WO2012127708A1 - 薄膜成膜装置および薄膜成膜方法 - Google Patents

薄膜成膜装置および薄膜成膜方法 Download PDF

Info

Publication number
WO2012127708A1
WO2012127708A1 PCT/JP2011/069548 JP2011069548W WO2012127708A1 WO 2012127708 A1 WO2012127708 A1 WO 2012127708A1 JP 2011069548 W JP2011069548 W JP 2011069548W WO 2012127708 A1 WO2012127708 A1 WO 2012127708A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
thin film
mist
sprayer
raw material
Prior art date
Application number
PCT/JP2011/069548
Other languages
English (en)
French (fr)
Inventor
田村 壽宏
格 無類井
樋口 馨
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012127708A1 publication Critical patent/WO2012127708A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4486Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by producing an aerosol and subsequent evaporation of the droplets or particles

Definitions

  • the present invention relates to a thin film deposition apparatus and a thin film deposition method.
  • Thin films such as alkali barrier layers and transparent conductive films are widely used in the fields of semiconductors, displays, solar cells and the like.
  • a metal oxide such as STO (strontium titanate) or ITO (Sn-doped indium oxide) is used.
  • This transparent conductive film is generally formed by a sputtering method, a vapor deposition method, a metal organic chemical vapor deposition method using an organic metal compound, or the like.
  • organometallic chemical vapor deposition method since the organometallic compound used as a raw material has explosiveness and toxicity, it is necessary to provide an advanced safety design for the entire film forming system, for example, by providing an exhaust gas treatment device or the like .
  • mist method forms a film by atomizing a solvent containing a raw material metal as a solute and spraying it on a substrate.
  • mist method can form a film at atmospheric pressure, manufacturing equipment such as a vacuum vessel and pumps is unnecessary. In addition, since no dangerous substance such as an organometallic compound is used, the film forming apparatus itself has a simple configuration and can be formed at low cost. The mist method having such merits is expected as a new method to replace the conventional thin film forming method.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2007-046155 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2004-107729 (Patent Document 2) can be cited.
  • Patent Document 1 first, a raw material solution containing a metal oxide is atomized by ultrasonic vibration to generate mist. The mist is heated and then sprayed onto the substrate to form a dense and homogeneous thin film.
  • a spray nozzle for supplying a carrier gas is provided in the vicinity of the spray nozzle in order to increase the vaporization rate of the mist sprayed from the spray nozzle.
  • the carrier gas is sprayed in the same direction at an angle of about 10 to 30 ° with respect to the mist spraying direction.
  • the substrate on which the mist is sprayed is heated to evaporate the solvent contained in the mist. As a result of this heating, an upward air flow (thermal convection) is generated in the direction opposite to the substrate direction. There is a problem that part of the mist does not reach the substrate due to the rising airflow, and the film forming rate is lowered. In order to prevent such a problem, the spray pressure of mist is increased or the flow rate of the carrier gas is increased.
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide a thin film forming apparatus and a thin film forming method for forming a thin film having a uniform film quality at a high film forming rate. is there.
  • the thin film deposition apparatus of the present invention is for forming a thin film by changing a raw material solution into a mist and spraying from the sprayer for spraying the mist onto a substrate, the raw material solution in the sprayer being A cooling unit for cooling and a heating unit for heating the mist, the heating unit being heated and held so that the temperature of the substrate is 400 to 620 ° C., and below the inside thereof If the substrate is installed or the substrate is moved by the moving mechanism, and the vertical distance from the lower end of the sprayer to the upper surface of the substrate is L, the vertical distance from the upper surface of the substrate to the upper end of the heating unit Is 1 / 10L to 1 / 3L.
  • the thin film deposition apparatus of the present invention is for forming an alkali barrier layer by spraying from a sprayer for spraying the mist onto a substrate by changing the raw material solution into mist, and the raw material in the sprayer
  • the thin film forming apparatus of the present invention is for forming a transparent conductive film by spraying from a sprayer for spraying the mist onto a substrate by changing the raw material solution into mist, and the raw material solution in the sprayer
  • the heating unit is heated and held so that the temperature of the substrate is 500 to 620 ° C. If the vertical distance from the lower end of the sprayer to the upper surface of the substrate is L, the vertical direction from the upper surface of the substrate to the upper end of the heating unit is The distance is 1 / 10L to 1 / 3L.
  • the cooling means described above preferably cools the raw material solution in the sprayer to a boiling point or lower of the raw material solution.
  • the cooling means is a fan, and the raw material solution in the sprayer is preferably air-cooled by the fan.
  • the cooling means is a pipe provided around the sprayer, and the raw material solution in the sprayer is preferably water-cooled by the pipe.
  • the thin film deposition method of the present invention is a method for depositing a thin film on a substrate, comprising cooling a raw material solution in a sprayer by air cooling or water cooling, and changing the raw material solution to mist by the sprayer. Spraying the mist onto the substrate, and heating the mist with a heating unit maintained at 400 to 620 ° C., where L is the vertical distance from the lower end of the sprayer to the upper surface of the substrate. The distance from the upper surface to the upper end of the heating unit is 1 / 10L to 1 / 3L.
  • the thin film deposition method of the present invention is for depositing an alkali barrier layer on a substrate, wherein the raw material solution in the sprayer is cooled by air cooling or water cooling, and the raw material solution is misted by the sprayer. And the step of spraying the mist onto the substrate and the step of heating the mist with a heating unit maintained at 400 to 600 ° C., where L is the vertical distance from the lower end of the sprayer to the upper surface of the substrate. The distance from the upper surface of the substrate to the upper end of the heating unit is 1 / 10L to 1 / 3L.
  • a thin film forming method for forming a transparent conductive film on a substrate comprising: cooling a raw material solution in a sprayer by an air cooling method or a water cooling method; converting the raw material solution into a mist by the sprayer; A step of spraying the substrate and a step of heating the mist by a heating unit maintained at 500 to 620 ° C.
  • the heating is performed from the upper surface of the substrate.
  • the distance to the upper end of the part is 1 / 10L to 1 / 3L.
  • the raw material solution is preferably cooled below the boiling point of the raw material solution.
  • the step of spraying the mist on the substrate is preferably performed while moving the substrate in a direction substantially perpendicular to the direction in which the mist is sprayed.
  • the thin film forming apparatus of the present invention can form a thin film with uniform film quality at a high film forming rate by having the above-described configuration.
  • FIG. 1 is a schematic cross-sectional view showing an example of a thin film deposition apparatus of the present invention.
  • description will be made taking an example of forming a thin film for a thin film solar cell.
  • the present invention is not limited only to the conditions described below, by adjusting the heating temperature by the heating unit, or by adjusting the material used for the raw material solution, such as an alkali barrier layer and a transparent conductive film, It can be applied to the formation of various thin films.
  • the thin film deposition apparatus of the present invention is for depositing a thin film (not shown) on a substrate 1 as shown in FIG.
  • the thin film deposition apparatus includes a sprayer 4 for spraying the mist 9 onto the substrate 1 by changing the raw material solution 5 into a mist 9, and a cooling means (not shown) for cooling the raw material solution 5 in the sprayer 4.
  • a heating unit 3 for heating the mist 9.
  • the heating unit 3 is heated and held so that the temperature of the substrate becomes 400 to 620 ° C., and the substrate 1 is installed below the inside of the heating unit 3 or the substrate 1 is moved by a moving mechanism. 4, where the vertical distance from the lower end of 4 to the upper surface of the substrate 1 is L, the vertical distance from the upper surface of the substrate 1 to the upper end of the heating unit 3 is 1 / 10L to 1 / 3L. To do.
  • the vertical distance from the upper surface of the substrate 1 to the upper end of the heating unit 3 is 1 / 10L to 1 / 3L, and the mist is set appropriately by setting the spray pressure, the flow rate of the carrier gas, and the exhaust flow rate. The mist can reach the upper surface of the substrate without generating thermal convection.
  • the vertical distance from the upper surface of the substrate 1 to the upper end of the heating unit 3 is preferably 1 / 8L to 1 / 4L.
  • the distance from the upper surface of the substrate 1 to the upper end of the heating unit 3 is less than 1/10 L, it takes time to vaporize the solvent contained in the raw material solution because the raw material solution is not sufficiently heated. It is not preferable.
  • it exceeds 1/3 L since the ratio of the high temperature region from the spraying of the mist to the substrate increases, the solvent component contained in the mist is vaporized, and the gravity and inertial force of the mist are weakened. This makes it difficult for the mist to reach the substrate, and the thin film formation rate tends to decrease.
  • the temperature inside the heating unit 3 is different from the appropriate temperature depending on the thin film to be formed, so it is difficult to uniformly determine the optimum temperature.
  • the temperature of the substrate in the heating unit 3 is 500 to 620 ° C., preferably 530 to 590 ° C.
  • the temperature of the heating unit 3 is less than 500 ° C., the solvent contained in the mist is less likely to volatilize, and the film formation rate of the transparent conductive film is significantly reduced.
  • it exceeds 620 ° C. the solvent in the mist volatilizes before the mist reaches the substrate, and the mist hardly reaches the surface of the substrate.
  • the temperature in the heating unit 3 is formed at 400 to 600 ° C., preferably at 450 to 580 ° C.
  • the “transparent conductive film” is required to be transparent and conductive, and is made of, for example, ITO or STO.
  • the “alkali barrier layer” is provided to prevent the alkali component contained in the substrate from being released outside the substrate.
  • the alkali barrier layer is not necessarily provided on the surface of the substrate when the substrate does not contain an alkali component or when the substrate contains an alkali component in a trace amount.
  • the alkali barrier layer is preferably made of SiO 2 , Al 2 O 3 , ZnO, or MgO. It is more preferable that the raw material solution can be prepared by spraying, and Al 2 O 3 , ZnO, or the like is more preferable from such a viewpoint.
  • a thin film solar cell is manufactured by forming the above-described alkali barrier layer and transparent conductive film on a glass substrate in this order, and then forming a semiconductor film and a metal film.
  • This glass substrate is generally used and a soda lime silica glass plate which is inexpensive in price is generally used.
  • This soda lime silica glass plate contains about 10 to 20% by mass of an alkali component such as sodium or potassium, but the alkali component diffuses from the base of the glass substrate to the outside of the glass substrate when used for a long period of time.
  • a substrate 1 is mounted on a mounting table 2, and the substrate 1 is heated by a heating unit 3 during deposition.
  • the mounting table 2 has a moving mechanism (not shown), and forms a thin film on the substrate while moving uniaxially in the direction of the film forming surface of the substrate 1.
  • the loading table 2 does not necessarily move uniaxially in the film forming surface direction, and the loading table 2 may stop and the substrate 1 may not move uniaxially.
  • the heating unit 3 includes a loading table 2 including a substrate 1 and a moving mechanism, and the lower part of the spraying device 6 is covered with the heating unit 3. That is, a hole is formed in the upper part of the heating unit 3, and the spraying device 6 is completely contained in the hole.
  • the sprayer 4 sucks up the raw material solution 5 from the thin film material solution tank. Then, the raw material solution 5 is changed to mist, and the mist is ejected from the tip of the sprayer 4.
  • the mist is mixed with the carrier gas 8 (compressed air) introduced from the carrier gas inlet 7 and is transported substantially vertically toward the substrate 1 together with the carrier gas.
  • the carrier gas is introduced to support the transport of the mist sprayed above to the surface of the substrate.
  • a carrier gas for example, nitrogen, oxygen, hydrogen, and a mixed gas thereof can be used.
  • film formation in the horizontal direction is also performed by mist flowing in the horizontal direction parallel to the direction in which the substrate 1 moves. Excess spray mist that has not been formed is discharged along the exhaust port 11 from the exhaust port outlet 14 to the outside through the detoxifying device.
  • the flow rate of the carrier gas introduced into the spraying device 6 and the exhaust amount of the carrier gas exhausted from the spraying device can be set as appropriate.
  • the thin film deposition apparatus of the present invention is parallel to a region (first deposition region) where a thin film is deposited by spraying mist in a direction perpendicular to the substrate and a direction in which the substrate moves. There is a region (second film formation region) where the film is formed by a mist flowing in the horizontal direction.
  • first deposition region a region where a thin film is deposited by spraying mist in a direction perpendicular to the substrate and a direction in which the substrate moves.
  • second film formation region where the film is formed by a mist flowing in the horizontal direction.
  • the vertical axis is the film thickness of the thin film. It is.
  • a transparent conductive film having a thickness of about 1 ⁇ m is formed in a region (first film formation region) whose distance from the left end of the substrate is 300 to 500 mm.
  • first film formation region whose distance from the left end of the substrate is 300 to 500 mm.
  • second film formation region the film thickness of the thin film increases linearly as the distance from the first film formation region, that is, the closer to the exhaust port. It turns out that it becomes thin.
  • the thin film forming apparatus of the present invention forms an alkali barrier layer or a transparent conductive film by using a film forming line as shown in FIG.
  • FIG. 3 is a schematic cross-sectional view of a film forming line incorporating the thin film forming apparatus of the present invention.
  • the belt is put into the heating unit 16 by the belt conveyor, heated by the heating unit, and then introduced into the film forming unit 17.
  • a thin film such as an alkali barrier layer or a transparent conductive film is formed in the film forming unit 17.
  • the substrate on which the thin film is formed is wound up. Below, each part of the thin film film-forming apparatus of this invention is demonstrated.
  • the sprayer 4 is provided to change the raw material solution into mist and spray the mist onto the substrate.
  • a sprayer 4 is composed of a two-fluid spray nozzle, and the compressed air and the raw material solution are mixed and sprayed on the substrate as mist.
  • the number of sprayers 4 may be changed according to the spray amount per unit time required for the tact time, or may be changed according to the film formation rate required for film formation.
  • mist means a state in which droplets having an average particle diameter of 0.1 ⁇ m to 100 ⁇ m are dispersed in a gas.
  • average particle diameter of such mist a value calculated by a liquid immersion method is adopted.
  • the cooling means is provided for cooling the raw material solution in the sprayer 4.
  • the nozzle clogging at the tip of the sprayer 4 can be prevented.
  • the above cooling means is preferably for cooling the raw material solution in the sprayer 4 to a temperature below the boiling point, and more preferably for cooling the raw material solution in the sprayer to about room temperature.
  • the cooling means of the present invention may cool the raw material solution by air cooling, may cool the raw material solution by water cooling, or may use both in combination.
  • An example of a cooling method by air cooling is a fan.
  • piping provided around the sprayer can be exemplified.
  • the nebulizer 4 can generate mist by ultrasonic atomization or spray atomization.
  • it is preferable to generate mist by an ultrasonic transducer. Since the ultrasonic vibrator can spray mist having a relatively uniform average particle diameter, there is an advantage that the mists are less likely to aggregate.
  • the raw material solution 5 it is preferable to use an inorganic material chloride or organometallic compound selected from the group consisting of zinc, tin, indium, cadmium, and strontium in a solvent.
  • the solvent used for the raw material solution 5 include water, methanol, ethanol, and butanol.
  • the raw material solution 5 include an aqueous solution containing zinc acetate, an aqueous solution containing indium tin oxide, and an aqueous solution containing tin oxide.
  • the concentration of the raw material solution 5 is not particularly limited, but it is generally preferable to use a solution containing a chloride or an organometallic compound at a concentration of 0.1 to 3 mol / L.
  • the thin film deposition method of the present invention is for depositing a thin film on a substrate, the step of cooling the raw material solution in the sprayer by air cooling method or water cooling method, the raw material solution is changed to mist by the sprayer, Spraying the mist onto the substrate and heating the mist with a heating unit maintained at 400 to 620 ° C., where L is the vertical distance from the lower end of the sprayer to the upper surface of the substrate. The distance from the upper surface to the upper end of the heating unit is 1 / 10L to 1 / 3L.
  • the thin film deposition method of the present invention cools the raw material solution in the sprayer by air cooling or water cooling, so that the solvent contained in the raw material solution in the sprayer is less likely to be volatilized, and the concentration of the raw material solution is uniform. Can be kept in. For this reason, it is possible to form a thin film while keeping the concentration of the raw material solution constant, which stabilizes the performance of the thin film and contributes to a reduction in film formation cost and an improvement in productivity. Such merit is considered to increase the effect obtained as the area of the substrate increases.
  • the raw material solution is preferably cooled to a boiling point or lower of the raw material solution. This is because the volatilization of the solvent contained in the raw material solution can be appropriately controlled.
  • the step of spraying the mist on the substrate may be performed while moving the substrate in a direction substantially perpendicular to the direction in which the mist is sprayed.
  • the thin film forming method of the present invention has an advantage in manufacturing method in that a thin film having uniform performance can be formed.
  • a transparent conductive film was formed on a substrate using the thin film forming apparatus shown in FIG.
  • the heating unit 3 is connected to the lower part of the spraying device 6, and the mounting table 2 is installed below the inside of the heating unit 3.
  • the substrate 1 was fixed on the mounting table 2.
  • the sprayer 4 three sprays are used. When the vertical distance from the lower end of the sprayer 4 to the upper surface of the substrate 1 is L, the vertical direction from the upper surface of the substrate 1 to the upper end of the heating unit 3 is The distance was 1 / 4L.
  • an aqueous solution containing 0.9 mol / L SnCl 4 and 0.3 M NH 4 F and containing 30% by mass of HCl and 2.5% by mass of methanol was used as the raw material solution.
  • the boiling point of this aqueous solution was about 70 ° C.
  • the temperature of the substrate in the heating unit 3 was set to 570 ° C., and mist was sprayed for 60 seconds by the sprayer 4 with a water head difference of ⁇ 150 mm, thereby forming a transparent conductive film on the substrate.
  • the film thickness of the transparent conductive film thus formed was measured by a stylus type surface shape measuring instrument (product name: DEKTAK (manufactured by ULVAC, Inc.)), and the thickness was 1400 nm.
  • the temperature of the heating part when forming a transparent conductive film was measured with a thermocouple (product name: K thermocouple (manufactured by ASONE Corporation)).
  • Example 2 The transparent conductive film of this example is the same as Example 1 except that the vertical distance from the upper surface of the substrate 1 to the upper end of the heating unit 3 is changed to 1 / 3L. Was deposited. The transparent conductive film thus formed had a thickness of 1300 nm.
  • Example 3 In Example 1, the substrate was fixed, but in this example, the transparent conductive film was formed while moving the substrate at a speed of 30 mm / min in a direction substantially perpendicular to the direction in which the mist was sprayed.
  • the transparent conductive film thus formed had a thickness of 1350 nm.
  • Example 4 an alkali barrier layer having a thickness of about 70 nm was formed on the surface of the substrate using the same method as in Example 1.
  • an aqueous solution containing 0.15 mol / L of tris (2,4-pentanedionato) aluminum (III) and containing 20% by volume of acetic acid was used as the raw material solution.
  • the alkali barrier layer was formed at a temperature of 460 ° C. inside the part 3.
  • Comparative Example 1 In Comparative Example 1, instead of heating the substrate by the heating unit, a hot plate was provided under the substrate, and the substrate was heated to 570 ° C. by the hot plate. A transparent conductive film was formed on the substrate under the same conditions as in Example 1 except that the heating method was different. The transparent conductive film thus formed had a thickness of 1000 nm.
  • Comparative Example 2 The transparent conductive film of Comparative Example 2 is the same as that of Example 1 except that the vertical distance from the upper surface of the substrate 1 to the upper end of the heating unit 3 is changed to 1 ⁇ 2 L. Was deposited. The transparent conductive film thus formed had a thickness of 900 nm.
  • Comparative Example 3 The transparent conductive film of Comparative Example 3 is the same as Example 1 except that the vertical distance from the upper surface of the substrate 1 to the upper end of the heating unit 3 is changed to 1 / 20L. Was deposited. The transparent conductive film thus formed had a thickness of 950 nm.
  • the transparent conductive film formed by the thin film forming apparatus of Examples 1 to 3 had a film thickness of 1300 nm or more, whereas the transparent conductive film formed by the thin film forming apparatus of Comparative Examples 1 to 3 was The film thickness was 1000 nm or less.
  • the thin film forming apparatus of Examples 1 to 3 was able to form a thick transparent conductive film as compared with that of Comparative Examples 1 to 3, because no upward airflow was generated from the substrate. This is considered to be due to the evaporation of the solvent contained and the mist reaching the substrate.
  • the thin film deposition apparatus of Comparative Example 1 an updraft is generated above the substrate by heating with a hot plate. For this reason, it is considered that a part of the mist ejected from the sprayer 4 does not reach the substrate, and the film thickness of the transparent conductive film becomes thin.
  • the thin film deposition apparatus of Comparative Example 2 is not practical because it requires a large amount of cooling water and the rotational speed of the fan to cool the sprayer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Chemically Coating (AREA)

Abstract

 高い成膜レートで均一な膜質の透明導電膜を成膜する薄膜成膜装置(10)および薄膜成膜方法を提供する。本発明の薄膜成膜装置(10)は、原料溶液(5)をミスト(9)に変えて、該ミスト(9)を基板(1)に噴霧するための噴霧器(4)からの噴霧によって薄膜を成膜するためのものであって、噴霧器(4)内の前記原料溶液(5)を冷却するための冷却手段と、ミスト(9)を加熱するための加熱部(3)とを有し、該加熱部(3)は、基板(1)の温度が400~620℃になるように加熱保持されており、かつその内部の下方に基板(1)が設置されているか、または基板(1)が移動機構によって移動されており、噴霧器(4)の下端から基板(1)の上面までの鉛直方向の距離をLとすると、基板(1)の上面から加熱部(3)の上端までの鉛直方向の距離は、1/10L~1/3Lであることを特徴とする。

Description

薄膜成膜装置および薄膜成膜方法
 本発明は、薄膜成膜装置および薄膜成膜方法に関する。
 アルカリバリア層や透明導電膜等の薄膜は、半導体、ディスプレイ、太陽電池等の分野で広く利用されている。透明導電膜は、STO(チタン酸ストロンチウム)、ITO(Snドープ酸化インジウム)等の金属酸化物が用いられている。この透明導電膜は、一般的にはスパッタリング法、蒸着法、有機金属化合物を用いた有機金属化学気相成長法等で成膜される。
 しかし、スパッタリング法や蒸着法は、真空プロセスで成膜する必要があるため、真空容器などの真空雰囲気を形成および維持する設備を必要とする。一方、有機金属化学気相成長法は、原料として用いる有機金属化合物が爆発性および毒性を有するため、たとえば排ガス処理装置などを設ける等によって、成膜システム全体に高度な安全設計を備える必要がある。
 以上の理由で、スパッタリング法、蒸着法、および有機金属化学気相成長法のいずれも、低コスト化が難しい。そこで、従来とは異なる成膜方法として、ミスト法が提案されている。ミスト法は、原料金属を溶質として含む溶媒を霧化し、基板上に噴霧することによって成膜する。
 ミスト法は、大気圧で成膜することができるため、真空容器やポンプ類などの製造設備が不要である。しかも、有機金属化合物のような危険物質を用いないため、成膜装置自体の構成が簡便で、かつ低コストで成膜することができる。このようなメリットを有するミスト法は、従来の薄膜成膜方法に代わる新たな方法として期待されている。
 このようなミスト法による成膜手段を開示する先行技術文献として、たとえば特開2007-046155号公報(特許文献1)および特開2004-107729号公報(特許文献2)を挙げることができる。特許文献1では、まず、金属酸化物を含む原料溶液を超音波振動によって霧化してミストを発生させる。そして、このミストを加熱した上で、基板上に噴射することにより、緻密で均質な膜質の薄膜を成膜する。
 また、特許文献2には、噴霧ノズルから噴霧するミストの気化率を高めるために、噴霧ノズルの近傍にキャリアガスを供給するための吹き付けノズルを設けている。そして、ミストの噴霧方向に対し、斜め10~30°程度の角度をつけて同方向にキャリアガスを噴き付けている。このようにミストにキャリアガスを噴きつけることにより、ミストが撹乱されて旋回流が生じ、ミストを分散させることができる。
特開2007-046155号公報 特開2004-107729号公報
 上記のミストが噴き付けられる基板は、ミスト中に含まれる溶媒を蒸発させるために加熱する。この加熱により基板方向とは逆方向に上昇気流(熱対流)が生じる。この上昇気流によりミストの一部が基板に到達しなくなり、成膜レートが低下するという問題がある。かかる問題を防止するために、ミストの噴霧圧力を高めたり、キャリアガスの流量を多くしたりすることが行なわれる。
 しかし、噴霧圧力を大きくすると、噴霧ノズルの寿命が短くなり、ミストの平均粒子径が小さくなる。このため、基板に対しミストを安定して供給することができなくなる。また、加熱炉によって噴霧ノズルを熱すると、原料溶液に含まれる溶媒が蒸発し、原料溶液の濃度変化が生じたり、噴霧ノズルの目詰まりが起こったりして、均一に成膜することができなくなる。
 本発明は、上記現状に鑑みてなされたものであり、その目的とするところは、高い成膜レートで均一な膜質の薄膜を成膜する薄膜成膜装置および薄膜成膜方法を提供することにある。
 本発明の薄膜成膜装置は、原料溶液をミストに変えて、該ミストを基板に噴霧するための噴霧器からの噴霧によって薄膜を成膜するためのものであって、該噴霧器内の原料溶液を冷却するための冷却手段と、ミストを加熱するための加熱部とを有し、該加熱部は、基板の温度が400~620℃になるように加熱保持されており、かつその内部の下方に基板が設置されているか、または基板が移動機構によって移動されており、噴霧器の下端から基板の上面までの鉛直方向の距離をLとすると、基板の上面から加熱部の上端までの鉛直方向の距離は、1/10L~1/3Lであることを特徴とする。
 本発明の薄膜成膜装置は、原料溶液をミストに変えて、該ミストを基板に噴霧するための噴霧器からの噴霧によってアルカリバリア層を成膜するためのものであって、該噴霧器内の原料溶液を冷却するための冷却手段と、ミストを加熱するための加熱部とを有し、該加熱部は、基板の温度が400~600℃になるように加熱保持されており、かつその内部の下方に基板が設置されているか、または基板が移動機構によって移動されており、噴霧器の下端から基板の上面までの鉛直方向の距離をLとすると、基板の上面から加熱部の上端までの鉛直方向の距離は、1/10L~1/3Lであることを特徴とする。
 本発明の薄膜成膜装置は、原料溶液をミストに変えて、該ミストを基板に噴霧するための噴霧器からの噴霧によって透明導電膜を成膜するためのものであって、噴霧器内の原料溶液を冷却するための冷却手段と、ミストを加熱するための加熱部とを有し、該加熱部は、基板の温度が500~620℃になるように加熱保持されており、かつその内部の下方に基板が設置されているか、または基板が移動機構によって移動されており、噴霧器の下端から基板の上面までの鉛直方向の距離をLとすると、基板の上面から加熱部の上端までの鉛直方向の距離は、1/10L~1/3Lであることを特徴とする。
 上記の冷却手段は、噴霧器内の原料溶液を、該原料溶液の沸点以下に冷却することが好ましい。冷却手段は、ファンであり、該ファンによって噴霧器内の原料溶液が空冷されることが好ましい。冷却手段は、噴霧器の周辺に設けられた配管であり、該配管によって噴霧器内の原料溶液が水冷されることが好ましい。
 基板に対し、ミストが到達するのをサポートするキャリアガスを導入するためのキャリアガス導入部をさらに有することが好ましい。
 本発明の薄膜成膜方法は、基板上に薄膜を成膜するためのものであって、空冷式または水冷式によって噴霧器内の原料溶液を冷却するステップと、該噴霧器によって原料溶液をミストに変え、該ミストを基板に噴霧するステップと、400~620℃に保持された加熱部によってミストを加熱するステップとを含み、噴霧器の下端から基板の上面までの鉛直方向の距離をLとすると、基板の上面から加熱部の上端までの距離が1/10L~1/3Lであることを特徴とする。
 本発明の薄膜成膜方法は、基板上にアルカリバリア層を成膜するためのものであって、空冷式または水冷式によって噴霧器内の原料溶液を冷却するステップと、該噴霧器によって原料溶液をミストに変え、該ミストを基板に噴霧するステップと、400~600℃に保持された加熱部によってミストを加熱するステップとを含み、噴霧器の下端から基板の上面までの鉛直方向の距離をLとすると、基板の上面から加熱部の上端までの距離が1/10L~1/3Lであることを特徴とする。
 基板上に透明導電膜を成膜するための薄膜成膜方法であって、空冷式または水冷式によって噴霧器内の原料溶液を冷却するステップと、該噴霧器によって原料溶液をミストに変え、該ミストを基板に噴霧するステップと、500~620℃に保持された加熱部によってミストを加熱するステップとを含み、噴霧器の下端から基板の上面までの鉛直方向の距離をLとすると、基板の上面から加熱部の上端までの距離が1/10L~1/3Lであることを特徴とする。
 噴霧器を冷却するステップは、原料溶液を該原料溶液の沸点以下に冷却することが好ましい。
 ミストを基板に噴霧するステップは、ミストを噴き付ける方向と略垂直方向に基板を移動させながら行なうことが好ましい。
 本発明の薄膜成膜装置は、上記の構成を有することにより、高い成膜レートで均一な膜質の薄膜を成膜することができる。
本発明の薄膜成膜装置の一例を示す模式的な断面図である。 基板の左端からの距離における薄膜の膜厚分布を示すグラフである。 本発明の薄膜成膜装置を組み込んだ成膜ラインの模式的な断面図である。
 以下、本発明の薄膜形成装置を図面を用いて説明する。本発明の図面において、同一の参照符号は、同一部分または相当部分を表わすものである。また、長さ、幅、厚さ、深さなどの寸法関係は図面の明瞭化と簡略化のために適宜に変更されており、実際の寸法関係を表わすものではない。
 <薄膜成膜装置>
