WO2012127658A1 - コアの巻線方法及びステータ - Google Patents

コアの巻線方法及びステータ Download PDF

Info

Publication number
WO2012127658A1
WO2012127658A1 PCT/JP2011/057008 JP2011057008W WO2012127658A1 WO 2012127658 A1 WO2012127658 A1 WO 2012127658A1 JP 2011057008 W JP2011057008 W JP 2011057008W WO 2012127658 A1 WO2012127658 A1 WO 2012127658A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
core
insulator
conductor
yoke
Prior art date
Application number
PCT/JP2011/057008
Other languages
English (en)
French (fr)
Inventor
大輔 司城
崇裕 田中
秋田 裕之
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2011/057008 priority Critical patent/WO2012127658A1/ja
Priority to US14/006,449 priority patent/US9444300B2/en
Priority to JP2013505727A priority patent/JPWO2012127658A1/ja
Priority to DE112011105077.1T priority patent/DE112011105077T5/de
Priority to KR1020137024051A priority patent/KR20130124564A/ko
Priority to CN2011800694820A priority patent/CN103444057A/zh
Priority to TW100128128A priority patent/TWI491146B/zh
Publication of WO2012127658A1 publication Critical patent/WO2012127658A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/08Forming windings by laying conductors into or around core parts
    • H02K15/095Forming windings by laying conductors into or around core parts by laying conductors around salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • H02K15/0435Wound windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0056Manufacturing winding connections
    • H02K15/0068Connecting winding sections; Forming leads; Connecting leads to terminals
    • H02K15/0081Connecting winding sections; Forming leads; Connecting leads to terminals for form-wound windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/12Machines characterised by the bobbins for supporting the windings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine

Definitions

  • the present invention relates to a winding method of a core in which a winding conductor is wound around a core having an arch-shaped yoke portion and a tooth portion projecting inward from the central portion of the yoke portion, and the core
  • the present invention relates to a stator manufactured by a winding method.
  • the core yoke portion is formed into an arch shape, and the winding conductor is wound around an arcuate region surrounded by an arc of the inner peripheral portion of the yoke portion and a string connecting both ends of the arc.
  • the area for accommodating the winding conductor is enlarged.
  • the nozzle interferes with the yoke portion when winding on the arcuate region surrounded by the arc of the inner circumference of the arched yoke portion and its string, so the nozzle tip is brought closer to the teeth portion.
  • the winding cannot be arranged with high positional accuracy.
  • JP-A-10-136620 (paragraph [0024], FIG. 1)
  • the operating portion of the nozzle of the winding device has three axes (x axis, y axis, z axis) perpendicular to each other. ) And a mechanism for moving the nozzle in the ⁇ -axis direction in order to tilt the nozzle, and there is a problem that the equipment is enlarged and the equipment cost is increased.
  • the required operating range of the nozzle becomes large, it is difficult to apply to a connected core or an integral core in which the restriction of the operating range of the nozzle is larger than that of the split core.
  • the present invention has been made to solve the above problems, and the nozzle moves in the x-axis, y-axis, and z-axis directions orthogonal to each other by devising the orbit of the nozzle and the shape of the insulator.
  • the purpose is to increase the number of turns of the winding conductor and the space factor of the winding conductor, which can be wound around a core having an arched yoke portion using a general-purpose winding machine.
  • a core winding method is connected to an arcuate yoke portion, a tooth portion projecting inward from the center portion of the yoke portion, and a tip of the tooth portion.
  • a core winding method in which a nozzle for supplying a winding conductor is wound around a core having a tooth tip, and the core is wound.
  • the nozzle When winding to the arcuate region surrounded by the arc of the inner circumference of the yoke part and its string, When winding on the end face of the core, the nozzle moves so as to draw a convex locus from the tooth tip side toward the yoke side with reference to the string of the arcuate region, and the winding conductor Winding the wire, When winding on the side surface of the core, the nozzle moves back along the side surface of the core after returning from the yoke portion side to the tooth tip side with reference to the string in the arcuate region. And a step of winding a conductor.
  • the stator according to the second aspect of the present invention is the one in which a plurality of cores each having an insulator attached and wound with a winding conductor are assembled into an annular shape
  • the core has an arch-shaped yoke portion, a teeth portion protruding from the central portion of the yoke portion toward the inner circumferential direction, and a teeth tip portion connected to the tip of the teeth portion
  • the insulator is located on at least the end face of the tooth part and on the end face of the yoke part, and both end faces in the circumferential direction are located on the end face side of the core from the end face of the reel part.
  • a reel frame tip portion positioned on at least an end surface of the tooth tip portion, The winding conductor is wound around at least the arcuate region of the core and the insulator frame.
  • a stator according to a third aspect of the present invention is a structure in which a plurality of cores each having an insulator attached and a winding conductor wound thereon are assembled into an annular shape,
  • the core has an arch-shaped yoke portion, a teeth portion protruding from the central portion of the yoke portion toward the inner circumferential direction, and a teeth tip portion connected to the tip of the teeth portion,
  • the insulator is located on at least the end surface of the yoke portion, and on the at least end surface of the teeth portion, and the winding conductor is disposed in an arcuate region surrounded by an arc on the inner peripheral side of the base portion and its string.
  • a winding frame portion provided with at least one groove for determining the position of the winding frame, and a winding frame tip portion located on at least the end face of the tooth tip portion,
  • the winding conductor is wound around at least the arcuate region of the core and the insulator frame.
  • the winding conductor is aligned and wound in the arcuate region of the core having the arched yoke portion using the general-purpose winding machine in which the nozzle moves in the x-axis, y-axis, and z-axis directions orthogonal to each other. can do. Therefore, the number of turns of the winding conductor and the space factor of the winding conductor can be increased, and the equipment cost for the winding can be suppressed.
  • Embodiment 1 of this invention It is a figure for demonstrating the winding method of the core by Embodiment 1 of this invention. It is a figure which shows the stator manufactured by embodiment of this invention. It is a figure for demonstrating the winding method of the core by Embodiment 2 of this invention. It is a figure for demonstrating the winding method of the core by Embodiment 2 of this invention. It is a figure for demonstrating the winding method of the core by Embodiment 2 of this invention. It is a figure for demonstrating the winding method of the core by Embodiment 2 of this invention. It is a figure for demonstrating the winding method of the core by Embodiment 2 of this invention.
  • FIG. FIGS. 1A and 1B are a front view and a perspective view showing shapes of a split core and an insulator according to an embodiment of the present invention.
  • 2 to 8 are views for explaining a core winding method according to the first embodiment of the present invention.
  • the split core 1 is formed by punching a silicon steel plate or the like into the same shape using a press die and then stacking a plurality of punched steel plates. As a fixing means between the laminated steel plates, welding, adhesion, caulking, or the like is used.
  • the split core 1 includes an arch-shaped yoke portion 12 having a convex shape in the outer peripheral direction, and teeth that project from the central portion of the yoke portion 12 toward the inner peripheral direction and on which the winding conductor 4 is wound. And a tooth tip 13 connected to the tip of the tooth 11.
  • the stator is comprised by combining each yoke part 12 of the some split-type core 1 cyclically
  • a pair of insulators 2 having a shape covering at least both end faces of the split core 1 are attached.
  • the insulator 2 when the teeth portion 11 and the yoke portion 12 of the split core 1 are viewed from the front is substantially the same shape as when the split core 1 is viewed from the front.
  • the insulator 2 is positioned on at least the end surface of the tooth portion 11 of the split core 1 and is positioned on at least the end surface of the yoke portion 12 of the split core 1 and the winding frame portion 21 around which the winding conductor 4 is wound.
  • a winding frame distal end portion 23 positioned on at least the end face of the tooth distal end portion 13 of the split core 1.
  • the winding frame portion 21 of the insulator 2 is wound around an arcuate region 14 surrounded by a string connecting the arc on the inner peripheral side of the yoke portion 12 and both ends of the arc.
  • a winding groove 24 corresponding to the winding diameter of the conductor 4 is provided.
  • the base portion 22 or the winding frame front end portion 23 of the insulator 2 has a base side introduction groove 25 or a winding frame front end side introduction groove 26 in order to introduce the winding conductor 4 at the start of winding.
  • the split core 1 is provided on both end surfaces in the circumferential direction of the base portion 22 of the insulator 2 from the end surface of the winding frame portion 21.
  • a recess 27 is provided so as to be positioned on the end face side of the. 1A shows a locus 31 of the nozzle 3 when the winding conductor 4 is wound around the end face of the split core 1 in the winding process described below.
  • FIGS. 2 to 8 the figure (a) shown on the left side is a front view of the split core with the insulator attached as viewed from the same direction as that shown in FIG. 1 (a), and the figure (b) shown on the right side is a diagram ( It is a side view of a). 2 to 8, in order to show the moving direction of the nozzle 3 that supplies the winding conductor 4, the x-axis, y-axis, and z-axis directions that are three axes orthogonal to each other with the center of the split core 1 as a base point Are shown in the figure.
  • the x-axis direction indicates the direction from the outer peripheral side to the inner peripheral side of the split core 1
  • the y-axis direction indicates the width direction (circumferential direction) of the split core 1
  • the z-axis direction indicates the axial length direction of the split core 1.
  • the end surface on the ⁇ z-axis direction side of the split core 1 is defined as a first end surface
  • the end surface on the + z-axis direction side is defined as a second end surface.
  • the nozzle 3 is positioned on the first end surface which is the end surface of the split core 1 on the ⁇ z-axis direction side. Then, after passing the end portion of the winding conductor 4 supplied from the nozzle 3 through the base side introduction groove 25 of the insulator 2, the end portion of the winding conductor 4 is gripped by a chuck device (not shown). Then, the nozzle 3 is moved to a position where the nozzle 3 does not interfere with the divided core 1 and the insulator 2 when moving the nozzle 3 along the side surface of the divided core 1 in the + z-axis direction.
  • the nozzle 3 is moved substantially linearly in the + z-axis direction along the side surface of the split core 1, and the supply of the winding conductor 4 is started.
  • the nozzle 3 moves to a position away from the end face of the insulator 2 on the second end face side of the split core 1 by a predetermined distance in the + z-axis direction. 2 and 3, the nozzle 3 is located on the tooth tip side, that is, on the upper side in the figure from the position of the chord of the arcuate region 14 so as not to interfere with the split core 1 and the insulator 2.
  • the nozzle 3 is moved so that the winding conductor 4 is disposed in the winding groove 24 closest to the base portion 22 of the insulator 2. At this time, the nozzle 3 moves from the position of the string in the arcuate region 14 toward the position on the yoke portion side, that is, the lower side in the figure.
  • the winding conductor 4 is inserted into the winding groove 24 closest to the base portion 22 on the side surface of the winding frame portion 21 of the insulator 2.
  • the nozzle 3 is moved in the ⁇ z-axis direction until the winding conductor 4 is inserted into the winding groove 24 of the winding frame portion 21 of the insulator 2.
  • the insulator 2 is provided with a recess 27 for preventing nozzle interference.
  • the end surface of the recess 27 is closer to the core side than the end surface of the winding frame portion 21 in the + z-axis direction.
  • the nozzle 3 moves along the side surface of the split-type core 1 to the insulator 2 on the ⁇ z-axis direction side, the nozzle 3 is positioned so as not to interfere with the split-type core 1 and the insulator 2. Move. That is, the nozzle 3 is moved to a position closer to the tip of the teeth than the string of the arcuate region 14. At this time, the winding already on the winding frame portion 21 of the insulator 2 is inserted into the winding groove 24 of the winding frame portion 21 and remains held in place.
  • the locus of the nozzle 3 when the teeth portion 11, the yoke portion 12, and the teeth tip portion 13 are viewed from the front is from the teeth tip portion side with respect to the position of the string in the arcuate region 14. It becomes a convex locus toward the yoke part side.
  • the nozzle 3 is moved linearly along the side surface of the split core 1 to the first end face side of the insulator 2 on the ⁇ z axis direction side.
  • the winding conductor 4 is wound on the insulator 2 on the ⁇ z-axis direction side in the same manner as described above. Then, the winding conductor 4 is aligned and wound toward the winding frame tip 23 side of the insulator 2 while repeating the above steps.
  • FIGS. 9A and 9B are a front view and a perspective view showing a stator in which the split cores wound by the winding method are combined in an annular shape.
  • segmentation which has the arch-shaped yoke part 12, the teeth part 11 which protrudes toward the inner peripheral direction from the center part of the yoke part 12, and the teeth front-end
  • the winding frame portion 21 located on the end surface of the tooth portion 11 and the concave portions 27 on both end surfaces in the circumferential direction located on the end surface of the yoke portion 12 are end surfaces of the core from the end surface of the winding frame portion 21
  • An insulator 2 having a base 22 positioned on the side and a winding frame tip 23 positioned on the end surface of the tooth tip 13 is mounted, and the winding conductor 21 is aligned with the arcuate region 14 of the insulator.
  • stator 100 is comprised by combining the some division
  • the general-purpose winding machine in which the nozzles move in the x-axis, y-axis, and z-axis directions orthogonal to each other is used to wind around the arcuate region of the core having the arched yoke portion.
  • Line conductors can be aligned and wound. Therefore, the number of turns of the winding conductor and the space factor of the winding conductor can be increased, and the equipment cost for the winding can be suppressed.
  • the required operating range of the nozzle is small, winding can be performed on a connected core or an integral core while avoiding interference between the nozzle and the core, and the versatility is high. Further, when continuous winding is performed, the length of the connecting wire can be minimized, so that the number of assembling steps can be suppressed.
  • FIG. 10 to 13 are views for explaining a core winding method according to the second embodiment of the present invention.
  • the winding is started from the base side of the insulator.
  • the case where the winding is started from the front end side of the winding frame of the insulator will be described.
  • the description is abbreviate
  • the end portion of the winding conductor 4 supplied from the nozzle 3 through the winding frame tip side introduction groove 26 of the insulator 2 is gripped by a chuck device (not shown). Then, by winding the nozzle 3 along the end face and side face of the split core 1, the winding conductor 4 is wound around the winding frame portion 21 of the insulator 2 from the winding tip end side toward the base side.
  • the winding groove 24 is not provided in the winding frame portion 21 of the insulator 2 as in the first embodiment, but the winding step 4A is formed by the winding conductor 4 that is already arranged. Therefore, it is possible to perform winding while hooking the winding conductor 4 on the winding step 4A without providing a winding groove.
  • winding can be performed using an insulator having no winding groove.
  • the core winding method of the present invention can be applied not only to split cores but also to connected cores and integral cores. Furthermore, the stator of the present invention can provide a stator having a high number of turns of the winding conductor and a high space factor of the winding conductor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

アーチ状のヨーク部(12)と、ティース部(11)と、ティース先端部(13)を有するコア(1)に、巻線導体(4)を供給するノズル(3)を周回させて巻線する方法であって、ヨーク部(12)の内周部の円弧とその弦で囲まれた弓形領域(14)へ巻線する場合に、コア(1)の端面に巻線するときは、ノズル(3)が弓形領域(14)の弦を基準としてティース先端部側からヨーク部側に向かって凸状の軌跡を描くように移動して巻線する工程と、コア(1)の側面に巻線するときは、ノズル(3)が弓形領域(14)の弦を基準としてヨーク部側からティース先端部側に復帰した後、コア(1)の側面に沿って移動して巻線する工程とを含むものである。

Description

コアの巻線方法及びステータ
 この発明は、アーチ状のヨーク部と、上記ヨーク部の中央部から内周方向に向けて突設するティース部を有するコアに巻線導体を巻線するコアの巻線方法、及び上記コアの巻線方法で製造されたステータに関するものである。
 巻線導体のターン数を増すために、コアのヨーク部をアーチ状にして、このヨーク部の内周部の円弧と当該円弧両端を結ぶ弦とで囲まれた弓形領域に巻線導体を巻線し、巻線導体を収納する領域を拡大する場合がある。
 通常のコアの巻線方法では、アーチ状のヨーク部の内周部の円弧とその弦に囲まれる弓形領域に巻線する際、ノズルがヨーク部と干渉するため、ノズル先端をティース部に近づけることができず、位置精度良く巻線を配置することができない。そのため、コアに巻線導体を高い占積率で巻線するのは困難である。
 そこで、上記弓形領域へ巻線導体を整列配置する方法の一つとして、ノズルを逐次傾けながら巻線する方法が開示されている(例えば、特許文献1参照)。
 上記特許文献1の分割コアの巻線方法は、分割コアの鉄心部の側面(分割コアを構成する鋼板の積層面または鋼板の積層方向に沿う面)に対して巻線導体を巻き付ける際に、ノズルと分割コアと干渉しないように継鉄部、鉄心部及び磁極片部の中心を通る中心面に対するノズルの角度θを定める。そして継鉄部と磁極片部との間に形成される空間を埋めるように鉄心部に巻線導体を巻き付けて巻線部を形成する。
特開平10-136620号公報(段落[0024]、図1)
 上記従来の分割コアの巻線方法は、複数の形状のコアに対応させようとすると、巻線装置のノズルの動作部は、ノズルを相互に直交する3軸(x軸、y軸、z軸)に移動させるだけではなくノズルを傾けるためにθ軸方向に移動させる機構が必要となり、設備の大型化や設備費が増大する問題がある。
 また、ノズルの必要な動作範囲が大きくなるため、ノズルの動作範囲の制約が分割型コアに比べて多い連結型コアや一体型コアに対して適用するのが困難である。
 さらに、巻線導体を切断すること無く複数のティース部に連続して巻線する場合は、ノズル動作範囲を確保するために、複数の分割型コアをある程度離間して巻線装置にセットする必要がある。そのため、隣接する分割型コア間を渡る巻線導体が必要以上に長くなり、分割型コアを組み合わせてステータを組み立てる際に、この渡り巻線導体を位置固定する工数が追加され、製造工程及び製造コストが増大する問題がある。
 この発明は、上記のような問題点を解決するためになされたものであり、ノズルの周回軌道やインシュレータの形状の工夫により、ノズルが互いに直交するx軸、y軸、z軸方向に移動する汎用巻線機を用いて、アーチ状のヨーク部を有するコアへ巻線することができ、巻線導体のターン数及び巻線導体の占積率を高めることを目的とする。
 第1の発明に係るコアの巻線方法は、アーチ状のヨーク部と、上記ヨーク部の中央部から内周方向に向けて突設するティース部と、上記ティース部の先端に接続されているティース先端部を有するコアに、巻線導体を供給するノズルを周回させて巻線するコアの巻線方法であって、
上記ヨーク部の内周部の円弧とその弦で囲まれた弓形領域へ巻線する場合に、
上記コアの端面に巻線するときは、上記ノズルが上記弓形領域の弦を基準として上記ティース先端部側から上記ヨーク部側に向かって凸状の軌跡を描くように移動して上記巻線導体を巻線する工程と、
上記コアの側面に巻線するときは、上記ノズルが上記弓形領域の弦を基準として上記ヨーク部側から上記ティース先端部側に復帰した後、上記コアの側面に沿って移動して上記巻線導体を巻線する工程とを含むものである。
 第2の発明に係るステータは、インシュレータを装着して巻線導体を巻線したコアを複数個環状に組み立てたものにおいて、
上記コアは、アーチ状のヨーク部と、上記ヨーク部の中央部から内周方向に向けて突設するティース部と、上記ティース部の先端に接続されているティース先端部を有し、
上記インシュレータは、上記ティース部の少なくとも端面上に位置する巻枠部と、上記ヨーク部の少なくとも端面上に位置し、その周方向両端面が上記巻枠部の端面より上記コアの端面側に位置する基部と、上記ティース先端部の少なくとも端面上に位置する巻枠先端部を有し、
上記巻線導体は、上記コア及び上記インシュレータの巻枠部の少なくとも上記弓形領域に巻線されている。
 第3の発明に係るステータは、インシュレータを装着して巻線導体を巻線したコアを複数個環状に組み立てたものにおいて、
上記コアは、アーチ状のヨーク部と、上記ヨーク部の中央部から内周方向に向けて突設するティース部と、上記ティース部の先端に接続されているティース先端部を有し、
上記インシュレータは、上記ヨーク部の少なくとも端面上に位置する基部と、上記ティース部の少なくとも端面上に位置し、上記基部の内周側の円弧とその弦で囲まれた弓形領域に上記巻線導体の位置を定めるための溝を少なくとも1個設けた巻枠部と、上記ティース先端部の少なくとも端面上に位置する巻枠先端部を有し、
上記巻線導体は、上記コア及び上記インシュレータの巻枠部の少なくとも上記弓形領域に巻線されている。
 この発明によれば、ノズルが互いに直交するx軸、y軸、z軸方向に移動する汎用巻線機を用いて、アーチ状のヨーク部を有するコアの弓形領域に巻線導体を整列巻線することができる。そのため、巻線導体のターン数と巻線導体の占積率を高めることができ、また、巻線のための設備コストを抑制することが可能となる。
この発明の実施の形態による分割型コアとインシュレータの形状を示す正面図および斜視図である。 この発明の実施の形態1によるコアの巻線方法を説明するための図である。 この発明の実施の形態1によるコアの巻線方法を説明するための図である。 この発明の実施の形態1によるコアの巻線方法を説明するための図である。 この発明の実施の形態1によるコアの巻線方法を説明するための図である。 この発明の実施の形態1によるコアの巻線方法を説明するための図である。 この発明の実施の形態1によるコアの巻線方法を説明するための図である。 この発明の実施の形態1によるコアの巻線方法を説明するための図である。 この発明の実施の形態により製造されたステータを示す図である。 この発明の実施の形態2によるコアの巻線方法を説明するための図である。 この発明の実施の形態2によるコアの巻線方法を説明するための図である。 この発明の実施の形態2によるコアの巻線方法を説明するための図である。 この発明の実施の形態2によるコアの巻線方法を説明するための図である。
実施の形態1.
 図1(a)及び(b)はこの発明の実施の形態による分割型コアとインシュレータの形状を示す正面図および斜視図である。図2~図8はこの発明の実施の形態1によるコアの巻線方法を説明するための図である。
 分割型コア1は、プレス金型を用いて珪素鋼板等を同形状に打抜いた後、打ち抜いた鋼板を複数枚積層して構成したものである。積層した鋼板間の固定手段としては、溶接や、接着、カシメ加工などを用いる。この分割型コア1は、外周方向に凸形状となるアーチ状のヨーク部12と、上記ヨーク部12の中央部から内周方向に向けて突設し、巻線導体4が巻回されるティース部11と、上記ティース部11の先端に接続されているティース先端部13を有する。そして、複数個の分割型コア1のそれぞれのヨーク部12を環状に組み合わせることによりステータを構成する。
 分割型コア1と巻線導体4の電気的絶縁を確保するために、分割型コア1の少なくとも両端面を覆う形状のインシュレータ2が一対取り付けられる。図1(a)に示すように、分割型コア1のティース部11やヨーク部12を正面から見たときのインシュレータ2は、分割型コア1を正面から見たときとほぼ同形状である。そして、インシュレータ2は、分割型コア1のティース部11の少なくとも端面上に位置し巻線導体4が巻回される巻枠部21と、分割型コア1のヨーク部12の少なくとも端面上に位置する基部22と、分割型コア1のティース先端部13の少なくとも端面上に位置する巻枠先端部23を有する。
 インシュレータ2の巻枠部21は、巻線導体4を定位置に保持するために、ヨーク部12の内周側の円弧と当該円弧の両端を結ぶ弦で囲まれた弓形領域14に、巻線導体4の巻線径に相当する巻線溝24を有している。また、インシュレータ2の基部22又は巻枠先端部23は、巻き始めの巻線導体4を導入するために、基部側導入溝25又は巻枠先端部側導入溝26を有している。さらに、インシュレータ2の基部22の周方向端部によりノズル3の移動が干渉されるのを防ぐために、インシュレータ2の基部22の周方向両端面には、巻枠部21の端面より分割型コア1の端面側に位置するように設けられた凹部27を有する。
 また、図1(a)において、下記で説明する巻線過程において分割型コア1の端面に巻線導体4を巻回する場合のノズル3の軌跡31を図示している。
 次に、本実施の形態によるコアの巻線方法を、図2~図8に基づいて説明する。図2~図8において、左側に示した図(a)はインシュレータが取り付けられた分割型コアを図1(a)と同方向から見た正面図、右側に示した図(b)は図(a)の側面図である。
 図2~図8において、巻線導体4を供給するノズル3の移動方向を示すために、分割型コア1の中心を基点として相互に直交する3軸であるx軸、y軸、z軸方向をそれぞれ図中に示す。x軸方向は分割型コア1の外周側から内周側に向かう方向、y軸方向は分割型コア1の幅方向(周方向)、z軸方向は分割型コア1の軸長方向を示す。そして、分割型コア1の-z軸方向側の端面を第1端面、+z軸方向側の端面を第2端面とする。
 まず、図2に示すように、ノズル3を分割型コア1の-z軸方向側の端面である第1端面に位置する。そして、ノズル3から供給される巻線導体4の端部をインシュレータ2の基部側導入溝25に通した後、当該巻線導体4の端部を図示しないチャック装置にて把持する。そして、ノズル3を分割型コア1の側面に沿って+z軸方向へ移動する際にノズル3が分割型コア1およびインシュレータ2と干渉しないような位置に、ノズル3を移動させる。
 次に、図3に示すように、ノズル3を分割型コア1の側面に沿って+z軸方向へほぼ直線状に移動させて巻線導体4の供給を開始する。ノズル3は、分割型コア1の第2端面側のインシュレータ2の端面より+z軸方向に所定の距離だけ離れた位置まで移動する。なお、図2及び図3のとき、ノズル3は、分割型コア1及びインシュレータ2と干渉しないように、上記の弓形領域14の弦の位置からティース先端部側つまり図示上方側の位置にある。
 次に、図4に示すように、インシュレータ2の基部22に最も近い巻線溝24に巻線導体4が配置されるように、ノズル3を移動させる。このとき、ノズル3は弓形領域14の弦の位置からヨーク部側つまり図示下方側の位置に向かって移動する。
 次に、図5に示すように、ノズル3を-y軸方向へ移動させることで、インシュレータ2の巻枠部21側面の基部22に最も近い巻線溝24へ巻線導体4を挿入する。
 次に、図6に示すように、インシュレータ2の巻枠部21の巻線溝24へ巻線導体4を挿入するまで、ノズル3を-z軸方向へ移動させる。このとき、ノズル3がインシュレータ2と干渉するのを回避するために、インシュレータ2にはノズル干渉防止のための凹部27が設けられている。この凹部27の端面は、+z軸方向において巻枠部21の端面よりコア側に近い位置となる。
 次に、図7に示すように、ノズル3が分割型コア1の側面に沿って-z軸方向側のインシュレータ2まで移動する際に分割型コア1およびインシュレータ2と干渉しない位置に、ノズル3を移動させる。すなわち、ノズル3を弓形領域14の弦よりティース先端部側の位置に移動させる。この際、すでにインシュレータ2の巻枠部21上にある巻線は、巻枠部21の巻線溝24に挿入されており、定位置に保持されたままである。
 上記の図3~図7において、ティース部11、ヨーク部12およびティース先端部13を正面から見たときのノズル3の軌跡が、弓形領域14の弦の位置を基準として上記ティース先端部側から上記ヨーク部側に向かう凸状の軌跡となる。
 次に、図8に示すように、ノズル3を分割型コア1の側面に沿って-z軸方向側のインシュレータ2の第1端面側まで直線状に移動させる。
 -z軸方向側にあるインシュレータ2に対しても、前述同様の方法で巻線導体4を巻線する。そして、以上の工程を繰り返しながら、巻線導体4をインシュレータ2の巻枠先端部23側へ向けて整列巻線する。
 なお、インシュレータ2の弓形領域14以外の巻枠部21へ巻線する際は、上述の図4~図7のノズル3の凸形状の軌跡を省略し、ノズル3を図3の位置から-y軸方向へ直線移動させて図7の位置に移動させればよい。
 また、インシュレータ2の巻枠先端部23付近まで巻線して1層目の巻線が完了した後、2層目の巻線がインシュレータ2の基部22側へ向けて開始される。そして、弓形領域14へ再び巻線する際は、1層目の巻線がインシュレータの巻線溝同様の役目をするため、上述の図2~図8の巻線方法によって、1層目同様に整列巻線を行うことが可能となる。
 図9(a)及び(b)は上記の巻線方法により巻線された分割型コアを環状に組み合わせたステータを示す正面図および斜視図である。
 図9において、アーチ状のヨーク部12と、ヨーク部12の中央部から内周方向に向けて突設するティース部11と、ティース部11の先端に接続されているティース先端部13を有する分割型コア1に対して、ティース部11の端面上に位置する巻枠部21と、ヨーク部12の端面上に位置しその周方向両端面の凹部27が巻枠部21の端面よりコアの端面側に位置する基部22と、ティース先端部13の端面上に位置する巻枠先端部23を有するインシュレータ2を装着し、巻線導体4がインシュレータの弓形領域14を含めた巻枠部21の整列巻線されている。そして、このように整列巻線された複数の分割型コア1を、それぞれのヨーク部周方向端面を当接して環状に組み合わせることによりステータ100を構成する。
 以上のように本実施の形態によれば、ノズルが互いに直交するx軸、y軸、z軸方向に移動する汎用巻線機を用いて、アーチ状のヨーク部を有するコアの弓形領域に巻線導体を整列巻線することができる。そのため、巻線導体のターン数と巻線導体の占積率を高めることができ、また、巻線のための設備コストを抑制することが可能となる。
 また、ノズルの必要動作範囲が小さいことから、連結型のコアや一体型のコアに対しても、ノズルとコアとの干渉を避けて巻線することができ、汎用性が高い。
 さらに、連続巻線を行う場合、渡り線の長さを最小にできるため、組立工数を抑制することができる。
実施の形態2.
 図10~図13はこの発明の実施の形態2によるコアの巻線方法を説明するための図である。実施の形態1では、インシュレータの基部側より巻線を開始したが、本実施の形態では、インシュレータの巻枠先端部側から巻線を開始する場合について説明する。なお、分割鉄心及びインシュレータの構造は実施の形態1と同様であるのでその説明は省略する。
 まず、ノズル3から供給される巻線導体4の端部をインシュレータ2の巻枠先端部側導入溝26に通した後、当該巻線導体4の端部を図示しないチャック装置にて把持する。
 そして、ノズル3を分割型コア1の端面及び側面に沿って周回することによって、インシュレータ2の巻枠部21に巻線導体4が巻枠先端部側から基部側に向けて巻線される。
 次に、ヨーク部12の内周側の円弧と当該円弧の両端を結ぶ弦で囲まれた弓形領域14に巻線を施す場合は、図10~図13に示すように、ティース部11、ヨーク部12およびティース先端部13を正面から見たときのノズル3の軌跡が、弓形領域14の弦を基準にしてティース先端部側からヨーク部側に向かう凸状の軌跡となる。上記の工程は実施の形態1の図4~図7に示す工程と同様である。
 本実施の形態では、実施の形態1のようにインシュレータ2の巻枠部21に巻線溝24が設けられていないが、すでに配置されている巻線導体4により巻線段差4Aを形成しているので、巻線溝を設けなくても、この巻線段差4Aに巻線導体4を引っ掛けながら巻線することが可能である。
 以上のように本実施の形態によれば、実施の形態1と同様の効果を得ることができるほか、巻線溝を有しないインシュレータを用いて巻線することができる。
産業上の利用分野
 本発明のコアの巻線方法は、分割型コアのならず連結型のコアや一体型のコアに対しても適用することができる。さらに、本発明のステータは、巻線導体のターン数と巻線導体の占積率が高いステータを得ることができる。

Claims (9)

  1. アーチ状のヨーク部と、上記ヨーク部の中央部から内周方向に向けて突設するティース部と、上記ティース部の先端に接続されているティース先端部を有するコアに、巻線導体を供給するノズルを周回させて巻線するコアの巻線方法であって、
    上記ヨーク部の内周部の円弧とその弦で囲まれた弓形領域へ巻線する場合に、
    上記コアの端面に巻線するときは、上記ノズルが上記弓形領域の弦を基準として上記ティース先端部側から上記ヨーク部側に向かって凸状の軌跡を描くように移動して上記巻線導体を巻線する工程と、
    上記コアの側面に巻線するときは、上記ノズルが上記弓形領域の弦を基準として上記ヨーク部側から上記ティース先端部側に復帰した後、上記コアの側面に沿って移動して上記巻線導体を巻線する工程とを含む、コアの巻線方法。
  2. 上記ティース部の少なくとも端面上に位置する巻枠部と、上記ヨーク部の少なくとも端面上に位置し、その周方向両端面が上記巻枠部の端面より上記コアの端面側に位置する基部と、上記ティース先端部の少なくとも端面上に位置する巻枠先端部を有するインシュレータを装着した上記コアに巻線導体を巻線する請求項1に記載のコアの巻線方法。
  3. 上記ヨーク部の少なくとも端面上に位置する基部と、上記ティース部の少なくとも端面上に位置し、上記基部の内周側の円弧とその弦で囲まれた弓形領域に上記巻線導体の位置を定めるための溝を少なくとも1個設けた巻枠部と、上記ティース先端部の少なくとも端面上に位置する巻枠先端部を有するインシュレータを備え、
    上記巻線導体を上記インシュレータの基部側から巻枠先端部側に向けて巻線を開始する請求項1に記載のコアの巻線方法。
  4. 上記ヨーク部の少なくとも端面上に位置する基部と、上記ティース部の少なくとも端面上に位置する巻枠部と、上記ティース先端部の少なくとも端面上に位置する巻枠先端部を有するインシュレータを備え、
    上記巻線導体を上記インシュレータの巻枠先端部側から基部側に向けて巻線を開始する請求項1に記載のコアの巻線方法。
  5. インシュレータを装着して巻線導体を巻線したコアを複数個環状に組み立てたステータにおいて、
    上記コアは、アーチ状のヨーク部と、上記ヨーク部の中央部から内周方向に向けて突設するティース部と、上記ティース部の先端に接続されているティース先端部を有し、
    上記インシュレータは、上記ティース部の少なくとも端面上に位置する巻枠部と、上記ヨーク部の少なくとも端面上に位置し、その周方向両端面が上記巻枠部の端面より上記コアの端面側に位置する基部と、上記ティース先端部の少なくとも端面上に位置する巻枠先端部を有し、
    上記巻線導体は、上記コア及び上記インシュレータの巻枠部の少なくとも上記弓形領域に巻線されているステータ。
  6. 上記インシュレータの基部は巻き始めの巻線導体を導入する基部側導入溝を有している請求項5に記載のステータ。
  7. 上記インシュレータの巻枠先端部は巻き始めの巻線導体を導入する巻枠先端部側導入溝を有している請求項5に記載のステータ。
  8. インシュレータを装着して巻線導体を巻線したコアを複数個環状に組み立てたステータにおいて、
    上記コアは、アーチ状のヨーク部と、上記ヨーク部の中央部から内周方向に向けて突設するティース部と、上記ティース部の先端に接続されているティース先端部を有し、
    上記インシュレータは、上記ヨーク部の少なくとも端面上に位置する基部と、上記ティース部の少なくとも端面上に位置し、上記基部の内周側の円弧とその弦で囲まれた弓形領域に上記巻線導体の位置を定めるための溝を少なくとも1個設けた巻枠部と、上記ティース先端部の少なくとも端面上に位置する巻枠先端部を有し、
    上記巻線導体は、上記コア及び上記インシュレータの巻枠部の少なくとも上記弓形領域に巻線されているステータ。
  9. 上記インシュレータの基部は巻き始めの巻線導体を導入する基部側導入溝を有している請求項8に記載のステータ。
PCT/JP2011/057008 2011-03-23 2011-03-23 コアの巻線方法及びステータ WO2012127658A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2011/057008 WO2012127658A1 (ja) 2011-03-23 2011-03-23 コアの巻線方法及びステータ
US14/006,449 US9444300B2 (en) 2011-03-23 2011-03-23 Core winding method and stator
JP2013505727A JPWO2012127658A1 (ja) 2011-03-23 2011-03-23 コアの巻線方法及びステータ
DE112011105077.1T DE112011105077T5 (de) 2011-03-23 2011-03-23 Kernwickelverfahren und Stator
KR1020137024051A KR20130124564A (ko) 2011-03-23 2011-03-23 코어의 권선 방법 및 스테이터
CN2011800694820A CN103444057A (zh) 2011-03-23 2011-03-23 铁心的绕线方法及定子
TW100128128A TWI491146B (zh) 2011-03-23 2011-08-08 鐵芯之繞線方法及定子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/057008 WO2012127658A1 (ja) 2011-03-23 2011-03-23 コアの巻線方法及びステータ

Publications (1)

Publication Number Publication Date
WO2012127658A1 true WO2012127658A1 (ja) 2012-09-27

Family

ID=46878851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057008 WO2012127658A1 (ja) 2011-03-23 2011-03-23 コアの巻線方法及びステータ

Country Status (7)

Country Link
US (1) US9444300B2 (ja)
JP (1) JPWO2012127658A1 (ja)
KR (1) KR20130124564A (ja)
CN (1) CN103444057A (ja)
DE (1) DE112011105077T5 (ja)
TW (1) TWI491146B (ja)
WO (1) WO2012127658A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110841A (ja) * 2011-11-21 2013-06-06 Panasonic Eco Solutions Power Tools Co Ltd ブラシレスモータの冷却構造

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI488409B (zh) * 2012-11-21 2015-06-11 Ind Tech Res Inst 定子模組及其磁力產生構件
DE102016209523A1 (de) * 2016-06-01 2017-12-07 Zf Friedrichshafen Ag Stator einer elektrischen Maschine mit einer Verschaltungseinrichtung für Statorspulen und elektrische Maschine mit einem derartigen Stator
CN106602770A (zh) * 2016-12-24 2017-04-26 江西清华泰豪三波电机有限公司 一种成型绝缘一体式线圈支架
KR20210036088A (ko) * 2019-09-25 2021-04-02 엘지이노텍 주식회사 모터
JP7431764B2 (ja) * 2021-02-16 2024-02-15 山洋電気株式会社 モータの電機子巻線構造及びモータの電機子巻線巻回方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000083357A (ja) * 1998-09-04 2000-03-21 Toshiba Corp ステータコイルの形成方法
JP2002112512A (ja) * 2000-09-27 2002-04-12 Daikin Ind Ltd 電動機の巻線方法および巻線装置および電動機
JP2007043840A (ja) * 2005-08-04 2007-02-15 Fujitsu General Ltd 電動機および電動機の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH661158A5 (de) 1982-08-07 1987-06-30 Hitachi Koki Kk Vorrichtung zum wickeln von drahtspulen fuer elektrische maschinen.
JPS5928857A (ja) * 1982-08-07 1984-02-15 Hitachi Koki Co Ltd 固定子コイルの巻線装置
CN1054712C (zh) * 1994-06-06 2000-07-19 松下电器产业株式会社 励磁组合体及其制造方法和用其构成的换向器电动机
JP3432370B2 (ja) 1996-10-31 2003-08-04 山洋電気株式会社 分割コアの巻線方法
JP2003032935A (ja) 2001-07-11 2003-01-31 Moric Co Ltd 回転界磁型電気機器の電機子
JP4402976B2 (ja) * 2004-02-12 2010-01-20 三工機器株式会社 ステータコア用インシュレータ及びステータコアへの巻線方法
US7116023B2 (en) * 2004-03-23 2006-10-03 Emerson Electric Co. End cap for interconnecting winding coils of a segmented stator to reduce phase-on-phase conditions and associated methods
JP4826718B2 (ja) * 2004-07-27 2011-11-30 日本電産株式会社 モータ用の電機子およびモータ
JP4916730B2 (ja) * 2006-02-07 2012-04-18 アスモ株式会社 ステータの製造方法及びステータ
US7915781B2 (en) * 2006-12-27 2011-03-29 Toshiba Carrier Corporation Winding method for stator and permanent magnet motor
JP5146637B2 (ja) 2007-03-14 2013-02-20 株式会社安川電機 インシュレータと固定子および電動機
JP5315743B2 (ja) * 2008-03-26 2013-10-16 アイシン精機株式会社 電動回転モーター
JP5379550B2 (ja) * 2009-04-21 2013-12-25 三菱電機株式会社 電機子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000083357A (ja) * 1998-09-04 2000-03-21 Toshiba Corp ステータコイルの形成方法
JP2002112512A (ja) * 2000-09-27 2002-04-12 Daikin Ind Ltd 電動機の巻線方法および巻線装置および電動機
JP2007043840A (ja) * 2005-08-04 2007-02-15 Fujitsu General Ltd 電動機および電動機の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110841A (ja) * 2011-11-21 2013-06-06 Panasonic Eco Solutions Power Tools Co Ltd ブラシレスモータの冷却構造

Also Published As

Publication number Publication date
TW201240283A (en) 2012-10-01
US20140009028A1 (en) 2014-01-09
TWI491146B (zh) 2015-07-01
US9444300B2 (en) 2016-09-13
KR20130124564A (ko) 2013-11-14
CN103444057A (zh) 2013-12-11
JPWO2012127658A1 (ja) 2014-07-24
DE112011105077T5 (de) 2014-01-02

Similar Documents

Publication Publication Date Title
JP6390772B2 (ja) ステータ組立方法及びステータ組立装置
WO2012127658A1 (ja) コアの巻線方法及びステータ
EP2551993B1 (en) Electromagnet for stator and manufacturing method of electromagnet for stator
US10594182B2 (en) Stator manufacturing method and stator
US8875381B2 (en) Method of manufacturing rotary electric machine
US10148157B2 (en) Method of manufacturing stator for rotary electric machine
US20190013720A1 (en) Stator for rotary electric machine
US11316388B2 (en) Stator, method of manufacturing stator, and outer rotor type motor
JP2012244803A (ja) ステータ製造方法
JP2006158045A (ja) セグメント式ステータ構造、及びその製造方法
JP7046265B2 (ja) 電機子鉄心の製造方法、電気機械の製造方法、及び電気機械
JP7246224B2 (ja) 回転電機
JP2015070761A (ja) 同芯巻コイルの成形方法及び成形装置
JP2011229334A (ja) ステータの製造方法
JP7290517B2 (ja) ステータの製造方法
JP2021040461A (ja) 電機子鉄心の製造方法、電気機械の製造方法、及び電気機械
JP2021044885A (ja) 積層鉄心の製造方法、電気機械の製造方法、積層鉄心の製造装置、及び電気機械
JP2011229294A (ja) コイルの製造方法およびモータ
JP2013188001A (ja) 巻線成形装置および巻線成形方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861447

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013505727

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137024051

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14006449

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112011105077

Country of ref document: DE

Ref document number: 1120111050771

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11861447

Country of ref document: EP

Kind code of ref document: A1