WO2012129799A1 - 一种同步电机电感参数辨识方法及其实现系统 - Google Patents

一种同步电机电感参数辨识方法及其实现系统 Download PDF

Info

Publication number
WO2012129799A1
WO2012129799A1 PCT/CN2011/072316 CN2011072316W WO2012129799A1 WO 2012129799 A1 WO2012129799 A1 WO 2012129799A1 CN 2011072316 W CN2011072316 W CN 2011072316W WO 2012129799 A1 WO2012129799 A1 WO 2012129799A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
current
voltage
frequency
module
Prior art date
Application number
PCT/CN2011/072316
Other languages
English (en)
French (fr)
Inventor
王玉雷
徐铁柱
Original Assignee
深圳市英威腾电气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市英威腾电气股份有限公司 filed Critical 深圳市英威腾电气股份有限公司
Priority to EP11840711.3A priority Critical patent/EP2693628A4/en
Priority to CN201180004211.7A priority patent/CN102763324B/zh
Priority to PCT/CN2011/072316 priority patent/WO2012129799A1/zh
Publication of WO2012129799A1 publication Critical patent/WO2012129799A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/183Circuit arrangements for detecting position without separate position detecting elements using an injected high frequency signal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/16Estimation of constants, e.g. the rotor time constant

Definitions

  • the invention discloses an inductance parameter identification method and an implementation system thereof, in particular to a synchronous motor inductance parameter identification method and an implementation system thereof.
  • Permanent magnet synchronous motor has the advantages of high power density, low loss, high efficiency, high power factor, and is suitable for direct drive. It is widely used in the field of electric drive. In the early days, synchronous motors typically used vector control with encoder feedback or open-loop V/F control, which was limited in application. At present, the speed sensorless vector control technology of synchronous motors has been mastered by a few inverter manufacturers and applied to plastics, machinery, oil fields, fans, pumps and other fields. Speed sensorless vector control usually uses a rotor flux linkage (ie, permanent magnet flux linkage) orientation strategy, and identifying the rotor flux linkage of a motor requires knowledge of the inductance parameters of the motor, including DC inductance and cross-axis inductance. At present, the DC inductance of the synchronous motor and the cross-axis inductance L q are usually identified by the pulse voltage surge method. The method steps are as follows:
  • the d-axis (rotor pole axis) of the motor needs to be obtained by applying a direct current. If the shaft of the motor cannot be rotated, such as an elevator traction machine and the like, the d-axis of the motor cannot be obtained;
  • stator resistance r s of the motor must be obtained first, and the accuracy of the stator resistance ⁇ will affect the accuracy of the identified inductance parameters;
  • the applied fixed voltage amplitude is not easy to select. If the applied fixed voltage amplitude is too large, it will cause overcurrent. If the applied fixed voltage amplitude is too small, the current will be small, which will affect the detection accuracy. At the same time, the time required for the q-axis voltage application is relatively short, otherwise the motor will rotate, which may cause the identification of the q-axis inductance parameter to be inaccurate.
  • the present invention provides a synchronous motor inductance parameter identification method and an implementation system thereof, which do not add hardware. On the basis, the motor inductance parameters can be statically identified.
  • a synchronous machine inductance parameter identification method which first determines the rotor magnetic pole axis position of the motor, obtains the magnetic pole coordinate axis dq axis, and then injects a certain amplitude into the d axis of the motor.
  • a high-frequency voltage or current signal that obtains a magnitude of a feedback high-frequency current or voltage component of the d-axis feedback high-frequency current or voltage that is the same as the injected high-frequency voltage or current frequency, according to the d-axis feedback high-frequency current or The magnitude of the voltage component is calculated as the d-axis inductance. .
  • the invention also provides a system for realizing the above-mentioned synchronous motor inductance parameter identification method, the system comprises an initial magnetic pole positioning module, a d-axis high-frequency voltage/current injection module, a d-axis band-pass filter module and a d-axis inductance calculation module, wherein:
  • the initial magnetic pole positioning module is configured to determine a rotor pole axis position of the motor, and obtain a magnetic pole coordinate axis dq axis;
  • the d-axis high-frequency voltage/current injection module injects a high-frequency voltage or current of a certain amplitude into the d-axis of the motor according to the position of the magnetic pole axis determined by the initial magnetic pole positioning module;
  • the d-axis band pass filter module is configured to extract a d-axis component of a high-frequency current or voltage of a d-axis and a high-frequency current or voltage of the same frequency as the voltage or current;
  • the d-axis inductance calculation module is configured to calculate a magnitude of a high-frequency feedback current or a voltage d-axis component according to the d-axis component, and calculate a d-axis inductance according to a magnitude of the d-axis component.
  • the step of determining the rotor pole axis position of the motor to obtain the pole coordinate axis dq axis comprises: arbitrarily selecting from the synchronous motor; ⁇ - in the coordinate system, by injecting a set of high frequency sines whose amplitude gradually increases from 0 a voltage or current signal; obtaining an axis and a ⁇ axis component of the feedback high frequency current or voltage and performing coordinate-conversion thereof, and obtaining a magnetic pole position angle ⁇ according to the transformation result, the coordinate axis leading axis
  • the voltage or current signal whose amplitude is gradually increased from 0 is increased until the amplitude of the shaft of the feedback high-frequency current or voltage reaches a set value, or the injection height is high.
  • the frequency voltage or current amplitude reaches the set value, the injected high-frequency voltage or current amplitude remains unchanged.
  • the amplitude of the voltage or current signal injected into the synchronous motor shaft is equal to the high injection into the d-axis of the motor.
  • the calculating the d-axis inductor ⁇ further includes calculating the q-axis inductance, specifically comprising: injecting a high-frequency voltage or current signal of a certain amplitude into the q-axis of the motor to obtain a feedback high-frequency current or voltage of the q-axis The amplitude of the feedback high-frequency current or voltage component having the same high-frequency voltage or current frequency is injected, and the q-inductance is calculated according to the amplitude of the q-axis feedback high-frequency current or voltage component.
  • the synchronous motor feedback current or the d-axis DC component of the voltage is obtained by using a low-pass filter to obtain a DC component of the feedback current or voltage.
  • the injecting a high-frequency voltage or current signal of a certain amplitude into the d-axis of the motor is to inject a high-frequency voltage or current signal into the d-axis of the motor through a PWM module of the inverter, the injected high-frequency voltage or current signal
  • the frequency is greater than the rated frequency of the synchronous motor and less than the PWM carrier frequency of the inverter.
  • the injection of a high-frequency voltage or current signal of a certain amplitude into the q-axis of the motor is performed by injecting a high-frequency voltage or current signal into the q-axis of the motor through a PWM module of the inverter, the injected high-frequency voltage or current signal
  • the frequency is greater than the rated frequency of the synchronous motor and less than the PWM carrier frequency of the inverter.
  • the system further includes a q-axis high frequency voltage/current injection module, a q-axis band pass filter module, and a q-axis inductance calculation module, wherein:
  • the q-axis high-frequency voltage/current injection module injects a high-frequency voltage or current of a certain amplitude into the q-axis of the motor
  • the q-axis band pass filter module is configured to extract the q-axis feedback high-frequency current or voltage and the injection and a q-axis component of a high-frequency current or voltage of a voltage or current of the same frequency;
  • the q-axis inductance calculation module is configured to calculate the amplitude of the high-frequency feedback current or the voltage q-axis component according to the q-axis component, and calculate the q-axis inductance according to the amplitude of the q-axis component.
  • the system further includes a DC PI regulator module for locking the pole shaft to ensure that the pole shaft does not rotate when the high frequency voltage or current is injected into the q axis, so that the DC current injected into the d axis is a set value, and the feedback
  • the DC component of the current or voltage is PI-adjusted to obtain a d-axis voltage or current, and the d-axis voltage output from the DC-PI regulator module is superimposed with the high-frequency voltage injected from the q-axis high-frequency voltage/current injection module.
  • the PI regulator module obtains a DC current of a feedback current through a current/voltage low-pass filter module.
  • the system further includes an inverter SVPWM module, and the d-axis high-frequency voltage/current injection module passes through an inverter SVPWM module.
  • the injected high-frequency voltage or current is input to the synchronous motor d-axis; the q-axis high-frequency voltage/current injection module inputs the injected high-frequency voltage or current to the synchronous motor q-axis through the SVPWM module of the inverter.
  • the invention has the beneficial effects that: by the invention, the d-axis inductance and the q-axis inductance of the synchronous motor can be accurately recognized on the general-purpose frequency converter without increasing the hardware cost.
  • the invention is easy to implement, and the sampling precision of the motor feedback current is not high, and the frequency and amplitude of the high-frequency voltage signal injected into the motor are also easily controlled, and the d-axis inductance and the q-axis inductance of the motor can be directly recognized, and the motor shaft is in the The free state is still in a tight state and does not affect the accuracy of the identification.
  • the invention can realize relatively accurate identification of the d-axis inductance and the q-axis inductance of the surface-mounted synchronous motor, the embedded synchronous motor and the electric excitation synchronous motor, and the parameters obtained by the identification can be used in the vector control algorithm of the synchronous motor. .
  • DRAWINGS Figure 1 shows the coordinate system used in the present invention and their relationship.
  • FIG. 2 is a schematic block diagram of the identification of the d-axis inductor of the present invention.
  • FIG. 3 is a schematic block diagram of identifying a q-axis inductor according to the present invention.
  • the present embodiment is a preferred embodiment of the present invention, and other principles and basic structures thereof are the same as or similar to those of the present embodiment, and are all within the scope of the present invention.
  • the invention mainly relates to a synchronous machine inductance parameter identification method, which firstly determines the rotor magnetic pole axis position of the motor, obtains the magnetic pole coordinate axis dq axis, and then injects a certain amplitude of the high frequency voltage or current signal to the d axis of the motor, Obtaining the amplitude of the feedback high-frequency current or voltage component of the d-axis feedback high-frequency current or voltage that is the same as the injected high-frequency voltage or current frequency, and calculating the d-axis according to the amplitude of the d-axis feedback high-frequency current or voltage component Inductance ⁇ .
  • the steps are as follows: a high frequency sinusoidal voltage whose amplitude gradually increases from 0 is injected into the coordinate system arbitrarily selected in the synchronous motor. Or current signal; sample and feed the axis and axis components of the high-frequency current or voltage and coordinately transform it, and obtain the magnetic pole position angle according to the transformation result.
  • the - / ⁇ coordinate axis leads the coordinate axis by 45 degrees; Magnetic pole position angle adjustment: - ⁇ coordinate, which gradually approaches the magnetic pole coordinate dq axis of the motor until the stability is reached.
  • reaching stability means fluctuating within a sufficiently small threshold range
  • the coordinate axis can be Think of it; the axis.
  • the q-axis inductance of the synchronous motor can also be calculated according to the determined magnetic pole coordinate dq axis of the motor, which specifically includes: injecting a high-frequency voltage or current signal of a certain amplitude to the q-axis of the motor to obtain a high feedback of the q-axis.
  • the magnitude of the feedback high-frequency current or voltage component of the frequency current or voltage that is the same as the frequency of the injected high-frequency voltage or current, and the q-inductance is calculated according to the magnitude of the q-axis feedback high-frequency current or voltage component.
  • the rotor of the motor does not rotate. It can inject a high-frequency voltage or current signal into the q-axis and inject a DC current into the d-axis to lock the rotor pole position, thus ensuring the accuracy of the q-axis inductance.
  • the basic theory of the synchronous motor used is as follows: When the speed regulation system is powered by the SVPWM voltage source inverter, the high frequency sinusoidal voltage signal of a certain amplitude can be directly applied to the synchronization through the SVPWM module of the inverter. On the ⁇ axis of the motor's _ axis, on.
  • the axis is an arbitrarily selected coordinate axis.
  • e the angular frequency of the injected high-frequency sinusoidal voltage
  • amplitude ⁇ .
  • the frequency of high-frequency voltage signal injection is generally 0, 1 ⁇ that is greater than the rated frequency of the synchronous motor, and less than the PWM carrier frequency of the inverter.
  • the stator voltage drop of the synchronous motor can be neglected. At this time, the synchronous motor will not rotate and there is no back-EM potential.
  • the feedback high-frequency current can be expressed as
  • the axis is the dq axis of the motor (or -d, -q axis), respectively, on the d-axis (or -d-axis) and High-frequency sinusoidal voltage is injected into the q-axis (or -q-axis) (usually the frequency of high-frequency voltage signal injection is generally 0J -2 HZ, which is greater than the rated frequency of the synchronous motor and less than the PWM carrier frequency of the inverter).
  • the d-axis and q-axis inductances can be obtained separately:
  • respectively is the high-frequency voltage amplitude of the d-axis injection and the high-frequency voltage amplitude of the q-axis injection, l sd , / are the high-frequency current amplitude and q-axis of the d-axis feedback, respectively.
  • a DC current can be injected into the d-axis while the high-frequency voltage is injected into the q-axis.
  • the magnitude of the injected DC current is the rated current of the motor. 20%-100%, usually selected as 30% of the rated motor current), used to lock the rotor pole position, thus ensuring the accuracy of the q-axis inductance.
  • the invention implements a high frequency voltage injection method for identifying a d-axis inductance and a q-axis inductance of a synchronous motor, which comprises the following steps: 1.
  • K ' e ° s(i ⁇ ) arbitrarily select a - coordinate system, inject high-frequency sinusoidal voltage signal into the axis, the voltage amplitude ⁇ gradually increases from 0 (the usual whole increase process requires several From a hundred milliseconds to a few seconds, if the voltage amplitude increases too fast, it may cause overcurrent, and it is easy to burn the motor.
  • the entire increase of the voltage amplitude is freely set according to actual needs without burning the motor. Simultaneously sample the feedback current of the synchronous motor.
  • the high-order band-pass filter is used to sample the axis and axis components of the feedback high-frequency current and ⁇ .
  • the center frequency of the passband of the selected high-order bandpass filter is selected as ⁇ , and a variable is constructed at the same time.
  • the variable and the orthogonal, the magnitude that can be obtained 7 ⁇ ⁇ .
  • step 3 gradually adjust the ⁇ -coordinate to gradually approach the magnetic pole coordinate d-q axis of the synchronous motor.
  • the injected high-frequency voltage amplitude ⁇ reaches the set value, (the set value of the injected high-frequency voltage amplitude in this embodiment can be selected as 20% of the rated voltage of the motor - 100%, if 1/2 of the rated voltage can be selected, the injected high-frequency voltage amplitude ⁇ remains unchanged, then repeat steps 2 ⁇ 4 until the magnetic pole position angle is stable, at this time; - ⁇ -coordinate
  • the dq axis of the magnetic axis is obtained, and the sinusoidal high-frequency voltage is injected into the q-axis.
  • a DC is injected into the d-axis while injecting the high-frequency voltage.
  • the current ⁇ can be 20%-100% of the rated current of the motor. If the rated current can be selected as 30%, a DC current is injected into the d-axis and the DC component of the d-axis current fed back by the synchronous motor is PI-adjusted.
  • the d-axis DC voltage obtained by PI adjustment and the sinusoidal high-frequency voltage injected on the q-axis u sq V COs ⁇ J) Superimposed.
  • the set value of the injected high-frequency voltage amplitude in this embodiment can be selected as 20%-100% of the rated voltage of the motor.
  • a suitable voltage can be selected according to the selected injection frequency, such as 1 /2 rated voltage).
  • the band-pass filter is used to obtain the d-axis component and the q-axis component of the feedback high-frequency current, and a variable is constructed at the same time.
  • the variable ⁇ and the quadrature (that is, the delay of 90°) can obtain the q-axis component of the feedback high-frequency current.
  • the set value of the amplitude of the feedback high-frequency current in this embodiment can be selected as 20%-100% of the rated current of the motor. If it is desirable
  • the injected high-frequency voltage amplitude reaches the set value (the set value of the injected high-frequency voltage amplitude in this embodiment can be selected as 20%-100% of the rated voltage of the motor , if you can choose 1/2 rated voltage), because the d-axis high-frequency current amplitude is small, approximately equal to 0, according to formula (4)
  • the q-axis inductance can be calculated.
  • the above embodiment is a method for identifying a d-axis inductance and a q-axis inductance of a synchronous motor by a high-frequency voltage injection method, which is to inject a high-frequency voltage into a synchronous motor, obtain a magnetic pole position angle of a feedback high-frequency current of the synchronous motor, and obtain a magnetic pole according to the obtained magnetic pole.
  • Position angle ⁇ adjustment - coordinate make it gradually approach the dq axis of the magnetic pole coordinate of the motor, calculate the d-axis inductance ⁇ , inject high-frequency voltage into the q-axis, obtain the DC component of the feedback current, calculate the q-axis according to the DC component of the feedback current Inductor
  • a method for identifying a d-axis inductance and a q-axis inductance of a synchronous motor by a high-frequency current injection method, and injecting a high-frequency current into the d and q axes respectively to obtain d, q-axis inductance, L q the process is the same as the high frequency voltage injection method, and will not be described here.
  • the high-frequency current injection method uses the d/q-axis high-frequency current of the command and the feedback d/q-axis high-frequency current for PI adjustment, and the high-frequency voltage obtained by the PI regulator is passed through the inverter.
  • the PWM module is input to the motor, and the obtained high-frequency voltage is usually the commanded high-frequency voltage.
  • a system for realizing the above-mentioned synchronous motor inductance parameter identification method mainly comprises an initial magnetic pole positioning module, a d-axis high-frequency voltage/current injection module, and an inverter.
  • SVPWM module, d-axis bandpass filter module and d-axis inductor calculation module mainly comprises an initial magnetic pole positioning module, a d-axis high-frequency voltage/current injection module, and an inverter.
  • SVPWM module d-axis bandpass filter module and d-axis inductor calculation module.
  • the initial magnetic pole positioning module is mainly used to determine the rotor pole axis position of the motor, thereby obtaining the motor d-axis (magnetic pole axis) and the q-axis.
  • the d-axis high-frequency voltage/current injection module is further configured to inject a set of frames onto the axis of the optional coordinate system of the synchronous motor when the initial magnetic pole positioning module determines the position of the motor rotor pole axis.
  • a high-frequency sinusoidal voltage or current signal whose value gradually increases from 0.
  • the d-axis high-frequency voltage injection module is represented by an initial high-frequency voltage injection module
  • the initial magnetic pole positioning module is represented by a magnetic pole position recognition module.
  • the frequency is ⁇
  • the amplitude is, when the high-frequency current is injected into the synchronous motor, it is similar to the injection of the high-frequency voltage, and will not be described here.
  • Inverter SVPWM module d-axis high-frequency voltage / current injection module through the inverter's SVPWM module to input the injected high-frequency voltage or current to the synchronous motor d-axis.
  • the d-axis high-frequency voltage/current injection module injects a high-frequency voltage or current of a certain amplitude into the d-axis of the motor according to the position of the magnetic pole axis determined by the initial magnetic pole positioning module.
  • the d-axis bandpass filter module is used to extract the d-axis feedback high-frequency current or voltage from the d-axis component of the high-frequency current or voltage injected at the same frequency as the voltage or current.
  • the d-axis inductance calculation module is configured to calculate the amplitude of the high-frequency feedback current or the voltage d-axis component according to the d-axis component, and calculate the d-axis inductance according to the amplitude of the d-axis component.
  • the system of the present invention further includes a coordinate transformation module for converting the obtained feedback high frequency current or voltage to the impedance observation axis.
  • the coordinate axis leads the ⁇ coordinate axis. 45 degrees; the initial magnetic pole by the positioning module - ⁇ coordinate transformation module connected to the d-axis bandpass filtering module to obtain the magnetic pole position according to the angle of coordinate conversion module converting the results, obtained in accordance with the magnetic pole position angle ⁇ adjustments - third coordinate , so that it gradually approaches the dq axis of the magnetic pole coordinate of the motor until it reaches stability.
  • the ⁇ - coordinate is the dq coordinate axis.
  • the q-axis inductance calculation part is further included.
  • the q-axis inductance calculation part mainly includes a q-axis high-frequency voltage/current injection module, an inverter SVPWM module, a q-axis band-pass filter module, and a q-axis inductor. Calculation module, where:
  • the q-axis high-frequency voltage/current injection module injects a high-frequency voltage or current of a certain amplitude into the q-axis of the motor; the inverter SVPWM module, the high-frequency voltage or current injected by the q-axis high-frequency voltage/current injection module After superimposing the voltage output from the PI regulator module, the SVPWM module through the inverter will be superimposed.
  • the high frequency voltage is input to the q axis of the synchronous motor;
  • the q-axis band pass filter module is configured to extract a q-axis component of the q-axis feedback high-frequency current or voltage and a high-frequency current or voltage injected at the same frequency as the voltage or current;
  • the q-axis inductance calculation module is configured to calculate the amplitude of the high-frequency feedback current or the voltage q-axis component according to the q-axis component, and calculate the q-axis inductance according to the amplitude of the q-axis component.
  • a DC PI regulator module (shown as a current loop PI regulator in FIG. 3) is also included, which is used to lock the pole shaft to ensure that the pole shaft does not rotate when the high frequency voltage or current is injected into the q axis.
  • the DC current injected into the d-axis is set to a value, and the DC current injected into the d-axis and the DC component of the feedback d-axis feedback current are PI-adjusted to obtain a d-axis DC voltage, and the d-axis DC voltage and the q-axis high-frequency are obtained.
  • the high frequency voltage injected by the voltage/current injection module is superimposed.
  • the PI regulator module obtains the DC component of the feedback current through the low pass filter module.
  • the invention can realize the relatively accurate identification of the d-axis inductance and the q-axis inductance of the synchronous motor on the general-purpose frequency converter without increasing the hardware cost.
  • the invention is easy to implement, and the sampling precision of the motor feedback current is not high, and the frequency and amplitude of the high-frequency voltage signal injected into the motor are also easily controlled, and the d-axis inductance and the q-axis inductance of the motor can be directly recognized, and the motor shaft is in the The free state is still in a tight state and does not affect the accuracy of the identification.
  • the invention can realize relatively accurate identification of the d-axis inductance and the q-axis inductance of the surface-mounted synchronous motor, the embedded synchronous motor and the electric excitation synchronous motor, and the parameters obtained by the identification can be used in the vector control algorithm of the synchronous motor. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

一种同步电机电感参数辨识方法及其实现系统 技术领域
本发明公开一种电感参数辨识方法及其实现系统, 特别是一种同步电机电 感参数辨识方法及其实现系统。
背景技术
永磁同步电机具有功率密度大、 损耗小、 效率高、 功率因数高、 适合直驱 等优点, 在电气传动领域应用越来越广泛。 在早期, 同步电机通常采用带编码 器反馈的矢量控制或者采用开环 V/F控制, 应用领域受到很大限制。 目前, 同步 电机的无速度传感器矢量控制技术已被少数变频器厂家所掌握并将其应用于塑 料、 机械、 油田、 风机、 水泵等领域。 无速度传感器矢量控制通常采用转子磁 链 (即永磁体磁链) 定向策略, 而辨识电机的转子磁链需要知道电机的电感参 数, 包括直流电感 以及交轴电感 。 目前, 辨识同步电机的直流电感 以及 交轴电感 Lq通常采用脉冲电压冲击法, 方法步骤如下:
1、 选取任意坐标为 d轴 (即磁极轴) , 发出 d轴电压, 将转子的磁极吸引到 d轴;
2、 向电机施加一个固定的 d轴脉冲电压, 同时采样 d轴的反馈电流, 根据公 u _I^t
式: 二 - e Ld )计算得到 d轴电感;
S
3、 向电机施加短时间的固定 q轴脉冲电压, 同时采样 q轴反馈电流, 根据公 式:
Figure imgf000003_0001
上述方法具有如下的缺点:
1、 需要通过施加直流的方法来得到电机的 d轴 (转子磁极轴) , 如果电机 的轴无法转动, 比如电梯曳引机等带抱闸机械, 则无法得到电机的 d轴;
2、要先得到电机的定子电阻 rs,而定子电阻 ^的精度会影响辨识的电感参数 的精度;
3、 施加的固定电压幅值不容易选取, 如果施加的固定电压幅值过大, 会造 成过流; 如果施加的固定电压幅值过小, 则电流小, 影响检测精度。 同时 q轴电 压施加的时间要求要比较短,否则电机会转动,容易造成 q轴电感参数辨识不准。
4、 由于施加固定电压的时间比较短, 对电流采样要求较高, 要求电流采样 快而且准, 否则容易造成参数辨识偏差。
发明内容
针对上述提到的现有技术中的同步电机的直流电感 以及交轴电感 检 测、 计算比较困难的缺点, 本发明提供一种同步电机电感参数辨识方法及其实 现系统, 该方法在不增加硬件的基础上, 能静态辨识电机电感参数。
本发明解决其技术问题采用的技术方案是: 一种同步机电感参数辨识方法, 该方法为首先确定电机的转子磁极轴位置,得到磁极坐标轴 d-q轴,然后向电机 的 d轴注入一定幅值的高频电压或电流信号, 获取 d轴的反馈高频电流或电压 中与注入高频电压或电流频率相同的反馈高频电流或电压分量的幅值, 根据所 述 d轴反馈高频电流或电压分量的幅值计算 d轴电感 。。
本发明同时提供一种实现上述的同步电机电感参数辨识方法的系统, 系统 包括初始磁极定位模块、 d轴高频电压 /电流注入模块、 d轴带通滤波模块、 d轴 电感计算模块, 其中: 所述初始磁极定位模块, 用于确定电机的转子磁极轴位置, 得到磁极坐标 轴 d-q轴;
所述 d轴高频电压 /电流注入模块, 根据所述初始磁极定位模块确定的磁极 轴位置, 将一定幅值的高频电压或电流注入电机的 d轴;
所述 d轴带通滤波模块, 用于提取 d轴的反馈高频电流或电压中与注入与 电压或电流同频率的高频电流或电压的 d轴分量;
所述 d轴电感计算模块, 用于根据所述 d轴分量, 计算高频反馈电流或电 压 d轴分量的幅值, 并根据 d轴分量的幅值计算得到 d轴电感。
本发明解决其技术问题采用的技术方案进一步还包括:
所述确定电机的转子磁极轴位置,得到磁极坐标轴 d-q轴步骤包括: 向同步 电机中任意选取的; ^ - 坐标系中的? 由上注入一组幅值从 0逐渐增大的高频正 弦电压或电流信号; 获取反馈高频电流或电压的 轴和 ^轴分量并对其进行坐标 - 变换, 根据变换结果得到磁极位置角 ^, 所述 坐标轴超前 坐标轴
45度; 根据得到的磁极位置角 调整: - δ坐标, 使之逐渐逼近电机的磁极坐 标 d-q轴, 直至 达到稳定, 此时 γ - δ坐标即为 d-q坐标。
所述的向同步电机中任意选取的 坐标系中的 由上注入幅值从 0逐渐 增大的电压或电流信号, 直到反馈高频电流或电压的 轴幅值达到设定值, 或者 注入的高频电压或电流幅值达到设定值时, 注入的高频电压或电流幅值保持不 变, 此时向同步电机 ^轴上注入的电压或电流信号幅值等于向电机的 d轴注入 的高频电压或电流信号的幅值, 用于计算 d轴电感 ^。
所述的计算 d轴电感 ^之后还包括计算 q轴电感 , 具体包括: 向电机的 q轴注入一定幅值的高频电压或电流信号,获取 q轴的反馈高频电流或电压中与 注入高频电压或电流频率相同的反馈高频电流或电压分量的幅值, 根据所述 q 轴反馈高频电流或电压分量的幅值计算 q电感 。
所述的计算 q轴电感 之前, 还包括下述步骤:
向 d轴注入一固定值的直流电流;
并将所述向 d轴注入的直流电流与同步电机反馈电流的 d轴直流分量进行
PI调节;
将 PI调节得到的 d轴电压与 q轴上注入的正弦高频电压叠加;
逐渐增加注入到 q轴上的高频电压或电流幅值, 直到反馈电流或电压的幅 值达到设定值, 或向 q轴注入的高频电压或电流幅值达到设定值。
所述 PI调节时, 采用的同步电机反馈电流或电压的 d轴直流分量, 是采用 低通滤波器得到反馈电流或电压的直流分量。
所述向电机的 d轴注入一定幅值的高频电压或电流信号是将高频电压或电 流信号通过逆变器的 PWM模块注入电机 d轴的,所述注入的高频电压或电流信 号的频率大于同步电机的额定频率, 小于逆变器的 PWM载波频率。
所述向电机的 q轴注入一定幅值的高频电压或电流信号是将高频电压或电 流信号通过逆变器的 PWM模块注入电机 q轴的,所述注入的高频电压或电流信 号的频率大于同步电机的额定频率, 小于逆变器的 PWM载波频率。
所述的系统还包括 q轴高频电压 /电流注入模块、 q轴带通滤波模块和 q轴 电感计算模块, 其中:
所述 q轴高频电压 /电流注入模块, 将一定幅值的高频电压或电流注入电机 的 q轴;
所述 q轴带通滤波模块, 用于提取 q轴的反馈高频电流或电压中与注入与 电压或电流同频率的高频电流或电压的 q轴分量;
q轴电感计算模块, 用于根据所述 q轴分量, 计算高频反馈电流或电压 q轴 分量的幅值, 并根据 q轴分量的幅值计算得到 q轴电感。
所述的系统还包括直流 PI调节器模块, 用于将磁极轴锁定, 保证向注入 q 轴高频电压或电流时磁极轴不转动, 令注入 d轴的直流电流为一设定值, 与反 馈的电流或电压的直流分量进行 PI调节,得到 d轴电压或电流, 将直流 PI调节 器模块输出的 d轴电压与 q轴高频电压 /电流注入模块注入的高频电压进行叠加。
所述 PI 调节器模块通过电流 /电压低通滤波器模块获取反馈电流的直流分 所述的系统还包括逆变器 SVPWM模块, d轴高频电压 /电流注入模块通过 逆变器的 SVPWM模块将注入的高频电压或电流输入到同步电机 d轴; q轴高频 电压 /电流注入模块通过逆变器的 SVPWM模块将注入的高频电压或电流输入到 同步电机 q轴。
本发明的有益效果是: 通过本发明可以在不增加硬件成本的基础上即可在 通用变频器上实现比较准确的辨识同步电机的 d轴电感和 q轴电感。 本发明易 于实现, 对电机反馈电流采样精度要求不高, 注入电机的高频电压信号的频率 和幅值也容易控制, 可直接辨识得到电机的 d轴电感和 q轴电感, 电机轴无论 是处于自由态, 还是处于抱紧状态, 都不影响辨识的精度。 通过本发明可实现 对表贴式同步电机、 内嵌式同步电机和电励磁同步电机的 d轴电感和 q轴电感 比较准确的辨识, 通过辨识得到的参数可用于对同步电机的矢量控制算法中。
下面将结合附图和具体实施方式对本发明做进一步说明。
附图说明 图 1为本发明所采用的坐标系及其相互关系。
图 2为本发明辨识 d轴电感的原理框图。
图 3为本发明辨识 q轴电感的原理框图。
具体实施方式
本实施例为本发明优选实施方式, 其他凡其原理和基本结构与本实施例相 同或近似的, 均在本发明保护范围之内。
本发明主要的为一种同步机电感参数辨识方法, 其首先要确定电机的转子 磁极轴位置,得到磁极坐标轴 d-q轴,然后向电机的 d轴注入一定幅值的高频电 压或电流信号, 获取 d轴的反馈高频电流或电压中与注入高频电压或电流频率 相同的反馈高频电流或电压分量的幅值, 根据所述 d轴反馈高频电流或电压分 量的幅值计算 d轴电感 ^。 本发明在确定电机的转子磁极轴位置, 得到磁极坐 标轴 d-q轴时, 步骤如下: 向同步电机中任意选取的 坐标系中的 由上注 入一组幅值从 0逐渐增大的高频正弦电压或电流信号; 采样反馈高频电流或电 压的 轴和 轴分量并对其进行坐标 变换, 根据变换结果得到磁极位置角 Θ 本实施例中, - /^坐标轴超前 坐标轴 45度; 根据得到的磁极位置角 调整: - δ坐标, 使之逐渐逼近电机的磁极坐标 d-q轴, 直至 ^达到稳定, 本 实施例中, 达到稳定是指 在一个足够小的阈值范围内波动, 此时 坐标 轴即可认为是; 坐标轴。 本发明中, 还可以根据确定的电机的磁极坐标 d-q 轴来计算同步电机的 q轴电感 , 具体包括: 向电机的 q轴注入一定幅值的高 频电压或电流信号, 获取 q轴的反馈高频电流或电压中与注入高频电压或电流 频率相同的反馈高频电流或电压分量的幅值, 根据所述 q轴反馈高频电流或电 压分量的幅值计算 q电感 。 为了保证在向 q轴注入高频电压或电流信号时, 电机转子不转动, 可以在 q轴注入高频电压或电流信号的同时, 在 d轴注入一 个直流电流, 用来锁定转子磁极位置, 从而保证辨识 q轴电感的精确度。 本发明中, 用到的同步电机基本理论如下: 当调速系统采用 SVPWM 电压源逆变器供电的情况下, 可通过逆变器 SVPWM模块将一定幅值的高频正弦电压信号直接施加在同步电机的 _ 轴 的 γ轴上, 上。 : _ 轴为任意选取的坐标轴, 轴与同步电机实际的 d 轴和 q轴 (d轴和 q轴按转子磁极选取) 之间有一个磁极偏差角 e。 假设注入的 高频正弦电压的角频率为 , 幅值为 ^, 采用 - 坐标系, 则注入的高频 电压信号可表示为: 认 = Vi cos( ω,ί)
公式 (1)
Us5co = 0
通常选用的高频电压信号注入的频率一般为 0、1· 即大于同步电机的 额定频率, 小于逆变器的 PWM载波频率。在高频电压信号激励下, 同步电机的 定子压降可以忽略, 此时同步电机不会旋转, 无反电势, 其反馈的高频电流可 表示为
(L + ALcos(2<re))
Figure imgf000009_0001
Vi sin^i) 公式 (2) sd (ALsin(2 (2) 中, L = ( +LJ/2 , AL = (L -Ld)/2, <^为 轴与转子磁; 轴 d轴的空间电角度。 当转子位置的误差角 e为零时, 则在超前 轴、 轴 45度的 轴、 轴上 的高频电流^ i、 应该相等, 请参考附图 1所示的坐标系, 因此可以对 轴、 κ 轴上的高频电流 , s/l的误差进行 PI调节,再经过积分模块进行积分运算可得到 转子的实际磁极位置, 即
1
er = PI(iSK - isl) 公式 (3 )
根据公式 (3 ) 得到的 的输出, 逐渐调节 轴的空间角度, 直到 =0, 则 轴即为电机的 d q轴 (或 -d, -q轴), 分别在 d轴 (或 -d轴) 和 q轴 (或 -q 轴) 上注入高频正弦电压 (通常选用的高频电压信号注入的频率一般为 0J -2 HZ, 即大于同步电机的额定频率, 小于逆变器的 PWM载波频率), 则根 据公式 (2), 可以分别得到 d轴和 q轴电感:
L
公式 (4)
L . 公式(4) 中, ^, 分别为 d轴注入的高频电压幅值和 q轴注入的高频电 压幅值, lsd , / 分别为 d轴反馈的高频电流幅值和 q轴反馈的高频电流幅值。
为了保证在 q轴注入高频电压时, 转子不转动, 可以在 q轴注入高频电压 的同时, 在 d轴上注入一直流电流 (本实施例中, 注入的直流电流大小为电机 额定电流的 20%-100%, 通常选取的为电机额定电流的 30%), 用来锁定转子磁 极位置, 从而保证辨识 q轴电感的准确度。
对于无凸极性的同步电机, 由于在 d轴注入高频电压时, 会产生高频电流, 使 d轴饱和, 从而使电机产生凸极性, 根据公式 (3 ) 依然可以得到电机的磁极 轴。
本发明实施高频电压注入法辨识同步电机 d轴电感和 q轴电感的方法, 其 包括下述步骤: 1、 根据公式" = K'e°s(i¥), 任意选取一个 - 坐标系, 在 轴注入高频正 弦电压信号, 电压幅值^从 0逐渐增大 (通常的整个增大过程需要几百毫秒至 几秒钟时间, 如果电压幅值增大速度过快, 可能会引起过流, 容易烧毁电机, 电压幅值的整个增大过程在不至于烧毁电机的情况下根据实际需要自由设置), 同时采样同步电机的反馈电流。
2、 采用高阶带通滤波器采样得到反馈高频电流的 轴和 轴分量 和 ^, 本实施例中, 选用的高阶带通滤波器的通带中心频率选取为 ^, 同时构造一个 变量 , 变量 与 正交, 可以得到 的幅值 =7^ ΰ 。
3、将采样的高频电流 和 ^进行坐标 变换(本实施例中, 坐标轴 超前 坐标轴 45度)得到 和 ^, 根据公式 (3 ), 即 = Ρ/^ -^)*1, 得到
S
磁极位置角 θΓ
4、 根据步骤 3中得到的磁极位置角 ^, 逐渐调整^— 坐标使之逐渐逼近同 步电机的磁极坐标 d-q轴。
5、 重复步骤 1~4, 当反馈电流的 由幅值 达到设定值 (本实施例中的反 馈电流的 由幅值 的设定值可选取为电机额定电流的 20%-100%,通常可选取
1/4的电机额定电流), 或者注入的高频电压幅值^达到设定值, (本实施例中的 注入的高频电压幅值 的设定值可选取为电机额定电压的 20%-100%,如可选取 1/2的额定电压), 则注入的高频电压幅值^保持不变, 此时再重复第 2~4步, 直到磁极位置角 达到稳定,此时; - δ坐标轴即为磁极坐标轴 d-q轴。 由于此 时 q轴电流幅值很小, 近似等于 0, 所以 ^ = , 则可以直接根据公式 (4),
Figure imgf000012_0001
Figure imgf000012_0002
6、 此时已经得到磁极坐标轴 d-q轴, 向 q轴注入正弦高频电压, 为了保证 在 q轴注入高频电压时, 转子不转动, 在注入高频电压的同时, 向 d轴注入一 个直流电流 ^可为电机额定电流的 20%-100%,如可选取为 30%的额定电流, 向 d轴注入一个直流电流与同步电机反馈的 d轴电流中的直流分量进行 PI调节, 本实施例中, 以同步电机反馈的 d轴电流的直流分量 ^为例,对其进行 PI调节, 通过 PI 调节得到的 d 轴直流电压与 q 轴上注入的正弦高频电压 u sq = V COs ^J)叠加。 逐渐增加电压幅值 , (本实施例中的注入的高频电 压幅值 的设定值可选取为电机额定电压的 20%-100%,通常可根据选取的注入 频率选取合适的电压, 如 1/2的额定电压)。
7、 采用带通滤波器得到反馈高频电流的 d轴分量 ^和 q轴分量 , 同时构 造一个变量 , 变量^与 正交(即将 滞后 90° ), 可以得到反馈高频电流的 q轴分量 isq的幅值 Isq = V H 。
8、 采用低通滤波器得到同步电机的反馈电流的直流分量 , iq A, 用于电流 环 PI调节器。
9、 重复步骤 6~8, 直到反馈高频电流的幅值 达到设定值, 本实施例中的 反馈高频电流的幅值 ^的设定值可选取为电机额定电流的 20%-100%,如可取为
1/4 的电机额定电流), 或注入的高频电压幅值 达到设定值 (本实施例中的注 入的高频电压幅值 的设定值可选取为电机额定电压的 20%-100%, 如可选取 1/2的额定电压), 由于此时 d轴高频电流幅值很小, 近似等于 0, 根据公式(4 ) 可以计算得到 q轴电感 。
10、 参数辨识过程结束。
上述实施例为高频电压注入法辨识同步电机 d轴电感和 q轴电感的方法, 其是将高频电压注入同步电机中, 获取同步电机的反馈高频电流中磁极位置角 并根据得到的磁极位置角 ^调整 — 坐标, 使之逐渐逼近电机的磁极坐 标 d-q轴, 计算得到 d轴电感 ^, 向 q轴注入高频电压, 获取反馈电流的直流分 量, 根据反馈电流的直流分量计算得到 q轴电感 本发明还有另一种实现方 式, 即高频电流注入法辨识同步电机 d轴电感和 q轴电感的方法, 将高频电流 分别注入到 d、 q轴可以得到 d、 q轴电感 、 Lq , 其过程与高频电压注入法相 同, 此处不再赘述。 需要说明的是: 高频电流注入方法是采用将指令的 d/q轴高 频电流与反馈的 d/q轴高频电流进行 PI调节, 将 PI调节器得到的高频电压通过 逆变器的 PWM模块输入到电机, 获得的高频电压通常采用指令的高频电压 。
请参看附图 2和附图 3, 本发明中, 同时提供一种实现上述的同步电机电感 参数辨识方法的系统, 系统主要包括初始磁极定位模块、 d轴高频电压 /电流注入 模块、 逆变器 SVPWM模块、 d轴带通滤波模块和 d轴电感计算模块。
本实施例中, 初始磁极定位模块主要用于确定电机的转子磁极轴位置, 从 而得到电机 d轴(磁极轴)和 q轴。 本实施例中, d轴高频电压 /电流注入模块还用 于在所述初始磁极定位模块确定电机转子磁极轴位置时, 向同步电机的任选坐 标系^ ^ 的^轴上注入一组幅值从 0逐渐增大的高频正弦电压或电流信号,在图 2 中 d轴高频电压注入模块以初始高频电压注入模块表示, 初始磁极定位模块以磁 极位置辨识模块表示, 当其向同步电机注入高频电压时, 根据公式 (1 ) , 即 us = Vi C it) , 在同步电机的任选静止坐标系 的 ^轴上注入高频电压, 注入 u s5m = 0 的频率为 ^, 幅值为 , 向同步电机注入高频电流时, 与注入高频电压相似, 此 处不再赘述。
逆变器 SVPWM模块, d轴高频电压 /电流注入模块通过逆变器的 SVPWM模 块将注入的高频电压或电流输入到同步电机 d轴。
d轴高频电压 /电流注入模块, 根据所述初始磁极定位模块确定的磁极轴位 置, 将一定幅值的高频电压或电流注入电机的 d轴。
d轴带通滤波模块, 用于提取 d轴的反馈高频电流或电压中与注入与电压或 电流同频率的高频电流或电压的 d轴分量。
d轴电感计算模块, 用于根据所述 d轴分量, 计算高频反馈电流或电压 d轴分 量的幅值, 并根据 d轴分量的幅值计算得到 d轴电感。
除上述主要模块之外, 本发明的系统中还包括有 坐标变换模块, 用于 将得到的^ 轴的反馈高频电流或电压变换到阻抗观测轴 , 本实施例中, 坐标轴超前 δ坐标轴 45度; 初始磁极定位模块通过所述 - κ坐标变换模 块与所述 d轴带通滤波模块相连,其根据 坐标变换模块的变换结果得到磁极 位置角 , 根据得到的磁极位置角 ^调整 ― 3坐标, 使之逐渐逼近电机的磁 极坐标 d-q轴, 直至 达到稳定, 此时 ^— 坐标即为 d-q坐标轴。
本发明中, 还包括 q轴电感 计算部分, 本实施例中, q轴电感 计算部分 主要包括 q轴高频电压 /电流注入模块、 逆变器 SVPWM模块、 q轴带通滤波模块 和 q轴电感计算模块, 其中:
q轴高频电压 /电流注入模块,将一定幅值的高频电压或电流注入电机的 q轴; 逆变器 SVPWM模块, 所述 q轴高频电压 /电流注入模块注入的高频电压或 电流叠加上 PI调节器模块输出的电压后,通过逆变器的 SVPWM模块将叠加后的 高频电压输入到同步电机 q轴;
q轴带通滤波模块, 用于提取 q轴的反馈高频电流或电压中与注入与电压或 电流同频率的高频电流或电压的 q轴分量;
q轴电感计算模块, 用于根据所述 q轴分量, 计算高频反馈电流或电压 q轴分 量的幅值, 并根据 q轴分量的幅值计算得到 q轴电感。
本实施例中, 还包括直流 PI调节器模块(在图 3中以电流环 PI调节器示出), 其用于将磁极轴锁定, 保证向注入 q轴高频电压或电流时磁极轴不转动, 令注入 d轴的直流电流为一设定值, d轴注入的直流电流与反馈的 d轴反馈电流的直流分 量进行 PI调节,得到 d轴直流电压,将 d轴直流电压与 q轴高频电压 /电流注入模块 注入的高频电压进行叠加, 本实施例中, PI调节器模块通过低通滤波器模块获 取反馈电流的直流分量。
通过本发明可以在不增加硬件成本的基础上即可在通用变频器上实现比较 准确的辨识同步电机的 d轴电感和 q轴电感。 本发明易于实现, 对电机反馈电流 采样精度要求不高, 注入电机的高频电压信号的频率和幅值也容易控制, 可直 接辨识得到电机的 d轴电感和 q轴电感, 电机轴无论是处于自由态, 还是处于抱 紧状态, 都不影响辨识的精度。 通过本发明可实现对表贴式同步电机、 内嵌式 同步电机和电励磁同步电机的 d轴电感和 q轴电感比较准确的辨识, 通过辨识得 到的参数可用于对同步电机的矢量控制算法中。

Claims

1、 一种同步机电感参数辨识方法, 其特征是: 所述的方法为首先确定电机 的转子磁极轴位置,得到磁极坐标轴 d-q轴,然后向电机的 d轴注入一定幅值的 高频电压或电流信号, 获取 d轴的反馈高频电流或电压中与注入高频电压或电 流频率相同的反馈高频电流或电压分量的幅值, 根据所述 d轴反馈高频电流或 电压分量的幅值计算 d轴电感 。
2、 根据权利要求 1 所述的同步机电感参数辨识方法, 其特征是: 所述确定 电机的转子磁极轴位置,得到磁极坐标轴 d-q轴步骤包括: 向同步电机中任意选 取的 5坐标系中的 ^轴上注入一组幅值从 0逐渐增大的高频正弦电压或电流 信号; 获取反馈高频电流或电压的 轴和 轴分量并对其进行坐标 变换, 根 据变换结果得到磁极位置角 , 所述 坐标轴超前 坐标轴 45度; 根据得 到的磁极位置角 ^调整: - δ坐标, 使之逐渐逼近电机的磁极坐标 d-q轴, 直 至 达到稳定, 此时: - δ轴坐标即为 d-q轴坐标。
3、 根据权利要求 2所述的同步机电感参数辨识方法, 其特征是: 所述的向 同步电机中任意选取的 坐标系中的 由上注入幅值从 0逐渐增大的电压或 电流信号, 直到反馈高频电流或电压的 轴幅值达到设定值, 或者注入的高频电 压或电流幅值达到设定值时, 注入的高频电压或电流幅值保持不变, 此时向同 步电机 轴上注入的电压或电流信号幅值等于向电机的 d轴注入的高频电压或 电流信号的幅值, 用于计算 d轴电感 ^。
4、 根据权利要求 1至 3中任一项所述的同步机电感参数辨识方法, 其特征 是: 所述的计算 d轴电感 之后还包括计算 q轴电感 , 具体包括: 向电机的 q 轴注入一定幅值的高频电压或电流信号, 获取 q轴的反馈高频电流或电压中与 注入高频电压或电流频率相同的反馈高频电流或电压分量的幅值, 根据所述 q 轴反馈高频电流或电压分量的幅值计算 q电感 。
5、 根据权利要求 4所述的同步机电感参数辨识方法, 其特征是: 所述的计 算 q轴电感 之前, 还包括下述步骤:
向 d轴注入一固定值的直流电流;
并将所述向 d轴注入的直流电流, 与同步电机反馈电流的 d轴直流分量进 行 PI调节;
将 PI调节得到的 d轴直流电压与 q轴上注入的正弦高频电压叠加; 逐渐增加注入到 q轴上的高频电压或电流幅值, 直到反馈电流或电压的幅 值达到设定值, 或向 q轴注入的高频电压或电流幅值达到设定值。
6、 根据权利要求 5所述的同步机电感参数辨识方法, 其特征是: 所述 PI调 节时, 采用的同步电机反馈电流或电压的 d轴直流分量, 是采用低通滤波器得 到反馈电流的直流分量。
7、 根据权利要求 1 所述的同步电机电感参数辨识方法, 其特征是: 所述向 电机的 d轴注入一定幅值的高频电压或电流信号是将高频电压或电流信号通过 逆变器的 PWM模块注入电机 d轴的,所述注入的高频电压或电流信号的频率大 于同步电机的额定频率, 小于逆变器的 PWM载波频率。
8、 根据权利要求 4所述的同步电机电感参数辨识方法, 其特征是: 所述向 电机的 q轴注入一定幅值的高频电压或电流信号是将高频电压或电流信号通过 逆变器的 PWM模块注入电机 q轴的,所述注入的高频电压或电流信号的频率大 于同步电机的额定频率, 小于逆变器的 PWM载波频率。
9、 一种实现如权利要求 1 所述的同步电机电感参数辨识方法的系统, 其特 征是: 所述的系统包括初始磁极定位模块、 d轴高频电压 /电流注入模块、 d轴带 通滤波模块、 d轴电感计算模块, 其中:
所述初始磁极定位模块, 用于确定电机的转子磁极轴位置, 得到磁极坐标 轴 d-q轴;
所述 d轴高频电压 /电流注入模块, 根据所述初始磁极定位模块确定的磁极 轴位置, 将一定幅值的高频电压或电流注入电机的 d轴;
所述 d轴带通滤波模块, 用于提取 d轴的反馈高频电流或电压中与注入与 电压或电流同频率的高频电流或电压的 d轴分量;
所述 d轴电感计算模块, 用于根据所述 d轴分量, 计算高频反馈电流或电 压 d轴分量的幅值, 并根据 d轴分量的幅值计算得到 d轴电感。
10、 根据权利要求 9所述的系统, 其特征是: 所述 d轴高频电压 /电流注入模 块, 还用于在所述初始磁极定位模块确定电机转子磁极轴位置时, 向同步电机 的任选坐标系 的 轴上注入一组幅值从 0 逐渐增大的高频正弦电压或电流 信号。
11、 根据权利要求 10所述的系统, 其特征是: 所述系统还包括: 坐标变 换模块, 用于将得到的 - 轴的反馈高频电流或电压变换到阻抗观测轴 - 所述初始磁极定位模块通过所述 坐标变换模块与所述 d轴带通滤波模块相 连, 其根据 坐标变换模块的变换结果得到磁极位置角 , 根据得到的磁极 位置角 调整: - δ坐标,使之逐渐逼近电机的磁极坐标 d-q轴,直至 ^达到稳 定, 此时: - δ轴坐标即为 d-q轴坐标。
12、 根据权利要求 9至 11中任一项所述的系统, 其特征是: 所述的系统还包 括 q轴高频电压 /电流注入模块、 q轴带通滤波模块和 q轴电感计算模块, 其中: 所述 q轴高频电压 /电流注入模块, 将一定幅值的高频电压或电流注入电机 的 q轴;
所述 q轴带通滤波模块, 用于提取 q轴的反馈高频电流或电压中与注入与 电压或电流同频率的高频电流或电压的 q轴分量;
q轴电感计算模块, 用于根据所述 q轴分量, 计算高频反馈电流或电压 q轴 分量的幅值, 并根据 q轴分量的幅值计算得到 q轴电感。
13、 根据权利要求 12所述的系统,其特征是:所述的系统还包括直流 PI调节 器模块, 用于将磁极轴锁定, 保证向注入 q轴高频电压或电流时磁极轴不转动, 令注入 d轴的直流电流为一设定值,与反馈的 d轴电流的直流分量进行 PI调节, 得到 d轴电压, 将直流 PI调节器模块输出的 d轴电压与 q轴高频电压注入模块 注入的高频电压进行叠加。
14、 根据权利要求 13所述的系统,其特征是:所述直流 PI调节器模块通过电 流 /电压低通滤波器模块获取反馈电流的直流分量。
15、 根据权利要求 12 所述的系统, 其特征是: 所述的系统还包括逆变器 SVPWM模块, d轴高频电压 /电流注入模块通过逆变器的 SVPWM模块将注入 的高频电压或电流输入到同步电机 d轴; q轴高频电压 /电流注入模块通过逆变 器的 SVPWM模块将注入的高频电压或电流输入到同步电机 q轴。
PCT/CN2011/072316 2011-03-30 2011-03-30 一种同步电机电感参数辨识方法及其实现系统 WO2012129799A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11840711.3A EP2693628A4 (en) 2011-03-30 2011-03-30 METHOD FOR IDENTIFYING INDUCTANCE PARAMETERS OF A SYNCHRONOUS ELECTRIC MACHINE AND APPLICATION SYSTEM THEREOF
CN201180004211.7A CN102763324B (zh) 2011-03-30 2011-03-30 一种同步电机电感参数辨识方法及其实现系统
PCT/CN2011/072316 WO2012129799A1 (zh) 2011-03-30 2011-03-30 一种同步电机电感参数辨识方法及其实现系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/072316 WO2012129799A1 (zh) 2011-03-30 2011-03-30 一种同步电机电感参数辨识方法及其实现系统

Publications (1)

Publication Number Publication Date
WO2012129799A1 true WO2012129799A1 (zh) 2012-10-04

Family

ID=46929342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072316 WO2012129799A1 (zh) 2011-03-30 2011-03-30 一种同步电机电感参数辨识方法及其实现系统

Country Status (3)

Country Link
EP (1) EP2693628A4 (zh)
CN (1) CN102763324B (zh)
WO (1) WO2012129799A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9024569B2 (en) 2013-06-28 2015-05-05 Eaton Corporation System and method of rotor time constant online identification in an AC induction machine
US9641033B2 (en) 2013-09-06 2017-05-02 General Electric Company Electric machine having offset rotor sections
US9871418B2 (en) 2012-11-01 2018-01-16 General Electric Company Sensorless electric machine
US9906108B2 (en) 2012-11-01 2018-02-27 General Electric Company Sensorless electric machine
US9906082B2 (en) 2013-09-06 2018-02-27 General Electric Company Electric machine having reduced torque oscillations and axial thrust
US9941775B2 (en) 2012-11-01 2018-04-10 General Electric Company D-ring implementation in skewed rotor assembly
CN110112973A (zh) * 2019-05-13 2019-08-09 南京邮电大学 基于高频旋转电压注入的永磁同步电机电感参数辨识方法
CN113489358A (zh) * 2021-06-29 2021-10-08 南京工程学院 一种逆变器的参数在线辨识方法
CN114172430A (zh) * 2021-12-02 2022-03-11 广东工业大学 一种矢量控制永磁同步电机的参数检测方法
CN114785228A (zh) * 2022-05-18 2022-07-22 哈尔滨工业大学 基于虚拟轴系注入的永磁同步电机电感参数在线辨识方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105190249B (zh) * 2012-11-30 2017-12-15 Trw有限公司 电动机控制器的改进
CN103178769B (zh) * 2013-04-03 2015-09-09 哈尔滨工业大学 永磁同步电机静止状态下参数离线辨识方法
CN103326658B (zh) * 2013-06-18 2015-08-12 南京航空航天大学 一种内置式永磁同步电机无位置传感器控制方法
DE102014215614A1 (de) * 2014-08-07 2016-02-11 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Bestimmen von Induktivitäten bei einer elektrischen Maschine
EP3054583B1 (en) 2015-02-06 2020-07-15 ABB Schweiz AG Method and system for estimating differential inductances in an electric machine
CN104852662B (zh) * 2015-05-05 2017-06-30 南车株洲电力机车研究所有限公司 永磁同步电机静态电感参数的测量方法及系统
CN104967386B (zh) * 2015-06-23 2017-08-25 常熟开关制造有限公司(原常熟开关厂) 永磁同步电机参数辨识方法、装置及控制系统
KR101663520B1 (ko) * 2015-08-11 2016-10-07 엘지전자 주식회사 모터 구동장치 및 이를 구비하는 홈 어플라이언스
CN106610474B (zh) * 2015-10-23 2019-07-02 中国电力工程顾问集团华北电力设计院有限公司 基于同步发电机异步旋转频率响应试验的参数测试方法
CN106610472B (zh) * 2015-10-23 2019-04-16 中国电力工程顾问集团华北电力设计院有限公司 大型同步发电机异步特性电气参数测辨方法
CN106610473B (zh) * 2015-10-23 2019-04-16 中国电力工程顾问集团华北电力设计院有限公司 基于同步发电机静止频率响应试验的电气参数测试方法
CN106505925B (zh) * 2016-12-19 2019-02-15 四川长虹电器股份有限公司 电机q轴电感离线辨识方法
FR3060908B1 (fr) * 2016-12-21 2019-05-24 Valeo Systemes De Controle Moteur Procede de determination d'une inductance directe et d'une inductance en quadrature d'une machine electrique, programme d'ordinateur et dispositif correspondants
CN107015146A (zh) * 2017-03-02 2017-08-04 浙江大学 诊断永磁电机气隙偏心故障的方法
CN106997024A (zh) * 2017-04-21 2017-08-01 珠海格力节能环保制冷技术研究中心有限公司 一种永磁同步电机参数检测装置和方法
CN109274304B (zh) * 2017-07-18 2021-10-01 上海大郡动力控制技术有限公司 电动汽车内嵌式永磁同步电机电感参数矩阵的辨识方法
CN107482978B (zh) * 2017-08-21 2019-12-03 西安交通大学 一种基于有限时间算法的永磁同步电机在线参数辨识方法
CN110620535B (zh) * 2018-06-19 2020-06-12 中车株洲电力机车研究所有限公司 永磁同步电机定子电阻在线测量方法、装置、介质及电机
CN109474219B (zh) * 2018-11-06 2021-12-03 天津大学 一种基于分频耦合的电机参数辨识方法
CN109873587B (zh) * 2019-04-17 2020-07-31 电子科技大学 一种永磁同步电机多参数自动辨识方法
CN110995091B (zh) * 2019-10-24 2023-06-20 深圳市汇川技术股份有限公司 饱和模型辨识方法、系统、设备及计算机可读存储介质
CN110995075B (zh) * 2019-10-24 2023-06-20 深圳市汇川技术股份有限公司 饱和模型辨识方法、系统、设备及计算机可读存储介质
CN110880896B (zh) * 2019-11-25 2022-03-29 上海汽车工业(集团)总公司 电机电感测量方法及其测量系统
CN111082723B (zh) * 2020-01-08 2021-07-13 东南大学溧阳研究院 一种用于无位置传感器下的永磁电机电磁参数辨识方法
CN113300647B (zh) * 2021-07-27 2021-09-21 成都希望电子研究所有限公司 一种永磁同步电机静止型交直轴电感辨识方法
CN113659903B (zh) * 2021-07-28 2024-01-30 威灵(芜湖)电机制造有限公司 电机的控制方法、电机的控制装置、控制系统和存储介质
CN114172429B (zh) * 2021-11-30 2023-09-12 中山大学 一种基于极坐标差分法的永磁同步电机参数辨识方法
TWI800222B (zh) * 2022-01-18 2023-04-21 台達電子工業股份有限公司 用於磁阻馬達的電感檢測方法及馬達檢測裝置
CN116500437A (zh) 2022-01-18 2023-07-28 台达电子工业股份有限公司 用于磁阻马达的电感检测方法及马达检测装置
CN114499323B (zh) * 2022-04-02 2022-07-12 南京凌博电子科技有限公司 基于考虑相电阻的高频电压注入法的电机参数辨识方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002272195A (ja) * 2001-03-08 2002-09-20 Fuji Electric Co Ltd 同期電動機の制御装置
CN1489822A (zh) * 2000-11-10 2004-04-14 ˹��������ͼ˹�����µ� 电梯中永磁同步电机的无编码器运行方法和设备
CN101505130A (zh) * 2009-03-17 2009-08-12 国网电力科学研究院 永磁同步发电机转子位置估算及校正方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3435975B2 (ja) * 1996-04-10 2003-08-11 株式会社明電舎 回転電機の電流制御部及びこれを用いた制御装置
JP2008301619A (ja) * 2007-05-31 2008-12-11 Yaskawa Electric Corp 電動機の制御装置及びその電動機定数演算方法
JP5321792B2 (ja) * 2008-07-30 2013-10-23 富士電機株式会社 永久磁石形同期電動機の制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1489822A (zh) * 2000-11-10 2004-04-14 ˹��������ͼ˹�����µ� 电梯中永磁同步电机的无编码器运行方法和设备
JP2002272195A (ja) * 2001-03-08 2002-09-20 Fuji Electric Co Ltd 同期電動機の制御装置
CN101505130A (zh) * 2009-03-17 2009-08-12 国网电力科学研究院 永磁同步发电机转子位置估算及校正方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9941775B2 (en) 2012-11-01 2018-04-10 General Electric Company D-ring implementation in skewed rotor assembly
US9871418B2 (en) 2012-11-01 2018-01-16 General Electric Company Sensorless electric machine
US9906108B2 (en) 2012-11-01 2018-02-27 General Electric Company Sensorless electric machine
US9024569B2 (en) 2013-06-28 2015-05-05 Eaton Corporation System and method of rotor time constant online identification in an AC induction machine
US9525377B2 (en) 2013-06-28 2016-12-20 Eaton Corporation System and method of rotor time constant online identification in an AC induction machine
US9641033B2 (en) 2013-09-06 2017-05-02 General Electric Company Electric machine having offset rotor sections
US9906082B2 (en) 2013-09-06 2018-02-27 General Electric Company Electric machine having reduced torque oscillations and axial thrust
CN110112973A (zh) * 2019-05-13 2019-08-09 南京邮电大学 基于高频旋转电压注入的永磁同步电机电感参数辨识方法
CN110112973B (zh) * 2019-05-13 2021-04-27 南京邮电大学 基于高频旋转电压注入的永磁同步电机电感参数辨识方法
CN113489358A (zh) * 2021-06-29 2021-10-08 南京工程学院 一种逆变器的参数在线辨识方法
CN113489358B (zh) * 2021-06-29 2022-07-01 南京工程学院 一种逆变器的参数在线辨识方法
CN114172430A (zh) * 2021-12-02 2022-03-11 广东工业大学 一种矢量控制永磁同步电机的参数检测方法
CN114172430B (zh) * 2021-12-02 2023-07-04 广东工业大学 一种矢量控制永磁同步电机的参数检测方法
CN114785228A (zh) * 2022-05-18 2022-07-22 哈尔滨工业大学 基于虚拟轴系注入的永磁同步电机电感参数在线辨识方法

Also Published As

Publication number Publication date
CN102763324B (zh) 2015-01-14
EP2693628A1 (en) 2014-02-05
CN102763324A (zh) 2012-10-31
EP2693628A4 (en) 2015-11-18

Similar Documents

Publication Publication Date Title
WO2012129799A1 (zh) 一种同步电机电感参数辨识方法及其实现系统
WO2012129797A1 (zh) 一种同步电机电感参数辨识方法及其实现系统
Cupertino et al. End effects in linear tubular motors and compensated position sensorless control based on pulsating voltage injection
CN109245647B (zh) 基于脉振高频注入的永磁同步电机无传感器控制方法
US20140327379A1 (en) Position sensorless drive system and method for permanent magnet motors
Yoo et al. Design of flux observer robust to interior permanent-magnet synchronous motor flux variation
JP5281339B2 (ja) 同期電動機の駆動システム、及びこれに用いる制御装置
CN109802618B (zh) 基于无滤波器的永磁同步电机转子初始位置辨识方法
CN108390611B (zh) 基于旋转高频注入的永磁同步电机无传感器控制方法
Zhou et al. Sensorless direct torque control for electrically excited synchronous motor based on injecting high-frequency ripple current into rotor winding
WO2008004417A1 (fr) Appareil de commande sans capteur de machine synchrone
Zhao et al. Position-Sensorless Control of $\text {DC}+\text {AC} $ Stator Fed Doubly Salient Electromagnetic Motor Covered Full Speed Range
CN111404433B (zh) 一种内置式永磁同步电机最大转矩电流比控制方法
Zhao et al. Sensorless control of surface-mounted permanent-magnet synchronous machines for low-speed operation based on high-frequency square-wave voltage injection
JP4352678B2 (ja) 電動機の磁極位置推定装置および制御装置
Ji et al. Sensorless control of linear vernier permanent-magnet motor based on improved mover flux observer
JP2014110708A5 (zh)
Chen et al. Adaptive second-order active-flux observer for sensorless control of pmsms with mras-based vsi nonlinearity compensation
Peng et al. Initial orientation and sensorless starting strategy of wound-rotor synchronous starter/generator
CN113169694A (zh) 旋转电机的控制装置和电动车辆的控制装置
CN102386839B (zh) 基于无功功率观测器的同步电机矢量控制器及控制方法
KR102409792B1 (ko) 영구 자석 동기 전동기의 제어 장치, 마이크로 컴퓨터, 전동기 시스템 및 영구 자석 동기 전동기의 운전 방법
Liu et al. Research on initial rotor position estimation for SPMSM
Korlinchak et al. Discrete time integration of observers with continuous feedback based on Tustin's method with variable prewarping
Lee et al. Experimental study of torque and flux weakening performance of alternative switched flux PM machines

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180004211.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011840711

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11840711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE