WO2012127687A1 - Dispositif d'entraînement de moteur linéaire - Google Patents

Dispositif d'entraînement de moteur linéaire Download PDF

Info

Publication number
WO2012127687A1
WO2012127687A1 PCT/JP2011/057222 JP2011057222W WO2012127687A1 WO 2012127687 A1 WO2012127687 A1 WO 2012127687A1 JP 2011057222 W JP2011057222 W JP 2011057222W WO 2012127687 A1 WO2012127687 A1 WO 2012127687A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis current
linear motor
control circuit
current control
drive device
Prior art date
Application number
PCT/JP2011/057222
Other languages
English (en)
Japanese (ja)
Inventor
大輔 川口
興起 仲
小林 学
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to KR1020137024948A priority Critical patent/KR101524399B1/ko
Priority to PCT/JP2011/057222 priority patent/WO2012127687A1/fr
Priority to CN201180069423.3A priority patent/CN103430445B/zh
Priority to JP2013505753A priority patent/JP5550782B2/ja
Priority to TW100120510A priority patent/TWI470904B/zh
Publication of WO2012127687A1 publication Critical patent/WO2012127687A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • H02P25/064Linear motors of the synchronous type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/006Controlling linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation
    • H02P2207/055Surface mounted magnet motors

Definitions

  • the present invention relates to a linear motor driving device.
  • the stop position control (movement distance) is also performed in the linear motor by performing d-axis current control to increase / decrease the frictional force due to the magnetic attractive force. If the control can be performed, the configuration can be simplified.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a linear motor driving apparatus capable of increasing and decreasing the frictional force due to the magnetic attractive force by performing d-axis current control.
  • the present invention provides a magnet array composed of a plurality of linearly arranged permanent magnets and the magnets for supporting and guiding the movable part on both sides of the magnet array.
  • a fixed portion having two rails arranged in parallel with the row, two bearings supported by the two rails and slidable in sliding contact with each other, and the magnet row between the two bearings.
  • a linear motor driving apparatus for driving a linear motor composed of a movable part having armatures arranged opposite to each other, in a current control circuit for generating and controlling d-axis current and q-axis current supplied to the coil of the armature
  • the d-axis current control circuit includes a configuration for controlling a frictional force generated between the rail and the bearing by changing a generated d-axis current.
  • the d-axis current control is performed to reduce the friction force due to the magnetic attraction force without providing the coil and magnet for increasing or decreasing the friction force due to the magnetic attraction force separately from the coil and magnet for generating the thrust. It can be increased or decreased. Therefore, the linear motor configuration can be simplified.
  • FIG. 1 is a perspective view showing an external configuration of a linear motor according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view in the Y-axis direction.
  • FIG. 3 is a block diagram illustrating a configuration example of a linear motor driving apparatus that drives the linear motor illustrated in FIG. 1.
  • FIG. 4 is a waveform diagram showing speed characteristics of the linear motor shown in FIG.
  • FIG. 1 and 2 are a perspective view and a cross-sectional view in the Y-axis direction showing an external configuration of a linear motor according to an embodiment of the present invention.
  • the linear motor 100 is comprised by the fixed part 1 and the movable part 2 arrange
  • the fixing part 1 is formed on a base 13 that is long in the X-axis direction. That is, a strip-shaped mounting seat 12 is fixed on the base 13 in the X-axis direction, and a plurality of permanent magnets 11 are fixedly arranged on the mounting seat 12 at equal intervals in the X-axis direction.
  • a scale 41 is fixedly disposed in parallel with the X-axis direction. Position information is optically or magnetically recorded on the scale 41.
  • the movable part 2 is attached to the top plate 24.
  • the top plate 24 has a longer width than the interval between the two rails 31, and two bearings 32 that are in sliding contact with the two rails 31 are fixed to the lower surfaces of the both ends. Accordingly, the top plate 24 can move in the X-axis direction by sliding on the two rails 31 in a state where the two bearings 32 are supported by the two rails 31.
  • the armature core 23 is fixed between the two bearings 32 on the lower surface of the top plate 24 at a position directly above the position where the permanent magnet 11 is disposed.
  • a resin bobbin 22 containing an armature coil 21 is fixed to the outer periphery of the iron core 23. Note that the number of phases of the coil 21 is three.
  • a three-phase alternating current is supplied to the three-phase coil 21 from the inverter 95 (see FIG. 3) of the driving device through the power supply lead wire 51.
  • a magnetic attractive force 62 from the side toward the permanent magnet 11 side and a thrust toward the X-axis direction (not shown) are generated. It can be seen that the magnetic attractive force 62 generates a frictional force between the rail 31 and the bearing 32 in a direction opposite to the thrust direction.
  • a position detector coupling member 43 is attached to the side end of the top plate 24 on the scale 41 side so that the position detector 42 faces the scale 41.
  • the position detector 42 is connected to a position detector lead 52 for transmitting the detected position signal to the driving device.
  • FIG. 3 is a block diagram showing a configuration example of a linear motor driving apparatus that drives the linear motor shown in FIG.
  • a linear motor driving device 90 includes addition / subtraction circuits 91 and 93, a position control circuit 92, a speed control circuit 94, a current control circuit 95, a two-phase / three-phase conversion circuit 96, an inverter 97, A differentiation circuit 98 and a current detector 99 are provided.
  • the current detector 99 is attached to the output terminal of the inverter 97, and the detected output current is input to the current control circuit 95.
  • the current control circuit 95 includes a d-axis current control circuit 95a and a q-axis current control circuit 95b. Further, the position information on the scale 41 detected by the position detector 42 is input to the addition / subtraction circuit 91 and the differentiation circuit 98.
  • the addition / subtraction circuit 91 obtains a deviation between the position command of the target position input from the outside and the current position on the scale 41 detected by the position detector 42.
  • the position control circuit 92 performs proportional control for calculating an internal speed command from the position deviation obtained by the addition / subtraction circuit 91, and outputs the obtained internal speed command.
  • the addition / subtraction circuit 93 obtains a deviation between the internal speed command obtained by the position control circuit 92 and the motor speed obtained by differentiating the position information from the position detector 42 by the differentiation circuit 98.
  • the speed control circuit 94 performs proportional-integral control on the speed deviation obtained by the addition / subtraction circuit 93 to calculate the d-axis current command and the q-axis current command, and uses the calculated d-axis current command and q-axis current command as the current control circuit 95. Output to.
  • the current control circuit 95 an operation for generating a d-axis current instructed by the d-axis current command input in the d-axis current control circuit 95a is performed, and the q-axis current command input in the q-axis current control circuit 95b is instructed.
  • the d-axis current control circuit 95a and the q-axis current control circuit 95b control each generated current with reference to the motor supply current detected by the current detector 99.
  • the two-phase / three-phase conversion circuit 96 converts the d-axis and q-axis currents id and iq output from the current control circuit 95 into uvw three-phase alternating currents iu, iv and iv.
  • the inverter 97 converts and amplifies the converted three-phase alternating currents iu, iv, and iv into PWM signals, and supplies the PWM signals to the three-phase coil 21. As a result, a magnetic attractive force 62 and a thrust in the X-axis direction are generated.
  • the dynamic friction coefficient k, the mass M of the movable part 2, the magnetic permeability ⁇ , the magnetic flux ⁇ of the permanent magnet 11, and the d-axis inductance Ld are known. Therefore, the frictional force Ff by the magnetic attractive force Fm can be controlled by controlling the d-axis current id.
  • FIG. 4 is a waveform diagram showing the speed characteristics of the linear motor shown in FIG.
  • the travel time 80 to the target position is divided into an acceleration time 81, a constant speed time 82, and a deceleration time 83.
  • the acceleration time 81 and the deceleration time 83 caused the same frictional force between the bearing 32 and the rail 31.
  • the d-axis current control circuit 95a uses the motor current detected by the current detector 99 as a reference signal so that the friction force is decreased during acceleration and the friction force is increased during deceleration. Control the current. This control may be performed at both acceleration and deceleration, or may be performed at one side. As a result, both or one of the acceleration time 81 and the deceleration time 83 can be made shorter than before, so that the travel time 80 can be shortened.
  • d is provided without a coil and a magnet for increasing and decreasing the frictional force due to the magnetic attractive force separately from the thrust generating coil and magnet. Since the axial force control can be performed to increase or decrease the frictional force due to the magnetic attractive force, the configuration of the linear motor can be simplified.
  • the linear motor driving apparatus is useful as a linear motor driving apparatus capable of increasing and decreasing the frictional force due to the magnetic attractive force by performing d-axis current control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Control Of Linear Motors (AREA)
  • Linear Motors (AREA)

Abstract

La présente invention se rapporte à un dispositif d'entraînement de moteur linéaire qui permet d'entraîner un moteur linéaire et qui comprend : une section fixe munie d'une rangée d'aimants qui est composée d'une pluralité d'aimants permanents disposés de manière rectiligne ainsi que de deux rails situés sur les deux côtés de la rangée d'aimants et parallèles à cette rangée d'aimants afin de porter et de guider une section mobile ; et une section mobile dotée de deux roulements qui sont portés par les deux rails et qui peuvent se déplacer respectivement en contact coulissant avec lesdits rails, ainsi que d'une armature placée entre les deux roulements afin de se trouver en regard et tout près de la rangée d'aimants. Un circuit de commande de courant d'axe d dans un circuit de commande de courant conçu pour générer et pour commander un courant d'axe d ainsi qu'un courant d'axe q injectés dans la bobine de l'armature présente une configuration servant à faire varier le courant d'axe d généré et à réguler la force de frottement produite entre les rails et les roulements.
PCT/JP2011/057222 2011-03-24 2011-03-24 Dispositif d'entraînement de moteur linéaire WO2012127687A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137024948A KR101524399B1 (ko) 2011-03-24 2011-03-24 리니어 모터 구동 장치
PCT/JP2011/057222 WO2012127687A1 (fr) 2011-03-24 2011-03-24 Dispositif d'entraînement de moteur linéaire
CN201180069423.3A CN103430445B (zh) 2011-03-24 2011-03-24 线性电动机驱动装置
JP2013505753A JP5550782B2 (ja) 2011-03-24 2011-03-24 リニアモータ駆動装置
TW100120510A TWI470904B (zh) 2011-03-24 2011-06-13 線性馬達驅動裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/057222 WO2012127687A1 (fr) 2011-03-24 2011-03-24 Dispositif d'entraînement de moteur linéaire

Publications (1)

Publication Number Publication Date
WO2012127687A1 true WO2012127687A1 (fr) 2012-09-27

Family

ID=46878879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057222 WO2012127687A1 (fr) 2011-03-24 2011-03-24 Dispositif d'entraînement de moteur linéaire

Country Status (5)

Country Link
JP (1) JP5550782B2 (fr)
KR (1) KR101524399B1 (fr)
CN (1) CN103430445B (fr)
TW (1) TWI470904B (fr)
WO (1) WO2012127687A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103671512A (zh) * 2013-12-26 2014-03-26 苏州市启扬商贸有限公司 一种直线导轨
PT106910A (pt) * 2013-04-26 2014-10-27 Inst Superior Técnico Mecanismo de guiamento linear com ajuste lateral para motores lineares de núcleo ferrítico
EP4300809A1 (fr) * 2022-06-30 2024-01-03 Rockwell Automation Technologies, Inc. Système et procédé de brochage électromagnétique et de commande hybride d'un système d'entraînement linéaire

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021175365A (ja) * 2020-04-17 2021-11-01 国立大学法人電気通信大学 モータの制御方法及び制御装置
CN117200526A (zh) * 2022-12-21 2023-12-08 阿帕斯数控机床制造(上海)有限公司 用于数控机床的直线电机及其用电设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11122902A (ja) * 1997-10-17 1999-04-30 Mitsubishi Electric Corp リニアモータ駆動装置
JP2009247036A (ja) * 2008-03-28 2009-10-22 Thk Co Ltd モータの制御装置及び制御方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3931487B2 (ja) * 1999-06-25 2007-06-13 松下電工株式会社 リニア振動モータの駆動制御方法
CN201360217Y (zh) * 2008-11-19 2009-12-09 北京华士德科技发展有限公司 三相永磁同步直线电动机

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11122902A (ja) * 1997-10-17 1999-04-30 Mitsubishi Electric Corp リニアモータ駆動装置
JP2009247036A (ja) * 2008-03-28 2009-10-22 Thk Co Ltd モータの制御装置及び制御方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT106910A (pt) * 2013-04-26 2014-10-27 Inst Superior Técnico Mecanismo de guiamento linear com ajuste lateral para motores lineares de núcleo ferrítico
PT106910B (pt) * 2013-04-26 2015-02-02 Inst Superior Técnico Mecanismo de guiamento linear com ajuste lateral para motores lineares de núcleo ferrítico
CN103671512A (zh) * 2013-12-26 2014-03-26 苏州市启扬商贸有限公司 一种直线导轨
CN103671512B (zh) * 2013-12-26 2016-04-06 苏州市启扬商贸有限公司 一种直线导轨
EP4300809A1 (fr) * 2022-06-30 2024-01-03 Rockwell Automation Technologies, Inc. Système et procédé de brochage électromagnétique et de commande hybride d'un système d'entraînement linéaire

Also Published As

Publication number Publication date
TWI470904B (zh) 2015-01-21
KR101524399B1 (ko) 2015-05-29
JP5550782B2 (ja) 2014-07-16
JPWO2012127687A1 (ja) 2014-07-24
CN103430445A (zh) 2013-12-04
CN103430445B (zh) 2016-04-13
TW201240285A (en) 2012-10-01
KR20130129444A (ko) 2013-11-28

Similar Documents

Publication Publication Date Title
JP6970194B2 (ja) リニア電気機械およびリニア電気機械を制御するためのパワーエレクトロニクスコンバータ
US7990084B2 (en) Linear stepping motor
US6734583B2 (en) Slider unit with built-in moving-coil linear motor
JP5550782B2 (ja) リニアモータ駆動装置
JP4811798B2 (ja) リニアモータ装置
WO2005091478A1 (fr) Coulisseau lineaire aimant mobile
JP2010130740A (ja) マグネット可動型リニアモータ
JP2008193845A (ja) リニアモータ
JP2008545361A (ja) 同期リニアモータ
CN101850523A (zh) 数控机床直线同步电动机磁悬浮进给平台
CN112335161B (zh) 线性电动机的固定件、线性电动机及线性电动机系统
US6671637B2 (en) Thrust ripple measuring apparatus and method in linear motor
JP2009072030A (ja) リニアモータ及びリニアモータの取り付け方法
JP2015104200A (ja) リニアモータ
CN101972933A (zh) 双直线同步电动机驱动的精密重型机床磁悬浮运动平台
JP5431295B2 (ja) Xyステージ
KR100712450B1 (ko) 자기부상 리니어 모터 제어 방법 및 시스템
JP2009136118A (ja) 同期形リニアモータ
JP5427037B2 (ja) リニアモータシステム
JP2011214624A (ja) リニアアクチュエータ
JPH11196561A (ja) 制動特性が調節可能なリニアモータ
JP2006034013A (ja) 工作機械用リニアモータ
Appunn et al. Operation of a vertically levitated ropeless elevator: Interaction of linear drive and magnetic guiding
KR101031851B1 (ko) 선형유도전동기의 수직력 제어 방법
JP2006034014A (ja) 工作機械用リニアモータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861527

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013505753

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137024948

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11861527

Country of ref document: EP

Kind code of ref document: A1