WO2012127917A1 - フィルムの延伸方法 - Google Patents
フィルムの延伸方法 Download PDFInfo
- Publication number
- WO2012127917A1 WO2012127917A1 PCT/JP2012/052825 JP2012052825W WO2012127917A1 WO 2012127917 A1 WO2012127917 A1 WO 2012127917A1 JP 2012052825 W JP2012052825 W JP 2012052825W WO 2012127917 A1 WO2012127917 A1 WO 2012127917A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- stretching
- roll
- longitudinal direction
- heater
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 61
- 238000010438 heat treatment Methods 0.000 claims description 24
- 230000009477 glass transition Effects 0.000 claims description 20
- 230000002093 peripheral effect Effects 0.000 claims description 15
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 230000001678 irradiating effect Effects 0.000 claims 1
- 238000012546 transfer Methods 0.000 abstract description 26
- 229920005992 thermoplastic resin Polymers 0.000 abstract description 23
- 230000007547 defect Effects 0.000 abstract description 20
- 230000003287 optical effect Effects 0.000 abstract description 14
- 238000005259 measurement Methods 0.000 description 25
- 230000003746 surface roughness Effects 0.000 description 15
- 239000000853 adhesive Substances 0.000 description 10
- 230000001070 adhesive effect Effects 0.000 description 10
- 239000002184 metal Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- -1 polyethylene Polymers 0.000 description 9
- 229920005989 resin Polymers 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 230000037303 wrinkles Effects 0.000 description 7
- 239000002245 particle Substances 0.000 description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 description 6
- 239000005020 polyethylene terephthalate Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 5
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 4
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 150000002009 diols Chemical class 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 229920005672 polyolefin resin Polymers 0.000 description 3
- 239000005060 rubber Substances 0.000 description 3
- 238000010792 warming Methods 0.000 description 3
- 239000004713 Cyclic olefin copolymer Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000004702 methyl esters Chemical class 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920005668 polycarbonate resin Polymers 0.000 description 2
- 239000004431 polycarbonate resin Substances 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920002215 polytrimethylene terephthalate Polymers 0.000 description 2
- 239000011342 resin composition Substances 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000004945 silicone rubber Substances 0.000 description 2
- 230000001502 supplementing effect Effects 0.000 description 2
- 238000005809 transesterification reaction Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- WKBPZYKAUNRMKP-UHFFFAOYSA-N 1-[2-(2,4-dichlorophenyl)pentyl]1,2,4-triazole Chemical compound C=1C=C(Cl)C=C(Cl)C=1C(CCC)CN1C=NC=N1 WKBPZYKAUNRMKP-UHFFFAOYSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 241001422033 Thestylus Species 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229920006127 amorphous resin Polymers 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- OJURWUUOVGOHJZ-UHFFFAOYSA-N methyl 2-[(2-acetyloxyphenyl)methyl-[2-[(2-acetyloxyphenyl)methyl-(2-methoxy-2-oxoethyl)amino]ethyl]amino]acetate Chemical compound C=1C=CC=C(OC(C)=O)C=1CN(CC(=O)OC)CCN(CC(=O)OC)CC1=CC=CC=C1OC(C)=O OJURWUUOVGOHJZ-UHFFFAOYSA-N 0.000 description 1
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000000088 plastic resin Substances 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/04—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
- B29C55/06—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D7/00—Producing flat articles, e.g. films or sheets
- B29D7/01—Films or sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B13/00—Conditioning or physical treatment of the material to be shaped
- B29B13/02—Conditioning or physical treatment of the material to be shaped by heating
- B29B13/023—Half-products, e.g. films, plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/08—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
- B29C35/0805—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
- B29C2035/0822—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using IR radiation
Definitions
- the present invention relates to a method for stretching a thermoplastic resin film. More specifically, the present invention is excellent in thickness unevenness in the longitudinal direction and width direction, and has few scratch defects such as adhesive scratches and transfer scratches caused by rolls, and is particularly suitable for optical applications. It is related with the extending
- thermoplastic resin film in the longitudinal direction (longitudinal stretching) using a difference in peripheral speed between rolls after heating it to a glass transition temperature or higher has been conventionally known.
- a thermoplastic resin film such as a polyester film is heated to a stretching temperature equal to or higher than the glass transition temperature (hereinafter sometimes referred to as Tg), and then longitudinally stretched using the difference in peripheral speed of the roll.
- Tg glass transition temperature
- a low-speed heating roll group and a high-speed cooling roll group are used, and in order to reduce surface defects such as adhesion and scratches generated on the film, the roll surface is used. It has been proposed to define the material and roll surface roughness.
- the film for optical use centering on display use it is desired that the film has excellent transparency and has as few optical defects as possible.
- the demand for reduction of optical defects is also higher.
- optical interference unevenness and coating defects during the coating process of the base film Is one of the causes of
- a position where the film starts stretching is set between rolls as in Patent Document 3, and the stretching start position is set in the film width direction.
- a thermoplastic resin film is stretched longitudinally while being locally and rapidly heated in the range of Tg ⁇ 5 ° C. or more and Tg + 30 ° C. or less of the film by an installed non-contact type local rapid heating means.
- the width of heating in the longitudinal direction between the rolls is as follows. There is known a method of setting the thickness to 2 mm or more and 25 mm or less.
- JP 50-114476 A (page 1-4) Japanese Examined Patent Publication No. 3-56889 (page 1-3) JP 2008-93946 A (page 1-3) JP 2010-167767 (page 3, pages 14-15)
- Films for optical applications often have a substantially non-particle or non-particle configuration as a film substrate in order to express their excellent transparency, and as a result, the film surface is smoothed.
- the film surface sticks to the roll, the film is longitudinally stretched from the roll, the roll surface adhering foreign matter and the roll surface shape are film There is a problem that many scratches are generated on the film surface due to thermal transfer.
- Patent Document 3 reduces the preheating temperature of the film in order to prevent the occurrence of scratches due to film adhesion on a low-speed roll, the amount of heat necessary for stretching becomes insufficient, resulting in uneven stretching in the longitudinal method. This causes uneven thickness in the longitudinal direction.
- the peripheral rolls are also warmed, and as a result, the roll surface adhering foreign matter and the roll surface shape are thermally transferred to the film.
- Patent Document 4 depends on the longitudinal stretching conditions and the raw material resin composition, there is generally no problem if the film before longitudinal stretching is a thick film having a thickness of 2000 ⁇ m or more, but in the case of a film thinner than 2000 ⁇ m, it depends on the longitudinal stretching. Wrinkles are generated in the longitudinal direction of the film due to the tension, and waviness of the film is generated in the vicinity of the edge portion where the thickness of the film is thicker, so that the stretching start position is not determined and thickness unevenness in the width direction is generated.
- the present invention has been made in view of the above circumstances, is excellent in thickness unevenness in the longitudinal direction (sometimes referred to as the longitudinal direction) and in the width direction, and has few scratch defects such as adhesive scratches and transfer scratches due to rolls, It aims at providing the extending
- the present invention has the following configuration.
- (1) A method in which a film is stretched in the longitudinal direction with a difference in peripheral speed between the front and rear rolls, and the film is irradiated with infrared rays from the upper side of the film and the lower side of the film by a condenser heater.
- the longitudinal irradiation length on the film surface by the infrared focused light irradiated from the upper side of the film is a
- the longitudinal irradiation length on the film surface by the infrared focused light irradiated from the lower side of the film is b.
- a and b have an overlap, and a and b are both 10 mm or more and 40 mm or less.
- A is the distance from the lower end of the film-type condensing heater to the film surface
- B is the distance from the upper end of the film-condensing heater to the film surface.
- the method for stretching a film according to the above (1) which is 10 mm or more and 30 mm or less.
- (3) The film stretching method according to the above (1) or (2), wherein the lengths a and b are both 25 mm or more and 40 mm or less.
- (4) The film stretching method according to any one of the above (1) to (3), wherein the central positions of the irradiation length a part and b part coincide in the longitudinal direction and the lengths a and b are equal.
- the method of the present invention it is possible to obtain a film which is excellent in thickness unevenness in the longitudinal direction and the width direction and has few scratch defects such as adhesive scratches and transfer scratches, and is particularly suitable for optical applications.
- a film which is excellent in thickness unevenness in the longitudinal direction and the width direction and has few scratch defects such as adhesive scratches and transfer scratches, and is particularly suitable for optical applications.
- an easy-adhesion layer on the surface of the longitudinally stretched film, biaxially stretching by further laterally stretching, a prism sheet, an antireflection film, a hard coat film, a base film such as a light diffusion plate, It can be suitably used for a near-infrared absorbing film used for a front panel of a plasma display, a base film for an electromagnetic wave absorbing film, a base film for a touch panel or a transparent conductive film.
- thermoplastic resin constituting the film to which the present invention can be applied includes polyolefin resins such as polyethylene, polypropylene and polymethylpentene, polyamide resins such as nylon 6 and nylon 66, polyethylene terephthalate (hereinafter abbreviated as PET).
- polyolefin resins such as polyethylene, polypropylene and polymethylpentene
- polyamide resins such as nylon 6 and nylon 66
- PET polyethylene terephthalate
- Polybutylene terephthalate PBT
- polyethylene-2,6-naphthalate PEN
- polybutylene naphthalate PBN
- polytrimethylene terephthalate PPT
- polyethylene-p-oxy Copolymerization components such as benzoate
- polyester resin such as poly-1,4-cyclohexylenedimethylene terephthalate (PCT)
- PCT polycarbonate resin
- polyethylene terephthalate include, for example, diethylene glycol
- Polyester resins copolymerized with diol components such as opentyl glycol and polyalkylene glycol
- dicarboxylic acid components such as adipic acid, sebacic acid, phthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid, other polyacetal resins
- Examples include polyphenylene sulfide resin.
- amorphous resin such as polycarbonate resin, polyolefin resin, cyclic polyolefin resin, and polyacryl resin is used as a constituent component. It is also effective for longitudinal stretching.
- the polymerization method of PET includes a direct polymerization method in which terephthalic acid and ethylene glycol and, if necessary, another dicarboxylic acid component and a diol component are directly reacted, and a dimethyl ester of terephthalic acid (if necessary, other dicarboxylic acid Any production method such as a transesterification method in which a transesterification reaction between a methyl ester (containing a methyl ester) and ethylene glycol (including another diol component as necessary) can be used.
- the present invention can be applied to the melt film forming method from the viewpoint of cost and productivity.
- the melt film forming method can be classified into a straight die method, a crosshead die method, a flat die method, and a special die method depending on the shape of the die to be used, but the stretching method of the present invention is used for the film forming method by the flat die method. It is preferable.
- the resin raw material is preferably dried using a dryer such as a hopper dryer or a paddle dryer, or a vacuum dryer. After the resin raw material is dried in such a manner, the resin melted by a melt extrusion apparatus or the like is measured by a gear pump and continuously sent to a die.
- the die has only to be designed so that the molten resin does not stay therein, and any type of commonly used manifold die, coat hanger die, and fish tail die may be used in the flat die method.
- the molten resin extruded from the die into a sheet can be cooled and solidified on a cooling medium such as a drum to obtain a film.
- a predetermined film thickness can be obtained by adjusting the extrusion temperature, the take-up speed during take-up, and the lip gap of the die.
- the thickness of the film to be subjected to the stretching method of the present invention is appropriately selected depending on the purpose, but generally the film thickness before longitudinal stretching (before stretching in the longitudinal direction) is in the range of 10 ⁇ m to 3000 ⁇ m. It is preferable that the thickness is 300 ⁇ m or more and 3000 ⁇ m or less. When the film thickness is less than 10 ⁇ m, the yield tends to be deteriorated, for example, when the film is stretched longitudinally, and when it exceeds 3000 ⁇ m, the transparency is lowered or the thickness as a member becomes too large. .
- the thickness unevenness in an arbitrary direction of the film before longitudinal stretching is preferably 2.5% or less of the film thickness.
- the thickness unevenness is 37.5 ⁇ m or less in both the film longitudinal direction and the width direction. It is desirable that This is because, depending on the shape and location of the thickness unevenness, when the longitudinal stretching is performed, the portion having a small thickness is locally longitudinally stretched, so that wrinkles in the longitudinal direction are likely to occur.
- FIG. 1 is a schematic cross-sectional view of a roll stretching apparatus 1 in a film longitudinal stretching method.
- the roll stretching apparatus 1 is arranged with a low-speed roll 3 and a high-speed roll 3 ′ in order from the upstream side in the traveling direction (longitudinal direction) of the film 2, and a nip roll 4 for nipping the film 2 in each roll 3, 3 ′. 4 ', and a condensing heater and its casings 5, 5' are arranged between the rolls 3, 3 'and above and below the film 2.
- FIG. 2 is an enlarged schematic cross-sectional view of a stretched portion between rolls.
- the irradiation length 6 ′ in the longitudinal direction on the film surface by the infrared focused light irradiated from the condensing heater below the film 2 is equal to the focal point 7 ′ of the lower condensing heater and the lower focusing light. It is determined by the distance 8 'from the upper end of the casing 5' of the optical heater to the lower surface before the film 2 starts stretching.
- the “overlapping portion” refers to a portion that overlaps with the light irradiated by the lower light collecting heater when the light irradiated on one surface of the film by the upper light collecting heater is projected onto the other surface as it is.
- each condensing heater it is desirable to set the focal points 7 and 7 'of each condensing heater so that they do not enter the condensing heater casing on the opposite side across the film. This is because when the focal point is in the housing of the condensing heater, the infrared heater main body and its electrical equipment inside the housing are locally heated, and the heat resistance is exceeded, leading to a decrease in life and failure. Further, unless there is a particular reason, the focal point is set on the extension of the central position in the longitudinal direction of the film of the condensing heater, whereby infrared scattering to the surroundings can be minimized.
- the film melt-extruded from the die and cooled and solidified by a cooling drum or the like is first preheated before longitudinal stretching in a preheating roll, hot air, infrared heater, etc., and then a low speed roll to which a difference in peripheral speed or tension is given.
- a preheating roll hot air, infrared heater, etc.
- a low speed roll to which a difference in peripheral speed or tension is given.
- the film is stretched in the longitudinal direction while being irradiated with infrared rays from the upper side and the lower side of the film by a condenser heater.
- the longitudinal stretching step is not limited to one section, and for example, a multi-stage stretching may be performed by providing an intermediate speed roll between a low speed roll and a high speed roll to provide a peripheral speed
- preheating temperature shall be below the glass transition temperature of the thermoplastic resin which comprises a film.
- the preheating temperature is preferably in the range of [film glass transition temperature ⁇ 20] ° C. to [glass transition temperature of film] ° C., more preferably [film glass transition temperature ⁇ 15] ° C.
- the glass transition temperature of the film is ⁇ 5] ° C. or lower.
- the film stretched longitudinally in this way is cooled below the glass transition temperature by being conveyed by a cooled high-speed roll group or passing through a cooling oven.
- this film is cooled, if the film is conveyed in a state higher than the glass transition temperature, the film is longitudinally stretched on a high-speed roll, so that scratches are generated or the film is longitudinally stretched in a cooling oven. In order to cause unevenness, it is preferable to cool as quickly as possible.
- the material of the roll is preferably made of stainless steel or iron, a metal roll plated with them, a rubber roll in which a metal core is coated with rubber, a ceramic roll in which a metal is coated with ceramic. Also, a method of heating through steam, hot water or a heat medium heated inside with a hollow cored bar for heating, a method of heating by applying a heating wire inside, a method of heating by induction heating with electromagnetic waves, etc. Is also suitable.
- the condensing heater used in the stretching method of the present invention has an infrared heater inside a casing made of metal or the like for the purpose of condensing or insulating heat, and the wavelength of the infrared heater ranges from a short wavelength to a medium wavelength (0 .8 ⁇ m or more and 3.0 ⁇ m or less) depending on the absorption efficiency and the required heat quantity of the thermoplastic resin constituting the film. Since light has energy corresponding to its frequency (reciprocal of wavelength), the shorter the wavelength, the higher the energy.
- the absorption efficiency of the thermoplastic resin does not change significantly in the range of the wavelength of 0.8 ⁇ m or more and 3.0 ⁇ m or less, it is possible to select a short wavelength (0.8 ⁇ m or more and 2.0 ⁇ m or less) to obtain higher energy. Density can be obtained.
- the total output of the infrared heater is appropriately selected depending on stretching conditions such as the infrared wavelength absorption efficiency, preheating temperature, and stretching ratio of the thermoplastic resin constituting the film.
- an infrared heater having a wavelength of 1.1 ⁇ m (manufactured by Hibeck Co., Ltd.) is installed in the condensing heater housings on the upper and lower sides of the film, and the total electric energy of the infrared heater necessary for stretching the thermoplastic resin is as follows: It is preferably selected in the range of 10 W ⁇ h / kg to 23 W ⁇ h / kg, more preferably 12 W ⁇ h / kg to 21 W ⁇ h / kg, per unit weight (1 kg) of the plastic resin.
- the preheating temperature is set to the glass transition temperature or higher of the thermoplastic resin. Scratches such as scratches occur. If it is higher than 23 W ⁇ h / kg, even if it can be stretched, it will approach a so-called super-draw state that is substantially not accompanied by a change in molecular orientation, so that the required physical properties cannot be obtained.
- Each output of the infrared heater on the upper side and the lower side of the film is appropriately selected depending on the configuration of the roll stretching device, the film forming conditions, and the like.
- the output of the infrared heater on the upper side of the film is preferably higher than the output of the infrared heater on the lower side of the film. Since the amount of heat received from both sides of the film becomes equal, uniform stretching can be achieved and thickness unevenness can be further reduced.
- each output of the infrared heater on the upper side and the lower side of the film is 1.2 times to 3.0 times the output of the infrared heater on the lower side of the film.
- the concentrating heater is arranged between the rolls and in the film width direction on the upper side and the lower side of the film, and the installation position in the film longitudinal direction is appropriately selected according to the longitudinal stretching process, but the actual stretching start position is set between the rolls. Therefore, the concentrating heater is preferably located near the center between the rolls. In order to stabilize the stretching start position, it is preferable to align the center positions in the film longitudinal direction of the condensing heaters on the upper and lower sides of the film.
- A is the distance from the lower end of the casing of the condensing heater on the upper side of the film to the film surface
- B is the distance from the upper end of the casing of the condensing heater on the lower side of the film to the film surface.
- a and B are 10 mm or more and 30 mm or less and equal.
- an infrared reflector is provided on the back surface and / or side surface of the infrared heater in the condensing heater housing so that the reflected light can be focused on the focal point.
- the focal point is generated at the intersection where the incident angle and the reflection angle are reflected equally from the light source to the reflector.
- the reflector not only collects the reflected light of the infrared heater, but also reflects infrared transmitted light from the infrared heater installed on the opposite side of the film within the housing, thereby contributing to heating of the film. Therefore, it is possible to prevent adverse effects caused by leakage of infrared rays to the surroundings, especially the occurrence of adhesive scratches and transfer scratches due to heating of low-speed rolls and nip rolls.
- the film can be efficiently heated with less energy.
- the heater output since there is a surplus in the heater output, it is possible to cope with longitudinal stretching at a higher speed than in the past, and it is possible to increase productivity.
- the condensing heater referred to in the present invention has an infrared heater inside a casing made of metal or the like for the purpose of condensing or insulating heat, and the infrared rays diffused from the infrared heater (hereinafter sometimes referred to as diffused light). ) Can be focused, more preferably, only a part of the diffused light can be focused. For example, it is more preferable that only the reflected infrared light is focused by the reflecting plate installed in the casing, that is, a state where the infrared diffused light and the focused light are mixed.
- the film can be preheated between the rolls by the diffused light, and the stretching start position in the range where the film is heated by the focused light can be made more stable.
- the irradiation length in the longitudinal direction on the film surface by the infrared focused light irradiated from the upper side of the film is a
- the irradiation length in the longitudinal direction on the film surface by the infrared focused light irradiated from the lower side of the film is b.
- the portion of the irradiation length a and the portion of b do not overlap, the stretching start position of the film is not stable, causing stretching unevenness in the longitudinal direction, resulting in large thickness unevenness.
- the part a and the part b need to overlap.
- the portion of the irradiation length a and the portion of b are overlapping when the irradiation light on one surface of the film by the condensing heater on the upper side of the film is projected as it is onto the other surface of the film
- the center positions of the irradiation lengths a and b may be different in the longitudinal direction.
- the part of the irradiation length a and the part of b are overlapping.
- the part of a (or b) is replaced with the part of b (or a). Say if included.
- the portion of the irradiation length a and b it is most preferable that the central positions of the portions of the portions coincide with each other in the longitudinal direction, and the portion of the length a and the portion of b are equal.
- the irradiation lengths a and b are each preferably 10 mm or more and 40 mm or less, more preferably 25 mm or more and 40 mm or less, respectively, and the stretching start point is most stable is 30 mm or more and 40 mm or less.
- a narrow irradiation length of less than 10 mm has been considered to stabilize the stretching start position of the film, but it depends on the longitudinal stretching conditions and the thermoplastic resin constituting the film, but generally before longitudinal stretching.
- the stretching start position becomes unstable. Even when the film is wrinkled or wavy, the stretching start position is more stable when the irradiation length is 25 mm or more and 40 mm or less. If the irradiation length is wider than 40 mm, the stretching start position moves within the irradiation length and becomes unstable, resulting in stretching unevenness and film thickness unevenness.
- the housing width in the film longitudinal direction of the condensing heater is appropriately selected according to the maximum output of the infrared heater. If the upper and lower casing widths of the film are different, the upper casing width should be reduced so as to prevent leakage of infrared rays to the upper side of the film in order to prevent the roll and peripheral members on the upper side of the film from being heated by infrared rays.
- a width wider than the side housing width is preferable, and conversely, in order to prevent the roll or member below the film from being heated by infrared rays, it is preferable that the lower housing width is wider than the upper housing width. More preferably, it is that the housing width
- the housing portion of the condensing heater preferably has a structure that can be cooled through air or water cooled inside. It prevents the life reduction and failure caused by exceeding the heat resistance temperature of the infrared heater and its electrical equipment inside the casing, and prevents the casing itself from becoming a heating source to warm the peripheral rolls and members.
- the ratio of longitudinal stretching is appropriately selected according to the purpose, but is generally 1.2 times or more for the purpose of improving toughness and flexibility, and 1.5 for the purpose of developing strength and phase difference. A range of 2 to 4 times is selected.
- the roll speed is appropriately selected according to the purpose, the size of the equipment, the type of the thermoplastic resin to be used, and the like. Generally, the roll speed is 1 to 50 m / min before stretching.
- Glass transition temperature About 5 mg of a sample (film) is taken and measured with a differential scanning calorimeter (RDC220, manufactured by Seiko Denshi Kogyo Co., Ltd.) in a nitrogen atmosphere at a temperature increase rate of 20 ° C./min in the range of 25 ° C. to 200 ° C. And determined based on the measurement result of 1stRun.
- the glass transition temperature is determined according to the method for determining the midpoint glass transition temperature in 9.3 of JIS-K-7121 (1987), and equidistant from the extended straight line of each baseline of the measurement chart in the vertical axis direction. The temperature was the point at which a straight line and the curve of the step-like change part of the glass transition intersect. In addition, when there are a plurality of step-like changes, the lower value in the measurement range is adopted.
- Needle diameter 2 ( ⁇ mR) Needle pressure 10 (mg) Measurement length 500 ( ⁇ m) Vertical magnification 20000 (times) CUT OFF 250 ( ⁇ m) Measurement speed 100 ( ⁇ m / s) Measurement interval 5 ( ⁇ m) Number of records 80 lines Hysteresis width ⁇ 6.25 (nm) Standard area 0.1 (mm 2 )
- SRa 4.0 nm or more
- a video light (“VL-G301” manufactured by LPL), which is a powerful light source, is used to place the film in a dark room. When visually observing, the surface shape transfer of the roll can be visually recognized. When SRa was 4.0 nm or more, it was judged that surface shape transfer was poor.
- Example 1 As the thermoplastic resin, polyethylene terephthalate (PET) pellets having an intrinsic viscosity of 0.65 dl / g and a Tg of 80 ° C. containing as little internal particles and inert particles as possible based on the polymerization catalyst residue were used. After sufficiently drying in vacuum, extrude additive particles at a single raw material using a single-screw extruder at 285 ° C, make the discharge rate constant with a gear pump, and then discharge into a sheet from a flat die with a width of 1000 mm Thus, a film having an average thickness of 1500 ⁇ m, a density of 1.34 g / cm 3 , and thickness unevenness in the longitudinal direction and width direction: 2.4 to 2.5% was obtained.
- PET polyethylene terephthalate
- the longitudinal irradiation lengths a and b on the film surface by the infrared focused light are both 30 mm and 30 mm overlapping, and the distances A and B between the condensing heater housing and the film surface are 20 mm.
- a roll stretching apparatus adjusted to become was used. After the film is preheated at a roll temperature of 70 ° C. in a roll group consisting of 10 ⁇ 250 mm metal rolls at a conveyance speed of 10 m / min before stretching, the upper and lower condenser heaters of the film according to the present invention In the roll group consisting of five metal rolls with a diameter of 250 mm, the steel was cooled at a roll temperature of 25 ° C.
- Table 1 shows the results obtained by measuring the average thickness, thickness unevenness, average surface roughness, and preheating roll scratch of the longitudinally stretched film thus obtained.
- the thickness unevenness is 2.4% or less in both the longitudinal direction and the width direction, which is improved compared to before stretching.
- the average surface roughness is 4 nm or less, and there is no surface shape transfer of the roll, and there is no scratch by the preheating roll. I was able to get it.
- Example 1 A longitudinally stretched film was obtained in the same manner as in Example 1 except that a condensing heater was installed only on one side above the film, the preheating roll temperature was 80 ° C., and the total power of the infrared heater was 15 kW. Various conditions are shown in Table 1, and various measurement results are shown in Table 2. By supplementing the amount of heat necessary for stretching by preheating, preheating roll scratches due to film adhesion on the preheating roll occurred.
- Example 2 A longitudinally stretched film was obtained in the same manner as in Example 1 except that the condensing heater was installed only on one side of the upper side of the film and the total power of the infrared heater was 24 kW. Various conditions are shown in Table 1, and various measurement results are shown in Table 2. The amount of heat required for stretching is supplemented by an infrared heater, and the absence of a concentrating heater under the film increases the leakage of infrared rays to the surroundings. A transfer flaw on the surface shape of the nip roll occurred.
- Example 4 Example except that the upper and lower infrared heaters of the film are only the diffused light of the infrared heater without an infrared reflector or focus, and the total power of the infrared heater is 25 kW (upper 17 kW, lower 8 kW)
- Example 1 a longitudinally stretched film was obtained.
- Table 1 various conditions are shown in Table 1, and various measurement results are shown in Table 2.
- Comparative Example 3 the stretching start position was not determined, and the thickness unevenness was worse than before stretching.
- the amount of heat required for stretching was supplemented with an infrared heater, which increased the leakage of infrared rays to the surroundings, and as a result of warming the peripheral rolls and members, there were adhesive scratches due to the preheating rolls and transfer scratches on the surface shape of the nip rolls. Occurred.
- Example 2 A longitudinally stretched film was obtained in the same manner as in Example 1 except that the average thickness before stretching was 300 ⁇ m, the conveyance speed before stretching was 50 m / min, and the preheating roll temperature was 75 ° C. Various conditions are shown in Table 1, and various measurement results are shown in Table 2. A film having excellent thickness unevenness in the longitudinal direction and width direction and having few scratch defects such as adhesion scratches and transfer scratches due to rolls could be obtained.
- Example 3 A longitudinally stretched film was obtained in the same manner as in Example 1 except that the average thickness before stretching was 3000 ⁇ m, the conveyance speed before stretching was 5 m / min, and the preheating roll temperature was 65 ° C. Various conditions are shown in Table 1, and various measurement results are shown in Table 2. A film having excellent thickness unevenness in the longitudinal direction and width direction and having few scratch defects such as adhesion scratches and transfer scratches due to rolls could be obtained.
- Examples 4 to 17 A longitudinally stretched film was obtained in the same manner as in Example 1 except that the irradiation lengths a and b were 10 to 40 mm and the overlap of the part a and the part b was 10 to 40 mm.
- Table 1 various conditions are shown in Table 1, and various measurement results are shown in Table 2.
- the thickness unevenness was worse in both the longitudinal direction and the width direction as compared with Example 1, it was improved compared to before stretching, and particularly in Examples 12, 13, 16, and 17 where irradiation lengths a and b were 25 to 40 mm. The thickness unevenness was improved to 2.0% or less.
- the overlap of the irradiation length a part and the part b was the same, the thickness unevenness was improved more when the part a and the part b were equal.
- Example 18 A longitudinally stretched film was obtained in the same manner as in Example 1 except that the distances A and B were 10 to 35 mm.
- Table 1 various conditions are shown in Table 1, and various measurement results are shown in Table 2. Except for Example 18, the average surface roughness was worse than that of Example 1, and in particular, in Examples 20 and 23 to 25 where the distance A or B was 35 mm, the average surface roughness exceeded 3 nm. There was no transfer scratch of the roll surface shape due to the film, and a film excellent in thickness unevenness could be obtained. Moreover, the thickness unevenness was improved and the average surface roughness was smaller under the condition where the distances A and B were equal.
- Example 26 to 27 A longitudinally stretched film was obtained in the same manner as in Example 1 except that the total power of the infrared heater was 15 to 25 kW (upper side 10 to 17 kW, lower side 5 to 8 kW). Various conditions are shown in Table 1, and various measurement results are shown in Table 2. Although the thickness unevenness or average surface roughness was worse than that of Example 1, the thickness unevenness was improved as compared with before stretching, and a film having few scratch defects such as adhesion scratches and transfer scratches due to rolls could be obtained. .
- Example 28 A longitudinally stretched film was obtained in the same manner as in Example 1 except that the power of the infrared heaters on the upper and lower sides of the film was 11 kW on the upper side and 9 kW on the lower side.
- Table 1 various conditions are shown in Table 1, and various measurement results are shown in Table 2.
- the thickness unevenness and the average surface roughness were worse than those of Example 1, the thickness unevenness was improved as compared with before stretching, and a film having few scratch defects such as adhesive scratches and transfer scratches due to the roll could be obtained. .
- Example 29 A longitudinally stretched film was obtained in the same manner as in Example 1 except that the power of the infrared heaters on the upper and lower sides of the film was 15 kW on the upper side and 5 kW on the lower side.
- Table 1 various conditions are shown in Table 1, and various measurement results are shown in Table 2.
- the thickness unevenness was worse than that of Example 1, the thickness unevenness was improved as compared to before stretching, and a film having few scratch defects such as adhesion scratches and transfer scratches due to rolls could be obtained.
- Example 30 to 32 A longitudinally stretched film was obtained in the same manner as in Example 1 except that the longitudinal stretch ratio was 2.0 to 4.0 times. Various conditions are shown in Table 1, and various measurement results are shown in Table 2. A film having excellent thickness unevenness in the longitudinal direction and width direction and having few scratch defects such as adhesion scratches and transfer scratches due to rolls could be obtained.
- Examples 33 to 37 A longitudinally stretched film in the same manner as in Example 14 except that the average thickness before stretching is 300 to 3000 ⁇ m, and the conveying speed before stretching is 5 to 50 m / min so that the discharge rate from the flat die is constant without change. Got. Various conditions are shown in Table 1, and various measurement results are shown in Table 2. The thickness unevenness in the longitudinal direction and the width direction was improved compared with that before stretching, and a film having few scratch defects such as adhesive scratches and transfer scratches due to rolls could be obtained.
- Example 38 Polyethylene-2,6-naphthalate (PEN) pellets with a Tg of 120 ° C. and a density of 1.34 g / cm 3 were used as the thermoplastic resin, the average thickness before stretching was 350 ⁇ m, the transport speed before stretching was 43 m / min, and preheating A longitudinally stretched film was obtained in the same manner as in Example 1 except that the roll temperature was 110 ° C. and the longitudinal stretch ratio was 3.5 times. Various conditions are shown in Table 1, and various measurement results are shown in Table 2. A film having excellent thickness unevenness in the longitudinal direction and width direction and having few scratch defects such as adhesion scratches and transfer scratches due to rolls could be obtained.
- PEN Polyethylene-2,6-naphthalate
- Cyclic olefin copolymer that is amorphous as a thermoplastic resin (“TOPAS” manufactured by Nippon Polyplastics Co., Ltd., Tg 130 ° C., density 1.02 g / cm 3 ) and cyclic olefin polymer (COP) (manufactured by Nippon Zeon Co., Ltd.) “Zeonor”, Tg 160 ° C., density 1.01 g / cm 3 ), average thickness before stretching 200 ⁇ m, transport speed before stretching 30 m / min, preheating roll temperature 125-155 ° C., infrared heater
- a longitudinally stretched film was obtained in the same manner as in Example 1 except that the total power was 7 kW (upper side 4 kW, lower side 3 kW) and the longitudinal stretching ratio was 2.0 times.
- Table 1 various conditions are shown in Table 1, and various measurement results are shown in Table 2.
- Table 2 A film having excellent thickness unevenness in the longitudinal direction and width direction and having few scratch defects such as
- thermoplastic resin film obtained by the production method of the present invention the thickness unevenness in the longitudinal direction and the width direction is improved compared to before stretching, and the surface shape transfer scratches due to the roll indicated by the average surface roughness are In addition, it is possible to obtain a film free from adhesive scratches caused by the preheating roll.
- thermoplastic resin film obtained by the above-described longitudinal stretching method of the present invention is excellent in thickness unevenness in the longitudinal direction and the width direction, has few scratch defects such as adhesive scratches and transfer scratches, and is particularly suitable for optical applications. It is possible to provide a base for prism sheets, antireflection films, hard coat films, light diffusion plates, etc. It can be suitably used for a film, a base film for a near-infrared absorbing film or an electromagnetic wave absorbing film used for a front plate of a plasma display, a base film for a touch panel or a transparent conductive film.
- Roll stretching device 2 Film 3: Low-speed roll 3 ': High-speed roll 4: Nip roll 4': Nip roll 5: Condensing heater on the upper side of the film and its casing 5 ': Condensing heater on the lower side of the film and its Case 6: Irradiation length a portion on the film surface by the upper condensing heater 6 ': Irradiation length b portion on the film surface by the lower condensing heater 7: Focus 7 of the upper condensing heater ': Focal point of the lower condenser heater 8: Distance A from the lower end of the upper condenser heater housing to the film surface A 8 ': Distance B from the upper end of the casing of the lower condenser heater to the film surface 9: Irradiation width at the lower end of the casing of the upper condensing heater 9 ': Irradiation width of the upper end of the casing of the lower condensing heater
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Abstract
Description
また、特許文献4は、縦延伸条件や原料樹脂組成にもよるが、一般に縦延伸前のフィルムが2000μm以上の厚物フィルムであれば問題ないが、2000μmよりも薄いフィルムでは、縦延伸にかかる張力によってフィルム長手方向にシワが発生し、また、フィルム厚みがより厚いエッジ部近傍ではフィルムのうねりが発生することで、延伸開始位置が定まらず、幅方向の厚みムラを発生させてしまう。
(1)前後のロールの周速差でフィルムを長手方向に延伸する方法であって、該前後のロール間において、フィルムの上側及びフィルムの下側からそれぞれフィルムに集光式ヒータにより赤外線を照射し、フィルムの上側から照射される赤外線の集束光によるフィルム面での長手方向照射長さをa、フィルムの下側から照射される赤外線の集束光によるフィルム面での長手方向照射長さをbとして、aの部分とbの部分が重なりを有し、かつ、a、bがいずれも10mm以上40mm以下であることを特徴とするフィルムの延伸方法。
(2)フィルム上側の集光式ヒータの筐体下端からフィルム面までの距離をA、フィルム下側の集光式ヒータの筐体上端からフィルム面までの距離をBとして、A、Bがいずれも10mm以上30mm以下である上記(1)に記載のフィルムの延伸方法。
(3)長さa、bがいずれも25mm以上40mm以下である上記(1)または(2)に記載のフィルムの延伸方法。
(4)照射長さaの部分とbの部分のそれぞれ中心位置が長手方向で一致し、長さaとbが等しい上記(1)~(3)のいずれかに記載のフィルムの延伸方法。
(5)AとBが等しい上記(2)~(4)のいずれかに記載のフィルムの延伸方法。
(6)フィルム上側の集光式ヒータの出力が、フィルム下側の集光式ヒータの出力の1.2倍以上3.0倍以下であることを特徴とする上記(1)~(5)のいずれかに記載のフィルムの延伸方法。
(7)長手方向に延伸する前のフィルム厚みが300μm以上3000μm以下であることを特徴とする上記(1)~(6)のいずれかに記載のフィルムの延伸方法。
(8)長手方向の延伸倍率が2倍以上4倍以下であることを特徴とする上記(1)~(7)のいずれかに記載のフィルムの延伸方法。
(9)前後のロールの周速差でフィルムを長手方向に延伸する前に、予備加熱工程を有し、該予備加熱における加熱温度が[フィルムのガラス転移温度-15]℃以上[フィルムのガラス転移温度-5]℃以下である上記(1)~(8)のいずれかに記載のフィルムの延伸方法。
(10)上記(1)~(9)のいずれかに記載のフィルムの延伸方法を用いたことを特徴とするフィルムの製造方法。
試料(フィルム)を約5mgとり、示差走査熱量計(セイコー電子工業社製RDC220型)を用いて、窒素雰囲気下、25℃から200℃の範囲にて、20℃/分の昇温速度で測定し、1stRunの測定結果に基づき決定した。ガラス転移温度の求め方は、JIS-K-7121(1987)の9.3項の中間点ガラス転移温度の求め方に従い、測定チャートの各ベースラインの延長した直線から縦軸方向に等距離にある直線とガラス転移の階段状変化部分の曲線とが交わる点の温度とした。なお、複数の階段状変化部分がある場合は、測定範囲の内で低い方の値を採用する。
デジタルマイクロメータMDC-25MJ(Mitsutoyo製)を用い、フィルムエッジ部の影響を排除するためフィルム幅方向の両端100mmずつを除く幅方向の範囲において、縦延伸前あるいは縦延伸後のフィルムの幅方向10点の厚みを測定し、その平均値を[フィルムの平均厚み]とした(小数点以下は四捨五入)。
縦延伸前または縦延伸後のフィルムを長手方向および幅方向についてそれぞれ50mmの幅で切り出し、アンリツ株式会社製「フィルムシネックス」にて測定圧0.15gの荷重にて1.5m/minの速度にて走行させながら厚みを連続的に測定し、長手方向は長さ1mの範囲において、幅方向は両端100mmを除く幅方向の範囲において、その厚みチャートの[最大値と最小値の差]を求め、[最大値と最小値の差]を上記[フィルムの平均厚み]で割ることで、厚みムラR(%)を長手方向と幅方向で求めた。
縦延伸後の厚みムラが長手方向および幅方向ともに2.4%以下の場合に、厚みムラ:良と判断した。
フィルムにニップロールなどのロール表面形状の熱転写が起こると、フィルム表面粗さが変化するため、3次元表面粗さ計(小坂研究所製、ET4000AK)を用い、次の条件で触針法により測定を行った。表面粗さは、粗さ曲面の高さと粗さ曲面の中心面の高さの差をとり、その絶対値の平均値を表したものである。なお、本発明における表面粗さSRaはフィルム両面の表面粗さの平均値とした。
針径 2(μmR)
針圧 10(mg)
測定長 500(μm)
縦倍率 20000(倍)
CUT OFF 250(μm)
測定速度 100(μm/s)
測定間隔 5(μm)
記録本数 80本
ヒステリシス幅 ±6.25(nm)
基準面積 0.1(mm2)
実質的に添加粒子を含まない熱可塑性樹脂の場合、このSRaが4.0nm以上になると、強力な光源であるビデオライト(LPL社製“VL-G301”)を用いて、フィルムを暗室の中で目視観察するとロールの表面形状転写を視認できる。SRaが4.0nm以上は表面形状転写:不良と判断した。
縦延伸後のフィルムを暗室の中で、強力な光源であるビデオライト(LPL社製“VL-G301”)を用いて長手方向に10m目視観察してキズを検出し、ロール起因で発生するキズには周期ピッチがあることを基にして、低速ロールすなわち予備加熱ロールで発生しているキズが何系列あるかをカウントした。キズがないものが合格であり、キズが1系列以上あるものは不合格である。
熱可塑性樹脂として、重合触媒残査等に基づく内部粒子ならびに不活性粒子をできる限り含まない極限粘度0.65dl/g、Tg80℃のポリエチレンテレフタレート(PET)ペレットを用いた。十分に真空乾燥した後、添加粒子を入れずに単一原料で一軸押出機を使用して285℃で押し出して、ギヤポンプにより吐出量を一定とした後、幅1000mmのフラットダイよりシート状に吐出させて、平均厚み1500μm、密度1.34g/cm3、長手方向および幅方向の厚みムラ:2.4~2.5%のフィルムを得た。続いて、図1および図2に記載されるような、φ250mmのシリコーンゴム(ゴム硬度60度)を被覆したニップロールを備えたφ250mmの金属製ロールからなる一対のロール間に、波長1.1μmの赤外線ヒータ(600V、24kW/m)および赤外線の反射板を備えた集光式ヒータ(ハイベック社製“近赤外線ラインヒーター:HYL-1000”)を、フィルムの上側及び下側にフィルム長手方向の中心位置を揃えて配置し、赤外線の集束光によるフィルム面での長手方向照射長さaおよびbがともに30mm、かつ、30mm重なり、集光式ヒータ筐体とフィルム面までの距離AおよびBが20mmになるように調整したロール延伸装置を用いた。上記フィルムを延伸前の搬送速度10m/minで、φ250mmの金属製ロール10本からなるロール群においてロール温度70℃で予備加熱した後に、本発明に係るフィルムの上側及び下側の集光式ヒータに総電力20kW(上側13kW、下側7kW)をかけながら長手方向に3.0倍に縦延伸した後に、φ250mmの金属製ロール5本からなるロール群において、ロール温度25℃で冷却することで、縦延伸フィルムを得た。各種条件を表1に示す。また、かくして得られた縦延伸フィルムの平均厚み、厚みムラ、平均表面粗さ、予備加熱ロールキズをそれぞれ測定した結果を表2に示す。厚みムラは長手方向および幅方向ともに2.4%以下で延伸前に比べて良化し、平均表面粗さは4nm以下でロールの表面形状転写がなく、また、予備加熱ロールによるキズがないフィルムを得ることができた。
集光式ヒータをフィルム上側の片側だけに設置し、予備加熱ロール温度が80℃、赤外線ヒータの総電力が15kWであること以外は実施例1と同様にして縦延伸フィルムを得た。各種条件を表1に、各種測定結果を表2に示す。延伸に必要な熱量を予備加熱で補うことで、予備加熱ロール上でのフィルム粘着による予備加熱ロールキズが発生した。
集光式ヒータをフィルム上側の片側だけに設置し、赤外線ヒータの総電力が24kWであること以外は実施例1と同様にして縦延伸フィルムを得た。各種条件を表1に、各種測定結果を表2に示す。延伸に必要な熱量を赤外線ヒータで補い、かつ、フィルム下側に集光式ヒータがないことで周囲への赤外線の漏れが増し、周辺ロールや部材を温めた結果、予備加熱ロールによる粘着キズや、ニップロールの表面形状の転写キズが発生した。
フィルム上側及び下側の赤外線ヒータが赤外線の反射板や焦点を設けない赤外線ヒータの拡散光のみであり、予備加熱ロール温度が80℃、赤外線ヒータの総電力が20kW(上側13kW、下側7kW)であることを以外は実施例1と同様にして縦延伸フィルムを得た。各種条件を表1に、各種測定結果を表2に示す。延伸開始位置が定まらずに厚みムラが延伸前よりも悪化した。また、延伸に必要な熱量を予備加熱で補うことで、予備加熱ロール上でのフィルム粘着による予備加熱ロールキズが発生した。さらに、周囲への赤外線の漏れが増し、周辺ロールや部材を温めた結果、ニップロールによる表面形状の転写キズが発生した。
フィルム上側及び下側の赤外線ヒータが赤外線の反射板や焦点を設けない赤外線ヒータの拡散光のみであり、赤外線ヒータの総電力が25kW(上側17kW、下側8kW)であることを以外は実施例1と同様にして縦延伸フィルムを得た。各種条件を表1に、各種測定結果を表2に示す。比較例3同様に、延伸開始位置が定まらずに厚みムラが延伸前よりも悪化した。また、延伸に必要な熱量を赤外線ヒータで補ったことで、周囲への赤外線の漏れが増し、周辺ロールや部材を温めた結果、予備加熱ロールによる粘着キズや、ニップロールの表面形状の転写キズが発生した。
照射長さaの部分およびbの部分がフィルム上で重ならないよう、フィルム上側及び下側の集光式ヒータおよびその筐体のフィルム長手方向の中心位置を20mmずらして配置し、赤外線ヒータの総電力が25kW(上側17kW、下側8kW)であること以外は実施例1と同様にして縦延伸フィルムを得た。各種条件を表1に、各種測定結果を表2に示す。延伸開始位置が加熱長さの中で定まらずに厚みムラが延伸前よりも悪化した。また、筐体の中心位置がずれたことで、周囲への赤外線の漏れが増し、周辺ロールや部材を温めた結果、予備加熱ロールによる粘着キズが発生した。
延伸前の平均厚みが300μm、延伸前の搬送速度が50m/min、予備加熱ロール温度が75℃であること以外は、実施例1と同様にして縦延伸フィルムを得た。各種条件を表1に、各種測定結果を表2に示す。長手方向および幅方向の厚みムラに優れ、かつロールによる粘着キズや転写キズといったキズ欠点が少ないフィルムを得ることができた。
延伸前の平均厚みが3000μm、延伸前の搬送速度が5m/min、予備加熱ロール温度が65℃であること以外は、実施例1と同様にして縦延伸フィルムを得た。各種条件を表1に、各種測定結果を表2に示す。長手方向および幅方向の厚みムラに優れ、かつロールによる粘着キズや転写キズといったキズ欠点が少ないフィルムを得ることができた。
照射長さaおよびbが10~40mm、aの部分およびの部分bの重なりが10~40mmであること以外は実施例1と同様にして縦延伸フィルムを得た。各種条件を表1に、各種測定結果を表2に示す。厚みムラは長手方向および幅方向ともに実施例1に比べ悪化したものの、延伸前に比べて良化しており、特に照射長さaおよびbが25~40mmの実施例12、13、16、17では厚みムラが2.0%以下とより良化した。また、照射長さaの部分およびbの部分の重なりが同じ条件の場合、aの部分およびbの部分が等しい条件の方がより厚みムラが良化した。
照射長さaおよびbが5~45mm、aの部分およびbの部分の重なりが5~40mmであること以外は実施例1と同様にして縦延伸フィルムを得た。各種条件を表1に、各種測定結果を表2に示す。フィルム面上での加熱長さの中での延伸開始位置が安定せず、厚みムラが延伸前に比べて悪化した。
距離AおよびBが10~35mmであること以外は実施例1と同様にして縦延伸フィルムを得た。各種条件を表1に、各種測定結果を表2に示す。実施例18以外は平均表面粗さが実施例1に比べ悪化しており、特に、距離AまたはBが35mmの実施例20、23~25では平均表面粗さが3nmを超えたものの、目視検査によるロール表面形状の転写キズはなく、厚みムラに優れたフィルムを得ることができた。また、距離AおよびBが等しい条件の方がより厚みムラが良化し、平均表面粗さも小さかった。
赤外線ヒータの総電力が15~25kW(上側10~17kW、下側5~8kW)であること以外は実施例1と同様にして縦延伸フィルムを得た。各種条件を表1に、各種測定結果を表2に示す。厚みムラあるいは平均表面粗さが実施例1に比べ悪化したものの、厚みムラは延伸前に比べて良化しており、かつロールによる粘着キズや転写キズといったキズ欠点が少ないフィルムを得ることができた。
フィルム上側および下側の赤外線ヒータの電力が上側11kW、下側9kWであること以外は実施例1と同様にして縦延伸フィルムを得た。各種条件を表1に、各種測定結果を表2に示す。厚みムラおよび平均表面粗さが実施例1に比べ悪化したものの、厚みムラは延伸前に比べて良化しており、かつロールによる粘着キズや転写キズといったキズ欠点が少ないフィルムを得ることができた。
フィルム上側および下側の赤外線ヒータの電力が上側15kW、下側5kWであること以外は実施例1と同様にして縦延伸フィルムを得た。各種条件を表1に、各種測定結果を表2に示す。厚みムラが実施例1に比べ悪化したものの、延伸前に比べて厚みムラは良化しており、かつロールによる粘着キズや転写キズといったキズ欠点が少ないフィルムを得ることができた。
縦延伸倍率が2.0~4.0倍であること以外は実施例1と同様にして縦延伸フィルムを得た。各種条件を表1に、各種測定結果を表2に示す。長手方向および幅方向の厚みムラに優れ、かつロールによる粘着キズや転写キズといったキズ欠点が少ないフィルムを得ることができた。
延伸前の平均厚みが300~3000μm、フラットダイからの吐出量が変化無く一定となるよう延伸前の搬送速度が5~50m/minであること以外は、実施例14と同様にして縦延伸フィルムを得た。各種条件を表1に、各種測定結果を表2に示す。長手方向および幅方向の厚みムラは延伸前に比べて良化しており、かつロールによる粘着キズや転写キズといったキズ欠点が少ないフィルムを得ることができた。
熱可塑性樹脂としてTg120℃、密度1.34g/cm3、のポリエチレン-2,6-ナフタレート(PEN)ペレットを用い、延伸前の平均厚みが350μm、延伸前の搬送速度が43m/min、予備加熱ロール温度を110℃、縦延伸倍率を3.5倍としたこと以外は実施例1と同様にして縦延伸フィルムを得た。各種条件を表1に、各種測定結果を表2に示す。長手方向および幅方向の厚みムラに優れ、かつロールによる粘着キズや転写キズといったキズ欠点が少ないフィルムを得ることができた。
熱可塑性樹脂として非晶性である環状オレフィン共重合体(COC)(日本ポリプラ社製“TOPAS”、Tg130℃、密度1.02g/cm3)や環状オレフィン重合体(COP)(日本ゼオン社製“ゼオノア” 、Tg160℃、密度1.01g/cm3)のペレットを用い、延伸前の平均厚みが200μm、延伸前の搬送速度が30m/min、予備加熱ロール温度を125~155℃、赤外線ヒータの総電力が7kW(上側4kW、下側3kW)、縦延伸倍率を2.0倍としたこと以外は実施例1と同様にして縦延伸フィルムを得た。各種条件を表1に、各種測定結果を表2に示す。長手方向および幅方向の厚みムラに優れ、かつロールによる粘着キズや転写キズといったキズ欠点が少ないフィルムを得ることができた。
すなわち、本発明の製造方法により得られる熱可塑性樹脂フィルムは長手方向および幅方向の厚みムラが延伸前に比べて良化しており、かつ平均表面粗さに示されるロールによる表面形状の転写キズがなく、また、予備加熱ロールによる粘着キズがないフィルムを得ることができる。
2:フィルム
3:低速ロール
3’:高速ロール
4:ニップロール
4’:ニップロール
5:フィルム上側の集光式ヒータおよびその筐体
5’:フィルム下側の集光式ヒータおよびその筐体
6:上側集光式ヒータによるフィルム面での照射長さaの部分
6’:下側集光式ヒータによるフィルム面での照射長さbの部分
7:上側集光式ヒータの焦点
7’:下側集光式ヒータの焦点
8:上側集光式ヒータの筐体下端からフィルム面までの距離A
8’:下側集光式ヒータの筐体上端からフィルム面までの距離B
9:上側集光式ヒータの筐体下端部の照射幅
9’: 下側集光式ヒータの筐体上端部の照射幅
Claims (10)
- 前後のロールの周速差でフィルムを長手方向に延伸する方法であって、該前後のロール間において、フィルムの上側及びフィルムの下側からそれぞれフィルムに集光式ヒータにより赤外線を照射し、フィルムの上側から照射される赤外線の集束光によるフィルム面での長手方向照射長さをa、フィルムの下側から照射される赤外線の集束光によるフィルム面での長手方向照射長さをbとして、aの部分とbの部分が重なりを有し、かつ、a、bがいずれも10mm以上40mm以下であることを特徴とするフィルムの延伸方法。
- フィルム上側の集光式ヒータの筐体下端からフィルム面までの距離をA、フィルム下側の集光式ヒータの筐体上端からフィルム面までの距離をBとして、A、Bがいずれも10mm以上30mm以下である請求項1に記載のフィルムの延伸方法。
- 長さa、bがいずれも25mm以上40mm以下である請求項1または2に記載のフィルムの延伸方法。
- 照射長さaの部分とbの部分のそれぞれ中心位置が長手方向で一致し、長さaの部分とbの部分が等しい請求項1~3のいずれかに記載のフィルムの延伸方法。
- AとBが等しい請求項2~4のいずれかに記載のフィルムの延伸方法。
- フィルム上側の集光式ヒータの出力が、フィルム下側の集光式ヒータの出力の1.2倍以上3.0倍以下であることを特徴とする請求項1~5のいずれかに記載のフィルムの延伸方法。
- 長手方向に延伸する前のフィルム厚みが300μm以上3000μm以下であることを特徴とする請求項1~6のいずれかに記載のフィルムの延伸方法。
- 長手方向の延伸倍率が2倍以上4倍以下であることを特徴とする請求項1~7のいずれかに記載のフィルムの延伸方法。
- 前後のロールの周速差でフィルムを長手方向に延伸する前に、予備加熱工程を有し、該予備加熱における加熱温度が[フィルムのガラス転移温度-15]℃以上[フィルムのガラス転移温度-5]℃以下である請求項1~8のいずれかに記載のフィルムの延伸方法。
- 請求項1~9のいずれかに記載のフィルムの延伸方法を用いたことを特徴とするフィルムの製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020137022369A KR101929597B1 (ko) | 2011-03-22 | 2012-02-08 | 필름의 연신 방법 |
JP2012508841A JP5812000B2 (ja) | 2011-03-22 | 2012-02-08 | フィルムの延伸方法 |
US14/005,952 US20140001680A1 (en) | 2011-03-22 | 2012-02-08 | Method for stretching film |
EP12761132.5A EP2689914B1 (en) | 2011-03-22 | 2012-02-08 | Method for stretching film |
CN201280006041.0A CN103328187B (zh) | 2011-03-22 | 2012-02-08 | 膜拉伸方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-062747 | 2011-03-22 | ||
JP2011062747 | 2011-03-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012127917A1 true WO2012127917A1 (ja) | 2012-09-27 |
Family
ID=46879085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/052825 WO2012127917A1 (ja) | 2011-03-22 | 2012-02-08 | フィルムの延伸方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20140001680A1 (ja) |
EP (1) | EP2689914B1 (ja) |
JP (1) | JP5812000B2 (ja) |
KR (1) | KR101929597B1 (ja) |
CN (1) | CN103328187B (ja) |
TW (1) | TWI577532B (ja) |
WO (1) | WO2012127917A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014102353A (ja) * | 2012-11-19 | 2014-06-05 | Nitto Denko Corp | 偏光板および画像表示装置、ならびにそれらの製造方法 |
JP2016221803A (ja) * | 2015-05-29 | 2016-12-28 | 株式会社カネカ | フィルムの製造方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2013129611A1 (ja) * | 2012-02-29 | 2015-07-30 | 昭和電工株式会社 | エレクトロルミネッセント素子の製造方法 |
AR103007A1 (es) * | 2014-12-09 | 2017-04-12 | Dow Global Technologies Llc | Una película, un método de fabricación de la película, un envase que comprende la película y un método de fabricación del envase |
CN105835405B (zh) * | 2016-04-15 | 2019-03-15 | 上海福助工业有限公司 | 薄膜包装袋热切封边工艺及装置 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50114476A (ja) | 1974-02-25 | 1975-09-08 | ||
JPH0356889B2 (ja) | 1986-07-23 | 1991-08-29 | ||
JPH09141736A (ja) * | 1995-11-21 | 1997-06-03 | Toray Ind Inc | 2軸延伸ポリエステルフイルム及びその製造方法 |
JP2000181015A (ja) * | 1998-12-18 | 2000-06-30 | Fuji Photo Film Co Ltd | 写真フィルム用支持体の製造方法 |
JP2001341259A (ja) * | 2000-06-01 | 2001-12-11 | Toyobo Co Ltd | 空洞含有複合ポリエステル系フィルム及び感熱転写記録材料用基材フィルム |
WO2006112425A1 (ja) * | 2005-04-14 | 2006-10-26 | Teijin Limited | 反射シートおよびその製造法 |
JP2008093946A (ja) | 2006-10-11 | 2008-04-24 | Fujifilm Corp | 熱可塑性樹脂フィルムの縦延伸方法及びその方法で製造された縦延伸フィルム |
JP2010167767A (ja) | 2008-12-22 | 2010-08-05 | Toyobo Co Ltd | 二軸延伸ポリエチレンテレフタレート系樹脂フィルムおよびその製造方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA965920A (en) * | 1970-01-06 | 1975-04-15 | E. I. Du Pont De Nemours And Company | Embossed polyester film preparation |
EP0022278B1 (en) * | 1979-04-11 | 1984-02-08 | Agfa-Gevaert N.V. | Method and apparatus for longitudinally stretching a substantially amorphous polyethylene terephthalate film |
DE3851486T2 (de) * | 1987-07-14 | 1995-02-23 | Agfa Gevaert Nv | Verfahren zum Herstellen von gekräuseltem photographischem Film. |
JPH10258458A (ja) * | 1997-03-19 | 1998-09-29 | Toray Ind Inc | 二軸配向ポリエステルフィルムおよびその製造方法 |
KR100561960B1 (ko) * | 2000-04-03 | 2006-03-21 | 도요 보세키 가부시키가이샤 | 공동 함유 폴리에스테르계 필름 |
JP2009096051A (ja) * | 2007-10-16 | 2009-05-07 | Konica Minolta Opto Inc | 光学フィルム、及びその製造方法 |
JP2010099946A (ja) * | 2008-10-24 | 2010-05-06 | Toray Ind Inc | 熱可塑性樹脂フィルムの製造方法 |
CN201520058U (zh) * | 2009-10-26 | 2010-07-07 | 常州钟恒新材料有限公司 | 薄膜拉伸装置 |
-
2012
- 2012-02-08 US US14/005,952 patent/US20140001680A1/en not_active Abandoned
- 2012-02-08 WO PCT/JP2012/052825 patent/WO2012127917A1/ja active Application Filing
- 2012-02-08 EP EP12761132.5A patent/EP2689914B1/en not_active Not-in-force
- 2012-02-08 JP JP2012508841A patent/JP5812000B2/ja active Active
- 2012-02-08 KR KR1020137022369A patent/KR101929597B1/ko active IP Right Grant
- 2012-02-08 CN CN201280006041.0A patent/CN103328187B/zh active Active
- 2012-02-20 TW TW101105452A patent/TWI577532B/zh not_active IP Right Cessation
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50114476A (ja) | 1974-02-25 | 1975-09-08 | ||
JPH0356889B2 (ja) | 1986-07-23 | 1991-08-29 | ||
JPH09141736A (ja) * | 1995-11-21 | 1997-06-03 | Toray Ind Inc | 2軸延伸ポリエステルフイルム及びその製造方法 |
JP2000181015A (ja) * | 1998-12-18 | 2000-06-30 | Fuji Photo Film Co Ltd | 写真フィルム用支持体の製造方法 |
JP2001341259A (ja) * | 2000-06-01 | 2001-12-11 | Toyobo Co Ltd | 空洞含有複合ポリエステル系フィルム及び感熱転写記録材料用基材フィルム |
WO2006112425A1 (ja) * | 2005-04-14 | 2006-10-26 | Teijin Limited | 反射シートおよびその製造法 |
JP2008093946A (ja) | 2006-10-11 | 2008-04-24 | Fujifilm Corp | 熱可塑性樹脂フィルムの縦延伸方法及びその方法で製造された縦延伸フィルム |
JP2010167767A (ja) | 2008-12-22 | 2010-08-05 | Toyobo Co Ltd | 二軸延伸ポリエチレンテレフタレート系樹脂フィルムおよびその製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014102353A (ja) * | 2012-11-19 | 2014-06-05 | Nitto Denko Corp | 偏光板および画像表示装置、ならびにそれらの製造方法 |
JP2016221803A (ja) * | 2015-05-29 | 2016-12-28 | 株式会社カネカ | フィルムの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN103328187A (zh) | 2013-09-25 |
TW201302435A (zh) | 2013-01-16 |
US20140001680A1 (en) | 2014-01-02 |
CN103328187B (zh) | 2015-09-30 |
TWI577532B (zh) | 2017-04-11 |
EP2689914A4 (en) | 2014-11-19 |
JP5812000B2 (ja) | 2015-11-11 |
KR101929597B1 (ko) | 2018-12-14 |
EP2689914A1 (en) | 2014-01-29 |
KR20140003578A (ko) | 2014-01-09 |
EP2689914B1 (en) | 2019-01-23 |
JPWO2012127917A1 (ja) | 2014-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5812000B2 (ja) | フィルムの延伸方法 | |
US20120006387A1 (en) | Moisture-proof film, method for manufacturing the same, back sheet for solar cell module and solar cell module using the same | |
JP2007197611A (ja) | 光学用フィルム及びその製造方法 | |
JPWO2018012252A1 (ja) | フィルムおよび積層体 | |
JP2009233918A (ja) | 熱可塑性樹脂フィルムの製造方法 | |
CN110997319B (zh) | 膜 | |
JP2010099946A (ja) | 熱可塑性樹脂フィルムの製造方法 | |
JP2014083796A (ja) | ポリエステルフィルムの製造方法 | |
JP2014195985A (ja) | 二軸配向ポリエステルフィルムおよびその製造方法 | |
JP2010138024A (ja) | 合わせガラス用ポリエステルフィルムおよび合わせガラス | |
JP6340855B2 (ja) | フィルム積層体 | |
JP2010167768A (ja) | 二軸延伸ポリエチレンテレフタレート系樹脂フィルムおよびその製造方法 | |
JP2010167767A (ja) | 二軸延伸ポリエチレンテレフタレート系樹脂フィルムおよびその製造方法 | |
JP7255168B2 (ja) | 二軸配向フィルム | |
JP5147470B2 (ja) | 積層二軸延伸ポリエテルフィルム | |
JP2007268971A (ja) | 縦延伸熱可塑性樹脂フィルム及びその製造方法並びに装置 | |
JP2020121555A (ja) | フィルムの製造方法 | |
EP2787027A1 (en) | Polyester film, solar cell backsheet, and solar cell | |
JP6201786B2 (ja) | 延伸熱可塑性樹脂フィルムの製造方法 | |
JP2005290332A (ja) | フィルムロール | |
JP6938927B2 (ja) | 透明導電性基板用二軸配向ポリエステルフィルムおよびその製造方法 | |
JP2001030449A (ja) | 積層ポリエステルフィルム | |
WO2019123979A1 (ja) | 二軸配向積層フィルム | |
JP6272048B2 (ja) | ポリエステルフィルム | |
JP4273827B2 (ja) | 熱可塑性樹脂フィルムの製造方法および熱可塑性樹脂フィルム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2012508841 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12761132 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012761132 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137022369 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14005952 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |