WO2012128508A2 - 광견병 바이러스를 중화시킬 수 있는 결합 분자 - Google Patents

광견병 바이러스를 중화시킬 수 있는 결합 분자 Download PDF

Info

Publication number
WO2012128508A2
WO2012128508A2 PCT/KR2012/001902 KR2012001902W WO2012128508A2 WO 2012128508 A2 WO2012128508 A2 WO 2012128508A2 KR 2012001902 W KR2012001902 W KR 2012001902W WO 2012128508 A2 WO2012128508 A2 WO 2012128508A2
Authority
WO
WIPO (PCT)
Prior art keywords
binding molecule
seq
region
polypeptide
rabies
Prior art date
Application number
PCT/KR2012/001902
Other languages
English (en)
French (fr)
Other versions
WO2012128508A3 (ko
Inventor
장신재
김판겸
홍혜진
김성현
Original Assignee
(주)셀트리온
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)셀트리온 filed Critical (주)셀트리온
Priority to CN201280013315.9A priority Critical patent/CN103492419B/zh
Publication of WO2012128508A2 publication Critical patent/WO2012128508A2/ko
Publication of WO2012128508A3 publication Critical patent/WO2012128508A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/42Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity

Definitions

  • the present invention relates to binding molecules capable of neutralizing rabies virus.
  • Rabies is a viral common infectious disease that primarily affects wildlife and pets, as well as mammals, including humans, causing acute brain disease. It is a fatal disease that occurs almost once in death, and is known to have the highest mortality rate with AIDS. The rabies spreads worldwide, with more than 10 million people receiving treatment after infection each year, with 40,000 to 70,000 deaths each year.
  • Rabies is transmitted from saliva and blood, usually from bites of dogs or cats infected with rabies. It can also be infected by most mammals, including skunks and bats.
  • Rabies virus reaches the brain's nerve tissue through the body's nerve tissue and shows the actual onset symptoms.
  • the human brain has a blood brain barrier that blocks foreign substances, so viruses cannot penetrate, but the rabies virus passes through the blood barrier through the RVG (rabies virus glycoprotein) protein to the nervous system. central nervous system) infects the brain.
  • RVG rabies virus glycoprotein
  • Rabies can be treated and prevented by post-exposure prophylaxis via immediate topical wound protection and passive (anti-rabies immunoglobulin: hereinafter referred to as "anti-rabies antibody”) and active (vaccine) immunization.
  • HRIG human derived rabies immunoglobulin
  • ERIG equine derived rabies immunoglobulin
  • Rabies-virus neutralizing murine single antibodies have been developed (Schumacher CL et al ., J. Clin. Invest . Vol. 84, p. 971-975, 1989), but short serum half-life, lack of ability to induce human effector function and human body Induced unwanted human anti-mouse antibody (HAMA) responses to murine antibodies are limited to direct administration to rabies-infected human patients.
  • HAMA human anti-mouse antibody
  • Another object of the present invention is to provide an immunoconjugate in which one or more tags are attached to the binding molecule.
  • Another object of the present invention is to provide a polynucleotide encoding the binding molecule.
  • Another object of the present invention is to provide an expression vector into which a polynucleotide encoding the binding molecule is inserted.
  • Another object of the present invention to provide a cell line transformed with the expression vector.
  • Another object of the present invention is to provide a composition comprising the binding molecule.
  • Another object of the present invention is to provide a kit comprising the binding molecule.
  • Another object of the present invention is to provide a method for diagnosing rabies using the binding molecule.
  • Another object of the present invention is to provide a method for treating and preventing rabies using the binding molecule.
  • Another object of the present invention is to provide a method of producing the binding molecule of the present invention by culturing the cell line.
  • Another object of the present invention is to provide a method for detecting rabies virus using the binding molecule.
  • the present invention provides a binding molecule having a neutralizing ability to bind to rabies virus.
  • the present invention also provides an immunoconjugate in which at least one tag is attached to the binding molecule.
  • the present invention also provides a polynucleotide encoding the binding molecule.
  • the present invention also provides an expression vector inserted with a polynucleotide encoding the binding molecule.
  • the present invention also provides a cell line wherein the expression vector is transformed into a host cell to produce the binding molecule of the present invention.
  • the present invention also provides a pharmaceutical composition further comprising the binding molecule and a pharmaceutically acceptable excipient.
  • the present invention also provides a composition for the treatment and prevention of rabies further comprising the binding molecule and a pharmaceutically acceptable excipient.
  • the present invention also provides a kit for diagnosing rabies comprising the binding molecule.
  • the present invention also provides a kit for the treatment and prevention of rabies comprising the binding molecule.
  • the present invention also provides a method for diagnosing rabies using the binding molecule.
  • the present invention also provides a method for treating and preventing rabies comprising administering to said subject an effective amount of said binding molecule.
  • Another object of the present invention is to provide a method of producing the binding molecule of the present invention by culturing the cell line.
  • Another object of the present invention is to provide a method for detecting rabies virus using the binding molecule.
  • the binding molecule capable of neutralizing the rabies virus of the present invention has a neutralizing ability against various rabies viruses, it is useful for the treatment and prevention of rabies in patients infected with rabies virus.
  • FIG. 1 shows chimeric antibody expression vectors comprising the heavy and light chain genes of the present invention.
  • Figure 2 shows the results of in vivo animal experiments using the Chinese dog rabies virus (Rv342).
  • binding molecule refers to an intact immunoglobulin, or an immunoglobulin that binds to an antigen, including monoclonal antibodies, such as chimeric, humanized or human monoclonal antibodies, eg For example, it refers to a variable domain comprising an immunoglobulin fragment that competes with an intact immunoglobulin for binding to a rabies virus or a G protein (Glycoprotein) or fragment thereof outside the virus. Regardless of the structure, the antigen-binding fragment binds to the same antigen recognized by intact immunoglobulins.
  • An antigen-binding fragment may comprise at least two contiguous amino acid residues, at least 20 contiguous amino acid residues, at least 25 contiguous amino acid residues, at least 30 contiguous amino acid residues, at least 35 contiguous amino acid residues, 40 of the amino acid sequence of the binding molecule.
  • At least 50 contiguous amino acid residues at least 50 contiguous amino acid residues, at least 50 contiguous amino acid residues, at least 60 contiguous amino acid residues, at least 70 contiguous amino acid residues, at least 80 contiguous amino acid residues, at least 90 contiguous amino acid residues, at least 100 contiguous amino acid residues, 125 Peptides or polypeptides comprising an amino acid sequence of at least contiguous amino acid residues, at least 150 contiguous amino acid residues, at least 175 contiguous amino acid residues, at least 200 contiguous amino acid residues, or at least 250 contiguous amino acid residues.
  • Antigen-binding fragments are especially Fab, F (ab '), F (ab') 2 , Fv, dAb, Fd, complementarity determining region (CDR) fragments, single-chain antibodies (scFv), bivalent single- Chain antibodies, single-chain phage antibodies, diabodies, triabodies, tetrabodies, polypeptides containing one or more fragments of immunoglobulins sufficient to bind a particular antigen to the polypeptide, and the like. Include.
  • the fragments may be produced synthetically or by enzymatic or chemical digestion of complete immunoglobulins or may be produced genetically by recombinant DNA techniques. Production methods are well known in the art.
  • the term "pharmaceutically acceptable excipient” refers to an inert material that is combined into an active molecule, such as a drug, agent, or binding molecule, to produce an acceptable or convenient dosage form.
  • Pharmaceutically acceptable excipients are nontoxic or are excipients that are acceptable to the recipient for their intended use, at least in the doses and concentrations in which the toxicity is used, and with other components of the formulation including drugs, agents or binding powders. It is compatible.
  • the term "therapeutically useful amount” refers to the amount of the binding molecule of the invention effective for the prophylaxis or treatment of or before or after exposure to the rabies virus.
  • CDC Center for Disease Control
  • the inventors of the Center for Disease Control received a hybridoma cell that has been demonstrated to be capable of neutralizing a wide range of rabies viruses.
  • the variable region sequence of was obtained.
  • the heavy and light chain variable regions were linked to an IgG1 backbone to prepare a chimeric antibody.
  • the chimeric antibodies prepared as described above were subjected to in vivo and in vitro experiments to test the neutralization ability of various rabies viruses, whereby the monoclonal antibodies of the present invention were infected with rabies viruses derived from a wide range of individuals. It has been found that it can be usefully used to treat
  • the present invention provides a binding molecule that binds to rabies virus and has a neutralizing ability.
  • the binding molecule is a variable having a CDR1 region comprising a polypeptide represented by SEQ ID NO: 27, a CDR2 region comprising a polypeptide represented by SEQ ID NO: 28 and a CDR3 region comprising a polypeptide represented by SEQ ID NO: 29 It is characterized by including an area.
  • the binding molecule has a CDR1 region comprising a polypeptide set forth in SEQ ID NO: 30, a CDR2 region comprising a polypeptide described in SEQ ID NO: 31 and a CDR3 region comprising a polypeptide described in SEQ ID NO: 32 And a variable region.
  • the binding molecule is a CDR1 region comprising a polypeptide as set out in SEQ ID NO: 27, a CDR2 region comprising a polypentide as set out in SEQ ID NO: 28 and a CDR3 region comprising a polypeptide as set out in SEQ ID NO: 29
  • a light chain variable region having a heavy chain variable region having a CDR1 region comprising a polypeptide represented by SEQ ID NO: 30, a CDR2 region comprising a polypeptide represented by SEQ ID NO: 31, and a CDR3 region comprising a polypeptide represented by SEQ ID NO: 32 It is characterized by including.
  • the binding molecule is characterized in that the Fab fragment, Fv fragment, diabody (diabody), chimeric antibody, humanized antibody or human antibody.
  • the binding molecule is characterized in that it comprises a variable region comprising the polypeptide sequence set forth in SEQ ID NO: 35.
  • the binding molecule is characterized in that it comprises a variable region comprising a polypeptide sequence set forth in SEQ ID NO: 36.
  • the binding molecule is characterized in that it comprises a heavy chain variable region comprising a polypeptide sequence as set out in SEQ ID NO: 35 and a light chain variable region comprising a polypeptide sequence as set out in SEQ ID NO: 36.
  • the binding molecule is characterized in that the Fab fragment, Fv fragment, diabody (diabody), chimeric antibody, humanized antibody or human antibody.
  • the binding molecule is characterized in that it comprises a heavy region comprising a variable region comprising a polypeptide sequence as set out in SEQ ID NO: 35 and a constant region comprising a polypeptide sequence as set out in SEQ ID NO: 37.
  • the binding molecule is characterized in that it comprises a light chain comprising a variable region comprising a polypeptide sequence as set out in SEQ ID NO: 36 and a constant region comprising a polypeptide sequence as set out in SEQ ID NO: 38.
  • the binding molecule is a heavy chain comprising a variable region comprising a polypeptide sequence as set out in SEQ ID NO: 35 and a constant region comprising a polypeptide sequence as set out in SEQ ID NO: 37 and a polypeptide sequence as set out in SEQ ID NO: 36 And a light chain comprising a constant region comprising a variable region comprising a and a polypeptide sequence set forth in SEQ ID NO: 38.
  • the CDRs of the variable regions were determined by conventional methods according to a system devised by Kabat et al. (Kabat et al., Sequences of Proteins of Immunological Interest (5 th ), National Institutes of Health, Bethesda, MD). (1991)]. Although the CDRs used in the present invention were determined using the Kabat method, binding molecules including CDRs determined according to other methods such as the IMGT method, the Chothia method, and the AbM method are also included in the present invention.
  • the binding molecule of the present invention is characterized in that the antibody.
  • the rabies virus is characterized in that it is derived from any one selected from the group consisting of dogs, cattle, mongoose, bats, skunks and wolves.
  • the present invention also provides an immunoconjugate in which at least one tag is attached to the binding molecule.
  • the present invention also provides a nucleic acid molecule encoding the binding molecule.
  • the cleavage molecule of the present invention includes all of the nucleic acid molecules in which the amino acid sequence of an antibody provided herein is translated into a polynucleotide sequence as known to those skilled in the art. Therefore, various polynucleotide sequences can be prepared by an open reading frame (ORF), all of which are also included in the nucleic acid molecules of the present invention.
  • ORF open reading frame
  • the present invention also provides an expression vector inserted with a nucleic acid molecule encoding the binding molecule.
  • the expression vector Celltrion's unique expression vector, MarEx vector (see patent application 10-2006-0020723), and pCDNA vectors commercially widely used, F, R1, RP1, Col, pBR322, ToL, Ti vectors; Cosmid; Phages such as lambda, lambdoid, M13, Mu, p1 P22, Q ⁇ , T-even, T2, T3, T7; It is preferable to use an expression vector selected from any one selected from the group consisting of plant viruses, but not limited thereto. All expression vectors known to those skilled in the art can be used in the present invention, and when selecting an expression vector, a target host may be selected. It depends on the nature of the cell.
  • the introduction of the vector into the host cell may be performed by calcium phosphate transfection, viral infection, DEAE-dextran controlled transfection, lipofectamine transfection or electroporation, but is not limited thereto.
  • An introduction method suitable for the expression vector and the host cell can be selected and used.
  • the vector contains one or more selection markers, but is not limited thereto, and may be selected depending on whether the product is produced using a vector that does not include the selection marker.
  • the selection of the selection marker is selected by the host cell of interest, which uses methods already known to those skilled in the art and the present invention is not so limited.
  • tag sequences can be inserted and fused to an expression vector.
  • the tag may include, but is not limited to, a hexa-histidine tag, a hemagglutinin tag, a myc tag, or a flag tag. Any tag that facilitates purification known to those skilled in the art may be used in the present invention.
  • the present invention also provides a cell line wherein the expression vector is transformed into a host cell to produce the binding molecule of the present invention.
  • the cell line may include, but is not limited to, cells of mammalian, plant, insect, fungal or cellular origin.
  • the mammalian cells include any one selected from the group consisting of CHO cells, F2N cells, CSO cells, BHK cells, Bowes melanoma cells, HeLa cells, 911 cells, AT1080 cells, A549 cells, HEK 293 cells and HEK293T cells. It is preferable to use one as a host cell, but is not limited thereto, and all cells usable as mammalian host cells known to those skilled in the art are available.
  • the present invention also provides a pharmaceutical composition further comprising the binding molecule and a pharmaceutically acceptable excipient.
  • compositions of the present invention may include pharmaceutically acceptable excipients in addition to binding molecules having the ability to neutralize rabies virus.
  • pharmaceutically acceptable excipients are well known to those skilled in the art.
  • the present invention also provides a composition for the treatment and prevention of rabies further comprising the binding molecule and a pharmaceutically acceptable excipient.
  • composition of the present invention may include a pharmaceutically acceptable excipient in addition to the binding molecule having the rabies virus neutralizing ability of the present invention.
  • Pharmaceutically acceptable excipients are well known to those skilled in the art.
  • the prophylactic and therapeutic composition of the present invention may include at least five different rabies therapeutics, and may also include several kinds of monoclonal antibodies, thereby exhibiting a synergistic effect on neutralizing activity.
  • the preventive and therapeutic compositions of the present invention may further include at least one other therapeutic or diagnostic agent.
  • therapeutic agents include, but are not limited to, anti-viral agents.
  • agents can be antibodies, small molecules, organic or inorganic compounds, enzymes, polynucleotide sequences, anti-viral peptides, and the like.
  • compositions of the present invention are sterile and stable under the conditions of manufacture and storage, and may be in powder form for reconstitution in a suitable pharmaceutically acceptable excipient upon or prior to delivery.
  • suitable pharmaceutically acceptable excipient upon or prior to delivery.
  • preferred methods of preparation are vacuum drying and lyophilization, which produce further desired components from the powder of the active ingredient and its presterilized-filtered solution.
  • the compositions of the present invention may be in solution and may be added and / or mixed before or at the time of delivery of the appropriate pharmaceutically acceptable excipient to provide a unit dosage injectable form.
  • the pharmaceutically acceptable excipients used in the present invention are suitable for high drug concentrations, can maintain adequate flowability and delay absorption as necessary.
  • monoclonal antibodies of the invention can be prepared with carriers that prevent their rapid release, such as controlled release formulations, including implants and microencapsulated delivery systems.
  • Biodegradable, biocompatible polymers such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid can be used in the present invention.
  • Monoclonal antibodies can also be coated with or administered with a substance or compound that prevented the inactivation of the antibody.
  • monoclonal antibodies can be administered with a suitable carrier-liposome or diluent.
  • Methods of administering the prophylactic and therapeutic compositions of the invention can be divided orally and parenterally, and the preferred route of administration is intravenous but not limited thereto.
  • the oral forms include tablets, troches, medicinal drops, aqueous or oily suspensions, powders or granules, emulsions, hard capsules, soft gelatin capsules, syrups or elixirs, pills, dragees, solutions, gels or It may be formulated as a slurry.
  • These formulations include, but are not limited to, pharmaceutical excipients containing inert diluents, granulating or disintegrating agents, binders, brightening agents, preservatives, colorants, flavoring or sweetening agents, vegetable or mineral oils, wetting agents and thickeners.
  • the parenteral form may be in the form of an aqueous or non-aqueous isotonic sterile non-toxic injection or infusion solution or suspension.
  • the solution or suspension may be a drug such as 1,3-butanediol, Ringus's solution, Hanks' solution, isotonic sodium chloride solution, oils, fatty acids, local anesthetics, preservatives, buffers, viscosity or solubility that are nontoxic to the receptor at the dosage and concentration applied.
  • Agents, water soluble antioxidants, oil soluble antioxidants and metal chelating agents may be used to dissolve.
  • the present invention provides a kit for diagnosing rabies comprising the binding molecule comprising the following steps: 1) a binding molecule having the rabies virus neutralizing ability of the present invention; And 2) a container.
  • the present invention provides a kit for treating and preventing rabies comprising the binding molecule comprising the following steps: 1) a binding molecule having the rabies virus neutralizing ability of the present invention; And 2) a container.
  • the present invention provides a method for diagnosing rabies using the binding molecule comprising the steps of: 1) contacting a sample of the subject with a binding molecule having a rabies virus neutralizing ability of the present invention; And 2) determining the rabies infection by analyzing the results of step 1).
  • the present invention also provides a method of treating and preventing rabies, comprising administering to a subject an effective amount of the binding molecule comprising the following steps: A binding molecule having the ability to neutralize rabies virus to a subject identified as rabies infected Administering a therapeutically effective amount.
  • the present invention provides a method for producing a binding molecule having a neutralizing ability by binding to a rabies virus comprising the following steps: 1) culturing the cell line; And 2) recovering the expressed binding molecule.
  • the present invention also provides a method for detecting rabies virus, comprising the steps of: 1) contacting a sample of a subject with a binding molecule having the rabies virus neutralizing ability of the present invention; And 2) determining whether the binding molecule specifically binds to the sample of interest.
  • the subject's sample may be a biological sample, including but not limited to blood, serum, tissue or other biological material from a (potentially) infected subject.
  • the (potential) infectious subject may be a human subject, but may also be animals suspected of being a carrier of rabies virus.
  • the subject sample may first be manipulated to make it more suitable for the detection method.
  • the binding molecule or immunoconjugate of the invention is contacted with the subject sample under conditions that allow the formation of an immunological complex between the binding molecule and the rabies virus or its antigenic component present in the subject sample. Formation of immunological complexes indicative of the presence of rabies virus in the subject sample is detected and measured by appropriate means.
  • Such methods include, but are not limited to, immunoassays such as radioimmunoassay (RIA), ELISA, immunofluorescence, immunohistochemistry, FACS, BIACORE, Western blot analysis.
  • clones were named as follows: # 62-62-5, # 62-62-6, # 2-21-8, # 2 -21-14 and # 2-21-23.
  • the four clones of Table 2 were subjected to RFFIT for rabies virus stored in the US CDC.
  • the US CDC has about 50 species of rabies viruses worldwide, and the list of viruses is shown in Table 3 below.
  • 2-21-23 clone showed overall high efficacy and was delivered to Celltrion, and chimeric monoclonal antibody was prepared using the variable region of 2-21-23 clone and the constant region of human type antibody. .
  • Example 2 Secured cDNA for chimeric antibodies secreted by hybridoma cells
  • Hybridoma cells # 2-21-8, 2-21-14, 2-21-23, 62-80-6 were received from the US CDC and the cells were harvested from 5% fetal bovine serum (FBS; Sigma, 12003C). ) was added to IMDM medium (Invitrogen 12440-053). During the culture period, mycoplasma contamination was examined using the Mycoplasma PCR ELISA kit (Roche, 11663925910), and it was confirmed that there was no mycoplasma in the culture.
  • Example 2-2 Securing Heavy and Light Chain Variable Region DNA of a Mouse-Type Antibody Secreted by Hybridoma Cells
  • RNA was mixed with 3 ′ SMART CDS Primer II A (5′-AAG CAG TGG TAT CAA CGC AGA GTA CT (30) N-1N-3 ′: SEQ ID NO: 1), followed by 72 ° C. The reaction was carried out for 3 minutes at 42 ° C. Thereafter, SMARTer II A Oligonucleotide (5'- AAG CAG TGG TAT CAA CGC AGA GTA-3 ': SEQ ID NO: 2) and reverse transcriptase were added and mixed, and reverse transcription reaction was performed at 42 ° C. for 60 minutes and at 70 ° C. for 10 minutes.
  • first strand cDNA having a specific sequence at the 5 'end and 3' end was synthesized.
  • First strand cDNA as a template using a 5 'PCR Primer II A (5'-AAG CAG TGG TAT CAA CGC AGA GT -3 ': SEQ ID NO: 3) 1 minute heat denaturation at 95 °C, 15 seconds at 95 °C , CDNA library having specific sequences at the 5 'and 3' ends was finally synthesized and amplified by polymerase chain reaction repeated 30 times at 65 ° C for 30 seconds and at 68 ° C for 30 seconds.
  • polymerase chain reaction was performed using Advantage2 PCR Kit (Clontec, 639207).
  • the sense primer used is a primer included in the SMARTer PCR cDNA synthesis kit used previously.
  • the 5 'PCR primer II A (5'- AAG CAG TGG TAT CAA CGC AGA) matches the specific sequence of the 5' end of the cDNA. GT-3 ': SEQ ID NO: 3).
  • the antisense primer used a sequence (5'-GCC AGT GGA TAG AGC GAT G-3 ': SEQ ID NO: 4) targeting a sequence specific for the heavy chain constant region of IgG2a. Or 5′-GTG GGA AGA TGG AGA CAG TTG-3 ′ (SEQ ID NO: 5) and 5′-GGA CAG TCA GTT TGG-3 ′ (SEQ ID NO: 6) was used. Using these primers, hybridoma cell # 2-21-23 is expressed through polymerase chain reaction repeated 30 times at 95 ° C for 30 seconds and at 68 ° C for 1 minute after thermal denaturation at 95 ° C for 1 minute. A cDNA fragment containing the entire variable region for the antibody was obtained.
  • the cDNA fragment containing the entire variable region of the heavy and light chains was cloned into a TA vector in the TOPO TA cloning kit (Invitrogen, K4500) and analyzed for sequencing.
  • TOPO TA cloning kit Invitrogen, K4500
  • sequencing three IgG2a gamma chain variable region DNA sequences of one amino acid and the other amino acid were obtained.
  • RT-PCR reverse transcriptase polymerase chain reaction
  • a variable region DNA sequence for one kappa chain was obtained.
  • chimeric antibodies were prepared by linking the variable region DNA sequence of the mouse type antibody chain to the constant region of a human type antibody.
  • the polymerase chain reaction product of the variable region and the constant region was used as a template, and PCR was performed under the same conditions as described above using HC F1 and HC R2 primers to secure a heavy chain connected to the variable region and the constant region.
  • polymerase chain reaction was carried out in the same manner using LC F1 and LC R2 primers to secure a light chain having a variable region and a constant region.
  • each of the obtained heavy and light chains was cloned into a PCR2.1 TA cloning vector. After cloning, sequencing confirmed that no mutation occurred in the overlapping polymerase chain reaction.
  • HC F1 Sense primers for variable regions of mouse type heavy chains 5'- GCT AGC GCC ACC ATG AGA GTG CTG ATT CTT TTG TGC -3 '(SEQ ID NO: 7)
  • PCR2.1 TA cloning vectors containing the obtained heavy and light chains were treated with the restriction enzymes Nhe I and Pme I to obtain the heavy and light chain genes, and then the obtained heavy and light chain genes were respectively treated with the same restriction enzyme. It was inserted into pCT145 vector and pCT147 vector.
  • the pCT145 and pCT147 vectors are Celltrion-specific vectors designed to clone the heavy and light chains of antibodies, respectively.
  • a restriction enzyme Pac I was added to the pCT145 vector including the heavy chain gene.
  • FreeStyle TM Max (Invitrogen, 16447-100), a cationic polymer, was used for transient transduction in cells, and transduction was performed according to the manufacturer's instructions.
  • EX-CELL 293 Serum free media Sigma, 14571C: hereinafter referred to as "EX-CELL 293 medium”.
  • 50 ml (total 100 ml) were inoculated using two 250 ml shaker flasks at a concentration of 0.8 ⁇ 10 6 cells per ml.
  • 125 ⁇ g of pCT178 DNA containing the chimeric antibody gene and 125 ⁇ l of FreeStyle TM Max reagent were diluted in 2 ml volume using OptiPRO SFM II (Invitrogen, 12309) medium, and then mixed lightly. Immediately diluted FreeStyle TM Max reagent solution was mixed with a solution containing DNA, and then reacted at room temperature for 17 minutes. During the 17 min reaction at room temperature, the number of inoculated F2N cells to be used for transduction was measured, and the cell concentration was diluted to 1.0 ⁇ 10 6 cells using the FreeStyle293 medium.
  • transduction was performed by treating the F2N cells with a mixture solution of DNA and FreeStyle TM Max reagent. The day after transduction, the same amount of EX-CELL 293 medium was added to the transduced cells and cultured for 7 days to produce monoclonal antibodies.
  • Table 9 shows the results of experiments compared to SRIG using viruses that were not made in Table 8 in earnest after the determination for chimeric antibody # 7 2-21-23.
  • Example 4-2 In vivo animal experiment
  • the experimental group of animals was divided into four groups: 1. group injected with Rv342 virus only, 2. group injected with Rv342 virus and vaccine (Human diploid Imovax ® Sanofi Pasteur), 3. Rv342 virus and 2-21-23 key Meryl antibody # 7 was injected, 4. Rv342 virus, 2-21-23 chimeric antibody # 7 and vaccine (Human diploid Imovax ® Sanofi Pasteur).
  • Rv342 virus was diluted 1/100 on the basis of MICLD50 / ml and injected 50 ul intramuscularly, and the vaccine was injected with 50 ul at least 2.5 IU of vaccine virus strain per ml (day 0, 3, 7, 14). Merric antibody # 7 was injected with 50 ul in 0.6 mg / mL. Vaccine and chimeric antibody # 7 were injected 24 hours after Rv342 virus injection, respectively.

Abstract

본 발명은 광견병 바이러스를 중화시킬 수 있는 결합 분자에 관한 것으로, 더욱 상세하게 본 발명의 결합 분자는 개, 소, 몽구스, 박쥐, 스컹크 및 늑대와 같은 개체에서 유래한 광견병 바이러스를 대상으로 중화하는 능력을 가지고 있으므로, 광범위한 개체에서 유래한 광견병 바이러스에 감염된 환자를 치료하는데 유용하게 이용될 수 있다.

Description

[규칙 제26조에 의한 보정 30.03.2012] 광견병 바이러스를 중화시킬 수 있는 결합 분자
본 발명은 광견병 바이러스를 중화시킬 수 있는 결합 분자에 관한 것이다.
광견병(rabies)은 바이러스성 인수공통 감염병이며, 주로 야생 및 애완 동물에 영향을 미칠 뿐 아니라 인간을 포함한 포유류에게 영향을 미쳐 급성 뇌 질환의 원인이 된다. 한 번 발생하면 거의 사망에 이르는 치명적인 질병으로, 에이즈와 더불어 치사율이 가장 높은 질병으로 알려져 있다. 이러한 광견병은 전세계적으로 퍼져 있으며, 매년 천만 명 이상이 감염 후 치료를 받으며 매년 40,000명에서 70,000명이 사망한다.
광견병은 타액과 피로 전염되는데, 주로 광견병에 감염된 개 또는 고양이 등에 물리게 되면 발병한다. 또한 스컹크, 박쥐 등 대부분의 포유류에 의해 감염될 수 있다.
광견병 바이러스(rabies virus)는 신체의 신경 조직을 통해 뇌신경 조직으로 도달한 뒤 실제 발병 증상을 나타낸다. 원래 인간의 뇌에는 혈액 내 장벽(blood brain barrier)이 존재하여 외부 물질을 차단하기 때문에 바이러스 등이 침투할 수 없으나, 광견병 바이러스는 RVG(rabies virus glycoprotein) 단백질을 통해 혈액 내 장벽을 통과하여 신경계(central nervous system) 뇌를 감염시킨다.
초기에는 감기와 비슷한 증상 이외에, 물린 부위에 가려움증이나 열을 느낀다. 광견병이 진행되면서 불안감, 공수증(물 등의 액체를 삼키게 되면 근육이 경련을 일으키고 심한 통증을 느껴 물을 두려워하는 증상), 바람에 대한 두려움(바람이 감각 기관을 과민하게 함), 흥분, 마비, 정신 이상 등의 신경 이상 증상이 나타난다. 또한 햇빛에 과민 반응을 일으키기도 한다. 이러한 증상이 관찰된 수 2-7일 뒤에 전신의 신경이나 근육이 마비를 일으켜 혼수 상태에 빠지고, 호흡 장애로 사망하게 된다.
광견병은 노출 후 예방은 즉각적인 국소 상처 보호 및 수동(항-광견병 이뮤노글로블린: 이하 "anti-rabies antibody"라 칭함) 및 능동(백신) 면역화의 투여를 통해 치료 및 예방될 수 있다.
현재 개발된 anti-rabies antibody는 인간 유래 광견병 항체(human derived rabies immunoglobulin: 이하 "HRIG"라 칭함) 및 말 유래 광견병 항체(equine derived rabies immunoglobulin: 이하 "ERIG"라 칭함)가 있다. HRIG의 경우 원활한 공급이 어려우며, 가격이 고가이다. 또한 인간의 혈액에서 유래한 것으로 HIV 등의 감염 위험성이 높고, 다클론 항체(polyclonal antibody)여서 효능이 높지 않다. ERIG의 경우 말에서 유래하여 HRIG보다 치료 효율이 낮으며, 이로 인하여 HRIG보다 높은 용량으로 환자에게 투여된다. HRIG보다 저가이기는 하나 이 역시 원활한 공급이 되지 않고 있는 실정이며, 인간과는 다른 개체에서 유래한 항체임으로 과민증(anaphyaxis)가 올 수 있다. 이러한 단점을 극복하기 위해 노출 후 예방에서 광견병 바이러스를 중화시킬 수 있은 단일 항체(monoclonal antibody)의 사용이 제한되었다. 광견병-바이러스 중화 뮤린 단일 항체가 개발되었으나(Schumacher CL et al., J. Clin. Invest. Vol. 84, p. 971-975, 1989), 짧은 혈청 반감기, 인간 이펙터 기능을 유도하는 능력 부재 및 인체에서 뮤린 항체에 대한 원치 않는 HAMA(human anti-mouse antibody) 반응이 유도되어 광견병에 감염된 인간 환자에 대한 직접적인 투여에는 제한되어 있다.
이에 광견병 치료를 위하여 혈액에서 유래하지 않아 안정성이 높으며, 배양을 통한 합성으로 대규모 생산 공급이 가능하고, 균일한 품질 확보가 가능한 단일클론 항체의 개발이 시급한 실정이다.
본 발명의 목적은 광견병 바이러스에 결합하여 중화 능력을 가지는 결합 분자를 제공하는 것이다.
또한, 본 발명의 다른 목적은 상기 결합 분자에 하나 이상의 태그가 결합된 이뮤노컨쥬게이트를 제공하는 것이다.
또한, 본 발명의 다른 목적은 상기 결합 분자를 암호화하는 폴리뉴클레오티드를 제공하는 것이다.
또한, 본 발명의 다른 목적은 상기 결합 분자를 암호화하는 폴리뉴클레오티드가 삽입된 발현 벡터를 제공하는 것이다.
또한, 본 발명의 다른 목적은 상기 발현 벡터가 형질전환된 세포주를 제공하는 것이다.
또한, 본 발명의 다른 목적은 상기 결합 분자를 포함하는 조성물을 제공하는 것이다.
또한, 본 발명의 다른 목적은 상기 결합 분자를 포함하는 키트를 제공하는 것이다.
또한, 본 발명의 다른 목적은 상기 결합 분자를 이용한 광견병 진단 방법을 제공하는 것이다.
또한, 본 발명의 다른 목적은 상기 결합 분자를 이용한 광견병 치료 및 예방 방법을 제공하는 것이다.
또한, 본 발명의 다른 목적은 상기 세포주를 배양하여 본 발명의 결합 분자를 생산하는 방법을 제공하는 것이다.
또한, 본 발명의 다른 목적은 상기 결합 분자를 이용한 광견병 바이러스 검출 방법을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은 광견병 바이러스에 결합하여 중화 능력을 가지는 결합 분자를 제공한다.
또한, 본 발명은 상기 결합 분자에 하나 이상의 태그가 결합된 이뮤노컨쥬게이트를 제공한다.
또한, 본 발명은 상기 결합 분자를 암호화하는 폴리뉴클레오티드를 제공한다.
또한, 본 발명은 상기 결합 분자를 암호화하는 폴리뉴클레오티드가 삽입된 발현 벡터를 제공한다.
또한, 본 발명은 상기 발현 벡터가 숙주 세포에 형질전환되어, 본 발명의 결합 분자를 생산하는 세포주를 제공한다.
또한, 본 발명은 상기 결합 분자 및 약제학적으로 허용가능한 부형제가 추가적으로 포함된 약학적 조성물을 제공한다.
또한, 본 발명은 상기 결합 분자 및 약제학적으로 허용가능한 부형제가 추가적으로 포함된 광견병 치료 및 예방용 조성물을 제공한다.
또한, 본 발명은 상기 결합 분자를 포함하는 광견병 진단용 키트를 제공한다.
또한, 본 발명은 상기 결합 분자를 포함하는 광견병 치료 및 예방용 키트를 제공한다.
또한, 본 발명은 상기 결합 분자를 이용한 광견병 진단 방법을 제공한다.
또한, 본 발명은 상기 결합 분자를 대상에게 유효량으로 투여하는 단계를 포함하는 광견병 치료 및 예방 방법을 제공한다.
또한, 본 발명의 다른 목적은 상기 세포주를 배양하여 본 발명의 결합 분자를 생산하는 방법을 제공한다.
또한, 본 발명의 다른 목적은 상기 결합 분자를 이용한 광견병 바이러스 검출 방법을 제공한다.
본 발명의 광견병 바이러스를 중화시킬 수 있는 결합 분자는, 다양한 광견병 바이러스를 대상으로 중화 능력을 보유하고 있음을 확인하였으므로, 광견병 바이러스에 감염된 환자를 대상으로 광견병 치료 및 예방에 유용하다.
도 1은 본 발명의 중쇄 및 경쇄 유전자를 포함하는 키메릭 항체 발현 벡터를 도시한 것이다.
도 2는 중국 개 광견병 바이러스(Rv342)를 이용한 in vivo 동물실험 결과를 도시한 것이다.
이하, 본 발명에서 사용되는 단어를 아래와 같이 정의한다.
본 발명에서 사용되는 "결합 분자"라는 용어는 키메라, 인간화 또는 인간 단일클론 항체와 같은 단일클론 항체를 포함하는 온전한(intact) 이뮤노글로블린(immunoglobulin), 또는 항원에 결합하는 이뮤노글로믈린, 예를 들면 광견병 바이러스 또는 바이러스 외부의 G 단백질(Glycoprotein) 또는 그의 단편과의 결합을 위해 온전한(intact) 이뮤노글로블린과 경쟁하는 이뮤노글로블린 단편을 포함하는 가변성 도메인을 뜻한다. 구조와는 상관없이 항원-결합 단편은 온전한(intact) 이뮤노글로블린에 의해 인식된 동일한 항원과 결합된다. 항원-결합 단편은 결합 분자의 아미노산 서열의 2개 이상의 연속(contiguous) 아미노산 잔기, 20개 이상의 연속 아미노산 잔기, 25개 이상의 연속 아미노산 잔기, 30개 이상의 연속 아미노산 잔기, 35개 이상의 연속 아미노산 잔기, 40개 이상의 연속 아미노산 잔기, 50개 이상의 연속 아미노산 잔기, 60개 이상의 연속 아미노산 잔기, 70개 이상의 연속 아미노산 잔기, 80개 이상의 연속 아미노산 잔기, 90개 이상의 연속 아미노산 잔기, 100개 이상의 연속 아미노산 잔기, 125개 이상의 연속 아미노산 잔기, 150개 이상의 연속 아미노산 잔기, 175개 이상 연속 아미노산 잔기, 200개 이상의 연속 아미노산 잔기, 또는 250개 이상의 연속 아미노산 잔기의 아미노산 서열을 포함하는 펩티드 또는 폴리펩티드를 포함할 수 있다.
항원-결합 단편은 특히 Fab, F(ab'), F(ab')2, Fv, dAb, Fd, 상보성 결정 영역(CDR) 단편, 단일-쇄 항체(scFv), 2가(bivalent) 단일-쇄 항체, 단일-쇄 파지 항체, 디아바디(diabody), 트리아바디(triabody), 테트라바디(tetrabody), 폴리펩티드로의 특정 항원에 결합하기에 충분한 이뮤노글로블린의 하나 이상의 단편을 함유하는 폴리펩티드 등을 포함한다. 상기 단편은 합성으로 또는 완전한 이뮤노글로블린의 효소적 또는 화학적 분해에 의해 생성되거나, 재조합 DNA 기술에 의해 유전공학적으로 생성될 수 있다. 생성 방법은 당업계에 잘 알려져 있다.
본 발명에서 사용되는 "약제학적으로 허용가능한 부형제"라는 용어는 용인가능한 또는 편리한 투약 형태를 제조하기 위한 약물, 제제 또는 결합 분자와 같은 활성 분자로 조합되는 불활성 물질을 의미한다. 약제학적으로 허용가능한 부형제는 비독성이거나, 적어도 독성이 사용된 용량 및 농도에서 수용자에게 이의 의도된 용도를 위해 허용될 수 있는 부형제이고, 약물, 제제 또는 결합 분제를 포함하는 제형화의 다른 성분과 양립할 수 있다.
본 발명에서 사용되는 "치료학적으로 유용한 양"이라는 용어는 광견병 바이러스의 노출 전 또는 노출 후에 예방 또는 치료에 유효한 본 발명의 결합 분자의 양을 나타낸다.
이하, 본 발명을 상세히 설명한다.
본 발명자들은 미국질병관리본부(Center for Disease Control: 이하 "CDC"라 칭함)에서 광범위한 광견병 바이러스에 중화 능력을 보인다고 검증된 하이브리도마 세포를 전달받아 이를 대상으로 마우스 타입 단일클론 항체의 중쇄 및 경쇄의 가변 영역 서열을 확보하였다. 이후 IgG1 백본(backbone)에 상기 중쇄 및 경쇄 가변 영역을 연결하여 키메릭 항체를 제조하였다. 이후 위와 같이 제조된 키메릭 항체를 in vivoin vitro 실험을 수행하여 다양한 광견병 바이러스를 대상으로 중화 능력 시험을 수행하였으며, 이를 통하여 본 발명의 단일클론 항체가 광범위한 개체에서 유래된 광견병 바이러스에 감염된 환자를 치료하는데 유용하게 이용될 수 있음이 확인되었다.
이에, 본 발명은 광견병 바이러스에 결합하여 중화 능력을 가지는 결합 분자를 제공한다.
본 발명에 있어서, 상기 결합 분자는 서열번호 27로 기재되는 폴리펩티드를 포함하는 CDR1 영역, 서열번호 28로 기재되는 폴리펩티드를 포함하는 CDR2 영역 및 서열번호 29로 기재되는 폴리펩티드를 포함하는 CDR3 영역을 가지는 가변 영역을 포함하는 것을 특징으로 한다.
또한 본 발명에 있어서, 상기 결합 분자는 서열번호 30으로 기재되는 폴리펩티드를 포함하는 CDR1 영역, 서열번호 31로 기재되는 폴리펩티드를 포함하는 CDR2 영역 및 서열번호 32로 기재되는 폴리펩티드를 포함하는 CDR3 영역을 가지는 가변 영역을 포함하는 것을 특징으로 한다.
또한 본 발명에 있어서, 상기 결합 분자는 서열번호 27로 기재되는 폴리펩티드를 포함하는 CDR1 영역, 서열번호 28로 기재되는 폴리펜티드를 포함하는 CDR2 영역 및 서열번호 29로 기재되는 폴리펩티드를 포함하는 CDR3 영역을 가지는 중쇄 가변 영역 및 서열번호 30으로 기재되는 폴리펩티드를 포함하는 CDR1 영역, 서열번호 31로 기재되는 폴리펩티드를 포함하는 CDR2 영역 및 서열번호 32로 기재되는 폴리펩티드를 포함하는 CDR3 영역을 가지는 경쇄 가변 영역을 포함하는 것을 특징으로 한다. 상기 결합 분자는 Fab 절편, Fv 절편, 디아바디(diabody), 키메라 항체, 인간화 항체 또는 인간 항체인 것을 특징으로 한다.
또한 본 발명에 있어서, 상기 결합 분자는 서열번호 35로 기재되는 폴리펩티드 서열을 포함하는 가변 영역을 포함하는 것을 특징으로 한다.
또한 본 발명에 있어서, 상기 결합 분자는 서열번호 36으로 기재되는 폴리펩티드 서열을 포함하는 가변 영역을 포함하는 것을 특징으로 한다.
또한 본 발명에 있어서, 상기 결합 분자는 서열번호 35로 기재되는 폴리펩티드 서열을 포함하는 중쇄 가변 영역 및 서열번호 36으로 기재되는 폴리펩티드 서열을 포함하는 경쇄 가변 영역을 포함하는 것을 특징으로 한다. 상기 결합 분자는 Fab 절편, Fv 절편, 디아바디(diabody), 키메라 항체, 인간화 항체 또는 인간 항체인 것을 특징으로 한다.
또한 본 발명에 있어서, 상기 결합 분자는 서열번호 35로 기재되는 폴리펩티드 서열을 포함하는 가변 영역 및 서열번호 37로 기재되는 폴리펩티드 서열을 포함하는 불변 병역을 포함하는 중쇄를 포함하는 것을 특징으로 한다.
또한 본 발명에 있어서, 상기 결합 분자는 서열번호 36으로 기재되는 폴리펩티드 서열을 포함하는 가변 영역 및 서열번호 38로 기재되는 폴리펩티드 서열을 포함하는 불변 영역을 포함하는 경쇄를 포함하는 것을 특징으로 한다.
또한 본 발명에 있어서, 상기 결합 분자는 서열번호 35로 기재되는 폴리펩티드 서열을 포함하는 가변 영역 및 서열번호 37로 기재되는 폴리펩티드 서열을 포함하는 불변 병역을 포함하는 중쇄 및 서열번호 36으로 기재되는 폴리펩티드 서열을 포함하는 가변 영역 및 서열번호 38로 기재되는 폴리펩오티드 서열을 포함하는 불변 영역을 포함하는 경쇄를 포함하는 것을 특징으로 한다.
본 발명에 있어서, 가변영역의 CDR은 Kabat 등에 의해 고안된 시스템에 따라 통상적인 방법으로 결정되었다(문헌[Kabat et al., Sequences of Proteins of Immunological Interest (5th), National Institutes of Health, Bethesda, MD. (1991)] 참조). 본 발명에 사용된 CDR 결정은 Kabat 방법을 사용했지만, 이외에 IMGT 방법, Chothia 방법, AbM 방법 등 다른 방법에 따라 결정된 CDR을 포함하는 결합분자도 본 발명에 포함된다.
본 발명의 상기 결합 분자는 항체인 것을 특징으로 한다.
또한 상기 광견병 바이러스는 개, 소, 몽구스, 박쥐, 스컹크 및 늑대로 이루어진 군으로부터 선택된 어느 하나의 개체에서 유래된 것을 특징으로 한다.
또한, 본 발명은 상기 결합 분자에 하나 이상의 태그가 결합된 이뮤노컨쥬게이트를 제공한다.
또한, 본 발명은 상기 결합 분자를 암호화하는 핵산 분자를 제공한다.
본 발명의 행산 분자는 본 발명에서 제공하는 항체의 아미노산 서열을 당업자에게 알려진 바와 같이 폴리뉴클레오티드 서열로 번역된 핵산 분자 모두를 포함한다. 그러므로 ORF(open reading frame)에 의한 다양한 폴리뉴클레오티드 서열이 제조될 수 있으며 이 또한 모두 본 발명의 핵산 분자에 포함된다.
또한, 본 발명은 상기 결합 분자를 암호화하는 핵산 분자가 삽입된 발현 벡터를 제공한다.
상기 발현 벡터로는 셀트리온 고유의 발현 벡터인 MarEx 벡터(특허출원 10-2006-0020723 참조) 및 상업적으로 널리 사용되는 pCDNA 벡터, F, R1, RP1, Col, pBR322, ToL, Ti 벡터; 코스미드; 람다, 람도이드(lambdoid), M13, Mu, p1 P22, Qμ, T-even, T2, T3, T7 등의 파아지; 식물 바이러스로 이루어진 군으로부터 선택된 어느 하나에서 선택된 발현 벡터를 이용하는 것이 바람직하나 이에 한정되는 것은 아니며, 당업자에게 발현 벡터로 알려진 모든 발현 벡터는 본 발명에 사용 가능하며, 발현 벡터를 선택할 때에는 목적으로 하는 숙주 세포의 성질에 따른다. 숙주세포로의 벡터 도입시 인산칼슘 트랜스펙션, 바이러스 감염, DEAE-덱스트란 조절 트랜스펙션, 리포펙타민 트랜스펙션 또는 전기천공법에 의해 수행될 수 있으나 이에 한정되는 것은 아니며 당업자는 사용하는 발현 벡터 및 숙주 세포에 알맞은 도입 방법을 선택하여 이용할 수 있다. 바람직하게 벡터는 하나 이상의 선별 마커를 함유하나 이에 한정되지 않으며, 선별 마커를 포함하지 않은 벡터를 이용하여 생산물 생산 여부에 따라 선별이 가능하다. 선별 마커의 선택은 목적하는 숙주 세포에 의해 선별되며, 이는 이미 당업자에게 알려진 방법을 이용하므로 본 발명은 이에 제한을 두지 않는다.
본 발명의 핵산 분자를 정제를 용이하게 하기 위하여 태그 서열을 발현 벡터 상에 삽입하여 융합시킬 수 있다. 상기 태그로는 헥사-히스티딘 태그, 헤마글루티닌 태그, myc 태그 또는 flag 태그를 포함하나 이에 한정되는 것은 아니며 당업자에게 알려진 정제를 용이하게 하는 태그는 모두 본 발명에서 이용 가능하다.
또한, 본 발명은 상기 발현 벡터가 숙주 세포에 형질전환되어, 본 발명의 결합 분자를 생산하는 세포주를 제공한다.
본 발명에 있어서, 상기 세포주는 포유동물, 식물, 곤충, 균류 또는 세포성 기원의 세포를 포함할 수 있지만 이에 한정되지 않는다. 상기 포유동물 세포로는 CHO 세포, F2N 세포, CSO 세포, BHK 세포, 바우스(Bowes) 흑색종 세포, HeLa 세포, 911 세포, AT1080 세포, A549 세포, HEK 293 세포 및 HEK293T 세포로 이루어진 군에서 선택된 어느 하나를 숙주 세포로 사용하는 것이 바람직하나 이에 한정되지 않으며, 당업자에게 알려진 포유동물 숙주세포로 사용 가능한 세포는 모두 이용 가능하다.
또한, 본 발명은 상기 결합 분자 및 약제학적으로 허용가능한 부형제가 추가적으로 포함된 약학적 조성물을 제공한다.
본 발명의 조성물은 광견병 바이러스 중화 능력을 가지는 결합 분자 이외에 약제학적으로 허용 가능한 부형제를 포함할 수 있다. 약제학적으로 허용 가능한 부형제는 당업자에게 이미 잘 알려져 있다.
또한, 본 발명은 상기 결합 분자 및 약제학적으로 허용가능한 부형제가 추가적으로 포함된 광견병 치료 및 예방용 조성물을 제공한다.
본 발명의 조성물은 본 발명의 광견병 바이러스 중화 능력 가지는 결합 분자 이외에 약제학적으로 허용 가능한 부형제를 포함할 수 있다. 약제학적으로 허용 가능한 부형제는 당업자에게 이미 잘 알려져 있다.
또한 본 발명의 예방 및 치료용 조성물은 적어도 5개의 다른 광견병 치료제를 포함할 수 있으며, 또한 여러 종류의 단일클론 항체를 포함할 수 있으며, 이를 통해 중화 활성에 상승 작용을 나타낼 수 있다.
아울러 본 발명의 예방 및 치료용 조성물을 추가로 적어도 하나의 다른 치료제 또는 진단제를 포함할 수 있다. 상기 치료제로는 항-바이러스 약제를 포함하나 이에 한정되는 것은 아니다. 이러한 약제로는 항체, 소분자, 유기 또는 무기 화합물, 효소, 폴리뉴클레오티드 서열, 항-바이러스성 펩티드 등일 수 있다.
본 발명의 예방 및 치료용 조성물은 제조 및 저장 조건하에서 무균하고 안정하며, 전달시 또는 전달 전에 적절한 약제학적으로 허용 가능한 부형제 중에 재구성을 위해 분말 형태로 존재할 수 있다. 살균성 주사용액 제조를 위한 살균 분말의 경우, 바람직한 제조 방법은 활성 구성성분의 분말과 이의 미리 살균-여과된 용액으로부터 추가의 원하는 구성성분을 생산하는 진공 건조 및 동결 건조이다. 본 발명의 조성물은 용액 상태일 수 있고, 적절한 약제학적으로 허용 가능한 부형제가 단위 투여량 주사형을 제공하기 위해 전달되기 전 또는 전달 시에 첨가 및/또는 혼합될 수 있다. 바람직하게 본 발명에 사용되는 약제학적으로 허용 가능한 부형제는 고 약물농도에 알맞고, 알맞은 흐름성을 유지할 수 있고, 필요에 따라 흡수가 지연될 수 있다.
본 발명의 예방 및 치료용 조성물 투여의 최적 경로 선택은 조성물 내의 활성 분자들의 물리-화학적 특성, 임상적 상황의 긴급성 및 원하는 치료용 효과에 대한 활성 분자의 플라즈마 농도의 관계를 포함하는 여러 인자들에 의해 영향을 받는다. 예를 들어 본 발명의 단일클론 항체는 임플란트 및 마이크로캡슐화 전달 시스템을 포함하는, 조절된 방출 제형과 같은 그들의 신속한 방출을 막은 담체와 함께 제조될 수 있다. 에틸렌 비닐 아세테이트, 다가무수물, 폴리글리콜산, 콜라겐, 폴리오르토에스테르 및 폴리락트산과 같은 생분해성, 생체적합성 폴리머가 본 발명에 사용될 수 있다. 또한 단일클론 항체는 항체의 불활성화를 막은 물질 또는 화합물로 코팅되거나 함께 투여될 수 있다. 예를 들어, 단일클론 항체는 적합한 담체-리포좀 또는 희석제와 함께 투여될 수 있다.
본 발명의 예방 및 치료용 조성물의 투여 방법은 경구 및 비경구로 나뉠 수 있으며, 바람직한 투여 경로는 정맥 내이나 이에 한정되는 것은 아니다.
상기 경구 형태로는 정제, 트로키제, 약용 드롭스제, 수성 또는 유성 현탁제, 산제 또는 분산과립제, 에멀젼제, 강성 캡슐제, 연성 젤라틴 캡슐제, 시럽제 또는 엘릭서제, 필제, 당의정, 액제, 겔제 또는 슬러리제로서 제제화될 수 있다. 이들 제형은 불활성 희석제, 과립화 또는 붕해제, 결합제, 광택제, 보존제, 착색제, 풍미제 또는 감미제, 식물성유 또는 미네랄유, 습윤제 및 점증제를 함유하는 약제학적 부형제를 포함하나 이에 한정되는 것은 아니다.
상기 비경구 형태로는 수성 또는 비수성 등장성 살균 비독성 주사 또는 주입 용액 또는 현탁액의 형태일 수 있다. 용액 또는 현탁액은 적용된 투여량 및 농도에서 수용체에 비독성인 1,3-부탄디올, 링거스 용액, 행크스 용액, 등장성 염화나트륨 용액과 같은 약제, 오일, 지방산, 국소마취제, 보존제, 완충액, 점도 또는 용해도 증가제, 수용성 항산화제, 유용성 항산화제 및 금속 킬레이트화제를 포함할 수 있다.
또한, 본 발명은 하기의 단계를 포함하는 상기 결합 분자를 포함하는 광견병 진단용 키트를 제공한다: 1) 본 발명의 광견병 바이러스 중화 능력을 가진 결합 분자; 및 2) 용기.
또한, 본 발명은 하기의 단계를 포함하는 상기 결합 분자를 포함하는 광견병 치료 및 예방용 키트를 제공한다: 1) 본 발명의 광견병 바이러스 중화 능력을 가진 결합 분자; 및 2) 용기.
또한, 본 발명은 하기의 단계를 포함하는 상기 결합 분자를 이용한 광견병 진단 방법을 제공한다: 1) 대상의 시료와 본 발명의 광견병 바이러스 중화 능력을 가진 결합 분자를 접촉시키는 단계; 및 2) 상기 단계 1)의 결과를 분석하여 광견병 감염 여부를 판별하는 단계.
또한, 본 발명은 하기의 단계를 포함하는 상기 결합 분자를 대상에게 유효량으로 투여하는 단계를 포함하는 광견병 치료 및 예방 방법을 제공한다: 광견병에 감염되었다고 확인된 대상에게 광견병 바이러스 중화 능력을 가진 결합 분자를 치료학적으로 유효한 양으로 투여하는 단계.
또한, 본 발명은 하기 단계를 포함하는 광견병 바이러스에 결합하여 중화 능력을 가지는 결합 분자를 생산하는 방법을 제공한다: 1) 상기 세포주를 배양하는 단계; 및 2) 발현된 결합 분자를 회수하는 단계.
또한, 본 발명은 하기의 단계를 포함하는 광견병 바이러스를 검출하는 방법을 제공한다: 1) 대상의 시료와 본 발명의 광견병 바이러스 중화 능력을 가진 결합 분자를 접촉시키는 단계; 및 2) 상기 결합 분자가 대상 시료에 특이적으로 결합하는지 측정하는 단계.
대상의 시료는 (잠재적) 감염 대상으로부터의 혈액, 혈청, 조직 또는 다른 생물학적 물질을 포함하지만, 이것에 한정되지는 않는 생물학적 샘플일 수 있다. (잠재적) 감염 대상은 인간 대상일 수 있지만, 또한 광견병 바이러스의 담체로서 의심되는 동물들일 수 있다. 대상 시료는 먼저 그것을 검출 방법에 더 적절하게 만들기 위해 조작될 수 있다. 바람직하게는, 본 발명의 결합 분자 또는 이뮤노컨쥬게이트는 결합 분자와 광견병 바이러스 또는 대상 시료에 존재하는 그것의 항원성 성분 사이의 면역학적 복합체의 형성을 허용하는 조건 하에서 대상 시료와 접촉된다. 대상 시료 내의 광견병 바이러스의 존재를 나타내는 면역학적 복합체의 형성은 적절한 수단에 의해 검출되고 측정된다. 이러한 방법으로 방사면역측정법(RIA), ELISA, 면역형광법, 면역 조직 화학, FACS, BIACORE, 웨스턴 블롯 분석과 같은 면역분석이 있지만, 이것에 한정되는 것은 아니다.
이하 본 발명을 실시예에 따라 상세히 설명한다. 하기의 실시예들은 본 발명을 구체적으로 설명하기 위한 것으로 본 발명이 이들에 한정되는 것은 아니다.
<실시예>
실시예 1: 하이브리도마(hybridoma) 세포 선별
미국질병관리본부(Center for Disease Control: 이하 "CDC"라 칭함)에서 보관중인 하이브리도마 세포에 대한 이전 실험 및 기록에 의거하여 약 10여 개의 하이브리도마 세포를 선별한 후, 각 클론들의 배양배지에서의 Fab 타이터(titer)를 RFFIT(Rapid Fluorescent Focus Inhibition Test)(Smith, J. S. et al., Geneva: World Health Oragnization, pp.181-191, 1996; 및 centers for Disease Control and Prevention, Morb. Mortal. Weekly Rep. 49(RR-1), 1-21, 1999) 방법으로 측정하였으며, 그 결과는 표 1에 기재하였다. 그 결과 이 중에서 일정수준 이상(0.7 IU/ml)의 클론들을 선별하였으며, 클론들의 이름은 다음과 같다: #62-62-5, #62-62-6, #2-21-8, #2-21-14 및 #2-21-23.
표 1 클론 타이터 조사 결과
Sample ID 아이소타입(Isotype) 타이터(Titer)
62-111-1 IgG2a 0.03
62-105-06 Undetermined 0.03
62-62-5 IgG2a 0.7
62-80-6 IgG2b 0.7
2-21-20 IgG2a 0.1
62-28-5 IgG2a 0.03
62-114-6 IgG3 0.03
2-21-23 IgG2a 83
2-21-8 IgG2a 150
2-21-14 IgG2a 17.8
62-139-2 IgG1 0.03
2-21-17 Undetermined 0.03
이 중에서 선별된 하이브리도마 세포로부터 정제하여 단일클론 항체를 수득한 후 타이터 관련 실험으로 RFFIT를 수행하였다.
표 2 정제된 클론을 이용한 RFFIT 결과
항체명 (항체 농도) 타이터 IU/㎖ IU/mg
2-21-8 (3.5 mg/mL) 13500 158.82 45.4
62-80-6 (3.58 mg/mL) 60 0.71 0.2
2-21-23 (4.9 mg/mL) 7500 88.24 18.0
2-21-14 (1.9 mg/mL) 1900 22.35 11.7
표 2의 4개의 클론들을 상대로 미국 CDC에서 보관 중인 전 세계 광견병 바이러스에 대한 RFFIT를 수행하였다. 미국 CDC에서는 전 세계의 약 50 여종에 해당하는 광견병 바이러스를 보유하고 있으며, 바이러스의 리스트는 아래 표 3과 같다.
표 3 미국 CDC 보유 광견병 바이러스 리스트
No. 광견병 바이러스 종류 기원
1 CVS-11 -
2 Mongoose RSA Mongoose, South Africa
3 CASK Skunk, California, USA
4 Dog Tun Dog, Tunisia
5 dog gab Dog, Gabon
6 TXFX Gray fox, TX
7 Dog thai Dog, Thailand
8 Dong son Dog, Mexico
9 Phi 002 Human/dog, Philippines
10 DR MX Bat, Mexico
11 DR Brazil Bat, Brazil
12 phi dog Human/dog, Philippines
13 WA Bat Bat, Washington, USA
14 3860 Bat Bat, California, USA
15 Dog Arg Dog, Argentina
16 TX SK Skunk, Texas, USA
17 RAC Raccoon, Georgia, USA
18 China 2005 Dog, China
19 Rv342 China Cow/dog, China
20 TX Coyote Coyote, Texas, USA
21 rv61 Human (ex dog),United Kingdom(ex India)
22 AL Bat Bat, California, USA
23 LC NY Bat, New York, USA
24 Bat Ef Bat, Pennsylvania, USA
25 C1434 Bat, Alabama, USA
26 ABV (SM 4476) Australia Bat Virus
27 Wu ABLV Australia Bat Lyssa Virus
28 AZ Bat Bat , Arizona
29 VA 399 Bat, Virginia, USA
30 TN 410 Bat, Tennessee, USA
31 TN 132 Bat, Tennessee, USA
32 SK 4384 Skunk, Texas, USA
33 AK FX Arctic Fox, Alaska, USA
34 857r Raccoon dog, Russia, Far East
35 I-148 Dog, India
36 Mongoose PR Mongoose, Puerto-Rico
37 Gray FX-AZ Gray Fox, Arizona, USA
38 NC SK Skunk, Wisconsin, USA
39 323R Dog / Coyote, Texas, USA
40 RVHN Human (ex wolf), Russia, Arctic
41 MI1625 Bat, Tennessee, USA
42 I-151 Dog, India
43 TN-269 Bat, Tennessee, USA
44 Sri Lanka Cow, Sri Lanka
45 Myotis Bat, Washington, USA
그 결과, 표 3에 기재된 광견병 바이러스에 대하여 각 클론들의 RFFIT 결과값을 아래 표 4에 기재하였다. 수치가 높을수록 높은 중화효능을 나타낸다.
표 4 미국 CDC에서 수행된 RFFIT 결과
No 광견병 바이러스 종류 SRIG 2-21-8(IU/mg) 62-80-6(IU/mg) 2-21-23(IU/mg) 2-21-14(IU/mg)
1 CVS-11 170 13500(45.4) 60(0.2) 7500(18.0) 1900(11.8)
2 Mongoose RSA 33 1300(22.5) 45(0.8) 1200(14.8) 250(8.0)
3 CASK 250 110(0.3) 625(1.4) 15625(25.5) 2400(10.1)
4 Tunissia dog 1100 42724(22.2) 1800(0.9) 42724(15.9) 38206(36.6)
5 Gabon dog 1000 10000(5.7) 60(0) 10000(4.1) 1500(1.6)
6 TXFX 250 24747(56.6) 2700(6.0) 113263(184.9) 5700(24.0)
7 THAI DOG 85 15625(105.0) 125(0.8) 9500(45.6) 1100(13.6)
8 Sonora dog 230 24747(61.5) 480(1.2) 34800(61.8) 7500(34.3)
9 002 Philippines 320 49326(88.1) 75(0.1) 40269(51.4) 5100(16.8)
10 DR MX 270 49326(104.4) 16(0) 6800(10.3) 1200(4.7)
11 DR Brazil 250 12000(27.4) 440(1.0) 12000(19.6) 1400(5.9)
12 Dog Phi 70 700057.1) 125(1.0) 7000(40.8) 1300(19.5)
13 WA Bat 250 142857(326.5) 440(1.0) 151565(247.5) 78124(328.9)
14 3860 CA Bat 250 17(0) 3125(7) <5(0) 7(0)
15 Dog Arg 230 174692(434.0) 1500(3.6) 34800(61.8) 6000(27.5)
16 TX SK 250 174692(399.3) <5(0) 151565(247.5) 8000(33.7)
17 RAC 250 5400(12.3) 14(0) 5400(8.8) 800(3.4)
18 China 2005 1400 53887(22.0) 8000(3.2) 59744(17.4) 42724(32.1)
19 Rv342 China 290 9500(18.1) 60(0.1) 8000(11.3) 10000(36.3)
20 TX Coyote 250 38206(87.3) 1600(3.6) 40269(65.7) 5100(21.5)
21 rv61 170 230(0.8) xxx 200(0.5) xxx
22 AL Bat 170 170(0.6) xxx 170(0.4) xxx
23 LC NY 170 3125(10.5) xxx 3125(7.5) xxx
24 Bat Ef 170 170(0.6) xxx 170(0.4) xxx
25 C1434 170 210(0.7) xxx 230(0.6) xxx
26 ABV (SM 4476) 145 125(0.5) xxx 210(0.6) xxx
27 Wu ABLV 320 390(0.7) xxx 320(0.4) xxx
28 AZ Bat 100 <5(0) xxx 9(0) xxx
29 VA 399 100 <5(0) xxx <5(0) xxx
30 TN 410 100 20432(116.8) xxx <5(0) xxx
31 TN 132 100 <5(0) xxx <5(0) xxx
32 SK 4384 230 70(0.2) <5(0) 1900(3.4) xxx
33 AK FX 230 xxx 60(0.1) 9500(16.9) xxx
34 857r 180 250(0.8) 1600(5.0) 18086(41.0) xxx
35 I-148 145 210(0.8) 12(0) 40269(113.4) 3600(26.1)
36 Mong PR 180 15625(49.6) 320(1.0) 174692(396.1) xxx
37 Gray FX-AZ 180 170(0.5) xxx 1500(3.4) xxx
38 NC SK 180 1000(3.2) xxx 13500(30.6) xxx
39 323R 230 xxx xxx 8500(15.1) xxx
40 RVHN 250 xxx >11(0) >11(0) xxx
41 MI 1625 250 xxx 133591(298.5) 250(0.4) xxx
42 I-151 145 210(0.8) <5(0) 38206(107.5) 1600(11.6)
43 TN 269 145 17(0.1) <5(0) 13(0) <5(0)
44 Sri Lanka 145 95(0.4) <5(0) 75(0.2) xxx
45 Myotis 145 54(0.2) xxx 50(0.1) xxx
(SRIG: Standard Rabies ImmunoGlobulin)
(xxx: 수행하지 않음)
이 중에서 2-21-23 클론이 전반적으로 높은 효능을 보여, 셀트리온으로 전달되었으며, 위의 2-21-23 클론의 가변영역과 인간타입 항체의 불변영역을 이용하여 키메릭 단일클론 항체를 제조하였다.
실시예 2: 하이브리도마 세포(hybridoma cell)가 분비하는 키메릭 항체(chimeric 항체)에 대한 cDNA 확보
실시예 2-1: 세포 배양
미국 CDC로부터 하이브리도마 세포 #2-21-8, 2-21-14, 2-21-23, 62-80-6이 입고되었으며, 위의 세포들을 5% 소태아 혈청(FBS; Sigma, 12003C)이 첨가된 IMDM 배지(Invitrogen 12440-053)에서 배양하였다. 배양기간 동안, Mycoplasma PCR ELISA kit(Roche, 11663925910)를 이용하여, mycoplasma 오염 여부를 조사하였으며, 배양액에 mycoplasma가 없음을 확인하였다.
실시예 2-2: 하이브리도마 세포가 분비하는 마우스 타입 항체의 중쇄와 경쇄 가변영역 DNA 확보
배양 중인 하이브리도마 #2-21-23에서 RNeasy plus mini kit(Qiagen, 74134)를 사용하여 전체 RNA를 분리하였다. 분리한 1 ㎍의 전체 RNA를 주형 (template)으로 SMARTer PCR cDNA synthesis kit(Clontech, 634925)를 사용하여, 역전사 반응(reverse transcription)과 5' 및 3' 고속 cDNA 말단 증폭 중합효소 연쇄반응(5' and 3' RACE PCR; Rapid Amplification of cDNA Ends Polymerase Chain Reaction)를 동시에 진행함으로써, 5'와 3' 말단에 특정 서열을 가지는 cDNA library를 합성하였다. cDNA library 합성 반응 조건은 아래와 같다. 먼저, 1 ㎍의 전체 RNA를 3' SMART CDS Primer II A(5' - AAG CAG TGG TAT CAA CGC AGA GTA CT(30)N-1N-3': 서열번호 1)와 혼합한 후, 72℃에서 3분 및 42℃에서 2분 반응을 하였다. 그 후, SMARTer II A Oligonucleotide(5'- AAG CAG TGG TAT CAA CGC AGA GTA -3': 서열번호 2)와 역전사 효소를 첨가하여 혼합하고, 42℃에서 60 분, 70℃에서 10분의 역전사 반응을 수행함으로써, 5' 말단과 3' 말단에 특정 서열을 가지는 first strand cDNA를 합성하였다. First strand cDNA를 주형으로, 5' PCR Primer II A(5' - AAG CAG TGG TAT CAA CGC AGA GT -3': 서열번호 3)를 이용하여 95℃에서 1분 열 변성 후, 95℃에서 15초, 65℃에서 30초 그리고 68℃에서 30초 조건으로 30회 반복하는 중합효소 연쇄반응을 통해, 5'과 3' 말단에 특정 서열을 가지는 cDNA library를 최종 합성 및 증폭하였다.
합성된 cDNA library에서 하이브리도마 세포가 분비하는 마우스(mouse) 타입 항체의 가변영역에 대한 특이적인 cDNA를 증폭하기 위하여, Advantage2 PCR Kit (Clontec, 639207)를 이용하여 중합효소 연쇄반응을 진행하였다. 사용한 센스 프라이머(sense primer)는 앞서 사용한 SMARTer PCR cDNA synthesis kit에 포함되어 있는 primer로서, cDNA의 5' 말단의 특정 서열과 일치하는 5' PCR primer II A(5'- AAG CAG TGG TAT CAA CGC AGA GT -3': 서열번호 3)이다. 중쇄의 경우, 안티센스 프라이머는 IgG2a의 중쇄 불변영역에 특이적인 서열을 대상으로 하는 서열(5'- GCC AGT GGA TAG AGC GAT G -3': 서열번호 4)을 사용하였으며, 경쇄의 경우, k 사슬 또는 λ 사슬의 불변영역에 특이적인 서열을 대상으로 각각 서열 5'- GTG GGA AGA TGG AGA CAG TTG -3'(서열번호 5)와5'- GGA CAG TCA GTT TGG -3'(서열번호 6)을 사용하였다. 이들 프라이머를 이용하여, 95℃ 1분 열 변성 후 95℃에서 30초, 68℃에서 1분 조건으로 30회 반복하는 중합효소 연쇄반응을 통해, 하이브리도마 세포 #2-21-23이 발현하는 항체에 대한 가변영역 전체를 포함하는 cDNA 단편을 확보하였다. 중쇄와 경쇄 각각의 가변영역 전체를 포함하는 cDNA 단편을 TOPO TA cloning kit(Invitrogen, K4500)에 있는 TA 벡터에 클로닝한 후, 염기서열을 분석하였다. 염기서열 분석결과, 중쇄의 경우, 한 개의 아미노산이 다른 3 가지의 IgG2a 감마 사슬(gamma chain) 가변영역 DNA 서열을 확보하였다. 이 경우, 가변영역에 대한 cDNA 단편을 확보하기 위한 역전사 중합효소 연쇄반응 (RT-PCR) 과정에서의 돌연변이 (mutation)에 의해, 1가지가 아닌 3가지의 중쇄 가변영역이 확보된 것으로 생각한다. 그리고 경쇄의 경우는 1개의 카파 사슬(kappa chain) 대한 가변영역 DNA 서열을 확보하였다.
실시예 2-3: 키메릭 항체(chimeric antibody)를 암호화 하는 중쇄와 경쇄 cDNA 제작
중첩 중합효소 연쇄반응(overlapping PCR)을 이용하여, 마우스 타입 항체 사슬의 가변영역 DNA 서열을 인간 타입(human type) 항체의 불변영역에 연결하여 키메릭 항체를 제작하였다. 먼저 중첩 중합효소 연쇄반응을 진행하기 위하여, 표 5에 기재된 프라이머를 이용하여, 95℃에서 5분 열 변성 후, 95℃에서 1분, 57℃에서 1분, 72℃에서 1분의 조건으로 35회 반복하여, 마우스 타입의 경쇄(카파 사슬)와 중쇄(감마 사슬) 가변영역에 대한 중합효소 연쇄반응 산물과 인간 타입의 경쇄(카파 사슬)와 중쇄(감마 사슬) 불변영역에 대한 중합효소 연쇄반응 산물을 확보하였다. 이후 가변영역과 불변영역의 중합효소 연쇄반응 산물을 주형으로 하고, HC F1과 HC R2 프라이머를 이용하여, 앞서 언급한 것과 같은 조건으로 PCR을 진행하여 가변영역과 불변영역이 연결된 중쇄를 확보하였다. 경쇄의 경우도 LC F1과 LC R2 프라이머를 이용하여 같은 방식으로 중합효소 연쇄반응을 진행하여 가변영역과 불변영역이 연결된 경쇄를 확보하였다. 최종적으로 확보된 중쇄와 경쇄 각각을 PCR2.1 TA 클로닝 벡터에 클로닝하였다. 클로닝 후 후, 염기서열 분석에 의해, 중첩 중합효소 연쇄반응 과정에서 돌연변이(mutation)가 발생하지 않았음을 확인하였다.
표 5 프라이머 정보
Primer 명칭 설명 염기 서열
HC F1 마우스 타입 중쇄의 가변영역에 대한 센스 프라이머 5'- GCT AGC GCC ACC ATG AGA GTG CTG ATT CTT TTG TGC -3'(서열번호 7)
HC R1 마우스 타입 중쇄의 가변영역에 대한 안티센스 프라이머 5'- TGG TGG AGG CTG AGG AGA CGG TGA CTG AGG-3'(서열번호 8)
HC F2 인간 타입 중쇄의 불변영역에 대한 센스 프라이머 5'- CAC CGT CTC CTC AGC CTC CAC CAA GGG CCC -3'(서열번호 9)
HC R2 인간 타입 중쇄의 불변영역에 대한 안티센스 프라이머 5'- GTT TAA ACG TGT CAT TTA CCC GGA GAC AGG GAG A -3'(서열번호 10)
LC F1 마우스 타입 경쇄의 가변영역에 대한 센스 프라이머 5'- GCT AGC GCC ACC ATG GAT TCA CAG GCC CAG GT -3'(서열번호 11)
LC R1 마우스 타입 경쇄의 가변영역에 대한 안티센스 프라이머 5'- GCA GCC ACA GTT CGT TTT ATT TCC AGC TTG GTC CCC -4'(서열번호 12)
LC F2 인간 타입 경쇄의 불변영역에 대한 센스 프라이머 5'- GGA AAT AAA ACG AAC TGT GGC TGC ACC ATC -3'(서열번호 13)
LC R2 인간 타입 경쇄의 불변영역에 대한 안티센스 프라이머 5'- AGG GAT ATC GCG CGC TAA CAC TCT CCC CTG TTG AAG CTC -3'(서열번호 14)
실시예 2-4: 키메릭 항체 발현 벡터 제작
확보된 중쇄와 경쇄를 포함하는 PCR2.1 TA 클로닝 벡터에 제한효소 Nhe I과 Pme I을 처리하여 중쇄 유전자와 경쇄 유전자를 확보한 후, 확보된 중쇄 유전자와 경쇄 유전자를 각각 동일한 제한효소로 처리된 pCT145 벡터와 pCT147 벡터에 삽입하였다. pCT145 및 pCT147 벡터는 각각 항체의 중쇄와 경쇄를 클로닝하기 위해 제작된 셀트리온 고유의 벡터이다. 이후, 중쇄 전사단위(프로모터-중쇄 유전자-폴리에이)와 경쇄 전사단위(프로모터-경쇄 유전자-폴리에이)를 같이 포함하는 발현 벡터를 제작하기 위하여, 중쇄 유전자를 포함하는 pCT145 벡터에 제한효소 Pac I과 Asc I을 처리하여 중쇄 전사단위를 확보한 다음, 경쇄 유전자를 포함하는 pCT147 벡터에 동일한 제한효소를 처리하여 중쇄 전사단위를 삽입하였다. 이후 제한효소를 이용하여, 중쇄 전사단위와 경쇄 전사단위를 동시에 포함하는 벡터를 선별하여 pCT188로 명명 하였다(도 1 참조). 선별된 벡터는 Endofree plasmid maxi kit(QIAGEN, Germany, 12362)를 이용하여 추출되었으며, 추출된 DNA 중 일부를 이용하여 염기서열 분석을 통해 최종적으로 항체의 염기서열을 확인하였다. 확인된 서열은 아래 표 6과 같다.
표 6 마우스 타입 단일클론 항체 서열 정보
서열 종류 서열
중쇄 가변영역 CDR1폴리뉴클레오티드 AGTGATCATAGCTGGCAC(서열번호 15)
중쇄 가변영역 CDR2폴리뉴클레오티드 TACATACACTACGATGGTAGCACTGACTACAACCCATCTCTCAAAAGT (서열번호 16)
중쇄 가변영역 CDR3폴리뉴클레오티드 GAAACGATCTACTATGGTAACCCCTATGGTATGGACTAC (서열번호 17)
경쇄 가변영역 CDR1 폴리뉴클레오티드 AAATCCAGTCAGAGTCTGTTCAACAGTGGAACCCGAAAGAACTACTTGGCT (서열번호 18)
경쇄 가변영역 CDR2 폴리뉴클레오티드 TGGGCATCCACTAGGGAATCT (서열번호 19)
경쇄 가변영역 CDR3 폴리뉴클레오티드 AAGCAATCTTATAATCTGTACACG (서열번호 20)
중쇄 가변영역 #1 폴리뉴클레오티드 GATGTGCAGCTTCAGGAGTCAGGACCTGACCTGGTGAAACCTTCTCAGTCACTTTCACTCACCTGCACTGTCACTGGCTACTCCGTCACCAGTGATCATAGCTGGCACTGGATCCGGCAGTTTCCAGAAAACAAACTGGAATGGATGGGCTACATACACTACGATGGTAGCACTGACTACAACCCATCTCTCAAAAGTCGAATCTTTATCACTCGAGACACATCCAAGAACCAGTTCTTCCTGCAGTTGAATTCTGTGACTACTGAGGACACAGCCACATATTACTGTGCAAGAGAAACGATCTACTATGGTAACCCCTATGGTATGGACTACTGGGGTCAGGGAACCTCAGTCACCGTCTCCTCA(서열번호 21)
중쇄 가변영역 #6 폴리뉴클레오티드 GATGTGCAGCTTCAGGAGTCAGGACCTGACCTGGTGAAACCTTCTCAGTCACTTTCACTCACCTGCACTGTCACTGGCTACTCCGTCACCAGTGATCATAGCTGGCACTGGATCCGGCAGTTTCCAGGAAACAAACTGGAATGGATGGGCTACATACACTACGATGGTAGCACTGACTACAACCCATCTCTCAAAAGTCGAATCTTTATCACTCGAGACACATCCAAGAACCAGTTCTTCCTGCAGTTGAATTCTGTGACTACTGAGGACACAGCCACATATTACTGTGCAAGAGAAACGATCTACTATGGTAACCCCTATGGTATGGACTACTGGGGTCAGGGAACCTCAGTCACCGTCTCCTCA(서열번호 22)
중쇄 가변영역 #7 폴리뉴클레오티드 GATGTGCAGCTTCAGGAGTCAGGACCTGACCTGGTGAAACCTTCTCAGTCACTTTCACTCACCTGCACTGTCACTGGCTACTCCGTCACCAGTGATCATAGCTGGCACTGGATCCGGCAGTTTCCAGGAAACAAACTGGAATGGATGGGCTACATACACTACGATGGTAGCACTGACTACAACCCATCTCTCAAAAGTCGAATCTTTGTCACTCGAGACACATCCAAGAACCAGTTCTTCCTGCAGTTGAATTCTGTGACTACTGAGGACACAGCCACATATTACTGTGCAAGAGAAACGATCTACTATGGTAACCCCTATGGTATGGACTACTGGGGTCAGGGAACCTCAGTCACCGTCTCCTCA(서열번호 23)
경쇄 가변영역 폴리뉴클레오티드 GACATTGTGATGTCACAGTCTCCGCCCTCCCTGGCTGTGTCAGCAGGAGAGAAGGTCACTATGAGCTGCAAATCCAGTCAGAGTCTGTTCAACAGTGGAACCCGAAAGAACTACTTGGCTTGGTACCAGCAGAAACCAGGGCAGTCTCCTAAACTGCTGATCTACTGGGCATCCACTAGGGAATCTGGGGTCCCTGATCGCTTCACAGGCAGTGGATCTGGGACAGATTTCACTCTCTCCATCAGCAGTGTGCAGGCTGAAGACCTGGCAGTTTATTACTGCAAGCAATCTTATAATCTGTACACGTTCGGAGGGGGGACCAAGCTGGAAATAAAA(서열번호 24)
중쇄 가변영역 CDR1폴리펩티드 SDHSWH (서열번호 27)
중쇄 가변영역 CDR2폴리펩티드 YIHYDGSTDYNPSLKS (서열번호 28)
중쇄 가변영역 CDR3폴리펩티드 ETIYYGNPYGMDY (서열번호 29)
경쇄 가변영역 CDR1 폴리펩티드 KSSQSLFNSGTRKNYLA (서열번호 30)
경쇄 가변영역 CDR2 폴리펩티드 WASTRES (서열번호 31)
경쇄 가변영역 CDR3 폴리펩티드 KQSYNLYT (서열번호 32)
중쇄 가변영역 #1 폴리펩티드 DVQLQESGPDLVKPSQSLSLTCTVTGYSVTSDHSWHWIRQFPENKLEWMGYIHYDGSTDYNPSLKSRIFITRDTSKNQFFLQLNSVTTEDTATYYCARETIYYGNPYGMDYWGQGTSVTVSS(서열번호 33)
중쇄 가변영역 #6 폴리펩티드 DVQLQESGPDLVKPSQSLSLTCTVTGYSVTSDHSWHWIRQFPGNKLEWMGYIHYDGSTDYNPSLKSRIFITRDTSKNQFFLQLNSVTTEDTATYYCARETIYYGNPYGMDYWGQGTSVTVSS(서열번호 34)
중쇄 가변영역 #7 폴리펩티드 DVQLQESGPDLVKPSQSLSLTCTVTGYSVTSDHSWHWIRQFPGNKLEWMGYIHYDGSTDYNPSLKSRIFVTRDTSKNQFFLQLNSVTTEDTATYYCARETIYYGNPYGMDYWGQGTSVTVSS(서열번호 35)
경쇄 가변영역 폴리펩티드 DIVMSQSPPSLAVSAGEKVTMSCKSSQSLFNSGTRKNYLAWYQQKPGQSPKLLIYWASTRESGVPDRFTGSGSGTDFTLSISSVQAEDLAVYYCKQSYNLYTFGGGTKLEIK(서열번호 36)
실시예 3: 일시적 형질도입 방법에 의한 키메릭 항체의 생산
세포 내 일시적 형질도입을 위하여 양이온성 폴리머(cationic polymer)인 FreeStyleTM Max(Invitrogen, 16447-100)를 사용하였으며, 제조사의 사용설명서에 따라 형질도입을 수행하였다. 형질도입 전날, EX-CELL 293 Serum free media(Sigma, 14571C: 이하 "EX-CELL 293 배지"라 기재함)에서 자라는 F2N 세포를 원심 분리하여, FreeStyle293 serum free media(Gibco, 12338)로 배지를 교체하였으며, ㎖ 당 0.8×106 개의 세포 농도로 250 ㎖ shaker flask 두 개를 이용하여 50 ㎖씩(총 100 ㎖)접종하였다. 형질 도입 당일 날, 키메릭 항체 유전자를 포함하는 pCT178 DNA 125 ㎍과 FreeStyleTM Max 시약 125 ㎕를 각각 OptiPRO SFM II (Invitrogen, 12309) 배지를 이용하여 2 ㎖ volume으로 희석한 후, 가볍게 섞어 주었다. 즉시 희석된 FreeStyleTM Max 시약 용액을 DNA가 희석되어 있는 용액에 섞은 다음, 상온에서 17분 반응하였다. 상온에서 17분 반응하는 동안, 형질 도입에 사용할 접종된 F2N 세포의 수를 측정하고, 그 FreeStyle293 배지를 이용하여, 세포 농도를 1.0×106 개가 되도록 희석하였다. 17분 후, DNA와 FreeStyleTM Max 시약 혼합 용액을 F2N 세포에 처리함으로써 형질도입을 진행하였다. 형질도입 다음날, 동량의 EX-CELL 293 배지를 형질도입된 세포에 첨가하여 7일 동안 배양함으로써 단일클론 항체를 생산하였다.
실시예 4: 키메릭 단일클론 항체의 효능 확인
실시예 4-1: in vitro 실험
실시예 3에서 생산된 단일클론 항체에서 3개의 키메라 형태의 후보를 수득하였으며, 이를 아래 표 7과 같이 적절한 농도로 희석하여 키메릭 단일클론 항체로 전환시키기 전의 원래 마우스 항체 2-21-23과 함께 대표적인 광견병 바이러스를 대상으로 중화능력 실험을 수행하였으며, 이는 RFFIT를 통해 수행되었다. 그 결과는 표 8에 기재하였다.
표 7 실험에 사용된 2-21-23의 마우스 항체와 키메릭 형태 단일클론 항체의 농도
단일클론 항체 (항체 농도) 1:10 타이터 (IU/mg) 1:100 타이터 (IU/mg) 1:1000 타이터 (IU/mg)
마우스 항체 2-21-23 (121 ug/mL) 1500 (198.3) 210 (27.8) 7 (0.9)
키메릭 항체 #1 2-21-23 (116 ug/mL) 1400 (193.1) 95 (13.1) 11 (1.6)
키메릭 항체 #6 2-21-23 (95 ug/mL) 1200 (202.1) 110 (18.5) 9 (1.5)
키메릭 항체 #7 2-21-23 (186 ug/mL) 6800 (584.9) 270 (23.2) 25 (2.2)
표 8 키메릭 형태로 전환된 단일클론 항체의 RFFIT의 결과
광견병 바이러스 종류 SRIG 2-21-23 마우스 항체 (121 ug/mL) Titer (IU/mg) 키메릭 항체 #1 2-21-23 (116 ug/mL) Titer (IU/mg) 키메릭 항체 #6 2-21-23 (95 ug/mL) Titer (IU/mg) 키메릭 항체 #7 2-21-23 (186 ug/mL) Titer (IU/mg)
China 2005 210 2200 (173.2) 540 (44.3) 230 (23.1) 5700 (291.9)
Rv342(China) 210 1600 (125.9) 320 (26.3) 200 (20.1) 8000 (409.6)
Dog Thai 210 1300 (102.3) 320 (26.3) 170 (17.0) 4600 (235.5)
Phi 002 180 2200 (202.0) 250 (23.9) 320 (37.4) 6000 (358.4)
Phi Dog 180 1500 (137.7) 9 (0.9) 45 (5.3) 2700 (161.3)
Mong RSA 180 70 (6.4) 5 (0.5) 6 (0.7) 145 (8.7)
Dog Tun 230 1600 (115.0) 230 (17.2) 145 (13.3) 5700 (266.5)
Dog Gab 230 1500 (107.8) 70 (5.2) 145 (13.3) 1600 (74.8)
DR MX(Mexico) 230 1100 (79.1) 110 (8.2) 145 (13.3) 1500 (70.1)
I-148(India) 210 1900 (149.5) 290 (23.8) 125 (12.5) 7500 (384.0)
TX SK 170 1600 (155.6) 75 (7.6) 60 (7.4) 4600 (291.0)
SK 4384(Texas) 170 440 (42.8) 42 (4.3) 25 (3.1) 1600 (101.2)
RVHN(Russia) 210 159750 (12573.8) 33489 (2749.5) 174692 (17513.0) 174692 (8944.8)
Sri Lanka 210 1100 (86.6) 9 (0.7) <5 (0) 2200 (112.6)
Dog Son 210 800 (63.0) 75 (6.2) 25 (2.5) 4600 (235.5)
이 결과를 통해 높은 효능을 보이는 키메릭 항체 #7 2-21-23이 선별되었다.
다음 표 9는 키메릭 항체 #7 2-21-23에 대한 결정이 이루어진 다음 본격적으로 표 8에서 이루어지지 않았던 바이러스를 이용해 SRIG와 비교한 실험 결과이다.
표 9
광견병 바이러스 종류 SRIG (actual titer) 2-21-23 키메릭 항체 #7 (9 ug/mL) Titer (IU/mg)
Dog ARG 250 1300 (1155.6)
857r(27) 210 1400 (1481.5)
AK Fox 210 1200 (1269.8)
WA Bat 250 1300 (1155.6)
rv61 170 1400 (1830.1)
AL Bat 170 1200 (1568.6)
Bat Ef 170 1300 (1699.3)
C1434 170 1400 (1830.1)
Gray FX-AZ 180 340 (419.8)
NC SK 180 230 (284.0)
323R 230 1400 (1352.7)
I-151 145 1400 (2145.6)
TN 269 145 60 (15/20 in well 1:5) (1.8)
Myotis 145 1000 (1532.6)
실시예 4-2: in vivo 동물실험
상기 실시예들에서 선별된 2-21-23 키메릭 항체 #7이 in vivo에서 광견병 바이러스에 대한 치료 효과를 가지는지 조사하기 위하여 다음과 같이 시리아 햄스터(Syrian hamster)를 이용하여 동물실험을 진행하였다. 본 동물실험에서는 중국 개 광견병 바이러스 Rv342를 사용하였다.
동물 실험 그룹은 총 4개로 나누어졌으며, 이는 1. Rv342 바이러스만 주입한 그룹, 2. Rv342 바이러스와 백신(Human diploid Imovax® Sanofi Pasteur)을 주입한 그룹, 3. Rv342 바이러스와 2-21-23 키메릭 항체 #7을 주입한 그룹, 4. Rv342 바이러스와 2-21-23 키메릭 항체 #7 그리고 백신(Human diploid Imovax® Sanofi Pasteur)을 주입한 그룹으로 이루어 졌다. Rv342 바이러스는 MICLD50/ml 근거하여 1/100 희석하여 50 ul를 근육주사를 하였고, 백신은 1ml 당 약 2.5 IU 이상의 백신 바이러스 주를 50 ul를 주사하였고 (0, 3, 7, 14일), 키메릭 항체 #7은 0.6 mg/mL 중 50 ul을 주사하였다. 백신과 키멕릭 항체 #7은 Rv342 바이러스 주사 24시간 후에 각각 주사하였다.
실험 결과는 표 10 및 도 2와 같다. 바이러스와 2-21-23 키메릭 항체 #7를 주입한 경우(그룹 3) 관찰기간인 45일까지 모두 생존하였으나, 바이러스만 주입하거나(그룹 1) 바이러스와 백신을 주입한 경우(그룹 2)에는 모두 사망하였다. 또한, 바이러스와 2-21-23 키메릭 항체 #7 그리고 백신을 주입한 경우(그룹 4)에도 90% 이상의 생존율을 나타냈다.
표 10 in vivo 동물실험 결과
동물실험 그룹 처리 총 햄스터 수 생존 햄스터 수 생존율*
1 Rv342 바이러스 6 0 0%
2 Rv342 바이러스 + 백신 6 0 0%
3 Rv342 바이러스 + 2-21-23 키메릭 항체 #7 12 12 100%
4 Rv342 바이러스 + 2-21-23 키메릭 항체 #7 + 백신 12 11 91.7%
* 관찰기간: 바이러스 감염 후 45일
지금까지 예시적인 실시 태양을 참조하여 본 발명을 기술하였지만, 본 발명이 속하는 기술분야의 당업자는 본 발명의 범주를 벗어나지 않고서도 다양한 변화를 실시할 수 있으며, 그의 요소들을 등가물로 대체할 수 있음을 알 수 있을 것이다. 따라서, 본 발명이 본 발명을 실시하는데 계획된 최상의 양식으로서 개시된 특정 실시 태양으로 국한되는 것이 아니며, 본 발명이 첨부된 특허청구범위의 속하는 모든 실시 태양을 포함하는 것으로 해석되어야 한다.

