WO2012132215A1 - シリアル通信装置 - Google Patents
シリアル通信装置 Download PDFInfo
- Publication number
- WO2012132215A1 WO2012132215A1 PCT/JP2012/001277 JP2012001277W WO2012132215A1 WO 2012132215 A1 WO2012132215 A1 WO 2012132215A1 JP 2012001277 W JP2012001277 W JP 2012001277W WO 2012132215 A1 WO2012132215 A1 WO 2012132215A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- output
- serial communication
- transistor
- circuit
- terminal
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03878—Line equalisers; line build-out devices
- H04L25/03885—Line equalisers; line build-out devices adaptive
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/16—Modifications for eliminating interference voltages or currents
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/16—Modifications for eliminating interference voltages or currents
- H03K17/161—Modifications for eliminating interference voltages or currents in field-effect transistor switches
- H03K17/165—Modifications for eliminating interference voltages or currents in field-effect transistor switches by feedback from the output circuit to the control circuit
- H03K17/166—Soft switching
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/003—Modifications for increasing the reliability for protection
- H03K19/00346—Modifications for eliminating interference or parasitic voltages or currents
- H03K19/00361—Modifications for eliminating interference or parasitic voltages or currents in field effect transistor circuits
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/0175—Coupling arrangements; Interface arrangements
- H03K19/017545—Coupling arrangements; Impedance matching circuits
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/0175—Coupling arrangements; Interface arrangements
- H03K19/0185—Coupling arrangements; Interface arrangements using field effect transistors only
- H03K19/018507—Interface arrangements
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/0175—Coupling arrangements; Interface arrangements
- H03K19/0185—Coupling arrangements; Interface arrangements using field effect transistors only
- H03K19/018507—Interface arrangements
- H03K19/018521—Interface arrangements of complementary type, e.g. CMOS
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/20—Arrangements for detecting or preventing errors in the information received using signal quality detector
Definitions
- the present invention relates to a serial communication device, and more particularly to a serial communication device having noise resistance.
- open drain (wired OR) type networks such as ISO-9141 (K line) and LIN (Local Interconnect Network) are used as in-vehicle communication networks. Since such a network is not differential communication, it can be easily configured with a small number of wires, and is often used in a system having a relatively low communication speed.
- the communication speed of LIN is about 20 Kbps, and the communication speed of K line is about 100 Kbps.
- EMI Electro-Magnetic Interference
- the communication line also serves as an antenna that receives electromagnetic waves radiated from other systems. For this reason, it is also an essential requirement that the output circuit itself loses communication data when receiving electromagnetic waves, such as compatibility with EMS (Electro-Magnetic Susceptibility). *
- FIG. 9 is a block diagram showing a configuration of the slew rate output circuit 500.
- the slew rate output circuit 500 includes a slew rate control circuit 51, an output circuit 52, and an output terminal Tout.
- a load RL is connected between the output terminal Tout and the power supply line Vdd.
- the slew rate output circuit 500 is supplied with power from the power supply line Vcc.
- FIG. 10 is a circuit diagram showing a configuration of the slew rate output circuit 500.
- the slew rate output circuit 500 includes an N-channel output transistor Q0 having a load RL connected between a power supply line Vdd and a drain electrode, and a source electrode grounded.
- the slew rate output circuit 500 is an open drain slew rate output circuit that controls charging / discharging of the gate electrode capacitances Cdg and Cgs of the output transistor Q0 by IrH from two constant currents CS51 and IrL from CS52.
- the input pulse signal Vin changes from low level to high level, it is inverted by the inverters INV51 and INV52, and the gates of the P channel transistor Q1 and the N channel transistor Q2 both become low level. For this reason, the P-channel transistor Q1 is turned on, the N-channel transistor Q2 is turned off, and the gate electrode capacitances Cdg and Cgs of the output transistor Q0 are charged by the constant current IrH from the constant current source CS51. As a result, the gate voltage Vgate gradually becomes high level, and the output transistor Q0 is gradually turned on.
- the P-channel transistor Q1 shifts from the high level to the low level, the P-channel transistor Q1 is turned off and the N-channel transistor Q2 is turned on.
- the gate electrode capacitances Cdg and Cgs of the output transistor Q0 are constant current IrL from the constant current source CS52. It is discharged by. As a result, the gate voltage Vgate gradually becomes low level, and the output transistor Q0 is gradually turned off.
- FIG. 11 is a timing chart showing the operation of the slew rate output circuit 500.
- the rise time of the gate voltage Vgate, and hence the fall time of the output voltage Vout varies depending on the gate electrode capacitances Cdg and Cgs of the output transistor Q0 and the value of the constant current IrH.
- the fall time of the gate voltage Vgate, and hence the rise time of the output voltage Vout varies depending on the value of the constant current IrL. This is because the charging / discharging time to the gate electrode capacitances Cdg and Cgs of the output transistor Q0 is changed by the constant currents IrH and IrL. That is, the slew rate output circuit 500 realizes the aforementioned slew rate control by controlling the values of the constant currents IrH and IrL.
- Patent Document 2 a drive circuit that can easily control the slew rate while suppressing the circuit size has been proposed.
- the slew rate output circuit 500 has the following problems. According to the inventor's study, when communication line noise Vn is introduced to the output terminal Tout, the slew rate output circuit 500 may malfunction. Hereinafter, the mechanism of malfunction will be described.
- the high frequency component of the communication line noise Vn is added to the gate voltage Vgate via the drain-gate capacitance Cdg of the output transistor Q0 (timing T51 in FIG. 11). ). Therefore, the gate voltage Vgate has a waveform that oscillates up and down, and frequently crosses the threshold value Vt of the output transistor Q0. As a result, the output transistor Q0 cannot maintain a stable OFF state. Therefore, the output voltage Vout cannot output a high level (VB voltage), and a desired waveform (a waveform after timing T51) is lost.
- the slew rate output circuit 500 malfunctions due to communication line noise. Therefore, communication cannot be established in an environment where large noise exists in the communication line.
- a serial communication device includes a slew rate control circuit that has a predetermined impedance and supplies a constant current from an output according to an input signal, and the constant current from the slew rate control circuit.
- An output circuit having a first capacitor to be charged / discharged, outputting a digital signal corresponding to a drive voltage output from the first capacitor from an output terminal, and detecting noise propagating from the output terminal, and a detection result
- a switching circuit that switches the impedance of the slew rate control circuit to a value smaller than the predetermined impedance according to the switching signal.
- the serial communication device which is one embodiment of the present invention can reduce the impedance of the slew rate control circuit when the output terminal receives noise. As a result, the amplitude of noise added to the drive voltage is suppressed, and a communication error malfunction due to a missing communication waveform is prevented.
- a serial communication device generates an output circuit for driving a load connected to an output terminal, a drive signal for driving the output circuit in accordance with an input signal, and passes through the drive signal.
- a slew rate control circuit for controlling a rate, a noise detection circuit for detecting noise propagating to an output signal output from the output terminal, and the slew rate control circuit when the noise detection circuit detects the noise
- a switching circuit that switches the impedance to be smaller than that in the case where the noise is not detected.
- the serial communication device which is one embodiment of the present invention can reduce the impedance of the slew rate control circuit when the output terminal receives noise. As a result, the amplitude of noise added to the drive voltage is suppressed, and a communication error malfunction due to a missing communication waveform is prevented.
- a serial communication device that can be provided can be provided.
- FIG. 1 is a block diagram showing a configuration of a serial communication device 100 according to a first exemplary embodiment.
- 1 is a circuit diagram showing a configuration of a serial communication device 100 according to a first exemplary embodiment.
- 3 is a timing chart illustrating an operation of the serial communication device 100 according to the first exemplary embodiment.
- 3 is a circuit diagram showing a configuration of a serial communication device 200 according to a second embodiment;
- FIG. 6 is a timing chart illustrating an operation of the serial communication device 200 according to the second exemplary embodiment.
- FIG. 6 is a circuit diagram showing a configuration of a serial communication device 300 according to a third exemplary embodiment.
- 10 is a timing chart illustrating an operation of the serial communication device 300 according to the third exemplary embodiment.
- FIG. 6 is a circuit diagram showing a configuration of a serial communication device 400 according to a fourth embodiment.
- 3 is a block diagram showing a configuration of a slew rate output circuit 500.
- FIG. 3 is a circuit diagram showing a configuration of a slew rate output circuit 500.
- FIG. 5 is a timing chart showing the operation of the slew rate output circuit 500.
- FIG. 1 is a block diagram of a configuration of the serial communication device 100 according to the first embodiment.
- the serial communication device 100 includes a slew rate control circuit 1, an output circuit 21, a noise detection circuit 31, a mode switching circuit 4, an input terminal Tin, an output terminal Tout, and a power supply terminal Ts.
- An input signal Vi is supplied to the input terminal Tin.
- the power supply voltage VDD is supplied to the power supply terminal Ts.
- Output terminal Tout via a communication line 5 and the load RL, is connected to an external power supply terminal Tos.
- the voltage of the communication line 5 is defined as a communication line voltage Vs.
- An external power supply voltage VB is supplied to the external power supply terminal Tos.
- the noise detection circuit 31 corresponds to a detection circuit
- the mode switching circuit 4 corresponds to a switching circuit.
- the power supply terminal Ts corresponds to a first power supply terminal.
- the external power supply terminal Tos corresponds to a third power supply terminal.
- FIG. 2 is a circuit diagram illustrating a configuration of the serial communication device 100 according to the first embodiment.
- the slew rate control circuit 1 includes a first constant current source CS1, a second constant current source CS2, a Pch transistor P1, and an Nch transistor N1.
- the ground in FIG. 2 corresponds to a second power supply terminal.
- the first constant current source CS1, the second constant current source CS2, the Pch transistor P1, and the Nch transistor N1 are cascade-connected between the power supply terminal Ts to which the power supply voltage VDD is supplied and the ground.
- the source of the Pch transistor P1 is connected to the power supply terminal Ts via the first constant current source CS1.
- the drain of the Pch transistor P1 is connected to the drain of the Nch transistor N1.
- the source of the Nch transistor N1 is connected to the ground via the second current source CS2.
- the input signal Vi is input from the input terminal Tin to the gates of the Pch transistor P1 and the Nch transistor N1. That is, the Pch transistor P1 and the Nch transistor N1 constitute an inverter.
- the voltage of the node (connection point) between the drains of the Pch transistor P1 and the Nch transistor N1, which is the output of this inverter, is defined as a drive voltage Vg.
- the drive voltage Vg corresponds to the gate voltage Vgate shown in FIG.
- the output circuit 21 includes an Nch transistor N2.
- the Nch transistor N2 corresponds to a fourth transistor, and the gate corresponds to a control terminal.
- the drain of the Nch transistor N2 is connected to the output terminal Tout.
- the source of the Nch transistor N2 is connected to the ground.
- the gate of the Nch transistor N2 is connected to the drains (connection points) of the Pch transistor P1 and the Nch transistor N1, and the drive voltage Vg is applied.
- a drain-gate capacitance Cdg exists between the drain and gate of the Nch transistor N2. Further, a gate-source capacitance Cgs exists between the gate and source of the Nch transistor N2.
- the drain-gate capacitance Cdg and the gate-source capacitance Cgs are indicated by dotted lines. Note that the gate-source capacitance Cgs of the Nch transistor N2 corresponds to a first capacitance.
- the noise detection circuit 31 includes capacitors C31 and C32, a diode D1, resistors R1 and R2, and an Nch transistor N3.
- the capacitors C31 and C32 correspond to the second and third capacitors, respectively.
- the diode D1 corresponds to a rectifier.
- the resistors R1 and R2 correspond to first and second resistors, respectively.
- the Nch transistor N3 corresponds to a third transistor, and the gate corresponds to a control terminal.
- the anode of the diode D1 is connected to the output terminal Tout through the capacitor C31.
- the resistor R1 and the capacitor C32 are connected between the cathode of the diode D1 and the ground.
- the drain of the Nch transistor N3 is connected to the power supply terminal Ts via the resistor R2 and outputs a switching signal Vc.
- the source of the Nch transistor N3 is connected to the ground.
- the gate of the Nch transistor N3 is connected to the cathode of the diode D1 and receives the noise detection signal Vd.
- the mode switching circuit 4 includes inverters INV1 and INV2, a Pch transistor P4, and an Nch transistor N4.
- the inverters INV1 and INV2 correspond to first and second inverters, respectively.
- the Pch transistor P4 and the Nch transistor N4 correspond to first and second transistors, respectively, and the gate corresponds to a control terminal.
- the source of the Pch transistor P4 is connected to the power supply terminal Ts.
- the drain of the Pch transistor P4 is connected to the connection point between the first constant current source CS1 and the Pch transistor P1. That is, the Pch transistor P4 is connected in parallel with the first constant current source CS1.
- the drain of the Nch transistor N4 is connected to the connection point between the second constant current source CS2 and the Nch transistor N1.
- the source of the Nch transistor N4 is connected to the ground. That is, the Nch transistor N4 is connected in parallel with the second constant current source CS2.
- the input of the inverter INV1 receives the switching signal Vc.
- the output of the inverter INV1 is connected to the input of the inverter INV2 and the gate of the Nch transistor N4.
- the output of the inverter INV2 is connected to the gate of the Pch transistor P4. That is, the switching signal Vc is input to the gate of the Pch transistor P4, and the inverted signal of the switching signal Vc is input to the gate of the Nch transistor N4. Therefore, the Pch transistor P4 and the Nch transistor N4 are uniformly turned on / off.
- FIG. 3 is a timing chart illustrating the operation of the serial communication device 100 according to the first embodiment. Timings T11 to T14 in FIG. 3 correspond to the normal operation mode.
- the input signal Vi is input to the serial communication device 100 via the input terminal Tin.
- the voltage level of the input signal Vi is a low level.
- the Pch transistor P1 is on and the Nch transistor N1 is off. Therefore, the power supply voltage VDD is applied to the gate of the Nch transistor N2 via the first constant current source CS1 and the Pch transistor P1. Therefore, the drive voltage Vg is equal to the power supply voltage VDD.
- the Nch transistor N2 is turned on, and the communication line voltage Vs is approximately the ground voltage.
- the gate-source capacitance Cgs of the Nch transistor is in a state of being charged by applying the drive voltage Vg (power supply voltage VDD).
- the drive voltage Vg drops with a constant slope by the second constant current source CS2 of the slew rate control circuit 1. As a result, the drive voltage Vg drops more slowly than the input signal Vi.
- the Nch transistor N2 is turned off (timing T12). As a result, the communication line voltage Vs gradually rises to the external power supply voltage VB.
- the drive voltage Vg rises with a constant slope by the first constant current source CS1 of the slew rate control circuit 1. As a result, the drive voltage Vg rises more slowly than the input signal Vi.
- the Nch transistor N2 is turned on (timing T14). As a result, the communication line voltage Vs gradually drops to the ground voltage.
- the communication line noise Vn appears as a noise detection signal Vd via the capacitor C31 of the noise detection circuit 31 and the diode D1.
- the capacitor C31 cuts the DC component of the communication line noise Vn and passes only the high frequency component of the communication line noise Vn.
- Diode D1 rectifies the high-frequency component of the communication line noise Vn that has passed through the capacitor C31.
- the capacitor C32 smoothes the high frequency component of the rectified communication line noise Vn.
- the noise detection signal Vd becomes a signal that rises with the introduction of the communication line noise Vn, as shown in FIG.
- the noise detection signal Vd is expressed by the following equation (4).
- VD1 in Expression (4) indicates a voltage drop in the diode D1.
- Vd ((Vn / 2) -VD1) ⁇ (C31 / (C31 + C32)) ... (4)
- the operation of the mode switching circuit 4 before and after the communication line noise Vn is introduced into the communication line 5 will be described.
- the noise detection signal Vd is the ground potential
- the Nch transistor N3 is off. Therefore, since the switching signal Vc is a High signal, the Pch transistor P4 is off and the Nch transistor N4 is off. That is, it can be understood that the serial communication device 100 performs so-called slew rate control using a constant current source in the normal operation mode.
- the serial communication device 100 shifts to the malfunction prevention mode. Specifically, when the noise detection signal Vd exceeds the threshold value of the Nch transistor N3, the Nch transistor N3 is turned on. Therefore, since the switching signal Vc is a Low signal, the Pch transistor P4 is turned on and the Nch transistor N is turned on. That is, in the malfunction prevention mode, current flows into the output circuit 21 not only from the high-impedance first constant current source CS1 but also from the low-impedance Pch transistor P4. Similarly, current flows from the output circuit 21 not only from the high impedance second constant current source CS2 but also from the low impedance Nch transistor N4. At this time, the Pch transistor P4 and the Nch transistor N4 function as voltage sources.
- the mode switching circuit 4 can lower the impedance of the slew rate control circuit 1 in the malfunction prevention mode. Therefore, even if the high-frequency component of the communication line noise Vn is added to the drive voltage Vg, since the impedance of the slew rate control circuit 1 is low, the fluctuation range of the drive voltage Vg can be suppressed. This prevents the drive voltage Vg from fluctuating across the threshold value of the Nch transistor N2 even if the communication line noise Vn is applied to the communication line. Therefore, the timing at which the Nch transistor N2 at the unintended timing should be turned off originally. It is possible to prevent a communication error from being caused by turning on the power.
- the communication line voltage Vs changes more rapidly than in the normal operation mode. That is, when receiving the communication line noise Vn, the serial communication device 100 shifts to a malfunction prevention mode in which the influence of noise is reduced by lowering the slew rate control function. Needless to say, when the communication line noise Vn disappears after receiving the communication line noise Vn, the normal operation mode is restored from the malfunction prevention mode.
- FIG. 4 is a circuit diagram of a configuration of the serial communication device 200 according to the second embodiment.
- Serial communication device 200 has a configuration obtained by replacing the output circuit 21 of the serial communication device 100 to the output circuit 22.
- the output circuit 22 has a configuration in which a capacitor C21 is added between the gate of the Nch transistor N2 and the ground.
- the capacity C21 corresponds to a fourth capacity.
- the other configuration of the serial communication device 200 is the same as that of the serial communication device 100, the description thereof is omitted.
- the serial communication device 200 operates differently from the serial communication device 100 due to the addition of the capacity C21.
- the drive voltage Vg until the voltage drops to the ground voltage is expressed by the following equation (5).
- Vg VDD- (I2 / (Cdg + Cgs + C21)) ⁇ t ... (5)
- Vg (I1 / (Cdg + Cgs + C21)) ⁇ t ⁇ (6)
- the serial communication device 200 can appropriately adjust the output slew rate by adjusting the capacitance value.
- FIG. 5 is a timing chart showing the operation of the serial communication device 200 according to the second embodiment. Timings T21 to T25 in FIG. 5 correspond to timings T11 to T15 in FIG. 3, respectively. As shown in FIG. 5, by providing the capacitor C21, the change in the drive voltage Vg can be moderated as compared to the serial communication device 100 (see FIG. 3).
- ⁇ Vg Vn ⁇ Cdg / (Cgs + Cdg + C21) (7)
- the slew rate can be adjusted and the fluctuation of the drive voltage Vg when receiving the communication line noise can be suppressed.
- a serial communication device that can be provided can be provided. Furthermore, according to this configuration, it is possible to suppress a decrease in the slew rate control function even in the malfunction prevention mode.
- FIG. 6 is a circuit diagram of a configuration of the serial communication device 300 according to the third embodiment.
- Serial communication device 300 has a configuration obtained by replacing the output circuit 21 of the serial communication device 100 to the output circuit 23.
- the output circuit 23 has a configuration in which the Nch transistor N2 of the output circuit 21 is replaced with a Pch transistor P2.
- the output terminal Tout of the serial communication device 300 is connected to the ground via the communication line 5 and the load RL.
- the source of the Pch transistor P2 is connected to the power supply terminal Ts.
- the drain of the Pch transistor P2 is connected to the output terminal Tout.
- a drive voltage Vg is applied to the gate of the Pch transistor P2.
- a drain-gate capacitance Cdg exists between the drain and gate of the Pch transistor P2.
- a gate-source capacitance Cgs exists between the gate and source of the Pch transistor P2.
- the drain-gate capacitance Cdg and the gate-source capacitance Cgs are indicated by dotted lines. Since the other configuration of the serial communication device 300 is the same as that of the serial communication device 100, description thereof is omitted.
- FIG. 7 is a timing chart illustrating the operation of the serial communication device 300 according to the third embodiment. Timings T31 to T34 in FIG. 7 correspond to the normal operation mode.
- the input signal Vi is input to the serial communication device 300 via the input terminal Tin. Initially, the voltage level of the input signal Vi is Low. At this time, the Pch transistor P1 is turned on and the Nch transistor N1 is turned off. Therefore, the power supply voltage VDD is applied to the gate of the Pch transistor P2 via the first constant current source CS1 and the Pch transistor P1. Therefore, the drive voltage Vg is equal to the power supply voltage VDD. As a result, the Pch transistor P2 is turned off, and the communication line voltage Vs becomes the ground voltage. At this time, since the voltage across the gate-source capacitor Cgs of the Pch transistor P2 is the power supply voltage VDD, the gate-source capacitor Cgs is not charged.
- the drive voltage Vg drops more slowly than the input signal Vi.
- the Pch transistor P2 is turned on (timing T32).
- the communication line voltage Vs gradually rises to the external power supply voltage VB.
- the drive voltage Vg rises gradually compared to the input signal Vi, as in the serial communication device 100.
- the Pch transistor P2 is turned off (timing T14).
- the voltage of the communication line 5 gradually drops to the ground voltage.
- the serial communication device 300 can perform the same operation as the serial communication device 100 although the configuration of the output circuit is different from that of the serial communication device 100. Therefore, according to this configuration, it is possible to provide a serial communication device that can achieve the same effects as the serial communication device 100.
- FIG. 8 is a circuit diagram of a configuration of the serial communication device 400 according to the fourth embodiment.
- the serial communication device 400 has a configuration in which the noise detection circuit 31 of the serial communication device 100 is replaced with a noise detection circuit 34.
- the noise detection circuit 34 has a configuration in which a filter 30 is added between the capacitor C32 of the noise detection circuit 31 and the diode D1.
- the influence of noise in the serial communication device becomes most noticeable during the rising and falling transitions of the input signal.
- the voltage of the communication line 5 is changed depending on whether or not the drive voltage Vg that changes with a certain slope has reached the threshold value.
- the drive voltage Vg is a value in the vicinity of the threshold value, if it is affected by noise, there is a high risk of voltage fluctuations across the threshold value.
- the transistor of the output circuit may cause an unintended on / off operation.
- the noise that has a strong possibility of affecting the rising and falling of the output signal is a so-called harmonic noise having a frequency that is an integral multiple of the input signal in some cases.
- the harmonic noise is selectively passed by providing the filter 30.
- the filter 30 prevents passage of noise having a frequency other than harmonic noise.
- the serial communication device 400 shifts to the malfunction prevention mode only when receiving noise having a frequency with a high probability of malfunction.
- the filter 30 as described above can be easily realized by a digital filter or the like.
- a serial communication device that not only has the same effects as the serial communication device 100 but also shifts to the malfunction prevention mode only when receiving noise of a frequency with a high probability of malfunction. be able to. As a result, it is possible to avoid a decrease in the slew rate control function due to the shift to the malfunction prevention mode, and to reduce the chance that the serial communication device itself becomes a noise generation source.
- a capacitor can be added between the Pch transistor P2 of the output circuit 23 according to the third embodiment and the power supply terminal Ts.
- a capacitor can be added between the Nch transistor N2 of the output circuit 21 according to the fourth embodiment and the ground.
- the power supply terminal Ts, the ground, and the external power supply terminal Tos correspond to first to third power supply terminals, respectively, but the voltages supplied to the first to third power supply terminals are not limited to the above-described example. Any voltage can be used as long as the same functions as those of the serial communication devices 1 to 4 can be exhibited.
- the power supply voltage VDD and the external power supply voltage VB may be different voltages or the same voltage. Needless to say, the Pch transistor and the Nch transistor can be appropriately switched.
- the insertion position of the filter 30 of the noise detection circuit 34 according to the fourth embodiment is merely an example, and may be inserted at another position as long as the high frequency component of the communication line noise can be selected.
- a filter can be added to the detection circuits according to the second and third embodiments as in the fourth embodiment.
- a Pch transistor can be applied to the output circuit according to the fourth embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Quality & Reliability (AREA)
- Dc Digital Transmission (AREA)
- Electronic Switches (AREA)
Abstract
Description
本発明の実施の形態1にかかるシリアル通信装置100について説明する。図1は、実施の形態1にかかるシリアル通信装置100の構成を示すブロック図である。シリアル通信装置100は、スルーレート制御回路1、出力回路21、ノイズ検出回路31、モード切替回路4、入力端子Tin、出力端子Tout及び電源端子Tsを有する。入力端子Tinには、入力信号Viが供給される。また、電源端子Tsには、電源電圧VDDが供給される。出力端子Toutは、通信ライン5及び負荷RLを介して、外部電源端子Tosと接続される。通信ライン5の電圧を、通信ライン電圧Vsとする。外部電源端子Tosには、外部電源電圧VBが供給される。
Vg=VDD-(I2/Cgs)×t ・・・(1)
Vg=(I1/Cgs)×t ・・・(2)
ΔVg=Vn×Cdg/(Cgs+Cdg) ・・・(3)
Vd=((Vn/2)-VD1)×(C31/(C31+C32))
・・・(4)
本発明の実施の形態2にかかるシリアル通信装置200について説明する。図4は、実施の形態2にかかるシリアル通信装置200の構成を示す回路図である。シリアル通信装置200は、シリアル通信装置100の出力回路21を出力回路22に置換した構成を有する。出力回路22は、出力回路21と比べ、NchトランジスタN2のゲートとグランドとの間に容量C21を追加した構成を有する。容量C21は、第4の容量に相当する。シリアル通信装置200のその他の構成は、シリアル通信装置100と同様であるので、説明を省略する。
Vg=VDD-(I2/(Cdg+Cgs+C21))×t
・・・(5)
Vg=(I1/(Cdg+Cgs+C21))×t ・・・(6)
ΔVg=Vn×Cdg/(Cgs+Cdg+C21) ・・・(7)
本発明の実施の形態3にかかるシリアル通信装置300について説明する。図6は、実施の形態3にかかるシリアル通信装置300の構成を示す回路図である。シリアル通信装置300は、シリアル通信装置100の出力回路21を出力回路23に置換した構成を有する。出力回路23は、出力回路21のNchトランジスタN2を、PchトランジスタP2に置換した構成を有する。シリアル通信装置300の出力端子Toutは、通信ライン5及び負荷RLを介して、グランドと接続される。
本発明の実施の形態4にかかるシリアル通信装置400について説明する。図8は、実施の形態4にかかるシリアル通信装置400の構成を示す回路図である。シリアル通信装置400は、シリアル通信装置100のノイズ検出回路31を、ノイズ検出回路34に置換した構成を有する。ノイズ検出回路34は、ノイズ検出回路31の容量C32とダイオードD1との間に、フィルタ30を追加した構成を有する。
4 モード切替回路
5 通信ライン
21~23、52 出力回路
30 フィルタ
31、34 ノイズ検出回路
100、200、300、400 シリアル通信装置
500 スルーレート出力回路
C21、C31、C32 容量
C31 容量
Cdg ドレイン-ゲート間容量
Cgs ゲート-ソース間容量
CS1 第1の定電流源
CS2 第2の定電流源
CS51、CS52 定電流源
D1 ダイオード
INV1、INV2、INV51、INV52 インバータ
N1~N4 Nchトランジスタ
P1、P2、P4 Pchトランジスタ
Q0 出力トランジスタ
Q1 Pチャネルトランジスタ
Q2 Nチャネルトランジスタ
R1、R2 抵抗
RL 負荷
Tin 入力端子
Tos 外部電源端子
Tout 出力端子
Ts 電源端子
VB 外部電源電圧
Vcc、Vdd 電源線
Vd ノイズ検出信号
VDD 電源電圧
Vg 駆動電圧
Vgate ゲート電圧
Vi 入力信号
Vin 入力パルス信号
Vn 通信ラインノイズ
Vout 出力電圧
Claims (16)
- 所定のインピーダンスを有し、入力信号に応じて出力から一定の電流を供給するスルーレート制御回路と、
前記スルーレート制御回路からの前記一定の電流により充放電される第1の容量を有し、前記第1の容量が出力する駆動電圧に応じたデジタル信号を出力端子から出力する出力回路と、
前記出力端子から伝搬するノイズを検出し、検出結果に応じた切替信号を出力する検出回路と、
前記切替信号に応じて、前記スルーレート制御回路のインピーダンスを前記所定のインピーダンスよりも小さい値に切り替える切替回路と、を備える、
シリアル通信装置。 - 前記スルーレート制御回路は、
前記入力信号に応じてオン/オフする第1の定電流源と、
前記入力信号に応じて前記第1の電流源に対して相補的にオン/オフする第2の定電流源と、を備え、
前記第1の容量は、前記第1の定電流源を介して第1の電源端子と接続され、又は、前記第2の定電流源を介して前記第1の電源と異なる電圧が供給される第2の電源端子と接続されることにより充放電されることを特徴とする、
請求項1に記載のシリアル通信装置。 - 前記切替回路は、
前記第1の定電流源に並列接続される第1のトランジスタと、
前記第2の定電流源に並列接続される第2のトランジスタと、を備え、
前記第1及び第2のトランジスタは、前記検出回路が前記ノイズを検出した場合にオンになることを特徴とする、
請求項2に記載のシリアル通信装置。 - 前記第1のトランジスタは、前記第2のトランジスタと異なるチャネル型を有し、
前記第1のトランジスタの制御端子には、前記切替信号が供給され、
前記第2のトランジスタの制御端子には、前記切替信号の反転信号が供給されることを特徴とする、
請求項3に記載のシリアル通信装置。 - 前記切替回路は、
前記切替信号が入力され、出力が前記第2のトラジスタの前記制御端子と接続される第1のインバータと、
入力が前記第1のインバータの前記出力と接続され、出力が前記第1のトランジスタの前記制御端子と接続される第2のインバータと、を更に備えることを特徴とする、
請求項4に記載のシリアル通信装置。 - 前記検出回路は、
一端が前記出力端子と接続される第2の容量と、
第1の端子が前記第2の容量の他端と接続される整流器と、
一端が前記整流器の第2の端子と接続され、他端が前記第2の電源端子と接続される、第3の容量及び第1の抵抗と、
前記第1の電源端子と前記第2の電源端子との間に縦続接続される第2の抵抗及び第3のトランジスタと、を備え、
前記第3のトランジスタの制御端子は、前記整流器の前記第2の端子と接続され、
前記第2の抵抗と前記第3のトランジスタとの接続点から、前記切替信号を出力する、
請求項3乃至5のいずれか一項に記載のシリアル通信装置。 - 前記整流器は、アノードが前記第2の容量と接続され、カソードから前記第3のトランジスタの前記制御端子へ検出信号を出力するダイオードであることを特徴とする、
請求項6に記載のシリアル通信装置。 - 前記検出回路は、
前記出力端子を介して伝搬する前記ノイズの交流成分のうち、所定の周波数の交流成分のみを通過させるフィルタをさらに備えることを特徴とする、
請求項6又は7に記載のシリアル通信装置。 - 前記フィルタは、前記第2の容量と前記整流器との間に挿入されることを特徴とする、
請求項8に記載のシリアル通信装置。 - 前記出力回路は、
前記出力端子と前記第2の電源端子との間に接続され、制御端子が前記スルーレート制御回路の前記出力と接続される第4のトランジスタを備え、
前記第1の容量は、前記第4のトランジスタの前記制御端子と前記出力端子側の端子との間の容量であり、
前記出力端子は、負荷を介して第3の電源端子と接続されることを特徴とする、
請求項3乃至9のいずれか一項に記載のシリアル通信装置。 - 前記出力回路は、
前記第2の電源端子と前記第4のトランジスタの前記制御端子との間に接続される第4の容量を更に備えることを特徴とする、
請求項10に記載のシリアル通信装置。 - 前記第3の電源端子は、前記第1の電源端子と同じ電圧が供給されることを特徴とする、
請求項10又は11に記載のシリアル通信装置。 - 前記第3の電源端子は、前記第2の電源端子と同じ電圧が供給されることを特徴とする、
請求項10又は11に記載のシリアル通信装置。 - 出力端子に接続された負荷を駆動する出力回路と、
入力信号に応じて前記出力回路を駆動するための駆動信号を生成し、前記駆動信号のスルーレートを制御するスルーレート制御回路と、
前記出力端子から出力される出力信号に伝播するノイズを検出するノイズ検出回路と、
前記ノイズ検出回路が前記ノイズを検出した場合には、前記スルーレート制御回路のインピーダンスを、前記ノイズを検出していない場合に比べて小さくなるように切り替える切替回路と、を備える、
シリアル通信装置。 - 前記スルーレート制御回路は、前記切替回路によってスルーレートが切り替えられることを特徴とする、
請求項14に記載のシリアル通信装置。 - 前記スルーレート制御回路は、前記ノイズを検出していない期間は、電流源を用いて前記出力回路を駆動し、前記ノイズを検出する期間は、前記切替回路によって前記電流源に加えて電圧源を用いて前記出力回路を駆動することを特徴とする、
請求項14に記載のシリアル通信装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/983,882 US8873648B2 (en) | 2011-03-31 | 2012-02-24 | Serial communication apparatus |
EP12764221.3A EP2693640B1 (en) | 2011-03-31 | 2012-02-24 | Serial communication device |
EP17183771.9A EP3267584B1 (en) | 2011-03-31 | 2012-02-24 | Serial communication device |
JP2013507101A JP5466789B2 (ja) | 2011-03-31 | 2012-02-24 | シリアル通信装置 |
US14/489,650 US9191249B2 (en) | 2011-03-31 | 2014-09-18 | Serial communication apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011078263 | 2011-03-31 | ||
JP2011-078263 | 2011-03-31 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/983,882 A-371-Of-International US8873648B2 (en) | 2011-03-31 | 2012-02-24 | Serial communication apparatus |
US14/489,650 Continuation US9191249B2 (en) | 2011-03-31 | 2014-09-18 | Serial communication apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012132215A1 true WO2012132215A1 (ja) | 2012-10-04 |
Family
ID=46930011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/001277 WO2012132215A1 (ja) | 2011-03-31 | 2012-02-24 | シリアル通信装置 |
Country Status (4)
Country | Link |
---|---|
US (2) | US8873648B2 (ja) |
EP (2) | EP3267584B1 (ja) |
JP (1) | JP5466789B2 (ja) |
WO (1) | WO2012132215A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107078097A (zh) * | 2014-10-21 | 2017-08-18 | 株式会社电装 | 保护电路 |
JP2017158010A (ja) * | 2016-03-01 | 2017-09-07 | 株式会社デンソー | 信号出力回路 |
WO2019054051A1 (ja) * | 2017-09-13 | 2019-03-21 | パナソニックIpマネジメント株式会社 | ゲート駆動回路、および、パワースイッチングシステム |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9621138B1 (en) * | 2015-11-05 | 2017-04-11 | Nxp B.V. | Slew control using a switched capacitor circuit |
KR20170114643A (ko) * | 2016-04-05 | 2017-10-16 | 엘에스산전 주식회사 | Plc용 통신 시스템 |
US10135432B2 (en) * | 2016-09-07 | 2018-11-20 | Texas Instruments Incorporated | Methods and apparatus for low current control for a power connection |
US10181847B2 (en) | 2017-02-01 | 2019-01-15 | Texas Instruments Incorporated | Ring amplitude measurement and mitigation |
US10594315B2 (en) * | 2017-02-01 | 2020-03-17 | Texas Instruments Incorporated | Switching rate monitoring and control |
CN108667453B (zh) * | 2018-04-09 | 2021-08-31 | 上海集成电路研发中心有限公司 | 一种压摆率可调的低功耗驱动器电路 |
JP2021129255A (ja) * | 2020-02-17 | 2021-09-02 | ミツミ電機株式会社 | パルス信号送信回路 |
EP4131780A1 (en) * | 2021-08-06 | 2023-02-08 | Nxp B.V. | Multi-purpose output circuitry |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11346147A (ja) | 1998-06-02 | 1999-12-14 | Nec Corp | スルーレート出力回路 |
JP2000209078A (ja) * | 1999-01-14 | 2000-07-28 | Fujitsu Ltd | 半導体装置 |
JP2008271224A (ja) * | 2007-04-20 | 2008-11-06 | Nec Electronics Corp | 出力回路 |
JP2009111470A (ja) | 2007-10-26 | 2009-05-21 | Denso Corp | ドライブ回路 |
JP2010028357A (ja) * | 2008-07-17 | 2010-02-04 | Nec Electronics Corp | 出力バッファ回路 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH077404A (ja) * | 1992-11-03 | 1995-01-10 | Texas Instr Deutschland Gmbh | トランジスタ駆動回路配置 |
US6061551A (en) * | 1998-10-21 | 2000-05-09 | Parkervision, Inc. | Method and system for down-converting electromagnetic signals |
US6208177B1 (en) * | 1999-05-27 | 2001-03-27 | Lucent Technologies Inc. | Output buffer having immediate onset of gentle state transition |
US7253655B2 (en) * | 2005-09-01 | 2007-08-07 | Micron Technology, Inc. | Output driver robust to data dependent noise |
US7710169B2 (en) * | 2006-10-20 | 2010-05-04 | Nec Electronics Corporation | Semiconductor integrated circuit controlling output impedance and slew rate |
DE102006058889B3 (de) * | 2006-12-04 | 2008-05-21 | Atmel Germany Gmbh | Verfahren zur Flankenformung von Signalen und Sender-/Empfänger-Baustein für ein Bussystem |
US8901904B2 (en) * | 2009-04-15 | 2014-12-02 | Linear Technology Corporation | Voltage and current regulators with switched output capacitors for multiple regulation states |
US7940076B2 (en) * | 2009-06-06 | 2011-05-10 | Texas Instruments Incorporated | Local interconnect network transceiver driver |
US8072721B2 (en) * | 2009-06-10 | 2011-12-06 | Hong Kong Applied Science And Technology Research Institute Co., Ltd. | ESD protection using a capacitivly-coupled clamp for protecting low-voltage core transistors from high-voltage outputs |
JP2011101266A (ja) * | 2009-11-06 | 2011-05-19 | Elpida Memory Inc | 半導体装置及び情報処理システム |
US9196207B2 (en) * | 2011-05-03 | 2015-11-24 | Apple Inc. | System and method for controlling the slew rate of a signal |
-
2012
- 2012-02-24 WO PCT/JP2012/001277 patent/WO2012132215A1/ja active Application Filing
- 2012-02-24 JP JP2013507101A patent/JP5466789B2/ja not_active Expired - Fee Related
- 2012-02-24 EP EP17183771.9A patent/EP3267584B1/en active Active
- 2012-02-24 EP EP12764221.3A patent/EP2693640B1/en active Active
- 2012-02-24 US US13/983,882 patent/US8873648B2/en active Active
-
2014
- 2014-09-18 US US14/489,650 patent/US9191249B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11346147A (ja) | 1998-06-02 | 1999-12-14 | Nec Corp | スルーレート出力回路 |
JP2000209078A (ja) * | 1999-01-14 | 2000-07-28 | Fujitsu Ltd | 半導体装置 |
JP2008271224A (ja) * | 2007-04-20 | 2008-11-06 | Nec Electronics Corp | 出力回路 |
JP2009111470A (ja) | 2007-10-26 | 2009-05-21 | Denso Corp | ドライブ回路 |
JP2010028357A (ja) * | 2008-07-17 | 2010-02-04 | Nec Electronics Corp | 出力バッファ回路 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2693640A4 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107078097A (zh) * | 2014-10-21 | 2017-08-18 | 株式会社电装 | 保护电路 |
JP2017158010A (ja) * | 2016-03-01 | 2017-09-07 | 株式会社デンソー | 信号出力回路 |
WO2017149956A1 (ja) * | 2016-03-01 | 2017-09-08 | 株式会社デンソー | 信号出力回路 |
CN108702149A (zh) * | 2016-03-01 | 2018-10-23 | 株式会社电装 | 信号输出电路 |
CN108702149B (zh) * | 2016-03-01 | 2022-03-22 | 株式会社电装 | 信号输出电路 |
WO2019054051A1 (ja) * | 2017-09-13 | 2019-03-21 | パナソニックIpマネジメント株式会社 | ゲート駆動回路、および、パワースイッチングシステム |
JP2019054349A (ja) * | 2017-09-13 | 2019-04-04 | パナソニックIpマネジメント株式会社 | ゲート駆動回路、および、パワースイッチングシステム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2012132215A1 (ja) | 2014-07-24 |
EP2693640B1 (en) | 2017-09-13 |
US8873648B2 (en) | 2014-10-28 |
EP3267584B1 (en) | 2019-12-25 |
EP3267584A1 (en) | 2018-01-10 |
EP2693640A4 (en) | 2014-10-01 |
US20130315294A1 (en) | 2013-11-28 |
EP2693640A1 (en) | 2014-02-05 |
US9191249B2 (en) | 2015-11-17 |
JP5466789B2 (ja) | 2014-04-09 |
US20150043663A1 (en) | 2015-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5466789B2 (ja) | シリアル通信装置 | |
US11876510B2 (en) | Load driver | |
KR102040692B1 (ko) | 공급 전압을 안정화시키기 위한 디바이스 및 방법 | |
US9473127B1 (en) | Input/output (I/O) driver | |
US8692577B2 (en) | Driver circuit | |
US8405371B2 (en) | Voltage regulator with ripple compensation | |
US7940102B2 (en) | Edge rate control for I2C bus applications | |
US20160026197A1 (en) | Power supply circuit | |
US7456649B2 (en) | Open drain output circuit | |
JP7350702B2 (ja) | 駆動制御回路 | |
US20060158224A1 (en) | Output driver with feedback slew rate control | |
EP3046239B1 (en) | Current generating circuit, current generating method, charge pumping circuit and charge pumping method | |
US20110267109A1 (en) | Pulse width filter | |
CN110611497B (zh) | 比较器以及振荡电路 | |
US20140300191A1 (en) | Semiconductor integrated circuit and method of controlling power supply | |
US9705490B2 (en) | Driver circuit for single wire protocol slave unit | |
US11184015B2 (en) | Reference signals generated using internal loads | |
US7548098B2 (en) | Output buffer circuit and method with self-adaptive driving capability | |
JP5598377B2 (ja) | 出力回路 | |
KR20090048888A (ko) | 반도체 메모리 장치의 듀티 보정 회로 | |
JP5118989B2 (ja) | マルチプレクサ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12764221 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13983882 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2013507101 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2012764221 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012764221 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |