WO2012132867A1 - ガラス繊維織物の洗浄方法 - Google Patents

ガラス繊維織物の洗浄方法 Download PDF

Info

Publication number
WO2012132867A1
WO2012132867A1 PCT/JP2012/056352 JP2012056352W WO2012132867A1 WO 2012132867 A1 WO2012132867 A1 WO 2012132867A1 JP 2012056352 W JP2012056352 W JP 2012056352W WO 2012132867 A1 WO2012132867 A1 WO 2012132867A1
Authority
WO
WIPO (PCT)
Prior art keywords
enzyme
glass fiber
fiber fabric
cleaning
aqueous solution
Prior art date
Application number
PCT/JP2012/056352
Other languages
English (en)
French (fr)
Inventor
紀夫 土金
昌範 和田
守正 松本
紀夫 平山
Original Assignee
日東紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東紡績株式会社 filed Critical 日東紡績株式会社
Priority to JP2013507351A priority Critical patent/JP5831541B2/ja
Publication of WO2012132867A1 publication Critical patent/WO2012132867A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06LDRY-CLEANING, WASHING OR BLEACHING FIBRES, FILAMENTS, THREADS, YARNS, FABRICS, FEATHERS OR MADE-UP FIBROUS GOODS; BLEACHING LEATHER OR FURS
    • D06L1/00Dry-cleaning or washing fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods
    • D06L1/12Dry-cleaning or washing fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods using aqueous solvents
    • D06L1/14De-sizing
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06LDRY-CLEANING, WASHING OR BLEACHING FIBRES, FILAMENTS, THREADS, YARNS, FABRICS, FEATHERS OR MADE-UP FIBROUS GOODS; BLEACHING LEATHER OR FURS
    • D06L4/00Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs
    • D06L4/40Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs using enzymes

Definitions

  • the present invention relates to a method for cleaning a glass fiber fabric.
  • a fiber bundle (strand or yarn) is formed by coating and converging the surface of the glass fiber filament obtained by spinning molten glass with a primary sizing agent.
  • a primary sizing agent raw material starch and oil are mainly used. Examples of the coating method include coating and impregnation.
  • a predetermined warp is prepared by coating the fiber bundle with a secondary sizing agent (warping step).
  • the secondary sizing agent is mainly made of polyvinyl alcohol or oil, and prevents the warp from being broken or fluffed.
  • a glass fiber fabric is obtained by weaving the weft and the warp prepared in the warping process using an air jet loom or the like (weaving process).
  • the glass fiber fabric is used as an insulator for FRP, laminated printed wiring board, etc. by using a composite material with resin.
  • a coupling agent is coated on the surface of the glass fiber fabric in order to reinforce the bond between the glass fiber fabric and the resin.
  • the glass fiber fabric needs to remove the sizing agent that is a source of the organic substance.
  • heat treatment heat cleaning
  • Examples of the heat treatment include a continuous method in which the organic matter is thermally decomposed while continuously passing the glass fiber fabric through a heating furnace having an atmospheric temperature of 400 ° C. to 500 ° C.
  • a batch method in which the organic material is disposed in a heating furnace at 400 ° C. to 500 ° C. and the organic matter is thermally decomposed, and a two-stage method combining a continuous method and a batch method.
  • JP 2003-335555 A (0005) Japanese Unexamined Patent Publication No. 63-107844
  • the present invention can eliminate such inconvenience and prevent a decrease in fiber strength, and can obtain an effect equivalent to that of the heat treatment for removing the sizing agent from the surface of the glass fiber fabric without using the heat treatment. It aims at providing the washing
  • the glass fiber fabric cleaning method of the present invention provides a glass fiber fabric surface obtained by weaving a fiber bundle formed by coating the surface of a glass fiber filament with a sizing agent.
  • the glass fiber fabric is included in the sizing agent by immersing the glass fiber woven fabric in an enzyme treatment immersed in an enzyme aqueous solution containing a amylolytic enzyme and an oil-degrading enzyme or a proteolytic enzyme.
  • an enzyme aqueous solution containing a amylolytic enzyme and an oil-degrading enzyme or a proteolytic enzyme.
  • either the fat-degrading enzyme or the proteolytic enzyme may be used together with the amylolytic enzyme, and both the oil-degrading enzyme and the proteolytic enzyme include the amylolytic enzyme.
  • You may use with aqueous solution.
  • ⁇ -amylase can be used as the amylolytic enzyme
  • lipase can be used as the oil-degrading enzyme
  • protease can be used as the proteolytic enzyme.
  • the enzyme-treated glass fiber fabric is treated by the cleaning treatment.
  • the sizing agent whose components are enzymatically decomposed by the enzyme treatment can be removed from the surface of the glass fiber fabric to the same extent as in the case of heat treatment.
  • the fiber strength of the glass fiber fabric is not reduced, and the heat energy can be reduced, and the manufacturing cost and Carbon dioxide emissions can also be reduced.
  • the ultrasonic treatment may be used in combination with the enzyme treatment, or the ultrasonic treatment may be used in combination in the cleaning treatment.
  • the cleaning fluid used for the cleaning treatment includes water, warm water, a surfactant-containing solution, water vapor, an organic solvent, ozone water, subcritical water, supercritical water. At least one fluid selected from the group consisting of supercritical carbon dioxide can be used.
  • the surfactant-containing solution may be an aqueous solution containing a surfactant or an aqueous solution containing an organic solvent such as alcohol together with the surfactant.
  • the cleaning treatment is performed on a cleaning tank and a cleaning fluid in which three or more rollers or bars are arranged in a staggered manner in the water to meander the glass fiber fabric.
  • the treatment can be performed by at least one means selected from the group consisting of a vibratory apparatus, an ultrasonic vibrator, a diffusion spray, a water curtain, a steam spray, a mangle, and an air curtain to which a wave is applied.
  • the glass fiber fabric cleaning method of the present invention includes, for example, a first enzyme treatment step in which the glass fiber fabric is continuously immersed in a first enzyme aqueous solution containing an amylolytic enzyme, and the glass fiber fabric is treated with an oil-degrading enzyme.
  • cleaning fluid are provided.
  • the second aqueous enzyme solution may contain only one of the fat-degrading enzyme and the proteolytic enzyme, or may contain both the fat-degrading enzyme and the proteolytic enzyme. .
  • the glass fiber fabric is subjected to the cleaning treatment step after the first enzyme treatment step and the second enzyme treatment step, thereby ensuring the sizing agent. Can be removed.
  • the first enzyme aqueous solution or the second enzyme aqueous solution contains a nonionic surfactant.
  • the nonionic surfactant By using the nonionic surfactant, the first enzyme aqueous solution or the second enzyme aqueous solution can improve the enzyme permeability to the sizing agent component and shorten the time required for washing. Become. Further, among the components contained in the sizing agent, the component decomposed by the enzyme treatment or other components can be dispersed in the first aqueous enzyme solution or the second aqueous enzyme solution, and the sizing agent Removal can be promoted.
  • ultrasonic treatment is applied to the first enzyme aqueous solution or the second enzyme aqueous solution for ultrasonic treatment.
  • the components decomposed by the first enzyme treatment or the second enzyme treatment or other components are converted into the first enzyme solution. It can be mechanically dispersed in the aqueous enzyme solution or the second aqueous enzyme solution, and the removal of the sizing agent can be promoted.
  • the ultrasonic treatment can further promote the removal of the sizing agent when used in combination with the nonionic surfactant.
  • the glass fiber fabric cleaning method of the present invention includes, for example, an enzyme treatment step in which the glass fiber fabric is continuously immersed in an aqueous enzyme solution containing a amylolytic enzyme and an oil-degrading enzyme or a proteolytic enzyme; and the enzyme A cleaning treatment step of washing the treated glass fiber fabric with a washing fluid;
  • the enzyme aqueous solution may contain either oleolytic enzyme or proteolytic enzyme together with amylolytic enzyme, and contains both oleolytic enzyme and proteolytic enzyme together with amylolytic enzyme. It may be.
  • the sizing agent can be reliably removed by subjecting the glass fiber fabric to the cleaning treatment step after the enzyme treatment step.
  • the aqueous enzyme solution preferably contains a nonionic surfactant.
  • the nonionic surfactant in the enzyme aqueous solution the enzyme permeability to the sizing agent component can be improved and the time required for washing can be shortened.
  • distributed in the said enzyme aqueous solution, and the removal of the said sizing agent can be accelerated
  • the glass fiber fabric cleaning method of the present invention it is preferable to apply ultrasonic waves to the enzyme aqueous solution to perform ultrasonic treatment.
  • the component decomposed by the enzyme treatment or other components can be mechanically dispersed in the enzyme aqueous solution, and the removal of the sizing agent is promoted. Can do.
  • the ultrasonic treatment can further promote the removal of the sizing agent when used in combination with the nonionic surfactant.
  • Explanatory sectional drawing which shows one Embodiment of the washing
  • Explanatory sectional drawing which shows other embodiment of the washing
  • Explanatory sectional drawing which shows other embodiment of the washing
  • the glass fiber fabric 2 wound around the first core 1 a is pulled out and conveyed through a plurality of rollers 3. To do. And first, it is immersed in the first enzyme aqueous solution 5a stored in the first tank 4a, and then is immersed in the second enzyme aqueous solution 5b stored in the second tank 4b. The glass fiber fabric 2 immersed in the second enzyme aqueous solution 5b is further washed with water in the water washing step 6, dried in the drying step 7, and then wound around the second core 1b.
  • the first enzyme aqueous solution 5a stored in the first tank 4a is adjusted to a temperature in the range of 30 to 95 ° C., and the starch degrading enzyme in the range of 0.1 to 10.0% by mass with respect to the total amount. Is included.
  • the first enzyme aqueous solution 5a may contain a nonionic surfactant in the range of 0.1 to 10.0% by mass with respect to the total amount.
  • an ultrasonic transducer 8a is disposed at the bottom of the first tank 4a, and the ultrasonic transducer 8a is connected to an ultrasonic oscillation device (not shown).
  • the ultrasonic transducer 8a radiates ultrasonic waves having a frequency in the range of 25 to 200 kHz to the first aqueous enzyme solution 5a.
  • the first enzyme aqueous solution 5a is preferably degassed.
  • the second enzyme aqueous solution 5b stored in the second tank 4b is adjusted to a temperature in the range of 30 to 95 ° C., and the lipolytic enzyme in the range of 0.1 to 10.0% by mass with respect to the total amount. Or it contains a proteolytic enzyme.
  • the second aqueous enzyme solution 5b may contain either an oil-degrading enzyme or a proteolytic enzyme, or may contain both an oil-degrading enzyme and a proteolytic enzyme.
  • the second enzyme aqueous solution 5b may further contain 0.1 to 10.0% by mass of a nonionic surfactant based on the total amount.
  • an ultrasonic transducer 8b is disposed at the bottom of the second tank 4b, and the ultrasonic transducer 8b is connected to an ultrasonic oscillator (not shown).
  • the ultrasonic transducer 8b may radiate ultrasonic waves to the second aqueous enzyme solution 5b, and the frequency of the ultrasonic waves is in the range of 25 to 200 kHz.
  • the second enzyme aqueous solution 5b is preferably degassed.
  • amylolytic enzyme contained in the aqueous enzyme solution 5a examples include ⁇ -amylase, ⁇ -amylase, ⁇ -amylase, glucosidase, glucoamylase, isoamylase, and pullulanase.
  • lipase etc. can be mentioned as said fat-and-oil degrading enzyme contained in enzyme aqueous solution 5b
  • proteolytic enzyme Protease, peptidase, proteinase etc.
  • nonionic surfactant examples include polyoxyethylene alkyl ether, polyoxyethylene alkylene alkyl ether, polyoxyethylene alkyl phenyl ether, and the like. Examples thereof include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, polyoxyethylene myristyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene nonyl phenyl ether and the like. As the nonionic surfactant, those having an HLB value in the range of 7 to 20 can be suitably used.
  • the enzyme aqueous solutions 5a and 5b are preferably degassed to have a dissolved gas amount of 5 ppm or less when ultrasonic waves are radiated from the ultrasonic transducers 8a and 8b. Is more preferable. Since the enzyme aqueous solutions 5a and 5b are degassed as described above, the ultrasonic waves radiated from the ultrasonic transducers 8a and 8b are easily propagated, so that the sizing agent is peeled off from the surface of the glass fiber fabric 2. And the removal of the sizing agent can be facilitated.
  • aqueous enzyme solutions 5a and 5b can be degassed as described above, for example, by setting the temperature in the range of 50 to 95 ° C. or using a water reformer.
  • the glass fiber fabric 2 has 2 to 3% by mass of the sizing agent attached thereto, and is conveyed by a plurality of rollers 3. At this time, the glass fiber fabric 2 is immersed in the first enzyme aqueous solution 5a and the second enzyme aqueous solution 5b for a time in the range of 5 to 300 seconds.
  • the glass fiber fabric 2 is dried in the drying step 7 at a temperature in the range of 50 to 200 ° C. for a time in the range of 5 to 3600 seconds.
  • the glass fiber fabric 2 adheres to the glass fiber fabric 2 without reducing the fiber strength.
  • the sizing agent present can be removed.
  • the amount of the sizing agent adhering to the glass fiber fabric 2 can be 0.1% by mass or less of the entire glass fiber fabric 2, and heat treatment can be performed. The same effect as in the case of (heat cleaning) can be obtained.
  • the glass fiber fabric 2 wound around the first core 1 a is pulled out and conveyed via a plurality of rollers 3.
  • the glass fiber fabric 2 immersed in the enzyme aqueous solution 5 is further washed with water in the water washing step 6, dried in the drying step 7, and then wound around the second core 1b.
  • the aqueous enzyme solution 5 stored in the tank 4 is adjusted to a temperature in the range of 30 to 95 ° C., and the amylolytic enzyme in the range of 0.1 to 10.0% by mass with respect to the total amount and the total amount. In a range of 0.1 to 10.0% by mass, and a nonionic surfactant in a range of 0.1 to 10.0% by mass with respect to the total amount.
  • the aqueous enzyme solution 5 may contain either an oleolytic enzyme or a proteolytic enzyme together with the amylolytic enzyme, or may contain both an oleolytic enzyme and a proteolytic enzyme together with the amylolytic enzyme. Good.
  • an ultrasonic transducer 8 is disposed at the bottom of the tank 4.
  • the ultrasonic transducer 8 is connected to an ultrasonic oscillator (not shown) and radiates ultrasonic waves having a frequency in the range of 25 to 200 kHz to the enzyme aqueous solution 5. At this time, it is preferable that the enzyme aqueous solution 5 is deaerated.
  • starch degrading enzyme As the starch degrading enzyme, fat decomposing enzyme, and proteolytic enzyme, the same ones as in the first embodiment can be used.
  • the same one as in the first embodiment can be used.
  • the enzyme aqueous solution 5 is degassed exactly as in the first embodiment when ultrasonic waves are emitted from the ultrasonic transducer 8.
  • the sizing agent of 2 to 3% by mass of the total amount is attached to the glass fiber fabric 2 and is conveyed by a plurality of rollers 3. At this time, the glass fiber fabric 2 is immersed in the enzyme aqueous solution 5 for a time in the range of 5 to 300 seconds.
  • the glass fiber fabric 2 is dried in the drying step 7 at a temperature in the range of 50 to 200 ° C. for a time in the range of 5 to 3600 seconds.
  • the glass fiber fabric 2 adheres to the glass fiber fabric 2 without reducing the fiber strength.
  • the sizing agent present can be removed.
  • the amount of the sizing agent adhering to the glass fiber fabric 2 can be 0.1% by mass or less of the entire glass fiber fabric 2, and heat treatment can be performed. The same effect as in the case of (heat cleaning) can be obtained.
  • the glass fiber fabric 2 wound around the first core 1 a is pulled out, and a plurality of rollers 3 are interposed. Then, it is immersed in the enzyme aqueous solution 5 stored in the tank 4. The glass fiber fabric 2 immersed in the enzyme aqueous solution 5 is further washed with water in the water washing step 6, washed with the washing liquid in the washing step 9, and further dried in the drying step 7, and then the second core. 1b is wound up.
  • Examples of the cleaning fluid used in the cleaning step 9 include water, warm water, a surfactant-containing solution, water vapor, an organic solvent, ozone water, subcritical water, supercritical water, supercritical carbon dioxide, and the like, or a mixture thereof.
  • the surfactant-containing solution may be an aqueous solution containing a surfactant or an aqueous solution containing an organic solvent such as alcohol together with the surfactant.
  • the same solution as in the second embodiment can be used.
  • the same ultrasonic transducer 8 as that in the second embodiment is disposed at the bottom of the tank 4 and is used in the same manner as in the second embodiment.
  • the glass fiber fabric 2 has 2 to 3% by mass of the sizing agent attached thereto and is conveyed by a plurality of rollers 3. At this time, the glass fiber fabric 2 is immersed in the enzyme aqueous solution 5 for a time in the range of 5 to 3600 seconds, and is exposed to ultrasonic waves emitted from the ultrasonic vibrator 8.
  • the sizing agent and the enzyme aqueous solution 5 are then washed away and removed by the water washing step 6 and the washing step 9. Then, the glass fiber fabric 2 from which the sizing agent has been washed away is dried in a drying step 7.
  • a washing tank in which three or more rollers or bars are arranged in a staggered manner in the water to meander the glass fiber fabric 2 or a wave is applied to the fluid.
  • Vibro devices, ultrasonic vibrators, diffusion sprays, water curtains, steam sprays, mangles, air curtains, etc. can be used alone or in combination of two or more.
  • the rollers or bars may be arranged in a staggered manner in the horizontal direction (horizontal direction), or in a staggered manner in the vertical direction (vertical direction). It may be arranged.
  • the glass fiber fabric 2 adheres to the glass fiber fabric 2 without reducing the fiber strength.
  • the sizing agent present can be removed.
  • the amount of the sizing agent adhering to the glass fiber fabric 2 can be 0.1% by mass or less of the entire glass fiber fabric 2, and heat treatment can be performed. The same effect as in the case of (heat cleaning) can be obtained.
  • the sizing agent released from the glass fiber fabric 2 can be sufficiently removed by the water washing step 6 and the subsequent washing step 9. Therefore, the interfacial adhesion of the glass fiber fabric 2 evaluated by alkali whitening can be made equal to or higher than that in the case of heat treatment (heat cleaning).
  • the alkali whitening was evaluated as follows in accordance with the provisions of Japanese Industrial Standard JIS C 6481. First, an insulator (laminate) for a laminated printed wiring board is produced using the glass fiber fabric 2, and a 1 cm length cut is made in the longitudinal and lateral directions of the laminate. Next, the laminate is immersed in a 1N aqueous alkali solution at 60 ° C. for 90 minutes, and then comparative evaluation is performed using an apparatus that can observe whitening (erosion) of the cut portion at a high magnification. Examples of the apparatus capable of observing at a high magnification include an electron microscope.
  • the glass fiber fabric 2 drawn from the first core 1a is immersed in the aqueous enzyme solution 5 stored in the tank 4.
  • the glass fiber fabric 2 is first immersed in the first enzyme aqueous solution 5a stored in the first tank 4a, and then the first embodiment. You may make it immerse in the 2nd enzyme aqueous solution 5b currently stored by 2 tank 4b.
  • the water washing step 6 and the subsequent washing step 9 are performed one by one. However, a plurality of sets of the water washing step 6 and the subsequent washing step 9 may be provided.
  • Example 1 In the cleaning method of this example, in the method shown in FIG. 1, the glass fiber fabric 2 wound around the first core 1 a was pulled out and conveyed through a plurality of rollers 3. Then, first, it was immersed in the first enzyme aqueous solution 5a stored in the first tank 4a for 30 seconds, and then was immersed in the second enzyme aqueous solution 5b stored in the second tank 4b for 30 seconds. The glass fiber fabric 2 soaked in the second enzyme aqueous solution 5b is further washed with water in the water washing step 6, dried at a temperature of 120 ° C. for 300 seconds in the drying step 7, and then wound around the second core 1b. It was.
  • the first aqueous enzyme solution 5a stored in the first tank 4a is degassed by being adjusted to a temperature of 70 ° C., and 1.0% by mass of ⁇ -amylase with respect to the total amount. And 1.0% by mass of a nonionic surfactant with respect to the total amount.
  • the ultrasonic vibrator 8a disposed at the bottom of the first tank 4a radiates ultrasonic waves to the first aqueous enzyme solution 5a during the cleaning of the glass fiber fabric 2.
  • the second aqueous enzyme solution 5b stored in the second tank 4b is adjusted to a temperature in the range of 50 ° C. and contains 1.0% by mass of lipase with respect to the total amount, but has a nonionic interface. Contains no active agent. Further, the ultrasonic vibrator 8b disposed at the bottom of the second tank 4b does not emit any ultrasonic waves during the cleaning of the glass fiber fabric 2.
  • an insulator (laminate) for a laminated printed wiring board was produced using the glass fiber fabric 2 washed by the washing method of this example, and the heat resistance and insulation resistance of the laminate were measured.
  • the laminate was cut into 4 cm square, allowed to stand under saturated steam at 121 ° C. for 6 hours, immersed in a solder bath at 280 ° C. for 20 seconds, and then the appearance of the laminate was observed. Evaluation based on the criteria.
  • Example 2 In the present embodiment, the second enzyme solution 5b stored in the second tank 4b is degassed, and the ultrasonic vibrator 8b disposed at the bottom of the second tank 4b cleans the glass fiber fabric 2. In the meantime, the glass fiber fabric 2 was washed in the same manner as in Example 1 except that ultrasonic waves were emitted to the second enzyme aqueous solution 5b.
  • Example 3 In this example, as the second enzyme solution 5b stored in the second tank 4b, 1.0% by mass of lipase with respect to the total amount and 1.0% by mass of nonionic surfactant with respect to the total amount.
  • the glass fiber fabric 2 was washed in exactly the same manner as in Example 1 except that the one containing the agent was used. Further, the ultrasonic vibrator 8b disposed at the bottom of the second tank 4b does not emit any ultrasonic waves during the cleaning of the glass fiber fabric 2.
  • Example 4 In this example, as the second enzyme solution 5b stored in the second tank 4b, 1.0% by mass of lipase with respect to the total amount and 1.0% by mass of nonionic surfactant with respect to the total amount.
  • the second enzyme solution 5b is degassed, and the ultrasonic vibrator 8b disposed at the bottom of the second tank 4b transmits ultrasonic waves during the cleaning of the glass fiber fabric 2.
  • the glass fiber fabric 2 was washed in exactly the same manner as in Example 1 except that the second enzyme aqueous solution 5b was irradiated.
  • Example 5 the glass fiber fabric 2 was washed in the same manner as in Example 1 except that protease was used instead of lipase in the second enzyme solution 5b stored in the second tank 4b. .
  • Example 6 the glass fiber fabric 2 was washed in the same manner as in Example 2 except that protease was used instead of lipase in the second enzyme solution 5b stored in the second tank 4b. .
  • Example 7 the glass fiber fabric 2 was washed in the same manner as in Example 3 except that protease was used instead of lipase in the second enzyme solution 5b stored in the second tank 4b. .
  • Example 8 In this example, the glass fiber fabric 2 was washed in the same manner as in Example 4 except that protease was used instead of lipase in the second enzyme solution 5b stored in the second tank 4b. .
  • Example 9 In this example, in the method shown in FIG. 2, the glass fiber fabric 2 wound around the first core 1 a was pulled out and conveyed through a plurality of rollers 3. Then, the glass fiber fabric 2 immersed in the enzyme aqueous solution 5 stored in the tank 4 for 30 seconds and further immersed in the enzyme aqueous solution 5 is further washed with water in the water washing step 6, and at a temperature of 120 ° C. in the drying step 7. After drying for 300 seconds, it was wound around the second core 1b.
  • the aqueous enzyme solution 5 stored in the tank 4 is adjusted to a temperature of 50 ° C. and degassed, and 1.0% by mass of ⁇ -amylase with respect to the total amount, and with respect to the total amount 1.0% by mass of lipase and 1.0% by mass of nonionic surfactant with respect to the total amount.
  • the ultrasonic vibrator 8 disposed at the bottom of the tank 4 emits ultrasonic waves to the enzyme aqueous solution 5 during the cleaning of the glass fiber fabric 2.
  • Example 10 In this example, the glass fiber fabric 2 was washed in exactly the same manner as in Example 9 except that protease was used instead of lipase in the enzyme solution 5 stored in the tank 4.
  • Example 11 In this example, as the enzyme solution 5 stored in the tank 4, 1.0% by mass ⁇ -amylase with respect to the total amount, 1.0% by mass lipase with respect to the total amount, and 1% with respect to the total amount.
  • the glass fiber fabric 2 was washed in exactly the same manner as in Example 9, except that a mixture containing 0.0 mass% protease and 1.0 mass% nonionic surfactant relative to the total mass was used. It was.
  • Example 12 In this example, in the method shown in FIG. 3, the glass fiber fabric 2 wound around the first core 1 a was pulled out and conveyed through a plurality of rollers 3. Then, the glass fiber fabric 2 immersed in the enzyme aqueous solution 5 stored in the tank 4 for 30 seconds and further immersed in the enzyme aqueous solution 5 is further washed with water in the water washing step 6, and washed with a washing liquid in the washing step 9, After drying in the drying step 7, it was wound around the second core 1b.
  • the aqueous enzyme solution 5 stored in the tank 4 is adjusted to a temperature of 50 ° C. and degassed, and 1.0% by mass of ⁇ -amylase with respect to the total amount, and with respect to the total amount 1.0% by mass of lipase and 1.0% by mass of nonionic surfactant with respect to the total amount.
  • the ultrasonic vibrator 8 disposed at the bottom of the tank 4 emits ultrasonic waves to the enzyme aqueous solution 5 during the cleaning of the glass fiber fabric 2.
  • the said size agent which reattached to the glass fiber fabric 2 with the diffusion spray and the mangle using the washing tank which arrange
  • the interfacial adhesion of the glass fiber fabric 2 was equal to or higher than that in the case of heat treatment (heat cleaning).
  • the enzyme solution 5 does not contain any of lipase and protease.
  • Example 3 the glass fiber fabric was exactly the same as in Example 9, except that degassed hot water at a temperature of 70 ° C. was used instead of the enzyme solution 5 stored in the tank 4 shown in FIG. 2 was washed.
  • the enzyme solution 5 does not contain any of lipase, protease, and nonionic surfactant.
  • Comparative Example 4 In this comparative example, the glass fiber fabric wound around the winding core was placed in a heating furnace having an atmospheric temperature of 400 ° C. to 500 ° C. for 15 to 100 hours to perform heat cleaning in a batch manner.
  • Comparative Examples 1 and 2 using only amylase as an enzyme and Comparative Example 3 using only ultrasonic waves no cross stains and a decrease in fiber strength occur, and the environmental load can be reduced.
  • the sizing agent cannot be sufficiently removed from the surface of the glass fiber fabric 2.
  • Comparative Examples 1 to 3 when an insulator for a laminated printed wiring board is manufactured using the glass fiber fabric 2, the heat resistance and insulation resistance of the insulator are insufficient.
  • the glass fiber fabric 2 is treated with an enzyme and then washed with a cleaning fluid.
  • the glass fiber fabric 2 is treated with an ultrasonic wave and then treated with ultrasonic waves.
  • it may be further washed with a washing fluid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

 ガラス繊維織物の表面からサイズ剤を除去する際に、熱処理と同等の効果を得ることができるガラス繊維織物の洗浄方法を提供する。 ガラス繊維織物の洗浄方法は、ガラス繊維フィラメントの表面にサイズ剤を被覆処理して形成された繊維束を製織することにより得られたガラス繊維織物2の表面からサイズ剤を除去する。ガラス繊維織物2を酵素処理と、洗浄流体との少なくとも2つの工程で処理する。

Description

ガラス繊維織物の洗浄方法
 本発明は、ガラス繊維織物の洗浄方法に関する。
 ガラス繊維織物を製造する際には、まず、溶融ガラスを紡糸して得られたガラス繊維フィラメントの表面に一次サイズ剤を被覆処理して集束することにより繊維束(ストランド又はヤーン)を形成する。前記一次サイズ剤原料としては、主に澱粉と油剤とが用いられる。被覆処理する方法としては、塗布、含浸などがある。
 次に、前記繊維束に二次サイズ剤を被覆処理することにより所定の経糸を準備する(整経工程)。前記二次サイズ剤は、ポリビニルアルコールや、油剤を主原料とし、前記経糸の糸切れ、毛羽立ち等を防止する。
 次に、緯糸と、前記整経工程により準備された経糸とをエアージェット織機等により製織する(製織工程)ことにより、ガラス繊維織物が得られる。
 前記ガラス繊維織物は、樹脂との複合材料とすることにより、FRP、積層プリント配線基板用の絶縁体等に用いられる。ここで、前記複合材料は、前記ガラス繊維織物と樹脂との結合を強化するために、前記ガラス繊維織物の表面にカップリング剤が被覆処理されている。
 ところが、前記ガラス繊維織物の表面に有機物が存在すると、前記カップリング剤の効果が阻害されるので、該ガラス繊維織物では該有機物源となる前記サイズ剤を除去しておく必要がある。
 従来、前記ガラス繊維織物の表面から前記サイズ剤を除去するために、熱処理(ヒートクリーニング)を行うことが知られている(例えば特許文献1参照)。前記熱処理としては、雰囲気温度が400℃~500℃の加熱炉内に前記ガラス繊維織物を連続的に通しながら前記有機物を加熱分解する連続方式や、前記ガラス繊維織物を巻芯に巻いて雰囲気温度が400℃~500℃の加熱炉内に配置し、該有機物を加熱分解処理するバッチ方式、及び連続方式とバッチ方式とを組み合わせた二段階方式等が知られている。
特開2003-335555号公報(0005) 特開昭63-107844号公報
 しかしながら、前記熱処理によれば、ガラス繊維強度が低下することが一般的に知られており、樹脂強化材料として使用するときに不利になるという不都合がある。また、前記熱処理は膨大な熱エネルギーを要するので、製造コストが増大する上、熱源の化石燃料と前記有機物との燃焼により大量の二酸化炭素が排出され、環境に対する負荷が大になるという問題もある。
 前記熱処理に代わる洗浄方法として、前記ガラス繊維織物をアミラーゼ等の酵素により処理する技術が提案されている(例えば特許文献2参照)。前記ガラス繊維織物をアミラーゼ等の酵素により処理する洗浄方法では、熱処理を行わないので繊維強度を低下させることはないが、前記サイズ剤を前記熱処理の場合ほど除去することができない。
 本発明は、かかる不都合を解消して、繊維強度の低下を防止することができ、しかも熱処理によらずに、ガラス繊維織物の表面からのサイズ剤の除去について該熱処理と同等の効果を得ることができるガラス繊維織物の洗浄方法を提供することを目的とする。
 かかる目的を達成するために、本発明のガラス繊維織物の洗浄方法は、ガラス繊維フィラメントの表面にサイズ剤を被覆処理して形成された繊維束を製織することにより得られたガラス繊維織物の表面からサイズ剤を除去するための洗浄方法であって、該ガラス繊維織物を、澱粉分解酵素と、油脂分解酵素又はタンパク質分解酵素とを含む酵素水溶液に浸漬する酵素処理と、洗浄流体による洗浄処理との少なくとも2つの工程で処理することを特徴とする。
 本発明のガラス繊維織物の洗浄方法では、前記ガラス繊維織物を、澱粉分解酵素と、油脂分解酵素又はタンパク質分解酵素とを含む酵素水溶液に浸漬する酵素処理に浸漬することにより、前記サイズ剤に含まれる成分を酵素分解する。このとき、前記油脂分解酵素と前記タンパク質分解酵素とは、そのいずれか一方を前記澱粉分解酵素と共に用いてもよく、前記油脂分解酵素と前記タンパク質分解酵素との両方を前記澱粉分解酵素を含む酵素水溶液と共に用いてもよい。前記澱粉分解酵素としてはα-アミラーゼを用いることができ、前記油脂分解酵素としてはリパーゼを用いることができ、前記タンパク質分解酵素としてはプロテアーゼ用いることができる。
 また、本発明のガラス繊維織物の洗浄方法では、前記酵素処理された前記ガラス繊維織物を、前記洗浄処理により処理する。この結果、前記酵素処理により含有成分が酵素分解されている前記サイズ剤を、前記ガラス繊維織物の表面から熱処理の場合と同程度まで除去することができる。
 また、本発明のガラス繊維織物の洗浄方法によれば、熱処理を行うことがないので、前記ガラス繊維織物の繊維強度を低下させることがなく、しかも熱エネルギーを低減することができ、製造コスト及び二酸化炭素の排出量も低減することができる。
 本発明のガラス繊維織物の洗浄方法では、前記酵素処理において前記超音波処理を併用してもよく、前記洗浄処理において前記超音波処理を併用してもよい。
 また、本発明のガラス繊維織物の洗浄方法において、前記洗浄処理に用いられる前記洗浄流体としては、水、温水、界面活性剤含有溶液、水蒸気、有機溶剤、オゾン水、亜臨界水、超臨界水、超臨界二酸化炭素からなる群から選択される少なくとも1つの流体を用いることができる。尚、前記界面活性剤含有溶液は、界面活性剤を含有する水溶液であってもよく、界面活性剤と共にアルコール等の有機溶媒を含有する水溶液であってもよい。
 また、本発明のガラス繊維織物の洗浄方法において、前記洗浄処理は、水中に3本以上のローラー又はバーを千鳥状に配設し前記ガラス繊維織物を蛇行させるようにした洗浄槽、洗浄流体に波動を加えるようにしたバイブロ装置、超音波振動子、拡散スプレー、ウォーターカーテン、蒸気噴霧、マングル、エアカーテンからなる群から選択される少なくとも1種の手段により処理することができる。
 本発明のガラス繊維織物の洗浄方法は、例えば、前記ガラス繊維織物を澱粉分解酵素を含む第1の酵素水溶液に連続的に浸漬する第1の酵素処理工程と、該ガラス繊維織物を油脂分解酵素又はタンパク質分解酵素を含む第2の酵素水溶液に連続的に浸漬する第2の酵素処理工程と、前記酵素処理した前記ガラス繊維織物を、洗浄流体により洗浄する洗浄処理工程とを備える。ここで、前記第2の酵素水溶液は、油脂分解酵素又はタンパク質分解酵素のいずれか一方のみを含むものであってもよく、油脂分解酵素とタンパク質分解酵素との両方を含むものであってもよい。
 本発明のガラス繊維織物の洗浄方法では、前記ガラス繊維織物を、前記第1の酵素処理工程と前記第2の酵素処理工程との後、前記洗浄処理工程に供することにより、前記サイズ剤を確実に除去することができる。
 本発明のガラス繊維織物の洗浄方法において、前記第1の酵素水溶液又は前記第2の酵素水溶液は非イオン性界面活性剤を含むことが好ましい。前記第1の酵素水溶液又は前記第2の酵素水溶液は、前記非イオン性界面活性剤を用いることによって、サイズ剤成分への酵素浸透性を向上させ、洗浄に要する時間を短縮することが可能になる。また、サイズ剤に含まれる成分のうち、前記酵素処理により分解された成分又はそれ以外の成分を、前記第1の酵素水溶液又は前記第2の酵素水溶液中に分散させることができ、前記サイズ剤の除去を促進することができる。
 また、本発明のガラス繊維織物の洗浄方法においては、前記第1の酵素水溶液又前記第2の酵素水溶液に超音波を作用させ超音波処理することが好ましい。前記第1の酵素水溶液又前記第2の酵素水溶液に超音波を作用させることにより、前記第1の酵素処理又は第2の酵素処理により分解された成分又はそれ以外の成分を、前記第1の酵素水溶液又前記第2の酵素水溶液中に機械的に分散させることができ、前記サイズ剤の除去を促進することができる。前記超音波処理は、前記非イオン性界面活性剤と併用することにより、前記サイズ剤の除去をさらに促進することができる。
 また、本発明のガラス繊維織物の洗浄方法は、例えば、前記ガラス繊維織物を澱粉分解酵素と、油脂分解酵素又はタンパク質分解酵素とを含む酵素水溶液に連続的に浸漬する酵素処理工程と、前記酵素処理した前記ガラス繊維織物を、洗浄流体により洗浄する洗浄処理工程を備える。ここで、前記酵素水溶液は、澱粉分解酵素と共に油脂分解酵素又はタンパク質分解酵素のいずれか一方のみを含むものであってもよく、澱粉分解酵素と共に油脂分解酵素とタンパク質分解酵素との両方を含むものであってもよい。
 本発明のガラス繊維織物の洗浄方法では、前記ガラス繊維織物を、前記酵素処理工程の後、前記洗浄処理工程に供することにより、前記サイズ剤を確実に除去することができる。
 本発明のガラス繊維織物の洗浄方法において、前記酵素水溶液は非イオン性界面活性剤を含むことが好ましい。前記酵素水溶液は、前記非イオン性界面活性剤を用いることによって、サイズ剤成分への酵素浸透性を向上させ、洗浄に要する時間を短縮することが可能になる。また、サイズ剤に含まれる成分のうち、前記酵素処理により分解された成分又はそれ以外の成分を、前記酵素水溶液中に分散させることができ、前記サイズ剤の除去を促進することができる。
 また、本発明のガラス繊維織物の洗浄方法においては、前記酵素水溶液に超音波を作用させ超音波処理することが好ましい。前記酵素水溶液に超音波を作用させることにより、前記酵素処理により分解された成分又はそれ以外の成分を、該酵素水溶液中に機械的に分散させることができ、前記サイズ剤の除去を促進することができる。前記超音波処理は、前記非イオン性界面活性剤と併用することにより、前記サイズ剤の除去をさらに促進することができる。
本発明のガラス繊維織物の洗浄方法の一実施形態を示す説明的断面図。 本発明のガラス繊維織物の洗浄方法の他の実施形態を示す説明的断面図。 本発明のガラス繊維織物の洗浄方法のさらに他の実施形態を示す説明的断面図。
 次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。
 本発明の第1の実施形態のガラス繊維織物の洗浄方法では、図1に示すように、第1の巻芯1aに巻き取られたガラス繊維織物2を引き出し、複数のローラー3を介して搬送する。そして、まず第1槽4aに貯留されている第1の酵素水溶液5aに浸漬し、次いで第2槽4bに貯留されている第2の酵素水溶液5bに浸漬する。第2の酵素水溶液5bに浸漬されたガラス繊維織物2は、さらに水洗浄工程6で水洗浄され、乾燥工程7で乾燥された後、第2の巻芯1bに巻き取られる。
 第1槽4aに貯留されている第1の酵素水溶液5aは、30~95℃の範囲の温度に調整されており、全量に対して0.1~10.0質量%の範囲の澱粉分解酵素を含んでいる。また、第1の酵素水溶液5aは、全量に対して0.1~10.0質量%の範囲の非イオン性界面活性剤を含んでいてもよい。また、第1槽4aの底部には超音波振動子8aが配設されており、超音波振動子8aは図示しない超音波発振装置に接続されている。超音波振動子8aは、25~200kHzの範囲の周波数の超音波を第1の酵素水溶液5aに放射する。このとき、第1の酵素水溶液5aは、脱気されていることが好ましい。
 第2槽4bに貯留されている第2の酵素水溶液5bは、30~95℃の範囲の温度に調整されており、全量に対して0.1~10.0質量%の範囲の油脂分解酵素又はタンパク質分解酵素を含んでいる。第2の酵素水溶液5bは、油脂分解酵素又はタンパク質分解酵素のどちらか一方を含むものであってもよく、油脂分解酵素とタンパク質分解酵素との両方を含むものであってもよい。第2の酵素水溶液5bはさらに全量に対して0.1~10.0質量%の非イオン性界面活性剤を含んでいてもよい。
 また、第2槽4bの底部には超音波振動子8bが配設されており、超音波振動子8bは図示しない超音波発振装置に接続されている。超音波振動子8bは、第2の酵素水溶液5bに超音波を放射してもよく、該超音波の周波数は25~200kHzの範囲である。超音波振動子8bが、第2の酵素水溶液5bに超音波を放射するときには、第2の酵素水溶液5bは、脱気されていることが好ましい。
 酵素水溶液5aに含まれる前記澱粉分解酵素としては、α-アミラーゼ、β-アミラーゼ、γ-アミラーゼ、グルコシダーゼ、グルコアミラーゼ、イソアミラーゼ、プルラナーゼ等を挙げることができる。また、酵素水溶液5bに含まれる前記油脂分解酵素としては、リパーゼ等を挙げることができ、前記タンパク質分解酵素としては、プロテアーゼ、ペプチダーゼ、プロテイナーゼ等を挙げることができる。
 酵素水溶液5a,5bが含んでいてもよい前記非イオン性界面活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル等を用いることができ、具体的には例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンミリステルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル等を挙げることができる。また、前記非イオン性界面活性剤としては、HLB値が7~20の範囲のものを好適に用いることができる。
 また、酵素水溶液5a,5bは、超音波振動子8a,8bから超音波を放射される場合、溶存気体量が5ppm以下に脱気されていることが好ましく、3ppm以下に脱気されていることがさらに好ましい。酵素水溶液5a,5bは、前記のように脱気されていることにより、超音波振動子8a,8bから放射される超音波が伝播しやすくなるので、ガラス繊維織物2の表面からサイズ剤を剥離することができ、該サイズ剤の除去を促進することができる。
 酵素水溶液5a,5bは、例えば、その温度を50~95℃の範囲とするか、又は水改質装置を用いることにより、前記のように脱気することができる。
 図1に示す方法において、ガラス繊維織物2は全量の2~3質量%のサイズ剤が付着しており、複数のローラー3により搬送される。このとき、ガラス繊維織物2は、第1の酵素水溶液5a、第2の酵素水溶液5bにそれぞれ5~300秒間の範囲の時間浸漬される。
 また、ガラス繊維織物2は、乾燥工程7において、50~200℃の範囲の温度で、5~3600秒間の範囲の時間乾燥される。
 図1に示すガラス繊維の洗浄方法によれば、ガラス繊維織物2を400℃以上の高温に加熱するような熱処理を行わないので、繊維強度を低下させることなく、ガラス繊維織物2に付着しているサイズ剤を除去することができる。このとき、図1に示すガラス繊維の洗浄方法によれば、ガラス繊維織物2に付着しているサイズ剤の量を、ガラス繊維織物2全体の0.1質量%以下とすることができ、熱処理(ヒートクリーニング)の場合と同程度の効果を得ることができる。
 本発明の第2の実施形態のガラス繊維織物の洗浄方法では、図2に示すように、第1の巻芯1aに巻き取られたガラス繊維織物2を引き出し、複数のローラー3を介して搬送するときに、槽4に貯留されている酵素水溶液5に浸漬する。そして、酵素水溶液5に浸漬されたガラス繊維織物2は、さらに水洗浄工程6で水洗浄され、乾燥工程7で乾燥された後、第2の巻芯1bに巻き取られる。
 槽4に貯留されている酵素水溶液5は、30~95℃の範囲の温度に調整されており、全量に対して0.1~10.0質量%の範囲の澱粉分解酵素と、全量に対して0.1~10.0質量%の範囲の油脂分解酵素又はタンパク質分解酵素と、全量に対して0.1~10.0質量%の範囲の非イオン性界面活性剤とを含んでいる。酵素水溶液5は、澱粉分解酵素と共に油脂分解酵素又はタンパク質分解酵素のどちらか一方を含むものであってもよく、澱粉分解酵素と共に油脂分解酵素とタンパク質分解酵素との両方を含むものであってもよい。
 また、槽4の底部には超音波振動子8が配設されている。超音波振動子8は、図示しない超音波発振装置に接続されており、25~200kHzの範囲の周波数の超音波を酵素水溶液5に放射する。このとき、酵素水溶液5は、脱気されていることが好ましい。
 前記澱粉分解酵素、油脂分解酵素、タンパク質分解酵素としては、前記第1の実施形態と全く同一のものを用いることができる。
 前記非イオン性界面活性剤としては、前記第1の実施形態と全く同一のものを用いることができる。また、酵素水溶液5は、超音波振動子8から超音波を放射される場合、前記第1の実施形態と全く同一に脱気されていることが好ましい。
 図2に示す方法において、ガラス繊維織物2は全量の2~3質量%のサイズ剤が付着しており、複数のローラー3により搬送される。このとき、ガラス繊維織物2は、酵素水溶液5に5~300秒間の範囲の時間浸漬される。
 また、ガラス繊維織物2は、乾燥工程7において、50~200℃の範囲の温度で、5~3600秒間の範囲の時間乾燥される。
 図2に示すガラス繊維の洗浄方法によれば、ガラス繊維織物2を400℃以上の高温に加熱するような熱処理を行わないので、繊維強度を低下させることなく、ガラス繊維織物2に付着しているサイズ剤を除去することができる。このとき、図2に示すガラス繊維の洗浄方法によれば、ガラス繊維織物2に付着しているサイズ剤の量を、ガラス繊維織物2全体の0.1質量%以下とすることができ、熱処理(ヒートクリーニング)の場合と同程度の効果を得ることができる。
 また、本発明の第3の実施形態のガラス繊維織物の洗浄方法では、図3に示すように、第1の巻芯1aに巻き取られたガラス繊維織物2を引き出し、複数のローラー3を介して搬送するときに、槽4に貯留されている酵素水溶液5に浸漬する。そして、酵素水溶液5に浸漬されたガラス繊維織物2は、さらに水洗浄工程6で水洗浄され、洗浄工程9で洗浄液により洗浄処理され、さらに乾燥工程7で乾燥された後、第2の巻芯1bに巻き取られる。
 洗浄工程9で用いられる前記洗浄流体としては、例えば、水、温水、界面活性剤含有溶液、水蒸気、有機溶剤、オゾン水、亜臨界水、超臨界水、超臨界二酸化炭素等、又はこれらの混合物を挙げることができる。尚、前記界面活性剤含有溶液は、界面活性剤を含有する水溶液であってもよく、界面活性剤と共にアルコール等の有機溶媒を含有する水溶液であってもよい。
 槽4に貯留されている酵素水溶液5としては、前記第2の実施形態と全く同一のものを用いることができる。槽4の底部には前記第2の実施形態と全く同一の超音波振動子8が配設されており、前記第2の実施形態と全く同一にして用いられる。
 図3に示す方法において、ガラス繊維織物2は全量の2~3質量%のサイズ剤が付着しており、複数のローラー3により搬送される。このとき、ガラス繊維織物2は、酵素水溶液5に5~3600秒間の範囲の時間浸漬され、超音波振動子8から放射される超音波に曝露される。
 ガラス繊維織物2は、前記処理により前記サイズ剤が遊離するので、次いで水洗工程6、洗浄工程9により、遊離した該サイズ剤及び酵素水溶液5を洗い流して除去する。そして、前記サイズ剤が洗い流されたガラス繊維織物2を乾燥工程7で乾燥する。
 図3に示す洗浄工程9としては、例えば、水中に3本以上のローラー又はバーを千鳥状に配設しガラス繊維織物2を蛇行させるようにした洗浄槽又は、流体に波動を加えるようにしたバイブロ装置、超音波振動子、拡散スプレー、ウォーターカーテン、蒸気噴霧、マングル、エアカーテン等を単独で又は2種以上組み合わせて用いることができる。洗浄槽の水中に3本以上のローラー又はバーを配設する場合、前記ローラー又はバーは横方向(水平方向)に千鳥状に配設してもよく、縦方向(垂直方向)に千鳥状に配設してもよい。
 図3に示すガラス繊維の洗浄方法によれば、ガラス繊維織物2を400℃以上の高温に加熱するような熱処理を行わないので、繊維強度を低下させることなく、ガラス繊維織物2に付着しているサイズ剤を除去することができる。このとき、図2に示すガラス繊維の洗浄方法によれば、ガラス繊維織物2に付着しているサイズ剤の量を、ガラス繊維織物2全体の0.1質量%以下とすることができ、熱処理(ヒートクリーニング)の場合と同程度の効果を得ることができる。
 また、図3に示すガラス繊維の洗浄方法によれば、ガラス繊維織物2から遊離した前記サイズ剤を水洗工程6と、それに続く洗浄工程9とにより十分に除去することができる。従って、アルカリ白化により評価されるガラス繊維織物2の界面接着性を熱処理(ヒートクリーニング)の場合に比較して同等以上とすることができる。
 前記アルカリ白化は、日本工業規格JIS C 6481の規定に従い、次のようにして評価した。まず、ガラス繊維織物2を用いて、積層プリント配線基板用の絶縁体(ラミネート)を作製し、該ラミネートの縦方向及び横方向に1cmの長さの切り込みを入れる。次に、前記ラミネートを60℃の1Nアルカリ水溶液に90分浸漬した後、前記切り込み部の白化(浸食)を高倍率で観察できる装置を用いて比較評価する。前記高倍率で観察できる装置としては、例えば、電子顕微鏡等を挙げることができる。
 尚、前記第3の実施形態では、第1の巻芯1aから引き出されたガラス繊維織物2を槽4に貯留されている酵素水溶液5に浸漬するようにしている。しかし、前記第3の実施形態では、図1に示す第1の実施形態と同様に、ガラス繊維織物2をまず第1槽4aに貯留されている第1の酵素水溶液5aに浸漬し、次いで第2槽4bに貯留されている第2の酵素水溶液5bに浸漬するようにしてもよい。
 また、前記第3の実施形態では、水洗工程6と、それに続く洗浄工程9とを一つずつとしているが、水洗工程6と、それに続く洗浄工程9とを複数組設けるようにしてもよい。
 次に、本発明の実施例及び比較例を示す。
 〔実施例1〕
 本実施例の洗浄方法は、図1に示す方法において、第1の巻芯1aに巻き取られたガラス繊維織物2を引き出し、複数のローラー3を介して搬送した。そして、まず第1槽4aに貯留されている第1の酵素水溶液5aに30秒間浸漬し、次いで第2槽4bに貯留されている第2の酵素水溶液5bに30秒間浸漬した。第2の酵素水溶液5bに浸漬されたガラス繊維織物2を、さらに水洗浄工程6で水洗浄し、乾燥工程7で120℃の温度で300秒間乾燥した後、第2の巻芯1bに巻き取った。
 本実施例において、第1槽4aに貯留されている第1の酵素水溶液5aは、70℃の温度に調整されて脱気されていると共に、全量に対して1.0質量%のα-アミラーゼと、全量に対して1.0質量%の非イオン性界面活性剤とを含んでいる。また、第1槽4aの底部に配設された超音波振動子8aは、ガラス繊維織物2の洗浄の間、超音波を第1の酵素水溶液5aに放射している。
 また、第2槽4bに貯留されている第2の酵素水溶液5bは、50℃の範囲の温度に調整されており、全量に対して1.0質量%のリパーゼを含むが、非イオン性界面活性剤は全く含んでいない。また、第2槽4bの底部に配設された超音波振動子8bは、ガラス繊維織物2の洗浄の間、全く超音波を放射していない。
 本実施例の洗浄方法では、第1の酵素水溶液5a、第2の酵素水溶液5bの温度調整及び乾燥工程7における120℃の温度での乾燥以外に熱エネルギーを用いていないので、環境に対する負荷を低く抑えることができた。また、洗浄後のガラス繊維織物2にクロス汚れは見られなかった。また、二酸化炭素が排出されることも無いので、環境に対する負荷を軽減することができる。結果を表1に示す。
 次に、本実施例の洗浄方法により洗浄されたガラス繊維織物2を用いて、積層プリント配線基板用の絶縁体(ラミネート)を作製し、該ラミネートの耐熱性及び絶縁抵抗を測定した。前記ラミネートの耐熱性は、該ラミネートを4cm角に切断し、121℃の飽和水蒸気下で6時間静置後、280℃の半田浴に20秒間浸漬した後、該ラミネートの外観を観察し、次の基準で評価した。
 ○:フクレがほとんど発生していない
 ×:フクレが発生している
 また、前記ラミネートの絶縁抵抗は、該ラミネートを4cm角に切断し、133℃の飽和水蒸気下で8時間静置後、日本工業規格JIS C 6481に規定する2穴法を用いて評価した。
 また、前記ラミネートのアルカリ白化は、日本工業規格JIS C 6481に規定する方法に従って評価した。
 結果を、「ラミネート評価」として表1に示す。
 〔実施例2〕
 本実施例では、第2槽4bに貯留されている第2の酵素溶液5bを脱気すると共に、第2槽4bの底部に配設された超音波振動子8bが、ガラス繊維織物2の洗浄の間、超音波を第2の酵素水溶液5bに放射するようにした以外は、実施例1と全く同一にしてガラス繊維織物2の洗浄を行った。
 本実施例の洗浄方法では、第1の酵素水溶液5a、第2の酵素水溶液5bの温度調整及び乾燥工程7における120℃の温度での乾燥以外に熱エネルギーを用いていないので、環境に対する負荷を低く抑えることができた。また、洗浄後のガラス繊維織物2にクロス汚れは見られなかった。結果を表1に示す。
 次に、本実施例の洗浄方法により洗浄されたガラス繊維織物2を用いて、積層プリント配線基板用の絶縁体を製造し、該絶縁体の耐熱性、絶縁抵抗及びアルカリ白化を実施例1と全く同一にして測定した。結果を、「ラミネート評価」として表1に示す。
 〔実施例3〕
 本実施例では、第2槽4bに貯留されている第2の酵素溶液5bとして、全量に対して1.0質量%のリパーゼと、全量に対して1.0質量%の非イオン性界面活性剤とを含むものを用いた以外は、実施例1と全く同一にしてガラス繊維織物2の洗浄を行った。また、第2槽4bの底部に配設された超音波振動子8bは、ガラス繊維織物2の洗浄の間、全く超音波を放射していない。
 本実施例の洗浄方法では、第1の酵素水溶液5a、第2の酵素水溶液5bの温度調整及び乾燥工程7における120℃の温度での乾燥以外に熱エネルギーを用いていないので、環境に対する負荷を低く抑えることができた。また、洗浄後のガラス繊維織物2にクロス汚れは見られなかった。結果を表1に示す。
 次に、本実施例の洗浄方法により洗浄されたガラス繊維織物2を用いて、積層プリント配線基板用の絶縁体を製造し、該絶縁体の耐熱性、絶縁抵抗及びアルカリ白化を実施例1と全く同一にして測定した。結果を、「ラミネート評価」として表1に示す。
 〔実施例4〕
 本実施例では、第2槽4bに貯留されている第2の酵素溶液5bとして、全量に対して1.0質量%のリパーゼと、全量に対して1.0質量%の非イオン性界面活性剤とを含むものを用い、第2の酵素溶液5bを脱気すると共に、第2槽4bの底部に配設された超音波振動子8bが、ガラス繊維織物2の洗浄の間、超音波を第2の酵素水溶液5bに放射するようにした以外は、実施例1と全く同一にしてガラス繊維織物2の洗浄を行った。
 本実施例の洗浄方法では、第1の酵素水溶液5a、第2の酵素水溶液5bの温度調整及び乾燥工程7における120℃の温度での乾燥以外に熱エネルギーを用いていないので、環境に対する負荷を低く抑えることができた。また、洗浄後のガラス繊維織物2にクロス汚れは見られなかった。結果を表1に示す。
 次に、本実施例の洗浄方法により洗浄されたガラス繊維織物2を用いて、積層プリント配線基板用の絶縁体を製造し、該絶縁体の耐熱性、絶縁抵抗及びアルカリ白化を実施例1と全く同一にして測定した。結果を、「ラミネート評価」として表1に示す。
 〔実施例5〕
 本実施例では、第2槽4bに貯留されている第2の酵素溶液5bにおいて、リパーゼに代えてプロテアーゼを用いた以外は、実施例1と全く同一にしてガラス繊維織物2の洗浄を行った。
 本実施例の洗浄方法では、第1の酵素水溶液5a、第2の酵素水溶液5bの温度調整及び乾燥工程7における120℃の温度での乾燥以外に熱エネルギーを用いていないので、環境に対する負荷を低く抑えることができた。また、洗浄後のガラス繊維織物2にクロス汚れは見られなかった。結果を表1に示す。
 次に、本実施例の洗浄方法により洗浄されたガラス繊維織物2を用いて、積層プリント配線基板用の絶縁体を製造し、該絶縁体の耐熱性、絶縁抵抗及びアルカリ白化を実施例1と全く同一にして測定した。結果を、「ラミネート評価」として表1に示す。
 〔実施例6〕
 本実施例では、第2槽4bに貯留されている第2の酵素溶液5bにおいて、リパーゼに代えてプロテアーゼを用いた以外は、実施例2と全く同一にしてガラス繊維織物2の洗浄を行った。
 本実施例の洗浄方法では、第1の酵素水溶液5a、第2の酵素水溶液5bの温度調整及び乾燥工程7における120℃の温度での乾燥以外に熱エネルギーを用いていないので、環境に対する負荷を低く抑えることができた。また、洗浄後のガラス繊維織物2にクロス汚れは見られなかった。結果を表1に示す。
 次に、本実施例の洗浄方法により洗浄されたガラス繊維織物2を用いて、積層プリント配線基板用の絶縁体を製造し、該絶縁体の耐熱性、絶縁抵抗及びアルカリ白化を実施例1と全く同一にして測定した。結果を、「ラミネート評価」として表1に示す。
 〔実施例7〕
 本実施例では、第2槽4bに貯留されている第2の酵素溶液5bにおいて、リパーゼに代えてプロテアーゼを用いた以外は、実施例3と全く同一にしてガラス繊維織物2の洗浄を行った。
 本実施例の洗浄方法では、第1の酵素水溶液5a、第2の酵素水溶液5bの温度調整及び乾燥工程7における120℃の温度での乾燥以外に熱エネルギーを用いていないので、環境に対する負荷を低く抑えることができた。また、洗浄後のガラス繊維織物2にクロス汚れは見られなかった。結果を表1に示す。
 次に、本実施例の洗浄方法により洗浄されたガラス繊維織物2を用いて、積層プリント配線基板用の絶縁体を製造し、該絶縁体の耐熱性、絶縁抵抗及びアルカリ白化を実施例1と全く同一にして測定した。結果を、「ラミネート評価」として表1に示す。
 〔実施例8〕
 本実施例では、第2槽4bに貯留されている第2の酵素溶液5bにおいて、リパーゼに代えてプロテアーゼを用いた以外は、実施例4と全く同一にしてガラス繊維織物2の洗浄を行った。
 本実施例の洗浄方法では、第1の酵素水溶液5a、第2の酵素水溶液5bの温度調整及び乾燥工程7における120℃の温度での乾燥以外に熱エネルギーを用いていないので、環境に対する負荷を低く抑えることができた。また、洗浄後のガラス繊維織物2にクロス汚れは見られなかった。結果を表1に示す。
 次に、本実施例の洗浄方法により洗浄されたガラス繊維織物2を用いて、積層プリント配線基板用の絶縁体を製造し、該絶縁体の耐熱性、絶縁抵抗及びアルカリ白化を実施例1と全く同一にして測定した。結果を、「ラミネート評価」として表1に示す。
 〔実施例9〕
 本実施例では、図2に示す方法において、第1の巻芯1aに巻き取られたガラス繊維織物2を引き出し、複数のローラー3を介して搬送した。そして、槽4に貯留されている酵素水溶液5に30秒間浸漬し、酵素水溶液5に浸漬されたガラス繊維織物2を、さらに水洗浄工程6で水洗浄し、乾燥工程7で120℃の温度で300秒間乾燥した後、第2の巻芯1bに巻き取った。
 本実施例において、槽4に貯留されている酵素水溶液5は、50℃の温度に調整されて脱気されていると共に、全量に対して1.0質量%のα-アミラーゼと、全量に対して1.0質量%のリパーゼと、全量に対して1.0質量%の非イオン性界面活性剤とを含んでいる。また、槽4の底部に配設された超音波振動子8は、ガラス繊維織物2の洗浄の間、超音波を酵素水溶液5に放射している。
 本実施例の洗浄方法では、酵素水溶液5の温度調整及び乾燥工程7における120℃の温度での乾燥以外に熱エネルギーを用いていないので、環境に対する負荷を低く抑えることができた。また、洗浄後のガラス繊維織物2にクロス汚れは見られなかった。結果を表1に示す。
 次に、本実施例の洗浄方法により洗浄されたガラス繊維織物2を用いて、積層プリント配線基板用の絶縁体を製造し、該絶縁体の耐熱性、絶縁抵抗及びアルカリ白化を実施例1と全く同一にして測定した。結果を、「ラミネート評価」として表1に示す。
 〔実施例10〕
 本実施例では、槽4に貯留されている酵素溶液5において、リパーゼに代えてプロテアーゼを用いた以外は、実施例9と全く同一にしてガラス繊維織物2の洗浄を行った。
 本実施例の洗浄方法では、酵素水溶液5の温度調整及び乾燥工程7における120℃の温度での乾燥以外に熱エネルギーを用いていないので、環境に対する負荷を低く抑えることができた。また、洗浄後のガラス繊維織物2にクロス汚れは見られなかった。結果を表1に示す。
 次に、本実施例の洗浄方法により洗浄されたガラス繊維織物2を用いて、積層プリント配線基板用の絶縁体を製造し、該絶縁体の耐熱性、絶縁抵抗及びアルカリ白化を実施例1と全く同一にして測定した。結果を、「ラミネート評価」として表1に示す。
 〔実施例11〕
 本実施例では、槽4に貯留されている酵素溶液5として、全量に対して1.0質量%のα-アミラーゼと、全量に対して1.0質量%のリパーゼと、全量に対して1.0質量%のプロテアーゼと、全量に対して1.0質量%の非イオン性界面活性剤とを含むものを用いた以外は、実施例9と全く同一にしてガラス繊維織物2の洗浄を行った。
 本実施例の洗浄方法では、酵素水溶液5の温度調整及び乾燥工程7における120℃の温度での乾燥以外に熱エネルギーを用いていないので、環境に対する負荷を低く抑えることができた。また、洗浄後のガラス繊維織物2にクロス汚れは見られなかった。結果を表1に示す。
 次に、本実施例の洗浄方法により洗浄されたガラス繊維織物2を用いて、積層プリント配線基板用の絶縁体を製造し、該絶縁体の耐熱性、絶縁抵抗及びアルカリ白化を実施例1と全く同一にして測定した。結果を、「ラミネート評価」として表1に示す。
 〔実施例12〕
 本実施例では、図3に示す方法において、第1の巻芯1aに巻き取られたガラス繊維織物2を引き出し、複数のローラー3を介して搬送した。そして、槽4に貯留されている酵素水溶液5に30秒間浸漬し、酵素水溶液5に浸漬されたガラス繊維織物2を、さらに水洗浄工程6で水洗浄し、洗浄工程9で洗浄液により洗浄し、乾燥工程7で乾燥した後、第2の巻芯1bに巻き取った。
 本実施例において、槽4に貯留されている酵素水溶液5は、50℃の温度に調整されて脱気されていると共に、全量に対して1.0質量%のα-アミラーゼと、全量に対して1.0質量%のリパーゼと、全量に対して1.0質量%の非イオン性界面活性剤とを含んでいる。また、槽4の底部に配設された超音波振動子8は、ガラス繊維織物2の洗浄の間、超音波を酵素水溶液5に放射している。
 また、洗浄工程9では、水中に3本以上のローラーを横方向(水平方向)に千鳥状に配設した洗浄槽を用い、拡散スプレーとマングルとによりガラス繊維織物2に再付着した前記サイズ剤や酵素水溶液5を除去した。
 本実施例の洗浄方法では、酵素水溶液5の温度調整以外に熱エネルギーを用いていないので、環境に対する負荷を低く抑えることができた。また、洗浄後のガラス繊維織物2にクロス汚れは見られなかった。結果を表1に示す。
 次に、本実施例の洗浄方法により洗浄されたガラス繊維織物2を用いて、積層プリント配線基板用の絶縁体を製造し、該絶縁体の耐熱性、絶縁抵抗及びアルカリ白化を実施例1と全く同一にして測定した。結果を、「ラミネート評価」として表1に示す。
 また、前記アルカリ白化の評価から、ガラス繊維織物2の界面接着性は熱処理(ヒートクリーニング)の場合に比較して同等以上であった。
 〔比較例1〕
 本比較例では、図1に示す槽4に貯留されている酵素溶液5として、全量に対して1.0質量%のα-アミラーゼと、全量に対して1.0質量%の非イオン性界面活性剤とを含むものを用いた以外は、実施例9と全く同一にしてガラス繊維織物2の洗浄を行った。
 本比較例において、酵素溶液5は、リパーゼとプロテアーゼとのいずれも全く含んでいない。
 本比較例の洗浄方法では、酵素水溶液5の温度調整及び乾燥工程7における120℃の温度での乾燥以外に熱エネルギーを用いていないので、環境に対する負荷を低く抑えることができた。また、洗浄後のガラス繊維織物2にクロス汚れは見られなかった。結果を表1に示す。
 次に、本比較例の洗浄方法により洗浄されたガラス繊維織物2を用いて、積層プリント配線基板用の絶縁体を製造し、該絶縁体の耐熱性、絶縁抵抗及びアルカリ白化を実施例1と全く同一にして測定した。結果を、「ラミネート評価」として表1に示す。
 〔比較例2〕
 本比較例では、図2に示す第1槽4aに貯留されている第1の酵素溶液5aとして、全量に対して1.0質量%のα-アミラーゼと、全量に対して1.0質量%の非イオン性界面活性剤とを含むものを用いると共に、第2槽4bに貯留されている第2の酵素溶液5bに代えて70℃の温度の温水を用いた以外は、実施例1と全く同一にしてガラス繊維織物2の洗浄を行った。
 本比較例の洗浄方法では、第1の酵素水溶液5a、第2の酵素水溶液5bに代わる温水の温度調整及び乾燥工程7における120℃の温度での乾燥以外に熱エネルギーを用いていないので、環境に対する負荷を低く抑えることができた。また、洗浄後のガラス繊維織物2にクロス汚れは見られなかった。結果を表1に示す。
 次に、本比較例の洗浄方法により洗浄されたガラス繊維織物2を用いて、積層プリント配線基板用の絶縁体を製造し、該絶縁体の耐熱性、絶縁抵抗及びアルカリ白化を実施例1と全く同一にして測定した。結果を、「ラミネート評価」として表1に示す。
 〔比較例3〕
 本比較例では、図1に示す槽4に貯留されている酵素溶液5に代えて、70℃の温度の脱気された温水を用いた以外は、実施例9と全く同一にしてガラス繊維織物2の洗浄を行った。
 本比較例において、酵素溶液5は、リパーゼとプロテアーゼと非イオン界面活性剤とのいずれも全く含んでいない。
 本比較例の洗浄方法では、酵素水溶液5の温度調整及び乾燥工程7における120℃の温度での乾燥以外に熱エネルギーを用いていないので、環境に対する負荷を低く抑えることができた。また、洗浄後のガラス繊維織物2にクロス汚れは見られなかった。結果を表1に示す。
 次に、本比較例の洗浄方法により洗浄されたガラス繊維織物2を用いて、積層プリント配線基板用の絶縁体を製造し、該絶縁体の耐熱性、絶縁抵抗及びアルカリ白化を実施例1と全く同一にして測定した。結果を、「ラミネート評価」として表1に示す。
 〔比較例4〕
 本比較例では、巻芯に巻かれたガラス繊維織物を雰囲気温度が400℃~500℃の加熱炉内に15~100時間配置することにより、バッチ方式でヒートクリーニングを行った。
 本比較例のヒートクリーニングでは、洗浄後のガラス繊維織物2にクロス汚れはほとんど見られなかったが、前記加熱炉の加熱に化石燃料を用いると共に、ガラス繊維織物に付着しているサイズ剤が加熱分解されるため、二酸化炭素の排出量が増加し、環境に対する負荷の増大が避けられなかった。結果を表1に示す。
 次に、本比較例のヒートクリーニングにより処理されたガラス繊維織物を用いて、積層プリント配線基板用の絶縁体を製造し、該絶縁体の耐熱性、絶縁抵抗及びアルカリ白化を実施例1と全く同一にして測定した。結果を、「ラミネート評価」として表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から、実施例1~12によれば、ガラス繊維織物2の表面からサイズ剤が十分に除去されているので、積層プリント配線基板用の絶縁体を製造したときに、該絶縁体において優れた耐熱性と、優れた絶縁抵抗とを得ることができることが明らかである。また、実施例1~11によれば、ガラス繊維織物2を400℃以上の高温に加熱する熱処理を行わないので、クロス汚れ及び繊維強度の低下が生じることがなく、環境負荷も低減することができることが明らかである。
 これに対して、酵素としてアミラーゼのみを用いる比較例1,2、超音波だけを用いる比較例3によれば、クロス汚れ及び繊維強度の低下が生じることがなく、環境負荷も低減することができるが、ガラス繊維織物2の表面からサイズ剤を十分に除去することができない。この結果、比較例1~3では、ガラス繊維織物2を用いて積層プリント配線基板用の絶縁体を製造したときに、該絶縁体の耐熱性及び絶縁抵抗が不十分なものとなっている。
 また、ガラス繊維織物2を400℃以上の高温に加熱する熱処理(ヒートクリーニング)を行う比較例4,5によれば、ガラス繊維織物2の表面からサイズ剤がほとんど除去されているので、積層プリント配線基板用の絶縁体を製造したときに、該絶縁体において耐熱性と、絶縁抵抗とを得ることができるが、繊維強度の低下を避けることができず、環境負荷も大になる。
 尚、本実施形態及び実施例では、ガラス繊維織物2を酵素処理した後、洗浄流体により洗浄処理する例について説明しているが、ガラス繊維織物2を酵素処理した後、超音波処理するようにしてもよく、超音波処理した後、さらに洗浄流体により洗浄処理してもよい。
 2…ガラス繊維織物、 5、5a、5b…酵素水溶液、 6…水洗浄工程、 7…乾燥工程、 8、8a、8b…超音波振動子、 9…洗浄工程。

Claims (13)

  1.  ガラス繊維フィラメントの表面にサイズ剤を被覆処理して形成された繊維束を製織することにより得られたガラス繊維織物の表面からサイズ剤を除去するための洗浄方法であって、
     該ガラス繊維織物を、澱粉分解酵素と油脂分解酵素又はタンパク質分解酵素とを含む酵素水溶液に浸漬する酵素処理と、洗浄流体による洗浄処理との少なくとも2つの工程で処理することを特徴とするガラス繊維織物の洗浄方法。
  2.  請求項1記載のガラス繊維織物の洗浄方法において、前記澱粉分解酵素はα-アミラーゼであり、前記油脂分解酵素はリパーゼであり、前記タンパク質分解酵素はプロテアーゼであることを特徴とするガラス繊維織物の洗浄方法。
  3.  請求項1記載のガラス繊維織物の洗浄方法において、前記酵素処理において超音波処理を併用するか又は、前記洗浄処理において超音波処理を併用することを特徴とするガラス繊維織物の洗浄方法。
  4.  請求項1記載のガラス繊維織物の洗浄方法において、前記洗浄処理に用いられる前記洗浄流体は、水、温水、界面活性剤含有溶液、水蒸気、有機溶剤、オゾン水、亜臨界水、超臨界水、超臨界二酸化炭素からなる群から選択される少なくとも1つの流体であることを特徴とするガラス繊維織物の洗浄方法。
  5.  請求項1記載のガラス繊維織物の洗浄方法において、前記洗浄処理は、水中に3本以上のローラー又はバーを千鳥状に配設し前記ガラス繊維織物を蛇行させるようにした洗浄槽、洗浄流体に波動を加えるようにしたバイブロ装置、超音波振動子、拡散スプレー、ウォーターカーテン、蒸気噴霧、マングル、エアカーテンからなる群から選択される少なくとも1種の手段により処理することを特徴とするガラス繊維織物の洗浄方法。
  6.  請求項1記載のガラス繊維織物の洗浄方法において、前記ガラス繊維織物を澱粉分解酵素を含む第1の酵素水溶液に連続的に浸漬する第1の酵素処理工程と、該ガラス繊維織物を油脂分解酵素又はタンパク質分解酵素を含む第2の酵素水溶液に連続的に浸漬する第2の酵素処理工程と、前記酵素処理した前記ガラス繊維織物を、洗浄流体により洗浄する洗浄処理工程とを備えることを特徴とするガラス繊維織物の洗浄方法。
  7.  請求項1記載のガラス繊維織物の洗浄方法において、前記ガラス繊維織物を澱粉分解酵素を含む第1の酵素水溶液に連続的に浸漬する第1の酵素処理工程と、該ガラス繊維織物を油脂分解酵素又はタンパク質分解酵素を含む第2の酵素水溶液に連続的に浸漬する第2の酵素処理工程と、前記酵素処理した前記ガラス繊維織物を、洗浄流体により洗浄する洗浄処理工程とを備え、該第1の酵素水溶液又は該第2の酵素水溶液は非イオン性界面活性剤を含むことを特徴とするガラス繊維織物の洗浄方法。
  8.  請求項1記載のガラス繊維織物の洗浄方法において、前記ガラス繊維織物を澱粉分解酵素を含む第1の酵素水溶液に連続的に浸漬する第1の酵素処理工程と、該ガラス繊維織物を油脂分解酵素又はタンパク質分解酵素を含む第2の酵素水溶液に連続的に浸漬する第2の酵素処理工程と、前記酵素処理した前記ガラス繊維織物を、洗浄流体により洗浄する洗浄処理工程とを備え、該第1の酵素水溶液又は該第2の酵素水溶液に超音波を作用させ超音波処理することを特徴とするガラス繊維織物の洗浄方法。
  9.  請求項1記載のガラス繊維織物の洗浄方法において、前記ガラス繊維織物を澱粉分解酵素を含む第1の酵素水溶液に連続的に浸漬する第1の酵素処理工程と、該ガラス繊維織物を油脂分解酵素又はタンパク質分解酵素を含む第2の酵素水溶液に連続的に浸漬する第2の酵素処理工程と、前記酵素処理した前記ガラス繊維織物を、洗浄流体により洗浄する洗浄処理工程とを備え、該第1の酵素水溶液又は該第2の酵素水溶液は非イオン性界面活性剤を含むと共に、該第1の酵素水溶液又は該第2の酵素水溶液に超音波を作用させ超音波処理することを特徴とするガラス繊維織物の洗浄方法。
  10.  請求項1記載のガラス繊維織物の洗浄方法において、前記ガラス繊維織物を澱粉分解酵素と、油脂分解酵素又はタンパク質分解酵素とを含む酵素水溶液に連続的に浸漬する酵素処理工程と、前記酵素処理した前記ガラス繊維織物を、洗浄流体により洗浄する洗浄処理工程とを備えることを特徴とするガラス繊維織物の洗浄方法。
  11.  請求項1記載のガラス繊維織物の洗浄方法において、前記ガラス繊維織物を澱粉分解酵素と、油脂分解酵素又はタンパク質分解酵素とを含む酵素水溶液に連続的に浸漬する酵素処理工程と、前記酵素処理した前記ガラス繊維織物を、洗浄流体により洗浄する洗浄処理工程を備え、該酵素水溶液は非イオン性界面活性剤を含むことを特徴とするガラス繊維織物の洗浄方法。
  12.  請求項1記載のガラス繊維織物の洗浄方法において、前記ガラス繊維織物を澱粉分解酵素と、油脂分解酵素又はタンパク質分解酵素とを含む酵素水溶液に連続的に浸漬する酵素処理工程と、前記酵素処理した前記ガラス繊維織物を、洗浄流体により洗浄する洗浄処理工程を備え、該酵素水溶液に超音波を作用させ超音波処理することを特徴とするガラス繊維織物の洗浄方法。
  13.  請求項1記載のガラス繊維織物の洗浄方法において、前記ガラス繊維織物を澱粉分解酵素と、油脂分解酵素又はタンパク質分解酵素とを含む酵素水溶液に連続的に浸漬する酵素処理工程と、前記酵素処理した前記ガラス繊維織物を、洗浄流体により洗浄する洗浄処理工程を備え、該酵素水溶液は非イオン性界面活性剤を含むと共に、該酵素水溶液に超音波を作用させ超音波処理することを特徴とするガラス繊維織物の洗浄方法。
PCT/JP2012/056352 2011-03-31 2012-03-13 ガラス繊維織物の洗浄方法 WO2012132867A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013507351A JP5831541B2 (ja) 2011-03-31 2012-03-13 ガラス繊維織物の洗浄方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-079738 2011-03-31
JP2011079738 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012132867A1 true WO2012132867A1 (ja) 2012-10-04

Family

ID=46930604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056352 WO2012132867A1 (ja) 2011-03-31 2012-03-13 ガラス繊維織物の洗浄方法

Country Status (3)

Country Link
JP (1) JP5831541B2 (ja)
TW (1) TWI539059B (ja)
WO (1) WO2012132867A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014049877A1 (ja) * 2012-09-28 2014-04-03 日東紡績株式会社 ガラス繊維織物の洗浄方法
CN106804694A (zh) * 2017-03-16 2017-06-09 许昌学院 一种香菇的超声超临界‑低温真空油炸干燥工艺
CN109576925A (zh) * 2019-01-17 2019-04-05 河南光远新材料股份有限公司 一种电子级玻璃纤维布表面清洁装置
JP2020062574A (ja) * 2018-10-15 2020-04-23 株式会社オプト 洗浄方法及び洗浄装置
CN112080935A (zh) * 2020-08-11 2020-12-15 浙江凯澳新材料有限公司 一种玻璃纤维织物表面处理方法
CN112140547A (zh) * 2020-09-02 2020-12-29 北京机科国创轻量化科学研究院有限公司 一种芳纶纤维增强热塑性树脂复合丝材成形方法及装备
JP2021121700A (ja) * 2021-05-19 2021-08-26 伊澤タオル株式会社 糊剤を繊維品に付与する方法、糊剤付き繊維品の製造方法、糊剤付き繊維品から糊剤を除去する方法、及び糊剤付き繊維品から繊維品を製造する方法
WO2022270254A1 (ja) * 2021-06-22 2022-12-29 伊澤タオル株式会社 繊維品を精練する方法、及び繊維品を精練して、精練処理後の繊維品を製造する方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016058257A1 (zh) * 2014-10-17 2016-04-21 苏州大学 一种纺织品的退浆前处理方法
CN104389153B (zh) * 2014-10-17 2017-01-11 苏州大学 一种超临界二氧化碳流体中棉的酶退浆方法
CN108252105A (zh) * 2017-12-13 2018-07-06 浙江理工大学 一种玻璃纤维织物的表面处理方法
CN108018610A (zh) * 2017-12-19 2018-05-11 无锡其宏包装材料厂 一种纤维丝板清洗装置
CN110747625A (zh) * 2019-11-01 2020-02-04 苏州大学 利用超临界流体清洗动物纤维的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63107844A (ja) * 1986-10-24 1988-05-12 Mitsui Toatsu Chem Inc ガラス繊維の集束剤除去方法
JPH06166952A (ja) * 1992-11-27 1994-06-14 Unitika Ltd ガラス繊維を含む織物の精練方法
JPH07504948A (ja) * 1991-12-20 1995-06-01 ノボザイムス アクティーゼルスカブ 繊維から疎水性エステルの除去
JP2001506708A (ja) * 1996-12-04 2001-05-22 ノボ ノルディスク バイオケム ノース アメリカ,インコーポレイティド 綿編織布のアルカリ性酵素精練

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63107844A (ja) * 1986-10-24 1988-05-12 Mitsui Toatsu Chem Inc ガラス繊維の集束剤除去方法
JPH07504948A (ja) * 1991-12-20 1995-06-01 ノボザイムス アクティーゼルスカブ 繊維から疎水性エステルの除去
JPH06166952A (ja) * 1992-11-27 1994-06-14 Unitika Ltd ガラス繊維を含む織物の精練方法
JP2001506708A (ja) * 1996-12-04 2001-05-22 ノボ ノルディスク バイオケム ノース アメリカ,インコーポレイティド 綿編織布のアルカリ性酵素精練

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014049877A1 (ja) * 2012-09-28 2014-04-03 日東紡績株式会社 ガラス繊維織物の洗浄方法
CN106804694A (zh) * 2017-03-16 2017-06-09 许昌学院 一种香菇的超声超临界‑低温真空油炸干燥工艺
CN106804694B (zh) * 2017-03-16 2021-03-30 许昌学院 一种香菇的超声超临界-低温真空油炸干燥工艺
JP2020062574A (ja) * 2018-10-15 2020-04-23 株式会社オプト 洗浄方法及び洗浄装置
CN109576925A (zh) * 2019-01-17 2019-04-05 河南光远新材料股份有限公司 一种电子级玻璃纤维布表面清洁装置
CN112080935A (zh) * 2020-08-11 2020-12-15 浙江凯澳新材料有限公司 一种玻璃纤维织物表面处理方法
CN112140547A (zh) * 2020-09-02 2020-12-29 北京机科国创轻量化科学研究院有限公司 一种芳纶纤维增强热塑性树脂复合丝材成形方法及装备
JP2021121700A (ja) * 2021-05-19 2021-08-26 伊澤タオル株式会社 糊剤を繊維品に付与する方法、糊剤付き繊維品の製造方法、糊剤付き繊維品から糊剤を除去する方法、及び糊剤付き繊維品から繊維品を製造する方法
JP7133125B2 (ja) 2021-05-19 2022-09-08 伊澤タオル株式会社 糊剤を繊維品に付与する方法、糊剤付き繊維品の製造方法、糊剤付き繊維品から糊剤を除去する方法、及び糊剤付き繊維品から繊維品を製造する方法
WO2022244634A1 (ja) * 2021-05-19 2022-11-24 伊澤タオル株式会社 糊剤を繊維品に付与する方法、糊剤付き繊維品の製造方法、糊剤付き繊維品から糊剤を除去する方法、及び糊剤付き繊維品から繊維品を製造する方法
WO2022270254A1 (ja) * 2021-06-22 2022-12-29 伊澤タオル株式会社 繊維品を精練する方法、及び繊維品を精練して、精練処理後の繊維品を製造する方法

Also Published As

Publication number Publication date
JPWO2012132867A1 (ja) 2014-07-28
JP5831541B2 (ja) 2015-12-09
TW201247963A (en) 2012-12-01
TWI539059B (zh) 2016-06-21

Similar Documents

Publication Publication Date Title
JP5831541B2 (ja) ガラス繊維織物の洗浄方法
JP5983754B2 (ja) ガラス繊維織物の洗浄方法
CN104047063B (zh) 一种蒸汽闪爆和碱处理相结合制备纺织用棉秆皮纤维的方法
CN106968106A (zh) 一种超耐磨低毛屑无尘布生产制程
KR101260527B1 (ko) 연속적인 직물의 전환 방법 및 그 설비
GB2430203A (en) Apparatus for enzymatic and ultrasound treatment of textiles and method of treatment thereof
KR20140028886A (ko) 전자파 차폐시트용 직물의 정련방법
JP2013079457A (ja) ガラス繊維布帛の製造方法およびガラス繊維強化樹脂成形品の製造方法
KR930005927B1 (ko) 포백의 풀빼기 정련방법
JP4954414B2 (ja) 天然非綿セルロース系繊維の酵素を使用する漂白
CN113529401B (zh) 一种纯棉水刺无纺布绿色无污染的冷堆方法
TW201615926A (zh) 紡紗用麻纖維之製造方法及紡紗用麻纖維
GB2432585A (en) Multiple enzyme composition for desizing and scouring fabrics
CN106757921A (zh) 一种用于棉纤维纺织物的生物酶连续快速煮练设备
US10526748B2 (en) Method of providing moisture by atomization in ozonation of textile products
TWI558874B (zh) Washing method of glass fiber fabric
CN113529400B (zh) 复合酶对棉网进行脱漂处理的方法
JP2895690B2 (ja) セルロース系繊維構造物の減量加工方法
Yachmenev et al. The effects of ultrasound on the performance of industrial enzymes used in cotton bio-preparation/bio-finishing applications
Boylston et al. Scanning Microscopy of Wax Removal from Bioscoured Cotton Textiles
JP2002138365A (ja) わた材の精練方法および脱脂綿の製造方法
RU2163650C1 (ru) Способ жидкостной обработки шерстяных тканей
WO2015015606A1 (ja) 繊維の精練方法
JP3977476B2 (ja) 洗剤残留抑制性繊維構造物の製造方法
JP4373978B2 (ja) 天然繊維製品の製造方法及び天然繊維製品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765600

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507351

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765600

Country of ref document: EP

Kind code of ref document: A1