WO2012128324A1 - 照明システム - Google Patents

照明システム Download PDF

Info

Publication number
WO2012128324A1
WO2012128324A1 PCT/JP2012/057359 JP2012057359W WO2012128324A1 WO 2012128324 A1 WO2012128324 A1 WO 2012128324A1 JP 2012057359 W JP2012057359 W JP 2012057359W WO 2012128324 A1 WO2012128324 A1 WO 2012128324A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical signal
light source
wavelength conversion
emitting end
Prior art date
Application number
PCT/JP2012/057359
Other languages
English (en)
French (fr)
Inventor
真博 西尾
伊藤 毅
山本 英二
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011066715A external-priority patent/JP2012204107A/ja
Priority claimed from JP2011066714A external-priority patent/JP2012204106A/ja
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to EP12760709.1A priority Critical patent/EP2690358A4/en
Publication of WO2012128324A1 publication Critical patent/WO2012128324A1/ja
Priority to US14/028,854 priority patent/US9261261B2/en
Priority to US14/988,214 priority patent/US10041655B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • F21V17/10Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0219Electrical interface; User interface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0271Housings; Attachments or accessories for photometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0488Optical or mechanical part supplementary adjustable parts with spectral filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • G01J1/16Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4228Photometry, e.g. photographic exposure meter using electric radiation detectors arrangements with two or more detectors, e.g. for sensitivity compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4257Photometry, e.g. photographic exposure meter using electric radiation detectors applied to monitoring the characteristics of a beam, e.g. laser beam, headlamp beam
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0264Electrical interface; User interface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/027Control of working procedures of a spectrometer; Failure detection; Bandwidth calculation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0291Housings; Spectrometer accessories; Spatial arrangement of elements, e.g. folded path arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/025Interfacing a pyrometer to an external device or network; User interface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/0006Coupling light into the fibre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers

Definitions

  • the present invention relates to an illumination system for illuminating an object to be illuminated.
  • Patent Document 1 discloses a light-emitting device that is a light source device having a configuration capable of detecting disconnection with high accuracy.
  • the light source device includes a light source having a semiconductor light emitting element that emits light (for example, excitation light), a lens that collects light emitted from the semiconductor light emitting element, a connector that collects light by the lens, and a connector And a light component disposed at the tip of the light guide member.
  • the light guide member guides the light collected from the connector.
  • the light guide member is, for example, an optical fiber. Light is guided to the optical component by the light guide member.
  • the light source device is disposed between the lens and the connector, and branches the reflected light returned from the optical component, a light receiving element that receives the reflected light branched by the light branching member, have.
  • the light receiving element is also a detection unit that detects the presence or absence of abnormality of the light source device, for example, the disconnection of the light guide member, by detecting the reflected light.
  • Patent Document 1 uses a configuration in which an abnormality such as disconnection of the light guide member is detected by detecting the reflected light branched by the light branching member.
  • an abnormality such as disconnection of the light guide member
  • the number of detection items detected by such reflected light is limited, and increasing the number of measurement items in order to detect anomalies with high accuracy necessitates mounting a plurality of detectors on the light source device, which increases the size of the device. There was a problem of end.
  • the present invention has been made in view of the above points, and an object thereof is to provide an illumination system capable of detecting an abnormality of a light source device without increasing the size of the light source device.
  • One aspect of the illumination system of the present invention is: An excitation light source that emits excitation light, a light guide member that guides the excitation light emitted from the excitation light source, and the excitation light guided by the light guide member is converted into illumination light having a desired wavelength.
  • a light source device configured by sequentially connecting a wavelength conversion unit that emits the illumination light toward the object to be illuminated; An operation confirmation device for confirming normal operation of the light source device;
  • An operation confirmation device for confirming normal operation of the light source device;
  • a connection unit for directly and physically connecting an optical signal emitting end provided with the wavelength conversion unit in the light source device and the operation checking device; Detecting at least one of the optical signal emitted from the optical signal emitting end and the heat generation status of the optical signal emitting end in a state where the optical signal emitting end and the operation checking device are connected by the connecting portion.
  • an illumination system that can determine the operations of the excitation light source, the light guide member, and the wavelength conversion unit without increasing the size of the light source device, that is, that can detect abnormality of the light source device. be able to.
  • FIG. 1 is a block diagram showing the overall configuration of the illumination system according to the first embodiment of the present invention.
  • FIG. 2A is a cross-sectional view illustrating a configuration example of a wavelength conversion unit and an operation check device in the illumination system according to the first embodiment.
  • FIG. 2B is a cross-sectional view illustrating a state where the wavelength conversion unit of FIG. 2A and the operation check device are connected.
  • FIG. 3 is a cross-sectional view showing another configuration example of the operation checking apparatus in the first embodiment.
  • FIG. 4 is a diagram illustrating a configuration example of a determination circuit in the illumination system according to the first embodiment.
  • FIG. 5 is a diagram showing another configuration example of the determination circuit in the first embodiment.
  • FIG. 6A is a perspective view of an optical signal emitting end in the illumination system according to the second embodiment of the present invention.
  • FIG. 6B is a diagram for explaining a configuration example of the wavelength conversion unit and the operation check device in the illumination system according to the second example.
  • FIG. 7 is a diagram for explaining a configuration example of the operation check apparatus in the illumination system according to the third embodiment of the present invention.
  • FIG. 8A is a diagram illustrating an example of a distribution that is broadened with respect to the detected light amount distribution obtained from the design value of the operation check device of FIG.
  • FIG. 8B is a diagram illustrating an example of a distribution in which the center of the distribution is shifted from the detected light amount distribution obtained from the design value.
  • FIG. 8A is a diagram illustrating an example of a distribution that is broadened with respect to the detected light amount distribution obtained from the design value of the operation check device of FIG.
  • FIG. 8B is a diagram illustrating an example of a distribution in which the center of the distribution is shifted
  • FIG. 9 is a diagram for explaining a configuration example of the wavelength conversion unit and the operation check device in the illumination system according to the fourth embodiment of the present invention.
  • FIG. 10 is a diagram for explaining a configuration example of the wavelength conversion unit and the operation check device in the illumination system according to the fifth embodiment of the present invention.
  • FIG. 11 is a diagram for explaining a configuration example of an illumination system according to the sixth embodiment of the present invention.
  • FIG. 12 is a diagram for explaining another configuration example of the wavelength conversion unit and the operation check device in the illumination system according to the sixth example.
  • FIG. 13 is a diagram for explaining a configuration example of an illumination system according to the eighth embodiment of the present invention.
  • FIG. 14 is a block diagram showing an overall configuration of an illumination system according to the ninth embodiment of the present invention.
  • FIG. 15A is a cross-sectional view illustrating a configuration example of the wavelength conversion unit and the operation check device in the illumination system according to the ninth example.
  • FIG. 15B is a cross-sectional view showing a state where the wavelength conversion unit of FIG. 15A is connected to the operation check device.
  • FIG. 16 is a diagram for explaining a method of obtaining a heat generation amount from a temperature change.
  • FIG. 17 is a diagram for explaining a configuration example of the wavelength conversion unit and the operation check device in the illumination system according to the tenth embodiment of the present invention.
  • FIG. 18 is a diagram for explaining a configuration example of the operation check apparatus in the illumination system according to the eleventh embodiment of the present invention.
  • FIG. 19A is a diagram illustrating an example of a distribution that is broadened with respect to the detected temperature distribution obtained from the design value of the operation confirmation apparatus of FIG.
  • FIG. 19B is a diagram illustrating an example of a distribution in which the center of the distribution is shifted from the detected temperature distribution obtained from the design value.
  • FIG. 20 is a diagram for explaining a configuration example of the wavelength conversion unit and the operation check device in the illumination system according to the twelfth embodiment of the present invention.
  • FIG. 21 is a diagram for explaining a configuration example of the wavelength conversion unit and the operation check device in the illumination system according to the thirteenth embodiment of the present invention.
  • the illumination system 10 includes a light source device 12 and an operation check device 14.
  • the light source device 12 illuminates an illumination object with illumination light generated based on excitation light.
  • the operation confirmation device 14 can be connected to or separated from the light source device 12.
  • the operation check device 14 is connected to the light source device 12 and, when the light source device 12 emits an optical signal O, the state of the light source device 12, in other words, based on the state of the emitted optical signal O. It is used to confirm whether or not the light source device 12 is abnormal.
  • the light source device 12 is configured by sequentially connecting an excitation light source 16, an optical fiber 18, and a wavelength conversion unit 20.
  • the excitation light source 16 emits excitation light.
  • the optical fiber 18 is a light guide member that guides the excitation light emitted from the excitation light source 16.
  • the wavelength conversion unit 20 is a wavelength conversion unit that converts the excitation light guided by the optical fiber 18 into illumination light having a desired wavelength and emits the illumination light toward an object to be illuminated.
  • the light source device 12 includes a light source controller 22 and a display 24.
  • the light source controller 22 controls the operation start / stop and the light output of the excitation light source 16.
  • the display 24 displays various information regarding the light source device 12.
  • the excitation light source 16 is a laser device, for example.
  • the wavelength conversion unit 20 includes a wavelength conversion member that performs wavelength conversion, for example, a phosphor, and the excitation light emitted from the optical fiber 18 is applied to the phosphor.
  • the phosphor converts the irradiated excitation light into fluorescence having a predetermined wavelength different from the wavelength of the excitation light. Fluorescence, which is light having a predetermined wavelength, is emitted from the wavelength conversion unit 20 as illumination light that illuminates an object to be illuminated.
  • the phosphor does not actually convert all of the irradiated excitation light into fluorescence, but converts a part of the excitation light into fluorescence. Therefore, the wavelength conversion unit 20 emits not only fluorescence but also excitation light. Therefore, the wavelength conversion unit 20 actually emits an optical signal O including fluorescence that is illumination light and excitation light that has not been converted into fluorescence by the phosphor.
  • the operation check device 14 is detachable from the light signal emitting end of the light source device 12 in which the wavelength conversion unit 20 is disposed.
  • the operation check device 14 includes a connection detector 26 and a light amount sensor 28.
  • the connection detector 26 detects whether or not the operation check device 14 is connected in an appropriate positional relationship when connected to the optical signal emitting end.
  • the light quantity sensor 28 is a detection unit that detects the optical signal O emitted from the wavelength conversion unit 20 in a state where the operation confirmation device 14 is connected to the optical signal emission end.
  • the light source controller 22 of the light source device 12 is configured to receive the connection detection signal CD from the connection detector 26 of the operation check device 14 and the detected light amount DO from the light amount sensor 28.
  • the light source controller 22 determines the presence / absence of abnormality of the light source device 12 based on the detected light amount DO from the light amount sensor 28, in other words, the operations of the excitation light source 16, the optical fiber 18, and the wavelength conversion unit 20.
  • a determination circuit 30 as an operation determination unit is provided.
  • the abnormality of the light source device 12 refers to, for example, a disconnection of the optical fiber 18 or a state in which excitation light leaks due to the disconnection.
  • the light source device 12 means a state in which the emission efficiency of excitation light or fluorescence decreases due to a failure of the wavelength conversion unit 20, a state in which excitation light increases unnecessarily, and the like. The determination of whether or not the light source device 12 is abnormal will be described later.
  • the operation determination of the light source device 12 using the operation confirmation device 14 is performed prior to the illumination of the object to be illuminated by the light source device 12.
  • this operation determination is automatically performed at least one of when the light source device 12 is turned on and after the operation of the light source device 12 is initialized.
  • the light source controller 22 starts the optical signal emission end of the wavelength conversion unit 20 of the light source device 12 based on the connection detection signal CD from the connection detector 26 before operating the excitation light source 16.
  • the operation check device 14 is connected in an appropriate positional relationship. If it is confirmed, the excitation light source 16 is operated to emit the optical signal O from the wavelength conversion unit 20.
  • the determination circuit 30 determines the state of the light source device 12 using the detected light amount DO, which is the emitted light information detected by the light amount sensor 28 of the operation check device 14, and the light source controller 22 uses the light based on the determination.
  • the optical output of the signal O is controlled. That is, when it is determined that the light source device 12 is dangerous or unsuitable for operation, the light emission of the excitation light source 16 is prohibited or restricted so that the amount of excitation light is reduced. Thereafter, if the operation confirmation device 14 is removed from the optical signal emission end, the optical signal O whose optical output is controlled is emitted from the optical signal emission end.
  • the determination result or the control result of the optical output of the optical signal O may be displayed on the display 24.
  • the light source device 12 has an optical signal emitting end 32 for holding the optical fiber 18 and the wavelength conversion unit 20.
  • the wavelength conversion unit 20 is disposed at the distal end portion of the optical fiber 18 in the optical signal emitting end 32.
  • the wavelength conversion unit 20 includes a phosphor 34 and a taper mirror 36.
  • the phosphor 34 is a wavelength conversion member that performs wavelength conversion of excitation light emitted from the optical fiber 18.
  • the tapered mirror 36 is disposed on the back portion (on the optical fiber 18 side) of the phosphor 34.
  • the optical signal O including the fluorescence that is the illumination light converted by the phosphor 34 and the excitation light that has not been converted into fluorescence by the phosphor 34 is the tip of the optical signal emitting end 32. It injects from the injection port 38 provided in this.
  • the taper mirror 36 is arranged for emitting light traveling in a direction other than the direction of the exit port 38 from the exit port 38 out of the fluorescence converted by the phosphor 34.
  • the wavelength conversion unit 20 is not limited to the structure described here, and may be a structure using the phosphor 34.
  • the operation check device 14 is detachable from the optical signal emitting end 32 and includes the connection detector 26 and the light amount sensor 28. Further, the operation check device 14 includes a connection unit 40 and a light shielding cover 42.
  • the connection section 40 is for directly physically connecting the optical signal emitting end 32 and the operation checking device 14.
  • the light shielding cover 42 is a light shielding portion that shields the optical signal O emitted from the optical signal emitting end 32 in the connected state.
  • the light amount sensor 28 is disposed on the inner surface of the concave portion of the light shielding cover 42 and is disposed at a position that is the front of the exit port 38 of the wavelength conversion unit 20. Further, the connecting portion 40 is provided with a convex portion 44 for alignment so that the distance between the light quantity sensor 28 and the injection port 38 is an appropriate interval.
  • the emission port 38 is covered with a light shielding cover 42. Accordingly, the light emitted from the emission port 38 does not leak to the outside, and only the light emitted from the emission port 38 enters the light amount sensor 28, so that the influence of external light can be removed. Further, when the operation of the light source device 12 is determined, since the light output is not yet controlled, there is a risk that a dangerous level of light may be emitted from the emission port 38. However, even if such light is emitted, the light exit cover 38 is covered with the light-shielding cover 42, so that the light does not harm external people or the like.
  • connection detector 26 detects whether or not the light shielding cover 42 and the light amount sensor 28 fixed thereto are installed at appropriate positions.
  • the connection detector 26 may be configured to detect an approach optically or electromagnetically, or may be configured to detect electrical connection by contact between electrodes.
  • a wavelength filter 46 through which excitation light is transmitted is disposed on the front surface (exit port 38 side) of the light quantity sensor 28. Therefore, the light quantity sensor 28 is connected to the optical signal emitting end 32 when the operation confirmation device 14 is connected, and when the wavelength conversion unit 20 emits fluorescence and excitation light when the excitation light source 16 emits excitation light, the light quantity sensor 28 emits excitation light. The state will be detected.
  • the wavelength conversion unit 20 breaks down, the excitation light converted into fluorescence by the wavelength conversion unit 20 decreases, and the excitation light exiting from the exit port 38 increases with the excitation light. Therefore, when the wavelength conversion unit 20 fails, the emission amount of fluorescence decreases and the emission amount of excitation light increases.
  • this excitation light is likely to cause harm when directly irradiated to human eyes or skin, the light quantity of this excitation light is detected here.
  • the excitation light leaks from the disconnected portion or the deteriorated portion, the amount of excitation light incident on the wavelength conversion unit 20 decreases, and the amount of excitation light transmitted through the wavelength conversion unit 20 also increases. Decrease.
  • two light quantity sensors 28 are provided, and wavelength filters 46E and 46F that transmit excitation light and fluorescence are respectively disposed, so that an excitation light quantity detector and a fluorescence quantity detector are provided. It is good also as a structure, and it is good also as the detection of the light quantity of excitation light and the light quantity of fluorescence each independently. That is, since there may be a case where a minute abnormality of the light source device 12 that does not appear in the change in the amount of excitation light can be detected as a change in the amount of fluorescence, it is meaningful to detect the amount of fluorescence.
  • a spectral detector may be used instead of the wavelength filter 46 and the light quantity sensor 28.
  • the determination circuit 30 may determine based on only the light amount of the excitation light wavelength detected by the spectroscopic detector, or the light amount of the excitation light wavelength and the light amount of the fluorescence wavelength. The determination may be made on the basis of the relative intensity.
  • the determination circuit 30 of the light source device 12 compares the detected light amount DO from the light amount sensor 28 of the operation check device 14 with a reference voltage REF corresponding to a predetermined value. 48 can be configured. The output of the comparator 48 becomes the determination result DR of the determination circuit 30.
  • Such a determination circuit 30 determines whether or not the light source device 12 is abnormal by determining whether or not the light amount of the excitation light is a predetermined value or less, in other words, the excitation light source 16, the optical fiber 18, and the wavelength conversion unit 20. Operation.
  • the determination circuit 30 of the light source device 12 may be configured by, for example, two comparators 50 and 52 and a logical product calculator 54 as shown in FIG.
  • the comparator 50 compares the detected light amount DO from the light amount sensor 28 of the operation check device 14 with a reference voltage REF1 corresponding to a lower limit value in a predetermined range.
  • the comparator 52 compares the detected light amount DO from the light amount sensor 28 with a reference voltage REF2 corresponding to the upper limit value of the predetermined range.
  • the logical product calculator 54 calculates the logical product of the determination results of the comparators 50 and 52.
  • the output of the AND operator 54 becomes the final determination result DR of the determination circuit 30.
  • Such a determination circuit 30 determines whether or not the light source device 12 is abnormal by determining whether or not the light amount of the excitation light is within a predetermined range, in other words, the excitation light source 16, the optical fiber 18, and the wavelength conversion unit. 20 operations are determined.
  • the determination of the determination circuit 30 is performed by one of the following methods: (1) The operation is performed when the amount of excitation light transmitted through the wavelength conversion unit 20 and output to the outside is in the range of the amount of light determined in consideration of manufacturing variations of the excitation light source 16 and the wavelength conversion unit 20.
  • the operation is “unsuitable” when it is not included, (2) Considering the deterioration of the wavelength conversion unit 20 and the like, if there is sufficient time until the future deterioration and dangerous state, the state expected from the amount of excitation light is “preferred”, and there is not enough time The state to be operated is determined as “inappropriate” operation; (3) If a failure occurs in the wavelength conversion unit 20 and the light amount of the excitation light output from the exit port 38 of the wavelength conversion unit 20 is a light amount that affects other devices or the human body, it is “dangerous”. Is determined to be “safe”.
  • the excitation light source 16 is a laser device as described above
  • the excitation light that is laser light may be emitted from the emission port 38 to a predetermined value or more. If the excitation light is emitted to a predetermined value or more, the user is affected, and there is a possibility that desired safety cannot be maintained, or that other devices may be affected. Therefore, it is determined as “safe” if the detected light intensity of the excitation light is not more than a predetermined value, and “dangerous” if it exceeds the predetermined value.
  • the predetermined value which is the threshold value of this determination is detected by the light amount sensor 28 when the amount of emitted light is emitted based on, for example, the amount of emitted light that causes the excitation light to affect the user of another device or the light source device 12.
  • the amount of light emitted may be used as a reference.
  • the determination threshold may be based on a laser safety class defined by international standards or the like.
  • the case where an abnormality occurs in the light source device 12 described above indicates that, for example, the wavelength conversion unit 20 has failed.
  • the wavelength conversion unit 20 breaks down, the excitation light converted into fluorescence by the wavelength conversion unit 20 decreases, and the excitation light exiting from the exit port 38 increases with the excitation light. Therefore, when the wavelength conversion unit 20 fails, the amount of emitted fluorescence decreases and the amount of excitation light emitted increases.
  • the operation “preferable” and the operation “inappropriate” are, for example, whether or not the excitation light source 16 and the wavelength conversion unit 20 can satisfy the specifications at the time of design, or the deterioration of the wavelength conversion unit 20 and the like. However, it depends on whether or not there is sufficient time until the wavelength conversion unit 20 or the like reaches a dangerous state due to the deterioration of the wavelength conversion unit 20 or the like.
  • the predetermined value that is the determination threshold value may be obtained by considering, for example, the manufacturing variation of the excitation light source 16 and the wavelength conversion unit 20, for example, when the excitation light source 16 and the wavelength conversion unit 20 satisfy the design specifications. This predetermined value is smaller than the predetermined values in “safety” and “danger”.
  • the determination circuit 30 presets in the comparator 48 or 52, 54 a reference voltage REF corresponding to a predetermined value for either “safety” and “danger” or “preferred” or “unsuitable”. The determination result is obtained.
  • the “safety”, “danger” and the “preferable” and “unsuitable” are determined, and the light amount of the excitation light (light output of the excitation light source 16) is controlled according to the combination of the determinations. It doesn't matter.
  • the method of determining using the fluorescence light quantity or both light quantities is also considered.
  • a method of determining using the ratio between the amount of excitation light and the amount of fluorescent light is also conceivable.
  • the light source controller 22 controls the light output of the excitation light source 16 based on the previous determination result.
  • the illumination light can be output.
  • the excitation light source 16 is stopped or the amount of excitation light is limited to be low.
  • the illumination system 10 when the operation check device 14 is connected to the optical signal emitting end 32, the light quantity sensor disposed in the operation check device 14 receives the optical signal O.
  • the operations of the excitation light source 16, the optical fiber 18, and the wavelength conversion unit 20 can be determined based on the detected optical signal O, that is, the abnormality of the light source device 12 can be detected. Therefore, in this embodiment, since the failure of the optical fiber 18 and the wavelength conversion unit 20 can be optically detected without adding a new configuration to the optical system of the light source device 12, an increase in the size of the light source device 12 is prevented. be able to.
  • the optical fiber 18 can be configured with a high degree of design freedom.
  • the time for determining the abnormality of the light source device 12 is short and the responsiveness is good. Furthermore, since the influence due to the occurrence of abnormality is directly detected, reliable detection is possible.
  • a plurality of wavelength conversion units 20 are arranged at the optical signal emission end 32 of the light source device 12.
  • FIG. 6A is an example in which three wavelength conversion units 20 are arranged at the optical signal exit end 32, and the optical signal exit end 32 includes three exit ports 38.
  • the excitation light emitted from the excitation light source 16 may be branched and guided to each wavelength conversion unit 20 by a plurality of optical fibers 18.
  • the excitation light emitted from the excitation light source 16 is guided into the optical signal emission end 32 by the single optical fiber 18, and the light is branched to each wavelength conversion unit 20 within the optical signal emission end 32. Also good.
  • a notch 56 is provided on the outer periphery of the optical signal emitting end 32 as shown in FIGS. 6A and 6B.
  • a protrusion 58 is provided on the inner periphery of the light shielding cover 42 of the operation check device 14 so as to fit into the notch 56. Then, when the operation check device 14 is connected to the optical signal emitting end 32 so that the protruding portion 58 fits into the notch portion 56, the light amount sensor 28 is disposed at a location facing each wavelength conversion unit 20. The light quantity of the wavelength conversion unit 20 can be reliably detected.
  • the connection unit 40 has a connection structure in which the positional relationship between the light quantity sensor 28 and the optical signal emission end 32 is uniquely determined.
  • the illumination system 10 As shown in FIG. 7, the illumination system 10 according to the third embodiment is provided with a two-dimensional array light quantity sensor 60 capable of measuring the light quantity distribution instead of the light quantity sensor 28.
  • a two-dimensional array light quantity sensor 60 As the two-dimensional array light quantity sensor 60, a two-dimensional PD or an imager element can be used.
  • the determination circuit 30 has a light distribution characteristic (distribution of the detected light amount DO) measured by the two-dimensional array light amount sensor 60 between a predetermined upper limit value U and a lower limit value L with respect to the distribution obtained from the design value. If there is, it is determined as “safe” or “preferred”. On the other hand, when the distribution obtained from the design value spreads as shown in FIG. 8A or the center of the distribution shifts as shown in FIG. 8B, it is determined as “dangerous” or operation “unsuitable”. To do.
  • a light distribution characteristic distributed of the detected light amount DO
  • the maximum light quantity is obtained from the detected value of the measured light quantity distribution, and the determination is made based on that value. By performing this, the determination time can be shortened.
  • a scattering plate 62 is installed inside the light shielding cover 42 of the operation check device 14, and the light quantity sensor 28 is an emission port of the wavelength conversion unit 20. It is installed in a place where the optical signal O emitted from 38 is not directly incident.
  • the optical signal O emitted from the exit port 38 is applied to the scattering plate 62, and reflected and scattered in various directions by the scattering plate 62.
  • the light quantity sensor 28 can detect it by averaging. Therefore, even if the light amount sensor 28 is not disposed in front of the emission port 38 of the wavelength conversion unit 20, if the light amount sensor 28 is disposed at a position where the light amount of the optical signal O scattered by the scattering plate 62 can be measured, the optical signal O. The whole situation can be detected.
  • the configuration of this embodiment is used. Only one light quantity sensor 28 may be used. With such a configuration, the reflected and scattered light of the optical signal O emitted from each wavelength conversion unit 20 is incident on the light amount sensor 28, so that the light amount of each wavelength conversion unit 20 can be reliably detected.
  • the light quantity sensor 28 is built in the light signal emitting end 32 of the light source device 12 instead of the operation check device 14 side.
  • the operation check apparatus 14 installs the scattering plate 62 inside the light shielding cover 42 as in the fourth embodiment.
  • the optical signal O emitted from the emission port 38 of the wavelength conversion unit 20 is reflected and scattered by the scattering plate 62 in the light shielding cover 42 and is incident on the light quantity sensor 28 built in the optical signal emission end 32. To do.
  • the light quantity may be detected by using an imager element that constitutes the observation function without providing a separate light quantity sensor 28. Further, in the case of an imager element with a color filter, excitation light and fluorescence can be detected separately, and light distribution can also be detected.
  • connection detector 26 is arranged not on the operation confirmation device 14 side but on the optical signal emission end 32 side of the light source device 12, but in terms of operation, it is arranged on the operation confirmation device 14 side. It is the same.
  • the connection detector 26 may be disposed on the optical signal emitting end 32 side. In contrast, in this embodiment, the connection detector 26 may be disposed on the operation check device 14 side.
  • the illumination system 10 is a wireless transmission unit that transmits information from the operation confirmation device 14 side to the light source device 12 side using infrared rays, electromagnetic coupling, or radio waves as shown in FIG. This is performed by wireless communication WC using a transmitter 64 and a receiver 66 which is a wireless receiver.
  • the determination circuit 30 installed in the light source controller 22 may be disposed between the light quantity sensor 28 of the operation check device 14 and the transmitter 64. With such an arrangement, it is only necessary to transmit the determination result as the contents of wireless communication, so that the communication mechanism can be simplified.
  • connection detector 26 can be installed on the light signal emission end 32 side of the light source device 12, thereby eliminating the wired connection with the operation check device 14.
  • the receiver 66 is arranged in the optical signal emitting end 32 such that the transmitter 64 and the receiver 66 face each other when the operation confirmation device 14 is connected to the optical signal emitting end 32. You may provide in the position. In this case, the transmitter 64 and the receiver 66 are made low-powered so that the transmitter 64 and the receiver 66 operate only at a short distance so as to operate only when the operation check device 14 is correctly connected. It is also possible to perform connection detection based on the above operation, whereby the connection detector 26 can be omitted.
  • the transmitter 64 and the receiver 66 are a transmitter / receiver capable of wireless transmission in both directions, the power transmitted from the light source device 12 side by the transmitter / receiver can be used instead of incorporating the battery in the operation check device 14.
  • the operation check device 14 may be used for the operation.
  • connection detector 26 is disposed on the optical signal emitting end 32 side. However, it is needless to say that the connection detector 26 may be disposed on the operation check device 14 side.
  • the illumination system 10 uses the light amount sensor 28 as a photovoltaic cell.
  • optical signal O that is not used for illumination of the actual object to be illuminated and is used only for determination can be converted into electric power and used for the operation of the operation confirmation device 14.
  • the illumination system 10 incorporates the operation check device 14 in a light source device main body 68 that incorporates the excitation light source 16 and the light source controller 22.
  • connection detector 26 is disposed on the optical signal emission end 32 side, but it is needless to say that the connection detector 26 may be disposed on the operation check device 14 side.
  • the operation check device 14 is connected to the light signal emission end 32 instead of the light amount sensor 28 to the operation check device 14.
  • a temperature sensor 70 is provided as a detection unit that detects the heat generation state of the optical signal emitting end 32.
  • the light source controller 22 of the light source device 12 detects an abnormality of the light source device 12 based on the detected temperature DT that is the heat generation state of the optical signal emitting end 32 detected by the temperature sensor 28 by the determination circuit 30. The presence or absence, in other words, the operation of the excitation light source 16, the optical fiber 18, and the wavelength conversion unit 20 is determined.
  • connection detector 26 is provided on the light source device 12 side in FIG. 14, it is needless to say that the connection detector 26 may be provided on the operation check device 14 side.
  • the operation check device 14 is detachable from the optical signal emitting end 32 and includes the temperature sensor 70.
  • the temperature sensor 70 is disposed at a position facing the side surface of the optical signal emitting end 32 of the light source device 12 of the connection unit 40.
  • the temperature sensor 70 is installed in a place where the heat generation state of the wavelength conversion unit 20 that is a heat generation source in the optical signal emitting end 32 can be monitored, that is, in a place where heat conduction from the wavelength conversion unit 20 is good.
  • the temperature sensor 70 is an inner surface of the connection portion 40 and contacts the optical signal emission end 32 when the optical signal emission end 32 of the light source device 12 is inserted as shown in FIG. 15B. Place in position.
  • this position is a place where the optical signal O does not hit the temperature sensor 70, a temperature rise due to the optical signal O can be prevented, and a contact-type temperature sensor such as a thermocouple or thermistor is used as the temperature sensor 70. This is a desirable position.
  • the thermal conductivity is low on the periphery of the temperature sensor 70 and on the inner surface of the connecting portion 40 where the operation check device 14 is in contact with the light signal emitting end 32 of the light source device 12.
  • a heat insulating material 72 is disposed.
  • the temperature sensor 70 can accurately measure the temperature of the optical signal emitting end 32 of the light source device 12, that is, the temperature of the wavelength conversion unit 20 without being affected by heat generation and thermal diffusion of the operation confirmation device 14.
  • the heat insulating material 72 has a temperature sensor 70 that can correctly detect the temperature of the wavelength conversion unit 20 in the optical signal emitting end 32 when the operation confirmation device 14 is connected to the optical signal emitting end 32.
  • a convex portion 74 for alignment is provided at the position so that the optical signal emitting end 32 is held.
  • connection detector 26 detects whether or not the operation check device 14 and the temperature sensor 70 fixed thereto are installed at appropriate positions.
  • the connection detector 26 may be configured to detect an approach optically or electromagnetically, or may be configured to detect electrical connection by contact between electrodes.
  • the determination circuit 30 of the light source device 12 can be the same as that in the first embodiment. That is, the determination circuit 30 can be configured by, for example, a comparator 48 that compares the detected temperature DT from the temperature sensor 70 of the operation check device 14 with a reference voltage REF corresponding to a predetermined value. The output of the comparator 48 becomes the determination result DR of the determination circuit 30.
  • a determination circuit 30 determines whether or not the light source device 12 is abnormal by determining whether or not the detected temperature DT is equal to or lower than a predetermined value, in other words, the operation of the excitation light source 16, the optical fiber 18, and the wavelength conversion unit 20. , Is determined.
  • the determination circuit 30 of the light source device 12 uses, for example, a first temperature corresponding to a lower limit value and an upper limit value within a predetermined range by using the two comparators 50 and 52 for the detected temperature DT from the temperature sensor 70 of the operation check device 14. And a logical product operator that compares the second reference voltages REF1 and REF2 and takes the logical product of the determination results of the two comparators 50 and 52 to obtain the final determination result DR. Also good.
  • Such a determination circuit 30 determines whether or not the light source device 12 is abnormal by determining whether or not the detected temperature DT is within a predetermined range, in other words, the excitation light source 16, the optical fiber 18, and the wavelength conversion unit. 20 operations are determined.
  • the determination of the determination circuit 30 is performed by one of the following methods: (1) When the heat generation from the wavelength conversion unit 20 indicated by the detection temperature DT falls within the heat generation range (temperature range) obtained in consideration of manufacturing variations of the excitation light source 16 and the wavelength conversion unit 20, the operation is performed. It is determined that the operation is “unsuitable” when it does not enter; (2) Considering the degradation of the wavelength conversion unit 20 and the like, the operation is “preferred” when the detection temperature DT is expected to have sufficient time until the future degradation and dangerous state, and the time is expected to be short.
  • the operation is “preferred” when it is estimated that the wavelength conversion unit 20 is operating in the state assumed at the time of design. It is determined that the operation is “inappropriate” when it is operating in a state where there is no operation. For example, the operation is “preferred” when the detected temperature DT is a heat generation (temperature) that occurs when the amount of excitation light transmitted through the wavelength conversion unit 20 is within the design range, and the operation is “preferred”.
  • the heat generated from the wavelength conversion unit 20 is “dangerous” when the optical signal emission end 32 of the light source device 12 has a temperature that affects other devices or users and the detected temperature DT. When it is not, it is determined as “safe”; (5) When it is estimated that the wavelength conversion unit 20 is operating in a dangerous state as estimated from the heat generated from the wavelength conversion unit 20 (detection temperature DT), it operates in a safe state. When it is estimated that it is, it is determined as “safe”. For example, when the heat generated when the excitation light transmitted through the wavelength conversion unit 20 increases and the amount of light is dangerous, it is determined as “dangerous”.
  • the transmittance when the excitation light passes through the wavelength conversion unit 20 decreases, and the amount of excitation light absorbed by the wavelength conversion unit 20 is reduced.
  • the amount of heat generation is increased as compared with a normal state in which the phosphor 34 is not deteriorated, that is, the wavelength conversion unit 20 is not broken. Therefore, the temperature of the optical signal emitting end 32 rises.
  • the phosphor 34 is dropped from the optical axis of the light source device 12 or the optical fiber 18, and the excitation light does not enter the phosphor 34.
  • the amount of excitation light that is absorbed by decreases. Thereby, for example, the amount of heat generation is reduced and the temperature of the optical signal emitting end 32 is lowered as compared with a normal state in which the phosphor 34 is not dropped from the light source device 12, that is, the wavelength conversion unit 20 is not broken. To do.
  • the excitation light leaks from the disconnected part or the deteriorated part, the amount of excitation light incident on the wavelength conversion unit 20 decreases, and the heat generation amount of the wavelength conversion unit 20 decreases.
  • the determination circuit 30 determines whether it is “safe” or “dangerous” depending on whether the temperature of the optical signal emitting end 32 detected by the temperature sensor 70 is equal to or lower than a predetermined value or not within a predetermined range. Determine.
  • the predetermined value or the predetermined range may be determined based on the influence on the user or other equipment. For example, the temperature of the optical signal emitting end 32 caused by the leakage state of the excitation light of the wavelength conversion unit 20 is determined. Find it in consideration.
  • the light source device 12 it may be determined from a value assumed in advance or, for example, an international standard.
  • the operation “preferable” and the operation “inappropriate” are, for example, whether or not the excitation light source 16 and the wavelength conversion unit 20 can satisfy the specifications at the time of design, or the deterioration of the wavelength conversion unit 20 and the like. However, it depends on whether or not there is sufficient time until the wavelength conversion unit 20 or the like reaches a dangerous state due to the deterioration of the wavelength conversion unit 20 or the like.
  • the predetermined value or the predetermined range which is a determination threshold value, can be obtained by considering, for example, manufacturing variations of the excitation light source 16 and the wavelength conversion unit 20, for example, when the excitation light source 16 and the wavelength conversion unit 20 satisfy the design specifications. good. This predetermined value or range is smaller than the predetermined value or range in the above “safety” and “danger”.
  • the determination circuit 30 presets in the comparator 48 or 52, 54 a reference voltage REF corresponding to a predetermined value for either “safety” and “danger” or “preferred” or “unsuitable”. The determination result is obtained.
  • the “safety”, “danger” and the “preferable” and “unsuitable” are determined, and the light amount of the excitation light (light output of the excitation light source 16) is controlled according to the combination of the determinations. It doesn't matter.
  • the emitted-heat amount may be estimated from detected temperature DT, and you may make it determine using an estimated value.
  • the heat generation amount can be obtained from the change in temperature, the thermal resistance Rt of the optical signal emitting end 32, and the thermal capacity Ct.
  • the thermal resistance is a value from the wavelength conversion unit 20 to the temperature sensor 70
  • the heat capacity is a value of the optical signal emitting end 32, and it is preferable to use a design value or an experimental value, respectively.
  • the temperature sensor 70 disposed in the operation confirmation device 14 is connected to the optical signal emission end 32.
  • the temperature sensor 70 disposed in the operation confirmation device 14 is connected to the optical signal emission end 32.
  • the optical fiber 18 can be configured with a high degree of design freedom.
  • the determination is made based on the detected heat generation state, it is possible to detect a failure early under a certain condition. Moreover, even if the mounting accuracy of the operation check device 14 is not so high, accurate and stable failure detection is possible. Further, it is possible to analyze the details (how to break) of the failure from the state of heat generation, and it is possible to take appropriate measures against the failure.
  • the illumination system 10 detects the temperature optically like an infrared temperature sensor as shown in FIG. 17 instead of the contact-type temperature sensor 70 as in the ninth embodiment.
  • a non-contact type temperature sensor 76 is used.
  • the non-contact type temperature sensor 76 is desirably installed on the concave inner surface of the light shielding cover 42 in a place where the heat generation position can be easily measured.
  • the emission port 38 of the optical signal emission end 32 is covered with the light shielding cover 42, and the light emitted from the emission port 38 does not leak to the outside and is not Since only the light emitted from the emission port 38 enters the contact-type temperature sensor 76, the influence of external light can be removed. In addition, even when a dangerous level of light is emitted from the emission port 38 when determining the operation of the light source device 12 that has not yet controlled the light output, the light is covered by the light shielding cover 42, so that the light is externally applied. There is no harm to people.
  • the ninth embodiment team described above.
  • the heat insulating material 72 is not required.
  • the connection portion 40 is provided with a convex portion 44 for alignment.
  • connection detector 26 may be provided on the optical signal emission end 32 side as in the ninth embodiment, or may be installed on the operation check device 14 side as shown in FIG.
  • the illumination system 10 is a non-contact two-dimensional array capable of measuring a two-dimensional temperature distribution instead of the non-contact temperature sensor 76 in the tenth embodiment.
  • a temperature sensor 78 is mounted.
  • the determination circuit 30 is “safe” or operates if the temperature distribution measured by the non-contact type two-dimensional array temperature sensor 78 is between a predetermined upper limit value and a lower limit value with respect to the distribution obtained from the design value. Determined as “preferred”. On the other hand, when the distribution obtained from the design value spreads as shown in FIG. 19A or the center of the distribution shifts as shown in FIG. 19B, it is determined as “danger” or “unsuitable” for the operation. To do.
  • the maximum value is obtained from the detected value of the measured temperature distribution instead of comparing the detected value of the temperature distribution measured by the non-contact type two-dimensional array temperature sensor 78 with the distribution obtained from the design value.
  • the determination time can be shortened by performing the determination based on the above.
  • connection detector 26 may be provided on the optical signal emitting end 32 side, or may be installed on the operation check device 14 side.
  • the second temperature sensor 80 is further provided in a place where the light signal emitting end 32 is not affected by heat generation. It is installed. Then, the light source controller 22 determines using the difference between the ambient temperature detected by the second temperature sensor 80 and the detected temperature DT of the temperature sensor 70 installed in the vicinity of the wavelength conversion unit 20.
  • the second temperature sensor 80 is attached to a region of the operation check device 14 that is not in contact with the optical signal emitting end 32 and is not irradiated with the signal light emitted from the optical signal emitting end 32.
  • the position is not limited to this position.
  • the second temperature sensor 80 may be attached to the outer surface of the operation check device 14.
  • a plurality of wavelength conversion units 20 are arranged at the optical signal emitting end 32 of the light source device 12.
  • the connection unit 40 preferably has a connection structure in which the positional relationship between the temperature sensor 70 and the optical signal emission end 32 is uniquely determined.
  • a non-contact type two-dimensional array temperature sensor 78 capable of measuring a two-dimensional distribution of temperature is arranged so as to be in contact with the outer periphery of the optical signal emitting end 32, and a determination is made based on the maximum temperature detected. It doesn't matter.
  • the determination circuit 30 may be provided not on the light source controller 22 but on the operation check device 14 side.
  • information may be transmitted from the operation confirmation device 14 side to the light source device 12 side by infrared, electromagnetic coupling, or wireless communication using radio waves.
  • the determination circuit 30 installed in the light source controller 22 is provided on the temperature sensor 70 side of the operation check device 14 and the determination result is transmitted as the contents of wireless communication, the communication mechanism is simplified. it can.
  • the operation confirmation device 14 including a temperature detector such as the temperature sensor 70 may be incorporated in the light source device main body 68 including the excitation light source 16 and the light source controller 22 as in the eighth embodiment.
  • the operation of the excitation light source 16, the optical fiber 18, and the wavelength conversion unit 20 is determined using both a light signal detector such as the light amount sensor 28 and a temperature detector such as a temperature sensor, that is, An abnormality in the light source device 12 may be detected.

Abstract

 照明システム(10)は、励起光源(16)、光ファイバ(18)、波長変換ユニット(20)、を順に接続して構成された光源装置(12)と、該光源装置の正常な動作を確認する動作確認装置(14)と、からなる。該照明システムは、さらに、光源装置における波長変換部を備える光信号射出端(32)と動作確認装置とを直接物理的に接続するための接続部(40)と、該接続部により光信号射出端と動作確認装置とが接続された状態で、光信号射出端から射出された光信号(O)を検出する光量センサ(28)と、該光量センサでの検出結果に基づき、励起光源と光ファイバと波長変換ユニットの動作を判定する判定回路を有する光源制御器(22)と、を具備する。

Description

照明システム
 本発明は、被照明物を照明する照明システムに関する。
 例えば特許文献1には、高い確度で断線を検出可能な構成を有する光源装置である発光装置が開示されている。この光源装置は、光(例えば励起光)を射出する半導体発光素子を有する光源と、半導体発光素子から射出された光を集光するレンズと、光がレンズによって集光するコネクタと、コネクタと接続する導光部材と、導光部材の先端に配設されている光部品と、を備えている。導光部材は、コネクタから集光した光を導光する。導光部材は、例えば、光ファイバなどである。光部品には、導光部材によって光が導光される。
 また、上記光源装置は、レンズとコネクタとの間に配設され、光部品から戻ってきた反射光を分岐する光分岐部材と、光分岐部材によって分岐された反射光を受光する受光素子と、を有している。受光素子は、反射光を検出することで、光源装置の異常の有無、例えば導光部材の断線を検出する検出部でもある。
特開2008-26698号公報
 上述した特許文献1は、光分岐部材によって分岐された反射光を検出することによって導光部材の断線等の異常を検出する構成を用いている。しかしながら、そのような反射光によって検出される検出項目は限られ、精度良く異常を検出する為に測定項目を増やすと、複数の検出器を光源装置に搭載する必要が有るので装置が大型化してしまうという問題点が有った。
 本発明は、上記の点に鑑みてなされたもので、光源装置を大型化することなく、光源装置の異常を検出可能な照明システムを提供することを目的とする。
 本発明の照明システムの一態様は、
 励起光を射出する励起光源、前記励起光源から射出された前記励起光を導光する導光部材、及び前記導光部材によって導光されてきた前記励起光を所望の波長の照明光に変換し、該照明光を被照明物に向けて射出する波長変換部、を順に接続して構成された光源装置と、
 前記光源装置の正常な動作を確認する動作確認装置と、
 からなる照明システムにおいて、
 前記光源装置における前記波長変換部を備える光信号射出端と前記動作確認装置とを直接物理的に接続するための接続部と、
 前記接続部により前記光信号射出端と前記動作確認装置とが接続された状態で、前記光信号射出端から射出された光信号と、前記光信号射出端の発熱状況と、の少なくとも一方を検出する検出部と、
 前記検出部での検出結果に基づき、前記励起光源と前記導光部材と前記波長変換部の動作を判定する動作判定部と、
 を具備することを特徴とする。
 本発明によれば、光源装置を大型化することなく、励起光源と導光部材と波長変換部の動作を判定することが可能な、つまり、光源装置の異常を検出可能な照明システムを提供することができる。
図1は、本発明の第1実施例に係る照明システムの全体構成を示すブロック図である。 図2Aは、第1実施例に係る照明システムにおける波長変換ユニットと動作確認装置の構成例を示す断面図である。 図2Bは、図2Aの波長変換ユニットと動作確認装置とを接続した状態を示す断面図である。 図3は、第1実施例における動作確認装置の別の構成例を示す断面図である。 図4は、第1実施例に係る照明システムにおける判定回路の構成例を示す図である。 図5は、第1実施例における判定回路の別の構成例を示す図である。 図6Aは、本発明の第2実施例に係る照明システムにおける光信号射出端の斜視図である。 図6Bは、第2実施例に係る照明システムにおける波長変換ユニットと動作確認装置の構成例を説明するための図である。 図7は、本発明の第3実施例に係る照明システムにおける動作確認装置の構成例を説明するための図である。 図8Aは、図7の動作確認装置の設計値より求めた検出光量分布に対して広がった分布の例を示す図である。 図8Bは、設計値より求めた検出光量分布に対して分布の中心がずれた分布の例を示す図である。 図9は、本発明の第4実施例に係る照明システムにおける波長変換ユニットと動作確認装置の構成例を説明するための図である。 図10は、本発明の第5実施例に係る照明システムにおける波長変換ユニットと動作確認装置の構成例を説明するための図である。 図11は、本発明の第6実施例に係る照明システムの構成例を説明するための図である。 図12は、第6実施例に係る照明システムにおける波長変換ユニットと動作確認装置の別の構成例を説明するための図である。 図13は、本発明の第8実施例に係る照明システムの構成例を説明するための図である。 図14は、本発明の第9実施例に係る照明システムの全体構成を示すブロック図である。 図15Aは、第9実施例に係る照明システムにおける波長変換ユニットと動作確認装置の構成例を示す断面図である。 図15Bは、図15Aの波長変換ユニットと動作確認装置とを接続した状態を示す断面図である。 図16は、温度変化から発熱量を求める方法を説明するための図である。 図17は、本発明の第10実施例に係る照明システムにおける波長変換ユニットと動作確認装置の構成例を説明するための図である。 図18は、本発明の第11実施例に係る照明システムにおける動作確認装置の構成例を説明するための図である。 図19Aは、図18の動作確認装置の設計値より求めた検出温度分布に対して広がった分布の例を示す図である。 図19Bは、設計値より求めた検出温度分布に対して分布の中心がずれた分布の例を示す図である。 図20は、本発明の第12実施例に係る照明システムにおける波長変換ユニットと動作確認装置の構成例を説明するための図である。 図21は、本発明の第13実施例に係る照明システムにおける波長変換ユニットと動作確認装置の構成例を説明するための図である。
 以下、図面を参照して本発明の実施例について詳細に説明する。 
 [第1実施例]
 図1に示すように、本発明の第1実施例に係る照明システム10は、光源装置12と、動作確認装置14と、から構成されている。光源装置12は、励起光を基に生成した照明光を被照明物に照明する。動作確認装置14は、上記光源装置12に対して接続または分離可能である。該動作確認装置14は、上記光源装置12と接続され且つ上記光源装置12が光信号Oを射出した際に、その射出された光信号Oの状態を基に、上記光源装置12の状態、言い換えると光源装置12の異常の有無を確認するのに用いられる。
 上記光源装置12は、励起光源16と、光ファイバ18と、波長変換ユニット20と、を、順に接続して構成されている。ここで、励起光源16は、励起光を射出する。光ファイバ18は、上記励起光源16から射出された励起光を導光する導光部材である。波長変換ユニット20は、上記光ファイバ18によって導光されてきた励起光を所望の波長の照明光に変換し、該照明光を被照明物に向けて射出する波長変換部である。さらに、光源装置12は、光源制御器22と、表示器24と、を有している。ここで、光源制御器22は、上記励起光源16の動作開始/停止や光出力を制御する。表示器24は、上記光源装置12に関する様々な情報を表示する。
 以下、各部を詳細に説明する。 
 上記、励起光源16は、例えばレーザ装置である。
 上記波長変換ユニット20は、波長変換を行う波長変換部材、例えば蛍光体を備えており、上記光ファイバ18より射出した励起光が蛍光体に照射されている。蛍光体は、照射された励起光を、その励起光の波長とは異なる所定の波長を有する蛍光に変換する。この所定の波長の光である蛍光が、該波長変換ユニット20から、被照明物を照明する照明光として射出される。なお蛍光体は、実際には照射された励起光全てを蛍光に変換するのではなく、励起光の一部を蛍光に変換する。そのため、波長変換ユニット20は、蛍光のみならず励起光も射出する。したがって、波長変換ユニット20は、実際は、照明光である蛍光と、蛍光体によって蛍光に変換されなかった励起光と、を含む光信号Oを射出する。
 一方、上記動作確認装置14は、上記波長変換ユニット20が配置された上記光源装置12の光信号射出端に対して着脱自在となっている。この動作確認装置14は、接続検出器26と、光量センサ28と、を有している。ここで、接続検出器26は、当該動作確認装置14が上記光信号射出端と接続した際に適切な位置関係に接続されているか否かを検出する。光量センサ28は、当該動作確認装置14が上記光信号射出端と接続された状態で、上記波長変換ユニット20から射出された光信号Oを検出する検出部である。
 また、光源装置12の上記光源制御器22は、上記動作確認装置14の接続検出器26からの接続検出信号CDと、光量センサ28からの検出光量DOと、を受けるように構成されている。この光源制御器22は、光量センサ28からの検出光量DOに基づいて、光源装置12の異常の有無を、言い換えると、励起光源16と光ファイバ18と波長変換ユニット20との動作を、判定する動作判定部である判定回路30を備えている。なお、光源装置12の異常とは、例えば、光ファイバ18の断線や、該断線によって励起光が漏れる状態を指す。または、波長変換ユニット20の故障による、励起光や蛍光の射出効率が低下する状態、励起光が不要に増加する状態、等を意味する。光源装置12の異常の有無の判定については、後述する。
 このような構成の照明システム10においては、光源装置12による被照明物の照明に先立って、動作確認装置14を用いた光源装置12の動作判定が実施される。
 例えば、この動作判定は、光源装置12の電源投入時と光源装置12の動作初期化後との少なくとも一方において自動的に実施される。この動作判定においては、まず、光源制御器22は、励起光源16を動作させる前に、接続検出器26からの接続検出信号CDに基づいて、光源装置12の波長変換ユニット20の光信号射出端に対し動作確認装置14が適切な位置関係に接続されていることを確認する。そのことが確認されたならば、励起光源16を動作させて、波長変換ユニット20から光信号Oを射出させる。そして、動作確認装置14の光量センサ28により検出した射出光情報である検出光量DOを用いて、判定回路30により光源装置12の状態を判定し、その判定を基に光源制御器22は、光信号Oの光出力を制御する。即ち、光源装置12が危険、または動作不適であると判定したときには、励起光源16の発光を禁止するか、または励起光の光量が低くなるよう制限する。その後、動作確認装置14が光信号射出端から外されたならば、光出力が制御された光信号Oが光信号射出端から射出される。なお、判定結果または光信号Oの光出力の制御結果を表示器24にて表示するようにしても良い。
 次に、光源装置12の上記波長変換ユニット20及び上記動作確認装置14の具体的な構成について説明する。
 図2A及び図2Bに示すように、光源装置12は、光ファイバ18と波長変換ユニット20とを保持するための光信号射出端32を有している。波長変換ユニット20は、この光信号射出端32内の、光ファイバ18の先端部に配置される。この波長変換ユニット20は、蛍光体34とテーパーミラー36とを有している。ここで、蛍光体34は、光ファイバ18より射出した励起光の波長変換を行う波長変換部材である。そして、テーパーミラー36は、該蛍光体34の背部(光ファイバ18側)に配置されている。上述したように、上記蛍光体34で変換された照明光である蛍光と、上記蛍光体34によって蛍光に変換されなかった励起光と、を含む光信号Oが、上記光信号射出端32の先端に設けられた射出口38より射出される。テーパーミラー36は、この蛍光体34で変換された蛍光の内、射出口38方向以外の方向へ進む光を上記射出口38から射出させるために配置されている。なお、波長変換ユニット20は、ここで述べた構造に限定されず、蛍光体34を用いた構造体であれば良いことは勿論である。
 また、動作確認装置14は、上記光信号射出端32に対して着脱自在となっており、上記接続検出器26及び上記光量センサ28を備える。さらに、この動作確認装置14は、接続部40と遮光カバー42とを有している。ここで、接続部40は、上記光信号射出端32と該動作確認装置14とを直接物理的に接続するためのものである。遮光カバー42は、その接続した状態において、上記光信号射出端32から射出される光信号Oを遮光する遮光部である。
 光量センサ28は、上記遮光カバー42の凹部の内面に配置され、波長変換ユニット20の射出口38の正面となる位置に配置されている。また、この光量センサ28と射出口38との間隔が適切な間隔になるように、接続部40には、位置合わせの為の凸部44が設けられている。
 図2Bに示すように、波長変換ユニット20の光信号射出端32に動作確認装置14を装着したとき、射出口38は、遮光カバー42で覆われる。したがって、射出口38から射出された光は外部へは漏れず、光量センサ28へは射出口38から射出された光のみが入射するので、外光の影響を除去できる。また、光源装置12の動作判定時には、まだ光出力の制御を行っていないので、射出口38から危険なレベルの光が射出される虞がある。しかしながら、たとえそのような光が射出されたとしても、射出口38が遮光カバー42で覆われているので、その光が外部の人等に害を及ぼすことはない。
 接続検出器26は、遮光カバー42およびそれに固定された光量センサ28が適正な位置に設置されているか否かを検知する。この接続検出器26は、光学的にあるいは電磁的に接近を検知する構成のものであっても良いし、電極同士の接触により電気的に接続検知する構成のものであっても良い。
 なお、光量センサ28の前面(射出口38側)には、励起光が透過する波長フィルタ46が配設されている。そのため、光量センサ28は、動作確認装置14が光信号射出端32と接続し、励起光源16が励起光を射出した際、波長変換ユニット20が蛍光と励起光を射出する状態において、励起光の状態を検出することとなる。波長変換ユニット20が故障すると、波長変換ユニット20によって蛍光に変換される励起光が減少し、励起光のまま射出口38から射出する励起光が増加する。そのため、波長変換ユニット20が故障すると、蛍光の射出量が減り、励起光の射出量が増す。この励起光は、人の目や皮膚に直接照射されると害を及ぼす虞が大きいため、ここでは、この励起光の光量を検出するようにしているものである。なお、例えば光ファイバ18が断線や劣化すると、断線部分や劣化部分から励起光が漏れ、波長変換ユニット20へ入射する励起光の光量は減少し、波長変換ユニット20を透過する励起光の光量も減少する。
 また、図3に示すように、2つ光量センサ28を設けて、それぞれに励起光、蛍光を透過する波長フィルタ46E,46Fを配置することで、励起光光量検出器と蛍光光量検出器とを構成し、励起光の光量と蛍光の光量とをそれぞれ独立に検出可能としても良い。すなわち、励起光の光量変化に表れない光源装置12の微小な異常を蛍光の光量変化として検出できる場合があるので、蛍光の光量を検出することは意味がある。
 あるいは、波長フィルタ46と光量センサ28の代わりに、分光型検出器を用いても良い。このような分光型検出器を用いる場合、判定回路30は、分光型検出器で検出した励起光波長の光量のみを基に判定しても良いし、励起光波長の光量と蛍光波長の光量との相対強度を基に判定するようにしても良い。
 なお、光源装置12の判定回路30は、例えば、図4に示すように、動作確認装置14の光量センサ28からの検出光量DOを、所定の値に相当する基準電圧REFと比較する、比較器48によって構成することができる。比較器48の出力が、該判定回路30の判定結果DRとなる。このような判定回路30は、励起光の光量が所定の値以下か否かを判定することにより、光源装置12の異常の有無、言い換えると、励起光源16と光ファイバ18と波長変換ユニット20の動作、を判定する。
 あるいは、光源装置12の判定回路30は、例えば、図5に示すように、2つの比較器50,52と論理積演算器54と、から構成するようにしても良い。ここで、比較器50は、動作確認装置14の光量センサ28からの検出光量DOを、所定の範囲の下限値に相当する基準電圧REF1と比較する。比較器52は、光量センサ28からの検出光量DOを、上記所定の範囲の上限値に相当する基準電圧REF2と比較する。論理積演算器54は、それら比較器50,52の判定結果の論理積をとる。論理積演算器54の出力が、該判定回路30の最終的な判定結果DRとなる。このような判定回路30は、励起光の光量が所定の範囲に入っているか否かを判定することにより、光源装置12の異常の有無、言い換えると、励起光源16と光ファイバ18と波長変換ユニット20の動作、を判定する。
 ここで、判定回路30の判定は、下記のいずれかの方法により行われる: 
  (1)波長変換ユニット20を透過し外部に出力される励起光光量が、励起光源16や波長変換ユニット20などの製造バラツキを考慮して求められた光量の範囲に入っている時を動作「好適」、入っていない時を動作「不適」と判定する; 
  (2)波長変換ユニット20などの劣化を考慮し、将来劣化し危険な状態に至るまで十分な時間があると励起光光量から予想される状態を動作「好適」、十分な時間がないと予想される状態を動作「不適」と判定する; 
  (3)波長変換ユニット20に故障が発生し、波長変換ユニット20の射出口38より出力される励起光の光量が、他の機器や人体へ影響を与える光量であるときは「危険」、影響を与えない光量であるときは「安全」と判定する。
 例えば、励起光源16が上述したようにレーザ装置である場合、光源装置12に異常が生じると、レーザ光である励起光が射出口38から所定の値以上に射出される虞が生じる。励起光が所定の値以上に射出されると、使用者に影響を与え、所望な安全性を保てない虞が生じたり、他の機器に影響を与える虞が生じたりする。そこで、検出した励起光の光量が所定の値以下であれば「安全」、所定の値を超えれば「危険」と判定する。この判定の閾値である所定の値は、例えば励起光が他の機器や光源装置12の使用者に影響を与える状態となる射出光量を基に、その光量が射出された時に光量センサ28で検出される光量を基準とすれば良い。なお、この判定の閾値は、国際規格等で規定されるレーザ安全クラスを基準としても良い。
 上述した光源装置12に異常が生じる場合とは、例えば波長変換ユニット20が故障したことを示す。波長変換ユニット20が故障すると、波長変換ユニット20によって蛍光に変換される励起光が減少し、励起光のまま射出口38から射出する励起光が増加する。そのため波長変換ユニット20が故障すると、蛍光の射出量が減り、励起光の射出量が増す。
 また、上記動作「好適」と動作「不適」とは、例えば励起光源16や波長変換ユニット20が設計時の仕様を満たすことができるか否か、あるいは、例えば波長変換ユニット20などの劣化を考慮し、波長変換ユニット20などが劣化することで波長変換ユニット20などが危険な状態に至るまでに十分な時間があるか否か、によって決まる。判定の閾値である所定の値は、例えば励起光源16や波長変換ユニット20が設計時の仕様を満たし、例えば励起光源16や波長変換ユニット20等の製造バラツキを考慮して求めれば良い。この所定の値は、上記「安全」と「危険」とにおける所定の値よりも小さい。
 判定回路30は、上記「安全」と「危険」または上記「好適」と「不適」のいずれかのための所定の値に相当する基準電圧REFを比較器48または52,54に予め設定しておくことで、判定結果を得る。もちろん、上記「安全」,「危険」と上記「好適」,「不適」とをそれぞれ判定して、その判定の組み合わせに応じて励起光の光量(励起光源16の光出力)を制御するようにしても構わない。
 なお、ここでは励起光光量を基に判定する例を説明したが、蛍光光量、または両光量を用いて判定する方法も考えられる。または、分光型検出器を用いて、スペクトルから励起光光量、蛍光光量を導出して同様に判定する方法も採ることができる。また、励起光光量と蛍光光量の比を用いて判定する方法も考えられる。
 そして、動作確認装置14が光源装置12から使用者の作業によって外された後、光源制御器22は先の判定結果を基に、励起光源16の光出力を制御する。「安全」または動作「好適」と判定された場合、照明光を出力可能となる。「危険」または「動作不適」であると判定したときには、励起光源16を停止するか、または励起光の光量が低くなるよう制限する。
 以上のような第1実施例に係る照明システム10によれば、動作確認装置14が光信号射出端32に接続した際に、動作確認装置14に配した光量センサが光信号Oを受光することで、検出した光信号Oを基に励起光源16と光ファイバ18と波長変換ユニット20との動作を判定すること、つまり、光源装置12の異常を検出することができる。よって、本実施例では、光源装置12の光学系に新たな構成を追加することなく、光ファイバ18や波長変換ユニット20の故障を光学的に検出できるので、光源装置12の大型化を防止することができる。
 また、本実施例では、動作確認装置14を光信号射出端32に接続するだけでよく、光源装置12の光学系に新たな構成を追加することなく、設計自由度が高い構成で光ファイバ18や波長変換ユニット20の故障を光学的に検出し、故障検出時には光源装置12の危険な動作を抑制することが可能となる。そして、故障が検出されず、光源装置12を動作させるときには、動作確認装置14を外しているので、光源装置12の動作や使用し易さに影響を与えることが無い。
 また、本実施例では、光学的な検出結果に基づく判定を行うので、光源装置12の異常を判定する時間が短く応答性が良い。さらに、異常発生による影響を直接検出することとなるので、確実な検出が可能である。
 [第2実施例]
 本第2実施例に係る照明システム10は、光源装置12の光信号射出端32に波長変換ユニット20を複数配置したものである。
 例えば、図6Aは、光信号射出端32に3個の波長変換ユニット20を配置した例であり、光信号射出端32は、3個の射出口38を備えている。なお、各波長変換ユニット20への導光に関しては、励起光源16から射出された励起光を光分岐して複数の光ファイバ18によって各波長変換ユニット20に導光するようにすれば良い。あるいは、励起光源16から射出された励起光を1本の光ファイバ18によって光信号射出端32内に導光し、該光信号射出端32内で各波長変換ユニット20に光分岐するようにしても良い。
 このように光源装置12の光信号射出端32に複数の波長変換ユニット20が配置されている構成では、図6A及び図6Bに示すように、光信号射出端32の外周に切り欠き56を設け、動作確認装置14の遮光カバー42の内周に、上記切り欠き56と嵌め合うような突出部58を設けておく。そして、切り欠き部56に突出部58嵌め合うように動作確認装置14を光信号射出端32に接続した際に、各波長変換ユニット20に対面する場所に光量センサ28を配置することで、各波長変換ユニット20の光量を確実に検出することができるようになる。このように、複数の波長変換ユニット20を備える場合には、接続部40に、光量センサ28と光信号射出端32との位置関係が一意に定まる接続構造を持つことが好ましい。
 [第3実施例]
 本第3実施例に係る照明システム10は、図7に示すように、上記光量センサ28の代わりに、光量分布測定可能な2次元配列光量センサ60を搭載するものである。この2次元配列光量センサ60としては、2次元PDやイメージャ素子を用いることができる。
 この場合、判定回路30は、2次元配列光量センサ60で測定した配光特性(検出光量DOの分布)が、設計値より求めた分布に対して所定の上限値Uと下限値Lの間にあれば「安全」または動作「好適」と判定する。これに対して、上記設計値より求めた分布に対して、図8Aに示すように広がったり、図8Bに示すように分布の中心がずれたりしたときには、「危険」または動作「不適」と判定する。
 また、波長フィルタ46に代えてカラーフィルタを搭載することにより、波長毎(色事)にどのような分布を持つかで判定する構成も採用することができる。この場合、励起光、蛍光それぞれの分布で判定が可能になる。
 なお、2次元配列光量センサ60で測定した光量分布の検出値と設計値より求めた分布とを比較するのではなく、測定した光量分布の検出値から最大光量を求め、その値を基に判定を行うことで、判定時間の短縮化が図れる。
 [第4実施例]
 本第4実施例に係る照明システム10は、図9に示すように、動作確認装置14の遮光カバー42の内側に、散乱板62を設置し、光量センサ28は、波長変換ユニット20の射出口38から射出される光信号Oが直接入射しない場所に設置したものである。
 このような構成においては、射出口38から出射された光信号Oは、散乱板62に照射され、該散乱板62で様々な方向に反射・散乱される。
 従って、光信号Oが配光分布を有していた場合でも、光量センサ28では平均化して検出できる。よって、光量センサ28が波長変換ユニット20の射出口38の正面に配置されていなくても、散乱板62によって散乱された光信号Oの光量を測定可能な位置に配置されれば、光信号O全体の状況を検出できる。
 また、光源装置12の光信号射出端32に複数の波長変換ユニット20が配置されている上記第2実施系においても、光量センサ28を複数設ける代わりに、本実施例のような構成にして1つの光量センサ28のみを用いるようにしても良い。このような構成とすることで、それぞれの波長変換ユニット20より射出した光信号Oの反射散乱光が光量センサ28に入射するので、各波長変換ユニット20の光量を確実に検出することができる。
 [第5実施例]
 本第5実施例に係る照明システム10は、図10に示すように、光量センサ28を、動作確認装置14側ではなくて、光源装置12の光信号射出端32に内蔵させたものである。この場合、動作確認装置14は、上記第4実施例と同様、遮光カバー42の内側に散乱板62を設置する。
 このような構成においては、波長変換ユニット20の射出口38から射出した光信号Oは、遮光カバー42内の散乱板62により反射・散乱して、光信号射出端32内蔵の光量センサ28に入射する。
 なお、観察機能を持った光源装置12であれば、別途光量センサ28を設ける必要なく、その観察機能を構成しているイメージャ素子を用いて光量を検出しても良い。さらに、カラーフィルタ付きのイメージャ素子の場合は、励起光と蛍光を分離して検出可能であり、また、配光も検出可能である。
 なお、図10では、接続検出器26を、動作確認装置14側でなく光源装置12の光信号射出端32側に配置しているが、動作的には動作確認装置14側に配置した場合と同様である。上記第1乃至第4実施例の構成においても、接続検出器26を光信号射出端32側に配置しても良いことは勿論である。また、逆に、本実施例においても、接続検出器26を、動作確認装置14側に配置しても良いことは勿論である。
 [第6実施例]
 本第6実施例に係る照明システム10は、動作確認装置14側から光源装置12側への情報の伝達を、図11に示すように、赤外、電磁結合、または電波による無線送信部である送信器64と無線受信部である受信器66とを用いた無線通信WCにより行うものである。
 この場合、光源制御器22に設置していた判定回路30を、動作確認装置14の光量センサ28と送信器64の間に配置するようにしても良い。このような配置すれば、無線通信の内容として、判定結果を送信すれば良いので、通信機構が簡略化できる。
 また、接続検出器26も、光源装置12の光信号射出端32側に設置することで、動作確認装置14との有線接続を無くすことができる。
 なお、図12に示すように、受信器66を、動作確認装置14が光信号射出端32に接続されたときに送信器64と受信器66とが対向するような、光信号射出端32内の位置に設けても良い。この場合、動作確認装置14が正しく接続された時のみ動作するように、送信器64と受信器66が近距離でのみ動作するような低電力型にすることで、送信器64・受信器66の動作を基に、接続検出を行うことも可能であり、これにより、接続検出器26を省略することも可能となる。
 また、送信器64及び受信器66を双方向で無線伝達可能な送受信器とすることで、動作確認装置14に電池を内蔵する代わりに、それら送受信器で光源装置12側から伝達される電力を、動作確認装置14側の動作に用いるようにしても良い。
 なお、図11及び図12では、接続検出器26を、光信号射出端32側に配置しているが、動作確認装置14側に配置しても良いことは勿論である。
 [第7実施例]
 本第7実施例に係る照明システム10は、光量センサ28を光電池として用いるものである。
 これにより、実際の被照明物の照明に使用されない、判定のためのみに用いられる光信号Oを電力に変換して、動作確認装置14の動作に利用することができる。
 [第8実施例]
 本第8実施例に係る照明システム10は、図13に示すように、動作確認装置14を、励起光源16や光源制御器22を内蔵する光源装置本体68に組み込んだものである。
 これにより、動作確認装置14と光源制御器22との接続の手間を省き、また、動作確認装置14の紛失の虞を無くすことができる。
 なお、図13では、接続検出器26を、光信号射出端32側に配置しているが、動作確認装置14側に配置しても良いことは勿論である。
 [第9実施例]
 本発明の第9実施例に係る照明システム10は、図14に示すように、動作確認装置14に、上記光量センサ28に代えて、当該動作確認装置14が光信号射出端32と接続された状態で、上記光信号射出端32の発熱状況を検出する検出部である温度センサ70を設けている。
 本実施例では、光源装置12の光源制御器22は、判定回路30により、温度センサ28により検出した上記光信号射出端32の発熱状況である検出温度DTに基づいて、光源装置12の異常の有無、言い換えると、励起光源16と光ファイバ18と波長変換ユニット20の動作、を判定する。
 なお、接続検出器26は、図14では、光源装置12側に設けているが、動作確認装置14側に設けても良いことは勿論である。
 具体的には、動作確認装置14は、図15Aに示すように、光信号射出端32に対して着脱自在となっており、上記温度センサ70を備える。上記温度センサ70は、上記接続部40の、上記光源装置12の光信号射出端32の側面に対峙する位置に配置されている。特に、温度センサ70は、光信号射出端32内の発熱源である波長変換ユニット20の発熱状況をモニタできる場所、すなわち波長変換ユニット20からの熱伝導が良いところに設置する。具体的には、温度センサ70は、接続部40の内面であって、図15Bに示すように、光源装置12の光信号射出端32が挿入されたときに、その光信号射出端32と接する位置に配置する。この位置は、温度センサ70に光信号Oが当たらない場所であるので、光信号Oによる温度上昇を防ぐことができ、温度センサ70として熱電対やサーミスタのような接触型温度センサを使用する場合に望ましい位置である。
 また、本実施例においては、上記温度センサ70の周辺、及び動作確認装置14が上記光源装置12の光信号射出端32に接する場所の、上記接続部40の内面には、熱伝導率が低い断熱材72が配置されている。これにより、動作確認装置14の発熱、熱拡散の影響を受けずに、温度センサ70が光源装置12の光信号射出端32の温度、つまり波長変換ユニット20の温度を正確に測定できる。また、この断熱材72には、該動作確認装置14を上記光信号射出端32に接続した際に、温度センサ70が光信号射出端32内の波長変換ユニット20の温度を正しく検出できるような位置に、光信号射出端32が保持されるように、位置合わせの為の凸部74を設けている。
 なお、接続検出器26は、動作確認装置14およびそれに固定された温度センサ70が適正な位置に設置されているか否かを検知する。この接続検出器26は、光学的にあるいは電磁的に接近を検知する構成のものであっても良いし、電極同士の接触により電気的に接続検知する構成のものであっても良い。
 また、光源装置12の判定回路30は、上記第1実施例と同様とすることができる。すなわち、判定回路30は、例えば、動作確認装置14の温度センサ70からの検出温度DTを所定の値に相当する基準電圧REFと比較する比較器48によって構成することができる。比較器48の出力が、該判定回路30の判定結果DRとなる。このような判定回路30は、検出温度DTが所定の値以下か否かを判定することにより、光源装置12の異常の有無、言い換えると、励起光源16と光ファイバ18と波長変換ユニット20の動作、を判定する。
 あるいは、光源装置12の判定回路30は、例えば、動作確認装置14の温度センサ70からの検出温度DTを2つの比較器50,52により所定の範囲の下限値及び上限値それぞれに相当する第1、第2の基準電圧REF1,REF2と比較し、それら2つの比較器50,52の判定結果の論理積をとって最終的な判定結果DRを得る論理積演算器と、から構成するようにしても良い。このような判定回路30は、検出温度DTが所定の範囲に入ってないか否かを判定することにより、光源装置12の異常の有無、言い換えると、励起光源16と光ファイバ18と波長変換ユニット20の動作、を判定する。
 ここで、判定回路30の判定は、下記のいずれかの方法により行われる: 
  (1)検出温度DTで示される波長変換ユニット20からの発熱が、励起光源16や波長変換ユニット20などの製造バラツキを考慮して求められた発熱の範囲(温度範囲)に入る時を動作「好適」、入らない時を動作「不適」と判定する; 
  (2)波長変換ユニット20などの劣化を考慮し、将来劣化し危険な状態に至るまで十分な時間があると検出温度DTから予想される場合を動作「好適」、時間が短いと予想されるときは動作「不適」と判定する; 
  (3)検出温度DTで示される波長変換ユニット20からの発熱より推測した状態として、波長変換ユニット20が設計時に想定した状態で動作していると推測した時は動作「好適」、想定していない状態で動作しているときを動作「不適」と判定する。例えば、検出温度DTが波長変換ユニット20を透過する励起光光量が設計時の範囲内であるときに発生する発熱(温度)であるときは動作「好適」、設計時の発熱範囲を外れたときは動作「不適」と判定する; 
  (4)波長変換ユニット20から発生する熱により、光源装置12の光信号射出端32が他の機器やユーザへ影響を与える温度と検出温度DTがなっているときは「危険」、影響を与えない時は「安全」と判定する; 
  (5)波長変換ユニット20から発生する熱(検出温度DT)から推測した状態として、波長変換ユニット20が危険な状態で動作していると推測したときは「危険」、安全な状態で動作していると推測したときは「安全」と判定する。例えば、波長変換ユニット20を透過する励起光が増加し、危険な光量であるときに発生する発熱が検出されたときは「危険」と判定する。
 例えば、蛍光体34が劣化するといったように、波長変換ユニット20が故障すると、励起光が波長変換ユニット20を透過する際の透過率が低下し、波長変換ユニット20が吸収する励起光の光量が増加する。これにより、例えば蛍光体34が劣化していない、すなわち波長変換ユニット20が故障していない正常な状態に比べて、発熱量は増加する。そのため、光信号射出端32の温度は上昇する。
 これに対して、波長変換ユニット20が故障した状態として、蛍光体34が光源装置12や光ファイバ18の光軸から脱落し、励起光が蛍光体34に入射しない状態になると、波長変換ユニット20が吸収する励起光の光量が減少する。これにより、例えば蛍光体34が光源装置12から脱落していない、すなわち、波長変換ユニット20が故障していない正常な状態に比べて、発熱量は減少し、光信号射出端32の温度は下降する。
 また、光ファイバ18が断線や劣化すると、断線部分や劣化部分から励起光が漏れ、波長変換ユニット20へ入射する励起光量光量が減少し、波長変換ユニット20の発熱量は減少する。
 よって、温度が所定の範囲を外れた場合、波長変換ユニット20から漏れる励起光の光量の増加や、光ファイバ18からの励起光の漏れ光量が増加し、他の機器や使用者に影響を与える虞が生じる。
 そこで、判定回路30は、温度センサ70が検出する光信号射出端32の温度が所定の値以下か否か、あるいは所定の範囲に入ってないか否かにより、「安全」か「危険」かを判定する。この所定の値や所定の範囲は、使用者や他の機器に与える影響を基に決定されれば良く、例えば波長変換ユニット20の励起光の漏れ状態に起因する光信号射出端32の温度を考慮して求めれば良い。光源装置12が設計された際に、予め想定された値や例えば国際規格などから決定しても良い。
 また、上記動作「好適」と動作「不適」とは、例えば励起光源16や波長変換ユニット20が設計時の仕様を満たすことができるか否か、あるいは、例えば波長変換ユニット20などの劣化を考慮し、波長変換ユニット20などが劣化することで波長変換ユニット20などが危険な状態に至るまでに十分な時間があるか否か、によって決まる。判定の閾値である所定の値または所定の範囲は、例えば励起光源16や波長変換ユニット20が設計時の仕様を満たし、例えば励起光源16や波長変換ユニット20等の製造バラツキを考慮して求めれば良い。この所定の値または範囲は、上記「安全」と「危険」とにおける所定の値または範囲よりも小さい。
 判定回路30は、上記「安全」と「危険」または上記「好適」と「不適」のいずれかのための所定の値に相当する基準電圧REFを比較器48または52,54に予め設定しておくことで、判定結果を得る。もちろん、上記「安全」,「危険」と上記「好適」,「不適」とをそれぞれ判定して、その判定の組み合わせに応じて励起光の光量(励起光源16の光出力)を制御するようにしても構わない。
 なお、ここでは検出温度DTを基に判定する例を説明したが、検出温度DTから発熱量を推定し、推定値を用いて判定するようにしても良い。この場合、発熱量は、図16に示すように、温度の変化と、光信号射出端32の熱抵抗Rt、熱容量Ctより求めることができる。熱抵抗は、波長変換ユニット20から温度センサ70までの値であり、熱容量は、光信号射出端32の値であり、それぞれ設計値または実験値を用いると良い。
 以上のような第9実施例に係る照明システム10によれば、動作確認装置14が光信号射出端32に接続した際に、動作確認装置14に配した温度センサ70が光信号射出端32の発熱状況として温度を検出することで、検出した温度を基に励起光源16と光ファイバ18と波長変換ユニット20の動作を判定すること、つまり、光源装置12の異常を検出することができる。よって、本実施例では、光源装置12の光学系に新たな構成を追加することなく、光ファイバ18や波長変換ユニット20の故障を検出できるので、光源装置12の大型化を防止することができる。
 また、本実施例では、動作確認装置14を光信号射出端32に接続するだけでよく、光源装置12の光学系に新たな構成を追加することなく、設計自由度が高い構成で光ファイバ18や波長変換ユニット20の故障を検出し、故障検出時には光源装置12の危険な動作を抑制することが可能となる。そして、故障が検出されず、光源装置12を動作させるときには、動作確認装置14を外しているので、光源装置12の動作や使用し易さに影響を与えることが無い。
 また、本実施例では、検出した発熱状況に基づいて判定を行うので、一定の条件では早期に故障を検出することが可能である。また、動作確認装置14の装着精度がそれほど高くなくても、精度良く安定した故障検出が可能である。また、発熱の状態から、故障の詳細(壊れ方)を分析することが可能であり、故障に対して適切な対策が可能となる。
 [第10実施例]
 本第10実施例に係る照明システム10は、上記第9実施例のような接触型の温度センサ70の代わりに、図17に示すように、赤外線温度センサのような光学的に温度を検出する非接触型温度センサ76を用いるものである。この非接触型温度センサ76は、遮光カバー42の凹面の内面の、発熱位置を測定し易い場所に設置するのが望ましい。光信号射出端32に動作確認装置14を装着したとき、光信号射出端32の射出口38は遮光カバー42で覆われており、射出口38から射出された光は外部へは漏れず、非接触型温度センサ76へは、射出口38から射出された光のみが入射するので、外光の影響を除去できる。また、まだ光出力の制御を行っていない光源装置12の動作判定時に、射出口38から危険なレベルの光が射出されたとしても、遮光カバー42で覆われているので、その光が外部の人等に害を及ぼすことはない。
 また、本実施例では、光信号射出端32との接触による動作確認装置14の発熱、熱拡散の影響は非接触型温度センサ76の検出結果に影響を及ぼさないので、上記第9実施例隊のような断熱材72は不要となる利点がある。ただし、非接触型温度センサ76と光信号射出端32との間の距離が一定になるような接続構造として、接続部40には、位置合わせの為の凸部44が設けられている。
 なお、接続検出器26は、上記第9実施例のように光信号射出端32側に設けても良いし、図17に示すように、動作確認装置14側に設置しても構わない。
 [第11実施例]
 本第11実施例に係る照明システム10は、図18に示すように、上記第10実施例における非接触型温度センサ76の代わりに、温度の2次元分布を測定可能な非接触型2次元アレイ温度センサ78を搭載するものである。
 この場合、判定回路30は、非接触型2次元アレイ温度センサ78で測定した温度分布が、設計値より求めた分布に対して所定の上限値と下限値の間にあれば「安全」または動作「好適」と判定する。これに対して、上記設計値より求めた分布に対して、図19Aに示すように広がったり、図19Bに示すように分布の中心がずれたりしたときには、「危険」または動作「不適」と判定する。
 なお、非接触型2次元アレイ温度センサ78で測定した温度分布の検出値と設計値より求めた分布とを比較するのではなく、測定した温度分布の検出値から最大値を求め、その最大値を基に判定を行うことで、判定時間の短縮化が図れる。
 また、本実施例においても、接続検出器26は、光信号射出端32側に設けても良いし、動作確認装置14側に設置しても構わない。
 [第12実施例]
 本第12実施例に係る照明システム10は、図20に示すように、上記第9実施例の構成において、光信号射出端32の発熱の影響を受けない場所にさらに第2の温度センサ80を設置している。そして、光源制御器22は、該第2の温度センサ80で検出される周辺温度と、波長変換ユニット20近傍に設置されている温度センサ70の検出温度DTとの差を用いて、判定する。
 例えば、第2の温度センサ80は、動作確認装置14のうち、光信号射出端32と接することなく、かつ、光信号射出端32から射出される信号光が照射されない領域に取り付けている。もちろん、この位置に限定するものではなく、例えば、第2の温度センサ80は、動作確認装置14の外面に取り付けるようにしても良い。
 このように、周辺温度との差を用いて判定することで、より正確な判定が可能となる。
 [第13実施例]
 本第13実施例に係る照明システム10は、光源装置12の光信号射出端32に波長変換ユニット20を複数配置したものである。
 例えば、図6A及び図6Bに示したように、光信号射出端32に3個の波長変換ユニット20を配置した場合、光信号射出端32の外周に切り欠き56を設け、動作確認装置14の遮光カバー42の内周に、上記切り欠き56と嵌め合うような突出部58を設けることは、上記第2実施例と同様である。温度センサ70に関しても、上記第2実施例の光量センサ28と同様、図21に示すように、各波長変換ユニット20に対面する場所に配置する。この様に構成することで、各波長変換ユニット20の温度を確実に検出することができるようになる。このように、複数の波長変換ユニット20を備える場合には、接続部40に、温度センサ70と光信号射出端32との位置関係が一意に定まる接続構造を持つことが好ましい。
 また、温度の2次元分布を測定可能な非接触型2次元アレイ温度センサ78を光信号射出端32外周に接するように配置し、検出される温度の最高温度を基に、判定を行う構成としても構わない。
 以上実施例に基づいて本発明を説明したが、本発明は上述した実施例に限定されるものではなく、本発明の要旨の範囲内で種々の変形や応用が可能なことは勿論である。
 例えば、第6実施例と同様に、他の実施例においても、判定回路30を、光源制御器22に内蔵するのではなく、動作確認装置14側に設けても構わない。
 また、第9乃至第13実施例においても、動作確認装置14側から光源装置12側への情報の伝達を、赤外、電磁結合、または電波による無線通信により行うようにしても良い。この場合、光源制御器22に設置していた判定回路30を、動作確認装置14の温度センサ70側に設け、無線通信の内容として、判定結果を送信するようにすれば、通信機構が簡略化できる。
 また、温度センサ70などの温度の検出器を備える動作確認装置14を、上記第8実施例のように、励起光源16や光源制御器22を内蔵する光源装置本体68に組み込んでも良い。
 また、光量センサ28などの光信号の検出器と温度センサなどの温度の検出器との両方を利用して、励起光源16と光ファイバ18と波長変換ユニット20との動作を判定する、つまり、光源装置12の異常を検出するようにしても良い。

Claims (24)

  1.  励起光を射出する励起光源(16)、前記励起光源から射出された前記励起光を導光する導光部材(18)、及び前記導光部材によって導光されてきた前記励起光を所望の波長の照明光に変換し、該照明光を被照明物に向けて射出する波長変換部(20)、を順に接続して構成された光源装置(12)と、
     前記光源装置の正常な動作を確認する動作確認装置(14)と、
     からなる照明システム(10)において、
     前記光源装置における前記波長変換部を備える光信号射出端(32)と前記動作確認装置とを直接物理的に接続するための接続部(40)と、
     前記接続部により前記光信号射出端と前記動作確認装置とが接続された状態で、前記光信号射出端から射出された光信号と、前記光信号射出端の発熱状況と、の少なくとも一方を検出する検出部(28;60;70;76;78)と、
     前記検出部での検出結果に基づき、前記励起光源と前記導光部材と前記波長変換部の動作を判定する動作判定部(22)と、
     を具備することを特徴とする照明システム。
  2.  前記動作確認装置は、前記光信号射出端に接続することで、前記光信号射出端から射出される前記光信号を遮光する遮光部(42)を有していることを特徴とする請求項1に記載の照明システム。
  3.  前記検出部は、前記遮光部に設置されていることを特徴とする請求項2に記載の照明システム。
  4.  前記接続部は、前記光信号射出端と前記検出部とを所定の位置関係で保持することを特徴とする請求項3に記載の照明システム。
  5.  前記検出部は、前記動作確認装置に配置され、
     前記接続部は、前記動作確認装置の前記検出部と前記光信号射出端との位置関係が一意に定まる接続構造(56,58)を持つことを特徴とする請求項4に記載の照明システム。
  6.  前記接続部は、前記検出部と前記光信号射出端との間の距離が一定になるような接続構造(44)を持つことを特徴とする請求項4に記載の照明システム。
  7.  前記検出部は、前記光信号を検出する検出部(28;60)であって、前記光源装置の、前記光信号射出端の近傍に設置されており、
     前記光信号射出端より射出される前記光信号が照射される前記遮光部の面に、光学散乱部材(62)が配置されていることを特徴とする請求項2に記載の照明システム。
  8.  前記光信号は、前記励起光の波長と前記照明光の波長とを含み、
     前記検出部は、前記励起光の波長と前記照明光の波長とを分離検出可能な分光型検出器(28,46E,46F)を有することを特徴とする請求項3に記載の照明システム。
  9.  前記分光型検出器は、前記励起光の光量を検出する励起光光量検出器(28,46E)と、前記照明光の光量を検出する照明光光量検出器(28,46F)と、からなり、
     前記動作判定部は、前記励起光光量検出器の出力と前記照明光光量検出器の出力との比に基づいて、前記励起光源と前記導光部材と前記波長変換部の動作を判定することを特徴とする請求項8に記載の照明システム。
  10.  前記検出部は、前記光信号の光量を測定可能な光量検出器(28;60)を有することを特徴とする請求項3に記載の照明システム。
  11.  前記光量検出器は、前記遮光部の、前記光信号射出端の正面位置に配置されることを特徴とする請求項10に記載の照明システム。
  12.  前記光量検出器は、光量分布測定可能なセンサ(60)であることを特徴とする請求項10に記載の照明システム。
  13.  前記遮光部は、前記光信号射出端の正面位置に散乱板(62)を有し、
     前記光量検出器は、前記光信号射出端から射出された前記光信号が直接照射されない位置であって、前記散乱板によって散乱された前記光信号の光量を測定可能な位置に配置されることを特徴とする請求項10に記載の照明システム。
  14.  前記動作判定部は、前記動作確認装置に配置され、
     前記動作確認装置は、前記動作判定部の判定結果を当該動作確認装置外部に無線送信する無線送信部(64)をさらに備えることを特徴とする請求項8または10に記載の照明システム。
  15.  前記接続部は、前記光信号射出端と前記動作確認装置とが直接物理的に接続したことを検出する接続検出器(26)をさらに有し、
     前記接続検出器は、電極、光、または電磁を基に前記接続したことを検出することを特徴とする請求項14に記載の照明システム。
  16.  前記検出部は、前記光信号射出端の発熱状況を検出する検出部(70;76;78)であって、
     前記動作確認装置は、接続される前記光信号射出端に接触する部分が断熱材(72)で構成されていることを特徴とする請求項2に記載の照明システム。
  17.  前記検出部は、前記検出部は、前記光信号射出端の発熱状況を検出する検出部(70;76;78)であって、前記接続部により前記光信号射出端と前記動作確認装置とが接続された状態で、前記遮光部の、前記光信号射出端の近傍に設置されことを特徴とする請求項2に記載の照明システム。
  18.  前記検出部は、接触式の温度センサ(70)を有することを特徴とする請求項1に記載の照明システム。
  19.  前記検出部は、非接触式の温度センサ(76;78)を有することを特徴とする請求項1に記載の照明システム。
  20.  前記検出部は、前記光信号射出端の発熱状況を検出する検出部(70;76;78)であって、波長変換ユニットより熱伝導的に近いところを測定できるように配置されることを特徴とする請求項1に記載の照明システム。
  21.  前記温度センサは、分布測定可能な温度センサ(78)であることを特徴とする請求項18または19に記載の照明システム。
  22.  前記光信号射出端の発熱の影響を受けない場所に設置された第2のセンサ(80)をさらに具備し、
     前記動作判定部は、前記温度センサで検出された前記光信号射出端の温度と前記第2の温度センサで検出された温度との比較に基づき、前記励起光源と前記導光部材と前記波長変換部の動作を判定することを特徴とする請求項18または19に記載の照明システム。
  23.  前記光信号射出端の発熱の影響を受けない場所に設置された第2のセンサ(70)をさらに具備し、
     前記動作判定部は、前記温度センサで検出された前記光信号射出端の温度の変化からも発熱量を算出し、該算出した発熱量と前記第2の温度センサで検出された温度との比較に基づき、前記励起光源と前記導光部材と前記波長変換部の動作を判定することを特徴とする請求項18または19に記載の照明システム。
  24.  前記温度センサは、前記光信号射出端から射出された前記光信号が当たらない場所に設置されることを特徴とする請求項18に記載の照明システム。
PCT/JP2012/057359 2011-03-24 2012-03-22 照明システム WO2012128324A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12760709.1A EP2690358A4 (en) 2011-03-24 2012-03-22 LIGHTING SYSTEM
US14/028,854 US9261261B2 (en) 2011-03-24 2013-09-17 Illumination system
US14/988,214 US10041655B2 (en) 2011-03-24 2016-01-05 Illumination system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011066715A JP2012204107A (ja) 2011-03-24 2011-03-24 照明システム
JP2011-066714 2011-03-24
JP2011-066715 2011-03-24
JP2011066714A JP2012204106A (ja) 2011-03-24 2011-03-24 照明システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/028,854 Continuation US9261261B2 (en) 2011-03-24 2013-09-17 Illumination system

Publications (1)

Publication Number Publication Date
WO2012128324A1 true WO2012128324A1 (ja) 2012-09-27

Family

ID=46879465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057359 WO2012128324A1 (ja) 2011-03-24 2012-03-22 照明システム

Country Status (3)

Country Link
US (2) US9261261B2 (ja)
EP (1) EP2690358A4 (ja)
WO (1) WO2012128324A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016189376A (ja) * 2015-03-30 2016-11-04 株式会社島津製作所 ファイバ結合型レーザ装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2690358A4 (en) * 2011-03-24 2014-09-17 Olympus Corp LIGHTING SYSTEM
WO2016145119A1 (en) * 2015-03-09 2016-09-15 Spectrasensors, Inc. Intrinsically safe spectroscopic analyzer
JPWO2017104048A1 (ja) * 2015-12-17 2018-11-01 オリンパス株式会社 内視鏡用照明装置及び内視鏡システム
JP6660592B2 (ja) * 2016-03-07 2020-03-11 パナソニックIpマネジメント株式会社 照明装置
DE102016207759A1 (de) * 2016-05-04 2017-11-09 Osram Gmbh Detektieren einer Beschädigung einer Konvertereinrichtung
JP6686836B2 (ja) * 2016-10-14 2020-04-22 日亜化学工業株式会社 照明装置
US20180149776A1 (en) * 2016-11-28 2018-05-31 Microsoft Technology Licensing, Llc Optical cross talk mitigation for light emitter
JP7174918B2 (ja) * 2018-08-06 2022-11-18 パナソニックIpマネジメント株式会社 照明装置
EP3933370A4 (en) * 2019-02-27 2022-11-16 Fujikura Ltd. LASER DEVICE

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026698A (ja) 2006-07-24 2008-02-07 Nichia Chem Ind Ltd 発光装置
JP2008122838A (ja) * 2006-11-15 2008-05-29 Nichia Chem Ind Ltd 発光装置
JP2008224478A (ja) * 2007-03-14 2008-09-25 Iwasaki Electric Co Ltd 光量モニタとそれを用いた光源装置
JP2009140874A (ja) * 2007-12-10 2009-06-25 Sony Corp 映像表示システム
JP2009183449A (ja) * 2008-02-06 2009-08-20 Hoya Corp 光源装置
JP2009541950A (ja) * 2006-06-26 2009-11-26 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 発光装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3777562A (en) * 1972-04-13 1973-12-11 Precision Machine Products Inc Methods of and means for determining the calorific value of combustible gases
US4487481A (en) * 1980-03-24 1984-12-11 Epson Corporation Backlighted liquid crystal display
JPS5830473A (ja) 1981-08-19 1983-02-22 Nissan Motor Co Ltd デイ−ゼルエンジンの自動始動暖機運転装置
JPS5838473A (ja) 1981-08-31 1983-03-05 松下電工株式会社 白熱灯ソケツト
JPS5942532A (ja) 1982-09-03 1984-03-09 Mitsubishi Electric Corp 光源装置
JPH05231938A (ja) * 1991-02-07 1993-09-07 Res Dev Corp Of Japan 高感度多波長分光装置
JP2560560B2 (ja) * 1991-04-22 1996-12-04 株式会社島津製作所 熱型光検出器およびその支持台の製造方法
KR960007828B1 (ko) * 1992-12-24 1996-06-12 엘지전자 주식회사 인체 감지센서 및 그 제조 방법
US5798518A (en) * 1995-07-28 1998-08-25 Laserscope Medical laser calibration system and method
US5894352A (en) * 1997-05-20 1999-04-13 Cymer, Inc. Absorption tester for optical components
US6734958B1 (en) * 1999-09-17 2004-05-11 Tidal Photonics, Inc. Apparatus and methods for evaluating performance of endoscopy devices and systems
DE10006286C1 (de) * 2000-02-14 2001-10-18 3M Espe Ag Lichtwellenkonvertervorrichtung und deren Verwendung im Dentalbereich
JP2003121266A (ja) * 2001-10-11 2003-04-23 Noritake Co Ltd 温度分布測定方法および装置
WO2005031292A1 (en) * 2003-09-26 2005-04-07 Tidal Photonics, Inc. Apparatus and methods relating to enhanced spectral measurement systems
DE102004002047A1 (de) * 2004-01-15 2005-08-04 Saurer Gmbh & Co. Kg Verfahren und Vorrichtung zur optischen Überwachung eines laufenden Faserstranges
JP5056009B2 (ja) * 2004-03-03 2012-10-24 日本電気株式会社 測位システム、測位方法、及びそのプログラム
US7835057B2 (en) * 2004-12-23 2010-11-16 Exfo Photonic Solutions Inc. Method of calibrating light delivery systems, light delivery systems and radiometer for use therewith
GB2431232B (en) * 2005-12-14 2007-10-10 Zinir Ltd Spectrophotometer
JP5053674B2 (ja) * 2007-03-26 2012-10-17 テルモ株式会社 耳式体温計
JP2009237111A (ja) * 2008-03-26 2009-10-15 Hamamatsu Photonics Kk 波長変換光生成装置及び生成方法
JP5380207B2 (ja) * 2009-08-27 2014-01-08 日立コンシューマエレクトロニクス株式会社 投写型表示装置
US8657489B2 (en) * 2010-06-28 2014-02-25 Infineon Technologies Ag Power switch temperature control device and method
EP2690358A4 (en) * 2011-03-24 2014-09-17 Olympus Corp LIGHTING SYSTEM

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009541950A (ja) * 2006-06-26 2009-11-26 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 発光装置
JP2008026698A (ja) 2006-07-24 2008-02-07 Nichia Chem Ind Ltd 発光装置
JP2008122838A (ja) * 2006-11-15 2008-05-29 Nichia Chem Ind Ltd 発光装置
JP2008224478A (ja) * 2007-03-14 2008-09-25 Iwasaki Electric Co Ltd 光量モニタとそれを用いた光源装置
JP2009140874A (ja) * 2007-12-10 2009-06-25 Sony Corp 映像表示システム
JP2009183449A (ja) * 2008-02-06 2009-08-20 Hoya Corp 光源装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2690358A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016189376A (ja) * 2015-03-30 2016-11-04 株式会社島津製作所 ファイバ結合型レーザ装置

Also Published As

Publication number Publication date
US20140016345A1 (en) 2014-01-16
EP2690358A4 (en) 2014-09-17
EP2690358A1 (en) 2014-01-29
US9261261B2 (en) 2016-02-16
US20160131338A1 (en) 2016-05-12
US10041655B2 (en) 2018-08-07

Similar Documents

Publication Publication Date Title
WO2012128324A1 (ja) 照明システム
JP5864870B2 (ja) 光源システム
US8206041B2 (en) High power optical connector and optical fiber system using the same
CN107677389B (zh) 一种温度检测装置及家电设备
CN102047162B (zh) 检查光纤电缆连接器内的光纤接口的端接质量的方法和装置
US20180097264A1 (en) Battery system and method for monitoring a temperature of a battery system
US20190219479A1 (en) Optical Fiber Test Apparatus with Combined Light Measurement and Fault Detection
JP5905143B2 (ja) 照明システム
US7929123B2 (en) Method and apparatus for measuring insertion loss in a fiber optic cable connection
JP5608502B2 (ja) 照明システム及び照明方法
JP2012204106A (ja) 照明システム
JP5905142B2 (ja) 照明システム
JP2012204107A (ja) 照明システム
US20090207387A1 (en) Fiber optic imaging apparatus
CN203364964U (zh) 激光辐射测试系统
KR102623962B1 (ko) 변압기 절연유의 열화 진단을 위한 광섬유 센서 프로브
KR101369953B1 (ko) 광원장치
JP4226812B2 (ja) 光モジュール
KR102431160B1 (ko) 조도 모니터링 시스템 및 방법
CN220380524U (zh) 一种可检测光纤插拔的光纤探测结构
CN219810606U (zh) 激光器终测装置
CN220136619U (zh) 光纤端面自动检测机构及激光治疗装置
WO2024018807A1 (ja) 濃度測定装置およびその異常検知方法
CN117368219A (zh) 半导体激光器芯片腔体缺陷检测系统及检测方法
CN116407271A (zh) 一种激光消融组件和激光消融系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012760709

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012760709

Country of ref document: EP