WO2010106830A1 - 内燃機関の制御装置及び制御方法 - Google Patents

内燃機関の制御装置及び制御方法 Download PDF

Info

Publication number
WO2010106830A1
WO2010106830A1 PCT/JP2010/050385 JP2010050385W WO2010106830A1 WO 2010106830 A1 WO2010106830 A1 WO 2010106830A1 JP 2010050385 W JP2010050385 W JP 2010050385W WO 2010106830 A1 WO2010106830 A1 WO 2010106830A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel injection
exhaust gas
gas recirculation
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2010/050385
Other languages
English (en)
French (fr)
Inventor
真司 名嶋
浩一 前川
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to EP10753325.9A priority Critical patent/EP2410161B1/en
Publication of WO2010106830A1 publication Critical patent/WO2010106830A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/403Multiple injections with pilot injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0055Special engine operating conditions, e.g. for regeneration of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a control device and control method for an internal combustion engine having an exhaust gas recirculation mechanism.
  • EGR exhaust gas recirculation
  • EGR exhaust gas recirculation
  • the EGR mechanism mixes part of the exhaust gas with fresh air to reduce the oxygen concentration in the intake air.
  • the generation of nitrogen oxides can be suppressed by performing EGR even during idling of the internal combustion engine.
  • the idle state continues for a long time, carbon adheres to the injection port of the fuel injection nozzle due to EGR, and the injection port is gradually closed. As a result, fuel injection is difficult to be performed, combustion becomes unstable, and rough idling or engine stall may occur. Therefore, conventionally, the EGR is stopped when the idle state continues for a predetermined time and becomes the long idle state (see, for example, JP-A-10-103119).
  • the amount of EGR is originally large and the amount of hydrocarbon (HC) emissions is large.
  • tar is likely to be generated by three factors including hydrocarbons, low combustion temperature and condensed water.
  • the EGR valve is closed with a large amount of tar adhering to the surface.
  • the tar is hardened and the EGR valve is fixed. Therefore, in order to protect the EGR valve, the EGR is stopped when the long idle state is entered.
  • an object of the present invention is to provide a control device and a control method for an internal combustion engine that can suppress deterioration of combustion noise when the engine is in a long idle state and EGR is stopped.
  • An internal combustion engine control apparatus controls an exhaust gas recirculation mechanism that recirculates exhaust gas to an intake system of an internal combustion engine, fuel injection means that injects fuel into a combustion chamber of the internal combustion engine, and fuel injection of the fuel injection means And an exhaust gas recirculation stop means for stopping the operation of the exhaust gas recirculation mechanism when idle operation of the internal combustion engine continues for a predetermined time.
  • the exhaust gas recirculation stop means operates the exhaust gas recirculation mechanism.
  • the fuel injection control means increases the number of times of fuel injection of the fuel injection means.
  • the control apparatus for an internal combustion engine of the present invention when the idling operation of the internal combustion engine continues for a predetermined time and the operation of the exhaust gas recirculation mechanism stops, the number of fuel injections of the fuel injection means increases.
  • the operation of the exhaust gas recirculation mechanism is stopped, all of the intake air is fresh air, so oxygen in the intake air increases.
  • the fuel injection control means when the exhaust gas recirculation stop means stops the operation of the exhaust gas recirculation mechanism, the fuel injection control means includes a pre-fuel that the fuel injection means performs before the main fuel injection. It is preferable to add an injection. It should be noted that the number of additions of the previous fuel injection may be one that takes into consideration the effect of suppressing the deterioration of the combustion noise and the like, and may be once or a plurality of times.
  • the fuel injection control means may divide the main fuel injection performed by the fuel injection means. preferable.
  • the fuel injection control means performs post-fuel injection performed by the fuel injection means after the main fuel injection. Is preferably added. It should be noted that the additional number of post fuel injections may be one that takes into account the effect of suppressing the deterioration of combustion noise, etc., and may be one or more.
  • An internal combustion engine control method includes an exhaust gas recirculation mechanism that recirculates exhaust gas to an intake system of an internal combustion engine, fuel injection means that injects fuel into a combustion chamber of the internal combustion engine, and idle operation of the internal combustion engine for a predetermined time.
  • An internal combustion engine control method comprising an exhaust gas recirculation stop means for stopping the operation of the exhaust gas recirculation mechanism when the exhaust gas recirculation stop means stops the operation of the exhaust gas recirculation mechanism. The number of times of fuel injection of the injection means is increased.
  • the control method for an internal combustion engine of the present invention when the idling operation of the internal combustion engine continues for a predetermined time and the operation of the exhaust gas recirculation mechanism stops, the number of fuel injections of the fuel injection means is increased.
  • the operation of the exhaust gas recirculation mechanism is stopped, all of the intake air is fresh air, so oxygen in the intake air increases.
  • the exhaust gas recirculation stop means stops the operation of the exhaust gas recirculation mechanism, a pre-fuel injection performed by the fuel injection means before the main fuel injection is added.
  • the number of additions of the previous fuel injection may be one that takes into consideration the effect of suppressing the deterioration of the combustion noise and the like, and may be once or a plurality of times.
  • the main fuel injection performed by the fuel injection means is divided when the exhaust gas recirculation stop means stops the operation of the exhaust gas recirculation mechanism.
  • the fuel injection means adds a post fuel injection performed after the main fuel injection.
  • the additional number of post fuel injections may be one that takes into account the effect of suppressing the deterioration of combustion noise, etc., and may be one or more.
  • the block diagram which shows the internal combustion engine which concerns on embodiment of this invention The block diagram which shows the control apparatus of an internal combustion engine.
  • an engine 1 that is an internal combustion engine includes an EGR mechanism (exhaust gas recirculation mechanism) 2.
  • the EGR mechanism 2 returns a part of the exhaust gas of the engine 1 to the intake system.
  • the engine 1 is a diesel engine that directly injects fuel into a cylinder, and a fuel injection valve (injector) 3 is provided in each cylinder.
  • the fuel injection valve 3 is connected to a high-pressure pump via a common rail. After the fuel in the fuel tank is boosted by the high-pressure pump, the fuel injection valve 3 is sent to the fuel injection valve 3 via the common rail. The fuel is injected from the fuel injection valve 3 into the cylinder.
  • the engine 1 includes an intake pipe 4 that supplies intake air (intake air) to a cylinder and an exhaust pipe 5 that discharges exhaust gas from the cylinder.
  • a supercharger 6 is provided in the intake pipe 4.
  • the supercharger 6 includes a turbine 7 driven by the kinetic energy of the exhaust gas of the engine 1 and a compressor 8 that is rotationally driven by the turbine 7 and compresses the intake air.
  • the turbine 7 has a variable vane (not shown), and adjusts the excessive pressure by changing the opening of the variable vane.
  • An intercooler 9 and an intake shutter (throttle valve) 10 are provided downstream of the compressor 8 in the intake pipe 4.
  • the intercooler 9 cools the pressurized air.
  • the intake shutter 10 adjusts the flow rate of fresh air, that is, intake air flowing in from the atmosphere, by changing the shutter opening.
  • a catalytic converter 11 for purifying exhaust gas is provided on the downstream side of the turbine 7 in the exhaust pipe 5.
  • the EGR mechanism 2 includes an EGR passage (exhaust recirculation passage) 12 that recirculates exhaust gas to the intake pipe 4 and an EGR valve (exhaust recirculation control valve) 13 provided in the EGR passage 12.
  • the EGR passage 12 is provided between the upstream side of the turbine 7 in the exhaust pipe 5 and the downstream side of the intake shutter 10 in the intake pipe 4.
  • the EGR valve 13 adjusts the EGR flow rate (recirculation exhaust flow rate) by changing the valve opening.
  • An intake flow rate sensor 14 for detecting the intake flow rate of the engine 1 is provided upstream of the supercharger 6 in the intake pipe 4.
  • the exhaust pipe 5 immediately upstream of the catalytic converter 11 is provided with a proportional air-fuel ratio (Linear Air Fuel Ratio) sensor (hereinafter referred to as “LAF sensor”) 15.
  • LAF sensor 15 outputs a value ⁇ that is substantially proportional to the air-fuel ratio in the exhaust gas of the engine 1.
  • an engine speed sensor 16 for detecting the speed Ne of the engine 1 and an accelerator sensor 17 for detecting an accelerator opening (depression amount) L by an accelerator pedal (not shown) are also provided.
  • an electronic control unit (hereinafter referred to as “ECU”) 20 including a central processing unit (hereinafter referred to as “CPU”) (not shown) and the like is also provided.
  • the ECU 20 shapes input signal waveforms from the various sensors 14 to 17, corrects the voltage level to a predetermined level, converts an analog signal value into a digital signal value, and the like, and an input circuit (not shown).
  • the fuel injection valve 3, the turbine 7, the intake shutter 10, and the output circuit (not shown) which transmits a control signal to the EGR valve 13 are provided.
  • the ECU 20 also includes a memory 21 for storing various calculation programs executed by the CPU, calculation results, and the like.
  • the memory 21 is set based on the engine speed Ne, the accelerator opening L, the output value ⁇ of the LAF sensor 15 and the like in a state other than the long idle state (hereinafter referred to as “normal state”).
  • Map M1 of the injection pressure, injection time, and injection timing (hereinafter referred to as “injection pattern”) FP1 of the fuel injection valve 3 to be performed, and the output value of the engine speed Ne and the LAF sensor 15 in the long idle state
  • a map M2 of the injection pattern FP2 of the fuel injection valve 3 set based on ⁇ or the like is stored.
  • the injection pattern FP1 and FP2 of the maps M1 and M2 when the accelerator opening L is 0 are compared, the injection pattern FP2 is compared with the injection pattern FP1.
  • the previous fuel injection pilot injection, pre-injection
  • the pre-fuel injection is a method in which a small amount of fuel is injected before the original fuel injection (main fuel injection, main injection) to perform preliminary combustion.
  • the minute amount of fuel is burned by the temperature increase in the combustion chamber as the piston rises, and the preliminary combustion lowers the temperature in the combustion chamber and activates the diffusion fuel in the main fuel injection. Therefore, the ignition delay time from fuel injection to ignition is shortened, the main combustion is stabilized, the combustion speed becomes slow, and the combustion noise can be suppressed.
  • the pre-fuel injection immediately before the pre-fuel injection it is possible to stabilize the combustion of the fuel by the pre-fuel injection immediately after, and in this case, the combustion noise can be similarly suppressed.
  • the generation of nitrogen oxides can be suppressed by increasing the pre-fuel injection.
  • the injection pattern FP2 having at least one previous fuel injection is set in the map M2.
  • a setting condition that results in an injection pattern FP1 having one previous fuel injection (single pilot) on the map M1 two previous fuel injections (double pilot), three previous fuel injections (triple pilot), etc. on the map M2
