WO2012123991A1 - 可変容量素子を有する電子機器とその製造方法 - Google Patents

可変容量素子を有する電子機器とその製造方法 Download PDF

Info

Publication number
WO2012123991A1
WO2012123991A1 PCT/JP2011/001542 JP2011001542W WO2012123991A1 WO 2012123991 A1 WO2012123991 A1 WO 2012123991A1 JP 2011001542 W JP2011001542 W JP 2011001542W WO 2012123991 A1 WO2012123991 A1 WO 2012123991A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
movable electrode
fixed
capacitance element
variable capacitance
Prior art date
Application number
PCT/JP2011/001542
Other languages
English (en)
French (fr)
Inventor
島内 岳明
悟覚 ▲高▼馬
勝木 隆史
豊田 治
上田 知史
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2013504402A priority Critical patent/JP5545410B2/ja
Priority to CN201180069245.4A priority patent/CN103430260B/zh
Priority to PCT/JP2011/001542 priority patent/WO2012123991A1/ja
Publication of WO2012123991A1 publication Critical patent/WO2012123991A1/ja
Priority to US13/973,165 priority patent/US9312071B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • H01G5/16Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture using variation of distance between electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • H01G5/16Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture using variation of distance between electrodes
    • H01G5/18Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture using variation of distance between electrodes due to change in inclination, e.g. by flexing, by spiral wrapping

Definitions

  • Embodiments of the present invention a method for manufacturing the same electronic device including a variable capacitance element.
  • a variable capacitance element generally has a configuration in which a fixed electrode and a movable electrode are arranged to face each other and the capacitance is changed by displacing the movable electrode.
  • the movable electrode can be displaced by piezoelectric drive, electrostatic drive, or the like. Size and weight is required in portable electronic devices such as, MEMS (m icro e lectro- m echanical s ystem) variable capacitance element using a have been developed.
  • a configuration is known in which a fixed electrode is formed on a support substrate, a movable electrode is supported above the support substrate via a flexible beam, and the capacitance is changed by controlling the distance between the electrodes (for example, Japanese Patent Laid-Open No. 2006-2006). -149795).
  • FIG. 7A shows a configuration example of such a variable capacitance element.
  • the variable capacitance element includes a variable capacitance element having a parallel plate structure in which one electrode is movable, and a container structure for sealing the variable capacitance element.
  • a fixed electrode 103 and an anchor 106 are formed on a semiconductor substrate 101 such as silicon via an insulating layer 102.
  • the anchor 106 supports the plate-like movable electrode 104 above the fixed electrode 103 via a U-shaped flexible beam 105.
  • a container including a side wall 110 and a ceiling 111 is formed so as to surround the outer periphery of the variable capacitance element. With this container, the variable capacitance element can be sealed in an inert gas atmosphere such as a rare gas or a reduced pressure atmosphere, and electrical shielding can be achieved if the container is formed of a metal material.
  • the movable electrode 104 When a voltage V is applied between the fixed electrode 103 and the movable electrode 104, the movable electrode 104 is attracted to the fixed electrode 103 by electrostatic force. When the movable electrode 104 is displaced to the fixed electrode 103 side, the flexible beam 105 bends, and a force for returning the movable electrode 104 in the reverse direction is exerted by a restoring force proportional to the amount of displacement. The movable electrode 104 is displaced to a position where the electrostatic force and the restoring force are balanced, and is held at the balanced position as long as the voltage V is applied.
  • the capacitive element constituted by the fixed electrode 103 and the movable electrode 104 functions as a variable capacitive element capable of controlling the electrostatic capacity by the applied voltage V.
  • a fixed electrode 103 is formed on a semiconductor substrate 101 such as silicon via an insulating layer 102, and an insulating layer 112 is formed on the insulating layer 102 so as to cover the fixed electrode 103.
  • An anchor 106 is formed on the insulating layer 112. The anchor 106 supports the plate-like movable electrode 104 above the fixed electrode 103 via the flexible beam 105 and via the insulating layer 112.
  • a container including a side wall 110 and a ceiling 111 is formed so as to surround the outer periphery of the variable capacitance element. Since the surface of the fixed electrode 103 is covered with the insulating layer 112, short-circuiting and sticking between the electrodes can be suppressed.
  • the formation capacitance is the minimum value (off state) when the movable electrode is separated from the fixed electrode, and the formation capacitance is the maximum when the movable electrode is in contact with the fixed electrode through the dielectric film. Value (on state).
  • a variable capacitor is used in these two states.
