WO2012127687A1 - Linear motor drive device - Google Patents

Linear motor drive device Download PDF

Info

Publication number
WO2012127687A1
WO2012127687A1 PCT/JP2011/057222 JP2011057222W WO2012127687A1 WO 2012127687 A1 WO2012127687 A1 WO 2012127687A1 JP 2011057222 W JP2011057222 W JP 2011057222W WO 2012127687 A1 WO2012127687 A1 WO 2012127687A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis current
linear motor
control circuit
current control
drive device
Prior art date
Application number
PCT/JP2011/057222
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 川口
興起 仲
小林 学
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2011/057222 priority Critical patent/WO2012127687A1/en
Priority to CN201180069423.3A priority patent/CN103430445B/en
Priority to JP2013505753A priority patent/JP5550782B2/en
Priority to KR1020137024948A priority patent/KR101524399B1/en
Priority to TW100120510A priority patent/TWI470904B/en
Publication of WO2012127687A1 publication Critical patent/WO2012127687A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • H02P25/064Linear motors of the synchronous type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/006Controlling linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation
    • H02P2207/055Surface mounted magnet motors

Definitions

  • the present invention relates to a linear motor driving device.
  • the stop position control (movement distance) is also performed in the linear motor by performing d-axis current control to increase / decrease the frictional force due to the magnetic attractive force. If the control can be performed, the configuration can be simplified.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a linear motor driving apparatus capable of increasing and decreasing the frictional force due to the magnetic attractive force by performing d-axis current control.
  • the present invention provides a magnet array composed of a plurality of linearly arranged permanent magnets and the magnets for supporting and guiding the movable part on both sides of the magnet array.
  • a fixed portion having two rails arranged in parallel with the row, two bearings supported by the two rails and slidable in sliding contact with each other, and the magnet row between the two bearings.
  • a linear motor driving apparatus for driving a linear motor composed of a movable part having armatures arranged opposite to each other, in a current control circuit for generating and controlling d-axis current and q-axis current supplied to the coil of the armature
  • the d-axis current control circuit includes a configuration for controlling a frictional force generated between the rail and the bearing by changing a generated d-axis current.
  • the d-axis current control is performed to reduce the friction force due to the magnetic attraction force without providing the coil and magnet for increasing or decreasing the friction force due to the magnetic attraction force separately from the coil and magnet for generating the thrust. It can be increased or decreased. Therefore, the linear motor configuration can be simplified.
  • FIG. 1 is a perspective view showing an external configuration of a linear motor according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view in the Y-axis direction.
  • FIG. 3 is a block diagram illustrating a configuration example of a linear motor driving apparatus that drives the linear motor illustrated in FIG. 1.
  • FIG. 4 is a waveform diagram showing speed characteristics of the linear motor shown in FIG.
  • FIG. 1 and 2 are a perspective view and a cross-sectional view in the Y-axis direction showing an external configuration of a linear motor according to an embodiment of the present invention.
  • the linear motor 100 is comprised by the fixed part 1 and the movable part 2 arrange
  • the fixing part 1 is formed on a base 13 that is long in the X-axis direction. That is, a strip-shaped mounting seat 12 is fixed on the base 13 in the X-axis direction, and a plurality of permanent magnets 11 are fixedly arranged on the mounting seat 12 at equal intervals in the X-axis direction.
  • a scale 41 is fixedly disposed in parallel with the X-axis direction. Position information is optically or magnetically recorded on the scale 41.
  • the movable part 2 is attached to the top plate 24.
  • the top plate 24 has a longer width than the interval between the two rails 31, and two bearings 32 that are in sliding contact with the two rails 31 are fixed to the lower surfaces of the both ends. Accordingly, the top plate 24 can move in the X-axis direction by sliding on the two rails 31 in a state where the two bearings 32 are supported by the two rails 31.
  • the armature core 23 is fixed between the two bearings 32 on the lower surface of the top plate 24 at a position directly above the position where the permanent magnet 11 is disposed.
  • a resin bobbin 22 containing an armature coil 21 is fixed to the outer periphery of the iron core 23. Note that the number of phases of the coil 21 is three.
  • a three-phase alternating current is supplied to the three-phase coil 21 from the inverter 95 (see FIG. 3) of the driving device through the power supply lead wire 51.
  • a magnetic attractive force 62 from the side toward the permanent magnet 11 side and a thrust toward the X-axis direction (not shown) are generated. It can be seen that the magnetic attractive force 62 generates a frictional force between the rail 31 and the bearing 32 in a direction opposite to the thrust direction.
  • a position detector coupling member 43 is attached to the side end of the top plate 24 on the scale 41 side so that the position detector 42 faces the scale 41.
  • the position detector 42 is connected to a position detector lead 52 for transmitting the detected position signal to the driving device.
  • FIG. 3 is a block diagram showing a configuration example of a linear motor driving apparatus that drives the linear motor shown in FIG.
  • a linear motor driving device 90 includes addition / subtraction circuits 91 and 93, a position control circuit 92, a speed control circuit 94, a current control circuit 95, a two-phase / three-phase conversion circuit 96, an inverter 97, A differentiation circuit 98 and a current detector 99 are provided.
  • the current detector 99 is attached to the output terminal of the inverter 97, and the detected output current is input to the current control circuit 95.
  • the current control circuit 95 includes a d-axis current control circuit 95a and a q-axis current control circuit 95b. Further, the position information on the scale 41 detected by the position detector 42 is input to the addition / subtraction circuit 91 and the differentiation circuit 98.
  • the addition / subtraction circuit 91 obtains a deviation between the position command of the target position input from the outside and the current position on the scale 41 detected by the position detector 42.
  • the position control circuit 92 performs proportional control for calculating an internal speed command from the position deviation obtained by the addition / subtraction circuit 91, and outputs the obtained internal speed command.
  • the addition / subtraction circuit 93 obtains a deviation between the internal speed command obtained by the position control circuit 92 and the motor speed obtained by differentiating the position information from the position detector 42 by the differentiation circuit 98.
  • the speed control circuit 94 performs proportional-integral control on the speed deviation obtained by the addition / subtraction circuit 93 to calculate the d-axis current command and the q-axis current command, and uses the calculated d-axis current command and q-axis current command as the current control circuit 95. Output to.
  • the current control circuit 95 an operation for generating a d-axis current instructed by the d-axis current command input in the d-axis current control circuit 95a is performed, and the q-axis current command input in the q-axis current control circuit 95b is instructed.
  • the d-axis current control circuit 95a and the q-axis current control circuit 95b control each generated current with reference to the motor supply current detected by the current detector 99.
  • the two-phase / three-phase conversion circuit 96 converts the d-axis and q-axis currents id and iq output from the current control circuit 95 into uvw three-phase alternating currents iu, iv and iv.
  • the inverter 97 converts and amplifies the converted three-phase alternating currents iu, iv, and iv into PWM signals, and supplies the PWM signals to the three-phase coil 21. As a result, a magnetic attractive force 62 and a thrust in the X-axis direction are generated.
  • the dynamic friction coefficient k, the mass M of the movable part 2, the magnetic permeability ⁇ , the magnetic flux ⁇ of the permanent magnet 11, and the d-axis inductance Ld are known. Therefore, the frictional force Ff by the magnetic attractive force Fm can be controlled by controlling the d-axis current id.
  • FIG. 4 is a waveform diagram showing the speed characteristics of the linear motor shown in FIG.
  • the travel time 80 to the target position is divided into an acceleration time 81, a constant speed time 82, and a deceleration time 83.
  • the acceleration time 81 and the deceleration time 83 caused the same frictional force between the bearing 32 and the rail 31.
  • the d-axis current control circuit 95a uses the motor current detected by the current detector 99 as a reference signal so that the friction force is decreased during acceleration and the friction force is increased during deceleration. Control the current. This control may be performed at both acceleration and deceleration, or may be performed at one side. As a result, both or one of the acceleration time 81 and the deceleration time 83 can be made shorter than before, so that the travel time 80 can be shortened.
  • d is provided without a coil and a magnet for increasing and decreasing the frictional force due to the magnetic attractive force separately from the thrust generating coil and magnet. Since the axial force control can be performed to increase or decrease the frictional force due to the magnetic attractive force, the configuration of the linear motor can be simplified.
  • the linear motor driving apparatus is useful as a linear motor driving apparatus capable of increasing and decreasing the frictional force due to the magnetic attractive force by performing d-axis current control.

Abstract

A linear motor drive device for driving a linear motor, comprising: a fixed section provided with a magnet row composed of a plurality of rectilinearly arranged permanent magnets and two rails arranged on both sides of the magnet row and parallel to the magnet row in order to support and guide a mobile section; and a mobile section provided with two bearings that are supported by and are capable of moving in sliding contact with the two rails, respectively, and an armature arranged between the two bearings so as to face the magnet row in close proximity, wherein a d-axis current control circuit in a current control circuit for generating and controlling a d-axis current and q-axis current fed to the coil of the armature is provided with a configuration for varying the generated d-axis current and controlling the frictional force produced between the rails and the bearings.

Description

リニアモータ駆動装置Linear motor drive device
 本発明は、リニアモータ駆動装置に関するものである。 The present invention relates to a linear motor driving device.
 リニアモータの停止位置(移動距離)を制御する構成として、推力を発生させるためのコイルおよび磁石のほかに、磁気吸引力による摩擦力を増減させるためのコイルおよび磁石を設ける構成が知られている(例えば、特許文献1)。 As a configuration for controlling the stop position (movement distance) of the linear motor, a configuration is known in which a coil and a magnet for increasing and decreasing a frictional force due to a magnetic attractive force are provided in addition to a coil and a magnet for generating a thrust. (For example, patent document 1).
 一方、回転モータの停止制御では、d軸電流制御によりブレーキトルクを発生させて減速させる方法が用いられている(例えば、特許文献2)。 On the other hand, in the stop control of the rotary motor, a method of generating brake torque by d-axis current control and decelerating is used (for example, Patent Document 2).
特開平11-122902号公報JP-A-11-122902 特開2003-88168号公報JP 2003-88168 A
 推力発生用のコイルおよび磁石とは別に、磁気吸引力による摩擦力を増減させるためのコイルおよび磁石を設ける構成では、停止位置(移動距離)を制御するための構成が複雑になる。 In a configuration in which a coil and a magnet for increasing and decreasing the frictional force due to the magnetic attractive force are provided separately from the thrust generating coil and magnet, the configuration for controlling the stop position (movement distance) becomes complicated.
 ところが、リニアモータの駆動制御でも、回転モータと同様のベクトル制御が用いられるので、リニアモータにおいてもd軸電流制御を行って磁気吸引力による摩擦力を増減することで、停止位置制御(移動距離制御)が行えれば、構成の簡素化が図れる。 However, since the vector control similar to that of the rotary motor is also used in the drive control of the linear motor, the stop position control (movement distance) is also performed in the linear motor by performing d-axis current control to increase / decrease the frictional force due to the magnetic attractive force. If the control can be performed, the configuration can be simplified.
 本発明は、上記に鑑みてなされたものであり、d軸電流制御を行って磁気吸引力による摩擦力を増減することができるリニアモータ駆動装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a linear motor driving apparatus capable of increasing and decreasing the frictional force due to the magnetic attractive force by performing d-axis current control.
 上述した課題を解決し、目的を達成するために、本発明は、直線状に配列された複数の永久磁石からなる磁石列および前記磁石列の両側において可動部を支持および案内するために該磁石列と並行に配置される2本のレールを備える固定部と、前記2本のレールにそれぞれ支持され摺接して滑動できる2個のベアリングおよび前記2個のベアリングの間において前記磁石列と近接して対向配置される電機子を備える可動部とで構成されるリニアモータを駆動するリニアモータ駆動装置において、前記電機子のコイルに供給するd軸電流およびq軸電流を生成制御する電流制御回路におけるd軸電流制御回路は、生成するd軸電流を変化させて前記レールと前記ベアリングとの間に生ずる摩擦力を制御する構成を備えることを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the present invention provides a magnet array composed of a plurality of linearly arranged permanent magnets and the magnets for supporting and guiding the movable part on both sides of the magnet array. A fixed portion having two rails arranged in parallel with the row, two bearings supported by the two rails and slidable in sliding contact with each other, and the magnet row between the two bearings. In a linear motor driving apparatus for driving a linear motor composed of a movable part having armatures arranged opposite to each other, in a current control circuit for generating and controlling d-axis current and q-axis current supplied to the coil of the armature The d-axis current control circuit includes a configuration for controlling a frictional force generated between the rail and the bearing by changing a generated d-axis current.
 本発明によれば、推力発生用のコイルおよび磁石とは別に、磁気吸引力による摩擦力を増減させるためのコイルおよび磁石を設けることなく、d軸電流制御を行って磁気吸引力による摩擦力を増減することができる。したがって、リニアモータ構成の簡素化を図ることができるという効果を奏する。 According to the present invention, the d-axis current control is performed to reduce the friction force due to the magnetic attraction force without providing the coil and magnet for increasing or decreasing the friction force due to the magnetic attraction force separately from the coil and magnet for generating the thrust. It can be increased or decreased. Therefore, the linear motor configuration can be simplified.
図1は、本発明の一実施例によるリニアモータの外観構成を示す斜視図である。FIG. 1 is a perspective view showing an external configuration of a linear motor according to an embodiment of the present invention. 図2は、Y軸方向断面図である。FIG. 2 is a cross-sectional view in the Y-axis direction. 図3は、図1に示すリニアモータを駆動するリニアモータ駆動装置の構成例を示すブロック図である。FIG. 3 is a block diagram illustrating a configuration example of a linear motor driving apparatus that drives the linear motor illustrated in FIG. 1. 図4は、図1に示すリニアモータの速度特性を示す波形図である。FIG. 4 is a waveform diagram showing speed characteristics of the linear motor shown in FIG.
 以下に、本発明にかかるリニアモータ駆動装置の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。 Hereinafter, an embodiment of a linear motor driving device according to the present invention will be described in detail based on the drawings. Note that the present invention is not limited to the embodiments.
 図1および図2は、本発明の一実施例によるリニアモータの外観構成を示す斜視図およびY軸方向断面図である。両図において、リニアモータ100は、固定部1と、固定部1上にX軸方向へ移動可能に配置される可動部2とで構成される。 1 and 2 are a perspective view and a cross-sectional view in the Y-axis direction showing an external configuration of a linear motor according to an embodiment of the present invention. In both figures, the linear motor 100 is comprised by the fixed part 1 and the movable part 2 arrange | positioned on the fixed part 1 so that a movement to an X-axis direction is possible.
 固定部1は、X軸方向に長尺なベース13上に形成されている。すなわち、ベース13上にX軸方向へ短冊板状の取付座12が固定され、取付座12上に複数の永久磁石11がX軸方向へ等間隔で固定配置されている。取付座12の短手方向(Y軸方向)の両側におけるベース13上には、2本のレール31がそれぞれX軸方向に並行して固定配置されている。そして、一方のレール31の外側におけるベース13上には、スケール41がX軸方向に並行して固定配置されている。スケール41には、位置情報が光学的もしくは磁気的に記録されている。 The fixing part 1 is formed on a base 13 that is long in the X-axis direction. That is, a strip-shaped mounting seat 12 is fixed on the base 13 in the X-axis direction, and a plurality of permanent magnets 11 are fixedly arranged on the mounting seat 12 at equal intervals in the X-axis direction. On the base 13 on both sides of the mounting seat 12 in the short direction (Y-axis direction), two rails 31 are fixedly arranged in parallel with each other in the X-axis direction. On the base 13 outside the one rail 31, a scale 41 is fixedly disposed in parallel with the X-axis direction. Position information is optically or magnetically recorded on the scale 41.
 可動部2は、天板24に取り付けられている。天板24は、長手幅が2本のレール31の間隔よりも長くなっていて、その両端側の下面に、2本のレール31とそれぞれ摺接する2個のベアリング32が固定されている。これによって、2個のベアリング32が2本のレール31に支持された状態で2本のレール31上を滑動することで、天板24は、X軸方向へ移動できる。 The movable part 2 is attached to the top plate 24. The top plate 24 has a longer width than the interval between the two rails 31, and two bearings 32 that are in sliding contact with the two rails 31 are fixed to the lower surfaces of the both ends. Accordingly, the top plate 24 can move in the X-axis direction by sliding on the two rails 31 in a state where the two bearings 32 are supported by the two rails 31.
 また、天板24の下面において2個のベアリング32の間に、永久磁石11の配置位置の直上位置に、電機子の鉄心23が固定されている。鉄心23の外周囲には、電機子のコイル21を収容した樹脂製のボビン22が固定されている。なお、コイル21の相数は3であるとしている。三相のコイル21には、電源用リード線51により、駆動装置のインバータ95(図3参照)から三相の交流電流が供給される。これによって、三相のコイル21に電流が流れることにより鉄心23に形成される磁気回路による磁束と永久磁石11が作る磁束との相互作用により、鉄心23と永久磁石11との間に、鉄心23側から永久磁石11側へ向かう磁気吸引力62と、図示しないX軸方向へ向かう推力とが生ずる。磁気吸引力62によって、レール31とベアリング32との間に摩擦力が推力の方向とは逆向きに発生することが解る。 Further, the armature core 23 is fixed between the two bearings 32 on the lower surface of the top plate 24 at a position directly above the position where the permanent magnet 11 is disposed. A resin bobbin 22 containing an armature coil 21 is fixed to the outer periphery of the iron core 23. Note that the number of phases of the coil 21 is three. A three-phase alternating current is supplied to the three-phase coil 21 from the inverter 95 (see FIG. 3) of the driving device through the power supply lead wire 51. As a result, an interaction between the magnetic flux generated by the magnetic circuit formed in the iron core 23 and the magnetic flux generated by the permanent magnet 11 due to the current flowing through the three-phase coil 21 causes the iron core 23 to be interposed between the iron core 23 and the permanent magnet 11. A magnetic attractive force 62 from the side toward the permanent magnet 11 side and a thrust toward the X-axis direction (not shown) are generated. It can be seen that the magnetic attractive force 62 generates a frictional force between the rail 31 and the bearing 32 in a direction opposite to the thrust direction.
 そして、スケール41側における天板24の側端には、位置検出器42がスケール41と対向するように、位置検出器結合部材43により取り付けられている。位置検出器42には、検出した位置信号を駆動装置へ伝達するための位置検出器用リード線52が接続されている。 Further, a position detector coupling member 43 is attached to the side end of the top plate 24 on the scale 41 side so that the position detector 42 faces the scale 41. The position detector 42 is connected to a position detector lead 52 for transmitting the detected position signal to the driving device.
 図3は、図1に示すリニアモータを駆動するリニアモータ駆動装置の構成例を示すブロック図である。図3において、リニアモータ駆動装置90は、加減算回路91,93と、位置制御回路92と、速度制御回路94と、電流制御回路95と、二相/三相変換回路96と、インバータ97と、微分回路98と、電流検出器99とを備えている。電流検出器99は、インバータ97の出力端に取り付けられ、検出した出力電流は、電流制御回路95に入力される。電流制御回路95は、d軸電流制御回路95aと、q軸電流制御回路95bとで構成される。また、位置検出器42が検出したスケール41上の位置情報は、加減算回路91と、微分回路98とに入力される。 FIG. 3 is a block diagram showing a configuration example of a linear motor driving apparatus that drives the linear motor shown in FIG. In FIG. 3, a linear motor driving device 90 includes addition / subtraction circuits 91 and 93, a position control circuit 92, a speed control circuit 94, a current control circuit 95, a two-phase / three-phase conversion circuit 96, an inverter 97, A differentiation circuit 98 and a current detector 99 are provided. The current detector 99 is attached to the output terminal of the inverter 97, and the detected output current is input to the current control circuit 95. The current control circuit 95 includes a d-axis current control circuit 95a and a q-axis current control circuit 95b. Further, the position information on the scale 41 detected by the position detector 42 is input to the addition / subtraction circuit 91 and the differentiation circuit 98.
 加減算回路91は、外部から入力される目標位置の位置指令と位置検出器42が検出したスケール41上の現在位置との偏差を求める。位置制御回路92は、加減算回路91が求めた位置偏差から内部速度指令を算出する比例制御を行い、得られた内部速度指令を出力する。 The addition / subtraction circuit 91 obtains a deviation between the position command of the target position input from the outside and the current position on the scale 41 detected by the position detector 42. The position control circuit 92 performs proportional control for calculating an internal speed command from the position deviation obtained by the addition / subtraction circuit 91, and outputs the obtained internal speed command.
 加減算回路93は、位置制御回路92が求めた内部速度指令と、微分回路98が位置検出器42からの位置情報を微分して求めたモータ速度との偏差を求める。速度制御回路94は、加減算回路93が求めた速度偏差について比例積分制御を行ってd軸電流指令およびq軸電流指令を算出し、算出したd軸電流指令およびq軸電流指令を電流制御回路95へ出力する。 The addition / subtraction circuit 93 obtains a deviation between the internal speed command obtained by the position control circuit 92 and the motor speed obtained by differentiating the position information from the position detector 42 by the differentiation circuit 98. The speed control circuit 94 performs proportional-integral control on the speed deviation obtained by the addition / subtraction circuit 93 to calculate the d-axis current command and the q-axis current command, and uses the calculated d-axis current command and q-axis current command as the current control circuit 95. Output to.
 電流制御回路95では、d軸電流制御回路95aにおいて入力されたd軸電流指令が指示するd軸電流を生成する動作が行われ、q軸電流制御回路95bにおいて入力されたq軸電流指令が指示するq軸電流を生成する動作が行われるが、d軸電流制御回路95aおよびq軸電流制御回路95bは、電流検出器99が検出したモータ供給電流を参考にしてそれぞれの生成電流を制御する。 In the current control circuit 95, an operation for generating a d-axis current instructed by the d-axis current command input in the d-axis current control circuit 95a is performed, and the q-axis current command input in the q-axis current control circuit 95b is instructed. The d-axis current control circuit 95a and the q-axis current control circuit 95b control each generated current with reference to the motor supply current detected by the current detector 99.
 二相/三相変換回路96は、電流制御回路95が出力するd軸およびq軸の電流id,iqとをuvwの三相の交流電流iu,iv,ivへ変換する。インバータ97は、変換された三相の交流電流iu,iv,ivを、それぞれPWM信号に変換・増幅し、三相のコイル21に供給する。これによって、磁気吸引力62およびX軸方向への推力が発生する。 The two-phase / three-phase conversion circuit 96 converts the d-axis and q-axis currents id and iq output from the current control circuit 95 into uvw three-phase alternating currents iu, iv and iv. The inverter 97 converts and amplifies the converted three-phase alternating currents iu, iv, and iv into PWM signals, and supplies the PWM signals to the three-phase coil 21. As a result, a magnetic attractive force 62 and a thrust in the X-axis direction are generated.
 さて、可動部2と固定部1との間に働くマイナスZ軸方向の磁気吸引力62は、Fm[N]と表せば、透磁率μ[H/m]、永久磁石11が作る磁束φm[Wb]、d軸インダクタンスLd[H]、d軸電流id[A]、固定部1と可動部2との磁路断面積S[m]を用いて、式(1)で与えられる。
   Fm=(S/2μ){(φm+Ldid)/S}  …(1)
Now, if the magnetic attraction force 62 in the minus Z-axis direction acting between the movable part 2 and the fixed part 1 is expressed as Fm [N], the magnetic permeability μm [H / m] and the magnetic flux φm [ Wb], d-axis inductance Ld [H], d-axis current id [A], and magnetic path cross-sectional area S [m 2 ] between fixed part 1 and movable part 2 are given by equation (1).
Fm = (S / 2μ) {(φm + Ldid) / S} 2 (1)
 また、X軸方向への推力により可動部2がレール31に案内されて移動する際に、ベアリング32とレール31との間に発生する摩擦力Ff[N]は、推力と逆向きのX方向に働くが、ベアリング32とレール31との間の動摩擦係数k、ベアリング32に働く垂直抗力N[N]を用いて式(2)で与えられる。
   Ff=kN  …(2)
Further, when the movable part 2 is guided by the rail 31 and moves by the thrust in the X-axis direction, the frictional force Ff [N] generated between the bearing 32 and the rail 31 is the X direction opposite to the thrust. However, the dynamic friction coefficient k between the bearing 32 and the rail 31 and the vertical drag N [N] acting on the bearing 32 are given by Equation (2).
Ff = kN (2)
 そして、垂直抗力Nは、可動部2の質量M[kg]、重力加速度g[m/s]、磁気吸引力Fm[N]を用いて式(3)で与えられる。
   N=Mg+Fm  …(3)
Then, the vertical drag N is given by Equation (3) using the mass M [kg] of the movable part 2, the gravitational acceleration g [m / s 2 ], and the magnetic attractive force Fm [N].
N = Mg + Fm (3)
 式(1)~式(3)において、動摩擦係数k、可動部2の質量M、透磁率μ、永久磁石11の磁束φ、およびd軸インダクタンスLdは、既知である。したがって、磁気吸引力Fmによる摩擦力Ffは、d軸電流idの制御によって、制御することができる。 In the equations (1) to (3), the dynamic friction coefficient k, the mass M of the movable part 2, the magnetic permeability μ, the magnetic flux φ of the permanent magnet 11, and the d-axis inductance Ld are known. Therefore, the frictional force Ff by the magnetic attractive force Fm can be controlled by controlling the d-axis current id.
 図4は、図1に示すリニアモータの速度特性を示す波形図である。図4において、目標位置までの移動時間80は、加速時間81と、等速時間82と、減速時間83とに分けられる。今までは、加速時間81と減速時間83とで、ベアリング32とレール31の間に同じ大きさの摩擦力を生じさせていた。 FIG. 4 is a waveform diagram showing the speed characteristics of the linear motor shown in FIG. In FIG. 4, the travel time 80 to the target position is divided into an acceleration time 81, a constant speed time 82, and a deceleration time 83. Until now, the acceleration time 81 and the deceleration time 83 caused the same frictional force between the bearing 32 and the rail 31.
 本実施例では、d軸電流制御回路95aが、電流検出器99が検出したモータ電流を参照信号にして、加速時には摩擦力を減少させるように、減速時には摩擦力を増加させるように、d軸電流を制御する。この制御は、加速時と減速時との両方で行ってもよく、片方で行ってもよい。これによって、加速時間81と減速時間83との両方または一方を今までよりも短くすることができるので、移動時間80を短縮することが可能となる。 In this embodiment, the d-axis current control circuit 95a uses the motor current detected by the current detector 99 as a reference signal so that the friction force is decreased during acceleration and the friction force is increased during deceleration. Control the current. This control may be performed at both acceleration and deceleration, or may be performed at one side. As a result, both or one of the acceleration time 81 and the deceleration time 83 can be made shorter than before, so that the travel time 80 can be shortened.
 このように、本実施によれば、特許文献1に示されるように、推力発生用のコイルおよび磁石とは別に、磁気吸引力による摩擦力を増減させるためのコイルおよび磁石を設けることなく、d軸電流制御を行って磁気吸引力による摩擦力を増減することができるので、リニアモータ構成の簡素化が図れる。 Thus, according to the present embodiment, as shown in Patent Document 1, d is provided without a coil and a magnet for increasing and decreasing the frictional force due to the magnetic attractive force separately from the thrust generating coil and magnet. Since the axial force control can be performed to increase or decrease the frictional force due to the magnetic attractive force, the configuration of the linear motor can be simplified.
 以上のように、本発明にかかるリニアモータ駆動装置は、d軸電流制御を行って磁気吸引力による摩擦力を増減することができるリニアモータ駆動装置として有用である。 As described above, the linear motor driving apparatus according to the present invention is useful as a linear motor driving apparatus capable of increasing and decreasing the frictional force due to the magnetic attractive force by performing d-axis current control.
 1 固定部
 2 可動部
 11 永久磁石
 12 取付座
 13 ベース
 21 コイル
 22 ボビン
 23 鉄心
 24 天板
 31 レール
 32 ベアリング
 41 スケール
 42 位置検出器
 43 位置検出器結合部材
 51 電源用リード線
 52 位置検出器用リード線
 62 磁気吸引力
 80 移動時間
 81 加速時間
 82 等速時間
 83 減速時間
 90 リニアモータ駆動装置
 91,93 加減算回路
 92 位置制御回路
 94 速度制御回路
 95 電流制御回路
 95a d軸電流制御回路
 95b q軸電流制御回路
 96 二相/三相変換回路
 97 インバータ
 98 微分回路
 99 電流検出器
 100 リニアモータ
DESCRIPTION OF SYMBOLS 1 Fixed part 2 Movable part 11 Permanent magnet 12 Mounting seat 13 Base 21 Coil 22 Bobbin 23 Iron core 24 Top plate 31 Rail 32 Bearing 41 Scale 42 Position detector 43 Position detector coupling member 51 Lead wire for power supply 52 Lead wire for position detector 62 Magnetic attractive force 80 Movement time 81 Acceleration time 82 Constant speed time 83 Deceleration time 90 Linear motor drive device 91, 93 Addition / subtraction circuit 92 Position control circuit 94 Speed control circuit 95 Current control circuit 95a d-axis current control circuit 95b q-axis current control Circuit 96 Two-phase / three-phase conversion circuit 97 Inverter 98 Differentiation circuit 99 Current detector 100 Linear motor

Claims (4)

  1.  直線状に配列された複数の永久磁石からなる磁石列および前記磁石列の両側において可動部を支持および案内するために該磁石列と並行に配置される2本のレールを備える固定部と、前記2本のレールにそれぞれ支持され摺接して滑動できる2個のベアリングおよび前記2個のベアリングの間において前記磁石列と近接して対向配置される電機子を備える可動部とで構成されるリニアモータを駆動するリニアモータ駆動装置において、
     前記電機子のコイルに供給するd軸電流およびq軸電流を生成制御する電流制御回路におけるd軸電流制御回路は、
     生成するd軸電流を変化させて前記レールと前記ベアリングとの間に生ずる摩擦力を制御する構成
     を備えることを特徴とするリニアモータ駆動装置。
    A fixed part comprising a magnet array composed of a plurality of permanent magnets arranged in a straight line, and two rails arranged in parallel with the magnet array to support and guide the movable part on both sides of the magnet array; A linear motor comprising two bearings supported by two rails and slidable in sliding contact with each other, and a movable part having an armature disposed in close proximity to the magnet row between the two bearings. In the linear motor drive device that drives
    The d-axis current control circuit in the current control circuit for generating and controlling the d-axis current and the q-axis current supplied to the armature coil is:
    A linear motor drive device comprising: a configuration for controlling a frictional force generated between the rail and the bearing by changing a generated d-axis current.
  2.  前記d軸電流制御回路は、
     前記可動部を目標位置へ移動させる場合の加減速時に、生成するd軸電流を変化させて前記摩擦力を制御する
     ことを特徴とする請求項1に記載のリニアモータ駆動装置。
    The d-axis current control circuit is
    The linear motor driving apparatus according to claim 1, wherein the frictional force is controlled by changing a d-axis current generated during acceleration / deceleration when moving the movable portion to a target position.
  3.  前記d軸電流制御回路は、
     前記可動部を目標位置へ移動させる場合の加速時では、生成するd軸電流を前記摩擦力を減少させる方向へ変化させる
     ことを特徴とする請求項2に記載のリニアモータ駆動装置。
    The d-axis current control circuit is
    The linear motor drive device according to claim 2, wherein the d-axis current to be generated is changed in a direction in which the frictional force is reduced during acceleration when moving the movable portion to a target position.
  4.  前記d軸電流制御回路は、
     前記可動部を目標位置へ移動させる場合の減速時では、生成するd軸電流を前記摩擦力を増加させる方向へ変化させる
     ことを特徴とする請求項2に記載のリニアモータ駆動装置。
    The d-axis current control circuit is
    The linear motor drive device according to claim 2, wherein the d-axis current to be generated is changed in a direction in which the frictional force is increased during deceleration when the movable unit is moved to a target position.
PCT/JP2011/057222 2011-03-24 2011-03-24 Linear motor drive device WO2012127687A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2011/057222 WO2012127687A1 (en) 2011-03-24 2011-03-24 Linear motor drive device
CN201180069423.3A CN103430445B (en) 2011-03-24 2011-03-24 Linear motor drive device
JP2013505753A JP5550782B2 (en) 2011-03-24 2011-03-24 Linear motor drive device
KR1020137024948A KR101524399B1 (en) 2011-03-24 2011-03-24 Linear motor drive device
TW100120510A TWI470904B (en) 2011-03-24 2011-06-13 Linear motor driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/057222 WO2012127687A1 (en) 2011-03-24 2011-03-24 Linear motor drive device

Publications (1)

Publication Number Publication Date
WO2012127687A1 true WO2012127687A1 (en) 2012-09-27

Family

ID=46878879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057222 WO2012127687A1 (en) 2011-03-24 2011-03-24 Linear motor drive device

Country Status (5)

Country Link
JP (1) JP5550782B2 (en)
KR (1) KR101524399B1 (en)
CN (1) CN103430445B (en)
TW (1) TWI470904B (en)
WO (1) WO2012127687A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103671512A (en) * 2013-12-26 2014-03-26 苏州市启扬商贸有限公司 Linear guide rail
PT106910A (en) * 2013-04-26 2014-10-27 Inst Superior Técnico LINEAR GUIDANCE MECHANISM WITH SIDE ADJUSTMENT FOR LINEAR FERRY CORE ENGINES
EP4300809A1 (en) * 2022-06-30 2024-01-03 Rockwell Automation Technologies, Inc. System and method for electromagnetic pinning and hybrid control of a linear drive system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021175365A (en) * 2020-04-17 2021-11-01 国立大学法人電気通信大学 Motor control method and control device
CN117200526A (en) * 2022-12-21 2023-12-08 阿帕斯数控机床制造(上海)有限公司 Linear motor for numerical control machine tool and electric equipment thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11122902A (en) * 1997-10-17 1999-04-30 Mitsubishi Electric Corp Linear motor drive gear
JP2009247036A (en) * 2008-03-28 2009-10-22 Thk Co Ltd Device and method for controlling electric motor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3931487B2 (en) * 1999-06-25 2007-06-13 松下電工株式会社 Drive control method for linear vibration motor
CN201360217Y (en) * 2008-11-19 2009-12-09 北京华士德科技发展有限公司 Three-phase permanent magnet synchronous linear motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11122902A (en) * 1997-10-17 1999-04-30 Mitsubishi Electric Corp Linear motor drive gear
JP2009247036A (en) * 2008-03-28 2009-10-22 Thk Co Ltd Device and method for controlling electric motor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT106910A (en) * 2013-04-26 2014-10-27 Inst Superior Técnico LINEAR GUIDANCE MECHANISM WITH SIDE ADJUSTMENT FOR LINEAR FERRY CORE ENGINES
PT106910B (en) * 2013-04-26 2015-02-02 Inst Superior Técnico LINEAR GUIDANCE MECHANISM WITH SIDE ADJUSTMENT FOR LINEAR FERRY CORE ENGINES
CN103671512A (en) * 2013-12-26 2014-03-26 苏州市启扬商贸有限公司 Linear guide rail
CN103671512B (en) * 2013-12-26 2016-04-06 苏州市启扬商贸有限公司 A kind of linear rail
EP4300809A1 (en) * 2022-06-30 2024-01-03 Rockwell Automation Technologies, Inc. System and method for electromagnetic pinning and hybrid control of a linear drive system

Also Published As

Publication number Publication date
TWI470904B (en) 2015-01-21
TW201240285A (en) 2012-10-01
KR20130129444A (en) 2013-11-28
JPWO2012127687A1 (en) 2014-07-24
JP5550782B2 (en) 2014-07-16
KR101524399B1 (en) 2015-05-29
CN103430445B (en) 2016-04-13
CN103430445A (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP6970194B2 (en) Power electronics converters for controlling linear electromechanical machines and linear electromechanical machines
US6734583B2 (en) Slider unit with built-in moving-coil linear motor
JP5550782B2 (en) Linear motor drive device
EP2131477A2 (en) Linear stepping motor
JP4811798B2 (en) Linear motor device
WO2005091478A1 (en) Moving magnet-type linear slider
JP2010130740A (en) Movable magnet-type linear motor
JP2008193845A (en) Linear motor
CN101850523B (en) Magnetic suspension feeding platform of liner synchronous motor of digital control machine tool
JP2008545361A (en) Synchronous linear motor
JP2007097372A (en) Linear driving device
CN112335161B (en) Linear motor holder, linear motor, and linear motor system
US6671637B2 (en) Thrust ripple measuring apparatus and method in linear motor
JP2009072030A (en) Linear motor and method of attaching linear motor
JP2015104200A (en) Linear motor
CN101972933A (en) Magnetic suspension motion platform of precision heavy machine tool driven by double linear synchronous motors
JP5431295B2 (en) XY stage
KR100712450B1 (en) Method and system for controlling the linear motor
JP2009136118A (en) Synchronous linear motor
JP5427037B2 (en) Linear motor system
JP2011214624A (en) Linear actuator
JPH11196561A (en) Linear motor with adjustable braking characteristics
JP2006034013A (en) Linear motor for machine tool
Appunn et al. Operation of a vertically levitated ropeless elevator: Interaction of linear drive and magnetic guiding
JP2006034014A (en) Linear motor for machine tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861527

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013505753

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137024948

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11861527

Country of ref document: EP

Kind code of ref document: A1