WO2012132215A1 - シリアル通信装置 - Google Patents

シリアル通信装置 Download PDF

Info

Publication number
WO2012132215A1
WO2012132215A1 PCT/JP2012/001277 JP2012001277W WO2012132215A1 WO 2012132215 A1 WO2012132215 A1 WO 2012132215A1 JP 2012001277 W JP2012001277 W JP 2012001277W WO 2012132215 A1 WO2012132215 A1 WO 2012132215A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
serial communication
transistor
circuit
terminal
Prior art date
Application number
PCT/JP2012/001277
Other languages
English (en)
French (fr)
Inventor
芳明 石関
Original Assignee
ルネサスエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ルネサスエレクトロニクス株式会社 filed Critical ルネサスエレクトロニクス株式会社
Priority to US13/983,882 priority Critical patent/US8873648B2/en
Priority to EP12764221.3A priority patent/EP2693640B1/en
Priority to EP17183771.9A priority patent/EP3267584B1/en
Priority to JP2013507101A priority patent/JP5466789B2/ja
Publication of WO2012132215A1 publication Critical patent/WO2012132215A1/ja
Priority to US14/489,650 priority patent/US9191249B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03878Line equalisers; line build-out devices
    • H04L25/03885Line equalisers; line build-out devices adaptive
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/165Modifications for eliminating interference voltages or currents in field-effect transistor switches by feedback from the output circuit to the control circuit
    • H03K17/166Soft switching
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • H03K19/00346Modifications for eliminating interference or parasitic voltages or currents
    • H03K19/00361Modifications for eliminating interference or parasitic voltages or currents in field effect transistor circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/017545Coupling arrangements; Impedance matching circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018507Interface arrangements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018507Interface arrangements
    • H03K19/018521Interface arrangements of complementary type, e.g. CMOS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector

Definitions

  • the present invention relates to a serial communication device, and more particularly to a serial communication device having noise resistance.
  • open drain (wired OR) type networks such as ISO-9141 (K line) and LIN (Local Interconnect Network) are used as in-vehicle communication networks. Since such a network is not differential communication, it can be easily configured with a small number of wires, and is often used in a system having a relatively low communication speed.
  • the communication speed of LIN is about 20 Kbps, and the communication speed of K line is about 100 Kbps.
  • EMI Electro-Magnetic Interference
  • the communication line also serves as an antenna that receives electromagnetic waves radiated from other systems. For this reason, it is also an essential requirement that the output circuit itself loses communication data when receiving electromagnetic waves, such as compatibility with EMS (Electro-Magnetic Susceptibility). *
  • FIG. 9 is a block diagram showing a configuration of the slew rate output circuit 500.
  • the slew rate output circuit 500 includes a slew rate control circuit 51, an output circuit 52, and an output terminal Tout.
  • a load RL is connected between the output terminal Tout and the power supply line Vdd.
  • the slew rate output circuit 500 is supplied with power from the power supply line Vcc.
  • FIG. 10 is a circuit diagram showing a configuration of the slew rate output circuit 500.
  • the slew rate output circuit 500 includes an N-channel output transistor Q0 having a load RL connected between a power supply line Vdd and a drain electrode, and a source electrode grounded.
  • the slew rate output circuit 500 is an open drain slew rate output circuit that controls charging / discharging of the gate electrode capacitances Cdg and Cgs of the output transistor Q0 by IrH from two constant currents CS51 and IrL from CS52.
  • the input pulse signal Vin changes from low level to high level, it is inverted by the inverters INV51 and INV52, and the gates of the P channel transistor Q1 and the N channel transistor Q2 both become low level. For this reason, the P-channel transistor Q1 is turned on, the N-channel transistor Q2 is turned off, and the gate electrode capacitances Cdg and Cgs of the output transistor Q0 are charged by the constant current IrH from the constant current source CS51. As a result, the gate voltage Vgate gradually becomes high level, and the output transistor Q0 is gradually turned on.
  • the P-channel transistor Q1 shifts from the high level to the low level, the P-channel transistor Q1 is turned off and the N-channel transistor Q2 is turned on.
  • the gate electrode capacitances Cdg and Cgs of the output transistor Q0 are constant current IrL from the constant current source CS52. It is discharged by. As a result, the gate voltage Vgate gradually becomes low level, and the output transistor Q0 is gradually turned off.
  • FIG. 11 is a timing chart showing the operation of the slew rate output circuit 500.
  • the rise time of the gate voltage Vgate, and hence the fall time of the output voltage Vout varies depending on the gate electrode capacitances Cdg and Cgs of the output transistor Q0 and the value of the constant current IrH.
  • the fall time of the gate voltage Vgate, and hence the rise time of the output voltage Vout varies depending on the value of the constant current IrL. This is because the charging / discharging time to the gate electrode capacitances Cdg and Cgs of the output transistor Q0 is changed by the constant currents IrH and IrL. That is, the slew rate output circuit 500 realizes the aforementioned slew rate control by controlling the values of the constant currents IrH and IrL.
  • Patent Document 2 a drive circuit that can easily control the slew rate while suppressing the circuit size has been proposed.
  • the slew rate output circuit 500 has the following problems. According to the inventor's study, when communication line noise Vn is introduced to the output terminal Tout, the slew rate output circuit 500 may malfunction. Hereinafter, the mechanism of malfunction will be described.
  • the high frequency component of the communication line noise Vn is added to the gate voltage Vgate via the drain-gate capacitance Cdg of the output transistor Q0 (timing T51 in FIG. 11). ). Therefore, the gate voltage Vgate has a waveform that oscillates up and down, and frequently crosses the threshold value Vt of the output transistor Q0. As a result, the output transistor Q0 cannot maintain a stable OFF state. Therefore, the output voltage Vout cannot output a high level (VB voltage), and a desired waveform (a waveform after timing T51) is lost.
  • the slew rate output circuit 500 malfunctions due to communication line noise. Therefore, communication cannot be established in an environment where large noise exists in the communication line.
  • a serial communication device includes a slew rate control circuit that has a predetermined impedance and supplies a constant current from an output according to an input signal, and the constant current from the slew rate control circuit.
  • An output circuit having a first capacitor to be charged / discharged, outputting a digital signal corresponding to a drive voltage output from the first capacitor from an output terminal, and detecting noise propagating from the output terminal, and a detection result
  • a switching circuit that switches the impedance of the slew rate control circuit to a value smaller than the predetermined impedance according to the switching signal.
  • the serial communication device which is one embodiment of the present invention can reduce the impedance of the slew rate control circuit when the output terminal receives noise. As a result, the amplitude of noise added to the drive voltage is suppressed, and a communication error malfunction due to a missing communication waveform is prevented.
  • a serial communication device generates an output circuit for driving a load connected to an output terminal, a drive signal for driving the output circuit in accordance with an input signal, and passes through the drive signal.
  • a slew rate control circuit for controlling a rate, a noise detection circuit for detecting noise propagating to an output signal output from the output terminal, and the slew rate control circuit when the noise detection circuit detects the noise
  • a switching circuit that switches the impedance to be smaller than that in the case where the noise is not detected.
  • the serial communication device which is one embodiment of the present invention can reduce the impedance of the slew rate control circuit when the output terminal receives noise. As a result, the amplitude of noise added to the drive voltage is suppressed, and a communication error malfunction due to a missing communication waveform is prevented.
  • a serial communication device that can be provided can be provided.
  • FIG. 1 is a block diagram showing a configuration of a serial communication device 100 according to a first exemplary embodiment.
  • 1 is a circuit diagram showing a configuration of a serial communication device 100 according to a first exemplary embodiment.
  • 3 is a timing chart illustrating an operation of the serial communication device 100 according to the first exemplary embodiment.
  • 3 is a circuit diagram showing a configuration of a serial communication device 200 according to a second embodiment;
  • FIG. 6 is a timing chart illustrating an operation of the serial communication device 200 according to the second exemplary embodiment.
  • FIG. 6 is a circuit diagram showing a configuration of a serial communication device 300 according to a third exemplary embodiment.
  • 10 is a timing chart illustrating an operation of the serial communication device 300 according to the third exemplary embodiment.
  • FIG. 6 is a circuit diagram showing a configuration of a serial communication device 400 according to a fourth embodiment.
  • 3 is a block diagram showing a configuration of a slew rate output circuit 500.
  • FIG. 3 is a circuit diagram showing a configuration of a slew rate output circuit 500.
  • FIG. 5 is a timing chart showing the operation of the slew rate output circuit 500.
  • FIG. 1 is a block diagram of a configuration of the serial communication device 100 according to the first embodiment.
  • the serial communication device 100 includes a slew rate control circuit 1, an output circuit 21, a noise detection circuit 31, a mode switching circuit 4, an input terminal Tin, an output terminal Tout, and a power supply terminal Ts.
  • An input signal Vi is supplied to the input terminal Tin.
  • the power supply voltage VDD is supplied to the power supply terminal Ts.
  • Output terminal Tout via a communication line 5 and the load RL, is connected to an external power supply terminal Tos.
  • the voltage of the communication line 5 is defined as a communication line voltage Vs.
  • An external power supply voltage VB is supplied to the external power supply terminal Tos.
  • the noise detection circuit 31 corresponds to a detection circuit
  • the mode switching circuit 4 corresponds to a switching circuit.
  • the power supply terminal Ts corresponds to a first power supply terminal.
  • the external power supply terminal Tos corresponds to a third power supply terminal.
  • FIG. 2 is a circuit diagram illustrating a configuration of the serial communication device 100 according to the first embodiment.
  • the slew rate control circuit 1 includes a first constant current source CS1, a second constant current source CS2, a Pch transistor P1, and an Nch transistor N1.
  • the ground in FIG. 2 corresponds to a second power supply terminal.
  • the first constant current source CS1, the second constant current source CS2, the Pch transistor P1, and the Nch transistor N1 are cascade-connected between the power supply terminal Ts to which the power supply voltage VDD is supplied and the ground.
  • the source of the Pch transistor P1 is connected to the power supply terminal Ts via the first constant current source CS1.
  • the drain of the Pch transistor P1 is connected to the drain of the Nch transistor N1.
  • the source of the Nch transistor N1 is connected to the ground via the second current source CS2.
  • the input signal Vi is input from the input terminal Tin to the gates of the Pch transistor P1 and the Nch transistor N1. That is, the Pch transistor P1 and the Nch transistor N1 constitute an inverter.
  • the voltage of the node (connection point) between the drains of the Pch transistor P1 and the Nch transistor N1, which is the output of this inverter, is defined as a drive voltage Vg.
  • the drive voltage Vg corresponds to the gate voltage Vgate shown in FIG.
  • the output circuit 21 includes an Nch transistor N2.
  • the Nch transistor N2 corresponds to a fourth transistor, and the gate corresponds to a control terminal.
  • the drain of the Nch transistor N2 is connected to the output terminal Tout.
  • the source of the Nch transistor N2 is connected to the ground.
  • the gate of the Nch transistor N2 is connected to the drains (connection points) of the Pch transistor P1 and the Nch transistor N1, and the drive voltage Vg is applied.
  • a drain-gate capacitance Cdg exists between the drain and gate of the Nch transistor N2. Further, a gate-source capacitance Cgs exists between the gate and source of the Nch transistor N2.
  • the drain-gate capacitance Cdg and the gate-source capacitance Cgs are indicated by dotted lines. Note that the gate-source capacitance Cgs of the Nch transistor N2 corresponds to a first capacitance.
  • the noise detection circuit 31 includes capacitors C31 and C32, a diode D1, resistors R1 and R2, and an Nch transistor N3.
  • the capacitors C31 and C32 correspond to the second and third capacitors, respectively.
  • the diode D1 corresponds to a rectifier.
  • the resistors R1 and R2 correspond to first and second resistors, respectively.
  • the Nch transistor N3 corresponds to a third transistor, and the gate corresponds to a control terminal.
  • the anode of the diode D1 is connected to the output terminal Tout through the capacitor C31.
  • the resistor R1 and the capacitor C32 are connected between the cathode of the diode D1 and the ground.
  • the drain of the Nch transistor N3 is connected to the power supply terminal Ts via the resistor R2 and outputs a switching signal Vc.
  • the source of the Nch transistor N3 is connected to the ground.
  • the gate of the Nch transistor N3 is connected to the cathode of the diode D1 and receives the noise detection signal Vd.
  • the mode switching circuit 4 includes inverters INV1 and INV2, a Pch transistor P4, and an Nch transistor N4.
  • the inverters INV1 and INV2 correspond to first and second inverters, respectively.
  • the Pch transistor P4 and the Nch transistor N4 correspond to first and second transistors, respectively, and the gate corresponds to a control terminal.
  • the source of the Pch transistor P4 is connected to the power supply terminal Ts.
  • the drain of the Pch transistor P4 is connected to the connection point between the first constant current source CS1 and the Pch transistor P1. That is, the Pch transistor P4 is connected in parallel with the first constant current source CS1.
  • the drain of the Nch transistor N4 is connected to the connection point between the second constant current source CS2 and the Nch transistor N1.
  • the source of the Nch transistor N4 is connected to the ground. That is, the Nch transistor N4 is connected in parallel with the second constant current source CS2.
  • the input of the inverter INV1 receives the switching signal Vc.
  • the output of the inverter INV1 is connected to the input of the inverter INV2 and the gate of the Nch transistor N4.