  • An injection pattern FP2 having two or more previous fuel injections is set.
  • the memory 21 also stores a target intake air flow rate set based on the engine speed Ne, the accelerator opening L, the output value ⁇ of the LAF sensor 15, the opening degree map M3 of the EGR valve 13, and the like. . Note that a table may be stored in the memory 21 instead of the map.
  • the ECU 20 includes an idle determination means 22, an EGR stop means 23, a fuel injection control means 24, an intake flow rate control means 25, and a timer 26 as functional means for the processing.
  • the idle determination means 22 determines whether or not the engine 1 is in an idle state.
  • the idle determination means 22 determines that the engine 1 is in an idle state when the rotational speed Ne of the engine 1 is equal to or less than a predetermined rotational speed and the accelerator opening L is zero. Further, the idle determination means 22 determines that the engine is in the long idle state when the idle state of the engine 1 continues for a predetermined time T, for example, 10 minutes or 1 hour.
  • the timer 26 is used for timing.
  • the EGR stop unit 23 stops the operation of the EGR mechanism 2 by closing the EGR valve 13 when the idle determination unit 22 determines that the engine 1 is in the long idle state.
  • the fuel injection control means 24 controls the fuel injection of the fuel injection valve 3.
  • the fuel injection control means 24 acquires the current engine speed Ne, the accelerator opening L, the output value ⁇ of the LAF sensor 15 and the like, and searches the map M1 for an injection pattern FP1 corresponding to these.
  • the fuel injection of the fuel injection valve 3 is controlled based on this injection pattern FP1.
  • the fuel injection control means 24 obtains the current engine speed Ne and the output value ⁇ of the LAF sensor 15, and searches the map M2 for the injection pattern FP2 of the fuel injection valve 3 corresponding thereto.
  • the fuel injection of the fuel injection valve 3 is controlled based on the injection pattern FP2.
  • the fuel injection control means 24 is based on the injection pattern FP2 in which the previous fuel injection is increased at least once compared to the injection pattern FP1 before the EGR stop.
  • the fuel injection of the fuel injection valve 3 is controlled.
  • the intake air flow rate control means 25 acquires the current engine speed Ne, the accelerator opening L, the output value ⁇ of the LAF sensor 15 and the like, searches the map M3 for the corresponding target intake air flow rate, and the intake flow rate sensor 14 Feedback control of the shutter opening degree of the intake shutter 10, the opening degree of the EGR valve 13 and the like is performed so that the intake air flow rate detected by the engine 1 matches the target intake air flow rate.
  • the intake air flow rate is adjusted in a state in which the EGR mechanism 2 is operated (S1).
  • the intake flow rate sensor 14 detects the intake flow rate of the engine 1, the LAF sensor 15 detects the sensor value ⁇ , and the engine speed sensor 16 detects the engine speed Ne.
  • the fuel injection control means 24 searches the map M1 for the injection pattern FP1 of the fuel injection valve 3 corresponding to these detected values, and controls the fuel injection of the fuel injection valve 3 based on the injection pattern FP1.
  • the intake air flow rate control means 25 searches the map T3 for the target intake air flow rate corresponding to the detected value, and the shutter opening degree and EGR of the intake shutter 10 so that the intake air flow rate detected by the intake air flow rate sensor 14 matches the target intake air flow rate.
  • the valve opening degree of the valve 13 is feedback-controlled.
  • the idle determination means 22 determines whether or not the engine 1 is in an idle state (S2). When it is determined that the engine 1 is in the idle state (S2: YES), the idle determination unit 22 further determines whether or not the engine 1 is in the long idle state (S3). When it is determined that the engine 1 is in the long idle state (S3: YES), the EGR stop means 23 stops the operation of the EGR mechanism 2 (S4).
  • the fuel injection control means 24 searches the map M2 for the injection pattern FP2 of the fuel injection valve 3 corresponding to the current detected value, and controls the fuel injection of the fuel injection valve 3 based on the injection pattern FP2. (S5).
  • the fuel injection control means 24 is based on the injection pattern FP2 and compared with the injection pattern FP1 before the EGR stop.
  • the fuel injection of the fuel injection valve 3 is controlled so that the pre-fuel injection increases at least once (S5). Therefore, it is possible to suppress the deterioration of the combustion noise as compared to the conventional case where the fuel injection control does not change even when the EGR is stopped. Moreover, generation
  • production of nitrogen oxide can also be suppressed at this time compared with the past.
  • this invention is not limited to what was mentioned above.
  • the case where the engine 1 is a diesel engine has been described.
  • the engine 1 may be a gasoline engine.
  • the pre-fuel injection is performed in the injection pattern FP2.
  • the injection pattern FP1 may be divided into two or more in the injection pattern FP2. In this case as well, the deterioration of the combustion noise can be suppressed as in the case where the pre-fuel injection is increased.
  • the post fuel injection may be added in the injection pattern FP2.
  • the post fuel injection a small amount of fuel is injected after the main fuel injection to maintain the main combustion and warm the exhaust gas. In this case as well, the deterioration of the combustion noise can be suppressed as in the case where the pre-fuel injection is increased.
  • the increase in the pre-fuel injection, the division of the main fuel injection, and the addition of the post-fuel injection may be combined as appropriate.
  • increasing the number of times of fuel injection by the fuel injection means according to the present invention is not limited as long as it increases the number of times of fuel injection contributing to combustion in the combustion chamber, and is limited to the above description including the embodiment. It is not something.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

エンジン1は、エンジン1の吸気系に排気を還流させるEGR機構2と、エンジン1の燃焼室内に燃料を噴射する燃料噴射弁3と、燃料噴射弁3の燃料噴射を制御する燃料噴射制御手段24と、エンジン1のアイドル運転が所定時間継続したときに、EGR機構2の作動を停止するEGR停止手段23とを備える。EGR停止手段23がEGR機構2の作動を停止したとき、燃料噴射制御手段24は、燃料噴射弁の燃料噴射回数を増加させる。

Description

内燃機関の制御装置及び制御方法
 本発明は、排気還流機構を備えた内燃機関の制御装置及び制御方法に関する。
 内燃機関の排気ガスを吸気系に還流する排気還流(排気ガス再還流:Exhaust Gas Recirculation)(以下、「EGR」という)を行うEGR機構が知られている。EGR機構は、排気ガスの一部を新気に混ぜて、吸気中の酸素濃度を低下させる。これにより、大気より酸素濃度が低い状態で燃焼するため、ピーク燃焼温度が低下し、窒素酸化物(NOX)の発生を抑制することができる。
 内燃機関のアイドル運転時にも、EGRを行うことにより、窒素酸化物の発生を抑制することができる。しかし、アイドル状態が長時間継続すると、EGRによって燃料噴射ノズルの噴射口にカーボンが付着し、噴射口が次第に塞がれる。これにより、燃料噴射が良好に行われ難くなって燃焼が不安定になり、ラフアイドルやエンストを招くおそれがある。そこで、従来、アイドル状態が所定時間を超えて継続し、ロングアイドル状態になったとき、EGRを停止させている(例えば、特開平10-103119号公報参照)。
 また、アイドル運転時は、もともとEGR量が多く、炭化水素(HC)の排出量が多い。さらに、炭化水素に、低い燃焼温度、凝縮水を加えた3つの要素によりタールが生成されやすい環境にある。アイドル状態が長時間継続すると、生成されたタールがEGR弁の表面に付着し続ける。その状態で内燃機関を停止すると、表面に多量のタールが付着したままEGR弁を閉じることになり、その後、内燃機関が冷えるとタールが固まり、EGR弁が固着する。そこで、EGR弁保護のためにも、ロングアイドル状態になったとき、EGRを停止させている。
 しかしながら、ロングアイドル状態となりEGRを停止させると、燃焼音が悪化することが分かった。EGR停止前後で、燃料噴射制御は同じであり、吸気流量も変更されないが、EGR停止後は、吸気は全て大気から導入されるので、吸気内の酸素濃度が高くなり、燃焼が促進される。そのため、急速燃焼が起こり、燃焼音が悪化すると考えられる。
 本発明は、以上の点に鑑み、ロングアイドル状態となり、EGRを停止させたときに、燃焼音の悪化を抑制することができる内燃機関の制御装置及び制御方法を提供することを目的とする。
 本発明の内燃機関の制御装置は、内燃機関の吸気系に排気を還流させる排気還流機構と、前記内燃機関の燃焼室内に燃料を噴射する燃料噴射手段と、該燃料噴射手段の燃料噴射を制御する燃料噴射制御手段と、前記内燃機関のアイドル運転が所定時間継続したときに、前記排気還流機構の作動を停止する排気還流停止手段とを備え、該排気還流停止手段が前記排気還流機構の作動を停止したとき、前記燃料噴射制御手段は、前記燃料噴射手段の燃料噴射回数を増加させることを特徴とする。
 本発明の内燃機関の制御装置によれば、内燃機関のアイドル運転が所定時間継続し、排気還流機構の作動が停止したとき、燃料噴射手段の燃料噴射回数が増加する。排気還流機構の作動を停止したとき、吸気は全て新気からなるので、吸気内の酸素が増加する。しかし、従来のように、排気還流機構の作動を停止しても燃料噴射制御を変化させない場合に比べて、燃焼速度が速くなることが抑制される。よって、燃焼音の悪化を抑制することができる。
 例えば、本発明の内燃機関の制御装置において、前記排気還流停止手段が前記排気還流機構の作動を停止したとき、前記燃料噴射制御手段は、前記燃料噴射手段が主燃料噴射の前に行う前燃料噴射を追加させることが好ましい。なお、前燃料噴射の追加回数は、燃焼音の悪化を抑制する効果等を考慮したものであればよく、1回であっても複数回であってもよい。
 また、本発明の内燃機関の制御装置において、前記排気還流停止手段が前記排気還流機構の作動を停止したとき、前記燃料噴射制御手段は、前記燃料噴射手段が行う主燃料噴射を分割させることが好ましい。
 また、本発明の内燃機関の制御装置において、前記排気還流停止手段が前記排気還流機構の作動を停止したとき、前記燃料噴射制御手段は、前記燃料噴射手段が主燃料噴射の後に行う後燃料噴射を追加させることが好ましい。なお、後燃料噴射の追加回数は、燃焼音の悪化を抑制する効果等を考慮したものであればよく、1回であっても複数回であってもよい。
 本発明の内燃機関の制御方法は、内燃機関の吸気系に排気を還流させる排気還流機構と、前記内燃機関の燃焼室内に燃料を噴射する燃料噴射手段と、前記内燃機関のアイドル運転が所定時間継続したときに、前記排気還流機構の作動を停止する排気還流停止手段とを備えた内燃機関の制御方法であって、前記排気還流停止手段が前記排気還流機構の作動を停止したとき、前記燃料噴射手段の燃料噴射回数を増加させることを特徴とする。
 本発明の内燃機関の制御方法によれば、内燃機関のアイドル運転が所定時間継続し、排気還流機構の作動が停止したとき、燃料噴射手段の燃料噴射回数を増加させる。排気還流機構の作動を停止したとき、吸気は全て新気からなるので、吸気内の酸素が増加する。しかし、従来のように、排気還流機構の作動を停止しても燃料噴射を変化させない場合に比べて、燃焼速度が速くなることが抑制される。よって、燃焼音の悪化を抑制することができる。
 例えば、本発明の内燃機関の制御方法において、前記排気還流停止手段が前記排気還流機構の作動を停止したとき、前記燃料噴射手段が主燃料噴射の前に行う前燃料噴射を追加させることが好ましい。なお、前燃料噴射の追加回数は、燃焼音の悪化を抑制する効果等を考慮したものであればよく、1回であっても複数回であってもよい。
 また、本発明の内燃機関の制御方法において、前記排気還流停止手段が前記排気還流機構の作動を停止したとき、前記燃料噴射手段が行う主燃料噴射を分割させることが好ましい。
 また、本発明の内燃機関の制御方法において、前記排気還流停止手段が前記排気還流機構の作動を停止したとき、前記燃料噴射手段が主燃料噴射の後に行う後燃料噴射を追加させることが好ましい。なお、後燃料噴射の追加回数は、燃焼音の悪化を抑制する効果等を考慮したものであればよく、1回であっても複数回であってもよい。
本発明の実施形態に係る内燃機関を示す構成図。 内燃機関の制御装置を示すブロック図。 内燃機関の作動を示すフローチャート。
 本発明に係る実施形態を図面を参照して説明する。
 図1を参照して、内燃機関であるエンジン1は、EGR機構(排気還流機構)2を備えている。EGR機構2は、エンジン1の排気ガスの一部を吸気系に還流する。
 エンジン1は、シリンダ内に燃料を直接噴射するディーゼルエンジンであり、各シリンダに燃料噴射弁(インジェクタ)3が設けられている。燃料噴射弁3は、詳細は図示しないが、コモンレールを介して高圧ポンプに接続されており、燃料タンクの燃料が、高圧ポンプで昇圧された後、コモンレールを介して燃料噴射弁3に送られ、燃料噴射弁3からシリンダ内に噴射される。
 エンジン1は、シリンダに吸気(吸入空気)を供給する吸気管4と、シリンダからの排気ガスを排出する排気管5とを備えている。
 吸気管4には、過給機6が設けられている。過給機6は、エンジン1の排気ガスの運動エネルギーにより駆動されるタービン7と、タービン7により回転駆動され、吸気の圧縮を行うコンプレッサ8とを備えている。タービン7は、可変ベーン(図示せず)を有しており、可変ベーンの開度変化により、過吸圧を調整する。
 吸気管4のコンプレッサ8の下流には、インタークーラ9とインテークシャッタ(スロットル弁)10とが設けられている。インタークーラ9は、加圧された空気を冷却する。インテークシャッタ10は、シャッタ開度の変化により、新気、即ち大気から流入する吸気の流量を調整する。
 一方、排気管5のタービン7の下流側には、排気ガスを浄化する触媒コンバータ11が設けられている。
 EGR機構2は、排気ガスを吸気管4に還流するEGR通路(排気還流通路)12と、EGR通路12に設けられたEGR弁(排気還流制御弁)13とから構成される。EGR通路12は、排気管5のタービン7の上流側と吸気管4のインテークシャッタ10の下流側との間に設けられている。EGR弁13は、弁開度の変化により、EGR流量(還流排気流量)を調整する。
 吸気管4の過給機6の上流には、エンジン1の吸気流量を検出する吸気流量センサ14が設けられている。触媒コンバータ11の直上流の排気管5には、比例型空燃比(Linear Air Fuel Ratio)センサ(以下、「LAFセンサ」という)15が設けられている。LAFセンサ15は、エンジン1の排気ガス中の空燃比にほぼ比例した値αを出力する。
 また、エンジン1の回転数Neを検出するエンジン回転数センサ16と、アクセルペダル(図示せず)によるアクセル開度(踏み込み量)Lを検出するアクセルセンサ17も設けられている。
 さらに、中央演算処理ユニット(以下、「CPU」という)(図示せず)等からなる電子制御ユニット(以下、「ECU」という)20も設けられている。ECU20は、各種センサ14~17からの入力信号波形を整形し、電圧レベルを所定レベルに修正し、アナログ信号値をデジタル信号値に変換する等の機能を有する入力回路(図示せず)と、燃料噴射弁3、タービン7、インテークシャッタ10、EGR弁13に制御信号を送信する出力回路(図示せず)とを備えている。また、ECU20は、CPUで実行される各種演算プログラム、演算結果等を格納するメモリ21も備えている。
 図2を参照して、メモリ21には、ロングアイドル状態以外の状態(以下、「通常状態」という)においてエンジン回転数Ne、アクセル開度L、LAFセンサ15の出力値α等に基づいて設定される燃料噴射弁3の噴射圧力、噴射時間及び噴射時期(以下、これらを合わせて、「噴射パターン」という)FP1のマップM1、及びロングアイドル状態においてエンジン回転数Ne、LAFセンサ15の出力値α等に基づいて設定される燃料噴射弁3の噴射パターンFP2のマップM2が格納されている。
 ここで、エンジン回転数Ne、LAFセンサ15の出力値α等が同じで、アクセル開度Lが0におけるマップM1,M2の噴射パターンFP1,FP2を対比すると、噴射パターンFP2は噴射パターンFP1と比較して、前燃料噴射(パイロット噴射、プレ噴射)が少なくとも1回増加している。
 前燃料噴射は、本来の燃料噴射(主燃料噴射、メイン噴射)の前に微量の燃料を噴射し、予備的な燃焼をさせるものである。前燃料噴射によって、微量燃料がピストンの上昇に伴う燃焼室内の温度上昇によって燃え、この予備的な燃焼によって燃焼室内の温度を下げ、主燃料噴射の拡散燃料が活発化する。そのため、燃料噴射から着火までの着火遅れ時間が短縮化され、主燃焼が安定化して燃焼速度が緩慢になり、燃焼音を抑制することができる。また、前燃料噴射の直前に前燃料噴射を行うことにより、直後の前燃料噴射による燃料の燃焼安定化を図ることができ、この場合も同様に、燃焼音を抑制することができる。さらに、前燃料噴射を増加することにより、窒素酸化物の発生も抑制することができる。
 例えば、マップM1で前燃料噴射がない噴射パターンFP1となる設定条件の場合、マップM2では少なくとも1回の前燃料噴射を有する噴射パターンFP2が設定されている。マップM1で1回の前燃料噴射(シングルパイロット)を有する噴射パターンFP1となる設定条件の場合、マップM2では2回の前燃料噴射(ダブルパイロット)、3回の前燃料噴射(トリプルパイロット)など2回以上の前燃料噴射を有する噴射パターンFP2が設定されている。
 また、メモリ21には、エンジン回転数Ne、アクセル開度L、LAFセンサ15の出力値α等に基づいて設定される目標吸気流量、EGR弁13の開度のマップM3等も格納されている。なお、マップの代わりに、テーブルがメモリ21に格納されていてもよい。
 ECU20は、その処理の機能的手段として、アイドル判定手段22、EGR停止手段23、燃料噴射制御手段24、吸気流量制御手段25及びタイマ26を備えている。
 アイドル判定手段22は、エンジン1がアイドル状態であるか否かを判定する。アイドル判定手段22は、エンジン1の回転数Neが所定回転数以下であり、且つ、アクセル開度Lが0のとき、エンジン1がアイドル状態であると判定する。さらに、アイドル判定手段22は、エンジン1のアイドル状態が所定時間T、例えば10分や1時間を超えて継続したとき、ロングアイドル状態になったと判定する。計時はタイマ26を用いて行う。
 EGR停止手段23は、エンジン1がロングアイドル状態になったとアイドル判定手段22が判定したとき、EGR弁13を閉弁することにより、EGR機構2の作動を停止させる。
 燃料噴射制御手段24は、燃料噴射弁3の燃料噴射を制御する。通常状態時、燃料噴射制御手段24は、現在のエンジン回転数Ne、アクセル開度L、LAFセンサ15の出力値α等を取得して、これらに対応する噴射パターンFP1をマップM1から検索し、この噴射パターンFP1に基づき燃料噴射弁3の燃料噴射を制御する。一方、ロングアイドル状態時、燃料噴射制御手段24は、現在のエンジン回転数Ne、LAFセンサ15の出力値αを取得して、これらに対応する燃料噴射弁3の噴射パターンFP2をマップM2から検索し、この噴射パターンFP2に基づき燃料噴射弁3の燃料噴射を制御する。
 これにより、エンジン1がロングアイドル状態となり、EGRが停止したとき、燃料噴射制御手段24は、EGR停止前の噴射パターンFP1と比較して、前燃料噴射が少なくとも1回増加した噴射パターンFP2に基づき燃料噴射弁3の燃料噴射を制御する。
 吸気流量制御手段25は、現在のエンジン回転数Ne、アクセル開度L、LAFセンサ15の出力値α等を取得して、これらに対応する目標吸気流量をマップM3から検索し、吸気流量センサ14が検出する吸気流量が目標吸気流量と一致するように、インテークシャッタ10のシャッタ開度やEGR弁13の開弁度等をフィードバック制御する。
 次に、図3に示すフローチャートに従って、エンジン1の制御装置の作動について説明する。
 まず、EGR機構2が作動する状態での吸気流量合わせを行う(S1)。吸気流量センサ14がエンジン1の吸気流量を検出し、LAFセンサ15がセンサ値αを検出し、エンジン回転数センサ16がエンジン回転数Neを検出する。燃料噴射制御手段24は、これら検出値に対応する燃料噴射弁3の噴射パターンFP1をマップM1から検索し、噴射パターンFP1に基づき燃料噴射弁3の燃料噴射を制御する。吸気流量制御手段25は、検出値に対応する目標吸気流量をマップT3から検索し、吸気流量センサ14が検出する吸気流量が目標吸気流量と一致するように、インテークシャッタ10のシャッタ開度やEGR弁13の開弁度等をフィードバック制御する。
 次に、アイドル判定手段22は、エンジン1がアイドル状態であるか否かを判定する(S2)。エンジン1がアイドル状態であると判定された場合(S2:YES)、アイドル判定手段22は、さらに、エンジン1がロングアイドル状態であるか否かを判定する(S3)。エンジン1がロングアイドル状態であると判定された場合(S3:YES)、EGR停止手段23は、EGR機構2の作動を停止させる(S4)。
 そして、燃料噴射制御手段24は、現在の検出値に対応する燃料噴射弁3の噴射パターンFP2をマップM2から検索し、噴射パターンFP2に基づき燃料噴射弁3の燃料噴射を制御する。(S5)。
 以上のように、エンジン1がロングアイドル状態となり(S3:YES)、EGRが停止したとき(S4)、燃料噴射制御手段24は、噴射パターンFP2に基づき、EGR停止前の噴射パターンFP1に比べて、前燃料噴射が少なくとも1回増加するように燃料噴射弁3の燃料噴射を制御する(S5)。そのため、従来のように、EGRが停止しても燃料噴射制御が変化しない場合に比べて、燃焼音の悪化を抑制することができる。また、このとき、従来に比べて、窒素酸化物の発生も抑制することができる。
 なお、本発明は、上述したものに限定されない。例えば、実施形態では、エンジン1をディーゼルエンジンとする場合について説明した。しかし、エンジン1はガソリンエンジンであってもよい。
 また、エンジン回転数Ne、LAFセンサ15の出力値α等が同じで、アクセル開度Lが0におけるマップM1,M2での噴射パターンFP1,FP2を対比したとき、噴射パターンFP2で前燃料噴射が少なくとも1回増加している場合について説明した。しかし、噴射パターンFP1での1つの主燃料噴射が、噴射パターンFP2で2つ以上に分割されていてもよい。この場合も、前燃料噴射を増加させた場合と同様に、燃焼音の悪化を抑制することができる。
 また、噴射パターンFP1で後燃料噴射(アフタ噴射)がない場合、噴射パターンFP2で後燃料噴射を追加してもよい。後燃料噴射は、主燃料噴射の後に微量の燃料を噴射して、主燃焼を持続させ、排気ガスを暖めるものである。この場合も、前燃料噴射を増加させた場合と同様に、燃焼音の悪化を抑制することができる。さらに、前燃料噴射の増加、主燃料噴射の分割、後燃料噴射の追加を、適宜組み合わせてもよい。
 また、本発明に係る燃料噴射手段の燃料噴射回数を増加させることは、燃焼室内での燃焼に寄与する燃料噴射の回数を増加させるものであればよく、実施形態を含めた上記記載に限定されるものではない。

Claims (8)

  1.  内燃機関の吸気系に排気を還流させる排気還流機構と、
     前記内燃機関の燃焼室内に燃料を噴射する燃料噴射手段と、
     該燃料噴射手段の燃料噴射を制御する燃料噴射制御手段と、
     前記内燃機関のアイドル運転が所定時間継続したときに、前記排気還流機構の作動を停止する排気還流停止手段とを備え、
     該排気還流停止手段が前記排気還流機構の作動を停止したとき、前記燃料噴射制御手段は、前記燃料噴射手段の燃料噴射回数を増加させることを特徴とする内燃機関の制御装置。
  2.  前記排気還流停止手段が前記排気還流機構の作動を停止したとき、前記燃料噴射制御手段は、前記燃料噴射手段が主燃料噴射の前に行う前燃料噴射を追加させることを特徴とする請求項1に記載の内燃機関の制御装置。
  3.  前記排気還流停止手段が前記排気還流機構の作動を停止したとき、前記燃料噴射制御手段は、前記燃料噴射手段が行う主燃料噴射を分割させることを特徴とする請求項1又は2に記載の内燃機関の制御装置。
  4.  前記排気還流停止手段が前記排気還流機構の作動を停止したとき、前記燃料噴射制御手段は、前記燃料噴射手段が主燃料噴射の後に行う後燃料噴射を追加させることを特徴とする請求項1から3のいずれか1項に記載の内燃機関の制御装置。
  5.  内燃機関の吸気系に排気を還流させる排気還流機構と、前記内燃機関の燃焼室内に燃料を噴射する燃料噴射手段と、前記内燃機関のアイドル運転が所定時間継続したときに、前記排気還流機構の作動を停止する排気還流停止手段とを備えた内燃機関の制御方法であって、
     前記排気還流停止手段が前記排気還流機構の作動を停止したとき、前記燃料噴射手段の燃料噴射回数を増加させることを特徴とする内燃機関の制御方法。
  6.  前記排気還流停止手段が前記排気還流機構の作動を停止したとき、前記燃料噴射手段が主燃料噴射の前に行う前燃料噴射を追加させることを特徴とする請求項5に記載の内燃機関の制御方法。
  7.  前記排気還流停止手段が前記排気還流機構の作動を停止したとき、前記燃料噴射手段が行う主燃料噴射を分割させることを特徴とする請求項5又は6に記載の内燃機関の制御方法。
  8.  前記排気還流停止手段が前記排気還流機構の作動を停止したとき、前記燃料噴射手段が主燃料噴射の後に行う後燃料噴射を追加させることを特徴とする請求項5から7のいずれか1項に記載の内燃機関の制御方法。
PCT/JP2010/050385 2009-03-17 2010-01-15 内燃機関の制御装置及び制御方法 WO2010106830A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10753325.9A EP2410161B1 (en) 2009-03-17 2010-01-15 Control device and control method for internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-064747 2009-03-17
JP2009064747A JP2010216393A (ja) 2009-03-17 2009-03-17 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
WO2010106830A1 true WO2010106830A1 (ja) 2010-09-23

Family

ID=42739497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050385 WO2010106830A1 (ja) 2009-03-17 2010-01-15 内燃機関の制御装置及び制御方法

Country Status (3)

Country Link
EP (1) EP2410161B1 (ja)
JP (1) JP2010216393A (ja)
WO (1) WO2010106830A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216392A (ja) * 2009-03-17 2010-09-30 Honda Motor Co Ltd 内燃機関の制御装置
JP6363366B2 (ja) 2014-03-18 2018-07-25 トヨタ自動車株式会社 車両および車両の制御方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10103119A (ja) 1996-09-30 1998-04-21 Mazda Motor Corp 排気還流装置付ディーゼルエンジンの制御装置
JP2001090595A (ja) * 1999-09-28 2001-04-03 Nissan Motor Co Ltd ディーゼルエンジンの制御装置
JP2005090280A (ja) * 2003-09-12 2005-04-07 Toyota Motor Corp 内燃機関の燃料噴射制御装置
JP2006226188A (ja) * 2005-02-17 2006-08-31 Nissan Motor Co Ltd ディーゼルエンジンの燃料性状検出装置
JP2008075565A (ja) * 2006-09-21 2008-04-03 Toyota Motor Corp 内燃機関の制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58117347A (ja) * 1981-12-29 1983-07-12 Toyota Motor Corp デイ−ゼルエンジンの排気ガス再循環制御装置
JPS61286568A (ja) * 1985-06-12 1986-12-17 Toyota Motor Corp デイ−ゼル機関の排気ガス再循環制御方法
JPS63248910A (ja) * 1987-04-02 1988-10-17 Toyota Central Res & Dev Lab Inc 内燃機関の酸化窒素低減方法及び装置
JP3295986B2 (ja) * 1992-11-18 2002-06-24 株式会社デンソー 内燃機関の燃料噴射装置
JP3767211B2 (ja) * 1998-11-12 2006-04-19 マツダ株式会社 筒内噴射式エンジンの制御装置
JP4161690B2 (ja) * 2002-11-20 2008-10-08 株式会社デンソー 蓄圧式燃料噴射装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10103119A (ja) 1996-09-30 1998-04-21 Mazda Motor Corp 排気還流装置付ディーゼルエンジンの制御装置
JP2001090595A (ja) * 1999-09-28 2001-04-03 Nissan Motor Co Ltd ディーゼルエンジンの制御装置
JP2005090280A (ja) * 2003-09-12 2005-04-07 Toyota Motor Corp 内燃機関の燃料噴射制御装置
JP2006226188A (ja) * 2005-02-17 2006-08-31 Nissan Motor Co Ltd ディーゼルエンジンの燃料性状検出装置
JP2008075565A (ja) * 2006-09-21 2008-04-03 Toyota Motor Corp 内燃機関の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2410161A4 *

Also Published As

Publication number Publication date
EP2410161B1 (en) 2013-09-25
JP2010216393A (ja) 2010-09-30
EP2410161A1 (en) 2012-01-25
EP2410161A4 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
US20060201137A1 (en) Engine control equipment
WO2010090035A1 (ja) 内燃機関の排気浄化装置及び排気浄化方法
WO2020045486A1 (ja) 蒸発燃料処理装置
US20060005805A1 (en) Torque control strategy for a diesel engine during lean-rich modulation using independent fuel injection maps
US11492992B2 (en) Techniques for transient estimation and compensation of control parameters for dedicated EGR engines
WO2012121299A1 (ja) 燃焼制御装置
US7886526B2 (en) Fuel control of an internal-combustion engine
US6581565B2 (en) Engine torque controller
JP4998632B1 (ja) 燃焼制御装置
WO2010106830A1 (ja) 内燃機関の制御装置及び制御方法
US20130247883A1 (en) Control device for internal combustion engine
JP4524966B2 (ja) ディーゼル機関の制御システム
WO2013038805A1 (ja) 燃焼制御装置
WO2010106828A1 (ja) 内燃機関の制御装置
JP2002168142A (ja) ディーゼルエンジンの燃料噴射制御装置
JP2021131032A (ja) 内燃機関の制御装置
JP2008121494A (ja) 内燃機関の制御装置
JP3684968B2 (ja) 内燃機関の燃料噴射装置
JP6075166B2 (ja) 燃焼制御装置
JP4425662B2 (ja) 内燃機関の制御装置
JP2001193537A (ja) 内燃機関の燃料噴射装置
JP4123612B2 (ja) 筒内噴射式エンジンの制御装置
JP2004218612A (ja) 圧縮着火式内燃機関
JP3525990B2 (ja) 内燃機関の燃料制御装置
JP2005240709A (ja) ディーゼルエンジンの燃料噴射制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753325

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010753325

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE