WO2012130102A1 - 用于快速恒温检测基因及基因突变的聚合酶链反应方法 - Google Patents

用于快速恒温检测基因及基因突变的聚合酶链反应方法 Download PDF

Info

Publication number
WO2012130102A1
WO2012130102A1 PCT/CN2012/072929 CN2012072929W WO2012130102A1 WO 2012130102 A1 WO2012130102 A1 WO 2012130102A1 CN 2012072929 W CN2012072929 W CN 2012072929W WO 2012130102 A1 WO2012130102 A1 WO 2012130102A1
Authority
WO
WIPO (PCT)
Prior art keywords
primer
gene
dna
target gene
reaction
Prior art date
Application number
PCT/CN2012/072929
Other languages
English (en)
French (fr)
Inventor
李立新
杨毅
Original Assignee
Li Lixin
Yang Yi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Li Lixin, Yang Yi filed Critical Li Lixin
Publication of WO2012130102A1 publication Critical patent/WO2012130102A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]

Definitions

  • the present invention relates to the field of biotechnology and medicine, and in particular to a simple, sensitive and rapid real-time nucleic acid amplification polymerase chain reaction thermostat gene amplification method, and a special primer set and kit for the method. Background technique
  • A. Clinical significance of genetic testing Genetic testing is mainly used for the diagnosis of diseases, prevention of diseases and guidance for individualized medication. For example, the diagnosis of Mycobacterium tuberculosis infection has previously relied mainly on sputum, feces or blood culture. The entire inspection process needs to be more than two weeks. Now, using genetic diagnosis methods, not only the sensitivity is greatly improved, but also within one hour. result.
  • the prevention of disease is to detect the genotype of a healthy person, predict the risk of an individual's illness, and provide life guidance to the subject to avoid the occurrence of the disease. For example, colon cancer, APC gene, DCC gene and P53 gene defects are closely related to the occurrence of intestinal cancer. People with defects in these genes have a high risk of developing colon cancer.
  • the UGT1A1 genotype test has clear clinical significance for clinically correct drug use, reducing toxicity and side effects, and improving efficacy. Therefore, from a clinical point of view, there is an urgent need in the art to develop a simpler, more sensitive and rapid method for detecting genes and primers and kits suitable for the method.
  • Gene diagnosis is a method of using modern molecular biology and molecular genetics to directly detect whether a gene structure and its expression level are normal, and thus diagnose a disease.
  • the target of genetic diagnosis is DNA or RNA.
  • the former reflects the state of existence of the gene, and the latter reflects the expression state of the gene.
  • the traditional diagnostic method is mainly based on the phenotypic change of the disease.
  • the phenotypic trait of the biological individual is the embodiment of the gene under certain conditions. The change of the gene can lead to the change of various phenotypes and the disease.
  • the detection of genetic mutations is of great importance for the pathogenesis study, diagnosis, susceptibility assessment, patient drug selection, and/or prognosis assessment of genetic mutation-related diseases.
  • EGFR and KRAS are based on the case.
  • EGFR and KRAS gene targeted therapy has become a drug for the treatment of tyrosine kinase inhibitor (TKI) in the treatment of non-small cell lung cancer (NSCLC), Iressa and Tarceva. Hot spot.
  • TKI tyrosine kinase inhibitor
  • NSCLC non-small cell lung cancer
  • Iressa and Tarceva Hot spot.
  • the EGFR gene mutation rate is 33%, and about 90% of the mutation site is located in exon 19 and exon 21 (such as L858R;) encoding the tyrosine kinase domain, which is a heterozygous mutation.
  • the mutated expression of EGFR has important guiding significance for the selection of tyrosine kinase inhibitors.
  • the specimens used to detect EGFR gene mutations are mostly surgically resected tumor tissue specimens, but it is difficult for advanced patients to obtain tumor tissue.
  • the obtained tumor tissue substitute specimens are used to detect EGFR gene mutations, and screening patients suitable for tyrosine kinase inhibitor treatment to achieve individualized treatment is very important for clinical work.
  • the KRAS gene is one of the important molecules in the EGFR signaling pathway. It is a 21kD protein located at position pl2.1 of chromosome 12. Mutant KRAS does not rely on the activation of stimuli, ie the mutant KRAS gene is not affected by the upstream EGFR gene status and is always activated. Only the wild-type KRAS gene is affected by the upstream EGFR signal, which is also a mutant KRAS.
  • the theoretical basis for the treatment of gene patients against EGFR drugs (such as Erbitux, Vectibix, Panitumumab, etc.). Point mutations in the KRAS gene are mainly concentrated in specific amino acid codons (12th, 13, 61 codon), accounting for more than 90% of all mutations.
  • Mutations in the KRAS gene can cause cells to escape apoptosis, and this abnormality is higher in tumors such as pancreatic cancer, colorectal cancer, and lung cancer.
  • pancreatic cancer the incidence of point mutations in the KRAS gene is as high as 90% or more.
  • KRAS gene mutations has positive significance in judging the occurrence and development of these tumors, prognosis, and understanding the therapeutic effects of tumors. Detection of KRAS gene mutation in normal human blood suggests tumor susceptibility; if KRAS gene mutation is detected in patients with benign tumors, it may suggest malignant transformation; KRAS gene mutation positive indicates the possibility of cancer recurrence, prognosis Poor; patients with lung cancer and colorectal cancer without KRAS mutations have obvious curative effects with anti-EGFR targeted drugs. At present, KRAS gene mutation detection has been written into the latest edition of the NCCN Clinical Practice Guide for Colorectal Cancer.
  • colorectal cancer patients who are effective against anti-EGFR targeted drugs can be screened to help clinicians choose the most effective treatment for cancer patients. Under normal circumstances, about 60% of KRAS genes in colorectal cancer patients are wild-type. If they all receive KRAS gene mutation detection, the efficiency can be significantly increased through individualized comprehensive treatment.
  • Gene mutations mainly refer to heritable mutations in DNA molecules, which are changes in the structure or sequence of bases in a gene.
  • the form of the gene mutation can be a variety of nucleic acid substitutions, insertions, deletions, and overlaps.
  • PCR polymerase chain reaction amplification technology
  • PCR combined with nucleic acid sequence analysis This is a PCR-based nucleic acid sequence determination method, which is the basis for all other rapid and simple detection of mutation technology, and is the most direct and basic method for detecting point mutations.
  • the template for sequencing is mainly derived from the traditional PCR technology.
  • sequence analysis is needed to determine the type of mutation and the location of the mutation, and the efficiency can reach 100%.
  • the basic principle of the sequencing method is Sanger The dideoxy DNA strand end termination method of the invention.
  • This direct sequencing is a classic method for detecting gene mutations, but has low sensitivity and can only be detected when the variant gene accounts for more than 25% of the total gene.
  • Mutant enrichment PCR method utilizes a known restriction endonuclease site (such as the BstNI site of the 12th codon of the KRAS gene) in a coding region of an oncogene or tumor suppressor gene; Secondary nested PCR to amplify a DNA fragment including the presence of an enzyme site coder (for example, a DNA fragment including the KRAS 12 codon is digested with the corresponding endonuclease between the two amplification reactions.
  • the wild type can not enter the second PCR amplification because it is digested, and the mutant can enter the second PCR amplification and obtain the product enrichment.
  • the sensitivity of the method is about 10%.
  • DNA chip technology This method is a new DNA analysis technology developed after the 1990s. It combines advanced technologies such as integrated circuit computers, laser confocal scanning, fluorescent labeling probes and DNA synthesis.
  • the basic principle is that many oligonucleotides of known sequence are arranged on one integrated circuit board, overlap each other by 1 base, and cover all the genes to be detected, and fluorescently labeled normal DNA and mutations.
  • DNA is hybridized with two DNA chips. Since there is at least one base difference, normal and mutant DNA will have different hybridization maps.
  • the fluorescence signals generated by the two DNA molecules can be detected by a co-aggregation microscope. Whether there is a mutation.
  • the method is fast and simple, and the degree of automation is high.
  • Amplification Refractory Mutation System For the detection of known mutant genes.
  • the method is based on the method of primer 3' mismatch PCR, such as the mismatch of the 3' end of the primer and the template will result in a decrease in Taq enzyme amplification efficiency.
  • the method consists of designing two 5' primers, one complementary to normal DNA and one complementary to the mutated DNA. For homozygous mutations, the two primers and the 3' primer are added separately for two parallel PCRs, and the mutated DNA is completed. Complementary primers can be extended and PCR amplified products obtained. If the mismatch is located at the 3' end of the primer, the PCR cannot be extended.
  • the ARMS technique uses the principle of multiplex PCR to detect two or more allelic mutation sites simultaneously in the same system, but the advantage is that the reaction will selectively amplify. Single-stranded gene. According to the literature, the sensitivity of the technology has been improved to around 1%.
  • the main object of the present invention is to provide a simple, sensitive and rapid method for gene detection.
  • Ben Another object of the invention is to provide primers suitable for use in the method, as well as kits comprising primers and other reagents suitable for use in the methods of the invention.
  • thermostatic polymerase chain reaction method for genetic testing comprising:
  • the gene detection result is obtained by comparing the constant temperature gene amplification reaction data or map of the DNA to be detected with a positive control.
  • the DNA sample to be tested is derived from: blood, tissue or tissue sections, cultured cells.
  • the DNA sample to be tested is derived from: human cells and peripheral blood (such as whole blood, serum or plasma;).
  • the DNA sample to be tested can be obtained from: a human freshly obtained or fixed surgical sample, an endoscopic biopsy sample, or a perforated pleural fluid sample.
  • the DNA sample to be tested is derived from: a human, an animal or a pathogen.
  • the target gene is selected from the group consisting of: GFR, KMS, BRAF, PI3K, ALK, C-Kit, PDGFR, and ⁇ RL genes or mutants thereof.
  • the target gene is a wild type gene or a mutant gene.
  • the mutant gene is a homozygous mutation or a heterozygous mutation, and the mutation region is located in the amplified gene fragment.
  • the primer is a synthetic nucleic acid primer or a primer for peptide nucleic acid synthesis.
  • the reaction system comprises: DNA, water, MgCl 2 , 4 dNTPs, a buffer, and Bacillus adipose polymerase.
  • the Bacillus stearatus polymerase is used in an amount of 2 to 12 U, preferably 4 to 10 U. More preferably, it is 4 to 6 U.
  • the Bacillus aureus polymerase is purchased from NEB.
  • the reaction system further comprises: a nucleic acid dye (; preferably SYBR Green I) or a labeled molecule.
  • the denaturation of the double-stranded DNA is carried out at a temperature of 90 to 110 ° C, preferably 98 ⁇ 0.5 ° C, for 3 to 10 minutes, preferably 5 minutes.
  • the reaction is carried out at a temperature of 55 to 65 ° C for 20 to 60 minutes. In a preferred embodiment, the reaction is carried out at a temperature of 60 ⁇ 0.5 ° C for a reaction time of 20 to 50 minutes.
  • the reaction data or map is obtained by analyzing a label bound to DNA, preferably by a method selected from the group consisting of: quantitative analysis of a biomarker or a fluorescent label Quantitative analysis.
  • the genetic test result is selected from: determining whether a target gene is present in the sample, whether a mutation is present in the target gene, or whether the mutation is a heterozygous mutation or a homozygous mutation.
  • the positive control is: a known target gene sequence, and/or a sequence comprising a known mutation, which can be obtained by artificial synthesis, genetically engineered, or by the art. Conventional methods are isolated from biological samples.
  • the method of the present invention is for determining the presence or absence of a target gene sequence, and the positive control is a target gene sequence, and if the result continues to show a positive signal (ie, a signal identical or similar to the positive control occurs), Indicates the presence of a target gene sequence in the sample.
  • the positive control is a target gene sequence comprising the specific mutation, and if the result of the mutation target primer reaction continuously shows a positive signal, the target is indicated There is a gene mutation in the gene; if the result does not show a positive signal, it indicates that there is no gene mutation in the target gene.
  • the method of the present invention is for determining whether the mutation in the target gene is a homozygous mutation or a heterozygous mutation, and the positive control is a target gene sequence comprising the specific mutation and a normal target gene sequence not comprising the mutation, respectively.
  • the detection result shows that there is no normal gene target primer reaction signal and only the mutation target primer reaction result, it indicates that there is a homozygous mutation in the target gene; when the result shows the normal gene target primer reaction result and the mutation target primer reaction result When present, it indicates that the gene mutation present in the target gene is a heterozygous mutation.
  • a primer set comprising:
  • kits comprising: each member of the primer set of the invention, alone or mixed; one or more containers.
  • the kit further optionally comprises one or more selected from the group consisting of: DNA, water, MgCl 2 , 4 dNTPs, nucleic acid dyes, PCR buffers, and Bacillus faecalis polymerization. Enzyme.
  • the amount of the Bacillus streptococci polymerase is 2 to 12 U, preferably 4 to 10 U, more preferably 4 to 6 U.
  • the nucleic acid dye is any which binds to dsDNA, preferably SYBR Green.
  • the primer set of the invention is provided for the preparation of a polymerization for constant temperature gene amplification or detection. Use in a kit for enzyme chain reaction.
  • the kit is as previously described. In another preferred embodiment, the kit is for detecting the presence or absence of a target gene in a sample, whether a mutation is present in the target gene, or whether the mutation in the target gene is a homozygous mutation or a heterozygous mutation.
  • the kit is for use in the diagnosis, susceptibility assessment, patient medication selection, and/or prognosis assessment of a genetic or genetic mutation related disease.
  • the genetic or genetic mutation-related disease is selected from the group consisting of: cancer, blood disease, or congenital genetic disease, and the cancer is preferably: rectal cancer, gastrointestinal cancer, non-small cell lung cancer, gastrointestinal A tumor, leukemia (preferably chronic myeloid leukemia), adenocarcinoma, and the like.
  • a primer set of the invention in a polymerase chain reaction selected from the group consisting of: polymerase chain reaction amplification, loop-mediated thermostatic polymerase chain reaction amplification Increased, symmetric or asymmetric single-strand polymerase chain reaction amplification.
  • a polymerase chain reaction selected from the group consisting of: polymerase chain reaction amplification, loop-mediated thermostatic polymerase chain reaction amplification Increased, symmetric or asymmetric single-strand polymerase chain reaction amplification.
  • Figure 1 Typical fluorescence peaks of positive results obtained using the nucleic acid gene isothermal amplification method of the present invention, wherein: the abscissa is the reaction time (unit: minute;), and the ordinate is the normalized fluorescence intensity value.
  • Fig. 2 is a typical fluorescence peak diagram of the negative result obtained by the nucleic acid gene isothermal amplification method of the present invention, wherein: the abscissa is the reaction time (unit: minute;), and the ordinate is the normalized fluorescence intensity value.
  • Figure 3 Results of detection of different copy number DNA using the nucleic acid gene isothermal amplification method of the present invention, wherein: A: 3000 copies; B: 600 copies; C: 300 copies; D: 60 copies; E: 30 copies; F: 6 copies; G: 3 copies; H: 0 copies;
  • the abscissa is the reaction time (unit: minute), and the ordinate is the normalized fluorescence intensity value.
  • Figure 4 Results of detection of different copy number DNA using the prior art fluorescent probe real-time PCR amplification method, wherein: A: 3000 copies; B: 600 copies; C: 300 copies; D: 60 copies; E: 30 copies; F: 6 copies; G: 3 copies; H: 0 copies;
  • the abscissa is the number of reaction cycles, and the ordinate is the normalized fluorescence intensity value.
  • the inventors have developed a simple, sensitive and rapid nucleic acid amplification polymerase chain reaction thermostat gene amplification technology method, which can be widely used in basic research and clinical diagnosis to detect blood and cells. , normal genes and/or mutant genes in the tissue.
  • the method, the primer and the kit of the invention can be widely applied to the detection of wild type or mutant samples of specific DNA genes in various biological samples such as blood and cell tissues in basic research and clinical diagnosis (including but not limited to EGFR, KRAS, Wild-type or mutant genes such as BRAF, PI3K, ALK, C-Kit, PDGFR, ABL or other oncogenes can also be used for isothermal amplification of specific genes.
  • Such applications include, but are not limited to, 1) early diagnosis of cancer in the clinic; genetic diagnosis; prenatal genetic diagnosis of genetic diseases; microbial; blood source screening, etc., such as determination of all pathogen genes in viruses, bacteria, parasites, etc.
  • Detection of bacteria and its TB resistance genes HBV; HCV; detection of Chlamydia trachomatis and Aspergillus; Chromosome detection of Down syndrome and Prader-Willis syndrome in genetic diseases; Other diseases such as thalassemia, G6PD deficiency and Detection of hemophilia, hemophilia A gene, Huntington's disease, fragile X syndrome, Duchenne muscular dystrophy, spinal muscular atrophy, etc.; 2) biological defense aspects, such as detection of Listeria monocytogenes , Bacillus anthracis, Brucella, Tularemia, etc.; 3) Food quarantine, for example, for the detection of Salmonella, Shigella, Staphylococcus aureus, etc. in food; 4) Animal and plant inspection For example, for the detection of avian influenza virus, Streptococcus suis, porcine blue-ear disease virus, foot-and-mouth disease virus and other blood source screening;
  • nucleic acid gene isothermal amplification method As used herein, the terms “nucleic acid gene isothermal amplification method", “nucleic acid polymerase reaction”, “polymerase chain reaction of the present invention” are used interchangeably, and both refer to the use of a specific primer set in the present invention at a constant temperature. A nucleic acid amplification reaction is carried out.
  • the polymerase chain reaction method for constant temperature gene amplification of the present invention comprises the following steps:
  • the polymerase chain reaction is carried out at a constant temperature of 50 to 70 ° C, preferably 55 to 65 ° C.
  • the gene detection result is obtained by comparing the constant temperature gene amplification reaction data or map of the DNA to be detected with a positive control.
  • the reaction data or map can be obtained by analyzing a label bound to DNA, preferably by a method selected from the group consisting of quantitative analysis of a biomarker or quantitative analysis of a fluorescent label.
  • a method selected from the group consisting of quantitative analysis of a biomarker or quantitative analysis of a fluorescent label preferably by a method selected from the group consisting of quantitative analysis of a biomarker or quantitative analysis of a fluorescent label.
  • One of ordinary skill in the art can employ a variety of labels and labeling methods known in the art that can be used to label DNA, as well as various methods of detecting labels that bind to DNA as known in the art.
  • Procedure 1 Sample collection: Samples were obtained from human whole blood, tissues collected through skin perforation, tissues collected during surgery, and frozen and paraffin-embedded tissues as sources of DNA testing.
  • Genomic DNA extraction Genomic DNA is extracted according to methods known in the art or using commercially available kits (for example, whole blood DNA is extracted using a commercially available spin column or a solution type whole blood extraction kit).
  • DNA purity and concentration detection DNA purity and concentration are detected (for example, by spectrophotometry) and denatured.
  • Step 4 Primer design: Mainly design 5 different primers and probes for the target gene around 5 different regions around the amplification point: external primer based on the 3' end of the target gene and transition primer on the inner side of the external primer, 5' end The outer primer and the folded primer on the inner side of the outer primer, and the excitation amplification primer in the middle portion.
  • Step 5 Polymerase chain reaction reaction system preparation: preparation in the polymerase chain amplification reaction tube
  • Reaction system for reagents such as 5 different primers and probes, dNTPs, buffers, fluorescent label reagents, sample DNA, polymerase (preferably Bacillus stearatus polymerase).
  • reagents such as 5 different primers and probes, dNTPs, buffers, fluorescent label reagents, sample DNA, polymerase (preferably Bacillus stearatus polymerase).
  • Step 6 Real-time polymerase chain amplification reaction: Real-time polymerase chain amplification reaction of the reaction system is carried out under the reaction conditions of 60 to 65 ° C for 20 to 60 minutes.
  • Step 7 Analysis and evaluation of results: By comparing and comparing the results of real-time fluorescence curves of each sample to be tested and the positive control obtained by the same method, it is analyzed whether there is a target gene, or whether there is a mutation in the gene, or a mutation present. Whether it is a homozygous mutation or a heterozygous mutation.
  • the DNA sample to be tested used in the method of the present invention can be prepared and obtained by methods and techniques well known to those skilled in the art.
  • DNA sample can be, for example, from a blood sample (such as whole blood, serum or plasma), tissue collected through the skin, tissue collected during surgery, culture, frozen, fixed (eg, formalin fixed; or paraffin-embedded tissue)
  • a blood sample such as whole blood, serum or plasma
  • tissue collected through the skin tissue collected during surgery, culture, frozen, fixed (eg, formalin fixed; or paraffin-embedded tissue)
  • fixed eg, formalin fixed; or paraffin-embedded tissue
  • DNA sample is preferably obtained from a blood sample.
  • the DNA sample is derived from: a human, an animal or a pathogen.
  • Specific primer sets are employed in the present invention, including: (a) based on the 3' end of the target gene (b) a transition primer based on the inner side of the 3' end of the target gene; (c) an excitation amplification probe based on the middle portion of the target gene; (d) a folding primer based on the inside of the 5' end of the target gene ; and (e) an external primer based on the 5' end of the target gene.
  • target gene refers to a gene of interest to be detected, which may be a wild-type gene or a specific gene comprising a mutation therein, the presence or absence of the target gene or the presence or absence of a mutation therein and the susceptibility to the disease. , the occurrence of disease, the choice of medication for the disease, and / or the prognosis of the disease.
  • the target gene may be selected from, but not limited to, wild type or mutant form of EGFR, KMS, BRAF, PI3K, ALK, C-Kit, PDGFR, genes or other oncogenes.
  • the term “external primer” refers to: a specific primer for the end of a gene fragment.
  • the term “turning primer” means: a primer that is located between two external primers and whose ends are complementary in themselves, and which can be folded in themselves.
  • folded primer refers to a sequence between two external primers that is complementary to a target gene fragment and that is complementary to the gene fragment.
  • excitation amplification primer refers to: a primer located between a transition primer and a folded primer and in an upstream and downstream relationship with a transition primer or a folded primer.
  • the primer set of SEQ ID NOs: 1-5 can be used to detect the mutant gene.
  • the primer set of SEQ ID NOs: 6-10 was used to detect the normal gene.
  • the primer set of SEQ ID NOs: 1 1-15 can be used to detect the mutated gene, and SEQ ID NOs: 16 is used.
  • the reaction system of the present invention contains a conventional amount of template DNA, water, MgCl 2 , four kinds of dNTPs, a PCR buffer, and a DNA polymerase.
  • a conventional amount of template DNA water, MgCl 2 , four kinds of dNTPs, a PCR buffer, and a DNA polymerase.
  • Bacillus aureus polymerase in an amount of 2 to 12 U, preferably 4 to 10 U, more preferably 4 to 6 U.
  • Bacillus aureus polymerase is commercially available, for example, from NEB Corporation.
  • the PCR reaction system of the present invention may further comprise: any nucleic acid dye or labeling molecule capable of binding to dsDNA.
  • the nucleic acid dyes include, but are not limited to, SYBR Green I.
  • the DNA may be subjected to a denaturation treatment, for example, at a temperature of 90 to 110 ° C (preferably 98 ⁇ 0.5 ° C) for 3 to 10 minutes (preferably 5 minutes) before the DNA to be tested is added to the PCR system of the present invention.
  • a denaturation treatment for example, at a temperature of 90 to 110 ° C (preferably 98 ⁇ 0.5 ° C) for 3 to 10 minutes (preferably 5 minutes) before the DNA to be tested is added to the PCR system of the present invention.
  • the isothermal amplification reaction of the present invention can be carried out using a conventional PCR instrument or other instrument or apparatus that can provide a constant temperature.
  • the reaction temperature is usually 50 to 70 ° C, preferably 55 to 65 ° C, more preferably 60 ⁇ 0.5 ° C.
  • the reaction time is usually from 20 to 60 minutes, preferably from 30 to 40 minutes. Reaction results and analysis
  • Experimental results can be obtained by methods conventional in the art, such as (but not limited to;): quantitative analysis of biomarkers or quantitative analysis of fluorescent labels.
  • the target gene can be analyzed by comparing the test sample with the positive and/or negative control DNA samples detected by the same method (such as quantification, presence or absence, whether or not There are mutations, mutations to homozygous or heterozygous mutations;).
  • the positive control can be, for example, a known target gene sequence, and/or a sequence comprising a known mutation, which can be obtained by artificial synthesis, obtained by genetic engineering methods, or by biological methods from conventional methods in the art. Separated from it.
  • Negative controls can be used without DNA samples and/or samples known to be free of mutations.
  • the positive control is the target gene sequence, and if the result continues to show a positive signal (i.e., a signal that is identical or similar to the positive control;), the target gene sequence is present in the sample.
  • the positive control is a target gene sequence containing the specific mutation, and if the result of the mutation target primer reaction continues to show a positive signal, it indicates that a gene mutation exists in the target gene; if the result is not displayed A positive signal indicates no genetic mutation in the target gene.
  • the positive control is the target gene sequence containing the specific mutation and the normal target gene sequence containing no mutation, respectively, when the result shows that there is no normal gene target
  • the primer reaction signal is only the result of the mutation target primer reaction, it indicates that there is a homozygous mutation in the target gene; when the result shows that the normal gene target primer reaction result and the mutation target primer reaction result are both present, it indicates that the target gene is present.
  • the gene mutations present are heterozygous mutations.
  • Primer set and kit for use in the methods of the invention, the primer set comprising: designed for a specific target gene: (a) an external primer based on the 3' end of the target gene; (b) an external primer based on the 3' end of the target gene The inner transition primer; (c) an excitation amplification probe based on the middle portion of the target gene; (d) a folded primer based on the inner side of the 5' end of the target gene; and (e) an external primer based on the 5' end of the target gene.
  • primers may be present alone or in a mixture of 2, 3, 4 or 5 .
  • the primers can be prepared in a conventional manner in the art (e.g., synthetic;), provided (such as solution or solid;) and stored (such as cryogenically refrigerated;).
  • the primers can be formulated to the desired use concentration with a suitable solvent or buffer prior to use.
  • kits comprising at least a primer set of the invention and one or more containers.
  • the kit also optionally comprises one or more selected from the group consisting of solvents (eg, water;), MgCl 2 , dNTPs, nucleic acid dyes (eg, SYBR Green 1), molecular markers, PCR buffers, DNA polymerase (preferably Bacillus stearatus polymerase).
  • the methods, primer sets and kits of the present invention provide intermediate information for the diagnosis, susceptibility assessment, patient drug selection, and/or prognosis assessment of a genetic or mutation-related disease by detecting a target gene or gene mutation.
  • genetic or genetic mutation related diseases includes, but is not limited to, cancer, blood diseases, congenital genetic diseases.
  • the methods of the invention can be used for drug selection, susceptibility assessment, and/or prognosis assessment in cancer patients, including but not limited to: rectal cancer, gastrointestinal cancer, non-small cell lung cancer, gastrointestinal stromal tumor, Leukemia (preferably chronic myeloid leukemia), adenocarcinoma, and the like.
  • primer sets and kits of the present invention can also be used for amplification of target genes, or for other methods of polymerase chain reaction, such as polymerase chain reaction amplification, loop-mediated thermostatic polymerase chain reaction. Reaction amplification, symmetric or asymmetric single-strand polymerase chain reaction amplification.
  • the detection sensitivity is obviously enhanced, and according to the reaction result, whether the target gene or the mutant gene is present in the sample can be clearly determined, and can be widely used in clinical diagnosis, susceptibility assessment, patient drug selection, and/or for genetic or genetic mutation related diseases. Or prognostic assessment to provide relevant information;
  • the detection process is simple, the steps are few, and the temperature is not changed frequently, and the requirements on the operator and the reaction instrument are also reduced; 3.
  • the reaction time is greatly shortened from 1 to several days or even one week in the prior art, and the entire process (including DNA separation and purification M takes about 2 hours to achieve rapid detection;
  • the method of the invention can detect blood samples, thereby eliminating complicated operations such as tissue sampling, reducing the requirements on samplers, and improving the compliance of the tested objects, and has a wider application prospect in clinical practice. .
  • a method for detecting a mutation in the exon 21 region of the epidermal growth factor (; EGF) receptor gene (NM-001982) is provided, which can be used as a method for clinically selecting a tyrosine kinase inhibitor. .
  • Collect 200 ⁇ 1 to 1ml of fresh whole blood place it in the blood collection tube containing EDTA anticoagulant, store it at -20° C to -80° C, and generally extract it within 2 ⁇ 3 years. The shorter the storage time, the better the quality of extraction. High, preferably extracted within 2 months.
  • a sample of the positive control may be a 1970 cell line containing the E21 site mutation (purchased from the Shanghai Academy of Sciences, Chinese Academy of Sciences;); the negative control sample is a DNA-free sample.
  • a DNA extraction kit from Tiangen Inc was used. Take anticoagulation in step 1 200 ⁇ 1, add
  • adsorption column CB3 To the adsorption column CB3, three times of 700 ⁇ l of the rinse liquid PW was used to wash the DNA (Tiangen Inc kit), and centrifuged at 12,000 rpm for 30 seconds. The adsorption column CB3 was left at room temperature for a few minutes to thoroughly dry the residual rinse liquid in the adsorbent material.
  • the adsorption column CB3 was transferred to a 1.5 ml centrifuge tube, and 50 ⁇ l of the eluate was suspended from the middle of the adsorption membrane, left at room temperature for 2-5 minutes, centrifuged at 12,000 rpm for 2 minutes, and the solution was collected into a centrifuge tube. The solution obtained by centrifugation was further added to the same adsorption column CB3, left at room temperature for 2 minutes, and centrifuged at 12,000 rpm for 2 minutes to obtain a genomic DNA solution.
  • This DNA can be stored at 2 ⁇ 8° C. If it is stored for a long time, it can be placed at -20 ° C.
  • the genomic DNA extraction procedure of the positive control and the negative control sample is the same as above.
  • the DNA concentration was determined by spectrophotometry (Nanodrop 2000, Thermo Scientific) to determine the DNA concentration. OD 26Q / OD 28() ⁇ 1.8 was required, and each sample was uniformly diluted to 25 ⁇ 3 ⁇ 4/ ⁇ 1.
  • the 3' end external primer, the 3' end turn primer, and the 5' end are prepared in a PCR tube for detecting a normal gene.
  • the sequences of these primers are shown in Table 2:
  • Step 6 Real-time polymerase chain amplification reaction
  • the PCR tube containing the PCR system was placed in a real-time PCR machine, and the 96-well position of each sample was recorded for polymerase chain amplification reaction.
  • the reaction parameters were: 60 ° C, 45 minutes.
  • the amplified product was sequenced to verify the correctness of the results obtained.
  • the results were judged by observing the real-time polymerase chain amplification reaction fluorescence curves of each sample.
  • the typical fluorescence peaks of the positive results ie, the presence of mutations
  • the negative results ie, no mutations
  • the peak map is shown in Figure 2.
  • the two curves in the figure are the results of the duplicate hole detection.
  • the results of the sequencing verification confirmed that the sample showing the positive result contained the mutation sequence, and the sample showing the negative result contained the mutation-free sequence.
  • the detection procedure was the same as in Example 1.
  • the positive sample was SW480 cell line, and the negative control sample was DNA-free. sample.
  • Primer sequences for mutated gene detection and normal gene detection are shown in Tables 3 and 4, respectively:
  • the KRAS 12 mutation in the sample was determined by comparing the real-time polymerase chain amplification reaction fluorescence curves of each sample and the control sample, and was verified by sequencing. As a result, it was confirmed that the sample showing the positive result contained the mutation sequence, and the sample showing the negative result contained the mutation-free sequence.
  • Example 3 Methodological comparison of nucleic acid gene constant temperature amplification technology and fluorescent probe real-time PCR amplification technology
  • Step 1 Sample Collection Whole blood collection was performed as described in Example 1.
  • Genomic DNA in whole blood samples was isolated as described in Example 1.
  • the DNA was denatured as described in Example 1, except that different copy number DNAs were added to each PCR tube: 3000, 600, 300, 60, 30, 6, 3, 0 copy number, a total of eight Different copy numbers (as shown in Figure 3;).
  • Step 5 Preparation of PCR system for real-time polymerase chain amplification reaction
  • the mutation gene detection primers of the concentrations shown in the step 5 of Example 1 were added to the PCR tube of the nucleic acid gene constant temperature amplification technique (as shown in Table 1).
  • Step 6 Real-time polymerase chain amplification reaction
  • Real-time polymerase chain amplification reaction was carried out in a PCR tube of a nucleic acid gene constant temperature amplification technique.
  • the PCR tube containing the PCR system was placed in a real-time PCR machine, and the 96-well position of each sample was recorded to carry out a PCR reaction.
  • the polymerase chain amplification reaction parameters were: 60 ° C, 45 minutes.
  • sequence GCCAGTTAACGTCTTCCT (SEQ ID NO.: 1)) and 2.5 M/L of 5'-end external primer (sequence CCACACAGCAAAGCAG (SEQ ID NO.: 3)), 1 ⁇ of DNA, 1.25 mM/L of MgCl 2 , 200 ⁇ / dNTPs, IX SYBR Green I, ⁇ 10 X PCR buffer and 1.0 U of Taqman polymerase (purchased from ABI), and the balance of water.
  • Real-time polymerase chain amplification reactions were performed in fluorescent probe real-time PCR tubes. Put the PCR tube in real time In the PCR machine, the position of the 96 wells of each sample was recorded. The polymerase chain amplification reaction parameters were denaturation at 95 ° C for 10 minutes, and 30 cycles of 95 ° C, 30 seconds, annealing at 56 ° C, 30 seconds, extension at 72 ° C, 30 seconds, and then continued at 72 ° C. 10 minutes. C. Analysis and comparison of results
  • the reaction time of the method of the present invention is short (; only 45 minutes;), and the reaction temperature is kept constant (65 ° C); and the reaction time of the fluorescent probe for real-time PCR is long and requires Change the temperature frequently. This proves that the method of the invention has the advantages of simplicity and high efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

用于快速恒温检测基因及基因突变的聚合酶链反应方法 技术领域
本发明涉及生物科技和医学领域, 具体涉及一种简单、 敏感且快速的实时 核酸扩增的聚合酶链反应恒温基因扩增方法、 以及用于该方法的特殊引物组及 试剂盒。 背景技术
A.基因检测的临床意义 基因检测主要是用于疾病的诊断,疾病的预防和指导个体化用药。 例如, 对 结核杆菌感染的诊断, 以前主要依靠痰、 粪便或血液培养, 整个检验流程需要 在两周以上, 现在采用基因诊断的方法, 不仅敏感性大大提高, 而且在 1小时 内就能得出结果。 疾病的预防, 就是检测健康人群的基因型, 预测个人患病的 风险, 并向受检者提出生活上的指导, 避免疾病的发生。 比如结肠癌, APC基 因、 DCC基因和 P53基因的缺陷与肠癌的发生有密切的关系。 这几个基因存在 缺陷的人具有患上结肠癌的高风险。 通过基因检测, 在上皮细胞的增生还没有 真正演化成结肠癌的时候,就能够发现结肠癌的苗头,及早采取措施进行预防, 就有可能防止结肠癌的产生。临床上研究发现基因 UGT1A1启动子区域的多态 性与药物伊立替康的毒副作用有相关性。 如果盲目用药可造成中性粒细胞减少 及腹泻的副作用。 美国 FDA已建议病人在使用伊立替康前要进行 UGT1A1基 因型的检测。中国国家卫生部在新的临床检验项目目录中也增列了"化学药品个 体化用药基因检测项目"。 UGT1A1基因型检测对于临床正确用药,减少毒副作 用, 提高疗效具有明确的临床意义。 因此, 从临床角度而言, 本领域中迫切需要开发出更为简便、灵敏且快速的基 因检测方法以及适用于该方法的引物和试剂盒。
B.基因突变检测的临床意义
随着现代分子生物学研究的不断深入, 对疾病发病机制、 诊断及防治的研 究已达到分子水平, 从基因水平诊断和防治疾病已成为现代医学的重要课题。 突变基因改变了原有的结构与功能, 导致原有的遗传性状发生改变, 其中 一部分基因突变可导致遗传病或具有遗传倾向的病甚至肿瘤。 如血友病是凝血 因子基因的突变、 地中海贫血是珠蛋白的基因突变等。 具有遗传倾向的高血压 病、 糖尿病、 溃疡病等系多基因变异与环境因素共同作用的结果。 肿瘤是体细 胞基因突变的结果。
基因诊断 (gene diagnosis)就是利用现代分子生物学和分子遗传学的技术方 法, 直接检测基因结构及其表达水平是否正常, 从而对疾病作出诊断的方法。 基因诊断的检测目的物是 DNA或 RNA, 前者反映基因的存在状态, 后者反映基 因的表达状态。 传统的诊断方法主要以疾病的表型改变为依据, 生物个体的表 型性状是基因在一定条件下的体现, 基因的改变可导致各种表型的改变而出现 疾病。 近年来随着分子生物学技术的飞速发展, 使开展基因诊断成为可能。
因此, 基因突变的检测对于基因突变相关疾病的发病机理研究、 诊断、 易 感性评估、 患者用药选择、 和 /或预后评估具有非常重要的意义。
以表皮生长因子受体 (Epidermal Growth Factor Receptor, EGFR)和 KRAS基 因为例。目前, EGFR与 KRAS基因靶向治疗已成为晚期非小细胞肺癌 (Non-small cell lung cancer, NSCLC)酪氨酸激酶抑制剂 (tyrosine kinase inhibitor, TKI)易瑞 沙和特罗凯药物治疗的研究的热点。 研究表明, 易瑞沙和特罗凯治疗效果显著 的患者中 EGFR基因突变的发生率明显高于治疗无效者。 在有 EGFR基因突变的 患者中易瑞沙和特罗凯的肿瘤客观缓解率明显高于无突变的患者。 EGFR基因 突变率为 33%, 且突变部位 90%左右位于编码酪氨酸激酶区的外显子 19及外显 子 21(如 L858R;), 为杂合突变。 EGFR的突变表达对选择酪氨酸激酶抑制剂治疗 有着重要的指导意义, 目前用于检测 EGFR基因突变的标本多为手术切除的肿 瘤组织标本, 但晚期病人很难获得肿瘤组织, 寻找一种易获得的肿瘤组织替代 标本进行 EGFR基因突变的检测, 从中筛选出适合酪氨酸激酶抑制剂治疗的患 者, 实现个体化治疗, 对临床工作非常重要。
KRAS基因是 EGFR信号通路中的重要分子之一, 它是位于 12号染色体 pl2.1位置上的 21kD大小的蛋白。 突变型 KRAS不依赖剌激信号的激活, 即突变 型 KRAS基因不受上游 EGFR基因状态的影响, 始终处于激活状态, 只有野生型 KRAS基因受上游 EGFR信号剌激的影响, 这也是具有突变型 KRAS基因患者对 抗 EGFR药物(例如爱必妥 (Erbitux)、 维克替比(Vectibix, Panitumumab)等)治疗 无效的理论基础。 KRAS基因的点突变主要集中在特定的氨基酸密码子 (第 12、 13、 61密码子)上, 占所有突变的 90%以上。 KRAS基因突变可以导致细胞逃逸 凋亡, 这种异常在胰腺癌、 大肠癌、 肺癌等肿瘤中的发生率较高。 在胰腺癌中, KRAS基因的点突变发生率高达 90%以上。
检测 KRAS基因突变, 对判断这些肿瘤的发生发展、 预后以及了解肿瘤的 治疗效果具有积极的意义。 在正常人血中检出 KRAS基因突变则提示存在肿瘤 易感性; 良性肿瘤患者若检出 KRAS基因突可能提示有恶变的可能; KRAS基因 突变阳性则预示着癌症复发的可能性也很高, 预后差; 无 KRAS基因突变的肺 癌、 结直肠癌等肿瘤患者, 经抗 EGFR靶向药物治疗疗效明显。 目前 KRAS基因 突变检测已被写入美国最新版 《NCCN结直肠癌临床实践指南》 。 因此, 通过 检测 KRAS基因突变状态可以筛选出针对抗 EGFR靶向药物治疗有效的结直肠 癌患者,帮助临床医生选择制定对肿瘤患者最有效的治疗方法。在通常情况下, 60%左右结直肠癌患者的 KRAS基因都是野生型的, 如果都接受了 KRAS基因突 变检测, 通过个体化的综合治疗方案, 有效率可显著增加。
因此, 从临床角度而言, 本领域中迫切需要开发出更为简便、 灵敏且快速 的基因突变检测方法以及适用于该方法的引物和试剂盒。
C.基因突变的检测技术
基因突变, 主要是指 DNA分子发生的可遗传的变异, 是基因在结构上发生 碱基对组成或排列顺序的改变。 基因突变的形式可以是核酸置换、 插入、 缺失 和重叠等多种。
在当今生命科学研究中, 基因突变与各种疾病 (例如肿瘤;)的相关性已成为 研究热点之一, 检测方法也随之迅速发展。 聚合酶链反应扩增技术 (; PCR)的应 用使基因突变检测技术有了长足的发展, 目前几乎所有的基因突变检测的分子 诊断技术都是建立于 PCR的基础之上,并且由于 PCR衍生出的新方法不断出现, 分析结果的准确性、 敏感性也有较大的提高。 在这些方法中具有代表性的方法 包括: PCR联合核酸序列分析、 Taqman探针实时 PCR法、 突变体富集 PCR法、 DNA芯片技术、 扩增阻碍突变系统等。
PCR联合核酸序列分析: 这是一种基于 PCR的核酸序列测定方法, 是所有 其它快速简便检测变异技术的基础, 也是检测点突变最直接、 最基本的一种方 法。 序列测定的模板主要来源于传统的 PCR技术, 最后都需用序列分析才能确 定突变类型及突变位置, 其效率可以达到 100 %。测序方法的基本原理是 Sanger 发明的双脱氧 DNA链末端终止法。 这种直接测序是检测基因突变的经典方法, 但敏感性低, 只有当变异基因占总基因的 25%以上时才能被检测到。
突变体富集 PCR法: 该方法利用癌基因或抑癌基因某个编码子部位存在已 知的限制性内切酶位点 (;如 KRAS基因第 12密码子的 BstNI位点;), 用连续二次的 巢式 PCR来扩增包括存在酶位点编码子的 DNA片段 (例如包括 KRAS第 12密码 子的 DNA片段 在两次扩增反应之间用相应的内切酶消化扩增的 DNA片段, 野生型因被酶切而不能进入第二次 PCR扩增, 而突变型则能完整进入第二次 PCR扩增并得到产物的富集。 该方法的敏感性在 10%左右。
DNA芯片技术: 该方法是 90年代后发展的一项 DNA分析新技术, 它集合了 集成电路计算机、 激光共聚焦扫描、 荧光标记探针和 DNA合成等先进技术。 其 基本原理为将许多已知序列的寡核苷酸 DNA排列在 1块集成电路板上, 彼此之 间重叠 1个碱基, 并覆盖全部所需检测的基因, 将荧光标记的正常 DNA和突变 DNA分别与 2块 DNA芯片杂交, 由于至少存在 1个碱基的差异, 正常和突变的 DNA将会得到不同的杂交图谱,经过共聚集显微镜分别检测两种 DNA分子产生 的荧光信号, 即可确定是否存在突变。 该方法快速简单、 自动化程度高。
扩增阻碍突变系统 (Amplification Refractory Mutation System, ARMS): 用 于对已知突变基因进行检测。 该方法是基于引物 3'端错配 PCR的方法, 如引物 3'端碱基与模板错配会导致 Taq酶扩增效率下降。 该法通过设计两个 5'端引物, 一个与正常 DNA互补, 一个与突变 DNA互补, 对于纯合性突变, 分别加入这两 种引物及 3'端引物进行两个平行 PCR, 与突变 DNA完互补的引物才可延伸并得 到 PCR扩增产物。 如果错配位于引物的 3'端则导致 PCR不能延伸, ARMS技术借 鉴多重 PCR原理, 可在同一系统中同时检测两种或多种等位基因突变位点, 但 优点是反应将选择性扩增单链基因。据文献报道, 该技术的敏感性能提高到 1% 左右。
上述不同的方法在特异性方面上比起传统的 PCR都有所提高, 但灵敏度、 性价比、 临床应用性 (例如不能利用外周血直接检测突变基因)、 高通量性能等 方面有待于进一步加强。 由此, 本领域中仍迫切需要开发出更为简便、 灵敏且 快速的基因突变检测方法。 发明内容
本发明的主要目的就在于提供一种简便、 灵敏且快速的基因检测方法。 本 发明的另一目的在于提供适用于该方法的引物, 以及包含适用于本发明方法的 引物和其它试剂的试剂盒。
在本发明的第一方面中,提供了一种用于基因检测的恒温聚合酶链式反应方 法, 所述方法包括:
A) 针对待检测的靶基因 DNA序列, 围绕其扩增基因片段周围的 5个不同区域 提供如下 5种引物:
(a) 基于靶基因 3'端的外部引物;
(b) 基于靶基因 3'端的外部引物内侧的转折引物;
(c) 基于靶基因中间部位的激励扩增引物;
(d) 基于靶基因 5'端的外部引物内侧的折叠引物; 和
(e) 基于靶基因 5'端的外部引物;
B) 提供包含 A)中所述引物的聚合酶链式反应体系,并将待测 DNA样品加入所 述反应体系中, 其中如果该样品所含为双链 DNA, 则在将其加入所述反应体系之 前, 对该样品进行变性;
C) 在 50〜70°C的恒温下进行聚合酶链式反应;
D) 通过将待检测 DNA的恒温基因扩增反应数据或图谱与阳性对照比较,获得 基因检测结果。
在本发明的一个实施方式中, 所述待测 DNA样品来自: 血液、 组织或组织切 片、 培养细胞。
在一个优选例中, 所述待测 DNA样品来源于: 人的细胞和外周血 (;如全血、 血 清或血浆;)。 在另一个优选例中, 所述待测 DNA样品可获自: 人的新鲜获取的或固 定的手术样品、 内镜活检样品、 或穿剌胸腹水样品。 在另一个优选例中, 所述待测 DNA样品来源于:人、动物或病原菌。在另一个优选例中,所述靶基因选自: GFR、 KMS、 BRAF, PI3K、 ALK, C-Kit、 PDGFR、 和 ^RL基因或它们的突变体。 在另 一个优选例中, 所述靶基因是野生型基因或突变基因。在另一个优选例中, 所述突 变基因为纯合突变或杂合突变, 且突变区位于扩增基因片段中。
在本发明的另一个实施方式中, 所述引物是合成的核酸引物或肽核酸合成的 引物。
在本发明的另一个实施方式中, 所述反应体系包含: DNA、 水、 MgCl2、 4种 dNTP、 缓冲液、 以及脂肪芽胞杆菌聚合酶。
在一个优选例中, 所述脂肪芽胞杆菌聚合酶的用量为 2〜 12 U, 优选 4〜10 U, 更优选 4〜6 U。在另一个优选例中, 所述脂肪芽胞杆菌聚合酶购自 NEB。在另一个 优选例中, 所述反应体系还包含: 核酸染料 (;优选 SYBR Green I)或标记分子。 在另 一个优选例中, 所述双链 DNA的变性是在 90〜110°C, 优选 98 ±0.5°C的温度下, 处 理 3〜10分钟, 优选 5分钟。
在本发明的另一个实施方式中, 所述反应在 55〜65°C的温度下进行 20〜60分 钟。 在一个优选例中, 所述反应在 60±0.5°C的温度下进行, 反应时间为 20〜50分 钟。
在本发明的另一个实施方式中, 所述反应数据或图谱是通过分析与 DNA结合 的标记物获得的,优选通过选自下组的方法获得的:对生物标记物的定量分析或荧 光标记物的定量分析。
在一个优选例中, 所述的基因检测结果选自: 确定样品中靶基因的存在与否、 靶基因中是否存在突变、或突变为杂合突变还是纯合突变。在另一个优选例中, 所 述阳性对照是: 已知的靶基因序列、 和 /或包含已知突变的序列, 所述序列可通过 人工合成制得、基因工程化方法获得、或通过本领域常规方法从生物样品中分离而 得。
在另一个优选例中, 本发明的方法用于判定靶基因序列的存在与否, 阳性 对照为靶基因序列,如果结果持续显示阳性信号 (即出现与阳性对照相同或相似 的信号;), 则表明样品中存在靶基因序列。
在另一个优选例中, 本发明的方法用于判定靶基因中是否存在特定突变 时, 阳性对照为包含该特定突变的靶基因序列, 如果突变靶点引物反应结果持 续显示阳性信号时,表明靶基因中存在基因突变;如果结果未显示阳性信号时, 表明靶基因中无基因突变。
在另一个优选例中, 本发明的方法用于判定靶基因中的突变为纯合突变还 是杂合突变, 阳性对照分别为包含该特定突变的靶基因序列和不包含突变的正 常靶基因序列, 当检测结果显示无正常基因靶点引物反应信号而只有突变靶点 引物反应结果时, 表明靶基因中存在的是纯合突变; 当结果显示正常基因靶点 引物反应结果和突变靶点引物反应结果都时存在时, 表明靶基因中所存在的基 因突变是杂合突变。 在本发明的第二方面中, 提供了一种引物组, 其包括:
(a) 基于靶基因 3'端 DNA序列的外部引物; (b) 基于靶基因 3 '端 DN A序列的外部引物内侧的转折引物;
(c) 基于靶基因 DNA序列中间部位的激励扩增弓 I物;
(d) 基于靶基因 DNA序列 5'端外部引物内侧的折叠引物; 和
(e) 基于靶基因 DNA序列 5'端的外部引物。 在本发明的第三方面中, 提供了一种试剂盒, 其包括: 单独或混合的本发明 的引物组中的各成员; 一个或多个容器。
在一个优选例中, 所述试剂盒还任选包含选自下组物质中的一种或多种: DNA、 水、 MgCl2、 4种 dNTP、 核酸染料、 PCR缓冲液、 以及脂肪芽胞杆菌聚合酶。 在另一个优选例中, 所述脂肪芽胞杆菌聚合酶的量为 2〜 12 U, 优选 4〜10 U, 更优 选 4〜6 U。在另一个优选例中,所述核酸染料为任何能与 dsDNA结合的,优选 SYBR Green 在本发明的第四方面中, 提供了本发明的引物组在制备用于恒温基因扩增 或检测的聚合酶链反应的试剂盒中的用途。
在一个优选例中, 所述试剂盒如前所述。 在另一个优选例中, 所述试剂盒 用于检测样品中靶基因的存在与否、 靶基因中是否存在突变、 或靶基因中的突变 为纯合突变还是杂合突变。
在另一个优选例中, 所述试剂盒用于遗传或基因突变相关疾病的诊断、 易 感性评估、 患者用药选择、 和 /或预后评估。 在另一个优选例中, 所述遗传或基 因突变相关疾病选自: 癌症、 血液病或先天性遗传性疾病, 所述癌症优选: 直 肠癌、 胃肠道癌、 非小细胞肺癌、 胃肠间质瘤、 白血病 (优选慢性粒细胞性白血 病)、 腺癌等。 在本发明的第五方面中, 提供了本发明的引物组在聚合酶链式反应中的用 途, 所述反应选自: 聚合酶链式反应扩增、 环介导恒温聚合酶链式反应扩增、对称 或不对称的单链聚合酶链式反应扩增。 本发明的其它方面由于本文的公开内容, 对本领域的技术人员而言是显而 易见的。 附图说明
图 1 : 采用本发明的核酸基因恒温扩增方法所获得的阳性结果的典型荧光 峰图, 其中: 横坐标为反应时间 (单位: 分钟;), 纵坐标为标准化的荧光强度值
(Fluorescence(norm))。
图 2 : 采用本发明的核酸基因恒温扩增方法所获得的阴性结果的典型荧光 峰图, 其中: 横坐标为反应时间 (单位: 分钟;), 纵坐标为标准化的荧光强度值。
图 3 : 采用本发明的核酸基因恒温扩增方法对不同拷贝数 DNA进行检测的 结果, 其中: A: 3000拷贝; B : 600拷贝; C : 300拷贝; D: 60拷贝; E: 30 拷贝; F: 6拷贝; G: 3拷贝; H: 0拷贝; 横坐标为反应时间 (单位: 分钟), 纵 坐标为标准化的荧光强度值。
图 4: 采用现有技术的荧光探针即时 PCR扩增方法对不同拷贝数 DNA进行 检测的结果, 其中: A: 3000拷贝; B : 600拷贝; C: 300拷贝; D: 60拷贝; E: 30拷贝; F: 6拷贝; G: 3拷贝; H: 0拷贝; 横坐标为反应循环数, 纵坐标为标 准化的荧光强度值。 具体实施方式
本发明人经过长期而深入的研究开发出一种简单、 灵敏且快速进行核酸扩 增的聚合酶链反应恒温基因扩增技术方法, 该方法可广泛应用于基础研究和临 床诊断中检测血液、 细胞、 组织中正常基因和 /或突变基因。
本发明的方法、 引物及试剂盒可广泛应用于基础研究和临床诊断中的血 液、细胞组织等各种生物样品中特定 DNA基因野生型或突变样本的检测 (例如包 括但不限于 EGFR、 KRAS、 BRAF、 PI3K、 ALK、 C-Kit、 PDGFR、 ABL或其它 癌基因等野生型或突变基因), 也可用于特定基因的恒温扩增。 这些应用例如包 括但不限于: 1) 临床上癌症的早期诊断; 基因诊断; 遗传病产前基因诊断; 微 生物; 血源筛査等, 如在病毒, 细菌、 寄生虫等所有病原体基因的测定, TB菌 及其 TB耐药基因的检测; HBV; HCV; 沙眼衣原体和曲霉的检测; 在遗传病方 面上唐氏综合征和 Prader- Willis综合征的染色体检测; 其它疾病如地中海贫血、 G6PD缺乏症及血友病、 甲型血友病基因、 亨廷顿病、 脆性 X综合征、 杜氏肌营 养不良、 脊髓性肌萎缩症等疾病基因的检测; 2)生物防御方面, 例如检测单核 细胞增生李斯特菌、 炭疸芽孢杆菌、 布氏杆菌、 土拉菌病等; 3)食品检疫方面, 例如用于检测食品中的沙门氏菌、 志贺氏菌、 金黄色葡萄球菌等; 4)动植物检 方面, 例如用于检测禽流感病毒、 猪链球菌、 猪蓝耳病病毒、 口蹄疫病毒等血 源筛査;)。
如本文所用, 术语"核酸基因恒温扩增方法"、 "核酸聚合酶反应"、 "本 发明的聚合酶链式反应" 可互换使用, 均是指本发明中采用特定引物组、 在恒 温下进行的核酸扩增反应。
本发明的用于恒温基因扩增的聚合酶链反应方法包括如下步骤:
A) 针对待检测的靶基因 DNA序列, 围绕其扩增基因片段周围的 5个不同区域 提供如下引物:
(a) 基于靶基因 3'端的外部引物;
(b) 基于靶基因 3'端的外部引物内侧的转折引物;
(c) 基于靶基因中间部位的激励扩增引物;
(d) 基于靶基因 5'端外部引物内侧的折叠引物; 和
(e) 基于靶基因 5'端的外部引物;
B) 提供包含 A)中所述引物的聚合酶链式反应体系,并将待测 DNA样品加入所 述反应体系中, 其中如果该样品所含为双链 DNA, 则在将其加入所述反应体系之 前, 对该样品进行变性;
C) 在 50〜70°C, 优选 55〜65°C的恒温下进行聚合酶链式反应。
在本发明的方法用于恒温基因检测时, 其在上述扩增的基础上还进一步包括 步骤:
D) 通过将待检测 DNA的恒温基因扩增反应数据或图谱与阳性对照比较,获得 基因检测结果。
所述反应数据或图谱可通过分析与 DNA结合的标记物获得的, 优选通过选自 下组的方法获得的:对生物标记物的定量分析或荧光标记物的定量分析。本领域普 通技术人员可采用本领域中知晓的各种可用于标记 DNA的标记物及标记方法, 以 及采用本领域中知晓的检测与 DNA结合的标记物的各种方法。
本发明的一个示例性但非限制性的实施方式如下:
步骤 1. 样本采集: 从人类全血、 经皮肤穿剌采集的组织、 手术中采集的组 织、 以及冰冻和石蜡包埋组织等组织获得样品, 作为 DNA检测的来源。
步骤 2. 基因组 DNA提取: 根据本领域已知的方法或采用市售试剂盒, 提 取基因组 DNA (;例如采用市售离心柱或溶液型全血提取试剂盒来提取全血 DNA)。 步骤 3. DNA纯度和浓度检测: 检测 DNA纯度和浓度 (例如采用分光光度 法), 并进行变性处理。
步骤 4. 引物设计: 主要是针对靶基因围绕扩增点周围的 5个不同的区域设 计 5种不同引物和探针: 基于靶基因 3'端的外部引物和外部引物内侧的转折引 物、 5'端的外部引物和外部引物内侧的折叠引物、 以及中间部位的激励扩增引 物。
步骤 5. 聚合酶链式扩增反应体系配制:在聚合酶链扩增反应管中配制包含
5种不同引物和探针、 dNTP、 缓冲液、 荧光标记物试剂、 样本 DNA、 聚合酶 (;优 选脂肪芽胞杆菌聚合酶)等试剂的反应体系。
步骤 6. 实时聚合酶链扩增反应: 对反应体系进行实时聚合酶链扩增反应, 反应条件为 60〜65°C、 20〜60分钟。
步骤 7. 结果分析和评价: 通过观察比较各待测样品与采用相同检测方法所 得的阳性对照的实时荧光曲线图结果, 分析判断是否存在靶基因、 或基因中是 否存在突变、 或所存在的突变为纯合突变还是杂合突变。
应理解, 本领域普通技术人员在阅读本发明之后, 可基于现有技术和 /或实 际情况对该具体实施方式进行必要的改进或改变。
DNA样品的准备
用于本发明方法中的待测 DNA样品, 可通过本领域技术人员熟知的方法和 技术制备和获得。
可从例如血液样品 (如全血、 血清或血浆)、 经皮肤穿剌采集的组织、 手术 中采集的组织、 培养物、 冰冻、 固定 (例如福尔马林固定;)或石蜡包埋组织中获 得样品, 作为 DNA的来源, 优选从血液样品中获得 DNA。 在本发明的一个实施 方式中, DNA样品来源于: 人、 动物或病原菌。
可采用本领域已知的方法 (;如 Sambrook等人《分子克隆: 实验室指南》(New
York: Cold Spring Harbor Laboratory Press, 1989))或采用市售试剂盒提取样品 中的基因组 DNA (;例如采用市售离心柱或溶液型全血提取试剂盒来提取全血 DNA), 并对所得 DNA的纯度和浓度进行检测 (;例如采用分光光度法;)。 引物设计
在本发明中采用了特定的引物组, 其中包括: (a) 基于靶基因 3'端的外部 弓 I物; (b) 基于靶基因 3 ' 端的外部引物内侧的转折引物; (c) 基于靶基因中间 部位的激励扩增探针; (d) 基于靶基因 5 '端外部引物内侧的折叠引物; 和 (e) 基 于靶基因 5 ' 端的外部引物。
如本文所用, 术语 "靶基因"是指待检测的目标基因, 该基因可为野生型 基因或其中包含突变的特定基因, 该靶基因的存在与否或其中是否存在突变可 与疾病的易感性、疾病的发生、针对疾病的用药选择、和 /或疾病的预后等相关。 所述靶基因可选自(但不限于): EGFR、 KMS、 BRAF, PI3K、 ALK, C-Kit、 PDGFR、 基因或其它癌基因的野生型或突变型。
如本文所用, 术语 "外部引物" 是指: 针对基因片段端部的特异性引物。 如本文所用, 术语 "转折引物"是指: 位于两外部引物之间, 且其末端的 序列本身互补, 可自身对折的引物。
如本文所用, 术语 "折叠引物"是指: 位于两外部引物之间, 与靶基因片 段上有相对应互补的序列, 可与基因片段互补的引物。
如本文所用, 术语"激励扩增引物"是指: 位于转折引物和折叠引物之间, 并与转折引物或折叠引物为上下游关系的引物。
例如,当本发明的方法用于检测表皮生长因子 (; EGF)受体基因 (; NM— 001982) 外显子 21区突变时, 可采用 SEQ ID NOs: 1-5的引物组来检测突变基因, 而采用 SEQ ID NOs: 6-10的引物组来检测正常基因。
又例如, 当本发明的方法用于检测 KRAS(NM— 033360)12外显子突变基因 时, 可采用 SEQ ID NOs: 1 1-15的引物组来检测突变基因, 而采用 SEQ ID NOs: 16-20的引物组来检测正常基因。
本领域普通技术人员在阅读了本发明的说明书之后, 可根据本领域中已知 的引物设计方法, 针对各种靶基因设计并制得这些引物。 反应体系和反应过程
本发明的反应体系中包含常规用量的模板 DNA、 水、 MgCl2、 4种 dNTP、 PCR缓冲液、 以及 DNA聚合酶。 本领域普通技术人员可根据常识选择这些组分 的用量。
在本发明的方法中, 优选采用脂肪芽胞杆菌聚合酶, 所述脂肪芽胞杆菌聚 合酶的用量为 2〜12 U, 优选 4〜10 U, 更优选 4〜6 U。 可通过市售获得市售脂肪 芽胞杆菌聚合酶, 例如购自 NEB公司。 在本发明的 PCR反应体系中还可包含: 任何能与 dsDNA结合的核酸染料、 标记分子。 所述的核酸染料包括但不限于: SYBR Green I。
可在将待测 DNA加入本发明的 PCR体系之前, 对 DNA进行变性处理, 例如 在 90〜110°C(优选 98 ± 0.5°C)的温度下, 处理 3〜 10分钟 (优选 5分钟)。
本发明的恒温扩增反应可采用本领域常规的 PCR仪或可提供恒温的其它仪 器或设备进行。 反应温度通常为 50〜70°C, 优选 55〜65°C, 更优选 60 ± 0.5°C。 反应的时间通常为 20〜60分钟, 优选 30〜40分钟。 反应结果及分析
可通过本领域中常规的方法获取实验结果 (如数据或图谱;), 例如 (但不限 于;): 生物标记物的定量分析或荧光标记物的定量分析。
在获得实验结果后,可通过将待测样品与采用相同方法检测的阳性和 /或阴 性对照 DNA样本的检测结果进行比较, 分析待测样品中靶基因的情况 (如定量、 存在与否、 是否有突变、 突变为纯合还是杂合突变;)。
所述阳性对照可为例如: 已知的靶基因序列、 和 /或包含已知突变的序列, 所述序列可通过人工合成制得、 基因工程化方法获得、 或通过本领域常规方法 从生物样品中分离而得。
阴性对照可采用无 DNA样品和 /或已知不含突变的样品。
当用于判定靶基因序列的存在与否时, 阳性对照为靶基因序列, 如果结果 持续显示阳性信号 (即出现与阳性对照相同或相似的信号;), 则表明样品中存在 靶基因序列。
当用于判定靶基因中是否存在特定突变时, 阳性对照为包含该特定突变的 靶基因序列, 如果突变靶点引物反应结果持续显示阳性信号时, 表明靶基因中 存在基因突变; 如果结果未显示阳性信号时, 表明靶基因中无基因突变。
当用于判定靶基因中存在的突变为杂合突变还是纯合突变时, 阳性对照分 别为包含该特定突变的靶基因序列和不包含突变的正常靶基因序列, 当结果显 示无正常基因靶点引物反应信号而只有突变靶点引物反应结果时, 表明靶基因 中存在的是纯合突变; 当结果显示正常基因靶点引物反应结果和突变靶点引物 反应结果都时存在时, 表明靶基因中所存在的基因突变是杂合突变。 引物组和试剂盒 本发明中还提供了用于本发明方法的引物组, 所述引物组包含针对特定靶 基因设计的: (a) 基于靶基因 3'端的外部引物; (b) 基于靶基因 3'端的外部引物 内侧的转折引物; (c) 基于靶基因中间部位的激励扩增探针; (d) 基于靶基因 5' 端的外部引物内侧的折叠引物; 和 (e) 基于靶基因 5'端的外部引物。
这些引物可单独存在或以 2、 3、 4或 5种混合的方式存在。 可以本领域中常 规的方式制备 (;如人工合成;)、 提供 (;如溶液或固体;)和保存 (;如低温冷藏;)所述引 物。 可在使用前用适当的溶剂或缓冲液将引物配制成所需的使用浓度。
本发明中还提供了一种试剂盒, 其至少包含本发明的引物组和一个或多个 容器。 所述试剂盒还任选包含选自下组的试剂中的一种或多种: 溶剂 (如水;)、 MgCl2、 dNTP、 核酸染料 (如 SYBR Green 1)、 分子标记物、 PCR缓冲液、 DNA 聚合酶 (优选脂肪芽胞杆菌聚合酶)。 本发明方法、 引物组和试剂盒的用途
本发明的方法、 引物组和试剂盒可通过对靶基因或基因突变的检测, 为遗 传或基因突变相关疾病的诊断、 易感性评估、 患者用药选择、 和 /或预后评估提 供中间信息。 在本发明中, 术语 "遗传或基因突变相关疾病" 包括但不限于: 癌症、 血液病、 先天性遗传型疾病。
例如, 本发明的方法可用于癌症患者的用药选择、 易感性评估和 /或预后评 估, 所述癌症包括但不限于: 直肠癌、 胃肠道癌、 非小细胞肺癌、 胃肠间质瘤、 白血病 (优选慢性粒细胞性白血病)、 腺癌等。
此外, 本发明的引物组和试剂盒也可用于靶基因的扩增反应、 或用于其它 方式的聚合酶链式反应中, 例如聚合酶链式反应扩增、 环介导恒温聚合酶链式反 应扩增、 对称或不对称的单链聚合酶链式反应扩增。 本发明的优点
本发明的方法具有如下优点:
1. 检测灵敏度明显增强,且根据反应结果可明确判定样品中是否存在靶基 因或突变基因, 可广泛应用于临床, 为遗传或基因突变相关疾病的诊断、 易感 性评估、 患者用药选择、 和 /或预后评估提供相关信息;
2. 检测流程简单, 步骤少, 且无需频繁变化温度, 对操纵者和反应仪器的 要求也由此降低; 3. 反应时间较现有技术中的 1至数天乃至一周大大缩短, 整个过程 (包括 DNA分离纯化 M又需 2小时左右, 实现了快速检测;
4. 本发明的方法可对血液样品进行检测,从而无需进行组织取样等复杂操 作, 降低了对取样人员的要求、 且提高了被检测对象的顺应性, 在临床上具有 更为广泛的应用前景。 实施例
下面结合具体实施例, 进一步阐述本发明。 应理解, 这些实施例仅用于说 明本发明而不用于限制本发明的范围。 下列实施例中未注明具体条件的实验方 法, 通常按照常规条件如 Sambrook等人 《分子克隆: 实验室指南》 (New York: Cold Spring Harbor Laboratory Press, 1989)中所述的条件, 或按照制造厂商所建 议的条件。 除非另外说明, 否则百分比和份数按重量计算。
除非另行定义, 文中所使用的所有专业与科学用语与本领域熟练人员所熟 悉的意义相同。 此外, 任何与所记载内容相似或均等的方法及材料皆可应用于 本发明中。 文中所述的较佳实施方法与材料仅作示范之用。 实施例 1. EFGR突变基因的实时检测
本实施例中提供了一种表皮生长因子 (; EGF)受体基因 (; NM— 001982)外显子 21区突变的检测方法, 其可做为临床上选择酪氨酸激酶抑制剂治疗的方法。
A. 检测方法
歩骤 1. 样品采集
按照卫生部颁布的 《人类常见肿瘤新鲜组织标本采集、 处理和保存的技术 规程》 中所规定的方法进行全血、 手术组织标本采集。
采集 200μ1至 lml新鲜全血, 置于含 EDTA抗凝剂的采血管中, 保存于 -20° C 至 -80° C, 一般 2〜3年内均可以提取, 保存时间越短, 提取的质量越高, 最好 在 2个月内提取。
阳性对照的样本可采用含有 E21位点突变的 1970细胞株 (购自中科院上海 生科院;); 阴性对照的样本为无 DNA样本。
歩骤 2. 基因组 DNA的分离
采用 Tiangen Inc公司的 DNA提取试剂盒。 取步骤 1中的抗凝血 200μ1, 加入
20μ1蛋白酶 Κ混匀。 然后加入20(^1缓冲液08 01¾1¾611 111(试剂盒), 在 56° C放置 10分钟至溶液变清亮。加入 200μ1无水乙醇至出现絮状沉淀。把含絮状沉淀的溶 液总体加入至吸附柱 CB3中 (Tiangen Inc试剂盒), 并以 12000rpm离心 30秒, 倒掉 收集管中的废液, 将吸附柱 CB3放入收集管中。 向吸附柱 CB3中加入 500μ1缓冲 液 GD(Tiangen Inc试剂盒), 以 12000rpm离心 30秒。 向吸附柱 CB3中分别加入三 次 700μ1漂洗液 PW洗涤 DNA(Tiangen Inc试剂盒), 以 12000rpm离心 30秒。 将吸 附柱 CB3置于室温放置数分钟, 以彻底晾干吸附材料中残余的漂洗液。
将吸附柱 CB3转入 1.5ml离心管中, 向吸附膜中间位置悬空滴加 50μ1洗脱液 ΤΒ, 室温放置 2-5分钟, 以 12000rpm离心 2分钟, 将溶液收集到离心管中。 将离 心得到的溶液再加入同一个吸附柱 CB3中, 室温放置 2分钟, 以 12000rpm离心 2 分钟, 即得到基因组 DNA溶液。
此 DNA可以存放在 2〜8° C, 如果要长时间存放, 可以放置在 -20° C。
阳性对照和阴性对照样品的基因组 DNA提取操作过程同上。
歩骤 3. DNA纯度检测
利用分光光度法 (Nanodrop2000, Thermo Scientific)检测 DNA纯度和浓度来 测定 DNA浓度, 要求 OD26Q/OD28()^ 1.8, 统一将各样品稀释成 25ι¾/μ1。
歩骤 4. DNA变性
取 lOO g的 DNA放至 PCR管中, 加热至 98° C 3分钟使 DNA变性, 以用于后 续的聚合酶链反应。
歩骤 5. PCR体系的配制
在用于检测突变基因的 PCR管中配制: 0.5μ1的 100μΜ 3'端外部引物 (;各引物 购自上海生工)、 0.5μ1 的 ΙΟΟμΜ 3'端转折引物, 0.5μ1的 50μΜ 5'端外部引物, 0.5μ1 的 50μΜ 5'端折叠引物, 0.5μ1的 12.5μΜ激励引物。 这些引物的序列如表 1所示: 表 1. 突变基因检测引物
Figure imgf000016_0001
在用于检测正常基因的 PCR管中配制 3'端外部引物、 3'端转折引物、 5'端外 部引物、 5'端折叠引物、 激励引物 (各引物浓度同上;)。 这些引物的序列如表 2所 示:
表 2. 正常基因检测引物
Figure imgf000017_0001
在装有引物的 ΙΟμΙ的检测体系中, PCR管中分别加入: 10ng DNA、 1. 125μ1 的水、 2.5μ1的 25mM MgCl2、 1.25μ1的 10mM dNTPs、 0. 125 μ1的 200 X SYBR Green I、 1.5μ1的 10 X PCR缓冲液,并加入 Ι μΐ的脂肪芽胞杆菌聚合酶 (购自 ΝΕΒ, 8υ/μ1)。
歩骤 6. 实时聚合酶链扩增反应
将容纳有 PCR体系的 PCR管放入实时 PCR仪中, 记录各样品所在 96孔的位 置, 进行聚合酶链扩增反应, 反应参数为: 60° C, 45分钟。
步骤 7. 测序验证
对扩增产物进行测序, 以验证所得结果的正确性。
B. 结果分析和评价
通过观察各样品的实时聚合酶链扩增反应荧光曲线图来判断结果, 其中阳 性结果 (即存在突变;)的典型荧光峰图如图 1所示, 阴性结果 (即无突变;)的典型荧 光峰图如图 2所示, 图中的两条曲线分别为复孔检测结果。
测序验证结果证实了: 显示阳性结果的样品所含确为突变序列, 而显示阴 性结果的样品所含确为无突变序列。
上述结果表明本发明的方法可简便、 准确而有效地用于 EGFR突变基因的 检测。 实施例 2. KRAS (NM 033360)12外显子突变基因的实时检测
A. 检测方法
检测步骤同实施例 1,阳性样本为 SW480细胞株,阴性对照的样本为无 DNA 样本。 用于突变基因检测和正常基因检测的引物序列分别如表 3和表 4所示:
表 3. 突变基因检测引物
Figure imgf000018_0001
B. 结果分析和评价
通过比较各样品与对照样品的实时聚合酶链扩增反应荧光曲线图来判断 样品中存在 KRAS 12突变与否, 并经测序验证。 结果证实了显示阳性结果的样 品所含确为突变序列, 而显示阴性结果的样品所含确为无突变序列。
上述结果表明本发明的方法可简便、 准确而有效地用于 KRAS 12突变基因 的检测。 实施例 3. 核酸基因恒温扩增技术与荧光探针即时 PCR扩增技术的方法学比较
A. 核酸基因恒温扩增技术
歩骤 1. 样品采集 如实施例 1中所描述, 进行全血采集。
歩骤 2. 基因组 DNA的分离
如实施例 1中所描述, 分离全血样品中的基因组 DNA。
歩骤 3. DNA纯度检测
如实施例 1中所描述,对所分离基因组 DNA的纯度进行检测, 并进行稀释。 歩骤 4. DNA变性
如实施例 1所描述, 对 DNA进行变性, 所不同的是在各 PCR管中分别加入 不同拷贝数的 DNA: 3000、 600、 300、 60、 30、 6、 3、 0拷贝数, 共八种不同 拷贝数 (如图 3所示;)。
歩骤 5. 实时聚合酶链扩增反应的 PCR体系配制
在核酸基因恒温扩增技术的 PCR管中加入实施例 1步骤 5中所示浓度的各突 变基因检测引物 (如表 1所示;)。
在装有引物 ΙΟμΙ的检测体系中, PCR管中分别加入 10ng DNA、 1.125μ1的水、 2.5μ1的 25mM MgCl2、 1.25μ1的 10mM dNTPs、0.125 W 200X SYBR Green I、 1.5μ1 的 10 X PCR缓冲液, 并加入 Ιμΐ的脂肪芽胞杆菌聚合酶 (购自 NEB, 8υ/μ1)。
歩骤 6. 实时聚合酶链扩增反应
在核酸基因恒温扩增技术的 PCR管中进行实时聚合酶链扩增反应。
将容纳有 PCR体系的 PCR管放入实时 PCR仪中, 记录各样品所在 96孔的位 置, 进行 PCR反应。 聚合酶链扩增反应参数为: 60° C, 45分钟。
B. 荧光探针即时 PCR
步骤 1〜4
同 "A. 核酸基因恒温扩增技术" , 除了 DNA变性步骤是在 PCR时进行。 歩骤 5. 荧光探针即时 PCR体系的配制
在荧光探针即时 PCR的管中配有 (;总体积为 ΙΟμΙ): 2.5μΜ 的 3'端外部引物
(序列 GCCAGTTAACGTCTTCCT(SEQ ID NO.: 1))和 2.5 M/L的 5'端外部引物 (;序列 CCACACAGCAAAGCAG(SEQ ID NO.: 3))、 1μ 的 DNA、 1.25mM/L的 MgCl2、 200μΜ/ 的 dNTPs、 IX SYBR Green I、 Ιμΐ 10 X PCR缓冲液和 1.0 U的 Taqman聚合酶 (购自 ABI), 以及余量的水。
歩骤 6. 荧光探针即时 PCR反应
在荧光探针即时 PCR管中进行实时聚合酶链扩增反应。 将 PCR管放入实时 PCR仪中, 记录各样品所在 96孔的位置。 聚合酶链扩增反应参数为变性 95° C、 10分钟, 和 30个循环的 95° C、 30秒、 退火 56° C, 30秒、 延伸 72° C, 30秒、 然 后延续 72° C, 10分钟。 C. 结果分析和比较
本发明的实时聚合酶链扩增反应的结果如图 3所示,荧光探针即时 PCR反应 的结果如图 4所示。
图 3的结果显示: 1) 本发明的实时聚合酶链扩增反应方法稳定, 且能够检 测 DNA量低到 3个拷贝数; 2) 由于该反应引物中加有针对突变点的高准引物, 故反应结果为突变产物。
图 4的结果显示: 1) 采用荧光探针即时 PCR扩增 EGFR基因只能够检测到 DNA量低到 300到 60之间的拷贝数; 2) 由于该反应引物中无针对突变点的高准 引物, 故反应结果不确定为正常基因或突变基因。
以上结果证明: 本发明的聚合酶链反应恒温基因扩增技术的灵敏度明显优 于荧光探针即时 PCR扩增技术, 且对基因突变与否可做出直观而明确的判定。
并且, 通过反应过程参数的比较可知: 本发明的方法的反应时间短 (;仅 45 分钟;), 且反应温度保持恒定 (65°C) ; 而荧光探针即时 PCR的反应时间长, 且需 频繁改变温度。 由此证明了: 本发明的方法具有简便、 高效的优点。
在本发明提及的所有文献都在本申请中引用作为参考, 就如同每一篇文献 被单独引用作为参考那样。 此外应理解, 在阅读了本发明的上述讲授内容之后, 本领域技术人员可以对本发明作各种改动或修改, 这些等价形式同样落于本申 请所附权利要求书所限定的范围。

Claims

1. 一种用于基因检测的恒温聚合酶链式反应方法, 所述方法包括:
A) 针对待检测的靶基因 DNA序列, 围绕其扩增基因片段周围的 5个不同区域 提供如下 5种引物:
(a) 基于靶基因 3'端的外部引物;
(b) 基于靶基因 3'端的外部引物内侧的转折引物;
(c) 基于靶基因中间部位的激励扩增引物;
(d) 基于靶基因 5'端的外部引物内侧的折叠引物; 和
(e) 基于靶基因 5'端的外部引物;
B) 提供包含 A)中所述引物的聚合酶链式反应体系,并将待测 DNA样品加入所 述反应体系中, 其中如果该样品所含为双链 DNA, 则在将其加入所述反应体系之 前, 对该样品进行变性;
C) 在 50〜70°C的恒温下进行聚合酶链式反应;
D) 通过将待检测 DNA的恒温基因扩增反应数据或图谱与阳性对照比较,获得 基因检测结果。
2. 如权利要求 1所述的方法, 其特征在于, 所述待测 DNA样品来自: 血液、 组织或组织切片、 培养细胞。
3. 如权利要求 1所述的方法, 其特征在于, 所述引物是合成的核酸引物或肽核 酸合成的引物。
4. 如权利要求 1所述的方法, 其特征在于, 所述反应体系包含: DNA、 水、 MgCl2、 4种 dNTP、 缓冲液、 以及脂肪芽胞杆菌聚合酶。
5. 如权利要求 1所述的方法, 其特征在于, 所述反应在 55〜65°C的温度下进行 20〜60分钟。
6. 如权利要求 1所述的方法, 其特征在于, 所述反应数据或图谱是通过分析与
DNA结合的标记物获得的, 优选通过选自下组的方法获得的: 对生物标记物的定 量分析或荧光标记物的定量分析。
7. 一种引物组, 其包括:
(a) 基于靶基因 3'端 DNA序列的外部引物;
(b) 基于靶基因 3'端 DNA序列的外部引物内侧的转折引物;
(c) 基于靶基因 DNA序列中间部位的激励扩增弓 I物; (d) 基于靶基因 DNA序列 5'端的外部引物内侧的折叠引物; 和
(e) 基于靶基因 DNA序列 5'端的外部引物。
8. 一种试剂盒, 其包括: 单独或混合的权利要求 8所述引物组中的各成员; 一 个或多个容器。
9. 权利要求 7所述的引物组在制备用于恒温基因扩增或检测的聚合酶链反 应的试剂盒中的用途。
10. 权利要求 7所述的引物组在聚合酶链式反应中的用途, 所述反应选自: 聚合酶链式反应扩增、环介导恒温聚合酶链式反应扩增、对称或不对称的单链聚合 酶链式反应扩增。
PCT/CN2012/072929 2011-03-25 2012-03-23 用于快速恒温检测基因及基因突变的聚合酶链反应方法 WO2012130102A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110073636.5 2011-03-25
CN201110073636.5A CN102690881B (zh) 2011-03-25 2011-03-25 用于快速恒温基因突变检测的聚合酶链反应方法

Publications (1)

Publication Number Publication Date
WO2012130102A1 true WO2012130102A1 (zh) 2012-10-04

Family

ID=46856617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072929 WO2012130102A1 (zh) 2011-03-25 2012-03-23 用于快速恒温检测基因及基因突变的聚合酶链反应方法

Country Status (2)

Country Link
CN (1) CN102690881B (zh)
WO (1) WO2012130102A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104946784A (zh) * 2015-07-20 2015-09-30 武汉友芝友医疗科技有限公司 人类ugt1a1基因多态性检测特异性引物和试剂盒

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101948914A (zh) * 2010-07-05 2011-01-19 华中农业大学 温氏附红细胞体的环介导等温扩增检测方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101948914A (zh) * 2010-07-05 2011-01-19 华中农业大学 温氏附红细胞体的环介导等温扩增检测方法

Also Published As

Publication number Publication date
CN102690881B (zh) 2015-08-19
CN102690881A (zh) 2012-09-26

Similar Documents

Publication Publication Date Title
US11279979B2 (en) Method of determining PIK3CA mutational status in a sample
Kuo et al. Comparison of KRAS mutation analysis of primary tumors and matched circulating cell-free DNA in plasmas of patients with colorectal cancer
Han et al. Detection of EGFR mutation status in lung adenocarcinoma specimens with different proportions of tumor cells using two methods of differential sensitivity
Setty et al. A pyrosequencing-based assay for the rapid detection of IDH1 mutations in clinical samples
CN109825586B (zh) 用于肺癌检测的DNA甲基化qPCR试剂盒及使用方法
US11180812B2 (en) Use of DNA in circulating exosomes as a diagnostic marker for metastatic disease
JP2011515109A (ja) FISH法を用いた循環腫瘍細胞中のIGF1R/Chr15を検出するための方法
BR122023026077A2 (pt) Métodos para detecção de pelo menos uma mutação em uma pluralidade de genes relacionados ao câncer, selecionar um indivíduo para tratamento e prever a probabilidade de capacidade de resposta ao tratamento
CN107447013B (zh) 检测Kras基因第12、13密码子突变位点的方法及其试剂盒
CN110438223A (zh) 检测Kras基因点突变的引物、探针及其试剂盒与检测方法
Yoon et al. Peptide nucleic acid clamping versus direct sequencing for the detection of EGFR gene mutation in patients with non-small cell lung cancer
US20180187267A1 (en) Method for conducting early detection of colon cancer and/or of colon cancer precursor cells and for monitoring colon cancer recurrence
WO2012167112A2 (en) Gastric cancer biomarkers
JP2023505031A (ja) がんの分析のための方法及び組成物
KR102112951B1 (ko) 암의 진단을 위한 ngs 방법
CN107746880B (zh) 一种基于RT-qPCR法检测胃癌的试剂盒及其制备方法和应用
Lin et al. Droplet digital polymerase chain reaction for detection and quantification of cell-free DNA TP53 target somatic mutations in oral cancer
JPWO2018212247A1 (ja) Egfr変異非小細胞肺がんにおけるegfrチロシンキナーゼ阻害剤の治療奏功性の予測方法
WO2018211404A1 (en) Composite epigenetic biomarkers for accurate screening, diagnosis and prognosis of colorectal cancer
WO2012130102A1 (zh) 用于快速恒温检测基因及基因突变的聚合酶链反应方法
CN106811537A (zh) 一种检测表皮生长因子受体基因t790m低频突变引物及其应用
US11214838B2 (en) Method of predicting effect of medicinal therapy on cancer
CN105969874B (zh) 用于检测微量组织中kras基因突变的引物组合及其应用
CN114990142B (zh) 一种fyco1-alk融合基因及其检测试剂盒和应用
CN115094139B (zh) 检测甲基化水平的试剂在制备膀胱癌诊断产品中的应用以及膀胱癌诊断试剂盒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765042

Country of ref document: EP

Kind code of ref document: A1