 図1は、本発明の薄膜成膜装置の一例を示す模式的な断面図である。以下においては、薄膜太陽電池向けの薄膜の成膜を例にとり説明する。なお、本発明は以下に説明する条件のみに限られるものではなく、加熱部による加熱温度を調整するか、または原料溶液に用いる材料を調整することにより、アルカリバリア層や透明導電膜等の、様々な薄膜の成膜に応用することができる。
 本発明の薄膜成膜装置は、図1に示されるように、基板1上に薄膜(図示せず)を成膜するためのものである。この薄膜成膜装置は、原料溶液5をミスト9に変えて、該ミスト9を基板1に噴霧するための噴霧器4と、該噴霧器4内の原料溶液5を冷却するための冷却手段(図示せず)と、ミスト9を加熱するための加熱部3とを有する。加熱部3は、基板の温度が400~620℃になるように加熱保持されており、かつその内部の下方に基板1が設置されているか、または基板1が移動機構によって移動されており、噴霧器4の下端から基板1の上面までの鉛直方向の距離をLとすると、基板1の上面から加熱部3の上端までの鉛直方向の距離は、1/10L~1/3Lであることを特徴とする。
 このように噴霧器4内の原料溶液5を冷却手段によって冷却することにより、原料溶液5に含まれる溶媒が蒸発しにくくなり、噴霧器のノズル詰まりや、噴霧器の変形を防止することができる。そして、基板1の上面から加熱部3の上端までの鉛直方向の距離が1/10L~1/3Lであり、かつ噴霧圧力、キャリアガスの流量、および排気流量を適切に設定することにより、ミストを安定して発生させることができ、しかも熱対流が発生することなくミストを基板の上面に到達させることができる。上記の基板1の上面から加熱部3の上端までの鉛直方向の距離は、1/8L~1/4Lであることが好ましい。
 上記の基板1の上面から加熱部3の上端までの距離が1/10L未満であると、原料溶液の加熱が不十分であるため、原料溶液に含まれる溶媒を気化させるのに時間を要することになり好ましくない。一方、1/3Lを超えると、ミストが噴霧されてから基板までに温度の高い領域が占める割合が大きくなるため、ミストに含まれる溶媒成分が気化して、ミストの重力や慣性力が弱まる。これによりミストが基板に到達しにくくなり、薄膜の成膜レートが低下する傾向がある。
 また、上記の加熱部3内の温度は、成膜する薄膜によって適切な温度が異なるため一律に最適な温度を規定することは困難である。たとえば透明導電膜を成膜する場合は、加熱部3内の基板の温度を500~620℃として成膜することを特徴とし、好ましくは530~590℃で成膜することである。加熱部3の温度が500℃未満であると、ミストに含まれる溶媒が揮発しにくくなるため、透明導電膜の成膜レートが著しく低下することになる。一方、620℃を超えると、ミストが基板に到達する前にミスト中の溶媒が揮発し、ミストが基板の表面に到達しにくくなる。一方、薄膜としてアルカリバリア層を成膜する場合は、加熱部3内の温度を400~600℃で成膜することを特徴とし、好ましくは450~580℃で成膜することである。
 ここで、上記の「透明導電膜」は、透明性および導電性を要求されるものであり、たとえばITO、STO等からなるものである。これに対し、「アルカリバリア層」は、基板に含まれるアルカリ成分が基板外に放出されることを防止するために設けられるものである。アルカリバリア層は、基板がアルカリ成分を含まない場合またはアルカリ成分を微量程度に含む場合は必ずしも基板の表面に設けなくてもよい。アルカリバリア層はSiO2、Al23、ZnO、またはMgOからなるものであることが好ましい。原料溶液を噴霧して作製できるものであることがより好ましく、このような観点からAl23、ZnO等を用いることがより好ましい。
 薄膜太陽電池は、ガラス基板上に上記のアルカリバリア層および透明導電膜をこの順に成膜した上で、半導体膜および金属膜を形成することによって作製する。このガラス基板は、汎用的に使用され、価格的にも安価なソーダライムシリカガラス板を用いるのが一般的である。このソーダライムシリカガラス板は、ナトリウム、カリウム等のアルカリ成分を10~20質量%程度含むものであるが、長期間の使用によりガラス基板の下地からアルカリ成分がガラス基板の外部に拡散する。
 これによりガラス基板の上部に形成された透明導電膜が白濁したり、透明度が低下したり、透明導電膜の抵抗値が増大したり、化学的または物理的な耐久性が低下したりする。すなわち、薄膜太陽電池は、ガラス基板から拡散したアルカリにより透明導電膜の表面で酸化還元反応が起こり、透明導電膜を構成する材料が変質する。さらに薄膜太陽電池自体が電気分解を起こして劣化する。このような不具合を防止するために、ガラス基板の表面にアルカリバリア層を形成することがある。
 本発明の薄膜成膜装置は、図1に示されるように、載積台2上に基板1が載積されており、該基板1は成膜中に加熱部3によって加熱される。載積台2は、移動機構(図示せず)を有しており、基板1の成膜面方向に1軸移動しながら、基板上に薄膜を成膜する。なお、載積台2は必ずしも成膜面方向に1軸移動する必要はなく、載積台2が停止して、基板1が1軸移動していなくても差し支えない。加熱部3の内部に、基板1を含む載積台2および移動機構が入っており、噴霧装置6の下部が加熱部3に覆われている。すなわち、加熱部3の上部に穴が開けられており、該穴に噴霧装置6がすっぽりと入っている。以下に本発明の薄膜成膜装置の動作を説明する。
 <薄膜成膜装置の動作>
 本発明の薄膜成膜装置は、まず、噴霧器4に圧縮空気を導入すると、噴霧器4が薄膜材料溶液タンクから原料溶液5を吸上げる。そして、原料溶液5をミストに変えて噴霧器4先端からミストを噴出する。ミストは、キャリアガス導入口7から導入されたキャリアガス8(圧縮空気)と混合されて、キャリアガスとともに基板1に向かってほぼ垂直に運搬される。
 上記のキャリアガスは、上記で噴霧されたミストを基板の表面に搬送するのをサポートするために導入されるものである。このようなキャリアガスとしては、たとえば窒素、酸素、水素、およびこれらの混合ガスを用いることができる。
 基板1の上面においては、噴霧器4による垂直方向に流れるミストの成膜に加え、基板1が移動する方向に平行な水平方向に流れるミストによっても水平方向の成膜がなされる。成膜されなかった余分な噴霧ミストは排気口11に沿って排気口出口14から除害装置を通して外部に放出される。噴霧装置6に導入されるキャリアガスの流量および噴霧装置から排気するキャリアガスの排気量は、適宜設定することができる。
 本発明の薄膜成膜装置は、図1に示されるように、基板に垂直な方向のミストの噴射によって薄膜が成膜される領域(第1成膜領域)と、基板が移動する方向に平行な水平方向に流れるミストによって成膜される領域(第2成膜領域)とがある。ここで、図1に示される薄膜成膜装置を用いて、基板を水平方向に移動させずに固定した状態で、基板上に薄膜を成膜したときの薄膜の膜厚分布を調べた。その結果を図2に示す。図2は、基板の左端からの距離における薄膜の膜厚分布を示すグラフであり、横軸は、基板の右端(排気口)からの距離(mm)であり、縦軸は、薄膜の膜厚である。
 図2に示されるように、基板の左端からの距離が300~500mmの領域(第1成膜領域)では、1μm程度の厚みの透明導電膜を成膜している。これに対し、基板の左端からの距離が100~300mmの領域(第2成膜領域)では、第1成膜領域から離れるほど、すなわち排気口に近づくほど薄膜の膜厚が1次関数的に薄くなることがわかる。
 本発明の薄膜成膜装置は、たとえば図3に示すような成膜ラインによってアルカリバリア層または透明導電膜を成膜する。図3は、本発明の薄膜成膜装置を組み込んだ成膜ラインの模式的な断面図である。図3において、まず、ベルトコンベアによって加熱部16に投入されて、該加熱部で加熱された後に、成膜部17に導入される。この成膜部17でアルカリバリア層または透明導電膜のような薄膜が成膜される。そして、除冷部18に導入されて、基板および薄膜が除冷された後に、薄膜が形成された基板が巻き取られる。以下に、本発明の薄膜成膜装置の各部を説明する。
 <噴霧器>
 本発明において、噴霧器4は原料溶液をミストに変えて、該ミストを基板に噴霧するために設けられるものである。このような噴霧器4は、2流体スプレーノズルで構成されるものであり、圧縮空気と原料溶液とが混ざり合ってミストとして基板に噴霧される。噴霧器4の個数は、タクトタイムに必要とされる単位時間当たりの噴霧量によって変更してもよいし、成膜に必要な成膜レートに応じて変更してもよい。
 ここで、「ミスト」とは、平均粒子径が0.1μm以上100μm以下の液滴が気体に分散された状態のものをいう。かかるミストの平均粒子径は、液浸法によって算出された値を採用するものとする。
 <冷却手段>
 本発明において、冷却手段は、噴霧器4内の原料溶液を冷却するために設けられるものである。このような冷却手段によって噴霧器4内の原料溶液を冷却することにより、噴霧器4の先端のノズル詰まりを防止することができる。噴霧器4の先端のノズル詰まりを防止するという観点からは、噴霧器内の原料溶液を、該原料溶液の沸点以下に冷却することが好ましい。このような温度に冷却することにより、原料溶液中の溶媒が揮発しにくくなるため、原料溶液の濃度を一定に保つことができるし、噴霧器4の先端のノズル詰まりを防止することができる。
 上記の冷却手段は、噴霧器4内の原料溶液を該原料溶液を沸点以下の温度に冷却するものであることが好ましく、より好ましくは噴霧器内の原料溶液を室温程度に冷却するものである。
 本発明の冷却手段は、空冷によって原料溶液を冷却してもよいし、水冷によって原料溶液を冷却してもよく、両者を併用しても差し支えない。空冷による冷却方法としては、ファンを挙げることができる。水冷による冷却手段としては、噴霧器の周辺に設けられた配管を挙げることができる。
 <加熱部>
 噴霧器4は、超音波霧化またはスプレー噴霧によってミストを発生させることができる。ここで、超音波霧化を用いてミストを発生させる場合、超音波振動子によってミストを発生させることが好ましい。超音波振動子は、比較的均一な平均粒子径のミストを噴霧することができるため、ミスト同士がより凝集しにくくなるという利点がある。
 <原料溶液>
 ここで、原料溶液5としては、亜鉛、スズ、インジウム、カドミウム、およびストロンチウムからなる群より選択される無機材料の塩化物または有機金属化合物を溶媒に溶解させたものを用いることが好ましい。原料溶液5に用いる溶媒としては、水、メタノール、エタノール、ブタノール等を挙げることができる。このような原料溶液5としては、酢酸亜鉛を含む水溶液、酸化インジウム錫を含む水溶液、酸化錫を含む水溶液等を挙げることができる。上記の原料溶液5の濃度は、特に限定されないが、一般的には0.1~3mol/Lの濃度の塩化物または有機金属化合物を含むものを用いることが好ましい。
 <薄膜成膜方法>
 本発明の薄膜成膜方法は、基板上に薄膜を成膜するためのものであって、空冷式または水冷式によって噴霧器内の原料溶液を冷却するステップと、噴霧器によって原料溶液をミストに変え、該ミストを基板に噴霧するステップと、400~620℃に保持された加熱部によってミストを加熱するステップとを含み、噴霧器の下端から基板の上面までの鉛直方向の距離をLとすると、基板の上面から加熱部の上端までの距離が1/10L~1/3Lであることを特徴とする。
 従来のスプレーCVD法やミストCVD法等の製造方法は、噴霧器内の原料溶液が加熱されることにより、原料溶液に含まれる溶媒の揮発が生じ、原料溶液の濃度が変わることがあった。このため、従来の成膜方法は、均一な膜質の薄膜を成膜するために、原料溶液に溶媒を適切なタイミングで添加する等の調整が必要であり、材料の利用効率が低かった。特に、ミストを噴霧して薄膜を成膜するミストCVD装置で成膜する場合に、成膜効率の低下が顕著であった。
 これに対し、本発明の薄膜成膜方法は、空冷式または水冷式によって噴霧器内の原料溶液を冷却するため、噴霧器内の原料溶液に含まれる溶媒が揮発されにくくなり、原料溶液の濃度を均一に保つことができる。このため、原料溶液の濃度を一定に保ちながら、薄膜を成膜することができ、もって薄膜の性能が安定するとともに、成膜コストの低減や生産性の向上にも寄与することになる。このようなメリットは、基板の面積が大きいほど得られる効果が大きくなるものと考えられる。
 上記の薄膜成膜方法を用いてアルカリバリア層を成膜する場合は、空冷式または水冷式によって噴霧器内の原料溶液を冷却するステップと、該噴霧器によって原料溶液をミストに変え、該ミストを基板に噴霧するステップと、400~600℃に保持された加熱部によってミストを加熱するステップとを含み、噴霧器の下端から基板の上面までの鉛直方向の距離をLとすると、基板の上面から加熱部の上端までの距離が1/10L~1/3Lである。
 また、上記の薄膜成膜方法を用いて透明導電膜を成膜する場合は、空冷式または水冷式によって噴霧器内の原料溶液を冷却するステップと、該噴霧器によって原料溶液をミストに変え、該ミストを基板に噴霧するステップと、500~620℃に保持された加熱部によってミストを加熱するステップとを含み、噴霧器の下端から基板の上面までの鉛直方向の距離をLとすると、基板の上面から加熱部の上端までの距離が1/10L~1/3Lである。
 上記の噴霧器を冷却するステップは、原料溶液を該原料溶液の沸点以下に冷却することが好ましい。これにより原料溶液に含まれる溶媒の揮発を適切に制御することができるからである。
 また、上記のミストを基板に噴霧するステップは、ミストを噴き付ける方向と略垂直方向に基板を移動させながら行なってもよい。このように基板を移動させながら薄膜を成膜しても、均一な性能を有する薄膜を形成することができるという点で、本発明の薄膜成膜方法は製造方法上のメリットがある。
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
 <実施例1>
 本実施例では、図1に示される薄膜成膜装置を用いて基板上に透明導電膜を成膜した。図1の薄膜成膜装置10は、噴霧装置6の下部に加熱部3が接続されており、加熱部3の内部の下方には載積台2が設置されている。この載積台2上に基板1を固定した。噴霧器4としては、3個のスプレーを用いており、この噴霧器4の下端から基板1の上面までの鉛直方向の距離をLとすると、基板1の上面から加熱部3の上端までの鉛直方向の距離は1/4Lであった。また、原料溶液としては、0.9mol/LのSnCl4と、0.3MのNH4Fとを含み、30質量%のHClと2.5質量%のメタノールを含む水溶液を用いた。この水溶液の沸点は約70℃程度であった。
 そして、上記の加熱部3の内の基板の温度を570℃として、-150mmの水頭差で噴霧器4によってミストを60秒間噴霧することにより、基板上に透明導電膜を成膜した。このようにして成膜した透明導電膜の膜厚を触針式表面形状測定器(製品名:DEKTAK(株式会社アルバック製))によって測定したところ、1400nmの厚みであった。なお、透明導電膜を成膜するときの加熱部の温度は、熱電対(製品名:K熱電対(アズワン株式会社製))によって測定した。
 <実施例2>
 実施例1に対し、基板1の上面から加熱部3の上端までの鉛直方向の距離を1/3Lに代えたことが異なる他は、実施例1と同様の方法によって本実施例の透明導電膜を成膜した。このようにして成膜した透明導電膜は、1300nmの厚みであった。
 <実施例3>
 実施例1においては基板を固定していたが、本実施例においては基板をミストを噴き付ける方向に対して略垂直方向に30mm/minの速度で移動させながら透明導電膜を成膜した。このようにして成膜した透明導電膜は、1350nmの厚みであった。
 <実施例4>
 本実施例においては、実施例1と同様の方法を用いて、基板の表面に70nm程度の層厚のアルカリバリア層を成膜した。本実施例においては、原料溶液として、0.15mol/Lのトリス(2,4-ペンタンジオナト)アルミニウム(III)の濃度で、かつ20体積%の酢酸を含む水溶液を用いて、上記の加熱部3の内部の温度を460℃として、アルカリバリア層を成膜した。
 <比較例1>
 比較例1では、加熱部によって基板を加熱するのではなく、基板の下にホットプレートを設け、該ホットプレートによって基板を570℃に加熱した。このように加熱方法が異なる他は、実施例1と同様の条件で基板上に透明導電膜を成膜した。このようにして成膜した透明導電膜は、1000nmの厚みであった。
 <比較例2>
 実施例1に対し、基板1の上面から加熱部3の上端までの鉛直方向の距離を1/2Lに代えたことが異なる他は、実施例1と同様の方法によって比較例2の透明導電膜を成膜した。このようにして成膜した透明導電膜は、900nmの厚みであった。
 <比較例3>
 実施例1に対し、基板1の上面から加熱部3の上端までの鉛直方向の距離を1/20Lに代えたことが異なる他は、実施例1と同様の方法によって比較例3の透明導電膜を成膜した。このようにして成膜した透明導電膜は、950nmの厚みであった。
 <評価結果>
 実施例1~3の薄膜成膜装置によって成膜した透明導電膜は、1300nm以上の膜厚であったのに対し、比較例1~3の薄膜成膜装置によって成膜した透明導電膜は、1000nm以下の膜厚であった。このように実施例1~3の薄膜成膜装置が、比較例1~3のそれに比して、透明導電膜を厚く成膜できたのは、基板から上昇気流が発生することなく、ミストに含まれる溶媒を蒸発し、かつ該ミストが基板に到達したことによるものと考えられる。
 比較例1の薄膜成膜装置は、ホットプレートで加熱することにより基板の上方に向けた上昇気流が生じる。このため、噴霧器4から噴き出されたミストの一部が基板に到達しなくなり、透明導電膜の膜厚が薄くなるものと考えられる。また、比較例2の薄膜成膜装置は、噴霧器を冷却するために多大な量の冷却水およびファンの回転数を必要とするため、実用的とは言えなかった。
 以上のように本発明の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせることも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 基板、2 載積台、3 加熱部、4 噴霧器、5 原料溶液、6 噴霧装置、7 キャリアガス導入口、8 キャリアガス、9 ミスト、10 薄膜成膜装置、11 排気口、14 排気口出口。

Claims (12)

  1.  原料溶液(5)をミスト(9)に変えて、該ミスト(9)を基板(1)に噴霧するための噴霧器(4)からの噴霧によって薄膜を成膜するための薄膜成膜装置(10)であって、
     前記噴霧器(4)内の前記原料溶液(5)を冷却するための冷却手段と、
     前記ミスト(9)を加熱するための加熱部(3)とを有し、
     前記加熱部(3)は、前記基板(1)の温度が400~620℃になるように加熱保持されており、かつその内部の下方に前記基板(1)が設置されているか、または前記基板(1)が移動機構によって移動されており、
     前記噴霧器(4)の下端から前記基板(1)の上面までの鉛直方向の距離をLとすると、前記基板(1)の上面から前記加熱部(3)の上端までの鉛直方向の距離は、1/10L~1/3Lである、薄膜成膜装置(10)。
  2.  原料溶液(5)をミスト(9)に変えて、該ミスト(9)を基板(1)に噴霧するための噴霧器(4)からの噴霧によってアルカリバリア層を成膜するための薄膜成膜装置(10)であって、
     前記噴霧器(4)内の前記原料溶液(5)を冷却するための冷却手段と、
     前記ミスト(9)を加熱するための加熱部(3)とを有し、
     前記加熱部(3)は、前記基板(1)の温度が400~600℃になるように加熱保持されており、かつその内部の下方に前記基板(1)が設置されているか、または前記基板(1)が移動機構によって移動されており、
     前記噴霧器(4)の下端から前記基板(1)の上面までの鉛直方向の距離をLとすると、前記基板(1)の上面から前記加熱部(3)の上端までの鉛直方向の距離は、1/10L~1/3Lである、薄膜成膜装置(10)。
  3.  原料溶液(5)をミスト(9)に変えて、該ミスト(9)を基板(1)に噴霧するための噴霧器(4)からの噴霧によって透明導電膜を成膜するための薄膜成膜装置(10)であって、
     前記噴霧器(4)内の前記原料溶液(5)を冷却するための冷却手段と、
     前記ミスト(9)を加熱するための加熱部(3)とを有し、
     前記加熱部(3)は、前記基板(1)の温度が500~620℃になるように加熱保持されており、かつその内部の下方に前記基板(1)が設置されているか、または前記基板(1)が移動機構によって移動されており、
     前記噴霧器(4)の下端から前記基板(1)の上面までの鉛直方向の距離をLとすると、前記基板(1)の上面から前記加熱部(3)の上端までの鉛直方向の距離は、1/10L~1/3Lである、薄膜成膜装置(10)。
  4.  前記冷却手段は、前記噴霧器(4)内の前記原料溶液(5)を、該原料溶液(5)の沸点以下に冷却する、請求項1~3のいずれかに記載の薄膜成膜装置(10)。
  5.  前記冷却手段は、ファンであり、
     前記ファンによって前記噴霧器(4)内の前記原料溶液(5)が空冷される、請求項1~3のいずれかに記載の薄膜成膜装置(10)。
  6.  前記冷却手段は、前記噴霧器(4)の周辺に設けられた配管であり、
     前記配管によって前記噴霧器(4)内の前記原料溶液(5)が水冷される、請求項1~3のいずれかに記載の薄膜成膜装置(10)。
  7.  前記基板(1)に対し、前記ミスト(9)が到達するのをサポートするキャリアガス(8)を導入するためのキャリアガス導入部をさらに有する、請求項1~3のいずれかに記載の薄膜成膜装置(10)。
  8.  基板(1)上に薄膜を成膜するための薄膜成膜方法であって、
     空冷式または水冷式によって噴霧器(4)内の原料溶液(5)を冷却するステップと、
     前記噴霧器(4)によって前記原料溶液(5)をミスト(9)に変え、該ミスト(9)を前記基板(1)に噴霧するステップと、
     400~620℃に保持された加熱部(3)によって前記ミスト(9)を加熱するステップとを含み、
     前記噴霧器(4)の下端から前記基板(1)の上面までの鉛直方向の距離をLとすると、前記基板(1)の上面から前記加熱部(3)の上端までの距離が1/10L~1/3Lである、薄膜成膜方法。
  9.  基板(1)上にアルカリバリア層を成膜するための薄膜成膜方法であって、
     空冷式または水冷式によって噴霧器(4)内の原料溶液(5)を冷却するステップと、
     前記噴霧器(4)によって前記原料溶液(5)をミスト(9)に変え、該ミスト(9)を前記基板(1)に噴霧するステップと、
     400~600℃に保持された加熱部(3)によって前記ミスト(9)を加熱するステップとを含み、
     前記噴霧器(4)の下端から前記基板(1)の上面までの鉛直方向の距離をLとすると、前記基板(1)の上面から前記加熱部(3)の上端までの距離が1/10L~1/3Lである、薄膜成膜方法。
  10.  基板(1)上に透明導電膜を成膜するための薄膜成膜方法であって、
     空冷式または水冷式によって噴霧器(4)内の原料溶液(5)を冷却するステップと、
     前記噴霧器(4)によって前記原料溶液(5)をミスト(9)に変え、該ミスト(9)を前記基板(1)に噴霧するステップと、
     500~620℃に保持された加熱部(3)によって前記ミスト(9)を加熱するステップとを含み、
     前記噴霧器(4)の下端から前記基板(1)の上面までの鉛直方向の距離をLとすると、前記基板(1)の上面から前記加熱部(3)の上端までの距離が1/10L~1/3Lである、薄膜成膜方法。
  11.  前記噴霧器(4)を冷却するステップは、前記原料溶液(5)を該原料溶液(5)の沸点以下に冷却する、請求項8~10のいずれかに記載の薄膜成膜方法。
  12.  前記ミスト(9)を前記基板(1)に噴霧するステップは、前記ミスト(9)を噴き付ける方向と略垂直方向に前記基板(1)を移動させながら行なう、請求項8~10のいずれかに記載の薄膜成膜方法。
PCT/JP2011/069548 2011-03-22 2011-08-30 薄膜成膜装置および薄膜成膜方法 WO2012127708A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011062613 2011-03-22
JP2011-062613 2011-03-22

Publications (1)

Publication Number Publication Date
WO2012127708A1 true WO2012127708A1 (ja) 2012-09-27

Family

ID=46878898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069548 WO2012127708A1 (ja) 2011-03-22 2011-08-30 薄膜成膜装置および薄膜成膜方法

Country Status (1)

Country Link
WO (1) WO2012127708A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111485285A (zh) * 2019-01-25 2020-08-04 丰田自动车株式会社 成膜装置及半导体装置的制造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07330336A (ja) * 1994-06-08 1995-12-19 Kawai Musical Instr Mfg Co Ltd 酸化スズ(iv)膜の成膜方法
JP2002146536A (ja) * 2000-11-08 2002-05-22 Japan Science & Technology Corp 酸化スズ薄膜の低温形成方法
JP2005120414A (ja) * 2003-10-16 2005-05-12 Sharp Corp 薄膜の製造装置および薄膜の製造方法
JP2007238393A (ja) * 2006-03-09 2007-09-20 Dainippon Printing Co Ltd 金属酸化物膜の製造方法、および、金属酸化物膜の製造装置
JP2007242340A (ja) * 2006-03-07 2007-09-20 Fujikura Ltd 透明導電性基板及びその製造方法並びにその製造装置
JP2008021580A (ja) * 2006-07-14 2008-01-31 Konica Minolta Holdings Inc 透明導電膜形成方法及び透明導電膜
JP2008117597A (ja) * 2006-11-02 2008-05-22 Fujikura Ltd 透明導電性基板およびその製造方法
JP2008123893A (ja) * 2006-11-14 2008-05-29 Fujikura Ltd 透明導電膜の形成方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07330336A (ja) * 1994-06-08 1995-12-19 Kawai Musical Instr Mfg Co Ltd 酸化スズ(iv)膜の成膜方法
JP2002146536A (ja) * 2000-11-08 2002-05-22 Japan Science & Technology Corp 酸化スズ薄膜の低温形成方法
JP2005120414A (ja) * 2003-10-16 2005-05-12 Sharp Corp 薄膜の製造装置および薄膜の製造方法
JP2007242340A (ja) * 2006-03-07 2007-09-20 Fujikura Ltd 透明導電性基板及びその製造方法並びにその製造装置
JP2007238393A (ja) * 2006-03-09 2007-09-20 Dainippon Printing Co Ltd 金属酸化物膜の製造方法、および、金属酸化物膜の製造装置
JP2008021580A (ja) * 2006-07-14 2008-01-31 Konica Minolta Holdings Inc 透明導電膜形成方法及び透明導電膜
JP2008117597A (ja) * 2006-11-02 2008-05-22 Fujikura Ltd 透明導電性基板およびその製造方法
JP2008123893A (ja) * 2006-11-14 2008-05-29 Fujikura Ltd 透明導電膜の形成方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111485285A (zh) * 2019-01-25 2020-08-04 丰田自动车株式会社 成膜装置及半导体装置的制造方法
CN111485285B (zh) * 2019-01-25 2022-07-19 株式会社电装 成膜装置及半导体装置的制造方法

Similar Documents

Publication Publication Date Title
US7913643B2 (en) Film forming apparatus and film forming method
WO2013061634A1 (ja) ガラス基材への成膜方法
JP5148743B1 (ja) 薄膜成膜装置、薄膜成膜方法および薄膜太陽電池の製造方法
JP5149437B1 (ja) 成膜装置および成膜方法
JP2008078113A (ja) 透明導電性基板の製造装置
JP2012509990A (ja) ガラス上の導電膜形成
WO2012127708A1 (ja) 薄膜成膜装置および薄膜成膜方法
JP5568482B2 (ja) ガラスドロー中の導電フィルム形成
JP2013095938A (ja) 成膜装置および成膜方法
KR20110025385A (ko) 불소가 도핑된 저저항 고투과율의 산화주석 박막 및 그 제조방법
KR101110633B1 (ko) 불소 함유 산화주석 박막 제조장치
JP4991950B1 (ja) ミスト成膜装置
JP2013129868A (ja) 成膜装置
JP2014005502A (ja) 薄膜成膜方法
JP2012062527A (ja) 金属酸化物薄膜の製造方法およびその方法を用いる金属酸化物薄膜形成装置
JP2007077433A (ja) 成膜装置
JPH01189815A (ja) 透明導電膜の作製法
JP4969787B2 (ja) 成膜装置および成膜方法
JP2013030611A (ja) 太陽電池用薄膜の成膜方法、該成膜方法により成膜された太陽電池用薄膜、および太陽電池用薄膜の成膜装置
JPWO2014069487A1 (ja) 薄膜形成方法
JP2013108157A (ja) 成膜装置
JP2002201044A (ja) 光触媒ガラスの製造装置および製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11861460

Country of ref document: EP

Kind code of ref document: A1