Claims (25)

  1. 카바트(Kabat) 방법에 따라, 서열번호 27로 기재되는 폴리펩티드를 포함하는 CDR1 영역, 서열번호 28로 기재되는 폴리펩티드를 포함하는 CDR2 영역 및 서열번호 29로 기재되는 폴리펩티드를 포함하는 CDR3 영역을 가지는 가변 영역을 포함하는, 광견병 바이러스에 결합하여 중화 능력을 가지는 결합 분자.
  2. 카바트(Kabat) 방법에 따라, 서열번호 30으로 기재되는 폴리펩티드를 포함하는 CDR1 영역, 서열번호 31로 기재되는 폴리펩티드를 포함하는 CDR2 영역 및 서열번호 32로 기재되는 폴리펩티드를 포함하는 CDR3 영역을 가지는 가변 영역을 포함하는, 광견병 바이러스에 결합하여 중화 능력을 가지는 결합 분자.
  3. 카바트(Kabat) 방법에 따라, 서열번호 27로 기재되는 폴리펩티드를 포함하는 CDR1 영역, 서열번호 28로 기재되는 폴리펜티드를 포함하는 CDR2 영역 및 서열번호 29로 기재되는 폴리펩티드를 포함하는 CDR3 영역을 가지는 중쇄 가변 영역 및 서열번호 30으로 기재되는 폴리펩티드를 포함하는 CDR1 영역, 서열번호 31로 기재되는 폴리펩티드를 포함하는 CDR2 영역 및 서열번호 32로 기재되는 폴리펩티드를 포함하는 CDR3 영역을 가지는 경쇄 가변 영역을 포함하는, 광견병 바이러스에 결합하여 중화 능력을 가지는 결합 분자.
  4. 서열번호 35로 기재되는 폴리펩티드 서열을 포함하는 가변 영역을 포함하는, 광견병 바이러스에 결합하여 중화 능력을 가지는 결합 분자.
  5. 서열번호 36으로 기재되는 폴리펩티드 서열을 포함하는 가변 영역을 포함하는, 광견병 바이러스에 결합하여 중화 능력을 가지는 결합 분자.
  6. 서열번호 35로 기재되는 폴리펩티드 서열을 포함하는 중쇄 가변 영역 및 서열번호 36으로 기재되는 폴리펩티드 서열을 포함하는 경쇄 가변 영역을 포함하는, 광견병 바이러스에 결합하여 중화 능력을 가지는 결합 분자.
  7. 서열번호 35로 기재되는 폴리펩티드 서열을 포함하는 가변 영역 및 서열번호 37로 기재되는 폴리펩티드 서열을 포함하는 불변 병역을 포함하는 중쇄를 포함하는, 광견병 바이러스에 결합하여 중화 능력을 가지는 결합 분자.
  8. 서열번호 36으로 기재되는 폴리펩티드 서열을 포함하는 가변 영역 및 서열번호 38로 기재되는 폴리펩티드 서열을 포함하는 불변 영역을 포함하는 경쇄를 포함하는, 광견병 바이러스에 결합하여 중화 능력을 가지는 결합 분자.
  9. 서열번호 35로 기재되는 폴리펩티드 서열을 포함하는 가변 영역 및 서열번호 37로 기재되는 폴리펩티드 서열을 포함하는 불변 병역을 포함하는 중쇄 및 서열번호 36으로 기재되는 폴리펩티드 서열을 포함하는 가변 영역 및 서열번호 38로 기재되는 폴리펩오티드 서열을 포함하는 불변 영역을 포함하는 경쇄를 포함하는, 광견병 바이러스에 결합하여 중화 능력을 가지는 결합 분자.
  10. 제 1항 내지 제 9항 중 어느 한 항에 있어서, 상기 결합 분자는 항체인 것을 특징으로 하는 결합 분자.
  11. 제 3항 또는 제 6항에 있어서, 상기 결합 분자는 Fab 절편, Fv 절편, 디아바디(diabody), 키메라 항체, 인간화 항체 또는 인간 항체인 것을 특징으로 하는 결합 분자.
  12. 제 1항 내지 제 9항 중 어느 한 항에 있어서, 상기 광견병 바이러스는 개, 소, 몽구스, 박쥐, 스컹크 및 늑대로 이루어진 군으로부터 선택된 어느 하나의 개체에서 유래된 것을 특징으로 하는 결합 분자.
  13. 제 1항 내지 제 9항 중 어느 한 항의 결합 분자에 추가적으로 하나 이상의 태그가 결합된 이뮤노컨쥬게이트.
  14. 제 1항 내지 제 9항 중 어느 한 항의 결합 분자를 암호화하는 핵산 분자.
  15. 제 14항의 핵산 분자가 삽입된 발현 벡터.
  16. 제 15항의 발현 벡터가 숙주 세포에 형질전환되어, 광견병 바이러스에 결합하여 중화 능력을 가지는 결합 분자를 생산하는 세포주.
  17. 제 16항에 있어서, 상기 숙주 세포는 CHO 세포, F2N 세포, CSO 세포, BHK 세포, 바우스(Bowes) 흑색종 세포, HeLa 세포, 911 세포, AT1080 세포, A549 세포, HEK 293 세포 및 HEK293T 세포로 이루어진 군으로부터 선택된 어느 하나인 것을 특징으로 하는 세포주.
  18. 제 1항 내지 제 9항 중 어느 한 항의 결합 분자 및 약제학적으로 허용가능한 부형제가 추가적으로 포함된 약학적 조성물.
  19. 제 1항 내지 제 9항 중 어느 한 항 의 결합 분자 및 약제학적으로 허용가능한 부형제가 추가적으로 포함된 광견병 치료 및 예방용 조성물.
  20. 1)제 1항 내지 제 9항 중 어느 한 항의 결합 분자; 및
    2) 용기
    를 포함하는 광견병 진단용 키트.
  21. 1) 제 1항 내지 제 9항 중 어느 한 항의 결합 분자; 및
    2) 용기
    를 포함하는 광견병 치료 및 예방용 키트.
  22. 1) 대상의 시료와 제 1항 내지 제 9항 중 어느 한 항의 결합 분자를 접촉시키는 단계; 및
    2) 상기 단계 1)의 결과를 분석하여 광견병 감염 여부를 판별하는 단계
    를 포함하는 광견병 진단 방법.
  23. 광견병에 감염되었다고 확인된 대상에게 제 1항 내지 제 9항 중 어느 한 항의 결합 분자를 치료학적으로 유효한 양으로 투여하는 단계
    를 포함하는 광견병 치료 및 예방 방법.
  24. 1) 제 16항의 세포주를 배양하는 단계; 및
    2) 발현된 결합 분자를 회수하는 단계
    를 포함하는 광견병 바이러스에 결합하여 중화 능력을 가지는 결합 분자를 생산하는 방법.
  25. 1) 대상의 시료와 제 1항 내지 제 9항 중 어느 한 항의 결합 분자를 접촉시키는 단계; 및
    2) 상기 결합 분자가 대상 시료에 특이적으로 결합하는지 측정하는 단계
    를 포함하는 광견병 바이러스를 검출하는 방법.
PCT/KR2012/001902 2011-03-18 2012-03-16 광견병 바이러스를 중화시킬 수 있는 결합 분자 WO2012128508A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280013315.9A CN103492419B (zh) 2011-03-18 2012-03-16 可中和狂犬病病毒的结合分子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0024332 2011-03-18
KR20110024332 2011-03-18

Publications (2)

Publication Number Publication Date
WO2012128508A2 true WO2012128508A2 (ko) 2012-09-27
WO2012128508A3 WO2012128508A3 (ko) 2012-12-27

Family

ID=46879865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/001902 WO2012128508A2 (ko) 2011-03-18 2012-03-16 광견병 바이러스를 중화시킬 수 있는 결합 분자

Country Status (3)

Country Link
KR (1) KR101388680B1 (ko)
CN (1) CN103492419B (ko)
WO (1) WO2012128508A2 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2537345B2 (ja) * 1984-04-25 1996-09-25 トランスジ−ン ソシエテ アノニム 狂犬病に対するワクチン及びその製造法
JP2004528803A (ja) * 2000-05-16 2004-09-24 トーマス・ジェファーソン・ユニバーシティー 狂犬病ウイルス特異的ヒトモノクローナル中和抗体及び核酸及び関連する方法
KR20070044807A (ko) * 2004-05-27 2007-04-30 크루셀 홀란드 비.브이. 광견병 바이러스를 중화시킬 수 있는 결합 분자 및 그 용도
KR20100006868A (ko) * 2008-07-10 2010-01-22 대한민국(관리부서 : 농림수산식품부 국립수의과학검역원) 면역크로마토그라피를 이용한 광견병 항체 신속 검출진단키트 및 면역크로마토그라피를 이용한 광견병 항체진단방법
JP2010085126A (ja) * 2008-09-29 2010-04-15 Adtec Kk 狂犬病ウイルス中和抗体価判定具および狂犬病ウイルス中和抗体価の測定方法
JP2011050269A (ja) * 2009-08-31 2011-03-17 Evec Inc 狂犬病ウイルスに対するヒト抗体ならびにその医薬組成物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1355253A (zh) * 2000-11-29 2002-06-26 中国预防医学科学院病毒学研究所 人源抗狂犬病毒中和性基因工程抗体
CN101100663B (zh) * 2006-07-05 2011-08-24 华北制药集团新药研究开发有限责任公司 重组人抗狂犬病毒单克隆抗体的制备方法
CN101560255B (zh) * 2009-04-22 2012-05-23 南京医科大学 抗狂犬病病毒单克隆抗体及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2537345B2 (ja) * 1984-04-25 1996-09-25 トランスジ−ン ソシエテ アノニム 狂犬病に対するワクチン及びその製造法
JP2004528803A (ja) * 2000-05-16 2004-09-24 トーマス・ジェファーソン・ユニバーシティー 狂犬病ウイルス特異的ヒトモノクローナル中和抗体及び核酸及び関連する方法
KR20070044807A (ko) * 2004-05-27 2007-04-30 크루셀 홀란드 비.브이. 광견병 바이러스를 중화시킬 수 있는 결합 분자 및 그 용도
KR20100006868A (ko) * 2008-07-10 2010-01-22 대한민국(관리부서 : 농림수산식품부 국립수의과학검역원) 면역크로마토그라피를 이용한 광견병 항체 신속 검출진단키트 및 면역크로마토그라피를 이용한 광견병 항체진단방법
JP2010085126A (ja) * 2008-09-29 2010-04-15 Adtec Kk 狂犬病ウイルス中和抗体価判定具および狂犬病ウイルス中和抗体価の測定方法
JP2011050269A (ja) * 2009-08-31 2011-03-17 Evec Inc 狂犬病ウイルスに対するヒト抗体ならびにその医薬組成物

Also Published As

Publication number Publication date
CN103492419A (zh) 2014-01-01
KR20120107050A (ko) 2012-09-28
WO2012128508A3 (ko) 2012-12-27
KR101388680B1 (ko) 2014-04-28
CN103492419B (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
CN102272155B (zh) 登革热病毒中和抗体及其用途
FI103131B (fi) Menetelmä CD25 sitovan molekyylin valmistamiseksi
EP4223784A2 (en) Compositions and methods for modulating t-cell mediated immune response
WO2017164678A2 (ko) 중증열성혈소판감소증후군 바이러스의 외막 당단백질에 결합하는 항체 및 이의 용도
JPH11507640A (ja) Rsv f−タンパク質に特異的な高親和性ヒトモノクローナル抗体
JPH08500979A (ja) ヒトにおいて病原体による感染に対する受動免疫を付与するための新規の抗体
WO2013048153A2 (ko) 인간 b 세포에서 생산된 인플루엔자 a 바이러스 중화 활성을 가지는 결합 분자
CA2982491A1 (en) Antibody-mediated neutralization of chikungunya virus
KR101900435B1 (ko) 인간 사이토메갈로바이러스 gB 단백질에 대한 고친화도 인간 항체
WO2021091359A1 (ko) 조절 t 세포 표면 항원의 에피토프 및 이에 특이적으로 결합하는 항체
WO2013130565A1 (en) Neutralizing antibody for epstein barr virus associated disease
RU2292353C2 (ru) Рекомбинантные антитела и композиции, а также способы их создания и использования
WO2013048130A2 (ko) 광견병 바이러스를 중화시킬 수 있는 결합 분자
WO2021216876A2 (en) Antibodies to coronavirus spike protein and methods of use thereof
KR20220004055A (ko) 플라스모디움 주변포자체(plasmodium circumsporozoite) 단백질에 결합하는 항체 및 이의 용도
US20190022211A1 (en) Rabies virus g protein epitope, and rabies virus neutralising binding molecule that binds specifically thereto
WO2012128508A2 (ko) 광견병 바이러스를 중화시킬 수 있는 결합 분자
WO2022220603A1 (ko) 코로나-19 바이러스 표적 인간 항체
US20160347841A1 (en) New monoclonal antibodies against the receptor dec-205 of chicken dentritic cells
CN113698487B (zh) 抗人ace2单克隆抗体及其应用
Lu et al. Broadly neutralizing antibodies against Omicron variants of SARS-CoV-2 derived from mRNA-lipid nanoparticle-immunized mice
CN105814077B (zh) 能够中和狂犬病毒的结合分子
EP4215545A1 (en) Antibody against coronavirus
CN113087796B (zh) 一种抗pd-l1抗体及其应用
CN114805570B (zh) 一种抗人ace2单克隆抗体及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12759943

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12759943

Country of ref document: EP

Kind code of ref document: A2