  • the output of the inverter INV2 is connected to the gate of the Pch transistor P4. That is, the switching signal Vc is input to the gate of the Pch transistor P4, and the inverted signal of the switching signal Vc is input to the gate of the Nch transistor N4. Therefore, the Pch transistor P4 and the Nch transistor N4 are uniformly turned on / off.
  • FIG. 3 is a timing chart illustrating the operation of the serial communication device 100 according to the first embodiment. Timings T11 to T14 in FIG. 3 correspond to the normal operation mode.
  • the input signal Vi is input to the serial communication device 100 via the input terminal Tin.
  • the voltage level of the input signal Vi is a low level.
  • the Pch transistor P1 is on and the Nch transistor N1 is off. Therefore, the power supply voltage VDD is applied to the gate of the Nch transistor N2 via the first constant current source CS1 and the Pch transistor P1. Therefore, the drive voltage Vg is equal to the power supply voltage VDD.
  • the Nch transistor N2 is turned on, and the communication line voltage Vs is approximately the ground voltage.
  • the gate-source capacitance Cgs of the Nch transistor is in a state of being charged by applying the drive voltage Vg (power supply voltage VDD).
  • the drive voltage Vg drops with a constant slope by the second constant current source CS2 of the slew rate control circuit 1. As a result, the drive voltage Vg drops more slowly than the input signal Vi.
  • the Nch transistor N2 is turned off (timing T12). As a result, the communication line voltage Vs gradually rises to the external power supply voltage VB.
  • the drive voltage Vg rises with a constant slope by the first constant current source CS1 of the slew rate control circuit 1. As a result, the drive voltage Vg rises more slowly than the input signal Vi.
  • the Nch transistor N2 is turned on (timing T14). As a result, the communication line voltage Vs gradually drops to the ground voltage.
  • the communication line noise Vn appears as a noise detection signal Vd via the capacitor C31 of the noise detection circuit 31 and the diode D1.
  • the capacitor C31 cuts the DC component of the communication line noise Vn and passes only the high frequency component of the communication line noise Vn.
  • Diode D1 rectifies the high-frequency component of the communication line noise Vn that has passed through the capacitor C31.
  • the capacitor C32 smoothes the high frequency component of the rectified communication line noise Vn.
  • the noise detection signal Vd becomes a signal that rises with the introduction of the communication line noise Vn, as shown in FIG.
  • the noise detection signal Vd is expressed by the following equation (4).
  • VD1 in Expression (4) indicates a voltage drop in the diode D1.
  • Vd ((Vn / 2) -VD1) ⁇ (C31 / (C31 + C32)) ... (4)
  • the operation of the mode switching circuit 4 before and after the communication line noise Vn is introduced into the communication line 5 will be described.
  • the noise detection signal Vd is the ground potential
  • the Nch transistor N3 is off. Therefore, since the switching signal Vc is a High signal, the Pch transistor P4 is off and the Nch transistor N4 is off. That is, it can be understood that the serial communication device 100 performs so-called slew rate control using a constant current source in the normal operation mode.
  • the serial communication device 100 shifts to the malfunction prevention mode. Specifically, when the noise detection signal Vd exceeds the threshold value of the Nch transistor N3, the Nch transistor N3 is turned on. Therefore, since the switching signal Vc is a Low signal, the Pch transistor P4 is turned on and the Nch transistor N is turned on. That is, in the malfunction prevention mode, current flows into the output circuit 21 not only from the high-impedance first constant current source CS1 but also from the low-impedance Pch transistor P4. Similarly, current flows from the output circuit 21 not only from the high impedance second constant current source CS2 but also from the low impedance Nch transistor N4. At this time, the Pch transistor P4 and the Nch transistor N4 function as voltage sources.
  • the mode switching circuit 4 can lower the impedance of the slew rate control circuit 1 in the malfunction prevention mode. Therefore, even if the high-frequency component of the communication line noise Vn is added to the drive voltage Vg, since the impedance of the slew rate control circuit 1 is low, the fluctuation range of the drive voltage Vg can be suppressed. This prevents the drive voltage Vg from fluctuating across the threshold value of the Nch transistor N2 even if the communication line noise Vn is applied to the communication line. Therefore, the timing at which the Nch transistor N2 at the unintended timing should be turned off originally. It is possible to prevent a communication error from being caused by turning on the power.
  • the communication line voltage Vs changes more rapidly than in the normal operation mode. That is, when receiving the communication line noise Vn, the serial communication device 100 shifts to a malfunction prevention mode in which the influence of noise is reduced by lowering the slew rate control function. Needless to say, when the communication line noise Vn disappears after receiving the communication line noise Vn, the normal operation mode is restored from the malfunction prevention mode.
  • FIG. 4 is a circuit diagram of a configuration of the serial communication device 200 according to the second embodiment.
  • Serial communication device 200 has a configuration obtained by replacing the output circuit 21 of the serial communication device 100 to the output circuit 22.
  • the output circuit 22 has a configuration in which a capacitor C21 is added between the gate of the Nch transistor N2 and the ground.
  • the capacity C21 corresponds to a fourth capacity.
  • the other configuration of the serial communication device 200 is the same as that of the serial communication device 100, the description thereof is omitted.
  • the serial communication device 200 operates differently from the serial communication device 100 due to the addition of the capacity C21.
  • the drive voltage Vg until the voltage drops to the ground voltage is expressed by the following equation (5).
  • Vg VDD- (I2 / (Cdg + Cgs + C21)) ⁇ t ... (5)
  • Vg (I1 / (Cdg + Cgs + C21)) ⁇ t ⁇ (6)
  • the serial communication device 200 can appropriately adjust the output slew rate by adjusting the capacitance value.
  • FIG. 5 is a timing chart showing the operation of the serial communication device 200 according to the second embodiment. Timings T21 to T25 in FIG. 5 correspond to timings T11 to T15 in FIG. 3, respectively. As shown in FIG. 5, by providing the capacitor C21, the change in the drive voltage Vg can be moderated as compared to the serial communication device 100 (see FIG. 3).
  • ⁇ Vg Vn ⁇ Cdg / (Cgs + Cdg + C21) (7)
  • the slew rate can be adjusted and the fluctuation of the drive voltage Vg when receiving the communication line noise can be suppressed.
  • a serial communication device that can be provided can be provided. Furthermore, according to this configuration, it is possible to suppress a decrease in the slew rate control function even in the malfunction prevention mode.
  • FIG. 6 is a circuit diagram of a configuration of the serial communication device 300 according to the third embodiment.
  • Serial communication device 300 has a configuration obtained by replacing the output circuit 21 of the serial communication device 100 to the output circuit 23.
  • the output circuit 23 has a configuration in which the Nch transistor N2 of the output circuit 21 is replaced with a Pch transistor P2.
  • the output terminal Tout of the serial communication device 300 is connected to the ground via the communication line 5 and the load RL.
  • the source of the Pch transistor P2 is connected to the power supply terminal Ts.
  • the drain of the Pch transistor P2 is connected to the output terminal Tout.
  • a drive voltage Vg is applied to the gate of the Pch transistor P2.
  • a drain-gate capacitance Cdg exists between the drain and gate of the Pch transistor P2.
  • a gate-source capacitance Cgs exists between the gate and source of the Pch transistor P2.
  • the drain-gate capacitance Cdg and the gate-source capacitance Cgs are indicated by dotted lines. Since the other configuration of the serial communication device 300 is the same as that of the serial communication device 100, description thereof is omitted.
  • FIG. 7 is a timing chart illustrating the operation of the serial communication device 300 according to the third embodiment. Timings T31 to T34 in FIG. 7 correspond to the normal operation mode.
  • the input signal Vi is input to the serial communication device 300 via the input terminal Tin. Initially, the voltage level of the input signal Vi is Low. At this time, the Pch transistor P1 is turned on and the Nch transistor N1 is turned off. Therefore, the power supply voltage VDD is applied to the gate of the Pch transistor P2 via the first constant current source CS1 and the Pch transistor P1. Therefore, the drive voltage Vg is equal to the power supply voltage VDD. As a result, the Pch transistor P2 is turned off, and the communication line voltage Vs becomes the ground voltage. At this time, since the voltage across the gate-source capacitor Cgs of the Pch transistor P2 is the power supply voltage VDD, the gate-source capacitor Cgs is not charged.
  • the drive voltage Vg drops more slowly than the input signal Vi.
  • the Pch transistor P2 is turned on (timing T32).
  • the communication line voltage Vs gradually rises to the external power supply voltage VB.
  • the drive voltage Vg rises gradually compared to the input signal Vi, as in the serial communication device 100.
  • the Pch transistor P2 is turned off (timing T14).
  • the voltage of the communication line 5 gradually drops to the ground voltage.
  • the serial communication device 300 can perform the same operation as the serial communication device 100 although the configuration of the output circuit is different from that of the serial communication device 100. Therefore, according to this configuration, it is possible to provide a serial communication device that can achieve the same effects as the serial communication device 100.
  • FIG. 8 is a circuit diagram of a configuration of the serial communication device 400 according to the fourth embodiment.
  • the serial communication device 400 has a configuration in which the noise detection circuit 31 of the serial communication device 100 is replaced with a noise detection circuit 34.
  • the noise detection circuit 34 has a configuration in which a filter 30 is added between the capacitor C32 of the noise detection circuit 31 and the diode D1.
  • the influence of noise in the serial communication device becomes most noticeable during the rising and falling transitions of the input signal.
  • the voltage of the communication line 5 is changed depending on whether or not the drive voltage Vg that changes with a certain slope has reached the threshold value.
  • the drive voltage Vg is a value in the vicinity of the threshold value, if it is affected by noise, there is a high risk of voltage fluctuations across the threshold value.
  • the transistor of the output circuit may cause an unintended on / off operation.
  • the noise that has a strong possibility of affecting the rising and falling of the output signal is a so-called harmonic noise having a frequency that is an integral multiple of the input signal in some cases.
  • the harmonic noise is selectively passed by providing the filter 30.
  • the filter 30 prevents passage of noise having a frequency other than harmonic noise.
  • the serial communication device 400 shifts to the malfunction prevention mode only when receiving noise having a frequency with a high probability of malfunction.
  • the filter 30 as described above can be easily realized by a digital filter or the like.
  • a serial communication device that not only has the same effects as the serial communication device 100 but also shifts to the malfunction prevention mode only when receiving noise of a frequency with a high probability of malfunction. be able to. As a result, it is possible to avoid a decrease in the slew rate control function due to the shift to the malfunction prevention mode, and to reduce the chance that the serial communication device itself becomes a noise generation source.
  • a capacitor can be added between the Pch transistor P2 of the output circuit 23 according to the third embodiment and the power supply terminal Ts.
  • a capacitor can be added between the Nch transistor N2 of the output circuit 21 according to the fourth embodiment and the ground.
  • the power supply terminal Ts, the ground, and the external power supply terminal Tos correspond to first to third power supply terminals, respectively, but the voltages supplied to the first to third power supply terminals are not limited to the above-described example. Any voltage can be used as long as the same functions as those of the serial communication devices 1 to 4 can be exhibited.
  • the power supply voltage VDD and the external power supply voltage VB may be different voltages or the same voltage. Needless to say, the Pch transistor and the Nch transistor can be appropriately switched.
  • the insertion position of the filter 30 of the noise detection circuit 34 according to the fourth embodiment is merely an example, and may be inserted at another position as long as the high frequency component of the communication line noise can be selected.
  • a filter can be added to the detection circuits according to the second and third embodiments as in the fourth embodiment.
  • a Pch transistor can be applied to the output circuit according to the fourth embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Dc Digital Transmission (AREA)
  • Electronic Switches (AREA)

Abstract

 本発明の一態様であるシリアル通信装置(100)は、スルーレート制御回路(1)、出力回路(21)、ノイズ検出回路(31)及び切替回路(4)を有する。スルーレート制御回路(1)は、所定のインピーダンスを有し、入力信号(Vi)に応じて出力から一定の電流を供給する。出力回路(21)は、Nchトランジスタ(N2)のゲート-ソース間容量(Cgs)がスルーレート制御回路(1)からの一定の電流により充放電され、駆動電圧(Vg)に応じた通信ライン電圧(Vs)を出力端子(Tout)から出力する。ノイズ検出回路(31)は、出力端子(Tout)から伝搬する通信ラインノイズ(Vn)を検出し、検出結果に応じた切替信号(Vc)を出力する。切替回路(4)は、切替信号(Vc)に応じて、スルーレート制御回路(1)のインピーダンスを所定のインピーダンスよりも小さい値に切り替える。

Description

シリアル通信装置
 本発明はシリアル通信装置に関し、特にノイズ耐性を有するシリアル通信装置に関する。
 近年の自動車では、車内通信ネットワークとして、ISO-9141(Kライン)やLIN(Local Interconnect Network)などのオープンドレイン(ワイヤードOR)形式のネットワークが利用されている。このようなネットワークは、差動通信でないため、少ない配線本数で容易にネットワークを構成でき、比較的通信速度の低いシステムに多用されている。LINの通信速度は、20Kbps程度、Kラインの通信速度は100Kbps程度である。
 一般に、安全性確保のため、自動車などに適用される通信網は高い信頼性が求められる。自動車など、閉じた環境に多数の通信網や電源配線が密集するシステムにおいては、通信ライン(ワイヤーハーネス)が放射する電磁波(EMI:Electro-Magnetic Interference)がノイズ源となる。従って、このノイズに起因して他のシステムが誤動作するのを防止しなければならない。すなわち、ノイズ放射源以外のシステムがノイズにより誤動作することを防止するため、通信ラインでは、例えばスルーレート制御により通信波形を鈍らせる手法が用いられる。これにより、電磁波(EMI)ノイズとなる通信波形中の高調波成分を抑えることができる。
 また、上記通信ラインは、他のシステムが放射する電磁波を受けるアンテナにもなる。そのため、電磁波を受けた場合に本出力回路自身が通信データを損失するなど、誤動作をしない耐性(EMS:Electro-Magnetic Susceptibility)の両立も必須要件となっている。 
 ノイズ抑制のために用いられる通信波形のスルーレート制御を行う回路の例について説明する(特許文献1)。図9は、スルーレート出力回路500の構成を示すブロック図である。図9に示すように、スルーレート出力回路500は、スルーレート制御回路51、出力回路52及び出力端子Toutを有する。出力端子Toutと電源線Vddとの間には、負荷RLが接続される。スルーレート出力回路500は、電源線Vccから電源が供給される。
 図10は、スルーレート出力回路500の構成を示す回路図である。以下では、図10を参照して、スルーレート出力回路500の構成及び動作について説明する。スルーレート出力回路500は、電源線Vddとドレイン電極との間に負荷RLを接続し、ソース電極が接地されたNチャネルの出力トランジスタQ0を備える。スルーレート出力回路500は、出力トランジスタQ0のゲート電極容量Cdg及びCgsを2つの定電流CS51からのIrH及びCS52からのIrLにより充放電制御するオープンドレイン型のスルーレート出力回路である。
 入力パルス信号Vinがロウレベルからハイレベルに変化すると、インバータINV51及びINV52で反転され、PチャネルトランジスタQ1とNチャネルトランジスタQ2のゲートはともにロウレベルになる。このため、PチャネルトランジスタQ1はオン状態、NチャネルトランジスタQ2はオフ状態となり、出力トランジスタQ0のゲート電極容量Cdg及びCgsは定電流源CS51からの定電流IrHにより充電される。その結果、ゲート電圧Vgateが徐々にハイレベルになり、出力トランジスタQ0は緩やかにオン状態となる。入力パルス信号Vinがハイレベルからロウレベルに移行すると、PチャネルトランジスタQ1はオフ状態、NチャネルトランジスタQ2はオン状態となり、出力トランジスタQ0のゲート電極容量Cdg及びCgsは定電流源CS52からの定電流IrLにより放電される。その結果、ゲート電圧Vgateが徐々にロウレベルになり、出力トランジスタQ0は緩やかにオフ状態になる。
 図11は、スルーレート出力回路500の動作を示すタイミングチャートである。図11に示すように、出力トランジスタQ0のゲート電極容量Cdg及びCgsと定電流IrHの値によって、ゲート電圧Vgateの立ち上り時間、ひいては出力電圧Voutの立下り時間が変化する。また、定電流IrLの値によって、ゲート電圧Vgateの立下り時間、ひいては出力電圧Voutの立ち上り時間が変化する。これは、定電流IrH及びIrLによって出力トランジスタQ0のゲート電極容量Cdg及びCgsへの充放電時間が変化するためである。すなわち、スルーレート出力回路500は、定電流IrH及びIrLの値を制御することにより、前述のスルーレート制御を実現している。
 その他、回路サイズを抑制しつつ、スルーレートを容易に制御することができるドライブ回路が提案されている(特許文献2)。
特開平11-346147号公報 特開2009-111470号公報
 ところが、発明者は、スルーレート出力回路500には、以下のような課題が有ることを見出した。発明者の検討によれば、出力端子Toutに通信ラインノイズVnが導入されると、スルーレート出力回路500は誤動作を起こす恐れがある。以下、誤動作のメカニズムについて説明する。
 出力端子Toutに通信ラインノイズVnが導入されると、通信ラインノイズVnの高周波成分が、出力トランジスタQ0のドレイン-ゲート間容量Cdgを介して、ゲート電圧Vgateに加算される(図11のタイミングT51)。そのため、ゲート電圧Vgateは、上下に振動する波形となり、出力トランジスタQ0のしきい値Vtを頻繁に跨いでしまう。その結果、出力トランジスタQ0は安定したOFF状態を保つ事ができなくなる。そのため、出力電圧Voutは、ハイレベル(VB電圧)を出せなくなり、所望の波形(タイミングT51以降の波形)が欠落してしまう。
 換言すれば、通信ラインノイズを受けたことにより、スルーレート出力回路500は誤動作を起こしてしまう。従って、大きなノイズが通信ラインに存在する環境下では、通信を成立する事ができなくなる。
 本発明の一態様であるシリアル通信装置は、所定のインピーダンスを有し、入力信号に応じて出力から一定の電流を供給するスルーレート制御回路と、前記スルーレート制御回路からの前記一定の電流により充放電される第1の容量を有し、前記第1の容量が出力する駆動電圧に応じたデジタル信号を出力端子から出力する出力回路と、前記出力端子から伝搬するノイズを検出し、検出結果に応じた切替信号を出力する検出回路と、前記切替信号に応じて、前記スルーレート制御回路のインピーダンスを前記所定のインピーダンスよりも小さい値に切り替える切替回路と、を備えるものである。本発明の一態様であるシリアル通信装置は、出力端子がノイズを受けた場合、スルーレート制御回路のインピーダンスを小さくすることができる。これにより、駆動電圧に加算されるノイズの振幅を抑制し、通信波形の欠落による通信エラー誤動作を防止する。
 本発明の一態様であるシリアル通信装置は、出力端子に接続された負荷を駆動する出力回路と、入力信号に応じて前記出力回路を駆動するための駆動信号を生成し、前記駆動信号のスルーレートを制御するスルーレート制御回路と、前記出力端子から出力される出信号に伝播するノイズを検出するノイズ検出回路と、前記ノイズ検出回路が前記ノイズを検出した場合には、前記スルーレート制御回路のインピーダンスを、前記ノイズを検出していない場合に比べて小さくなるように切り替える切替回路と、を備えるものである。本発明の一態様であるシリアル通信装置は、出力端子がノイズを受けた場合、スルーレート制御回路のインピーダンスを小さくすることができる。これにより、駆動電圧に加算されるノイズの振幅を抑制し、通信波形の欠落による通信エラー誤動作を防止する。
 本発明によれば、通常動作時には、通信ラインが放射するEMIを抑制しつつ、通信ラインにノイズを受けた場合でも通信波形の欠落を防いで通信が成立しなくなる誤動作を好適に防止することができるシリアル通信装置を提供することができる。
実施の形態1にかかるシリアル通信装置100の構成を示すブロック図である。 実施の形態1にかかるシリアル通信装置100の構成を示す回路図である。 実施の形態1にかかるシリアル通信装置100の動作を示すタイミングチャートである。 実施の形態2にかかるシリアル通信装置200の構成を示す回路図である。 実施の形態2にかかるシリアル通信装置200の動作を示すタイミングチャートである。 実施の形態3にかかるシリアル通信装置300の構成を示す回路図である。 実施の形態3にかかるシリアル通信装置300の動作を示すタイミングチャートである。 実施の形態4にかかるシリアル通信装置400の構成を示す回路図である。 スルーレート出力回路500の構成を示すブロック図である。 スルーレート出力回路500の構成を示す回路図である。 スルーレート出力回路500の動作を示すタイミングチャートである。
 以下、図面を参照して本発明の実施の形態について説明する。各図面においては、同一要素には同一の符号が付されており、必要に応じて重複説明は省略される。
 実施の形態1
 本発明の実施の形態1にかかるシリアル通信装置100について説明する。図1は、実施の形態1にかかるシリアル通信装置100の構成を示すブロック図である。シリアル通信装置100は、スルーレート制御回路1、出力回路21、ノイズ検出回路31、モード切替回路4、入力端子Tin、出力端子Tout及び電源端子Tsを有する。入力端子Tinには、入力信号Viが供給される。また、電源端子Tsには、電源電圧VDDが供給される。出力端子Toutは、通信ライン5及び負荷RLを介して、外部電源端子Tosと接続される。通信ライン5の電圧を、通信ライン電圧Vsとする。外部電源端子Tosには、外部電源電圧VBが供給される。
 ここで、ノイズ検出回路31は検出回路に相当し、モード切替回路4は切替回路に相当する。電源端子Tsは第1の電源端子に相当する。外部電源端子Tosは、第3の電源端子に相当する。
 シリアル通信装置100について、図2を参照して更に説明する。図2は、実施の形態1にかかるシリアル通信装置100の構成を示す回路図である。スルーレート制御回路1は、第1の定電流源CS1、第2の定電流源CS2、PchトランジスタP1及びNchトランジスタN1を有する。図2中のグランドは、第2の電源端子に相当する。第1の定電流源CS1、第2の定電流源CS2、PchトランジスタP1及びNchトランジスタN1は、電源電圧VDDが供給される電源端子Tsとグランドとの間で従属接続される。
 具体的には、PchトランジスタP1のソースは、第1の定電流源CS1を介して、電源端子Tsと接続される。PchトランジスタP1のドレインは、NchトランジスタN1のドレインと接続される。NchトランジスタN1のソースは、第2の電流源CS2を介して、グランドと接続される。PchトランジスタP1及びNchトランジスタN1のゲートには、入力端子Tinから入力信号Viが入力される。すなわち、PchトランジスタP1及びNchトランジスタN1は、インバータを構成している。このインバータの出力であるPchトランジスタP1及びNchトランジスタN1のドレイン間のノード(接続点)の電圧を駆動電圧Vgとする。なお、駆動電圧Vgは、図11に示すゲート電圧Vgateに相当する。
 出力回路21は、NchトランジスタN2により構成される。NchトランジスタN2は、第4のトランジスタに相当し、ゲートは制御端子に相当する。NchトランジスタN2のドレインは、出力端子Toutと接続される。NchトランジスタN2のソースは、グランドと接続される。NchトランジスタN2のゲートは、PchトランジスタP1及びNchトランジスタN1のドレイン(接続点)と接続され、駆動電圧Vgが印加される。なお、NchトランジスタN2のドレイン-ゲート間には、ドレイン-ゲート間容量Cdgが存在する。また、NchトランジスタN2のゲート-ソース間には、ゲート-ソース間容量Cgsが存在する。図2では、ドレイン-ゲート間容量Cdg及びゲート-ソース間容量Cgsを点線にて表示している。なお、NchトランジスタN2のゲート-ソース間容量Cgsは、第1の容量に相当する。
 ノイズ検出回路31は、容量C31及びC32、ダイオードD1、抵抗R1及びR2、NchトランジスタN3を有する。ここで、容量C31及びC32は、それぞれ第2及び第3の容量に相当する。ダイオードD1は、整流器に相当する。抵抗R1及びR2は、それぞれ、第1及び第2の抵抗に相当する。NchトランジスタN3は、第3のトランジスタに相当し、ゲートは制御端子に相当する。
 ダイオードD1のアノードは、容量C31を介して、出力端子Toutと接続される。抵抗R1及び容量C32は、ダイオードD1のカソードとグランドとの間に接続される。NchトランジスタN3のドレインは、抵抗R2を介して電源端子Tsと接続され、切替信号Vcを出力する。NchトランジスタN3のソースは、グランドと接続される。NchトランジスタN3のゲートは、ダイオードD1のカソードと接続され、ノイズ検出信号Vdを受ける。
 モード切替回路4は、インバータINV1及びINV2、PchトランジスタP4及びNchトランジスタN4を有する。ここで、インバータINV1及びINV2は、それぞれ第1及び第2のインバータに相当する。PchトランジスタP4及びNchトランジスタN4は、それぞれ第1及び第2のトランジスタに相当し、ゲートは制御端子に相当する。
 PchトランジスタP4のソースは、電源端子Tsと接続される。PchトランジスタP4のドレインは、第1の定電流源CS1及びPchトランジスタP1の接続点と接続される。すなわち、PchトランジスタP4は、第1の定電流源CS1と並列接続される。NchトランジスタN4のドレインは、第2の定電流源CS2及びNchトランジスタN1の接続点と接続される。NchトランジスタN4のソースは、グランドと接続される。すなわち、NchトランジスタN4は、第2の定電流源CS2と並列接続される。
 インバータINV1の入力は、切替信号Vcを受ける。インバータINV1の出力は、インバータINV2の入力及びNchトランジスタN4のゲートと接続される。インバータINV2の出力は、PchトランジスタP4のゲートと接続される。すなわち、PchトランジスタP4のゲートには切替信号Vcが入力され、NchトランジスタN4のゲートには切替信号Vcの反転信号が入力される。従って、PchトランジスタP4及びNchトランジスタN4は、一律にオン/オフする。
 続いて、シリアル通信装置100の動作について説明する。まず、シリアル通信装置100がスルーレート制御を行う通常動作モードについて説明する。図3は、実施の形態1にかかるシリアル通信装置100の動作を示すタイミングチャートである。図3のタイミングT11~T14が通常動作モードに対応する。
 シリアル通信装置100には、入力端子Tinを介して、入力信号Viが入力される。初め、入力信号Viの電圧レベルはLowレベルであるとする。このとき、PchトランジスタP1はオンであり、NchトランジスタN1はオフである。よって、第1の定電流源CS1及びPchトランジスタP1を介して、NchトランジスタN2のゲートには電源電圧VDDが印加されている。従って、駆動電圧Vgは、電源電圧VDDと等しい。これにより、NchトランジスタN2はオンとなり、通信ライン電圧Vsは概ねグランド電圧となる。このとき、Nchトランジスタのゲート-ソース間容量Cgsは、駆動電圧Vg(電源電圧VDD)が印加されることにより充電された状態である。
 入力端子Tinの電圧レベルがLowレベルからHighレベルに遷移すると、PchトランジスタP1がオフとなり、NchトランジスタN1がオンとなる(タイミングT11)。これにより、ゲート-ソース間容量Cgsに充電された電荷は、NchトランジスタN1及び第2の定電流源CS2を介して、グランドに放電される。第2の定電流源CS2の電流I2は一定であるので、グランド電圧に降下するまでの駆動電圧Vgは、以下の式(1)で表される。

 Vg=VDD-(I2/Cgs)×t  ・・・(1)
 すなわち、スルーレート制御回路1の第2の定電流源CS2により、駆動電圧Vgは一定の傾きで降下する。その結果、駆動電圧Vgは、入力信号Viと比べて緩やかに降下する。そして、駆動電圧VgがNchトランジスタN2のしきい値電圧Vtnまで降下すると、NchトランジスタN2はオフとなる(タイミングT12)。その結果、通信ライン電圧Vsは、外部電源電圧VBまで緩やかに上昇する。
 続いて、入力端子Tinの電圧レベルがHighレベルからLowレベルに遷移すると、PchトランジスタP1がオンとなり、NchトランジスタN1がオフとなる(タイミングT13)。これにより、PchトランジスタP1及び第1の定電流源CS1に電流が流れ、ゲート-ソース間容量Cgsは充電される。第1の定電流源CS1の電流I1は一定であるので、電源電圧に上昇するまでの駆動電圧Vgは、以下の式(2)で表される。

 Vg=(I1/Cgs)×t  ・・・(2)
 すなわち、スルーレート制御回路1の第1の定電流源CS1により、駆動電圧Vgは一定の傾きで上昇する。その結果、駆動電圧Vgは、入力信号Viと比べて緩やかに上昇する。そして、駆動電圧VgがNchトランジスタN2のしきい値電圧Vtnまで上昇すると、NchトランジスタN2はオンとなる(タイミングT14)。その結果、通信ライン電圧Vsは、概ねグランド電圧まで緩やかに降下する。
 次いで、通信ライン5に高周波ノイズである通信ラインノイズVnが導入された場合の誤動作防止モードについて説明する。図3では、タイミングT15以降が誤動作防止モードに対応する。
 通信ライン5に高周波ノイズである通信ラインノイズVnが導入されると、通信ラインノイズVnの高周波成分が、NchトランジスタN2のドレイン-ゲート間容量Cdgを介して、駆動電圧Vgに加算される(タイミングT15)。このとき、駆動電圧Vgの変動量ΔVgは、以下の式(3)で表される。

 ΔVg=Vn×Cdg/(Cgs+Cdg)  ・・・(3)
 また、通信ラインノイズVnは、ノイズ検出回路31の容量C31及びダイオードD1を介して、ノイズ検出信号Vdとして現れる。なお、容量C31は、通信ラインノイズVnの直流成分をカットし、通信ラインノイズVnの高周波成分のみを通過させる。ダイオードD1は、容量C31を通過した通信ラインノイズVnの高周波成分を整流する。容量C32は、整流された通信ラインノイズVnの高周波成分を平滑化する。これにより、ノイズ検出信号Vdは、図3に示すように、通信ラインノイズVnの導入とともに立ち上がる信号となる。このとき、ノイズ検出信号Vdは、以下の式(4)で表される。なお、式(4)のVD1は、ダイオードD1での降下電圧を示す。

 Vd=((Vn/2)-VD1)×(C31/(C31+C32))
                                                   ・・・(4)
 ここで、通信ラインノイズVnが通信ライン5に導入される前後のモード切替回路4の動作について説明する。通常動作モード時のモード切替回路4では、ノイズ検出信号Vdはグランド電位であるので、NchトランジスタN3はオフである。よって、切替信号VcはHigh信号であるので、PchトランジスタP4はオフであり、NchトランジスタN4はオフである。つまり、シリアル通信装置100は、通常動作モード時には、定電流源を利用した、いわゆるスルーレート制御を行うことが理解できる。
 一方、通信ラインノイズVnが通信ライン5に導入されると、シリアル通信装置100は誤動作防止モードに移行する。具体的には、ノイズ検出信号VdがNchトランジスタN3のしきい値を超えると、NchトランジスタN3はオンとなる。よって、切替信号VcはLow信号であるので、PchトランジスタP4はオンとなり、NchトランジスタNはオンとなる。つまり、誤動作防止モードでは、出力回路21には、高インピーダンスの第1の定電流源CS1だけでなく、低インピーダンスのPchトランジスタP4からも電流が流れ込む。同様に、出力回路21からは、高インピーダンスの第2の定電流源CS2だけでなく、低インピーダンスのNchトランジスタN4からも電流が流れ出す。この際、PchトランジスタP4及びNchトランジスタN4は、電圧源として機能する。
 すなわち、モード切替回路4は、誤動作防止モード時には、スルーレート制御回路1のインピーダンスを降下させることができる。よって、駆動電圧Vgに通信ラインノイズVnの高周波成分が加算されても、スルーレート制御回路1のインピーダンスが低くなっているので、駆動電圧Vgの変動幅を抑制することができる。これにより、通信ラインに通信ラインノイズVnが乗っても駆動電圧VgがNchトランジスタN2のしきい値を跨いで変動することを防げるので、意図しないタイミングでのNchトランジスタN2が、本来OFFすべきタイミングでONしてしまう事によって、通信エラーを起こす事を防止できる。
 なお、この際、スルーレート制御回路1のインピーダンスが降下するので、駆動電圧Vgは急峻に変化する。そのため、通常動作モード時に比べ、通信ライン電圧Vsは急峻に変化する。すなわち、シリアル通信装置100は、通信ラインノイズVnを受けた場合には、スルーレート制御の機能を低下させることにより、ノイズの影響低減を図る誤動作防止モードに移行する。なお、通信ラインノイズVnを受けた後、通信ラインノイズVnが消失した場合には、誤動作防止モードから通常動作モードに復帰することは言うまでもない。
 従って、本構成によれば、通信ラインにノイズを受けた場合でも通信波形の欠落によって生じる通信エラーを好適に防止することができるシリアル通信装置を提供することができる。
 実施の形態2
 本発明の実施の形態2にかかるシリアル通信装置200について説明する。図4は、実施の形態2にかかるシリアル通信装置200の構成を示す回路図である。シリアル通信装置200は、シリアル通信装置100の出力回路21を出力回路22に置換した構成を有する。出力回路22は、出力回路21と比べ、NchトランジスタN2のゲートとグランドとの間に容量C21を追加した構成を有する。容量C21は、第4の容量に相当する。シリアル通信装置200のその他の構成は、シリアル通信装置100と同様であるので、説明を省略する。
 シリアル通信装置200では、容量C21が追加されたことにより、シリアル通信装置100とは動作が異なる。シリアル通信装置200において、グランド電圧に降下するまでの駆動電圧Vgは、以下の式(5)で表される。

 Vg=VDD-(I2/(Cdg+Cgs+C21))×t
                                               ・・・(5)
 また、電源電圧に上昇するまでの駆動電圧Vgは、以下の式(6)で表される。

 Vg=(I1/(Cdg+Cgs+C21))×t  ・・・(6)
 式(5)及び(6)より、容量C21の容量値を設定することで、それまで、プロセス構造と素子サイズ、及び第1の電流源CS1と第2の電流源CS2によって決まっていた、駆動電圧Vgの変化率を制御することが可能である。すなわち、シリアル通信装置200は、容量値の調整により、出力のスルーレートを適切に調整することが可能である。
 図5は、実施の形態2にかかるシリアル通信装置200の動作を示すタイミングチャートである。図5のタイミングT21~T25は、それぞれ図3のタイミングT11~T15に対応する。図5に示すように、容量C21を設けることにより、シリアル通信装置100(図3を参照)に比べて駆動電圧Vgの変化を緩やかにすることができる。
 また、通信ライン5に高周波ノイズである通信ラインノイズVnが導入された場合の駆動電圧Vgの変動量ΔVgは、以下の式(7)で表される。

 ΔVg=Vn×Cdg/(Cgs+Cdg+C21)  ・・・(7)
 式(7)より、容量C21の容量値を増加することで、駆動電圧Vgの変動量を緩和することが可能である。シリアル通信装置200の駆動電圧Vgの変動以外の動作については、シリアル通信装置100と同様であるので、説明を省略する。
 以上より、本構成によれば、シリアル通信装置100と同様の作用効果を奏するのみならず、スルーレート調整が可能で、かつ通信ラインノイズを受けた場合の駆動電圧Vgの変動を抑制することができるシリアル通信装置を提供することができる。さらに、本構成によれば、誤動作防止モード時でも、スルーレート制御機能の低下を抑制することも可能である。
 実施の形態3
 本発明の実施の形態3にかかるシリアル通信装置300について説明する。図6は、実施の形態3にかかるシリアル通信装置300の構成を示す回路図である。シリアル通信装置300は、シリアル通信装置100の出力回路21を出力回路23に置換した構成を有する。出力回路23は、出力回路21のNchトランジスタN2を、PchトランジスタP2に置換した構成を有する。シリアル通信装置300の出力端子Toutは、通信ライン5及び負荷RLを介して、グランドと接続される。
 PchトランジスタP2のソースは、電源端子Tsと接続される。PchトランジスタP2のドレインは、出力端子Toutと接続される。PchトランジスタP2のゲートは、駆動電圧Vgが印加される。なお、PchトランジスタP2のドレイン-ゲート間には、ドレイン-ゲート間容量Cdgが存在する。また、PchトランジスタP2のゲート-ソース間には、ゲート-ソース間容量Cgsが存在する。図6では、ドレイン-ゲート間容量Cdg及びゲート-ソース間容量Cgsを点線にて表示している。シリアル通信装置300のその他の構成は、シリアル通信装置100と同様であるので、説明を省略する。
 続いて、シリアル通信装置300の動作について説明する。シリアル通信装置300は、シリアル通信装置100と比べて、通常動作モードの動作が異なる。以下では、シリアル通信装置300の通常動作モードでの動作について説明する。なお、誤動作防止モードでのシリアル通信装置300の動作は、シリアル通信装置100と同様であるので、説明を省略する。図7は、実施の形態3にかかるシリアル通信装置300の動作を示すタイミングチャートである。図7のタイミングT31~T34が通常動作モードに対応する。
 シリアル通信装置300には、入力端子Tinを介して、入力信号Viが入力される。初め、入力信号Viの電圧レベルはLowである。このとき、PchトランジスタP1がオンとなり、NchトランジスタN1がオフである。よって、第1の定電流源CS1及びPchトランジスタP1を介して、PchトランジスタP2のゲートには電源電圧VDDが印加される。従って、駆動電圧Vgは、電源電圧VDDと等しい。これにより、PchトランジスタP2はオフとなり、通信ライン電圧Vsはグランド電圧となる。このとき、PchトランジスタP2のゲート-ソース間容量Cgsの両端の電圧は電源電圧VDDであるので、ゲート-ソース間容量Cgsは充電されていない状態である。
 入力端子Tinの電圧レベルがLowからHighに遷移すると、PchトランジスタP1がオフとなり、NchトランジスタN1がオンとなる(タイミングT31)。これにより、NchトランジスタN1及び第2の定電流源CS2に電流が流れ、ゲート-ソース間容量Cgsが充電される。第2の定電流源CS2の電流I2は一定であるので、グランド電圧に降下するまでの駆動電圧Vgは、上述の式(1)で表される。
 すなわち、駆動電圧Vgは、シリアル通信装置100と同様に、入力信号Viと比べて緩やかに降下する。そして、駆動電圧VgがPchトランジスタP2のしきい値電圧Vtpまで降下すると、PchトランジスタP2はオンとなる(タイミングT32)。その結果、通信ライン電圧Vsは、外部電源電圧VBまで緩やかに上昇する。
 続いて、入力端子Tinの電圧レベルがHighからLowに遷移すると、PchトランジスタP1がオンとなり、NchトランジスタN1がオフとなる(タイミングT33)。これにより、PchトランジスタP1及び第1の定電流源CS1に電流が流れ、ゲート-ソース間容量Cgsは放電される。第1の定電流源CS1の電流I1は一定であるので、電源電圧に上昇するまでの駆動電圧Vgは、上述の式(2)で表される。
 すなわち、駆動電圧Vgは、シリアル通信装置100と同様に、入力信号Viと比べて緩やかに上昇する。そして、駆動電圧VgがPchトランジスタP2のしきい値電圧Vtpまで上昇すると、PchトランジスタP2はオフとなる(タイミングT14)。その結果、通信ライン5の電圧は、グランド電圧まで緩やかに降下する。
 以上より、シリアル通信装置300は出力回路の構成がシリアル通信装置100とは異なるものの、シリアル通信装置100と同様の動作を行うことができる。従って、本構成によれば、シリアル通信装置100と同様の作用効果を奏することができるシリアル通信装置を提供することができる。
 実施の形態4
 本発明の実施の形態4にかかるシリアル通信装置400について説明する。図8は、実施の形態4にかかるシリアル通信装置400の構成を示す回路図である。シリアル通信装置400は、シリアル通信装置100のノイズ検出回路31を、ノイズ検出回路34に置換した構成を有する。ノイズ検出回路34は、ノイズ検出回路31の容量C32とダイオードD1との間に、フィルタ30を追加した構成を有する。
 一般に、シリアル通信装置におけるノイズの影響は、入力信号の立ち上がり及び立ち下り遷移中に最も顕著となる。特に、上述の実施の形態にかかるシリアル通信装置では、一定の傾きで変化する駆動電圧Vgがしきい値に到達したか否かで通信ライン5の電圧を変化させる。駆動電圧Vgがしきい値近傍の値である場合にノイズの影響を受けると、しきい値を跨いだ電圧変動が起きる恐れが大きい。その結果、出力回路のトランジスタが意図しないオン/オフ動作を起こす恐れがある。このように、出力信号の立ち上がり及び立ち下りに影響を及ぼす恐れが強いノイズは、システムによって周波数が特定される場合があり、その入力信号の整数倍の周波数を有する、いわゆる高調波ノイズである。
 そのため、シリアル通信装置400では、フィルタ30を設けることにより、高調波ノイズを選択的に通過させる。これにより、特定の高調波ノイズを受けた場合の誤動作を防止することができる。また、フィルタ30は、高調波ノイズ以外の周波数を有するノイズの通過を阻止する。これにより、高調波ノイズに比べて影響が少ないノイズを受けた場合には、通常動作モードを維持し、スルーレート制御を優先的に行うことができる。換言すれば、シリアル通信装置400は、誤動作の発生確率が高い周波数のノイズを受けた場合にのみは誤動作防止モードに移行する。上述のようなフィルタ30は、デジタルフィルタなどで容易に実現することが可能である。
 よって、本構成によれば、シリアル通信装置100と同様の作用効果を奏するだけでなく、誤動作の発生確率が高い周波数のノイズを受けた場合にのみ誤動作防止モードに移行するシリアル通信装置を提供することができる。これにより、誤動作防止モードへの移行によるスルーレート制御機能の低下を回避し、シリアル通信装置自らがノイズ発生源となる機会を低減することができる。
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、実施の形態2と同様に、実施の形態3にかかる出力回路23のPchトランジスタP2と電源端子Tsとの間に容量を追加することが可能である。また、実施の形態2と同様に、実施の形態4にかかる出力回路21のNchトランジスタN2とグランドとの間に容量を追加することが可能である。
 電源端子Ts、グランド及び外部電源端子Tosはそれぞれ第1~第3の電源端子に相当するが、第1~第3の電源端子に供給される電圧は上述の例に限られない、実施の形態1~4にかかるシリアル通信装置と同様の機能を発揮できるならば、任意の電圧とすることができる。例えば、電源電圧VDDと外部電源電圧VBは、異なる電圧でもよいし、同じ電圧でもよい。また、適宜、PchトランジスタとNchトランジスタを入れ換える構成とできることは言うまでもない。
 実施の形態4にかかるノイズ検出回路34のフィルタ30の挿入位置はあくまで例示であり、通信ラインノイズの高周波成分を周波数選別できるならば、別の位置に挿入してもよい。また、実施の形態2及び3にかかる検出回路にも、実施の形態4と同様に、フィルタを追加することが可能である。さらに、実施の形態3にかかる出力回路23と同様に、実施の形態4にかかる出力回路にPchトランジスタを適用することも可能である。
 この出願は、2011年3月31日に出願された日本出願特願2011-78263を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1、51 スルーレート制御回路
4 モード切替回路
5 通信ライン
21~23、52 出力回路
30 フィルタ
31、34 ノイズ検出回路
100、200、300、400 シリアル通信装置
500 スルーレート出力回路
C21、C31、C32 容量
C31  容量
Cdg  ドレイン-ゲート間容量
Cgs  ゲート-ソース間容量
CS1 第1の定電流源
CS2 第2の定電流源
CS51、CS52 定電流源
D1 ダイオード
INV1、INV2、INV51、INV52 インバータ
N1~N4 Nchトランジスタ
P1、P2、P4 Pchトランジスタ
Q0 出力トランジスタ
Q1 Pチャネルトランジスタ
Q2 Nチャネルトランジスタ
R1、R2 抵抗
RL 負荷
Tin 入力端子
Tos 外部電源端子
Tout 出力端子
Ts 電源端子
VB 外部電源電圧
Vcc、Vdd 電源線
Vd ノイズ検出信号
VDD 電源電圧
Vg 駆動電圧
Vgate ゲート電圧
Vi 入力信号
Vin  入力パルス信号
Vn 通信ラインノイズ
Vout 出力電圧

Claims (16)

  1.  所定のインピーダンスを有し、入力信号に応じて出力から一定の電流を供給するスルーレート制御回路と、
     前記スルーレート制御回路からの前記一定の電流により充放電される第1の容量を有し、前記第1の容量が出力する駆動電圧に応じたデジタル信号を出力端子から出力する出力回路と、
     前記出力端子から伝搬するノイズを検出し、検出結果に応じた切替信号を出力する検出回路と、
     前記切替信号に応じて、前記スルーレート制御回路のインピーダンスを前記所定のインピーダンスよりも小さい値に切り替える切替回路と、を備える、
     シリアル通信装置。
  2.  前記スルーレート制御回路は、
     前記入力信号に応じてオン/オフする第1の定電流源と、
     前記入力信号に応じて前記第1の電流源に対して相補的にオン/オフする第2の定電流源と、を備え、
     前記第1の容量は、前記第1の定電流源を介して第1の電源端子と接続され、又は、前記第2の定電流源を介して前記第1の電源と異なる電圧が供給される第2の電源端子と接続されることにより充放電されることを特徴とする、
     請求項1に記載のシリアル通信装置。
  3.  前記切替回路は、
     前記第1の定電流源に並列接続される第1のトランジスタと、
     前記第2の定電流源に並列接続される第2のトランジスタと、を備え、
     前記第1及び第2のトランジスタは、前記検出回路が前記ノイズを検出した場合にオンになることを特徴とする、
     請求項2に記載のシリアル通信装置。
  4.  前記第1のトランジスタは、前記第2のトランジスタと異なるチャネル型を有し、
     前記第1のトランジスタの制御端子には、前記切替信号が供給され、
     前記第2のトランジスタの制御端子には、前記切替信号の反転信号が供給されることを特徴とする、
     請求項3に記載のシリアル通信装置。
  5.  前記切替回路は、
     前記切替信号が入力され、出力が前記第2のトラジスタの前記制御端子と接続される第1のインバータと、
     入力が前記第1のインバータの前記出力と接続され、出力が前記第1のトランジスタの前記制御端子と接続される第2のインバータと、を更に備えることを特徴とする、
     請求項4に記載のシリアル通信装置。
  6.  前記検出回路は、
     一端が前記出力端子と接続される第2の容量と、
     第1の端子が前記第2の容量の他端と接続される整流器と、
     一端が前記整流器の第2の端子と接続され、他端が前記第2の電源端子と接続される、第3の容量及び第1の抵抗と、
     前記第1の電源端子と前記第2の電源端子との間に縦続接続される第2の抵抗及び第3のトランジスタと、を備え、
     前記第3のトランジスタの制御端子は、前記整流器の前記第2の端子と接続され、
     前記第2の抵抗と前記第3のトランジスタとの接続点から、前記切替信号を出力する、
     請求項3乃至5のいずれか一項に記載のシリアル通信装置。
  7.  前記整流器は、アノードが前記第2の容量と接続され、カソードから前記第3のトランジスタの前記制御端子へ検出信号を出力するダイオードであることを特徴とする、
     請求項6に記載のシリアル通信装置。
  8.  前記検出回路は、
     前記出力端子を介して伝搬する前記ノイズの交流成分のうち、所定の周波数の交流成分のみを通過させるフィルタをさらに備えることを特徴とする、
     請求項6又は7に記載のシリアル通信装置。
  9.  前記フィルタは、前記第2の容量と前記整流器との間に挿入されることを特徴とする、
     請求項8に記載のシリアル通信装置。
  10.  前記出力回路は、
     前記出力端子と前記第2の電源端子との間に接続され、制御端子が前記スルーレート制御回路の前記出力と接続される第4のトランジスタを備え、
     前記第1の容量は、前記第4のトランジスタの前記制御端子と前記出力端子側の端子との間の容量であり、
     前記出力端子は、負荷を介して第3の電源端子と接続されることを特徴とする、
     請求項3乃至9のいずれか一項に記載のシリアル通信装置。
  11.  前記出力回路は、
     前記第2の電源端子と前記第4のトランジスタの前記制御端子との間に接続される第4の容量を更に備えることを特徴とする、
     請求項10に記載のシリアル通信装置。
  12.  前記第3の電源端子は、前記第1の電源端子と同じ電圧が供給されることを特徴とする、
     請求項10又は11に記載のシリアル通信装置。
  13.  前記第3の電源端子は、前記第2の電源端子と同じ電圧が供給されることを特徴とする、
     請求項10又は11に記載のシリアル通信装置。
  14.  出力端子に接続された負荷を駆動する出力回路と、
     入力信号に応じて前記出力回路を駆動するための駆動信号を生成し、前記駆動信号のスルーレートを制御するスルーレート制御回路と、
     前記出力端子から出力される出力信号に伝播するノイズを検出するノイズ検出回路と、
     前記ノイズ検出回路が前記ノイズを検出した場合には、前記スルーレート制御回路のインピーダンスを、前記ノイズを検出していない場合に比べて小さくなるように切り替える切替回路と、を備える、
     シリアル通信装置。
  15.  前記スルーレート制御回路は、前記切替回路によってスルーレートが切り替えられることを特徴とする、
     請求項14に記載のシリアル通信装置。
  16.  前記スルーレート制御回路は、前記ノイズを検出していない期間は、電流源を用いて前記出力回路を駆動し、前記ノイズを検出する期間は、前記切替回路によって前記電流源に加えて電圧源を用いて前記出力回路を駆動することを特徴とする、
     請求項14に記載のシリアル通信装置。
PCT/JP2012/001277 2011-03-31 2012-02-24 シリアル通信装置 WO2012132215A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/983,882 US8873648B2 (en) 2011-03-31 2012-02-24 Serial communication apparatus
EP12764221.3A EP2693640B1 (en) 2011-03-31 2012-02-24 Serial communication device
EP17183771.9A EP3267584B1 (en) 2011-03-31 2012-02-24 Serial communication device
JP2013507101A JP5466789B2 (ja) 2011-03-31 2012-02-24 シリアル通信装置
US14/489,650 US9191249B2 (en) 2011-03-31 2014-09-18 Serial communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011078263 2011-03-31
JP2011-078263 2011-03-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/983,882 A-371-Of-International US8873648B2 (en) 2011-03-31 2012-02-24 Serial communication apparatus
US14/489,650 Continuation US9191249B2 (en) 2011-03-31 2014-09-18 Serial communication apparatus

Publications (1)

Publication Number Publication Date
WO2012132215A1 true WO2012132215A1 (ja) 2012-10-04

Family

ID=46930011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001277 WO2012132215A1 (ja) 2011-03-31 2012-02-24 シリアル通信装置

Country Status (4)

Country Link
US (2) US8873648B2 (ja)
EP (2) EP3267584B1 (ja)
JP (1) JP5466789B2 (ja)
WO (1) WO2012132215A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107078097A (zh) * 2014-10-21 2017-08-18 株式会社电装 保护电路
JP2017158010A (ja) * 2016-03-01 2017-09-07 株式会社デンソー 信号出力回路
WO2019054051A1 (ja) * 2017-09-13 2019-03-21 パナソニックIpマネジメント株式会社 ゲート駆動回路、および、パワースイッチングシステム

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9621138B1 (en) * 2015-11-05 2017-04-11 Nxp B.V. Slew control using a switched capacitor circuit
KR20170114643A (ko) * 2016-04-05 2017-10-16 엘에스산전 주식회사 Plc용 통신 시스템
US10135432B2 (en) * 2016-09-07 2018-11-20 Texas Instruments Incorporated Methods and apparatus for low current control for a power connection
US10181847B2 (en) 2017-02-01 2019-01-15 Texas Instruments Incorporated Ring amplitude measurement and mitigation
US10594315B2 (en) * 2017-02-01 2020-03-17 Texas Instruments Incorporated Switching rate monitoring and control
CN108667453B (zh) * 2018-04-09 2021-08-31 上海集成电路研发中心有限公司 一种压摆率可调的低功耗驱动器电路
JP2021129255A (ja) * 2020-02-17 2021-09-02 ミツミ電機株式会社 パルス信号送信回路
EP4131780A1 (en) * 2021-08-06 2023-02-08 Nxp B.V. Multi-purpose output circuitry

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11346147A (ja) 1998-06-02 1999-12-14 Nec Corp スルーレート出力回路
JP2000209078A (ja) * 1999-01-14 2000-07-28 Fujitsu Ltd 半導体装置
JP2008271224A (ja) * 2007-04-20 2008-11-06 Nec Electronics Corp 出力回路
JP2009111470A (ja) 2007-10-26 2009-05-21 Denso Corp ドライブ回路
JP2010028357A (ja) * 2008-07-17 2010-02-04 Nec Electronics Corp 出力バッファ回路

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH077404A (ja) * 1992-11-03 1995-01-10 Texas Instr Deutschland Gmbh トランジスタ駆動回路配置
US6061551A (en) * 1998-10-21 2000-05-09 Parkervision, Inc. Method and system for down-converting electromagnetic signals
US6208177B1 (en) * 1999-05-27 2001-03-27 Lucent Technologies Inc. Output buffer having immediate onset of gentle state transition
US7253655B2 (en) * 2005-09-01 2007-08-07 Micron Technology, Inc. Output driver robust to data dependent noise
US7710169B2 (en) * 2006-10-20 2010-05-04 Nec Electronics Corporation Semiconductor integrated circuit controlling output impedance and slew rate
DE102006058889B3 (de) * 2006-12-04 2008-05-21 Atmel Germany Gmbh Verfahren zur Flankenformung von Signalen und Sender-/Empfänger-Baustein für ein Bussystem
US8901904B2 (en) * 2009-04-15 2014-12-02 Linear Technology Corporation Voltage and current regulators with switched output capacitors for multiple regulation states
US7940076B2 (en) * 2009-06-06 2011-05-10 Texas Instruments Incorporated Local interconnect network transceiver driver
US8072721B2 (en) * 2009-06-10 2011-12-06 Hong Kong Applied Science And Technology Research Institute Co., Ltd. ESD protection using a capacitivly-coupled clamp for protecting low-voltage core transistors from high-voltage outputs
JP2011101266A (ja) * 2009-11-06 2011-05-19 Elpida Memory Inc 半導体装置及び情報処理システム
US9196207B2 (en) * 2011-05-03 2015-11-24 Apple Inc. System and method for controlling the slew rate of a signal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11346147A (ja) 1998-06-02 1999-12-14 Nec Corp スルーレート出力回路
JP2000209078A (ja) * 1999-01-14 2000-07-28 Fujitsu Ltd 半導体装置
JP2008271224A (ja) * 2007-04-20 2008-11-06 Nec Electronics Corp 出力回路
JP2009111470A (ja) 2007-10-26 2009-05-21 Denso Corp ドライブ回路
JP2010028357A (ja) * 2008-07-17 2010-02-04 Nec Electronics Corp 出力バッファ回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2693640A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107078097A (zh) * 2014-10-21 2017-08-18 株式会社电装 保护电路
JP2017158010A (ja) * 2016-03-01 2017-09-07 株式会社デンソー 信号出力回路
WO2017149956A1 (ja) * 2016-03-01 2017-09-08 株式会社デンソー 信号出力回路
CN108702149A (zh) * 2016-03-01 2018-10-23 株式会社电装 信号输出电路
CN108702149B (zh) * 2016-03-01 2022-03-22 株式会社电装 信号输出电路
WO2019054051A1 (ja) * 2017-09-13 2019-03-21 パナソニックIpマネジメント株式会社 ゲート駆動回路、および、パワースイッチングシステム
JP2019054349A (ja) * 2017-09-13 2019-04-04 パナソニックIpマネジメント株式会社 ゲート駆動回路、および、パワースイッチングシステム

Also Published As

Publication number Publication date
JPWO2012132215A1 (ja) 2014-07-24
EP2693640B1 (en) 2017-09-13
US8873648B2 (en) 2014-10-28
EP3267584B1 (en) 2019-12-25
EP3267584A1 (en) 2018-01-10
EP2693640A4 (en) 2014-10-01
US20130315294A1 (en) 2013-11-28
EP2693640A1 (en) 2014-02-05
US9191249B2 (en) 2015-11-17
JP5466789B2 (ja) 2014-04-09
US20150043663A1 (en) 2015-02-12

Similar Documents

Publication Publication Date Title
JP5466789B2 (ja) シリアル通信装置
US11876510B2 (en) Load driver
KR102040692B1 (ko) 공급 전압을 안정화시키기 위한 디바이스 및 방법
US9473127B1 (en) Input/output (I/O) driver
US8692577B2 (en) Driver circuit
US8405371B2 (en) Voltage regulator with ripple compensation
US7940102B2 (en) Edge rate control for I2C bus applications
US20160026197A1 (en) Power supply circuit
US7456649B2 (en) Open drain output circuit
JP7350702B2 (ja) 駆動制御回路
US20060158224A1 (en) Output driver with feedback slew rate control
EP3046239B1 (en) Current generating circuit, current generating method, charge pumping circuit and charge pumping method
US20110267109A1 (en) Pulse width filter
CN110611497B (zh) 比较器以及振荡电路
US20140300191A1 (en) Semiconductor integrated circuit and method of controlling power supply
US9705490B2 (en) Driver circuit for single wire protocol slave unit
US11184015B2 (en) Reference signals generated using internal loads
US7548098B2 (en) Output buffer circuit and method with self-adaptive driving capability
JP5598377B2 (ja) 出力回路
KR20090048888A (ko) 반도체 메모리 장치의 듀티 보정 회로
JP5118989B2 (ja) マルチプレクサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764221

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13983882

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013507101

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012764221

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012764221

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE