WO2012128047A1 - 燃焼制御装置 - Google Patents

燃焼制御装置 Download PDF

Info

Publication number
WO2012128047A1
WO2012128047A1 PCT/JP2012/055853 JP2012055853W WO2012128047A1 WO 2012128047 A1 WO2012128047 A1 WO 2012128047A1 JP 2012055853 W JP2012055853 W JP 2012055853W WO 2012128047 A1 WO2012128047 A1 WO 2012128047A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel injection
engine
fuel
injection timing
water temperature
Prior art date
Application number
PCT/JP2012/055853
Other languages
English (en)
French (fr)
Inventor
裕史 葛山
田中 剛
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2012128047A1 publication Critical patent/WO2012128047A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/021Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/403Multiple injections with pilot injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an engine combustion control apparatus that performs premixed compression ignition (PCCI) combustion.
  • PCCI premixed compression ignition
  • the engine fuel injection device described in Patent Document 1 performs the first and second fuel injections at a timing at which premixed combustion is possible when the engine is operated at a low load.
  • the fuel injection amount of the first fuel injection is 60% of the total injection amount.
  • the fuel injection amount of the second fuel injection is 40% of the total injection amount.
  • the premixed compression ignition combustion as in the above prior art is performed at an extremely low load in which the engine operating state is close to, for example, an idling state
  • the following problems occur. Since the total fuel injection amount, particularly the first fuel injection amount, decreases, the combustion by the first fuel injection is weak. Therefore, in the low water temperature state, the ignition timing by the first fuel injection is delayed, and the heat generation rate forms one peak on the graph.
  • the combustion waveform in the low water temperature state is significantly different from the combustion waveform in a state where the engine is warmed up (hereinafter referred to as “warm-up state”), so it is difficult to sufficiently suppress the increase in unburned HC. Not only that, the tone of the combustion sound is extremely different compared to the warm air state.
  • An object of the present invention is to provide a combustion control device that can suppress an increase in unburned HC and a change in timbre of combustion noise in a low water temperature state when the engine is operating at an extremely low load. .
  • the present invention relates to a combustion control apparatus for an engine that performs premixed compression ignition combustion, a fuel injection valve that injects fuel into a combustion chamber of the engine, a water temperature detection means that detects a water temperature of the engine, and a load of the engine Load detecting means for performing the first fuel injection, and first injection timing determining means for determining the fuel injection timing of the first fuel spray and the fuel injection timing of the second fuel injection performed after the first fuel spray, Load determination means for comparing and determining the engine load with a first predetermined value and a second predetermined value less than or equal to the first predetermined value, and the load determination means determine that the engine load is lower than the first predetermined value.
  • the second fuel injection timing determining means for determining the fuel injection timing of the third fuel injection to be performed before the first fuel spray, and the load determining means determines that the engine load is a second predetermined value.
  • Injection timing advance means for advancing the fuel injection timing of the third fuel injection and the fuel injection timing of the first fuel injection according to the engine water temperature, and the fuel injection timing and the first fuel injection timing of the first fuel injection, respectively.
  • First control means for controlling the fuel injection valve so as to sequentially perform the first fuel spray and the second fuel injection according to the fuel injection timing of the second fuel injection, and the fuel of the third fuel injection
  • a second control means for controlling the fuel injection valve so as to perform the third fuel spray before the first fuel spray according to the injection timing.
  • the third fuel injection is performed, and then the first fuel injection and the second fuel injection are sequentially performed.
  • the ignition timing is advanced by the preheating by the third fuel injection, and the heat generation rate waveform (combustion waveform) approaches the combustion waveform in the warm air state.
  • the present inventors have found the fact that when the engine operating state is an extremely low load, the combustion waveform in the low water temperature state is significantly different from the combustion waveform in the warm air state. Therefore, the present inventors have conducted further intensive studies, and paid attention to the advance angles of the fuel injection timing of the third fuel injection and the fuel injection timing of the first fuel injection, and have completed the present invention.
  • the first fuel injection timing and the first fuel injection timing are advanced, respectively, so that the first fuel injection timing is advanced.
  • the ignition time due to the fuel injection of the fuel becomes even earlier.
  • the fuel injection timing of the second fuel spray does not change, a double-flank combustion waveform is maintained. Therefore, when the engine operating state is an extremely low load, a combustion waveform substantially equivalent to the warm air state can be obtained even in the low water temperature state. For this reason, combustion by fuel spray is stabilized. As a result, an increase in unburned HC is sufficiently suppressed and a timbre change in combustion noise is prevented.
  • Water temperature determining means for determining whether the engine water temperature is lower than the first predetermined temperature is further provided, and the second injection timing determining means is configured such that when the water temperature of the engine is lower than the first predetermined temperature by the water temperature determining means.
  • the fuel injection timing of the third fuel injection is determined, and the second control means determines when the water temperature determination means determines that the engine water temperature is lower than the first predetermined temperature.
  • the fuel injection valve may be controlled so as to perform the fuel spray 3.
  • the third fuel injection is performed when the engine water temperature is lower than the first predetermined temperature, and the third fuel injection is performed when the engine water temperature is higher than the first predetermined temperature. Not implemented. For this reason, for example, useless fuel injection in a warm-up state can be prevented.
  • the injection timing advance means is such that the engine water temperature is lower than the second predetermined temperature lower than the first predetermined temperature when the load determination means determines that the engine load is lower than the second predetermined value. If the engine water temperature is determined to be lower than the second predetermined temperature, the fuel injection timing of the third fuel injection and the fuel injection timing of the first fuel injection are respectively advanced. Also good.
  • the combustion waveform is greatly different from the combustion waveform in the warm-up state as the engine water temperature decreases. Accordingly, when the water temperature of the engine is lower than the second predetermined temperature which is lower than the first predetermined temperature, the fuel injection timing of the third fuel injection and the fuel injection timing of the first fuel spray are respectively advanced. Is effective.
  • the combustion control apparatus which can suppress the increase in unburned HC in a low water temperature state and the timbre change of a combustion sound can be provided. .
  • FIG. 1 is a schematic configuration diagram showing a diesel engine equipped with a combustion control device according to the present embodiment.
  • FIG. 2 is a block diagram showing a configuration of the combustion control device shown in FIG.
  • FIG. 3 is a flowchart showing details of an injector control processing procedure executed by the injector control unit shown in FIG.
  • FIG. 4 is a diagram showing the fuel injection amount and fuel injection timing of the pre-fuel injection, the first main fuel injection, and the second main fuel injection.
  • FIG. 5 is a graph showing an example of a heat release rate waveform.
  • FIG. 1 is a schematic configuration diagram showing a diesel engine equipped with a combustion control device according to the present embodiment.
  • the diesel engine 1 according to the present embodiment is a premixed compression ignition (PCCI) type four-cylinder in-line diesel engine.
  • the diesel engine 1 includes an engine body 2, and the engine body 2 is provided with four cylinders 3.
  • Each cylinder 3 is provided with an injector (fuel injection valve) 5 for injecting fuel into the combustion chamber 4.
  • the injector 5 has a plurality of injection holes (not shown) and injects fuel radially from each injection hole.
  • Each injector 5 is connected to a common rail 6, and high-pressure fuel stored in the common rail 6 is constantly supplied to each injector 5.
  • the engine body 2 is connected to an intake passage 7 for taking air into the combustion chamber 4 via an intake manifold 8.
  • An exhaust passage 9 for exhausting exhaust gas after combustion is connected to the engine body 2 via an exhaust manifold 10.
  • an air cleaner 11, a compressor 13 of the turbocharger 12, an intercooler 14, and a throttle valve 15 are provided from the upstream side toward the downstream side.
  • the throttle valve 15 adjusts the amount of air sucked into the combustion chamber 4.
  • a turbine 16 of the turbocharger 12 and a DPF (Diesel Particulate Filter) 17 with a catalyst are provided.
  • the diesel engine 1 includes an exhaust gas recirculation (EGR) device 18 that recirculates a part of the exhaust gas after combustion into the combustion chamber 4.
  • the EGR device 18 includes an EGR passage 19, an EGR valve 20, an EGR cooler 21, a bypass passage 22, and a switching valve 23.
  • the EGR passage 19 connects the intake passage 7 and the exhaust manifold 10.
  • the EGR valve 20 adjusts the recirculation amount of the exhaust gas recirculation gas (EGR gas) from the exhaust manifold 10 to the intake passage 7.
  • the EGR cooler 21 cools the EGR gas passing through the EGR passage 19.
  • the bypass passage 22 is connected to the EGR passage 19 so as to bypass the EGR cooler 21.
  • the switching valve 23 switches the EGR gas flow path to the EGR cooler 21 side or the bypass passage 22 side.
  • Each injector 5, throttle valve 15, EGR valve 20, and switching valve 23 are controlled by an electronic control unit (ECU) (controller) 24.
  • the ECU 24 includes an accelerator opening sensor 25 that detects the accelerator opening, an engine rotation sensor 26 that detects the engine speed, and a crankshaft angle (crank angle) of a piston (not shown). Is connected to a crank angle sensor 27 for detecting the engine water temperature and a water temperature sensor (water temperature detecting means) 28 for detecting the engine water temperature.
  • the water temperature sensor 28 directly detects the engine water temperature, but is not limited thereto. Instead of the water temperature sensor 28, a sensor that indirectly detects a temperature indicating the engine water temperature (for example, a cylinder block temperature outside the water jacket or a cylinder head temperature outside the water jacket) may be used.
  • a temperature indicating the engine water temperature for example, a cylinder block temperature outside the water jacket or a cylinder head temperature outside the water jacket
  • the injector 5, the ECU 24, and the sensors 25 to 28 constitute the combustion control device 29 of the present embodiment.
  • the combustion control device 29 controls to perform premixed compression ignition combustion of split injection in which fuel is injected from each injector 5 in a plurality of times in one cycle of an intake stroke, a compression stroke, an expansion stroke, and an exhaust stroke. .
  • FIG. 2 is a block diagram showing the configuration of the combustion control device 29.
  • the ECU 24 includes an engine load calculation unit 30 and an injector control unit 31.
  • Engine load calculation unit 30 calculates the engine load based on the accelerator opening detected by accelerator opening sensor 25, the engine speed detected by engine rotation sensor 26, and other conditions.
  • the injector control unit 31 determines the number of fuel injections, the fuel injection amount, and the fuel injection timing based on the engine load calculated by the engine load calculation unit 30 and the engine water temperature detected by the water temperature sensor 28, and each injector 5 To control. That is, the ECU 24 operates each injector 5 based on the determined number of fuel injections, fuel injection amount, and fuel injection timing.
  • FIG. 3 is a flowchart showing details of the injector control processing procedure executed by the injector control unit 31.
  • the injector control unit 31 performs the first main fuel injection (first fuel injection) as shown in FIGS. 4 (a) and 4 (b). ) And the second main fuel injection (second fuel injection) to be performed thereafter and the fuel injection amount and fuel injection timing are determined (S101).
  • the fuel injection amount of the second main fuel injection is, for example, smaller than the fuel injection amount of the first main fuel injection.
  • the second main fuel injection starts, for example, at a time when the crank angle is just before the compression top dead center (TDC).
  • FIG. 4 shows the fuel injection amount and fuel injection timing of the pre-fuel injection and the first and second main fuel injections in the warm air state, the water temperature state, and the water temperature state, respectively.
  • the injector control unit 31 determines whether the engine water temperature detected by the water temperature sensor 28 is lower than the upper reference temperature (for example, 80 ° C.) and the engine load calculated by the engine load calculation unit 30 is lower than the upper reference value. It is determined whether or not (S102).
  • the injector control unit 31 When it is determined that the engine water temperature is not lower than the upper reference temperature or the engine load is not lower than the upper reference value, the injector control unit 31 performs the first main injection according to the fuel injection amount and fuel injection timing set in S101.
  • the injector 5 is controlled so as to perform fuel injection (S108). Subsequently, the injector control unit 31 controls the injector 5 to perform the second main fuel injection according to the fuel injection amount and fuel injection timing set in S101 (S109).
  • a fuel injection amount and fuel injection timing for pre-fuel injection performed before the first main fuel injection are determined (S103).
  • the fuel injection amount of the pre-fuel injection is smaller than the fuel injection amount of the first and second main fuel injections. The lower the engine water temperature, the larger the fuel injection amount for pre-fuel injection, and the higher the engine load, the smaller the fuel injection amount for pre-fuel injection.
  • the interval between the pre-fuel injection and the first main fuel injection is calculated from the bore, stroke, number of injection holes of the injector 5, the swirl ratio, etc. in order to prevent spray overlap and gaps from adjacent injection holes of the injector 5. Set to the interval As a result, local rich and local lean are avoided, and generation of unburned fuel is suppressed.
  • the injector control unit 31 determines whether or not the engine load is lower than the lower reference value (S104).
  • the lower reference value is a value lower than the above upper reference value, for example, a value at which the engine torque is 5N.
  • the injector control unit 31 continues to determine whether or not the engine water temperature is lower than a lower reference temperature (for example, 40 ° C.) lower than the upper reference temperature. (S105).
  • the injector controller 31 determines that the engine water temperature is lower than the lower reference temperature, as shown in FIG. 4C, the fuel injection timing of the pre-fuel injection set in S103 and the fuel injection timing set in S101 are set.
  • the fuel injection timing of the first main fuel injection is advanced by the same amount (S106). At this time, it is preferable to advance the fuel injection timing of each fuel injection by an ignition delay due to the low engine water temperature (for example, a range of several degrees CA to several tens of degrees CA).
  • the injector control unit 31 does not advance the fuel injection timing of the second main fuel injection.
  • the injector control unit 31 controls the injector 5 so as to perform pre-fuel injection according to the fuel injection amount set in S103 and the fuel injection timing advanced in S106 (S107). Subsequently, the injector control unit 31 controls the injector 5 to perform the first main fuel injection according to the fuel injection amount set in S101 and the fuel injection timing advanced in S106 (S108). Subsequently, the injector control unit 31 controls the injector 5 to perform the second main fuel injection according to the fuel injection amount and fuel injection timing set in S101 (S109).
  • the injector control unit 31 determines in S104 that the engine load is not lower than the lower reference value, or in S105, it is determined that the engine water temperature is not lower than the lower reference value, S106 is not executed.
  • the injector 5 is controlled so that the pre-fuel injection is performed according to the fuel injection amount and the fuel injection timing set in S103 (S107). Subsequently, the injector control unit 31 controls the injector 5 to perform the first main fuel injection according to the fuel injection amount and the fuel injection timing set in S101 (S108). Subsequently, the injector control unit 31 controls the injector 5 to perform the second main fuel injection according to the fuel injection amount and fuel injection timing set in S101 (S109).
  • the accelerator opening sensor 25, the engine rotation sensor 26, and the engine load calculation unit 30 constitute load detection means for detecting the load of the engine 1.
  • the injector control unit 31 executes S101 to determine the first fuel injection timing and the second fuel injection timing performed after the first fuel injection, respectively.
  • the injection timing determining means is configured.
  • the injector control unit 31 constitutes a load determination unit that compares and determines the engine load with a first predetermined value and a second predetermined value equal to or lower than the first predetermined value by executing S102 and S104.
  • the injector control unit 31 executes the third step executed before the first fuel spray when the load determination unit determines that the engine load is lower than the first predetermined value by executing S103.
  • the second injection timing determining means for determining the fuel injection timing of the fuel injection is configured.
  • the injector control unit 31 executes the third fuel according to the water temperature of the engine 1 when the load determination unit determines that the load of the engine 1 is lower than the second predetermined value by executing S105 and S106.
  • An injection timing advance means for advancing the fuel injection timing of the injection and the fuel injection timing of the first fuel spray is configured.
  • the injector control unit 31 executes S108 and S109, thereby performing the first fuel injection and the second fuel according to the fuel injection timing of the first fuel injection and the fuel injection timing of the second fuel injection.
  • First control means for controlling the fuel injection valve (injector 5) so as to sequentially perform injection is configured. By executing S107, the injector control unit 31 controls the fuel injection valve so that the third fuel injection is performed before the first fuel injection according to the fuel injection timing of the third fuel injection.
  • the 2nd control means to control is comprised.
  • the injector control unit 31 constitutes water temperature determination means for determining whether or not the water temperature of the engine 1 is lower than the first predetermined temperature by executing S102.
  • FIG. 5 shows an example of a heat release rate waveform when the fuel injection timings of the pre-fuel injection and the first main fuel injection are not advanced and advanced in each of the warm air state and the low water temperature state.
  • each fuel injection timing is advanced by an amount corresponding to the ignition delay due to the decrease in the engine water temperature, so that the ignition timings by the first and second main fuel injections are shown as indicated by the solid line R in FIG. Substantially coincides with the ignition timing in the warm-up state (see broken line P). Since the fuel injection timing of the second main fuel injection does not change, a two-peaked combustion waveform is maintained, similar to the combustion waveform in the warm air state.
  • the present embodiment is an engine combustion control apparatus that performs premixed compression ignition combustion, a fuel injection valve that injects fuel into a combustion chamber of the engine, a water temperature sensor that detects a water temperature of the engine, And a controller for operating the fuel injection valve.
  • the controller calculates the engine load, the fuel injection timing of the first fuel injection, and the fuel of the second fuel injection performed after the first fuel injection. Each of the injection timings is determined, and when it is determined that the calculated engine load is lower than the first predetermined value, the fuel injection timing of the third fuel injection performed before the first fuel injection is determined.
  • the fuel injection timings of the third and first fuel sprays are determined according to the water temperature detected by the water temperature sensor. Each is advanced to the first
  • the fuel injection valve is operated so as to sequentially perform the first and second fuel injections in accordance with the fuel injection timing of the second fuel injection, and the first fuel injection timing of the third fuel injection is in accordance with the first fuel injection timing.
  • the fuel injection valve is operated so that the third fuel spray is performed before the fuel spray.
  • the combustion control device further includes an accelerator opening sensor that detects the accelerator opening, and an engine rotation sensor that detects the engine speed, and the controller includes the accelerator opening detected by the accelerator opening sensor and the engine.
  • the engine load may be calculated based on information including the engine speed detected by the speed sensor.
  • this embodiment is a combustion control apparatus for an engine that performs premixed compression ignition combustion, a fuel injection valve that injects fuel into a combustion chamber of the engine, a water temperature sensor that detects a water temperature of the engine, The engine load is calculated, the fuel injection timing of the first fuel injection and the fuel injection timing of the second fuel injection performed after the first fuel injection are respectively determined, and the calculated engine load is the first Is determined to be lower than the predetermined value, the fuel injection timing of the third fuel injection to be performed before the first fuel spray is determined, and the calculated engine load is equal to or lower than the first predetermined value.
  • the fuel injection timings of the third and first fuel sprays are advanced according to the water temperature detected by the water temperature sensor, respectively, and the first and second fuel injections Depending on the fuel injection timing of the first and second
  • the fuel injection valve is operated so as to sequentially perform fuel injection, and the fuel is injected so that the third fuel spray is performed before the first fuel spray according to the fuel injection timing of the third fuel injection.
  • a controller configured to operate the injection valve.
  • the injector control unit 31 when the engine load is lower than a predetermined value and the engine water temperature is lower than the lower reference temperature, the injector control unit 31 performs the fuel injection timing of the pre-fuel injection and the first main fuel injection. Is advanced by a certain amount, but is not limited thereto.
  • the injector control unit 31 may change, for example, the advance amount of the fuel injection timing of the pre-fuel injection and the first main fuel injection according to the engine water temperature.
  • the injector control unit 31 performs the pre-fuel injection before the first main fuel injection when the engine water temperature is lower than the upper reference temperature, but is not limited thereto.
  • the injector control unit 31 may always perform the pre-fuel injection regardless of the engine water temperature.
  • the lower reference value is lower than the upper reference value for the upper reference value and the lower reference value used for engine load comparison determination, but is not limited thereto.
  • the lower reference value may be equal to the upper reference value.
  • the injector control unit 31 performs the main fuel injection twice for each cycle, but the main fuel injection may be performed three times or more for each cycle.
  • the present invention can be used for a fuel control device of an engine that performs premixed compression ignition combustion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 燃焼制御装置は、燃料噴射弁、水温センサ、及び電子制御ユニットを備える。電子制御ユニットは、第1の燃料墳射の燃料噴射時期及び第1の燃料墳射の後に実施される第2の燃料噴射の燃料噴射時期をそれぞれ決定し、エンジン負荷が第1の所定値よりも低いと判断したときに、第1の燃料墳射の前に実施される第3の燃料噴射の燃料噴射時期を決定する。電子制御ユニットは、エンジン負荷が第1の所定値以下の第2の所定値よりも低いと判断したときに、水温に応じて第3及び第1の燃料墳射の燃料噴射時期をそれぞれ進角させる。電子制御ユニットは、第1及び第2の燃料噴射の燃料噴射時期に応じて、第1及び第2の燃料噴射を順次実施するように燃料噴射弁を操作し、第3の燃料噴射の前記燃料噴射時期に応じて、第1の燃料墳射の前に第3の燃料墳射を実施するように燃料噴射弁を操作する。

Description

燃焼制御装置
 本発明は、予混合圧縮着火(PCCI:Premixed Charge Compression Ignition)燃焼を行うエンジンの燃焼制御装置に関する。
 予混合圧縮着火燃焼を行うエンジンの燃焼制御装置としては、例えば特許文献1に記載されているものが知られている。特許文献1に記載のエンジンの燃料噴射装置は、エンジンが低負荷で運転される場合に、1回目と2回目との燃料噴射を、ともに予混合燃焼が可能なタイミングで行う。1回目の燃料噴射の燃料噴射量は、総噴射量の60%である。2回目の燃料噴射の燃料噴射量は、総噴射量の40%である。このような燃料噴射により、熱発生率がグラフ上において2つの山を形成し、COやスモークの発生が抑制される。
特開2009-264332号公報
 しかしながら、上記従来技術のような予混合圧縮着火燃焼が、エンジンの運転状態が例えばアイドリング状態に近い極低負荷に行われる場合、以下の問題点が生じる。燃料の総噴射量、特には1回目の燃料噴射量が減少するため、1回目の燃料噴射による燃焼が弱い。したがって、低水温状態においては、1回目の燃料噴射による着火時期が遅れ、熱発生率がグラフ上において1つの山を形成する。この結果、低水温状態での燃焼波形は、エンジンが暖気された状態(以下、「暖気状態」と称する)での燃焼波形と大きく異なるため、未燃HCの増加を十分抑制することが困難であるだけでなく、燃焼音の音色が暖気状態と比べて極端に異なる。
 本発明の目的は、エンジンの運転状態が極低負荷であるときに、低水温状態での未燃HCの増加及び燃焼音の音色変化を抑制することができる燃焼制御装置を提供することである。
 本発明は、予混合圧縮着火燃焼を行うエンジンの燃焼制御装置であって、エンジンの燃焼室内に燃料を噴射する燃料噴射弁と、エンジンの水温を検出する水温検出手段と、エンジンの負荷を検出する負荷検出手段と、第1の燃料墳射の燃料噴射時期及び第1の燃料墳射の後に実施される第2の燃料噴射の燃料噴射時期をそれぞれ決定する第1の噴射時期決定手段と、エンジンの負荷を第1の所定値及び第1の所定値以下の第2の所定値と比較判断する負荷判断手段と、負荷判断手段によりエンジンの負荷が第1の所定値よりも低いと判断されたときに、第1の燃料墳射の前に実施される第3の燃料噴射の燃料噴射時期を決定する第2の噴射時期決定手段と、負荷判断手段によりエンジンの負荷が第2の所定値よりも低いと判断されたときに、エンジンの水温に応じて第3の燃料噴射の燃料噴射時期及び第1の燃料墳射の燃料噴射時期をそれぞれ進角させる噴射時期進角手段と、第1の燃料墳射の燃料噴射時期及び第2の燃料噴射の燃料噴射時期に応じて、第1の燃料墳射及び第2の燃料噴射を順次実施するように燃料噴射弁を制御する第1の制御手段と、第3の燃料噴射の燃料噴射時期に応じて、第1の燃料墳射の前に第3の燃料墳射を実施するように燃料噴射弁を制御する第2の制御手段と、を備える。
 本発明の燃焼制御装置においては、第3の燃料噴射が実施され、その後に第1の燃料噴射及び第2の燃料噴射が順次実施される。このため、低水温状態でも、第3の燃料噴射による予熱で着火時期が早くなり、熱発生率波形(燃焼波形)が、暖気状態での燃焼波形に近づく。しかし、本発明者等は、エンジンの運転状態が極低負荷であるときは、低水温状態での燃焼波形が、暖気状態での燃焼波形と大きく異なるという事実を見い出した。そこで本発明者等は、更に鋭意検討を重ね、第3の燃料噴射の燃料噴射時期及び第1の燃料墳射の燃料噴射時期の進角に着目し、本発明を完成させるに至った。
 エンジンの負荷が第2の所定値よりも低いと判断されたときは、第3の燃料噴射の燃料噴射時期及び第1の燃料墳射の燃料噴射時期がそれぞれ進角されることにより、第1の燃料墳射による着火時期が更に早くなる。ただし、第2の燃料墳射の燃料噴射時期は変わらないので、二山形状の燃焼波形が維持される。従って、エンジンの運転状態が極低負荷であるときに、低水温状態であっても、暖気状態とほぼ同等の燃焼波形が得られる。このため、燃料墳射による燃焼が安定化する。これにより、未燃HCの増加が十分抑制されると共に、燃焼音の音色変化が防止される。
 エンジンの水温が第1の所定温度よりも低いかどうかを判断する水温判断手段を更に備え、第2の噴射時期決定手段は、水温判断手段によりエンジンの水温が第1の所定温度よりも低いと判断されたときに、第3の燃料噴射の燃料噴射時期を決定し、第2の制御手段は、水温判断手段によりエンジンの水温が第1の所定温度よりも低いと判断されたときに、第3の燃料墳射を実施するように燃料噴射弁を制御してもよい。
 この場合には、エンジンの水温が第1の所定温度よりも低いときに、第3の燃料噴射が実施され、エンジンの水温が第1の所定温度よりも高いときは、第3の燃料噴射が実施されない。このため、例えば暖気状態における無駄な燃料噴射の実施を防止することができる。
 噴射時期進角手段は、負荷判断手段によりエンジンの負荷が第2の所定値よりも低いと判断されたときに、エンジンの水温が第1の所定温度よりも低い第2の所定温度よりも低いかどうかを判断し、エンジンの水温が第2の所定温度よりも低いと判断されると、第3の燃料噴射の燃料噴射時期及び第1の燃料墳射の燃料噴射時期をそれぞれ進角させてもよい。
 エンジンの運転状態が極低負荷であるときには、燃焼波形が、エンジンの水温が低くなるほど暖気状態での燃焼波形と大きく異なる。従って、エンジンの水温が第1の所定温度よりも低い第2の所定温度よりも低いときに、第3の燃料噴射の燃料噴射時期及び第1の燃料墳射の燃料噴射時期をそれぞれ進角させるのが効果的である。
 本発明によれば、エンジンの運転状態が極低負荷であるときに、低水温状態での未燃HCの増加及び燃焼音の音色変化を抑制することができる燃焼制御装置を提供することができる。
図1は、本実施形態に係る燃焼制御装置を備えたディーゼルエンジンを示す概略構成図である。 図2は、図1に示した燃焼制御装置の構成を示すブロック図である。 図3は、図2に示したインジェクタ制御部により実行されるインジェクタ制御処理手順の詳細を示すフローチャートである。 図4は、プレ燃料噴射、1回目のメイン燃料噴射、及び2回目のメイン燃料噴射の燃料噴射量及び燃料噴射時期を示す図である。 図5は、熱発生率波形の一例を示すグラフである。
 以下、添付図面を参照して、本発明の好適な実施形態について詳細に説明する。
 図1は、本実施形態に係る燃焼制御装置を備えたディーゼルエンジンを示す概略構成図である。本実施形態に係るディーゼルエンジン1は、予混合圧縮着火(PCCI)式の4気筒直列ディーゼルエンジンである。ディーゼルエンジン1はエンジン本体2を備え、このエンジン本体2には4つのシリンダ3が設けられている。
 各シリンダ3には、燃焼室4内に燃料を噴射するインジェクタ(燃料噴射弁)5がそれぞれ配設されている。インジェクタ5は複数の噴孔(図示せず)を有し、各噴孔から放射状に燃料を噴射する。各インジェクタ5はコモンレール6に接続されており、コモンレール6に貯留された高圧燃料が各インジェクタ5に常時供給されている。
 エンジン本体2には、燃焼室4内に空気を吸入するための吸気通路7がインテークマニホールド8を介して接続されている。エンジン本体2には、燃焼後の排気ガスを排出するための排気通路9がエキゾーストマニホールド10を介して接続されている。
 吸気通路7には、上流側から下流側に向けてエアクリーナー11、ターボ過給機12のコンプレッサ13、インタークーラー14、及びスロットルバルブ15が設けられている。スロットルバルブ15は、燃焼室4内への空気の吸入量を調整する。排気通路9には、ターボ過給機12のタービン16及び触媒付きDPF(Diesel Particulate Filter)17が設けられている。
 ディーゼルエンジン1は、燃焼後の排気ガスの一部を燃焼室4内に還流する排気再循環(EGR)装置18を備えている。EGR装置18は、EGR通路19、EGRバルブ20、EGRクーラ21、バイパス通路22、及び切替弁23を有している。EGR通路19は、吸気通路7とエキゾーストマニホールド10とを繋ぐ。EGRバルブ20は、エキゾーストマニホールド10から吸気通路7への排気再循環ガス(EGRガス)の還流量を調整する。EGRクーラ21は、EGR通路19を通るEGRガスを冷却する。バイパス通路22は、EGRクーラ21をバイパスするようにEGR通路19に接続されている。切替弁23は、EGRガスの流路をEGRクーラ21側またはバイパス通路22側に切り替える。
 各インジェクタ5、スロットルバルブ15、EGRバルブ20、及び切替弁23は、電子制御ユニット(ECU)(コントローラ)24によって制御される。ECU24には、図2にも示されるように、アクセル開度を検出するアクセル開度センサ25と、エンジン回転数を検出するエンジン回転センサ26と、図示しないピストンのクランク軸の角度(クランク角)を検出するクランク角センサ27と、エンジン水温を検出する水温センサ(水温検出手段)28とが接続されている。
 本実施形態では、水温センサ28がエンジン水温を直接的に検出しているが、これに限られない。水温センサ28の代わりに、間接的にエンジン水温を示す温度(例えば、ウォータジャケット外側のシリンダブロック温度又はウォータジャケット外側のシリンダヘッド温度など)を検出するセンサを用いてもよい。
 インジェクタ5、ECU24、及びセンサ25~28は、本実施形態の燃焼制御装置29を構成している。燃焼制御装置29は、吸気行程、圧縮行程、膨張行程、及び排気行程という1サイクルにおいて、各インジェクタ5から燃料を複数回に分けて噴射する分割噴射の予混合圧縮着火燃焼を行うように制御する。
 図2は、燃焼制御装置29の構成を示すブロック図である。ECU24は、エンジン負荷算出部30と、インジェクタ制御部31と、を有している。
 エンジン負荷算出部30は、アクセル開度センサ25により検出されたアクセル開度、エンジン回転センサ26により検出されたエンジン回転数、及びその他の条件に基づいて、エンジン負荷を算出する。
 インジェクタ制御部31は、エンジン負荷算出部30により算出されたエンジン負荷及び水温センサ28により検出されたエンジン水温に基づいて、燃料噴射回数、燃料噴射量、及び燃料噴射時期を決定し、各インジェクタ5を制御する。すなわち、ECU24は、決定した燃料噴射回数、燃料噴射量、及び燃料噴射時期に基づいて、各インジェクタ5を操作する。
 図3は、インジェクタ制御部31により実行されるインジェクタ制御処理手順の詳細を示すフローチャートである。
 まず、インジェクタ制御部31は、エンジン負荷算出部30により算出されたエンジン負荷に基づいて、図4(a)及び(b)に示されるように、1回目のメイン燃料噴射(第1の燃料噴射)及びこの後に実施される2回目のメイン燃料噴射(第2の燃料噴射)それぞれの燃料噴射量及び燃料噴射時期を決定する(S101)。このとき、2回目のメイン燃料噴射の燃料噴射量は、例えば1回目のメイン燃料噴射の燃料噴射量よりも少ない。2回目のメイン燃料噴射は、例えばクランク角が圧縮上死点(TDC)直前となる時期に開始する。図4は、暖気状態、水温が低い状態、及び水温が更に低い状態のそれぞれにおける、プレ燃料噴射並びに1回目及び2回目のメイン燃料噴射の燃料噴射量及び燃料噴射時期を示す。
 続いて、インジェクタ制御部31は、水温センサ28により検出されたエンジン水温が上側基準温度(例えば80℃)よりも低く且つエンジン負荷算出部30により算出されたエンジン負荷が上側基準値よりも低いか否かを判断する(S102)。
 インジェクタ制御部31は、エンジン水温が上側基準温度より低くない、又は、エンジン負荷が上側基準値より低くないと判断した場合、S101にて設定された燃料噴射量及び燃料噴射時期に従って1回目のメイン燃料噴射を実施するように、インジェクタ5を制御する(S108)。続いて、インジェクタ制御部31は、S101で設定された燃料噴射量及び燃料噴射時期に従って2回目のメイン燃料噴射を実施するように、インジェクタ5を制御する(S109)。
 インジェクタ制御部31は、エンジン水温が上側基準温度よりも低く且つエンジン負荷が上側基準値よりも低いと判断した場合、エンジン負荷及びエンジン水温に基づいて、図4(b)に示されるように、1回目のメイン燃料噴射の前に実施されるプレ燃料噴射の燃料噴射量及び燃料噴射時期を決定する(S103)。
 プレ燃料噴射の燃料噴射量は、1回目及び2回目のメイン燃料噴射の燃料噴射量よりも少ない。エンジン水温が低くなるほど、プレ燃料噴射の燃料噴射量が多く、エンジン負荷が高くなるほど、プレ燃料噴射の燃料噴射量が少ない。
 プレ燃料噴射と1回目のメイン燃料噴射との間隔は、インジェクタ5の隣接する噴孔からの噴霧の重なりや隙間を防ぐために、ボア、ストローク、インジェクタ5の噴孔数、及びスワール比等から算出されるインターバルに設定される。これにより、局所リッチ及び局所リーンが回避され、未燃分の燃料の生成が抑えられる。
 続いて、インジェクタ制御部31は、エンジン負荷が下側基準値よりも低いか否かを判断する(S104)。下側基準値は、上記の上側基準値よりも低い値、例えばエンジントルクが5Nとなるような値である。インジェクタ制御部31は、エンジン負荷が下側基準値より低いと判断したときは、引き続き、エンジン水温が上側基準温度よりも低い下側基準温度(例えば40℃)よりも低いか否かを判断する(S105)。
 インジェクタ制御部31は、エンジン水温が下側基準温度よりも低いと判断した場合、図4(c)に示されるように、S103で設定されたプレ燃料噴射の燃料噴射時期及びS101で設定された1回目のメイン燃料噴射の燃料噴射時期をそれぞれ同じ量だけ進角させる(S106)。このとき、エンジン水温が低いことによる着火遅れ分(例えば、数°CA~十数°CAの範囲)だけ各燃料噴射の燃料噴射時期を進角させるのが好ましい。インジェクタ制御部31は、2回目のメイン燃料噴射の燃料噴射時期を進角させない。
 続いて、インジェクタ制御部31は、S103で設定された燃料噴射量及びS106で進角された燃料噴射時期に従ってプレ燃料噴射を実施するように、インジェクタ5を制御する(S107)。続いて、インジェクタ制御部31は、S101で設定された燃料噴射量及びS106で進角された燃料噴射時期に従って1回目のメイン燃料噴射を実施するように、インジェクタ5を制御する(S108)。続いて、インジェクタ制御部31は、S101で設定された燃料噴射量及び燃料噴射時期に従って2回目のメイン燃料噴射を実施するように、インジェクタ5を制御する(S109)。
 インジェクタ制御部31は、S104でエンジン負荷が下側基準値より低くないと判断したとき、又は、S105でエンジン水温が下側基準温度よりも低くないと判断したときは、それぞれS106を実行せずに、S103で設定された燃料噴射量及び燃料噴射時期に従ってプレ燃料噴射を実施するように、インジェクタ5を制御する(S107)。続いて、インジェクタ制御部31は、S101で設定された燃料噴射量及び燃料噴射時期に従って1回目のメイン燃料噴射を実施するように、インジェクタ5を制御する(S108)。続いて、インジェクタ制御部31は、S101で設定された燃料噴射量及び燃料噴射時期に従って2回目のメイン燃料噴射を実施するように、インジェクタ5を制御する(S109)。
 以上において、アクセル開度センサ25、エンジン回転センサ26、及びエンジン負荷算出部30は、エンジン1の負荷を検出する負荷検出手段を構成する。インジェクタ制御部31は、S101を実行することにより、第1の燃料墳射の燃料噴射時期及び第1の燃料墳射の後に実施される第2の燃料噴射の燃料噴射時期をそれぞれ決定する第1の噴射時期決定手段を構成する。インジェクタ制御部31は、S102及びS104を実行することにより、エンジンの負荷を第1の所定値及び第1の所定値以下の第2の所定値と比較判断する負荷判断手段を構成する。インジェクタ制御部31は、S103を実行することにより、負荷判断手段によりエンジンの負荷が第1の所定値よりも低いと判断されたときに、第1の燃料墳射の前に実施される第3の燃料噴射の燃料噴射時期を決定する第2の噴射時期決定手段を構成する。インジェクタ制御部31は、S105及びS106を実行することにより、負荷判断手段によりエンジン1の負荷が第2の所定値よりも低いと判断されたときに、エンジン1の水温に応じて第3の燃料噴射の燃料噴射時期及び第1の燃料墳射の燃料噴射時期をそれぞれ進角させる噴射時期進角手段を構成する。インジェクタ制御部31は、S108及びS109を実行することにより、第1の燃料墳射の燃料噴射時期及び第2の燃料噴射の燃料噴射時期に応じて、第1の燃料墳射及び第2の燃料噴射を順次実施するように燃料噴射弁(インジェクタ5)を制御する第1の制御手段を構成する。インジェクタ制御部31は、S107を実行することにより、第3の燃料噴射の燃料噴射時期に応じて、第1の燃料墳射の前に第3の燃料墳射を実施するように燃料噴射弁を制御する第2の制御手段を構成する。
 インジェクタ制御部31は、S102を実行することにより、エンジン1の水温が第1の所定温度よりも低いかどうかを判断する水温判断手段を構成する。
 ところで、エンジン1の運転状態が例えばアイドリングのような極低負荷である際に、エンジン1が通常の暖気状態(例えば80℃以上)にあるときは、図4(a)に示すように、プレ燃料噴射が実施されずに、1回目のメイン燃料噴射及び2回目のメイン燃料噴射が順に実施される。すると、1回目及び2回目のメイン燃料噴射の終了後にそれぞれ所定期間を経て、燃料と空気との予混合気の着火が開始されるため、図5(a)の破線Pで示されるように、二山形状の熱発生率波形(燃焼波形)が得られる。図5は、暖気状態及び水温が低い状態のそれぞれにおいて、プレ燃料噴射及び1回目のメイン燃料噴射の燃料噴射時期を進角させない場合及び進角させた場合の熱発生率波形の一例を示す。
 しかし、エンジン1の運転状態が極低負荷の状態では、1回の噴射量が減少するため、最初の燃焼が弱い。このため、極低負荷の状態において、エンジン1が低水温状態(例えば40℃以下)にあるときに、図4(b)に示されるように、プレ燃料噴射、1回目のメイン燃料噴射、及び2回目のメイン燃料噴射を順番に実施するだけでは、燃焼波形が、図5(a)の1点鎖線Qで示されるように、暖気状態での燃焼波形と大きく異なる。
 この場合には、着火時期の遅れによって燃焼が不安定になるため、未燃HC及び未燃COの発生を十分に抑制するのが困難である。1回目及び2回目のメイン燃料噴射による着火がほぼ同時に行われるため、燃焼音が必要以上に大きく、また、燃焼音の音色が暖気状態での音色と極端に異なる。その結果、運転者が違和感を感じる。
 これに対し本実施形態では、エンジン1の運転状態が極低負荷である際に、エンジン1が低水温状態にあるときには、図4(c)に示されるように、プレ燃料噴射及び1回目のメイン燃料噴射の燃料噴射時期がそれぞれ進角される。このとき、各燃料噴射時期がエンジン水温の低下による着火遅れ分だけ進角されることにより、図5(b)の実線Rで示されるように、1回目及び2回目のメイン燃料噴射による着火時期が暖気状態での着火時期(破線P参照)とほぼ一致する。2回目のメイン燃料噴射の燃料噴射時期が変わらないので、暖気状態での燃焼波形と同様に、二山形状の燃焼波形が維持される。
 本実施形態では、エンジン1の運転状態が極低負荷であるときに、エンジン1が低水温状態であっても、暖気状態での燃焼波形と類似する燃焼波形が得られるので、燃焼が安定する。このため、未燃HC及び未燃COの発生を十分に抑制することができる。また、1回目及び2回目のメイン燃料噴射による着火がほぼ同時に行われることが防止されるため、燃焼波形の変化による燃焼音の増大や音色変化を抑制することができる。その結果、運転者の違和感を軽減することが可能となる。
 別の観点では、本実施形態は、予混合圧縮着火燃焼を行うエンジンの燃焼制御装置であって、エンジンの燃焼室内に燃料を噴射する燃料噴射弁と、エンジンの水温を検出する水温センサと、燃料噴射弁を操作するコントローラと、を備え、コントローラは、エンジン負荷を算出し、第1の燃料墳射の燃料噴射時期及び第1の燃料墳射の後に実施される第2の燃料噴射の燃料噴射時期をそれぞれ決定し、算出したエンジン負荷が第1の所定値よりも低いと判断したときに、第1の燃料墳射の前に実施される第3の燃料噴射の燃料噴射時期を決定し、算出したエンジン負荷が第1の所定値以下の第2の所定値よりも低いと判断したときに、水温センサで検出された水温に応じて第3及び第1の燃料墳射の燃料噴射時期をそれぞれ進角させ、第1及び第2の燃料噴射の燃料噴射時期に応じて、第1及び第2の燃料噴射を順次実施するように燃料噴射弁を操作し、第3の燃料噴射の燃料噴射時期に応じて、第1の燃料墳射の前に第3の燃料墳射を実施するように燃料噴射弁を操作する。また、燃焼制御装置は、アクセル開度を検出するアクセル開度センサと、エンジン回転数を検出するエンジン回転センサと、を更に備え、コントローラは、アクセル開度センサで検出されたアクセル開度とエンジン回転数センサにより検出されたエンジン回転数とを含む情報に基づいてエンジン負荷を算出してもよい。
 更に別の観点では、本実施形態は、予混合圧縮着火燃焼を行うエンジンの燃焼制御装置であって、エンジンの燃焼室内に燃料を噴射する燃料噴射弁と、エンジンの水温を検出する水温センサと、エンジン負荷を算出し、第1の燃料墳射の燃料噴射時期及び第1の燃料墳射の後に実施される第2の燃料噴射の燃料噴射時期をそれぞれ決定し、算出したエンジン負荷が第1の所定値よりも低いと判断したときに、第1の燃料墳射の前に実施される第3の燃料噴射の燃料噴射時期を決定し、算出したエンジン負荷が第1の所定値以下の第2の所定値よりも低いと判断したときに、水温センサで検出された水温に応じて第3及び第1の燃料墳射の燃料噴射時期をそれぞれ進角させ、第1及び第2の燃料噴射の燃料噴射時期に応じて、第1及び第2の燃料噴射を順次実施するように燃料噴射弁を操作し、第3の燃料噴射の燃料噴射時期に応じて、第1の燃料墳射の前に第3の燃料墳射を実施するように前記燃料噴射弁を操作するように構成されたコントローラと、を備える。
 なお、本発明は、上記実施形態に限定されるものではない。例えば上記実施形態では、エンジン負荷が所定値よりも低い場合において、エンジン水温が下側基準温度よりも低いときに、インジェクタ制御部31は、プレ燃料噴射及び1回目のメイン燃料噴射の燃料噴射時期を一定量だけ進角させるが、これに限られない。インジェクタ制御部31は、エンジン負荷が所定値よりも低い場合に、例えばプレ燃料噴射及び1回目のメイン燃料噴射の燃料噴射時期の進角量をエンジン水温に応じて変えてもよい。
 上記実施形態では、インジェクタ制御部31は、エンジン水温が上側基準温度よりも低いときに、1回目のメイン燃料噴射の前にプレ燃料噴射を実施させているが、これに限られない。インジェクタ制御部31は、エンジン水温に係らず、常にプレ燃料噴射を実施させてもよい。
 上記実施形態では、エンジン負荷の比較判断に用いる上側基準値及び下側基準値について、下側基準値が上側基準値よりも低い値であるが、これに限られない。下側基準値が上側基準値と等しくてよい。
 上記実施形態では、インジェクタ制御部31は、1サイクル毎に2回のメイン燃料噴射を実施させているが、1サイクル毎にメイン燃料噴射を3回以上実施させてもよい。
 本発明は、予混合圧縮着火燃焼を行うエンジンの燃料制御装置に利用できる。
 1…ディーゼルエンジン、4…燃焼室、5…インジェクタ(燃料噴射弁)、24…ECU、25…アクセル開度センサ(負荷検出手段)、26…エンジン回転センサ(負荷検出手段)、28…水温センサ(水温検出手段)、29…燃焼制御装置、30…エンジン負荷算出部(負荷検出手段)、31…インジェクタ制御部(第1の噴射時期決定手段、第2の噴射時期決定手段、負荷判断手段、噴射時期進角手段、第1の制御手段、第2の制御手段、水温判断手段)。

Claims (3)

  1.  予混合圧縮着火燃焼を行うエンジンの燃焼制御装置であって、
     前記エンジンの燃焼室内に燃料を噴射する燃料噴射弁と、
     前記エンジンの水温を検出する水温検出手段と、
     前記エンジンの負荷を検出する負荷検出手段と、
     第1の燃料墳射の燃料噴射時期及び前記第1の燃料墳射の後に実施される第2の燃料噴射の燃料噴射時期をそれぞれ決定する第1の噴射時期決定手段と、
     前記エンジンの負荷を第1の所定値及び前記第1の所定値以下の第2の所定値と比較判断する負荷判断手段と、
     前記負荷判断手段により前記エンジンの負荷が前記第1の所定値よりも低いと判断されたときに、前記第1の燃料墳射の前に実施される第3の燃料噴射の燃料噴射時期を決定する第2の噴射時期決定手段と、
     前記負荷判断手段により前記エンジンの負荷が前記第2の所定値よりも低いと判断されたときに、前記エンジンの水温に応じて前記第3の燃料噴射の燃料噴射時期及び前記第1の燃料墳射の燃料噴射時期をそれぞれ進角させる噴射時期進角手段と、
     前記第1の燃料墳射の燃料噴射時期及び前記第2の燃料噴射の燃料噴射時期に応じて、前記第1の燃料墳射及び前記第2の燃料噴射を順次実施するように前記燃料噴射弁を制御する第1の制御手段と、
     前記第3の燃料噴射の燃料噴射時期に応じて、前記第1の燃料墳射の前に前記第3の燃料墳射を実施するように前記燃料噴射弁を制御する第2の制御手段と、を備える。
  2.  請求項1に記載の燃焼制御装置であって、
     前記エンジンの水温が第1の所定温度よりも低いかどうかを判断する水温判断手段を更に備え、
     前記第2の噴射時期決定手段は、前記水温判断手段により前記エンジンの水温が前記第1の所定温度よりも低いと判断されたときに、前記第3の燃料噴射の燃料噴射時期を決定し、
     前記第2の制御手段は、前記水温判断手段により前記エンジンの水温が前記第1の所定温度よりも低いと判断されたときに、前記第3の燃料墳射を実施するように前記燃料噴射弁を制御する。
  3.  請求項2に記載の燃焼制御装置であって、
     前記噴射時期進角手段は、前記負荷判断手段により前記エンジンの負荷が前記第2の所定値よりも低いと判断されたときに、前記エンジンの水温が前記第1の所定温度よりも低い第2の所定温度よりも低いかどうかを判断し、前記エンジンの水温が前記第2の所定温度よりも低いと判断すると、前記第3の燃料噴射の燃料噴射時期及び前記第1の燃料墳射の燃料噴射時期をそれぞれ進角させる。
PCT/JP2012/055853 2011-03-18 2012-03-07 燃焼制御装置 WO2012128047A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-060581 2011-03-18
JP2011060581A JP4998632B1 (ja) 2011-03-18 2011-03-18 燃焼制御装置

Publications (1)

Publication Number Publication Date
WO2012128047A1 true WO2012128047A1 (ja) 2012-09-27

Family

ID=46793922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055853 WO2012128047A1 (ja) 2011-03-18 2012-03-07 燃焼制御装置

Country Status (2)

Country Link
JP (1) JP4998632B1 (ja)
WO (1) WO2012128047A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6075166B2 (ja) * 2013-04-05 2017-02-08 株式会社豊田自動織機 燃焼制御装置
JP6173162B2 (ja) * 2013-10-15 2017-08-02 株式会社豊田自動織機 燃焼制御装置
JP6173163B2 (ja) * 2013-10-15 2017-08-02 株式会社豊田自動織機 燃焼制御装置
JP6175343B2 (ja) * 2013-10-15 2017-08-02 株式会社豊田自動織機 燃焼制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002242744A (ja) * 2001-02-14 2002-08-28 Mazda Motor Corp ディーゼルエンジンの燃料噴射装置
JP2005133576A (ja) * 2003-10-28 2005-05-26 Mitsubishi Motors Corp ディーゼルエンジン
JP2006207455A (ja) * 2005-01-27 2006-08-10 Toyota Motor Corp 圧縮着火内燃機関の燃焼切替制御システム
JP2007211594A (ja) * 2006-02-07 2007-08-23 Toyota Motor Corp エンジン

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002242744A (ja) * 2001-02-14 2002-08-28 Mazda Motor Corp ディーゼルエンジンの燃料噴射装置
JP2005133576A (ja) * 2003-10-28 2005-05-26 Mitsubishi Motors Corp ディーゼルエンジン
JP2006207455A (ja) * 2005-01-27 2006-08-10 Toyota Motor Corp 圧縮着火内燃機関の燃焼切替制御システム
JP2007211594A (ja) * 2006-02-07 2007-08-23 Toyota Motor Corp エンジン

Also Published As

Publication number Publication date
JP4998632B1 (ja) 2012-08-15
JP2012197674A (ja) 2012-10-18

Similar Documents

Publication Publication Date Title
US20130340720A1 (en) Fuel injection device
JP5029501B2 (ja) 内燃機関の制御装置
JP2012255366A (ja) 内燃機関の制御装置及び制御方法
JP5056966B2 (ja) 燃焼制御装置
JP2008025445A (ja) 内燃機関の制御装置
WO2012128047A1 (ja) 燃焼制御装置
JP2009085053A (ja) 圧縮着火内燃機関の制御装置
JP5083440B1 (ja) 燃焼制御装置
US20100076668A1 (en) Control apparatus for internal combustion engine
JP6175343B2 (ja) 燃焼制御装置
JP5158245B1 (ja) 燃焼制御装置
JP5093407B2 (ja) 内燃機関の燃焼制御装置
WO2013038805A1 (ja) 燃焼制御装置
JP2008274789A (ja) 直噴エンジンの制御システム
JP6173162B2 (ja) 燃焼制御装置
JP6075166B2 (ja) 燃焼制御装置
WO2010106830A1 (ja) 内燃機関の制御装置及び制御方法
JP6190238B2 (ja) 燃焼制御装置
JP2015004343A (ja) 筒内噴射エンジンの制御装置
JP5786468B2 (ja) 内燃機関の制御装置
JP3684968B2 (ja) 内燃機関の燃料噴射装置
JP5769509B2 (ja) 内燃機関の制御装置
JP2004218612A (ja) 圧縮着火式内燃機関
WO2013061418A1 (ja) 内燃機関の燃料性状判定装置
JP4771977B2 (ja) 内燃機関の燃料制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12760889

Country of ref document: EP

Kind code of ref document: A1