WO2012128354A1 - 紫外レーザ装置 - Google Patents

紫外レーザ装置 Download PDF

Info

Publication number
WO2012128354A1
WO2012128354A1 PCT/JP2012/057523 JP2012057523W WO2012128354A1 WO 2012128354 A1 WO2012128354 A1 WO 2012128354A1 JP 2012057523 W JP2012057523 W JP 2012057523W WO 2012128354 A1 WO2012128354 A1 WO 2012128354A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
wavelength
optical element
conversion optical
laser beam
Prior art date
Application number
PCT/JP2012/057523
Other languages
English (en)
French (fr)
Inventor
善紀 尾下
徳久 章
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to CN201280008296.0A priority Critical patent/CN103348286B/zh
Priority to US14/003,895 priority patent/US8929410B2/en
Priority to JP2013506039A priority patent/JP6020441B2/ja
Publication of WO2012128354A1 publication Critical patent/WO2012128354A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3534Three-wave interaction, e.g. sum-difference frequency generation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/16Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 series; tandem

Definitions

  • the present invention includes a laser light output unit that outputs laser light having an infrared wavelength, and a wavelength conversion optical element that converts the wavelength of infrared laser light output from the laser light output unit into laser light having an ultraviolet wavelength.
  • the present invention relates to an ultraviolet laser device including a wavelength conversion unit.
  • an ultraviolet laser apparatus including the laser beam output unit and the wavelength conversion unit as described above
  • a laser apparatus that is suitably used for an exposure apparatus, an inspection apparatus, a treatment apparatus, and the like is known.
  • Such a laser device generally amplifies an infrared wavelength laser beam emitted from a laser light source such as a DFB semiconductor laser by a fiber optical amplifier, and arranges the amplified infrared laser beam in a wavelength conversion unit.
  • the wavelength conversion is performed by the wavelength conversion optical element thus configured to output laser light having an ultraviolet wavelength.
  • the fiber optical amplifier is an erbium (Er) -doped fiber optical amplifier (generally abbreviated as “EDFA”) that amplifies infrared laser light having a wavelength of 1.55 ⁇ m due to the history of optical fiber development. Is widely used.
  • Er erbium
  • EDFA erbium -doped fiber optical amplifier
  • the wavelength conversion unit of the ultraviolet laser device is configured to convert the wavelength of the infrared laser beam output from the laser beam output unit into an ultraviolet laser beam having a wavelength band of 190 to 200 nm (patent).
  • Reference 1 and Patent Reference 2 With such a configuration, a small, all-solid-state ultraviolet laser device that is easy to handle and outputs ultraviolet laser light in the above-described wavelength band is realized.
  • the wavelength conversion unit as disclosed in Patent Document 1, but generally, a plurality of propagation paths are formed, Each is provided with a wavelength conversion optical element, and is configured to output the ultraviolet laser light by superimposing the fundamental wave and higher harmonics generated in each propagation path a plurality of times. For this reason, the subject that the structure of a wavelength conversion part is complicated, and the subject that it was difficult to obtain high wavelength conversion efficiency when it looked at the whole wavelength conversion part occurred.
  • a laser beam output unit that outputs a laser beam having an infrared wavelength, and an infrared beam that has a wavelength conversion optical element and is output from the laser beam output unit.
  • An ultraviolet laser device comprising a wavelength conversion unit that converts a laser beam into an ultraviolet wavelength laser beam and outputs the laser beam, and the laser beam output unit outputs a first infrared laser beam having a wavelength of 1900 to 2000 nm
  • a first laser beam output unit that outputs a second laser beam output unit that outputs a second infrared laser beam having a wavelength of 1000 to 1100 nm, and the wavelength conversion unit outputs the second laser beam output unit from the first laser beam output unit.
  • the first sequence in which the first infrared laser beam is incident and propagated, the laser beam propagated in the first sequence, and the second infrared laser beam output from the second laser beam output unit are combined and incident and propagated.
  • 2 series and incident on wavelength converter First and second infrared laser light is, by being wavelength converted by the wavelength conversion optical element provided in the wavelength conversion unit, and a second series as the ultraviolet laser beam is outputted.
  • the wavelength conversion optical element provided in the wavelength conversion unit generates the second harmonic of the first infrared laser light.
  • the first wavelength conversion optical element and the second wavelength conversion optical element are provided in the first series, and the third wavelength conversion optical element and the second wavelength conversion optical element A four-wavelength converting optical element is provided in the second series.
  • the first wavelength conversion optical element, the second wavelength conversion optical element, and the third wavelength conversion optical element are provided in a first series.
  • the fourth wavelength conversion optical element is provided in the second series.
  • the phase matching in the third wavelength conversion optical element and the phase matching in the fourth wavelength conversion optical element are non-critical phase matching (NCPM). : Non-Critical Phase Matching).
  • the phase matching in the first wavelength conversion optical element and the phase matching in the second wavelength conversion optical element are quasi phase matching (QPM: Quasi Phase Matching).
  • the first laser light output unit is configured to include a thulium-doped fiber optical amplifier.
  • the second laser light output unit is configured to include an ytterbium-doped fiber optical amplifier.
  • the ultraviolet laser light is configured as deep ultraviolet light having a wavelength of 190 to 200 nm.
  • laser light in the ultraviolet region generated by the third wavelength conversion optical element is referred to as “ultraviolet laser light”.
  • front-stage ultraviolet laser light For convenience, it is described as “front-stage ultraviolet laser light”.
  • the aspect of the present invention it is possible to provide a new means capable of outputting ultraviolet laser light with a simple configuration in which superposition is performed only once.
  • the wavelength conversion unit is configured by the first to fourth wavelength conversion optical elements, it is possible to provide a new means capable of outputting ultraviolet laser light with a simple configuration having only four wavelength conversion optical elements. Can do.
  • the optical elements such as a mirror and a condensing lens for superimposing the beams can be arranged in the infrared to visible region, and an ultraviolet laser device capable of stable operation over a long period of time with a simple and inexpensive configuration can be provided.
  • the beam quality and wavelength An ultraviolet laser device with high conversion efficiency can be provided.
  • the first laser light output unit is configured to have a thulium-doped fiber optical amplifier
  • the second laser light output unit is configured to have an ytterbium-doped fiber optical amplifier
  • FIG. 1 is an overall view of an ultraviolet laser apparatus exemplified as an embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram illustrating the ultraviolet laser device of the first configuration example.
  • FIG. 3 is a schematic configuration diagram illustrating the ultraviolet laser device of the second configuration example.
  • FIG. 4 is a schematic configuration diagram illustrating the ultraviolet laser device of the third configuration example.
  • the ultraviolet laser device LS includes a laser beam output unit 1 that outputs infrared laser beam La (La1, La2), a wavelength conversion optical element, and an infrared laser beam that is output from the laser beam output unit 1 as an ultraviolet laser beam.
  • a wavelength conversion unit 3 that converts the wavelength to Lv and outputs it, a laser beam output unit 1, a control unit 8 that controls the operation of the wavelength conversion unit 3, and the like are included.
  • the laser beam output unit 1 includes a first laser beam output unit 1a that outputs a first fundamental wave infrared laser beam (first infrared laser beam) La1 having a wavelength of 1900 to 2000 nm, and a first laser beam output unit 1a having a wavelength of 1000 to 1100 nm. It comprises a second laser beam output section 1b that outputs two fundamental wave infrared laser beams (second infrared laser beams) La2.
  • the specific wavelengths of the first infrared laser beam La1 and the second infrared laser beam La2 are appropriately set according to the wavelength of the ultraviolet laser beam Lv output from the ultraviolet laser device LS and the configuration of the wavelength conversion unit 3. Can do.
  • the laser light output unit 1 includes a laser light generation unit 10 that outputs seed light and an amplification unit 20 that amplifies the seed light output from the laser light generation unit 10. .
  • the laser light generator 10 includes a first laser light source 11 that generates a first fundamental wave seed light Ls1 and a second laser light source 12 that generates a second fundamental wave seed light Ls2.
  • the amplifying unit 20 includes a first fiber optical amplifier 21 provided corresponding to the first laser light source and a second fiber optical amplifier 22 provided corresponding to the second laser light source.
  • the first fundamental wave seed light Ls1 generated by the first laser light source 11 is amplified to a predetermined output by the first fiber optical amplifier 21, and is amplified. Infrared laser beam La1 is output.
  • the second fundamental wave seed light Ls2 generated by the second laser light source 12 is amplified to a predetermined output by the second fiber optical amplifier 22, and is amplified. Light La2 is output.
  • the pumping light source in the first fiber optical amplifier 21 and the second fiber optical amplifier 22 is not shown.
  • the first laser light source 11 can preferably use a DFB (Distributed Feedback) semiconductor laser having an oscillation wavelength of 2 ⁇ m
  • the second laser light source 12 can preferably use a DFB semiconductor laser having an oscillation wavelength of 1.1 ⁇ m.
  • the DFB semiconductor laser can generate seed light having a narrow wavelength by oscillating in a state in which the temperature is controlled by a temperature regulator using a Peltier element or the like.
  • the DFB semiconductor laser can be oscillated or pulsed at an arbitrary intensity by controlling the waveform of the excitation current.
  • the laser light generator 10 is provided with an external modulator such as EOM (Electro-Optic Modulator), and the output light of the laser light source oscillated or pulsed CW (Continuous Wave) is cut out by the external modulator and pulsed light having a required waveform. May be output.
  • EOM Electro-Optic Modulator
  • a thulium-doped fiber optical amplifier in which thulium (Tm) is doped in the core of the amplification optical fiber can be suitably used.
  • the thulium-doped fiber optical amplifier has a gain in a wavelength band of 1900 to 2000 nm, amplifies the seed light Ls1 having a predetermined wavelength within the wavelength band emitted from the first laser light source 11, and the amplified first light Ls1 is amplified.
  • 1 infrared laser beam La1 is output to the wavelength converter 3.
  • an ytterbium-doped fiber optical amplifier in which the core of the amplification optical fiber is doped with ytterbium (Yb) can be suitably used.
  • the ytterbium-doped fiber optical amplifier has a gain in a wavelength band of 1000 to 1100 nm, amplifies the seed light Ls2 having a predetermined wavelength in the wavelength band emitted from the second laser light source 12, and amplifies the amplified first light Ls2.
  • the 2-infrared laser beam La2 is output to the wavelength converter 3.
  • the laser light output units 1a and 1b are configured by the laser light sources 11 and 12 and the fiber optical amplifiers 21 and 22. It may be configured.
  • the wavelength conversion unit 3 is provided with a wavelength conversion optical system 30 (30A to 30C) including a plurality of wavelength conversion optical elements and mirrors.
  • 2 to 4 show schematic configurations of the wavelength conversion optical systems 30A to 30C in the ultraviolet laser devices LS1 to LS3 of the first to third configuration examples using the wavelength conversion optical systems 30A to 30C, respectively.
  • an ellipse on the optical path is a collimator lens or a condenser lens, and a description thereof will be omitted.
  • Each of the wavelength conversion optical systems 30A to 30C includes the first series I in which the first infrared laser light La1 output from the first laser light output unit 1a is incident and propagated, the laser light propagated through the first series, and the second The second infrared laser beam La2 output from the laser beam output unit 1b is combined with the second series II to be propagated.
  • the first infrared laser beam La1 and the second infrared laser beam La2 incident on the wavelength conversion unit 3 are sequentially wavelength-converted by the wavelength conversion optical element provided in the wavelength conversion unit 3, and the second series II to the ultraviolet laser beam. Lv is output.
  • the ultraviolet laser light can be output with a simple configuration in which the superposition is performed only once.
  • the wavelength conversion optical systems 30A to 30C are mainly composed of four wavelength conversion optical elements 31 to 34, respectively.
  • the first wavelength conversion optical element 31 is a wavelength conversion optical element that generates a second harmonic of the first infrared laser light La1 (first fundamental wave) by second harmonic generation (SHG).
  • the second wavelength conversion optical element 32 generates the second harmonic of the second harmonic emitted from the first wavelength conversion optical element 31 by the second harmonic generation, that is, the fourth harmonic of the first fundamental wave. It is a wavelength conversion optical element.
  • the third wavelength converting optical element 33 is the second harmonic of the fourth harmonic emitted from the second wavelength converting optical element 32 by the second harmonic generation, that is, the previous harmonic that is the eighth harmonic of the first fundamental wave. This is a wavelength conversion optical element that generates ultraviolet laser light.
  • the fourth wavelength conversion optical element 34 generates a sum frequency (SFG: Sum Frequency Generation) of the front-stage ultraviolet laser light emitted from the third wavelength conversion optical element 33 and the second infrared laser light La2 (second fundamental wave). Is a wavelength conversion element that generates ultraviolet laser light Lv. According to such a configuration, the wavelength conversion optical element can output ultraviolet laser light with only four simple configurations.
  • FSG Sum Frequency Generation
  • the ultraviolet laser device LS schematically configured as described above, high-power infrared laser light of 100 W or more can be obtained relatively easily as the first fiber optical amplifier 21 and the second fiber optical amplifier 22.
  • An ytterbium-doped fiber optical amplifier and a thulium-doped fiber optical amplifier are used. For this reason, it is possible to realize a significant increase in output of the all-solid-state ultraviolet laser device, which has been considered to have reached the limit of the increase in output.
  • the specific configuration of the ultraviolet laser device LS having the above-described characteristics is that the wavelength ⁇ 1 of the first infrared laser beam (first fundamental wave) La1 output from the first laser beam output unit 1a, the second laser beam.
  • the wavelength ⁇ 2 of the second infrared laser beam (second fundamental wave) La2 output from the output unit 1b and the wavelength ⁇ v of the ultraviolet laser beam Lv output from the wavelength conversion unit 3 are set, an extremely large number Combinations are possible.
  • the wavelength of the first fundamental wave ⁇ 1 1902 nm output from the first laser beam output unit 1a, and the wavelength of the second fundamental wave output from the second laser beam output unit 1b.
  • ⁇ 2 1079 nm
  • the wavelength ⁇ v of the ultraviolet laser light Lv output from the wavelength conversion unit 3 is 194.9 nm.
  • the first infrared laser beam La1 amplified by an optical amplifier) 21 and amplified to a predetermined output is incident on the wavelength conversion optical system 30 (30A to 30C).
  • the wavelength conversion optical system 30A of the first configuration example includes three wavelength conversion optical elements 31 to 33 in the first series I on which the first infrared laser light (first fundamental wave) La1 is incident, and the second infrared laser light (first fundamental wave) La1 is provided.
  • a wavelength conversion optical element 34 is provided in the second series II into which the laser beam (second fundamental wave) La2 is combined and incident.
  • the first wavelength conversion optical element 31 converts the wavelength of the first fundamental wave (first infrared laser beam) having an angular frequency ⁇ 1 into a second harmonic having an angular frequency of 2 ⁇ 1.
  • a PPLN Periodically Poled LN: LiNbO3 having a periodically poled structure
  • QPM quasi phase matching
  • a wave is generated.
  • the second harmonic wave having a wavelength of 951 nm generated by the first wavelength conversion optical element 31 is incident on the second wavelength conversion optical element 32.
  • the second wavelength conversion optical element 32 converts the wavelength of the second harmonic having the angular frequency 2 ⁇ 1 generated by the first wavelength conversion optical element 31 into the fourth harmonic having the angular frequency of 4 ⁇ 1.
  • a PPLT Periodically Polled LT: LiTaO3 having a periodically poled structure
  • the fourth harmonic wave having a wavelength of 475.5 nm generated by the second wavelength conversion optical element 32 is condensed and incident on the third wavelength conversion optical element 33.
  • the third wavelength conversion optical element 33 converts the wavelength of the fourth harmonic of the angular frequency 4 ⁇ 1 generated by the second wavelength conversion optical element 32 into the eighth harmonic of the angular frequency 8 ⁇ 1.
  • a CLBO (CsLiB6O10) crystal is used as the third wavelength conversion optical element 33, and the phase matching condition is adjusted by non-critical phase matching (NCPM).
  • NCPM non-critical phase matching
  • the eighth harmonic is generated.
  • the eighth harmonic wave having a wavelength of 237.8 nm generated by the third wavelength conversion optical element 33 enters the dichroic mirror 41.
  • the dichroic mirror 41 is configured to transmit the eighth harmonic of the first fundamental wave having a wavelength of 237.8 nm and reflect the second infrared laser light (second fundamental wave) having a wavelength of 1079 nm.
  • the eighth harmonic wave (8 ⁇ 1) of the first fundamental wave is transmitted through the dichroic mirror 41 and focused on the fourth wavelength conversion optical element 34 provided in the second series II.
  • the second fundamental wave reflected by the dichroic mirror 41 is superposed coaxially with the eighth harmonic wave of the first fundamental wave transmitted through the dichroic mirror 41 and focused on the fourth wavelength conversion optical element 34 of the second series II. To do.
  • the transmission wavelength of the dichroic mirror 41 is shorter than the wavelength of the second fundamental wave, and is arbitrary within the wavelength band including the wavelength of the eighth harmonic of the first fundamental wave.
  • the transmission wavelength is set to less than 350 nm (reflection wavelength is 350 nm or more), and the first fundamental wave ( ⁇ 1), the second harmonic (2 ⁇ 1), and the fourth harmonic (4 ⁇ 1) are reflected to absorb the light. If it is configured to absorb the laser light, it is possible to prevent the laser light having an unnecessary wavelength from entering the wavelength conversion optical element of the second series II (the laser light having the wavelength is emitted from the wavelength conversion unit 3).
  • the fourth wavelength conversion optical element 34 provided in the second series II includes an eighth harmonic wave of the first fundamental wave transmitted through the dichroic mirror 41 and a second fundamental wave that is reflected by the dichroic mirror 41 and superimposed on the same axis. Then, an ultraviolet laser beam having a wavelength of 194.9 nm is generated.
  • a CLBO (CsLiB6O10) crystal is used as the third wavelength conversion optical element 33, and the phase matching condition is adjusted by non-critical phase matching (NCPM).
  • the fourth wavelength conversion optical element 34 generates a sum frequency of the eighth harmonic of the first fundamental wave having a wavelength of 237.8 nm and the second fundamental wave having a wavelength of 1079 nm, and generates an ultraviolet laser beam having a wavelength of 194.9 nm. Is done.
  • the ultraviolet laser beam with a wavelength of 194.9 nm generated by the fourth wavelength conversion optical element 34 is output from the end of the second series II, and the ultraviolet laser beam with a wavelength of 194.9 nm is output from the wavelength conversion optical system 30A of the ultraviolet laser device LS1. Lv is output.
  • the phase matching in the first and second wavelength conversion optical elements 31 and 32 is quasi phase matching (QPM), and the third and fourth wavelength conversion optical elements.
  • the phase matching at 33 and 34 is non-critical phase matching (NCPM), and all four wavelength conversion optical elements are used in phase matching that does not cause a walk-off.
  • the wavelength conversion optical system 30A performs wavelength conversion with extremely high efficiency to obtain high output efficiency and high beam quality. An effect that ultraviolet laser light can be obtained can be achieved.
  • an ultraviolet laser device LS2 including the wavelength conversion optical system 30B of the second configuration example will be described with reference to FIG.
  • the wavelength conversion optical system 30B of the second configuration example two wavelength conversion optical elements 31 and 32 are provided in the first series I on which the first infrared laser light (first fundamental wave) La1 is incident, and the second infrared laser light is supplied.
  • Two wavelength conversion optical elements 33 and 34 are provided in the second series II into which the laser beam (second fundamental wave) La2 is combined and incident.
  • the first wavelength conversion optical element 31 converts the wavelength of the first fundamental wave having the angular frequency ⁇ 1 into the second harmonic having the angular frequency 2 ⁇ 1.
  • the first wavelength conversion optical element 31 uses a PPLN crystal as in the configuration example described above, and adjusts the phase matching condition by quasi phase matching (QPM).
  • QPM quasi phase matching
  • a wave is generated.
  • the second harmonic wave having a wavelength of 951 nm generated by the first wavelength conversion optical element 31 is incident on the second wavelength conversion optical element 32.
  • the second wavelength conversion optical element 32 converts the wavelength of the second harmonic having the angular frequency 2 ⁇ 1 generated by the first wavelength conversion optical element 31 into the fourth harmonic having the angular frequency of 4 ⁇ 1.
  • an LBO (LiB 3 O 5) crystal is used as the second wavelength conversion optical element 32, and phase matching conditions are adjusted by Type I phase matching.
  • the fourth harmonic beam emitted from the second wavelength conversion optical element 32 is slightly ovalized by the walk-off, but the walk-off angle is as small as about 9 m rad, and the circular beam is formed by the two cylindrical lenses.
  • the light is corrected and enters the dichroic mirror 42.
  • the dichroic mirror 42 is configured to transmit the fourth harmonic of the first fundamental wave having a wavelength of 475.5 nm and reflect the second infrared laser light (second fundamental wave) having a wavelength of 1079 nm.
  • the fourth harmonic wave (4 ⁇ 1) of the first fundamental wave is transmitted through the dichroic mirror 42 and focused on the third wavelength conversion optical element 33 provided in the second series II.
  • the second fundamental wave reflected by the dichroic mirror 42 is superposed coaxially with the fourth harmonic of the first fundamental wave transmitted through the dichroic mirror 42 and focused on the second wavelength II third wavelength conversion optical element 33.
  • the transmission wavelength of the dichroic mirror 42 is shorter than the wavelength of the second fundamental wave, and is arbitrary within a wavelength band including the wavelength of the fourth harmonic of the first fundamental wave.
  • the transmission wavelength is set to less than 500 nm (reflection wavelength is 500 nm or more), and the first fundamental wave ( ⁇ 1) and the second harmonic (2 ⁇ 1) are reflected and absorbed by the light absorber.
  • the laser light having an unnecessary wavelength from entering the wavelength conversion optical element of the second series II (the laser light having the wavelength is emitted from the wavelength conversion unit 3).
  • the third wavelength conversion optical element 33 provided in the second series II converts the wavelength of the fourth harmonic wave having the angular frequency 4 ⁇ 1 transmitted through the dichroic mirror 42 into the eighth harmonic wave having the angular frequency 8 ⁇ 1.
  • the third wavelength conversion optical element 33 uses a CLBO crystal and adjusts the phase matching condition by non-critical phase matching (NCPM).
  • NCPM non-critical phase matching
  • the eighth harmonic is generated.
  • the eighth harmonic (previous ultraviolet laser beam) having a wavelength of 237.8 nm generated by the third wavelength conversion optical element 33 is incident on the fourth wavelength conversion optical element 34 disposed in contact with the third wavelength conversion optical element 33. To do.
  • the second fundamental wave reflected by the dichroic mirror 42 passes through the third wavelength conversion optical element 33 and enters the fourth wavelength conversion optical element 34.
  • the fourth wavelength conversion optical element 34 has a wavelength of 194.9 nm from the eighth harmonic of the first fundamental wave generated by the third wavelength conversion optical element 33 and the second fundamental wave transmitted through the third wavelength conversion optical element 33. UV laser light is generated.
  • the fourth wavelength conversion optical element 34 uses a CLBO crystal and adjusts the phase matching condition by non-critical phase matching (NCPM).
  • NCPM non-critical phase matching
  • the fourth wavelength conversion optical element 34 generates a sum frequency of the eighth harmonic of the first fundamental wave having a wavelength of 237.8 nm and the second fundamental wave having a wavelength of 1079 nm, and generates an ultraviolet laser beam having a wavelength of 194.9 nm. Is done.
  • the ultraviolet laser beam having a wavelength of 194.9 nm generated by the fourth wavelength conversion optical element 34 is output from the end of the second series II, and the ultraviolet laser beam having a wavelength of 194.9 nm is output from the wavelength conversion optical system 30B of the ultraviolet laser device LS2. Lv is output.
  • the phase matching in the first wavelength conversion optical element 31 is quasi phase matching (QPM), and the phases in the third and fourth wavelength conversion optical elements 33 and 34 are set.
  • the matching is non-critical phase matching (NCPM), and three of the four wavelength converting optical elements are used in phase matching that does not cause a walk-off. Even in the second wavelength conversion optical element 32 where the walk-off occurs, the angle is very small. Therefore, according to the ultraviolet laser device LS2, in addition to the basic effects already described, wavelength conversion is performed with high efficiency in the wavelength conversion optical system 30B, relatively high output efficiency can be obtained, and beam quality can be improved. An effect that a good ultraviolet laser beam can be obtained can be achieved.
  • optical elements such as a mirror and a condensing lens for superimposing the beams are arranged in the infrared to visible region, so that these optical elements are damaged by light in the ultraviolet region. It is possible to extend the life by suppressing the receiving.
  • optical elements such as mirrors and condenser lenses are arranged in the ultraviolet region, a shift structure for periodically shifting these optical elements is required. According to this configuration example, such a shift mechanism is provided.
  • the third and fourth wavelength conversion optical elements 33 and 34 are arranged in contact with each other, they can be arranged on the same moving stage, thereby shifting the wavelength conversion optical elements 33 and 34 simultaneously. It becomes possible. Thereby, cost can be reduced.
  • an ultraviolet laser device LS3 including the wavelength conversion optical system 30C of the third configuration example will be described with reference to FIG.
  • two wavelength conversion optical elements 31 and 32 are provided in the first series I on which the first infrared laser light (first fundamental wave) La1 is incident, and the second infrared laser light (first fundamental wave) La1 is provided.
  • Two wavelength conversion optical elements 33 and 34 are provided in the second series II into which the laser beam (second fundamental wave) La2 is combined and incident.
  • the first wavelength conversion optical element 31 converts the wavelength of the first fundamental wave having the angular frequency ⁇ 1 into the second harmonic having the angular frequency 2 ⁇ 1.
  • the first wavelength conversion optical element 31 uses a PPLN crystal similarly to the configuration example described above, and adjusts the phase matching condition by quasi phase matching (QPM).
  • the second harmonic wave having a wavelength of 951 nm generated by the first wavelength conversion optical element 31 is incident on the second wavelength conversion optical element 32.
  • the second wavelength conversion optical element 32 converts the wavelength of the second harmonic having the angular frequency 2 ⁇ 1 generated by the first wavelength conversion optical element 31 into the fourth harmonic having the angular frequency of 4 ⁇ 1.
  • a PPLT crystal is used as the second wavelength conversion optical element 32, and the phase matching condition is adjusted by quasi phase matching (QPM).
  • QPM quasi phase matching
  • the fourth harmonic wave having a wavelength of 475.5 nm generated by the second wavelength conversion optical element 32 enters the dichroic mirror 42.
  • the dichroic mirror 42 is configured to transmit the fourth harmonic of the first fundamental wave having a wavelength of 475.5 nm and reflect the second infrared laser light (second fundamental wave) having a wavelength of 1079 nm.
  • the fourth harmonic wave (4 ⁇ 1) of the first fundamental wave is transmitted through the dichroic mirror 42 and focused on the third wavelength conversion optical element 33 provided in the second series II.
  • the second fundamental wave reflected by the dichroic mirror 42 is superposed coaxially with the fourth harmonic of the first fundamental wave transmitted through the dichroic mirror 42 and focused on the second wavelength II third wavelength conversion optical element 33.
  • the transmission wavelength of the dichroic mirror 42 can be set similarly to the dichroic mirror 42 in the second configuration example. For example, by setting the transmission wavelength to less than 500 nm (reflection wavelength is 500 nm or more), laser light having an unnecessary wavelength is incident on the second-series II wavelength conversion optical element (the laser light having the wavelength is wavelength-converted). (Emitted from the part 3) can be suppressed.
  • the third wavelength conversion optical element 33 provided in the second series II converts the wavelength of the fourth harmonic wave having the angular frequency 4 ⁇ 1 transmitted through the dichroic mirror 42 into the eighth harmonic wave having the angular frequency 8 ⁇ 1.
  • the third wavelength conversion optical element 33 uses a CLBO crystal and adjusts the phase matching condition by non-critical phase matching (NCPM).
  • NCPM non-critical phase matching
  • the eighth harmonic is generated.
  • the eighth harmonic (previous ultraviolet laser beam) having a wavelength of 237.8 nm generated by the third wavelength conversion optical element 33 is incident on the fourth wavelength conversion optical element 34 disposed in contact with the third wavelength conversion optical element 33. To do.
  • the second fundamental wave reflected by the dichroic mirror 42 passes through the third wavelength conversion optical element 33 and enters the fourth wavelength conversion optical element 34.
  • the fourth wavelength conversion optical element 34 has a wavelength of 194.9 nm from the eighth harmonic of the first fundamental wave generated by the third wavelength conversion optical element 33 and the second fundamental wave transmitted through the third wavelength conversion optical element 33. UV laser light is generated.
  • the fourth wavelength conversion optical element 34 uses a CLBO crystal and adjusts the phase matching condition by non-critical phase matching (NCPM).
  • NCPM non-critical phase matching
  • the fourth wavelength conversion optical element 34 generates a sum frequency of the eighth harmonic of the first fundamental wave having a wavelength of 237.8 nm and the second fundamental wave having a wavelength of 1079 nm, and generates an ultraviolet laser beam having a wavelength of 194.9 nm. Is done.
  • the ultraviolet laser beam having a wavelength of 194.9 nm generated by the fourth wavelength conversion optical element 34 is output from the end of the second series II, and the ultraviolet laser beam having a wavelength of 194.9 nm is output from the wavelength conversion optical system 30C of the ultraviolet laser device LS3. Lv is output.
  • the phase matching in the first and second wavelength conversion optical elements 31 and 32 is quasi phase matching (QPM), and the third and fourth wavelength conversion optical elements.
  • the phase matching at 33 and 34 is non-critical phase matching (NCPM), and all four wavelength conversion optical elements are used in phase matching that does not cause a walk-off. For this reason, in addition to the basic effects already described, wavelength conversion is performed with extremely high efficiency in the wavelength conversion optical system 30C, high output efficiency can be obtained, and ultraviolet laser light with high beam quality can be obtained. The effect of can be achieved.
  • optical elements such as a mirror and a condensing lens for superimposing the beams are arranged in the infrared to visible region, so that these optical elements are damaged by light in the ultraviolet region. It is possible to extend the life by suppressing the receiving.
  • optical elements such as mirrors and condenser lenses are arranged in the ultraviolet region, a shift structure for periodically shifting these optical elements is required. According to this configuration example, such a shift mechanism is provided.
  • the third and fourth wavelength conversion optical elements 33 and 34 are arranged in contact with each other, they can be arranged on the same moving stage, thereby shifting the wavelength conversion optical elements 33 and 34 simultaneously. It becomes possible. Thereby, cost can be reduced.
  • a PPLN crystal is exemplified as the first wavelength conversion optical element 31, but a nonlinear optical crystal such as PPLT, LBO, BBO ( ⁇ -BaB2O4), CBO (CsB3O5) is used. It can also be configured.
  • the PPLT and LBO crystals are exemplified as the second wavelength conversion optical element 32, it may be configured using a nonlinear optical crystal such as BBO or CBO.
  • the wavelength of the first fundamental wave ⁇ 1 1902 nm output from the first laser beam output unit 1a
  • the wavelength ⁇ 2 of the second fundamental wave output from the second laser beam output unit 1b 1079 nm
  • the wavelength conversion unit 3 A typical configuration example is shown for the case where the wavelength ⁇ v of the ultraviolet laser light Lv to be set is 194.9 nm, but the wavelength ⁇ 1 of the first fundamental wave, the wavelength ⁇ 2 of the second fundamental wave, and the wavelength ⁇ v of the ultraviolet laser light Lv. How to set is arbitrary.
  • the wavelength conversion optical system 30B of the second configuration example shown in FIG. 3 the wavelength ⁇ 1 of the first fundamental wave, the wavelength ⁇ 2 of the second fundamental wave, and the ultraviolet laser beam Lv
  • the wavelength of the first fundamental wave ⁇ 1 1921.6 nm
  • the wavelength of the second fundamental wave ⁇ 2 1064 nm
  • the wavelength ⁇ v of the ultraviolet laser light Lv 196 nm.
  • the wavelength conversion unit of the modification will be described as 30B ′.
  • the amplified first infrared laser beam La1 is incident on the wavelength conversion optical system 30B ′.
  • the amplified second infrared laser light La2 is made incident on the wavelength conversion optical system 30B '.
  • the first wavelength conversion optical element 31 converts the wavelength of the first fundamental wave having the angular frequency ⁇ 1 into the second harmonic having the angular frequency 2 ⁇ 1.
  • the first wavelength conversion optical element 31 is a PPLN crystal and adjusts the phase matching condition by quasi phase matching (QPM).
  • the second harmonic wave having a wavelength of 960.8 nm generated by the first wavelength conversion optical element 31 is incident on the second wavelength conversion optical element 32.
  • the second wavelength conversion optical element 32 converts the wavelength of the second harmonic having the angular frequency 2 ⁇ 1 generated by the first wavelength conversion optical element 31 into the fourth harmonic having the angular frequency of 4 ⁇ 1.
  • the second wavelength conversion optical element 32 is an LBO crystal and adjusts the phase matching condition by Type I phase matching.
  • the fourth harmonic beam emitted from the second wavelength conversion optical element 32 is slightly ellipticalized by the walk-off, but the walk-off angle is as small as about 8 m rad, and the circular beam is formed by two cylindrical lenses. The light is corrected and enters the dichroic mirror 42.
  • the dichroic mirror 42 is configured to transmit the fourth harmonic of the first fundamental wave having a wavelength of 480.4 nm and reflect the second fundamental wave having a wavelength of 1064 nm.
  • the fourth harmonic wave (4 ⁇ 1) of the first fundamental wave is transmitted through the dichroic mirror 42 and focused on the third wavelength conversion optical element 33 provided in the second series II.
  • the setting of the transmission wavelength of the dichroic mirror 42 is as described above, and also in this modified example, by setting the transmission wavelength to less than 500 nm (reflection wavelength of 500 nm or more), It can suppress that the laser beam of an unnecessary wavelength enters into a wavelength conversion optical element.
  • the second fundamental wave reflected by the dichroic mirror 42 is superposed coaxially with the fourth harmonic of the first fundamental wave transmitted through the dichroic mirror 42 and focused on the second wavelength II third wavelength conversion optical element 33.
  • the third wavelength conversion optical element 33 provided in the second series II converts the wavelength of the fourth harmonic wave having the angular frequency 4 ⁇ 1 transmitted through the dichroic mirror 42 into the eighth harmonic wave having the angular frequency 8 ⁇ 1.
  • the third wavelength conversion optical element 33 is a CLBO crystal, and in this modification, the phase matching condition is adjusted by Type I phase matching.
  • the eighth harmonic is generated.
  • the walk-off angle is about 11 m rad.
  • the eighth harmonic wave having a wavelength of 240.2 nm generated by the third wavelength conversion optical element 33 is incident on the fourth wavelength conversion optical element 34 disposed in contact with the third wavelength conversion optical element 33.
  • the second fundamental wave reflected by the dichroic mirror 42 passes through the third wavelength conversion optical element 33 and enters the fourth wavelength conversion optical element 34.
  • the fourth wavelength conversion optical element 34 is an ultraviolet having a wavelength of 196 nm from the eighth harmonic of the first fundamental wave generated by the third wavelength conversion optical element 33 and the second fundamental wave transmitted through the third wavelength conversion optical element 33. Laser light is generated.
  • the fourth wavelength conversion optical element 34 is a CLBO crystal and adjusts the phase matching condition by non-critical phase matching (NCPM).
  • NCPM non-critical phase matching
  • the fourth wavelength conversion optical element 34 generates a sum frequency of the eighth harmonic of the first fundamental wave having a wavelength of 240.8 nm and the second fundamental wave having a wavelength of 1064 nm, and generates an ultraviolet laser beam having a wavelength of 196 nm. .
  • the ultraviolet laser beam having a wavelength of 196 nm generated by the fourth wavelength conversion optical element 34 is output from the end of the second series II, and the ultraviolet laser beam Lv having a wavelength of 196 nm is output from the wavelength conversion optical system 30B ′ of the ultraviolet laser device.
  • the ultraviolet laser device of the aspect of the present invention changes the setting of the wavelength ⁇ 1 of the first fundamental wave output from the first laser beam output unit 1a and the wavelength ⁇ 2 of the second fundamental wave output from the second laser beam output unit 1b. Thereby, it can be set as the structure which outputs the ultraviolet laser beam of a suitable wavelength with a wavelength of 200 nm or less.
  • the ultraviolet laser device of the present invention is small and light and easy to handle.
  • an observation device such as a microscope or a telescope, a measuring device such as a length measuring device or a shape measuring device, an optical device such as an optical modeling device or an exposure device.
  • the present invention can be suitably applied to a processing device inspection device, a treatment device, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

 紫外レーザ装置は、赤外レーザ光を出力するレーザ光出力部と、赤外レーザ光を波長変換する波長変換部とを備える。レーザ光出力部は、波長1000~2000nmの第1赤外レーザ光を出力する第1レーザ光出力部と、波長1000~1100nmの第2赤外レーザ光を出力する第2レーザ光出力部とを備える。波長変換光学系は、第1赤外レーザ光が入射し伝播する第1系列Iと、第1系列を伝播したレーザ光及び第2レーザ光出力部から出力された第2赤外レーザ光が合波されて伝播する第2系列IIとを備え、波長変換光学系に入射した第1、第2赤外レーザ光が、波長変換光学素子31~34により順次波長変換され紫外レーザ光が出力されるように構成される。

Description

紫外レーザ装置
 本発明は、赤外波長のレーザ光を出力するレーザ光出力部と、波長変換光学素子を有しレーザ光出力部から出力された赤外波長のレーザ光を紫外波長のレーザ光に波長変換する波長変換部とを備えて構成される紫外レーザ装置に関する。
 上記のようなレーザ光出力部と波長変換部とを備えた紫外レーザ装置として、例えば、露光装置や検査装置、治療装置等に好適に用いられるレーザ装置が知られている。このようなレーザ装置は、一般的に、DFB半導体レーザ等のレーザ光源から出射された赤外波長のレーザ光をファイバ光増幅器により増幅し、増幅された赤外レーザ光を波長変換部に配設された波長変換光学素子により波長変換して紫外波長のレーザ光を出力するように構成される。ファイバ光増幅器は、光ファイバの開発の歴史的経緯から、波長1.55μm帯の赤外レーザ光を増幅するエルビウム(Er)・ドープ・ファイバ光増幅器(一般的に「EDFA」と略記される)が広く用いられている。
 一方、紫外レーザ装置を光源とする各種装置では、出力される紫外光の波長が短いほど微細構造の形成や観察が容易となるが、波長が235nm以下の紫外領域に対して透明な光学材料は限られている。紫外レーザ装置として既に実用化されているArFエキシマレーザの発振波長は193nmである。従って、紫外レーザ装置の波長変換部は、レーザ光出力部から出力された赤外レーザ光を、波長190~200nmの波長帯域の紫外レーザ光に波長変換して出力するように構成される(特許文献1及び特許文献2を参照)。このような構成により、取り扱いが容易で上記波長帯域の紫外レーザ光を出力する小型の全固体型の紫外レーザ装置が実現される。
日本国特開2004-86193号公報 日本国特開2010-93210号公報
 上記のような紫外レーザ装置において、波長変換部の構成は、特許文献1にも開示されているように種々の形態があるが、一般的に、複数の伝播経路を形成し、各伝播経路に各々波長変換光学素子を設け、基本波及び各伝播経路で発生された高次高調波を複数回重ね合わせて紫外レーザ光を出力するように構成されていた。このため、波長変換部の構成が複雑であるという課題や、波長変換部全体で見たときに高い波長変換効率を得ることが難しいという課題があった。
 また、赤外レーザ光の出力を増大させるため、EDFAを複数段直列に接続する構成も提案されたが、EDFAで得られる赤外レーザ光の最大平均出力は数十W程度までであり、紫外レーザ光のさらなる高出力化は難しいという課題があった。
 上記課題を解決するため、本発明を例示する態様によれば、赤外波長のレーザ光を出力するレーザ光出力部と、波長変換光学素子を有し前記レーザ光出力部から出力された赤外レーザ光を紫外波長のレーザ光に波長変換して出力する波長変換部とを備えてなる紫外レーザ装置であって、レーザ光出力部は、波長が1900~2000nmの第1赤外レーザ光を出力する第1レーザ光出力部と、波長が1000~1100nmの第2赤外レーザ光を出力する第2レーザ光出力部とを備え、波長変換部は、第1レーザ光出力部から出力された第1赤外レーザ光が入射し伝播する第1系列と、第1系列を伝播したレーザ光及び第2レーザ光出力部から出力された第2赤外レーザ光が合波されて入射し伝播する第2系列とを備え、波長変換部に入射した第1および第2赤外レーザ光が、波長変換部に設けられた波長変換光学素子により波長変換されることで、第2系列から紫外レーザ光が出力されるように構成される。
 本発明の第2の態様によれば、第1の態様の紫外レーザ装置において、波長変換部に設けられた波長変換光学素子は、第1赤外レーザ光の第2高調波を発生する第1波長変換光学素子と、第1波長変換光学素子から出射された第2高調波の第2高調波、すなわち第1赤外レーザ光の第4高調波を発生する第2波長変換光学素子と、第2波長変換光学素子から出射された第4高調波の第2高調波、すなわち第1赤外レーザ光の第8高調波である前段紫外レーザ光を発生する第3波長変換光学素子と、前段紫外レーザ光と第2赤外レーザ光との和周波発生により紫外レーザ光を発生する第4波長変換光学素子とから構成される。
 本発明の第3の態様によれば、第2の態様の紫外レーザ装置において、第1波長変換光学素子及び第2波長変換光学素子が第1系列に設けられ、第3波長変換光学素子及び第4波長変換光学素子が第2系列に設けられて構成される。
 本発明の第4の態様によれば、第2の態様の紫外レーザ装置において、第1波長変換光学素子、前記第2波長変換光学素子及び前記第3波長変換光学素子が第1系列に設けられ、第4波長変換光学素子が前記第2系列に設けられる。
 本発明の第5の態様によれば、第2~第4の態様の紫外レーザ装置において、第3波長変換光学素子における位相整合及び第4波長変換光学素子における位相整合が非臨界位相整合(NCPM:Non-Critical Phase Matching)となるように構成される。
 本発明の第6の態様によれば、第2~第5の態様の紫外レーザ装置において、第1波長変換光学素子における位相整合及び第2波長変換光学素子における位相整合が疑似位相整合(QPM: Quasi Phase Matching)となるように構成される。
 本発明の第7の態様によれば、第1~第6の態様の紫外レーザ装置において、第1レーザ光出力部は、ツリウム・ドープ・ファイバ光増幅器を有して構成される。
 本発明の第8の態様によれば、第1~第7の態様の紫外レーザ装置において、第2レーザ光出力部は、イッテルビウム・ドープ・ファイバ光増幅器を有して構成される。
 本発明の第9の態様によれば、第1~第8の態様の紫外レーザ装置において、紫外レーザ光は、波長が190~200nmの深紫外光として構成される。
 なお、本明細書においては、第4波長変換光学素子により発生され波長変換部から出力される「紫外レーザ光」と識別するため、第3波長変換光学素子により発生される紫外領域のレーザ光を、便宜的に「前段紫外レーザ光」と表記している。
 本発明の態様によれば、重ね合わせが僅かに一回の簡明な構成で紫外レーザ光を出力可能な新たな手段を提供することができる。また、波長変換部を第1~第4波長変換光学素子により構成する態様によれば、波長変換光学素子が僅か4個の簡明な構成で紫外レーザ光を出力可能な新たな手段を提供することができる。さらに、第1,第2波長変換光学素子を第1系列、第3,第4波長変換光学素子を第2系に配置する態様によれば、ビームを重ね合わせるミラーや集光レンズ等の光学素子を赤外~可視領域に配置することができ、簡明且つ安価な構成で長期間安定動作可能な紫外レーザ装置を提供することができる。
 また、第3,第4波長変換光学素子における位相整合を非臨界位相整合とする態様、第1,第2波長変換光学素子における位相整合を疑似位相整合とする態様によれば、ビーム品質及び波長変換効率が高い紫外レーザ装置を提供することができる。第1レーザ光出力部がツリウム・ドープ・ファイバ光増幅器を有して構成される態様、第2レーザ光出力部がイッテルビウム・ドープ・ファイバ光増幅器を有して構成される態様によれば、紫外レーザ光のさらなる高出力化が可能な新たな手段を提供することができる。
図1は、本発明の態様として例示する紫外レーザ装置の全体図である。 図2は、第1構成例の紫外レーザ装置を例示する概要構成図である。 図3は、第2構成例の紫外レーザ装置を例示する概要構成図である。 図4は、第3構成例の紫外レーザ装置を例示する概要構成図である。
 以下、本発明を実施するための形態について図面を参照しながら説明する。本発明の態様として例示する紫外レーザ装置LS(LS1~LS3)の全体図を図1に示す。紫外レーザ装置LSは、赤外レーザ光La(La1,La2)を出力するレーザ光出力部1、波長変換光学素子を有しレーザ光出力部1から出力された赤外レーザ光Laを紫外レーザ光Lvに波長変換して出力する波長変換部3、レーザ光出力部1及び波長変換部3の作動を制御する制御部8などを備えて構成される。
 レーザ光出力部1は、波長が1900~2000nmの第1基本波の赤外レーザ光(第1赤外レーザ光)La1を出力する第1レーザ光出力部1aと、波長が1000~1100nmの第2基本波の赤外レーザ光(第2赤外レーザ光)La2を出力する第2レーザ光出力部1bとから構成される。第1赤外レーザ光La1及び第2赤外レーザ光La2の具体的な波長は、紫外レーザ装置LSから出力する紫外レーザ光Lvの波長及び波長変換部3の構成に応じて適宜に設定することができる。
 レーザ光出力部1は、図1に示す構成例においては、シード光を出力するレーザ光発生部10と、レーザ光発生部10から出力されたシード光を増幅する増幅部20とから構成される。
 レーザ光発生部10は、第1基本波のシード光Ls1を発生する第1レーザ光源11と、第2基本波のシード光Ls2を発生する第2レーザ光源12とを備える。増幅部20は、第1レーザ光源に対応して設けられた第1ファイバ光増幅器21と、第2レーザ光源に対応して設けられた第2ファイバ光増幅器22とを備えて構成される。
 この構成により、第1レーザ光出力部1aにおいては、第1レーザ光源11により発生された第1基本波のシード光Ls1が第1ファイバ光増幅器21により所定出力に増幅され、増幅された第1赤外レーザ光La1が出力される。また、第2レーザ光出力部1bにおいて、第2レーザ光源12により発生された第2基本波のシード光Ls2が第2ファイバ光増幅器22により所定出力に増幅され、増幅された第2赤外レーザ光La2が出力される。なお、図1では、第1ファイバ光増幅器21及び第2ファイバ光増幅器22における励起光光源の図示を省略している。
 第1レーザ光源11は、発振波長が2μm帯のDFB(Distributed Feedback)半導体レーザ、第2レーザ光源12は、発振波長が1.1μm帯のDFB半導体レーザを好適に用いることができる。DFB半導体レーザは、ペルチェ素子等を利用した温度調整器によって温度制御した状態で発振させることにより、狭帯域化された単一波長のシード光を発生させることができる。DFB半導体レーザは、励起電流を波形制御することにより任意強度でCW発振またはパルス発振させることができる。なお、レーザ光発生部10にEOM(Electro Optic Modulator)等の外部変調器を設け、CW(Continuous Wave)発振またはパルス発振させたレーザ光源の出力光を外部変調器により切り出して所要波形のパルス光を出力するように構成しても良い。
 第1ファイバ光増幅器21は、増幅用光ファイバのコアにツリウム(Tm)がドープされたツリウム・ドープ・ファイバ光増幅器(TDFA)を好適に用いることができる。ツリウム・ドープ・ファイバ光増幅器は、波長が1900~2000nmの帯域に利得を有し、第1レーザ光源11から出射された上記波長帯域内の所定波長のシード光Ls1を増幅し、増幅された第1赤外レーザ光La1を波長変換部3に出力する。
 第2ファイバ光増幅器22は、増幅用光ファイバのコアにイッテルビウム(Yb)がドープされたイッテルビウム・ドープ・ファイバ光増幅器(YDFA)を好適に用いることができる。イッテルビウム・ドープ・ファイバ光増幅器は、波長が1000~1100nmの帯域に利得を有し、第2レーザ光源12から出射された上記波長帯域内の所定波長のシード光Ls2を増幅し、増幅された第2赤外レーザ光La2を波長変換部3に出力する。
 以上は、レーザ光出力部1a,1bを、レーザ光源11,12とファイバ光増幅器21,22とにより構成した形態を例示したが、ファイバ光増幅器の入出射端に共振器を組んだファイバレーザにより構成しても良い。
 波長変換部3には、複数の波長変換光学素子及びミラー等からなる波長変換光学系30(30A~30C)が設けられている。波長変換光学系30A~30Cをそれぞれ用いた第1~第3構成例の紫外レーザ装置LS1~LS3における波長変換光学系30A~30Cの概要構成を図2~図4に示す。なお、各図において、光路上に楕円形で示すものはコリメータレンズや集光レンズであり、これらの説明は省略する。
 波長変換光学系30A~30Cはそれぞれ、第1レーザ光出力部1aから出力された第1赤外レーザ光La1が入射し伝播する第1系列Iと、第1系列を伝播したレーザ光及び第2レーザ光出力部1bから出力された第2赤外レーザ光La2が合波されて伝播する第2系列IIとにより構成される。波長変換部3に入射した第1赤外レーザ光La1及び第2赤外レーザ光La2は、波長変換部3に設けられた波長変換光学素子により順次波長変換され、第2系列IIから紫外レーザ光Lvが出力されるように構成される。このように概要構成される紫外レーザ装置においては、重ね合わせが僅かに一回の簡明な構成で紫外レーザ光を出力させることができる。
 波長変換光学系30A~30Cはそれぞれ、4つの波長変換光学素子31~34を主体として構成される。第1波長変換光学素子31は、第2高調波発生(SHG:Second Harmonic Generation)により第1赤外レーザ光La1(第1基本波)の第2高調波を発生させる波長変換光学素子である。第2波長変換光学素子32は、第2高調波発生により第1波長変換光学素子31から出射された上記第2高調波の第2高調波、すなわち第1基本波の第4高調波を発生させる波長変換光学素子である。第3波長変換光学素子33は、第2高調波発生により第2波長変換光学素子32から出射された上記第4高調波の第2高調波、すなわち第1基本波の第8高調波である前段紫外レーザ光を発生する波長変換光学素子である。第4波長変換光学素子34は、第3波長変換光学素子33から出射された前段紫外レーザ光と第2赤外レーザ光La2(第2基本波)との和周波発生(SFG:Sum Frequency Generation)により紫外レーザ光Lvを発生する波長変換素子である。このような構成によれば、波長変換光学素子が僅か4つの簡明な構成で紫外レーザ光を出力させることができる。
 また、このように概要構成される紫外レーザ装置LSにおいては、第1ファイバ光増幅器21、第2ファイバ光増幅器22として、いずれも百W以上の高出力赤外レーザ光が比較的容易に得られるイッテルビウム・ドープ・ファイバ光増幅器と、ツリウム・ドープ・ファイバ光増幅器とを用いている。そのため、高出力化がほぼ限界に達したと考えられていた全固体型紫外レーザ装置の大幅な高出力化を実現することができる。
 以降では、このような特徴を持つ紫外レーザ装置LSについて、波長が200nm以下の紫外レーザ光(深紫外光)Lvを出力する場合の具体的な構成例を説明する。このとき、上記特徴を持つ紫外レーザ装置LSの具体的な構成は、第1レーザ光出力部1aから出力される第1赤外レーザ光(第1基本波)La1の波長λ1、第2レーザ光出力部1bから出力される第2赤外レーザ光(第2基本波)La2の波長λ2、及び波長変換部3から出力させる紫外レーザ光Lvの波長λvを如何に設定するかにより、極めて多数の組み合わせが可能である。
 そこで、本明細書においては、代表例として、第1レーザ光出力部1aから出力される第1基本波の波長λ1=1902nm、第2レーザ光出力部1bから出力される第2基本波の波長λ2=1079nm、波長変換部3から出力させる紫外レーザ光Lvの波長λv=194.9nmとし、3種類の構成例を説明する。
 これらの3種類の構成例においては、第1レーザ光出力部1aは、第1レーザ光源11において波長λ1=1902nmのシード光Ls1を発生させ、これを第1ファイバ光増幅器(ツリウム・ドープ・ファイバ光増幅器)21により増幅して、所定出力に増幅された第1赤外レーザ光La1を波長変換光学系30(30A~30C)に入射させる。同様に、第2レーザ光出力部1bは、第2レーザ光源12により波長λ2=1079nmのシード光Ls1を発生させ、これを第2ファイバ光増幅器(イッテルビウム・ドープ・ファイバ光増幅器)22により増幅して、所定出力に増幅された第2赤外レーザ光La2を波長変換光学系30(30A~30C)に入射させる。
(第1構成例)
 第1構成例の波長変換光学系30Aは、第1赤外レーザ光(第1基本波)La1が入射する第1系列Iに3つの波長変換光学素子31~33が設けられ、第2赤外レーザ光(第2基本波)La2が合波されて入射する第2系列IIに波長変換光学素子34が設けられて構成される。
 第1系列に入射した波長λ1=1902nm、角周波数ω1の第1基本波は、この第1系列Iを伝播する過程で、第1系列に設けられた3つの波長変換光学素子31~33により角周波数が第1基本波の8倍(8ω1)、波長が1/8(λ1/8=237.8nm)の第8高調波に波長変換される。
 第1波長変換光学素子31は、角周波数ω1の第1基本波(第1赤外レーザ光)を、角周波数が2ω1の第2高調波に波長変換する。本構成例では、第1波長変換光学素子31としてPPLN(Periodically Poled LN:周期分極反転構造を形成したLiNbO3)結晶を用い、疑似位相整合(QPM:Quasi Phase Matching)により位相整合条件を整える。第1波長変換光学素子31では第1基本波の第2高調波発生が行われ、角周波数が第1基本波の2倍(2ω1)、波長が半分(λ1/2=951nm)の第2高調波が発生する。第1波長変換光学素子31で発生した波長951nmの第2高調波は、第2波長変換光学素子32に入射される。
 第2波長変換光学素子32は、第1波長変換光学素子31により発生された角周波数2ω1の第2高調波を、角周波数が4ω1の第4高調波に波長変換する。本構成例では、第2波長変換光学素子32としてPPLT(Periodically Poled LT:周期分極反転構造を形成したLiTaO3)結晶を用い、疑似位相整合により位相整合条件を整える。第2波長変換光学素子32では第2高調波発生が行われ、角周波数が第1基本波の4倍(4ω1)、波長が1/4(λ1/4=475.5nm)の第4高調波が発生する。第2波長変換光学素子32で発生した波長475.5nmの第4高調波は、第3波長変換光学素子33に集光入射される。
 第3波長変換光学素子33は、第2波長変換光学素子32により発生された角周波数4ω1の第4高調波を、角周波数が8ω1の第8高調波に波長変換する。本構成例においては、第3波長変換光学素子33としてCLBO(CsLiB6O10)結晶を用い、非臨界位相整合(NCPM:Non-Critical Phase Matching)により位相整合条件を整える。第3波長変換光学素子33では第4高調波の第2高調波発生が行われ、角周波数が第1基本波の8倍(8ω1)、波長が1/8(λ1/8=237.8nm)の第8高調波が発生する。第3波長変換光学素子33で発生した波長237.8nmの第8高調波は、ダイクロイックミラー41に入射する。
 ダイクロイックミラー41は、波長237.8nmの第1基本波の第8高調波を透過し、波長1079nmの第2赤外レーザ光(第2基本波)を反射するように構成されている。第1基本波の第8高調波(8ω1)は、ダイクロイックミラー41を透過して第2系列IIに設けられた第4波長変換光学素子34に集光入射する。
 ダイクロイックミラー41には、第2ファイバ光増幅器22から出力された波長λ2=1079nmの第2赤外レーザ光(第2基本波)が、ダイクロイックミラー41を透過する第1基本波の第8高調波(8ω1)の光軸と交わるように入射される。ダイクロイックミラー41により反射された第2基本波は、ダイクロイックミラー41を透過した第1基本波の第8高調波と同軸に重ね合わされて第2系列IIの第4波長変換光学素子34に集光入射する。
 ダイクロイックミラー41の透過波長は、第2基本波の波長よりも短く、第1基本波の第8高調波の波長を含む波長帯域内で任意である。例えば、透過波長を350nm未満(反射波長を350nm以上)程度に設定し、第1基本波(ω1)とその第2高調波(2ω1)及び第4高調波(4ω1)を反射させて光吸収体に吸収させるよう構成すれば、第2系列IIの波長変換光学素子に不要な波長のレーザ光が入射すること(当該波長のレーザ光が波長変換部3から出射されること)を抑止できる。
 第2系列IIに設けられた第4波長変換光学素子34は、ダイクロイックミラー41を透過した第1基本波の第8高調波と、ダイクロイックミラー41で反射されて同軸に重ね合わされた第2基本波とから波長194.9nmの紫外レーザ光を発生させる。本構成例においては、第3波長変換光学素子33としてCLBO(CsLiB6O10)結晶を用い、非臨界位相整合(NCPM:Non-Critical Phase Matching)により位相整合条件を整える。第4波長変換光学素子34では、波長237.8nmの第1基本波の第8高調波と波長1079nmの第2基本波との和周波発生が行われ、波長194.9nmの紫外レーザ光が発生される。
 第4波長変換光学素子34で発生された波長194.9nmの紫外レーザ光は、第2系列IIの終端から出力され、紫外レーザ装置LS1の波長変換光学系30Aから波長194.9nmの紫外レーザ光Lvが出力される。
 このような波長変換光学系30Aを備えた紫外レーザ装置LS1においては、第1,第2波長変換光学素子31,32における位相整合が疑似位相整合(QPM)、第3,第4波長変換光学素子33,34における位相整合が非臨界位相整合(NCPM)であり、4つの波長変換光学素子の全てがウォークオフを生じない位相整合で使用される。このため、紫外レーザ装置LS1によれば、既に説明した基本的な効果に加えて、波長変換光学系30Aにおいて極めて高効率で波長変換が行われ、高い出力効率を得られるとともに、高いビーム品質の紫外レーザ光を得ることができる、という効果を達成することができる。
(第2構成例)
 次に、第2構成例の波長変換光学系30Bを備えた紫外レーザ装置LS2について、図3を参照して説明する。第2構成例の波長変換光学系30Bは、第1赤外レーザ光(第1基本波)La1が入射する第1系列Iに2つの波長変換光学素子31,32が設けられ、第2赤外レーザ光(第2基本波)La2が合波されて入射する第2系列IIに2つの波長変換光学素子33,34が設けられて構成される。
 第1系列に入射した波長λ1=1902nm、角周波数ω1の第1基本波は、この第1系列Iを伝播する過程で、第1系列に設けられた2つの波長変換光学素子31,32により角周波数が第1基本波の4倍(4ω1)、波長が1/4(λ1/4=475.5nm)の第4高調波に波長変換される。
 第1波長変換光学素子31は、角周波数ω1の第1基本波を角周波数が2ω1の第2高調波に波長変換する。第1波長変換光学素子31は、前述した構成例と同様にPPLN結晶を用い、疑似位相整合(QPM)により位相整合条件を整える。第1波長変換光学素子31では第1基本波の第2高調波発生が行われ、角周波数が第1基本波の2倍(2ω1)、波長が半分(λ1/2=951nm)の第2高調波が発生する。第1波長変換光学素子31で発生した波長951nmの第2高調波は、第2波長変換光学素子32に入射される。
 第2波長変換光学素子32は、第1波長変換光学素子31により発生された角周波数2ω1の第2高調波を、角周波数が4ω1の第4高調波に波長変換する。本構成例では、第2波長変換光学素子32としてLBO(LiB3O5)結晶を用い、TypeI位相整合により位相整合条件を整える。第2波長変換光学素子32では第2高調波発生が行われ、角周波数が第1基本波の4倍(4ω1)、波長が1/4(λ1/4=475.5nm)の第4高調波が発生する。
 このとき第2波長変換光学素子32から出射する第4高調波のビームは、ウォークオフにより僅かに楕円化するが、ウォークオフ・アングルは9m rad程度と小さく、2枚のシリンドリカルレンズにより円形ビームに矯正されてダイクロイックミラー42に入射する。
 ダイクロイックミラー42は、波長475.5nmの第1基本波の第4高調波を透過し、波長1079nmの第2赤外レーザ光(第2基本波)を反射するように構成されている。第1基本波の第4高調波(4ω1)は、ダイクロイックミラー42を透過して第2系列IIに設けられた第3波長変換光学素子33に集光入射する。
 ダイクロイックミラー42には、第2ファイバ光増幅器22から出力された波長λ2=1079nmの第2赤外レーザ光(第2基本波)が、ダイクロイックミラー42を透過する第1基本波の第4高調波(4ω1)の光軸と交わるように入射される。ダイクロイックミラー42により反射された第2基本波が、ダイクロイックミラー42を透過した第1基本波の第4高調波と同軸に重ね合わされて第2系列IIの第3波長変換光学素子33に集光入射する。
 ダイクロイックミラー42の透過波長は、第2基本波の波長よりも短く、第1基本波の第4高調波の波長を含む波長帯域内で任意である。例えば、透過波長を500nm未満(反射波長を500nm以上)程度に設定し、第1基本波(ω1)とその第2高調波(2ω1)を反射させて光吸収体に吸収させるような構成にすれば、第2系列IIの波長変換光学素子に不要な波長のレーザ光が入射すること(当該波長のレーザ光が波長変換部3から出射されること)を抑止できる。
 第2系列IIに設けられた第3波長変換光学素子33は、ダイクロイックミラー42を透過した角周波数4ω1の第4高調波を、角周波数が8ω1の第8高調波に波長変換する。第3波長変換光学素子33はCLBO結晶を用い、非臨界位相整合(NCPM)により位相整合条件を整える。第3波長変換光学素子33では第4高調波の第2高調波発生が行われ、角周波数が第1基本波の8倍(8ω1)、波長が1/8(λ1/8=237.8nm)の第8高調波が発生する。
 第3波長変換光学素子33で発生した波長237.8nmの第8高調波(前段紫外レーザ光)は、第3波長変換光学素子33に接して配設された第4波長変換光学素子34に入射する。ダイクロイックミラー42により反射された第2基本波は、第3波長変換光学素子33を透過して第4波長変換光学素子34に入射する。
 第4波長変換光学素子34は、第3波長変換光学素子33で発生した第1基本波の第8高調波と、第3波長変換光学素子33を透過した第2基本波とから波長194.9nmの紫外レーザ光を発生させる。第4波長変換光学素子34はCLBO結晶を用い、非臨界位相整合(NCPM)により位相整合条件を整える。第4波長変換光学素子34では、波長237.8nmの第1基本波の第8高調波と波長1079nmの第2基本波との和周波発生が行われ、波長194.9nmの紫外レーザ光が発生される。
 第4波長変換光学素子34で発生された波長194.9nmの紫外レーザ光は、第2系列IIの終端から出力され、紫外レーザ装置LS2の波長変換光学系30Bから波長194.9nmの紫外レーザ光Lvが出力される。
 このような波長変換光学系30Bを備えた紫外レーザ装置LS2においては、第1波長変換光学素子31における位相整合が疑似位相整合(QPM)、第3,第4波長変換光学素子33,34における位相整合が非臨界位相整合(NCPM)であり、4つの波長変換光学素子のうち3つがウォークオフを生じない位相整合で使用される。ウォークオフが発生する第2波長変換光学素子32においてもその角度は微少である。このため、紫外レーザ装置LS2によれば、既に説明した基本的な効果に加えて、波長変換光学系30Bにおいて高効率で波長変換が行われ、比較的高い出力効率を得られるとともに、ビーム品質が良好な紫外レーザ光を得ることができる、という効果を達成することができる。
 さらに、本構成例の紫外レーザ装置LS2においては、ビームを重ね合わせるミラーや集光レンズ等の光学素子は赤外~可視領域に配置されるので、これらの光学素子が紫外領域の光により損傷を受けることを抑制して長寿命化を図ることができる。紫外領域にミラーや集光レンズ等の光学素子を配置した場合には、これらの光学素子を定期的にシフトさせるシフト構造が必要となるが、本構成例によれば、このようなシフト機構を省くことができ、これにより、簡明且つ安価な構成で長期間安定的に動作させることができるという効果が達成される。また、第3、第4波長変換光学素子33,34は接して配置されているため、同一の移動ステージ上に配置することが可能であり、これにより波長変換光学素子33,34を同時にシフトすることが可能となる。これにより、コストを低減できることになる。
(第3構成例)
 次に、第3構成例の波長変換光学系30Cを備えた紫外レーザ装置LS3について、図4を参照して説明する。第3構成例の波長変換光学系30Cは、第1赤外レーザ光(第1基本波)La1が入射する第1系列Iに2つの波長変換光学素子31,32が設けられ、第2赤外レーザ光(第2基本波)La2が合波されて入射する第2系列IIに2つの波長変換光学素子33,34が設けられて構成される。
 第1系列に入射した波長λ1=1902nm、角周波数ω1の第1基本波は、この第1系列Iを伝播する過程で、第1系列に設けられた2つの波長変換光学素子31,32により角周波数が第1基本波の4倍(4ω1)、波長が1/4(λ1/4=475.5nm)の第4高調波に波長変換される。
 第1波長変換光学素子31は、角周波数ω1の第1基本波を角周波数が2ω1の第2高調波に波長変換する。第1波長変換光学素子31は、既述した構成例と同様にPPLN結晶を用い、疑似位相整合(QPM)により位相整合条件を整える。第1波長変換光学素子31では第1基本波の第2高調波発生が行われ、角周波数が第1基本波の2倍(2ω1)、波長が半分(λ1/2=951nm)の第2高調波が発生する。第1波長変換光学素子31で発生した波長951nmの第2高調波は、第2波長変換光学素子32に入射される。
 第2波長変換光学素子32は、第1波長変換光学素子31により発生された角周波数2ω1の第2高調波を、角周波数が4ω1の第4高調波に波長変換する。本構成例では、第2波長変換光学素子32としてPPLT結晶を用い、疑似位相整合(QPM)により位相整合条件を整える。第2波長変換光学素子32では第2高調波発生が行われ、角周波数が第1基本波の4倍(4ω1)、波長が1/4(λ1/4=475.5nm)の第4高調波が発生する。第2波長変換光学素子32で発生した波長475.5nmの第4高調波は、ダイクロイックミラー42に入射する。
 ダイクロイックミラー42は、波長475.5nmの第1基本波の第4高調波を透過し、波長1079nmの第2赤外レーザ光(第2基本波)を反射するように構成されている。第1基本波の第4高調波(4ω1)は、ダイクロイックミラー42を透過して第2系列IIに設けられた第3波長変換光学素子33に集光入射する。
 ダイクロイックミラー42には、第2ファイバ光増幅器22から出力された波長λ2=1079nmの第2赤外レーザ光(第2基本波)が、ダイクロイックミラー42を透過する第1基本波の第4高調波(4ω1)の光軸と交わるように入射される。ダイクロイックミラー42により反射された第2基本波が、ダイクロイックミラー42を透過した第1基本波の第4高調波と同軸に重ね合わされて第2系列IIの第3波長変換光学素子33に集光入射する。
 ダイクロイックミラー42の透過波長は、第2構成例におけるダイクロイックミラー42と同様に設定することができる。例えば、透過波長を500nm未満(反射波長を500nm以上)程度に設定することにより、第2系列IIの波長変換光学素子に不要な波長のレーザ光が入射すること(当該波長のレーザ光が波長変換部3から出射されること)を抑止できる。
 第2系列IIに設けられた第3波長変換光学素子33は、ダイクロイックミラー42を透過した角周波数4ω1の第4高調波を、角周波数が8ω1の第8高調波に波長変換する。第3波長変換光学素子33はCLBO結晶を用い、非臨界位相整合(NCPM)により位相整合条件を整える。第3波長変換光学素子33では第4高調波の第2高調波発生が行われ、角周波数が第1基本波の8倍(8ω1)、波長が1/8(λ1/8=237.8nm)の第8高調波が発生する。
 第3波長変換光学素子33で発生した波長237.8nmの第8高調波(前段紫外レーザ光)は、第3波長変換光学素子33に接して配設された第4波長変換光学素子34に入射する。ダイクロイックミラー42により反射された第2基本波は、第3波長変換光学素子33を透過して第4波長変換光学素子34に入射する。
 第4波長変換光学素子34は、第3波長変換光学素子33で発生した第1基本波の第8高調波と、第3波長変換光学素子33を透過した第2基本波とから波長194.9nmの紫外レーザ光を発生させる。第4波長変換光学素子34はCLBO結晶を用い、非臨界位相整合(NCPM)により位相整合条件を整える。第4波長変換光学素子34では、波長237.8nmの第1基本波の第8高調波と波長1079nmの第2基本波との和周波発生が行われ、波長194.9nmの紫外レーザ光が発生される。
 第4波長変換光学素子34で発生された波長194.9nmの紫外レーザ光は、第2系列IIの終端から出力され、紫外レーザ装置LS3の波長変換光学系30Cから波長194.9nmの紫外レーザ光Lvが出力される。
 このような波長変換光学系30Cを備えた紫外レーザ装置LS3においては、第1,第2波長変換光学素子31,32における位相整合が疑似位相整合(QPM)、第3,第4波長変換光学素子33,34における位相整合が非臨界位相整合(NCPM)であり、4つの波長変換光学素子の全てがウォークオフを生じない位相整合で使用される。このため、既に説明した基本的な効果に加えて、波長変換光学系30Cにおいて極めて高効率で波長変換が行われ、高い出力効率を得られるとともに、高いビーム品質の紫外レーザ光を得ることができる、という効果を達成することができる。
 さらに、本構成例の紫外レーザ装置LS3においては、ビームを重ね合わせるミラーや集光レンズ等の光学素子は赤外~可視領域に配置されるので、これらの光学素子が紫外領域の光により損傷を受けることを抑制して長寿命化を図ることができる。紫外領域にミラーや集光レンズ等の光学素子を配置した場合には、これらの光学素子を定期的にシフトさせるシフト構造が必要となるが、本構成例によれば、このようなシフト機構を省くことができ、これにより、簡明且つ安価な構成で長期間安定的に動作させることができるという効果が達成される。また、第3、第4波長変換光学素子33,34は接して配置されているため、同一の移動ステージ上に配置することが可能であり、これにより波長変換光学素子33,34を同時にシフトすることが可能となる。これにより、コストを低減できることになる。
 以上説明した第1~第3構成例では、第1波長変換光学素子31としてPPLN結晶を例示したが、PPLT、LBO、BBO(β-BaB2O4)、CBO(CsB3O5)等の非線形光学結晶を用いて構成することもできる。同様に、第2波長変換光学素子32としてPPLT、LBO結晶を例示したが、BBO、CBO等の非線形光学結晶を用いて構成することもできる。
 また、第1レーザ光出力部1aから出力される第1基本波の波長λ1=1902nm、第2レーザ光出力部1bから出力される第2基本波の波長λ2=1079nm、波長変換部3から出力させる紫外レーザ光Lvの波長λv=194.9nmとした場合について、代表的な構成例を示したが、第1基本波の波長λ1、第2基本波の波長λ2、紫外レーザ光Lvの波長λvを如何に設定するかは任意である。
 そこで、次に、図3に示した第2構成例の波長変換光学系30Bと同様の光学系及び結晶構成において、第1基本波の波長λ1、第2基本波の波長λ2、紫外レーザ光Lvの波長λvを異なる値とした場合の変更例について説明する。変更例では、第1基本波の波長λ1=1921.6nm、第2基本波の波長λ2=1064nm、紫外レーザ光Lvの波長λv=196nmとする。なお、第2構成例の波長変換光学系30Bと同様の光学系及び結晶構成であるため図示を省略するが、混乱を避けるため、変更例の波長変換部を30B′と表記して説明する。
(変更例)
 第1レーザ光出力部1aは、第1レーザ光源11において波長λ1=1921.6nmのシード光Ls1を発生させ、これを第1ファイバ光増幅器(ツリウム・ドープ・ファイバ光増幅器)21により増幅して、増幅された第1赤外レーザ光La1を波長変換光学系30B′に入射させる。同様に、第2レーザ光出力部1bは、第2レーザ光源12により波長λ2=1064nmのシード光Ls2を発生させ、これを第2ファイバ光増幅器(イッテルビウム・ドープ・ファイバ光増幅器)22により増幅して、増幅された第2赤外レーザ光La2を波長変換光学系30B′に入射させる。
 第1系列に入射した波長λ1=1921.6nm、角周波数ω1の第1基本波は、この第1系列Iを伝播する過程で、第1系列に設けられた2つの波長変換光学素子31,32により角周波数が第1基本波の4倍(4ω1)、波長が1/4(λ1/4=480.4nm)の第4高調波に波長変換される。
 第1波長変換光学素子31は、角周波数ω1の第1基本波を角周波数が2ω1の第2高調波に波長変換する。第1波長変換光学素子31はPPLN結晶であり疑似位相整合(QPM)により位相整合条件を整える。第1波長変換光学素子31では第1基本波の第2高調波発生が行われ、角周波数が第1基本波の2倍(2ω1)、波長が半分(λ1/2=960.8nm)の第2高調波が発生する。第1波長変換光学素子31で発生した波長960.8nmの第2高調波は、第2波長変換光学素子32に入射される。
 第2波長変換光学素子32は、第1波長変換光学素子31により発生された角周波数2ω1の第2高調波を、角周波数が4ω1の第4高調波に波長変換する。第2波長変換光学素子32はLBO結晶であり、TypeI位相整合により位相整合条件を整える。第2波長変換光学素子32では第2高調波発生が行われ、角周波数が第1基本波の4倍(4ω1)、波長が1/4(λ1/4=480.4nm)の第4高調波が発生する。
 このとき第2波長変換光学素子32から出射する第4高調波のビームは、ウォークオフにより僅かに楕円化するが、ウォークオフ・アングルは8m rad程度と小さく、2枚のシリンドリカルレンズにより円形ビームに矯正されてダイクロイックミラー42に入射する。
 ダイクロイックミラー42は、波長480.4nmの第1基本波の第4高調波を透過し、波長1064nmの第2基本波を反射するように構成されている。第1基本波の第4高調波(4ω1)は、ダイクロイックミラー42を透過して第2系列IIに設けられた第3波長変換光学素子33に集光入射する。なお、ダイクロイックミラー42の透過波長の設定については、既に説明した通りであり、本変更例においても、透過波長を500nm未満(反射波長を500nm以上)程度に設定することにより、第2系列IIの波長変換光学素子に不要な波長のレーザ光が入射することを抑止できる。
 ダイクロイックミラー42には、第2ファイバ光増幅器22から出力された波長λ2=1064nmの第2赤外レーザ光(第2基本波)が、ダイクロイックミラー42を透過する第1基本波の第4高調波(4ω1)の光軸と交わるように入射される。ダイクロイックミラー42により反射された第2基本波が、ダイクロイックミラー42を透過した第1基本波の第4高調波と同軸に重ね合わされて第2系列IIの第3波長変換光学素子33に集光入射する。
 第2系列IIに設けられた第3波長変換光学素子33は、ダイクロイックミラー42を透過した角周波数4ω1の第4高調波を、角周波数が8ω1の第8高調波に波長変換する。第3波長変換光学素子33はCLBO結晶であり、本変更例においては、TypeI位相整合により位相整合条件を整える。第3波長変換光学素子33では第4高調波の第2高調波発生が行われ、角周波数が第1基本波の8倍(8ω1)、波長が1/8(λ1/8=240.2nm)の第8高調波が発生する。このときウォークオフ・アングルは11m rad程度である。
 第3波長変換光学素子33で発生した波長240.2nmの第8高調波は、第3波長変換光学素子33に接して配設された第4波長変換光学素子34に入射する。ダイクロイックミラー42により反射された第2基本波は、第3波長変換光学素子33を透過して第4波長変換光学素子34に入射する。
 第4波長変換光学素子34は、第3波長変換光学素子33で発生した第1基本波の第8高調波と、第3波長変換光学素子33を透過した第2基本波とから波長196nmの紫外レーザ光を発生させる。第4波長変換光学素子34はCLBO結晶であり、非臨界位相整合(NCPM)により位相整合条件を整える。第4波長変換光学素子34では、波長240.8nmの第1基本波の第8高調波と波長1064nmの第2基本波との和周波発生が行われ、波長196nmの紫外レーザ光が発生される。
 第4波長変換光学素子34で発生された波長196nmの紫外レーザ光は、第2系列IIの終端から出力され、紫外レーザ装置の波長変換光学系30B′から波長196nmの紫外レーザ光Lvが出力される。
 このような波長変換光学系30B′を備えた紫外レーザ装置においても、波長変換部を構成する光学素子の損傷を抑制して長寿命化を図ることができるとともに、重ね合わせのミラーや集光レンズ等の光学素子を定期的にシフトさせるシフト構造を削除することができ、簡明且つ安価な構成で長期間安定的に動作させることができるという効果が達成される。
 本発明の態様の紫外レーザ装置は、第1レーザ光出力部1aから出力する第1基本波の波長λ1、第2レーザ光出力部1bから出力する第2基本波の波長λ2の設定を変更することにより、波長が200nm以下で適宜な波長の紫外レーザ光を出力する構成にすることができる。
 本発明の紫外レーザ装置は、小型軽量であるとともに取り扱いが容易であり、例えば、顕微鏡や望遠鏡等の観察装置、測長器や形状測定器等の測定装置、光造形装置や露光装置等の光加工装置検査装置、治療装置等に好適に適用することができる。
 上記の通り、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国出願2011年第066775号(2011年3月24日)
 

Claims (9)

  1.  赤外波長のレーザ光を出力するレーザ光出力部と、波長変換光学素子を有し前記レーザ光出力部から出力された赤外レーザ光を紫外波長のレーザ光に波長変換して出力する波長変換部とを備えてなる紫外レーザ装置であって、
     前記レーザ光出力部は、波長が1900~2000nmの第1赤外レーザ光を出力する第1レーザ光出力部と、波長が1000~1100nmの第2赤外レーザ光を出力する第2レーザ光出力部とを備え、
     前記波長変換部は、前記第1レーザ光出力部から出力された第1赤外レーザ光が入射し伝播する第1系列と、前記第1系列を伝播したレーザ光及び前記第2レーザ光出力部から出力された第2赤外レーザ光が合波されて入射し伝播する第2系列とを備え、
     前記波長変換部に入射した前記第1および第2赤外レーザ光が、前記波長変換部に設けられた波長変換光学素子により波長変換されることで、前記第2系列から紫外レーザ光が出力されるように構成した紫外レーザ装置。
  2.  請求項1に記載の紫外レーザ装置において、
     前記波長変換部に設けられた波長変換光学素子は、
     前記第1赤外レーザ光の第2高調波を発生する第1波長変換光学素子と、
     前記第1波長変換光学素子から出射された前記第2高調波の第2高調波、すなわち前記第1赤外レーザ光の第4高調波を発生する第2波長変換光学素子と、
     前記第2波長変換光学素子から出射された前記第4高調波の第2高調波、すなわち前記第1赤外レーザ光の第8高調波である前段紫外レーザ光を発生する第3波長変換光学素子と、
     前記前段紫外レーザ光と前記第2赤外レーザ光との和周波発生により前記紫外レーザ光を発生する第4波長変換光学素子と
    からなる紫外レーザ装置。
  3.  請求項2に記載の紫外レーザ装置において、
     前記第1波長変換光学素子及び前記第2波長変換光学素子が前記第1系列に設けられ、
     前記第3波長変換光学素子及び前記第4波長変換光学素子が前記第2系列に設けられる紫外レーザ装置。
  4.  請求項2に記載の紫外レーザ装置において、
     前記第1波長変換光学素子、前記第2波長変換光学素子及び前記第3波長変換光学素子が前記第1系列に設けられ、
     前記第4波長変換光学素子が前記第2系列に設けられる紫外レーザ装置。
  5.  請求項2~4に記載のいずれか一項に記載の紫外レーザ装置において、
     前記第3波長変換光学素子における位相整合及び前記第4波長変換光学素子における位相整合が非臨界位相整合である紫外レーザ装置。
  6.  請求項2~5のいずれか一項に記載の紫外レーザ装置において、
     前記第1波長変換光学素子における位相整合及び前記第2波長変換光学素子における位相整合が疑似位相整合である紫外レーザ装置。
  7.  請求項1~6のいずれか一項に記載の紫外レーザ装置において、
     前記第1レーザ光出力部は、ツリウム・ドープ・ファイバ光増幅器を有して構成される紫外レーザ装置。
  8.  請求項1~7のいずれか一項に記載の紫外レーザ装置において、
     前記第2レーザ光出力部は、イッテルビウム・ドープ・ファイバ光増幅器を有して構成される紫外レーザ装置。
  9.  請求項1~8のいずれか一項に記載の紫外レーザ装置において、
     前記紫外レーザ光は、波長が190~200nmの深紫外光である紫外レーザ装置。
PCT/JP2012/057523 2011-03-24 2012-03-23 紫外レーザ装置 WO2012128354A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280008296.0A CN103348286B (zh) 2011-03-24 2012-03-23 紫外线激光装置
US14/003,895 US8929410B2 (en) 2011-03-24 2012-03-23 Ultraviolet laser device
JP2013506039A JP6020441B2 (ja) 2011-03-24 2012-03-23 紫外レーザ装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-066775 2011-03-24
JP2011066775 2011-03-24

Publications (1)

Publication Number Publication Date
WO2012128354A1 true WO2012128354A1 (ja) 2012-09-27

Family

ID=46879493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057523 WO2012128354A1 (ja) 2011-03-24 2012-03-23 紫外レーザ装置

Country Status (5)

Country Link
US (1) US8929410B2 (ja)
JP (1) JP6020441B2 (ja)
CN (1) CN103348286B (ja)
TW (1) TW201244308A (ja)
WO (1) WO2012128354A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014201152A1 (en) * 2013-06-11 2014-12-18 Kla-Tencor Corporation Cw duv laser with improved stability
JPWO2015174388A1 (ja) * 2014-05-15 2017-04-20 株式会社オキサイド 深紫外レーザ発生装置および光源装置
US10175555B2 (en) 2017-01-03 2019-01-08 KLA—Tencor Corporation 183 nm CW laser and inspection system
JPWO2022014064A1 (ja) * 2020-07-17 2022-01-20

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020110177A1 (ja) * 2018-11-26 2020-06-04 ギガフォトン株式会社 レーザシステム、及び電子デバイスの製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004086193A (ja) * 2002-07-05 2004-03-18 Nikon Corp 光源装置及び光照射装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6947123B1 (en) * 1999-09-10 2005-09-20 Nikon Corporation Exposure device with laser device
US20050169326A1 (en) * 2004-01-30 2005-08-04 Jacob James J. Laser architectures for coherent short-wavelength light generation
US7397598B2 (en) * 2004-08-20 2008-07-08 Nikon Corporation Light source unit and light irradiation unit
CN100582909C (zh) * 2005-02-25 2010-01-20 松下电器产业株式会社 波长转换光学装置、激光器光源及图像显示光学装置
US7593440B2 (en) * 2005-03-29 2009-09-22 Coherent, Inc. MOPA laser apparatus with two master oscillators for generating ultraviolet radiation
US20090185583A1 (en) * 2006-06-02 2009-07-23 Corning Incorporated UV and Visible Laser Systems
JP5103054B2 (ja) * 2007-04-27 2012-12-19 サイバーレーザー株式会社 レーザによる加工方法およびレーザ加工装置
JP5595650B2 (ja) 2008-10-10 2014-09-24 株式会社ニコン レーザ装置、光治療装置、露光装置、デバイス製造方法、及び被検物検査装置
JP4654424B2 (ja) * 2009-08-19 2011-03-23 レーザーテック株式会社 光源装置
US8934509B2 (en) * 2009-11-23 2015-01-13 Lockheed Martin Corporation Q-switched oscillator seed-source for MOPA laser illuminator method and apparatus
JP4590578B1 (ja) * 2010-04-01 2010-12-01 レーザーテック株式会社 光源装置、マスク検査装置、及びコヒーレント光発生方法
WO2011158927A1 (ja) * 2010-06-17 2011-12-22 株式会社ニコン 紫外レーザ装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004086193A (ja) * 2002-07-05 2004-03-18 Nikon Corp 光源装置及び光照射装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014201152A1 (en) * 2013-06-11 2014-12-18 Kla-Tencor Corporation Cw duv laser with improved stability
US9509112B2 (en) 2013-06-11 2016-11-29 Kla-Tencor Corporation CW DUV laser with improved stability
US10044166B2 (en) 2013-06-11 2018-08-07 Kla-Tencor Corporation CW DUV laser with improved stability
JPWO2015174388A1 (ja) * 2014-05-15 2017-04-20 株式会社オキサイド 深紫外レーザ発生装置および光源装置
US10175555B2 (en) 2017-01-03 2019-01-08 KLA—Tencor Corporation 183 nm CW laser and inspection system
US10429719B2 (en) 2017-01-03 2019-10-01 Kla-Tencor Corporation 183 nm CW laser and inspection system
JPWO2022014064A1 (ja) * 2020-07-17 2022-01-20
WO2022014064A1 (ja) * 2020-07-17 2022-01-20 日本電信電話株式会社 光照射システム
WO2022014039A1 (ja) * 2020-07-17 2022-01-20 日本電信電話株式会社 光照射システム

Also Published As

Publication number Publication date
CN103348286A (zh) 2013-10-09
JPWO2012128354A1 (ja) 2014-07-24
US20130343410A1 (en) 2013-12-26
US8929410B2 (en) 2015-01-06
TWI563755B (ja) 2016-12-21
CN103348286B (zh) 2015-11-25
TW201244308A (en) 2012-11-01
JP6020441B2 (ja) 2016-11-02

Similar Documents

Publication Publication Date Title
US8780946B2 (en) Ultraviolet laser device
JP5269764B2 (ja) パルス動作uv及び可視ラマンレーザシステム
CN101443969A (zh) 具有耦合到一个主振荡器的多个同步放大器的激光装置
JPH11258645A (ja) 波長変換装置
JP2011023532A (ja) 光増幅器、レーザ装置及び光源装置
JP6020441B2 (ja) 紫外レーザ装置
JP2011128330A (ja) レーザ装置
CN105210245A (zh) 具有圆形输出光束的高效单通型谐波发生器
JP6016086B2 (ja) 紫外レーザ装置、この紫外レーザ装置を備えた露光装置及び検査装置
JP6214070B2 (ja) 深紫外レーザ発生装置および光源装置
JP4375846B2 (ja) レーザ装置
KR102090454B1 (ko) 레이저 장치, 그 레이저 장치를 구비한 노광 장치 및 검사 장치
JP2013156448A (ja) レーザ装置、露光装置及び検査装置
JP2012150186A (ja) 出力波長選択型レーザ装置
JP2008511182A (ja) 注入同期型高パワーレーザシステム
JP2006060162A (ja) レーザ光源装置の励起光の制御方法及びレーザ光源装置
JP6299589B2 (ja) 紫外レーザ装置、該紫外レーザ装置を備えた露光装置及び検査装置
JP5605688B2 (ja) 波長変換光学系及びレーザ装置
JP2011158749A (ja) レーザ装置
JP2013044764A (ja) レーザ装置、疑似位相整合型の波長変換光学素子のフォトリフラクティブ効果抑制方法、露光装置及び検査装置
JP5472804B2 (ja) レーザ装置
JP2012027215A (ja) 紫外レーザ装置
JP2014174379A (ja) 赤外固体レーザー発振装置
JP2012037813A (ja) 紫外レーザ装置
JP2010186939A (ja) 光源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12761269

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013506039

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14003895

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12761269

Country of ref document: EP

Kind code of ref document: A1