディショナ2のMPPT動作を行う第3期間Yに相当する。第3期間Y、第4期間Zを足した期間Xが第2周期Xに相当する。また、点にてハッチングされた期間Sはパワーコンディショナ2が初期動作を行う期間に相当する。尚、図7(e)において、パワーコンディショナ2が動作していない期間が初期動作を行う期間の前にあるがここでは省略する。
 図7を参照してわかるように、第1周期Aを、昇圧回路41のMPPT動作を可能とする第1期間Bと昇圧回路41のMPPT動作を禁止する第2期間Cとに分け、第2周期Xを、パワーコンディショナ2のMPPT動作を可能とする第3期間Yとパワーコンディショナ2のMPPT動作を禁止する第4期間Zとに分けている。そして、第1周期Aの長さと第2周期Xの長さを異なるようにしている。このため、昇圧回路41のMPPT動作とパワーコンディショナ2のMPPT動作を行う時間帯をずらすことができ、昇圧回路41のMPPT動作がパワーコンディショナ2のMPPT動作に干渉することを抑えることができる。また、昇圧回路41とパワーコンディショナ2は、制御周期が異なるだけで、他の回路から指令を受けて動作するものではないので、これらの回路を制御する制御回路に特段の設定を行う必要がなく、容易に太陽電池の出力電圧を昇圧して電力を供給する昇圧回路を介するラインを増やしたり減らしたりすることができる。
 また、第1周期Aの長さよりも、第2周期Xの長さの方が短くなる。これにより、系統連系システム50全体としての出力電力の最大化が頻度よく行われ、個別の太陽電池の出力電力の最大化がゆっくりと行われることになる。
 また、第2期間Cの長さを、前記第3期間Yの長さよりも長くしている。このため、昇圧回路41のMPPT動作の影響を受けない第2期間Cの中で、1回のパワーコンディショナ2のMPPT動作をすべて行うことができる。このため、昇圧回路41のMPPT動作がパワーコンディショナ2のMPPT動作に干渉をすることをより抑制することができる。
 また、第4期間Zの長さを、前記第1期間Bの長さよりも長くしている。このため、1回の昇圧回路のMPPT動作を第4期間内ですべて行うことができるようになる。これにより、昇圧回路のMPPT動作が、パワーコンディショナ2のMPPT動作に干渉することをより抑制することができる。
 また、昇圧回路のMPPT動作を開始する周期と、他の昇圧回路41のMPPT動作を開始する周期とが異なるようにしている(第1の実施形態においては全ての第1周期Aが異なる長さに設定されている)。このため、図7に示すように、昇圧回路41a~41dについて夫々昇圧回路41のMPPT動作を行うタイミングをずらすことができる。また、昇圧回路41a~41dが複数同時にパワーコンディショナ2のMPPT動作を行う時間帯を少なくすることができる。これにより、昇圧回路41a~41dの昇圧回路41のMPPT動作が同時にパワーコンディショナ2のMPPT動作に干渉してしまうことを抑制することができる。
 また、昇圧回路41a~41dの第1周期Aを異なるようにする場合は、昇圧回路41a~41dの内、出力(例えば、定格出力電力や太陽電池セルの直列数)の大きい太陽電池ほど第1周期を長くすると、昇圧回路41のMPPT動作を行う際に出力が大きく出力電力の変動が大きくなる太陽電池に対してMPPT動作を行う機会が減る。この場合、パワーコンディショナ2のMPPT動作に大きく干渉する昇圧回路41のMPPT動作を行う機会が減り、より昇圧回路41のMPPT動作がパワーコンディショナ2のMPPT動作に干渉することを抑制できる。
 また、昇圧回路41a~41dの第1周期Aを異なるようにする場合に、昇圧回路41a~41dの内、出力(例えば、定格出力電力や太陽電池セルの直列数)の大きい太陽電池ほど第1周期Aを短くすると、より電力の取り出せる太陽電池に対して昇圧回路41のMPPT動作をする機会が増えるため、太陽電池1a~1dから多くの電力を取り出しやすくなる。
 また、昇圧回路41a~41dの夫々の第1周期A内の第1期間Bの長さを加算した長さは、昇圧回路41a~41dの何れの第2期間Cの長さよりも短くなるように設定している。
 これにより、最も周期の長い昇圧回路41の第1周期の中で、何れの昇圧回路41a~41dにおいても昇圧回路41のMPPT動作を行わない時間帯を作ることができる。このため、最も周期の長い昇圧回路41の第1周期のなかで、昇圧回路41のMPPT動作がパワーコンディショナ2のMPPT動作に干渉することがない時間帯を作ることができ、昇圧回路41のMPPT動作がパワーコンディショナ2のMPPT動作に干渉することの抑制につなげることができる。
 本実施例の昇圧回路41a~41dは、第1周期Aを変更する構成を有している。図8に本実施例の集電箱4の外観図を示す。例えば、図8(a)にしめすように、回転式のスイッチ43a~43dを昇圧回路41の数設け、夫々の回転式のスイッチ43a~43dを使用して昇圧回路41a~41dの第1周期Aを変更すると良い。この場合は、回転式スイッチ43a~43dに夫々昇圧回路41a~41dが割り当てられ、回転式スイッチ43a~43dの回転位置に応じて第1周期Aの長さを設定できる。また、例えば、図8(b)に示すように、表示部44を見ながらボタン45を操作することで昇圧回路41a~41dの第1周期Aを変更できるようにしてもよい。
(第2の実施形態)
 第1の実施形態では、第1周期Aよりも第2周期Xが短い場合について述べたが、第2の実施形態では、第1周期Aよりも第2周期Xが長くしている。これ以外の構成については、これまでに述べた構成と同様の構成を用いることができるため説明を省略する。
 図9に第2の実施形態における集電箱及びパワーコンディショナが動作する際のタイムチャートを示す。図9(a)~(d)はそれぞれ、昇圧回路41a~41dがMPPT動作を行う際のタイムチャートを示し、図9(e)は、パワーコンディショナ2がMPPT動作を行う際のタイムチャートを示している。
 図9(a)~(d)において、各周期及び期間A~C、E、S、Y~Zについては図7と同じ表現を行っているためここでは説明を省略する。
 図9に示すように、第1周期Aの長さよりも、第2周期Xの長さの方が長くなる。これにより、電力変換システム50全体としての出力電力の最大化がゆっくり行われ、個別の太陽電池の出力電力の最大化が頻度良くと行われることになる。
 また、夫々の昇圧回路の第1周期Aの長さよりも第4期間の長さを長くしている。これにより、パワーコンディショナ2の第4期間中に、全ての昇圧回路が少なくとも1回MPPT動作を行う期間が設けられる。これにより、個別の太陽電池の出力電力の最大化を全ての昇圧回路41a~41dで行った上で、パワーコンディショナ2のMPPT動作を行うので、電力変換システム50全体としての出力電力の最大化を行いやすくなる。
(第3の実施形態)
 第1の実施形態では、昇圧回路41は、パワーコンディショナ2が動作を開始しかつ電流センサ85により検出した電流Icinが、電流閾値Icthよりも大きい場合、太陽電池1の出力電圧の昇圧を開始(MPPT動作を開始)していたが、本実施形態では、パワーコンディショナ2が動作を開始しかつ昇圧回路41に供給される電力Pc(太陽電池の出力電力)を検出し、この電力Pcが電力閾値Pcthよりも大きい場合に、太陽電池1の出力電圧の昇圧を開始する方法について述べる。
 図14に、第3の実施形態における、集電箱4の昇圧回路41a~41dの起動時の動作を示すフローチャートを示す。
 昇圧回路41の起動処理が開始されると、昇圧回路41への入力電流Icinを電流センサ85を用いて検出し(ステップS41)、昇圧回路41への入力電力Vcinを電圧センサ86を用いて検出する(ステップS42)。
 次に、ステップS43において、昇圧回路41は、昇圧回路41の昇圧動作が停止して以降の電圧センサ86の検出する電圧Vcinの最高値Vcmaxを更新してステップS44へ移行する。具体的には、昇圧回路41は、最高値Vcmaxと入力電圧Vcinとを比較し、最高値Vcmaxより検出した電圧Vcinが大きい場合に、検出した電圧Vcinにより最高値Vcmaxを更新する(最高値Vcmaxより検出した電圧Vcinが大きくない場合は、更新を行わない)。
 ステップS44において、昇圧回路41は、電圧Vcinが最高値Vcmaxよりも所定量小さいか否かを判断する。昇圧回路41は、電圧Vcinが最高値Vcmaxよりも所定量小さくないと判断した場合は、ステップS41へ戻る。また、昇圧回路41は、電圧Vcinが最高値Vcmaxよりも所定量小さいと判断した場合は、ステップS45へ移行する。ここで、電圧Vcinが最高値Vcmaxよりも所定量小さいか否かの判断は、Vcmax-Vcinが所定値よりも小さいことを判断しても良いし、Vcin/Vc
maxが所定値より小さい、或いはVcmax/Vcinが所定値より大きいことを判断しても良い。
 ステップS45へ移行すると、昇圧回路41は、ステップS41にて検出した入力電流IcinとステップS42にて検出した入力電圧Vcinの積から昇圧回路41への入力電力Pcを演算する。
 その後、昇圧回路41は、この電力Pcが電力閾値Pcthよりも大きいか否かを判断する(ステップS46)。昇圧回路41は、電力Pcが電力閾値Pcthよりも大きくないと判断した場合、ステップS41へ戻る。また、昇圧回路41は、電力Pcが電力閾値Pcthよりも大きいと判断した場合、予め定めた昇圧比rで昇圧回路41の動作を開始し(ステップS47)起動処理を終了する。
 上述のように、第3の実施形態では、電圧センサ86の検出する電圧値Vcinが、最高値Vcmaxから所定量小さい値になった場合に、昇圧回路41の動作(太陽電池1の出力電圧の昇圧)を開始している。これにより、パワーコンディショナ2が起動(連系)を開始した際の太陽電池1の電圧の降下を検知して、昇圧回路41の動作を開始するので、パワーコンディショナ2の起動を確認した上で、昇圧回路41の動作を開始することができる。
 また、第3の実施形態では、昇圧回路41は、入力電力Pcが電力閾値Pcthよりも大きい場合に、太陽電池1の出力電圧の昇圧を開始している。このため、パワーコンディショナ2が起動(連系)して、太陽電池1から所定量の電力が供給されていることを確認した上で昇圧回路41の動作を開始することができる。
 また、第3の実施形態では、電圧センサ86の検出する電圧値Vcinが、最高値Vcmaxから所定量小さい値になり、且つ電力Pcが、電力閾値Pcthよりも大きい場合、太陽電池1の出力電圧の昇圧を開始している。これにより、天気の変化により日射量が低下して太陽電池1の出力電圧Vcinが低下した場合に、昇圧回路41が起動してしまうことを防ぐことができる。
 以上、本発明の実施形態について説明したが、以上の説明は本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれることは勿論である。
(変形例1)
 例えば、本実施形態において、昇圧回路41は、固定された第1期間B経過後にMPPT動作を禁止して昇圧比一定動作を開始するようにしていたが、太陽電池1の出力電力Pcが最大値付近であることを判断した場合に、MPPT動作を禁止して昇圧比一定動作を行うようにしても良い。これにより、第1期間Bの長さは太陽電池1の出力電力Pcに応じて変更可能に構成され、第2期間Cの長さは一定の長さに固定されることになる。
 具体的には、太陽電池1の出力電力Pcが最大値付近になると第2期間Bへ移行することになるため、第1期間Bの長さは短くなり、第1周期Aの長さも短くなる(第1周期Aの長さが変わる)。第1周期Aの長さが変わると、昇圧回路のMPPT制御を開始するタイミングがずれる。このため、昇圧回路のMPPT動作とパワーコンディショナ2のMPPT動作を同時に行っていた期間をずらすことができるため、昇圧回路41のMPPT動作がパワーコンディショナ2のMPPT動作に与える影響を抑制することができる。
(変形例2)
 また、例えば、本実施形態において、パワーコンディショナ2は、固定された第3期間Y経過後にMPPT動作を禁止して目標電流一定動作を開始するようにしていたが、入力電力Ppinが最大値付近であることを判断した場合に、MPPT動作を禁止して目標電流一定動作を行うようにしても良い。これにより、第3期間Yの長さは入力電力Ppinに応じて変更可能に構成され、第4期間Zの長さは一定の長さに固定されることになる。
 具体的には、入力電力Ppinが最大値付近になると第4期間Zへ移行することになるため、第3期間Yの長さは短くなり、第2周期Xの長さも短くなる(第2周期Xの長さが変わる)。第2周期Xの長さが変わると、パワーコンディショナ2のMPPT制御を開始するタイミングがずれる。このため、昇圧回路のMPPT動作とパワーコンディショナ2のMPPT動作を同時に行っていた期間をずらすことができるため、昇圧回路41のMPPT動作がパワーコンディショナ2のMPPT動作に与える影響を抑制することができる。
(変形例3)
 また、例えば、本実施形態において、パワーコンディショナ2にも昇圧回路21を設けたが、図10に示すように、パワーコンディショナ2に、昇圧回路21を設けない構成を採用することもできる。
(変形例4)
 また、例えば、本実施形態において、すべての太陽電池1a~1dには昇圧回路41a~43c(昇圧ユニット40a~40d)が接続される構成を用いていたが、図11に示すように、何れか1つの太陽電池1については、昇圧回路41(昇圧ユニット40)を接続せず、太陽電池1aを直接他の昇圧回路41の出力側に接続するようにしても良い。
(変形例5)
 また、例えば、本実施形態において、パワーコンディショナ2のMPPT動作を行う第3期間とパワーコンディショナ2のMPPT動作を禁止する第4期間とを設けて一定の第2周期Xを設定していたが、第4期間をゼロにしても良い(図12参照)。この場合、実質的にパワーコンディショナ2のMPPT動作は常時行われることになる。第1周期Aには昇圧回路41のMPPT動作を禁止する期間が設けられており、パワーコンディショナ2のMPPT動作と集電箱4の昇圧回路41のMPPT動作とが同時に行われない期間ができるので、仮に両MPPT動作で干渉が生じていてもこの期間で解消されることになる。従って、パワーコンディショナ2のMPPT動作はパワーコンディショナ2内のマイコンプログラムのメインルーチンに組み込まれるプログラムのタイミングで繰り返し行われ、この繰り返し周期毎に最大電力の比較動作が行われて昇圧比が更新されるものである。
(変形例6)
 また、例えば、本実施形態において、集電箱4の昇圧回路41に非絶縁型の昇圧回路を用いていたが、図13に示すようにトランス141を用いた絶縁型の昇圧回路140を用いることもできる。昇圧回路140は、1次側に、トランス141の1次側巻き線とスイッチ素子142を直列に接続した回路を有している。また、昇圧回路140は、2次側に、整流器144を有しており、トランス141の2次側巻き線が整流器144の交流側に接続され、整流器144の直流側にダイオード143が直列に接続され、コンデンサ145が整流器144とダイオード143の直列回路に並列に接続される回路を有している。
 また、昇圧回路140は、入力電流を検出する電流センサ85、入力電圧を検出する電圧センサ86、及び出力電圧を検出する電圧センサ87とを有しており、これらのセンサから得られる情報に基づいて、スイッチ素子142を周期的に開閉させて所定の昇圧比を得る。
 このような絶縁型の昇圧回路140を利用する場合、スイッチ素子142を開いていると、パワーコンディショナ2に太陽電池1の出力電力が供給されないため、集電箱4から起動する必要がある。この様な動作を行う場合、絶縁型昇圧回路140の動作は、図4のステップS11の前に昇圧比を一定にして動作するステップを加えることで対応できる。尚、図13に示す昇圧回路140は、絶縁型の昇圧回路の一例であり、他の絶縁型の昇圧回路でも同様にすると良い。
 また、例えば、本実施形態において、電流閾値Icthや電力閾値Pcthを用いて昇圧回路41を起動する方法について述べたが、電流閾値Icthや電力閾値Pcthは変更可能に構成されても良いし、各昇圧回路41a~41dにおいてこれらの閾値を異なるようにしても良い。
 また、例えば、第3の実施形態では、電圧センサ86の検出する電圧値Vcinが、最高値Vcmaxから所定量小さい値になった場合に、昇圧回路41の動作(太陽電池1の出力電圧の昇圧)を開始しているが、第1の実施形態にも適用することができる。この場合、図4の動作フローのステップS11の直前、或いは直後に図14の動作フローのステップS42~S44を、追加することで実現することができる。これにより、天気の変化により日射量が低下して太陽電池1の出力電圧Vcinが低下した場合に、昇圧回路41が起動してしまうことを防ぐことができる。
1a~1d   太陽電池
2   パワーコンディショナ
4   集電箱
21   昇圧回路
22   パワコン制御回路
23   インバータ回路
30  商用電力系統
40a~40d      
昇圧ユニット
41a~41d      
昇圧回路
42a~42d 昇圧制御回路
43a~43d      
回転式スイッチ
44   表示部
45   ボタン
50   電力変換システム

 

Claims (18)

  1. 複数の太陽電池モジュールを直列につないで成る複数の太陽電池ストリングの夫々から発電電力が供給される夫々の直流電力ラインを単一の電力ラインにまとめた後当該電力ライン上の直流電力が最大に至るように昇圧比が制御された第2の昇圧回路を経た後の直流電力をインバータ回路で交流電力に変換する電力変換システムにおいて、
    前記直流電力ラインの夫々に第1の昇圧回路を介在させてこの第1の昇圧回路の昇圧比を第1の周期毎に第1期間の間対応する太陽電池ストリングの発電電力が最大に至るように可変制御すると共に、第2期間の間昇圧比を一定の値に維持するように制御し、第1期間と第2期間との合計時間を第1の周期に相当させる第1の制御部とを備えることを特徴とする電力変換システム。
  2. 第2の昇圧回路の昇圧比を第2の周期毎に第3期間の間前記電力ライン上の直流電力が最大に至るように可変制御すると共に、第4期間の間昇圧比を一定の値に維持するように制御し、第3期間と第4期間との合計時間を第1の周期に相当させる第2の制御部とを備え、第1の周期と第2の周期とを異ならせることを特徴とする請求項1に記載の電力変換システム。
  3.  第1の周期より第2の周期が短いことを特徴とする請求項3に記載の電力変換システム。
  4.  第2期間を第3期間より長くすることを特徴とする請求項2または請求項3に記載の電力変換システム。
  5.  第4期間を第1期間より長くすることを特徴とする請求項2または請求項3に記載の電力変換システム。
  6.  第2の制御部は、第3期間の間に前記電力ライン上の直流電力の変動幅または変動率の少なくともいずれか一方が目標値以内の際に当該目標値を用いて第2の昇圧回路の昇圧値を設定することを特徴とする請求項2に記載の電力変換システム。
  7.  第2の制御部は、第3期間から第4期間に移行する際に前記電力ライン上の直流電力の変動幅または変動率の少なくともいずれか一方が目標値以内であれば当該目標値を用いて設定された第2の昇圧回路の昇圧値を一定の値として第4期間を制御することを特徴とする請求項2又は請求項6に記載の電力変換システム。
  8.  第2期間もしくは第4期間において夫々の昇圧回路に昇圧値として用いられる一定の値は第2期間もしくは第4期間の開始付近で設定された昇圧値が用いられることを特徴とする請求項1また請求項2に記載の電力変換システム。
  9.  第1の周期の1周期中を、第1の昇圧回路の昇圧比の可変制御を可能とする第1期間と第1の昇圧回路の昇圧比の可変制御を禁止する第2期間とに分け、
     第2の周期の1周期中を、第2の昇圧回路の昇圧比の可変制御を可能とする第3期間と第2の昇圧回路の昇圧比の可変制御を禁止する第4期間とに分け、
     第4期間を、第1期間よりも長くすることを特徴とする請求項2又は請求項3に記載の電力変換システム。
  10.  第2の周期の1周期中を、第2の昇圧回路の昇圧比の可変制御を可能とする第3期間と第2の昇圧回路の昇圧比の可変制御を禁止する第4期間とに分け、
     第3期間において、第2の昇圧回路への入力電力の変動量が所定量より小さいときに、前記インバータ回路で変換される交流電力の出力電流の目標値をこのときの値に固定することを特徴とする請求項2又は請求項3に記載の系統連係システム。
  11.  第1の昇圧回路は、該昇圧回路の昇圧比の可変制御が開始されたあと、当該可変制御が第2期間まで継続された際は、前記第2期間の開始付近で算出された昇圧比で昇圧動作を継続し、
     第2の昇圧回路は、該昇圧回路の昇圧比の可変制御が開始されたあと、当該可変制御が第4期間まで継続された際は、前記第4期間の開始付近で算出された前記インバータ回路の出力電流の目標値により前記直流電力を前記交流電力へ変換する動作を継続することを特徴とする請求項9又は請求項10に記載の系統連係システム。
  12.  前記夫々の昇圧回路は、該昇圧回路に入力される電流、或いは該昇圧回路から出力される電流を検出する電流センサを有し、前記夫々の昇圧回路は、前記電流センサの検出する電流が所定値を超えた場合に、前記夫々の昇圧回路の昇圧比の可変制御を開始することを特徴とする請求項9乃至請求項11の何れかに記載の系統連係システム。
  13.  複数の太陽電池に夫々接続されるライン、及び前記ラインに介在し前記太陽電池の出力電圧を昇圧する昇圧回路を有し、夫々の前記ラインの出力をまとめて出力する集電箱と、
     前記集電箱が出力する直流電力を入力し、該直流電力を交流電力に変換して商用電力系統へ重畳する電力変換器と、を備えた電力変換システムにおいて、
     前記昇圧回路は、前記太陽電池の出力電力が最大になるように動作する前記昇圧回路の昇圧比の可変動作を可能にする第1期間と、前記昇圧回路の昇圧比の可変動作を禁止する第2期間とを交互に繰り返し、
     前記電力変換器は、前記直流電力が最大になるように動作する前記電力変換器の昇圧回路の昇圧比の可変動作を可能にする第3期間と、当該昇圧回路の昇圧比の可変動作を禁止する第4期間とを交互に繰り返し、
    前記第3期間の長さは、変更可能に構成されるとともに、前記第4期間の長さは一定の長さに固定されることを特徴とする電力変換システム。
  14.  複数の太陽電池に夫々接続されるライン、及び前記ラインに介在し前記太陽電池の出力電圧を昇圧する昇圧回路を有し、夫々の前記ラインの出力をまとめて出力する集電箱と、
     前記集電箱が出力する直流電力を入力し、該直流電力を交流電力に変換して商用電力系統へ重畳する電力変換器と、を備えた電力変換システムの前記集電箱において、
     前記昇圧回路を非絶縁型の昇圧回路で構成し、
     この非絶縁型の昇圧回路を流れる電流を検出する電流センサを備え、
     前記非絶縁型の昇圧回路は、前記電力変換器が作動を開始しかつ前記電流センサの検出する電流値が、電流閾値よりも大きい場合、前記太陽電池の出力電圧の昇圧を行うことを特徴とする集電箱。
  15.  前記昇圧回路の入力電圧を検出する電圧センサ、を備え、
     前記昇圧回路の昇圧動作が停止して以降の前記電圧センサの検出する電圧値の最高値を記憶し、
     前記電圧センサの検出する電圧値が、前記最高値から所定量小さい値になり、且つ前記電流センサの検出する電流値が、前記電流閾値よりも大きい場合、前記太陽電池の出力電圧の昇圧を行うことを特徴とする請求項14に記載の集電箱。
  16.  複数の太陽電池に夫々接続されるライン、及び前記ラインに介在し前記太陽電池の出力電圧を昇圧する昇圧回路を有し、夫々の前記ラインの出力をまとめて出力する集電箱と、
     前記集電箱が出力する直流電力を入力し、該直流電力を交流電力に変換して商用電力系統へ重畳する電力変換装置と、を備えた電力変換システムの前記集電箱において、
     前記昇圧回路を非絶縁型の昇圧回路で構成し、
     前記非絶縁型の昇圧回路を流れる電流を検出する電流センサと、
     前記非絶縁型の昇圧回路の入力電圧を検出する電圧センサと、を備え、前記電流センサの検出する電流値と、前記電圧センサの検出する電圧値とから演算される電力が電力閾値よりも大きい場合に、前記太陽電池の出力電圧の昇圧を行うことを特徴とする集電箱。
  17.  前記非絶縁型の昇圧回路の昇圧動作が停止して以降の前記電圧センサの検出する電圧値の最高値を記憶し、
     前記電圧センサの検出する電圧値が、前記最高値から所定量小さい値になり、且つ前記電力が、前記電力閾値よりも大きい場合、前記太陽電池の出力電圧の昇圧を行うことを特徴とする請求項16に記載の集電箱。
  18.  前記電流閾値、或いは前記電力閾値は、変更可能に構成されることを特徴とする請求項14乃至請求項17の何れかに記載の集電箱。
     

     
PCT/JP2012/056803 2011-03-30 2012-03-16 電力変換システム WO2012132948A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280015944.5A CN103477294B (zh) 2011-03-30 2012-03-16 电力变换系统
US14/006,905 US20140008986A1 (en) 2011-03-30 2012-03-16 Inverter system
EP20120762921 EP2693288A4 (en) 2011-03-30 2012-03-16 POWER CONDITIONER SYSTEM
MYPI2013701777A MY185077A (en) 2011-03-30 2012-03-16 Electrical power conversion system
JP2013507379A JP5903565B2 (ja) 2011-03-30 2012-03-16 電力変換システム

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-076301 2011-03-30
JP2011-076300 2011-03-30
JP2011076300 2011-03-30
JP2011076301 2011-03-30
JP2011-101352 2011-04-28
JP2011101352 2011-04-28

Publications (1)

Publication Number Publication Date
WO2012132948A1 true WO2012132948A1 (ja) 2012-10-04

Family

ID=46930681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056803 WO2012132948A1 (ja) 2011-03-30 2012-03-16 電力変換システム

Country Status (6)

Country Link
US (1) US20140008986A1 (ja)
EP (1) EP2693288A4 (ja)
JP (1) JP5903565B2 (ja)
CN (1) CN103477294B (ja)
MY (1) MY185077A (ja)
WO (1) WO2012132948A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103513693A (zh) * 2013-09-29 2014-01-15 沈阳工业大学 基于单变量电流法光伏发电最大功率跟踪控制系统及方法
WO2014068738A1 (ja) * 2012-10-31 2014-05-08 Jfeエンジニアリング株式会社 急速充電器
JP2014230463A (ja) * 2013-05-27 2014-12-08 日立オートモティブシステムズ株式会社 レギュレータ装置
JP2015027238A (ja) * 2013-07-29 2015-02-05 京セラ株式会社 電源機器判定装置、電源機器判定方法及び電力変換装置
JP2015032297A (ja) * 2013-08-07 2015-02-16 株式会社ダイヘン 電力変換回路を制御する制御回路、当該制御回路を備えた電力変換装置、当該電力変換装置を備えた電力システム、および、制御方法
WO2014147527A3 (en) * 2013-03-22 2015-07-02 Koninklijke Philips N.V. Power management between sources and load
JP2015144510A (ja) * 2014-01-31 2015-08-06 パナソニックIpマネジメント株式会社 電力変換装置
JP2015186443A (ja) * 2014-03-20 2015-10-22 エルエス産電株式会社Lsis Co., Ltd. 太陽光インバータを用いたエネルギー貯蔵装置のバッテリ充電システム
CN105324927A (zh) * 2013-06-11 2016-02-10 住友电气工业株式会社 逆变器装置
US9882508B2 (en) 2014-01-10 2018-01-30 Sumitomo Electric Industries, Ltd. High-frequency switching type conversion device
JP2018057212A (ja) * 2016-09-30 2018-04-05 パナソニックIpマネジメント株式会社 電力変換装置
US10247764B2 (en) 2013-07-25 2019-04-02 Daihen Corporation Method for controlling devices provided with communication function, and device used in implementing the method
US10277036B2 (en) 2013-06-11 2019-04-30 Sumitomo Electric Industries, Ltd. Inverter device
JP2021071750A (ja) * 2019-10-29 2021-05-06 株式会社カネカ 接続箱

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6303970B2 (ja) 2014-10-17 2018-04-04 住友電気工業株式会社 変換装置
CN107248843B (zh) * 2017-05-31 2019-04-05 华为技术有限公司 一种光伏发电的控制方法、控制设备及光伏发电系统
US11139670B2 (en) * 2017-08-14 2021-10-05 Richtek Technology Corporation Charger circuit with temperature compensation function and controller circuit thereof
CN107979115B (zh) * 2017-12-18 2019-08-23 科华恒盛股份有限公司 光伏发电系统的最大功率点追踪方法、装置以及设备
KR102518182B1 (ko) * 2018-02-14 2023-04-07 현대자동차주식회사 친환경 차량용 컨버터 제어장치 및 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11318042A (ja) * 1998-05-07 1999-11-16 Sharp Corp 太陽光発電用電力変換装置
JP2000112545A (ja) * 1998-09-30 2000-04-21 Daihen Corp 太陽光発電システム
JP2001309560A (ja) 2000-04-27 2001-11-02 Sharp Corp 系統連系インバータ装置
JP2002238246A (ja) * 2001-02-14 2002-08-23 Sharp Corp 昇圧ユニット、パワーコンディショナ、およびそれらを用いた太陽光発電システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62293936A (ja) * 1986-06-11 1987-12-21 三菱電機株式会社 太陽光発電装置
JP3601142B2 (ja) * 1995-11-06 2004-12-15 株式会社安川電機 太陽光発電用電力変換装置の起動方法
US8279644B2 (en) * 2008-05-14 2012-10-02 National Semiconductor Corporation Method and system for providing maximum power point tracking in an energy generating system
TWI494734B (zh) * 2008-05-14 2015-08-01 Nat Semiconductor Corp 在能量產生系統中提供最大功率點追蹤的方法與系統
US20100288327A1 (en) * 2009-05-13 2010-11-18 National Semiconductor Corporation System and method for over-Voltage protection of a photovoltaic string with distributed maximum power point tracking
US20100301676A1 (en) * 2009-05-28 2010-12-02 General Electric Company Solar power generation system including weatherable units including photovoltaic modules and isolated power converters
US8358033B2 (en) * 2009-07-20 2013-01-22 General Electric Company Systems, methods, and apparatus for converting DC power to AC power

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11318042A (ja) * 1998-05-07 1999-11-16 Sharp Corp 太陽光発電用電力変換装置
JP2000112545A (ja) * 1998-09-30 2000-04-21 Daihen Corp 太陽光発電システム
JP2001309560A (ja) 2000-04-27 2001-11-02 Sharp Corp 系統連系インバータ装置
JP2002238246A (ja) * 2001-02-14 2002-08-23 Sharp Corp 昇圧ユニット、パワーコンディショナ、およびそれらを用いた太陽光発電システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2693288A4

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014068738A1 (ja) * 2012-10-31 2014-05-08 Jfeエンジニアリング株式会社 急速充電器
WO2014147527A3 (en) * 2013-03-22 2015-07-02 Koninklijke Philips N.V. Power management between sources and load
CN105191044B (zh) * 2013-03-22 2018-12-25 飞利浦灯具控股公司 源与负载之间的功率管理
CN105191044A (zh) * 2013-03-22 2015-12-23 皇家飞利浦有限公司 源与负载之间的功率管理
JP2014230463A (ja) * 2013-05-27 2014-12-08 日立オートモティブシステムズ株式会社 レギュレータ装置
EP3010136A4 (en) * 2013-06-11 2017-03-08 Sumitomo Electric Industries, Ltd. Inverter device
US9627995B2 (en) 2013-06-11 2017-04-18 Sumitomo Electric Industries, Ltd. Inverter device with a control unit
US10277036B2 (en) 2013-06-11 2019-04-30 Sumitomo Electric Industries, Ltd. Inverter device
TWI631810B (zh) * 2013-06-11 2018-08-01 住友電氣工業股份有限公司 換流裝置
CN105324927B (zh) * 2013-06-11 2018-03-09 住友电气工业株式会社 逆变器装置
CN105324927A (zh) * 2013-06-11 2016-02-10 住友电气工业株式会社 逆变器装置
US10247764B2 (en) 2013-07-25 2019-04-02 Daihen Corporation Method for controlling devices provided with communication function, and device used in implementing the method
US11624760B2 (en) 2013-07-25 2023-04-11 Daihen Corporation Method for controlling devices provided with communication function, and device used in implementing the method
US11029345B2 (en) 2013-07-25 2021-06-08 Daihen Corporation Method for controlling devices provided with communication function, and device used in implementing the method
CN105409081A (zh) * 2013-07-29 2016-03-16 京瓷株式会社 电源设备判断装置、电源设备判断方法以及电力转换装置
WO2015015794A1 (ja) * 2013-07-29 2015-02-05 京セラ株式会社 電源機器判定装置、電源機器判定方法及び電力変換装置
JP2015027238A (ja) * 2013-07-29 2015-02-05 京セラ株式会社 電源機器判定装置、電源機器判定方法及び電力変換装置
US10164438B2 (en) 2013-07-29 2018-12-25 Kyocera Corporation Power-supply device determination apparatus, power-supply device determination method, and power conversion apparatus
JP2015032297A (ja) * 2013-08-07 2015-02-16 株式会社ダイヘン 電力変換回路を制御する制御回路、当該制御回路を備えた電力変換装置、当該電力変換装置を備えた電力システム、および、制御方法
CN103513693A (zh) * 2013-09-29 2014-01-15 沈阳工业大学 基于单变量电流法光伏发电最大功率跟踪控制系统及方法
US9882508B2 (en) 2014-01-10 2018-01-30 Sumitomo Electric Industries, Ltd. High-frequency switching type conversion device
JP2015144510A (ja) * 2014-01-31 2015-08-06 パナソニックIpマネジメント株式会社 電力変換装置
US9899851B2 (en) 2014-03-20 2018-02-20 Lsis Co., Ltd. System for charging battery of energy storage system using PCS
JP2015186443A (ja) * 2014-03-20 2015-10-22 エルエス産電株式会社Lsis Co., Ltd. 太陽光インバータを用いたエネルギー貯蔵装置のバッテリ充電システム
JP2018057212A (ja) * 2016-09-30 2018-04-05 パナソニックIpマネジメント株式会社 電力変換装置
JP2021071750A (ja) * 2019-10-29 2021-05-06 株式会社カネカ 接続箱
JP7281384B2 (ja) 2019-10-29 2023-05-25 株式会社カネカ 接続箱

Also Published As

Publication number Publication date
MY185077A (en) 2021-04-30
JP5903565B2 (ja) 2016-04-13
EP2693288A1 (en) 2014-02-05
EP2693288A4 (en) 2015-03-18
JPWO2012132948A1 (ja) 2014-07-28
US20140008986A1 (en) 2014-01-09
CN103477294A (zh) 2013-12-25
CN103477294B (zh) 2015-02-25

Similar Documents

Publication Publication Date Title
JP5903565B2 (ja) 電力変換システム
JP5887500B2 (ja) 集電箱
US9780645B2 (en) Method and apparatus for providing power conversion using an interleaved flyback converter with reactive power control
US8493757B2 (en) AC/DC converter with a PFC and a DC/DC converter
US8035257B2 (en) Method and apparatus for improved burst mode during power conversion
JP5857193B2 (ja) 集電箱
US8422258B2 (en) Maximum power point tracker, power conversion controller, power conversion device having insulating structure, and method for tracking maximum power point thereof
JP5589096B2 (ja) 電力変換器及び太陽光発電システム
US20130009700A1 (en) Power Converter Circuit with AC Output
JP2008199808A (ja) 系統連系インバータ装置
WO2005112551A2 (en) Method for compensating for partial shade in photovoltaic power system
US10193347B2 (en) Method and apparatus for improved burst mode during power conversion
JP6762680B2 (ja) 太陽光発電システム
WO2012014182A1 (en) Method and device for maximizing the electrical power produced by a generator, particularly a generator based on a renewable power source
JP6539172B2 (ja) 電源装置
JP2011072137A (ja) 系統連系インバータ装置
Bento et al. Model-free predictive control of interleaved DC-DC converters, based on ultra-local model, with constant switching frequency
JP2019037077A (ja) 電力変換回路及びその制御法
JP5586096B2 (ja) 電力変換装置
KR101920469B1 (ko) 쿡 컨버터 기반의 계통 연계형 단일단 인버터
JP5894870B2 (ja) 太陽光発電システム
JP2015197870A (ja) 太陽光発電システム
Mumtaz et al. A non-isolated high-gain non-inverting interleaved DC-DC converter multi-output network for renewable energy application
Ahmed et al. Analog controller for home application of photovoltaic system using interleaved DC-DC converter and single-phase inverter
JP2015144510A (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12762921

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507379

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14006905

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012762921

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012762921

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1301005591

Country of ref document: TH