  • the electrodes of the capacitor element can be formed not only parallel to the substrate surface but also perpendicular to the substrate surface (see, for example, JP-A-2001-304868).
  • a single crystal silicon substrate top SOI via the silicon oxide film as a bonding layer is provided a single-crystal silicon layer on the (s ilicon- o n- i nsulator) substrate, having a vertical electrode to the substrate surface
  • a variable capacitor can be formed.
  • the single crystal silicon layer is doped with impurities such as phosphorus and boron to reduce the resistance of the single crystal silicon layer.
  • a resist mask is formed on the single crystal silicon layer, and the single crystal silicon layer is etched by reactive ion etching or the like to leave an anchor, various comb-like electrodes, various pad portions, and the like on the silicon oxide film.
  • Capacitance is formed by combining a comb-shaped electrode in interdigital shape. Each electrode is formed perpendicular to the silicon substrate surface.
  • the silicon oxide film can be selectively etched and removed with a hydrofluoric acid aqueous solution or the like, and the active Si layer can be separated from the supporting Si substrate to give a degree of freedom of displacement.
  • a vibrator, a beam, a comb-like electrode, or the like can be formed. Electrode pads are formed on the various pad portions by evaporating aluminum or the like.
  • Each part formed above the substrate is composed of a low-resistance layer that is insulated from the substrate, and the vibrator, beam, comb-shaped electrode, etc. are positioned at a predetermined distance from the substrate and are anchored to the substrate by an anchor. A vibrationally supported structure is obtained.
  • One object of the present invention is to provide a variable capacitance element that can reliably control the operation of the movable electrode.
  • a support substrate that provides physical support; A pair of anchors formed on the support substrate and having a vertical support on the support substrate surface; A movable electrode supported by the support portions of the pair of anchors, the opposing first and second side surfaces forming an electrode surface, and at least partially elastically deformable, A first fixed electrode supported on the support substrate and having a first electrode surface facing the first side surface of the movable electrode; A second fixed electrode supported on the support substrate and having a second electrode surface facing the second side surface of the movable electrode; There is provided an electronic apparatus having a variable capacitance element.
  • a method of manufacturing an electronic device having a variable capacity including:
  • FIGS. 1A and 1B are a plan view and a cross-sectional view schematically showing a configuration of a variable capacitor according to a first embodiment
  • FIGS. 1C and 1D are plan views showing an operation
  • 2A, 2B, and 2C are a perspective view schematically showing an electronic apparatus having a variable capacitance element according to a second embodiment, and a plan view showing two states of the variable capacitance element.
  • 3A to 3L are cross-sectional views showing a manufacturing process of an electronic apparatus having a variable capacitor according to the second embodiment.
  • 4A to 4E are plan views of the states of FIGS. 3C, 3D, 3E, 3J, and 3K.
  • 5A and 5B are equivalent circuit diagrams illustrating two examples of application circuits of an electronic device having a variable capacitance element.
  • 6A to 6D are schematic plan views showing an electronic apparatus having a variable capacitance element provided with a stopper.
  • 7A and 7B are cross-sectional views showing a configuration example of a variable capacitance element according to the prior art.
  • the inventors arrange the first and second fixed electrodes on both sides of the movable electrode.
  • the movable electrode is attracted to the first fixed electrode through the insulating film in the on state, and the movable electrode is the second in the off state.
  • the movable electrode is the second in the off state.
  • the transition from the off-state to the on-state and the transition from the on-state to the off-state are positively performed by electrostatic attraction by a voltage applied between the movable electrode and the first or second fixed electrode. Even when the movable electrode is attracted to one fixed electrode and the sticking phenomenon occurs where the movable electrode is not separated even when the power is turned off, by applying a voltage between the other fixed electrode and the movable electrode, electrostatic attraction It becomes easy to separate the movable electrode by using. Easy to suppress sticking. Except for the transient state, since the movable electrode is not displaced, it can basically prevent self-actuation. Drive reliability can be improved and drive voltage can be lowered.
  • One of the first and second fixed electrodes may be a dummy electrode that does not function as an electric circuit. Of course, it may be positively utilized as two variable capacitors with contrasting on / off.
  • first and second fixed electrodes are arranged in parallel and the movable electrode is arranged close to the first fixed electrode at one end and close to the second fixed electrode at the other end, further effects can be obtained.
  • the movable electrode is attracted to the first fixed electrode, when a voltage is applied between the second fixed electrode and the movable electrode, this region is close to the movable electrode and the second fixed electrode (the other end of the movable electrode).
  • voltage generates a strong electrostatic attraction that is inversely proportional to the distance. Therefore, it becomes easy to speak the movable electrode from the other end.
  • the movable electrode is attracted to the second fixed electrode, by applying a voltage between the first fixed electrode and the movable electrode, it becomes easy to separate the movable electrode from one end of the movable electrode according to the same principle. .
  • a plate-like electrode When a plate-like electrode is formed on the surface of a semiconductor substrate, it may not be easy to form a movable electrode that has an oblique relationship with respect to the surface of the fixed electrode. In the case of creating a vertical electrode, an oblique electrode between parallel electrodes may be realized only by changing the pattern shape.
  • variable capacitance elements according to embodiments will be described with reference to the drawings.
  • FIG. 1A and 1B are a schematic plan view and a schematic cross-sectional view showing a basic configuration of a variable capacitance element according to an embodiment.
  • a movable electrode ME having at least a flexible part is supported between the anchors ANC1 and ANC2.
  • the anchors ANC1 and ANC2 are supported on the support substrate SS and are formed of a conductor.
  • the movable electrode ME is formed of, for example, an elastically deformable metal sheet oriented perpendicularly to the surface of the support substrate SS, and is supported by the anchors ANC1 and ANC2.
  • a gap is formed between the lower side of the movable electrode ME and the support substrate SS so that the movable electrode can be displaced. As shown in FIG.
  • a cavity CV (free space) indicated by CV in FIG. 1A is formed between the movable electrode ME and the fixed electrodes FE1 and FE2 to secure a displaceable space for the movable electrode.
  • a fixed electrode is formed by plating in a space defined by a resist mask on a support substrate, an insulating film is formed, and plating is again performed in the space defined by the resist mask on the support substrate.
  • the metal sheet may include a laminated metal layer or an alloy layer.
  • the bias power source between the fixed electrode FE1 and the movable electrode ME is turned off, and a DC voltage is applied between the fixed electrode FE2 and the movable electrode ME.
  • the electrostatic attractive force between the movable electrode ME and the fixed electrode FE1 disappears, and an electrostatic attractive force is newly generated between the movable electrode ME and the fixed electrode FE2.
  • the movable electrode ME leaves the fixed electrode FE1, is attracted to the fixed electrode FE2 via the insulating film IF2, and comes into close contact therewith.
  • the operation reliability is improved because the movable electrode is forcibly separated from the fixed electrode by the elastic restoring force and the electrostatic attractive force. Will do.
  • the movable electrode ME is in a position separated from the second fixed electrode FE2, and in the state in FIG. 1D, the movable electrode ME is in a position separated from the first electrode FE1.
  • electrostatic attraction decreases. If a part of the movable electrode is restricted to a position close to the first fixed electrode and the other part is restricted to a position close to the second fixed electrode, a position where the electrostatic attractive force acts can be surely secured. it can.
  • FIG. 2A is a schematic perspective view of a variable capacitor according to a second embodiment.
  • SOI active Si layer 53 is bonded by bonding a silicon oxide film 52 (s ilicon o n i nsulator) substrate.
  • the supporting Si substrate 51 has a thickness of 300 ⁇ m to 500 ⁇ m
  • the bonding silicon oxide film 52 has a thickness of 2 ⁇ m to 7 ⁇ m.
  • the active Si layer 53 is a single crystal Si layer having a high resistivity of 500 ⁇ cm or more, and has a thickness of 20 ⁇ m to 30 ⁇ m.
  • the trenches penetrating the entire thickness of the active Si layer 53 are buried, and the fixed electrodes 11 and 12 are formed with the opposite side surfaces in parallel with the movable electrode 10 in between.
  • the height of the opposing side surfaces of the movable electrode 10 and the fixed electrodes 11 and 12 is 20 ⁇ m to 30 ⁇ m, which is the same as the thickness of the active Si layer 53.
  • the fixed electrodes 11 and 12 have a length of, for example, 500 ⁇ m and are arranged to face each other with a distance of 20 ⁇ m.
  • the active Si layer 53 between the fixed electrodes 11 and 12 is removed, and the movable electrode 10 is disposed in the space.
  • the bonding silicon oxide film 52 under the movable electrode 10 accommodating space is removed, and the degree of freedom of the movable electrode 10 is secured.
  • the movable electrode 10 has a thickness of 2 ⁇ m to 5 ⁇ m, for example, and is longer than the fixed electrodes 11 and 12.
  • Movable electrode 10 is supported by the anchor 16, 17 at both ends.
  • the movable electrode 10, the fixed electrodes 11 and 12, and the anchors 16 and 17 are made of, for example, Au or Cu as a main component and formed by the same plating process.
  • the variable capacitor includes fixed electrodes 11 and 12, a movable electrode 10, and anchors 16 and 17 that support the movable electrode.
  • a dielectric film 18 of silicon oxide, silicon nitride, alumina, or the like is formed on the upper surface (side surface as a capacitor) of the one fixed electrode 11 that does not face the movable electrode, and has a thickness of 0.2 ⁇ m to 0.5 ⁇ m.
  • An electrode 19 mainly composed of Au, Al or the like is formed to form a fixed capacitor.
  • resistance elements 21 and 22 of Si—Cr alloy films extending from the upper surfaces of the fixed electrodes 11 and 12 are formed, and electrodes 23 and 24 are connected to the other ends of the resistance elements.
  • Anchor 16 is connected to the electrode 25 between the high-frequency signal transmission line 31, 32.
  • an insulating film 13 is formed on the surface of the fixed electrode.
  • the surfaces of the fixed electrodes 11 and 12 are covered with, for example, an insulating film 13 made of silicon nitride to prevent a short circuit between the movable electrode 10 and the fixed electrodes 11 and 12.
  • the insulating film 13 is also formed on the surfaces of the anchors 16 and 17 to promote insulation between the variable capacitance electrode and the surrounding active Si layer 53.
  • An insulating film is not formed on the surface of the movable electrode 10 to ensure the flexibility of the movable electrode and avoid peeling of the insulating film.
  • the movable electrode 10 is asymmetrically arranged between the side walls of the fixed electrodes 11 and 12 arranged in parallel, and is arranged lower on the left side and higher on the right side in the figure.
  • the movable electrode 10 is formed so as to extend from the lower end of the anchor 16 in the figure to the upper end of the anchor 17 in the figure. That is, the left part of the movable electrode 10 near the anchor 16 is arranged closer to the fixed electrode 12 than the fixed electrode 11, and the right part of the movable electrode 10 near the anchor 17 is arranged closer to the fixed electrode 11 than the fixed electrode 12.
  • the movable electrode 10 When a voltage is applied between the movable electrode 10 and the fixed electrode 12, the movable electrode 10 is attracted to the fixed electrode 12 by electrostatic attraction.
  • the movable electrode 10 is attracted to the fixed electrode 12 at the left portion of the movable electrode 10 that is close to the distance, and gradually the right portion of the movable electrode 10 is also attracted to the fixed electrode 12. Since the right end of the movable electrode 10 is arranged closer to the fixed electrode 11 than the fixed electrode 12, it is separated from the fixed electrode 12.
  • the movable electrode 10 When a voltage is applied between the movable electrode 10 and the fixed electrode 11, the movable electrode 10 is attracted to the fixed electrode 11 by electrostatic attraction. Since the right end of the movable electrode 10 is arranged closer to the fixed electrode 11 than the fixed electrode 12, the movable electrode 10 is quickly drawn to the fixed electrode 11, and gradually the left portion of the movable electrode 10 is also drawn to the fixed electrode 11.
  • the movable electrode is close to the fixed electrode 11 on the one hand and close to the fixed electrode 12 on the other hand, and is arranged obliquely, so that it can be attracted to any fixed electrode.
  • an active layer having a thickness of 25 ⁇ m having a high resistivity of 500 ⁇ cm or more is formed on a Si substrate 51 having a thickness of 300 ⁇ m to 500 ⁇ m through a bonding silicon oxide film 52 having a thickness of about 5 ⁇ m.
  • An SOI substrate to which the Si layer 53 is bonded is prepared.
  • a resist pattern PR1 having openings defining the trenches TR1 and TR2 for accommodating fixed electrodes is formed on the active Si layer 53.
  • the resist pattern PR1 also has an opening that defines an anchor.
  • the entire thickness of the active Si layer 53 is etched by, for example, deep RIE. Deep RIE uses CF 4 (+ O 2 ) or SF 6 (+ O 2 or + H 2 ) as a Si etching gas. Thereafter, the resist pattern PR1 is removed.
  • the trenches TR1 and TR2 have parallel side surfaces with a length of 500 ⁇ m arranged to face each other at a distance of 20 ⁇ m.
  • the reason why the right trench TR2 is wide is to form a fixed capacitor thereon.
  • the anchor trenches TR3 and TR4 are configured to support the movable electrode between the fixed electrodes. An electrode is connected to the upper anchor.
  • a silicon nitride film 54 having a thickness of 0.1 ⁇ m to 0.5 ⁇ m is deposited on the substrate surface by CVD or low pressure (LP) CVD using a silane-based gas such as monosilane or disilane and ammonia gas.
  • a silane-based gas such as monosilane or disilane and ammonia gas.
  • the exposed active Si layer 53 and the surface of the bonding silicon oxide film 52 are covered with a silicon nitride film 54.
  • This silicon nitride film 54 functions as an insulating film covering the surface of the fixed electrode.
  • FIG. 4A shows the silicon nitride film 54 deposited on the trench surface in perspective.
  • a resist pattern PR2 having an opening for defining a movable electrode is formed on the silicon nitride film 54, and the entire thickness of the active Si layer 53 exposed in the opening is etched by deep RIE.
  • FIG. 4B shows the planar shape of the opening.
  • the resist pattern PR2 is removed to obtain the state shown in FIGS. 3E and 4C.
  • the entire thickness of the active Si layer 53 is removed, and a silicon nitride film 54 is deposited on the inner surface thereof.
  • the slit S does not have the silicon nitride film 54 and penetrates the entire thickness of the active Si layer 53 with a certain width, for example, about 2 ⁇ m.
  • a Ti layer is deposited to a thickness of about 50 nm, and an Au layer is deposited thereon to a thickness of about 500 nm to form a seed layer 55.
  • a Ti layer it can also be used Cr layer having a thickness of about 50nm.
  • the seed layer 55 serves as a power feeding layer during electrolytic plating.
  • a resist pattern PR3 is formed to cover the seed layer 55 where plating is not required, an Au layer 56 is deposited by electrolytic plating, and the trench TR and the slit S are backfilled. In place of Au, Cu can be electroplated. Thereafter, the resist pattern PR3 is removed, and the exposed seed layer 55 is removed by etching or milling.
  • a resist pattern PR4 for patterning a dielectric film is formed on a substrate on which electrodes are formed, and a dielectric film 18 such as a silicon oxide film, a silicon nitride film, or an aluminum oxide film is formed with a thickness of 0.
  • the dielectric film deposited by sputtering of 2 ⁇ m to 0.5 ⁇ m and deposited on the resist pattern PR4 is lifted off together with the resist pattern PR4.
  • a resist pattern PR5 for resistance element patterning is formed on a substrate from which the resist pattern PR4 has been removed, a Cr—Si alloy film is deposited by sputtering, and a Cr—Si alloy film on the resist pattern PR5 is formed. Lift off and remove.
  • an Si—Cr alloy film having a thickness of about 0.2 ⁇ m is formed using a sputtering target of Si (70-90): Cr (30-10), and the resistance elements 21 and 22 are formed.
  • a resistive film may be formed before the dielectric film is formed.
  • a resist pattern PR6 for electrode patterning is formed on the substrate from which the resist pattern PR5 has been removed, and a Ti / Au laminated electrode or Ti / Al laminated electrode is deposited by sputtering to a thickness of about 1 ⁇ m.
  • the electrodes on the pattern PR6 are removed by lifting off.
  • the electrodes 19, 23, 24, 25 shown in FIG. 4D are formed in this way.
  • a resist pattern PR7 having an opening in the region between the fixed electrodes is formed on the substrate, the silicon nitride film 54 is etched by dry etching using CHF 3 gas, and the exposed silicon layer is converted to SF 6. It is removed by deep RIE using gas and CF 4 gas.
  • the hatched area is the etching target area.
  • the exposed silicon oxide film 52 is removed by dry etching using CF 4 gas.
  • the silicon oxide film can be removed by wet etching using buffered hydrofluoric acid or vapor phase etching using vaporized hydrofluoric acid.
  • the silicon oxide film is removed by isotropic etching, the silicon oxide film is removed by a side etching in a region that enters the periphery from the exposed region. In this manner, a semiconductor device having a variable capacitor shown in FIG. 2A can be manufactured.
  • variable capacitance indicates a change in capacitance between, for example, 0.9 pF (off state) to 5.6 pF (on state) between the on state and the off state.
  • FIG. 5A is an equivalent circuit diagram showing an example of an application circuit having a variable capacitance configured as described above.
  • the movable electrode 10 is connected to the node 25 of the high-frequency line 31-25-32, and variable capacitors 33, 34 are formed between the fixed electrodes 11, 12.
  • the fixed electrode 11 is grounded via the fixed capacitor 35 and is connected to the terminal 24 of the switch SW via the resistance element 21.
  • the other fixed electrode 12 is connected to the other terminal 23 of the switch SW via the resistance element 22 to form a variable capacitance circuit 39.
  • a series connection of a DC power source 36 and an inductor 37 is connected between the switching terminal of the switch SW and the high frequency line.
  • the resistance elements 21 and 22 are 10 k ⁇ or more, and the inductor is about 100 nH or more.
  • variable capacitors 33 and 34 are connected to the high frequency signal line 31-25-32, the fixed capacitor 35 is connected between the variable capacitor 33 and the ground, and the resistance element 21 is connected between the variable capacitors 33 and 34 and the external power source 36. , 22 are connected.
  • An inductor 37 is connected between the other pole of the external power source 36 and the high frequency signal line 31-25-32 to block high frequency components. Resistance elements 21 and 22 prevent leakage of signals flowing in the high-frequency signal lines 31-25 to 32 to the external power source 36. Thereby preventing a short circuit between the external power supply and the ground by a fixed capacitance 35.
  • One of two digital states is selected depending on whether the movable electrode 10 is attracted to the fixed electrode 11 side or the fixed electrode 12 side.
  • Figure 5B is an equivalent circuit diagram showing another configuration example of the application circuit.
  • a plurality of variable capacitance circuits 39-1 to 39-i are connected to the high-frequency signal lines 31-25 to 32, and are connected to the common inductor 37 through the external power sources 36-1 to 36-i. Yes.
  • the movable electrode is arranged obliquely in the space between the opposed fixed electrodes according to the connection position of the anchor and the movable electrode, thereby making it easy to change the position of the movable electrode. It is also possible to provide a stopper for limiting the movement range of the movable electrode.
  • the stopper 41a side by the anchor 16, 17. 41b is arranged.
  • the stopper 41 a, together with the anchor 16, places the movable electrode 10 in a space near the fixed electrode 12.
  • the stopper 41b, together with the anchor 17, places the movable electrode 10 in a space near the fixed electrode 11.
  • the stopper 41b is disposed between the movable electrode 10 and the fixed electrode 12 at the right end portion where the movable electrode 10 is close to the fixed electrode 11 to prevent the movable electrode 10 from approaching the fixed electrode 12.
  • a stopper 41 a is disposed between the movable electrode 10 and the fixed electrode 11 at the left end portion where the movable electrode 10 is close to the fixed electrode 12 to prevent the movable electrode 10 from approaching the fixed electrode 11.
  • the stopper 41 can be formed by changing the etching pattern shown in FIG. 3B. In the steps shown in FIGS. 3C and 4A, an insulating film is formed on the stopper surface. If the stopper has a quadrangular prism shape, the corner portion may apply excessive stress to the movable electrode, which may cause the movable electrode to be deformed.
  • the corners can be rounded, cylindrical as shown in FIG. 6C, or polygonal as shown in FIG. 6D to relieve the stress that can be applied to the movable electrode. .
  • the SOI substrate instead of the SOI substrate, a laminated substrate having two sacrificial layers having different etching characteristics on a support substrate is used, and the steps shown in FIGS. 3A to 3L are performed to obtain the configuration shown in FIGS. 1A and 2A. It is also possible to manufacture. In this case, the bonding silicon oxide film 52 and the active silicon layer 53 shown in FIG. 2A are used as sacrificial films having different etching characteristics.
  • a laminated substrate having a single-layer sacrificial film on a support substrate can also be used by utilizing control etching or the like. It is also possible to incorporate various known techniques. It will be apparent to those skilled in the art that various other changes, substitutions, improvements, modifications, combinations, and the like are possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Micromachines (AREA)

Abstract

【課題】 可動電極の動作を確実に制御できる可変容量素子を提供する。 【解決手段】 可変容量素子を有する電子機器は、物理的支持を与える支持基板と、支持基板上に形成され、支持基板表面に垂直方向の支持部を有する、1対のアンカと、1対のアンカの支持部に支持され、対向する第1、第2の側面が電極面を構成し、少なくとも一部弾性変形可能な可動電極と、支持基板上に支持され、可動電極の第1の側面に対向する第1の電極面を有する第1の固定電極と、支持基板上に支持され、可動電極の第2の側面に対向する第2の電極面を有する第2の固定電極と、を有する。 

Description

可変容量素子を有する電子機器とその製造方法
 本発明の実施例は、可変容量素子を有する電子機器とその製造方法に関する。
 可変容量素子は、固定電極と可動電極を対向配置し、可動電極を変位させることにより容量を変化させる構成が一般的である。可動電極は、圧電駆動、静電駆動等により、変位させることができる。携帯用電子機器等においては小型軽量化が要求され、MEMS(micro
electro-mechanical system)を用いた可変容量素子が開発されている。
 支持基板上に固定電極を形成し、その上方に可動電極を可撓梁などを介して支持し、電極間距離を制御することにより容量を変化させる構成が知られている(例えば、特開2006-147995号公報参照)。
 図7Aはこのような可変容量素子の構成例を示す。可変容量素子は、一方の電極を可動とした平行平板構造による可変容量素子と、この可変容量素子を封止する容器構造とにより構成される。
 シリコンなどの半導体基板101の上に絶縁層102を介して、固定電極103、アンカ106が形成される。アンカ106はU字形の可撓梁105を介して固定電極103上方に板状の可動電極104を支持する。可変容量素子の外周を取り囲むような形で側壁110、天井111を含む容器が形成されている。この容器により、希ガスなどの不活性ガス雰囲気中や減圧された雰囲気中に、可変容量素子を封止することが可能となり、金属材料により容器を形成すれば、電気的遮蔽も可能となる。
 固定電極103と可動電極104との間に電圧Vを印加すると、静電力によって可動電極104は固定電極103に引き付けられる。可動電極104が固定電極103側に変位すると、可撓梁105が撓み、変位量に比例した復元力により、可動電極104を逆方向に戻そうとする力が働く。可動電極104は、静電力と復元力がつり合う位置まで変位し、電圧Vを印加している限り、つり合う位置で保持される。
 電圧Vをゼロにすると、可動電極104は元の位置に戻る。従って、固定電極103と可動電極104で構成される容量素子は、静電容量を印加電圧Vによって制御できる可変容量素子として機能する。
 図7Bは、可変容量素子の他の構成例を示す断面図である。シリコンなどの半導体基板101上に絶縁層102を介して、固定電極103が形成され、固定電極103を覆うように絶縁層102上に絶縁層112が形成されている。絶縁層112の上にアンカ106が形成される。アンカ106は可撓梁105を介して固定電極103上方に、絶縁層112を介して、板状の可動電極104を支持する。可変容量素子の外周を取り囲むような形で側壁110、天井111を含む容器が形成されている。固定電極103の表面が絶縁層112で覆われているので、電極同士のショートやスティッキングが抑制できるようになる。
 デジタル型の可変容量素子では、可動電極が固定電極から離れた状態で形成容量が最小値(オフ状態)であり、可動電極が誘電体膜を介して固定電極と接触した状態で形成容量は最大値(オン状態)である。この2つの状態で可変容量を使用する。
 容量素子の電極は、基板表面に平行に形成するばかりでなく、基板表面に垂直に形成することもできる(例えば、特開2001-304868号参照)。例えば、単結晶シリコン基板上面上に結合層としてのシリコン酸化膜を介して単結晶シリコン層を設けたSOI(silicon-on-insulator)基板を用いて、基板表面に垂直な電極を有する可変容量を形成することができる。
 単結晶シリコン層にリン、ボロン等の不純物をドーピングして単結晶シリコン層を低抵抗化する。単結晶シリコン層上にレジストマスクを形成して、単結晶シリコン層を反応性イオンエッチング等でエッチングして、シリコン酸化膜上に、アンカ、各種櫛歯状電極及び各種パッド部などを残す。櫛歯状電極をインターデジタル形に組み合わせて容量が形成される。各電極は、シリコン基板表面に垂直に成形される。
 酸化シリコン膜をフッ酸水溶液などで選択的にエッチングして除去し、活性Si層を支持Si基板から離し、変位の自由度を与えることができる。振動子、梁、櫛歯状電極等を形成できる。各種パッド部上に、アルミニウム等を蒸着して電極パッドを形成する。基板上方に形成された各部分は基板とは絶縁された低抵抗層で構成されるとともに、振動子、梁、櫛歯状電極等が、基板から所定距離だけ浮いて位置するとともにアンカにより基板に振動可能に支持された構造が得られる。
特開2006-147995号公報 特開2001-304868号公報
 本発明の1つの目的は、可動電極の動作を確実に制御できる可変容量素子を提供することである。
 本発明の1観点によれば、
 物理的支持を与える支持基板と、
 前記支持基板上に形成され、前記支持基板表面に垂直方向の支持部を有する、1対のアンカと、 
 前記1対のアンカの支持部に支持され、対向する第1、第2の側面が電極面を構成し、少なくとも一部弾性変形可能な可動電極と、
 前記支持基板上に支持され、前記可動電極の第1の側面に対向する第1の電極面を有する第1の固定電極と、
 前記支持基板上に支持され、前記可動電極の第2の側面に対向する第2の電極面を有する第2の固定電極と、
を有する可変容量素子を有する電子機器
が提供される。
 本発明の他の観点によれば、
 支持基板上に犠牲層を有する基板を準備し、
 前記基板の表面に対向する固定電極形状の開口を有する第1マスクを形成し、
 前記第1マスクの開口に露出した前記犠牲層をエッチングして、固定電極収容用のトレンチを形成し、
 前記基板の表面に、前記固定電極間に配置される可動電極形状のスリット状開口を有する第2マスクを形成し、
 前記スリット状開口に露出した前記犠牲膜をエッチングして、可動電極収容用のスリットを形成し、
 前記トレンチ内、及び前記スリット内に導電材を形成すること、
を含む可変容量を有する電子機器を製造する方法
が提供される。
図1A、1Bは、第1の実施例による可変容量素子の構成を概略的に示す平面図及び断面図、図1C,1Dは動作を示す平面図である。 図2A,2B,2Cは、第2の実施例による可変容量素子を有する電子機器の概略を示す斜視図、及び可変容量素子の2つの状態を示す平面図である。 と、 と、 図3A~3Lは、第2の実施例による可変容量素子を有する電子機器の製造プロセスを示す断面図である。 と、 図4A~4Eは、図3C,3D,3E,3J,3Kの状態の平面図である。 図5A,5Bは、可変容量素子を有する電子機器の応用回路の2例を示す等価回路図である。 図6A~6Dは、ストッパを備えた可変容量素子を有する電子機器を示す概略平面図である。 図7A,7Bは従来技術による可変容量素子の構成例を示す断面図である。
 固定電極が誘電体膜で覆われている場合でも、オンオフ動作を繰り返すうちに、誘電体膜がチャージアップし、外部電源をオフにしても可動電極が誘電体膜から離れなくなるスティッキング現象が起こる。駆動波形による対策も検討されているが、解決には至っていない。
また、高周波信号のエンベロープを信号波形で変調し可動電極に印加する場合、信号波形に基づく電位差により可動電極が動くセルフアクチュエーションと呼ばれる現象がある。セルフアクチュエーションを防止するために、投入信号の電力に応じて駆動電圧を高くする方法がある。駆動電圧を高くすると、スティッキング現象がより生じやすくなる。また、より高い電圧を確保するために昇圧回路が必要になることもある。
 本発明者らは、可動電極の両側に第1、第2固定電極を配置し、オン状態で可動電極は第1の固定電極に絶縁膜を介して引き寄せられ、オフ状態で可動電極は第2の固定電極に絶縁膜を介して引き寄せられる構成を考えた。オン状態でもオフ状態でも、可動電極は2つの固定電極の一方に引き付けられ、容量が変化しなくなる。
 オフ状態からオン状態への移行も、オン状態からオフ状態への移行も、可動電極と第1又は第2の固定電極との間に印加する電圧による静電引力により積極的に行う。一方の固定電極に可動電極が引き付けられて電源をオフにしても可動電極が離れなくなるスティッキング現象が生じる場合にも、他方の固定電極と可動電極の間に電圧を印加することにより、静電引力を利用して可動電極を離すことが容易となる。スティッキングを抑制しやすい。過渡状態をのぞき、可動電極は変位しないので、基本的にセルフアクチュエーションも防止できる。駆動信頼性の向上と駆動電圧の低電圧化が図れる。
 第1、第2の固定電極の一方は電気回路的には機能しないダミー電極でよい。勿論オン/オフが対照的な2つの可変容量として積極的に利用してもよい。
 第1、第2の固定電極を平行に配置し、可動電極を1端では第1の固定電極に近く、他端では第2の固定電極に近く配置すると、更なる効果も得られよう。可動電極が第1固定電極に引き寄せられている場合、第2固定電極と可動電極との間に電圧を印加すると、可動電極と第2の固定電極が近い領域(可動電極他端)において、この電圧は距離に反比例した強い静電引力を発生する。従って、他端から可動電極を話すことが容易となる。可動電極が第2固定電極に引き寄せられている場合、第1固定電極と可動電極との間に電圧を印加することにより、同様の原理により可動電極の一端から可動電極を離すことが容易となる。
 半導体基板表面上に板状電極を形成する場合、固定電極表面に対して斜めの関係になる可動電極を形成することは容易でないであろうが、SOI基板を用い、半導体基板表面に対してほぼ垂直方向の電極を作成する場合には、平行電極間の斜め電極もパターン形状の変更のみで実現できるであろう。
 以下、図面を参照して実施例による可変容量素子を説明する。
 図1A、1Bは、実施例による可変容量素子の基本的構成を示す概略平面図及び概略断面図である。アンカANC1,ANC2の間に少なくとも部分的に可撓部を有する可動電極MEが支持されている。図1Bに示すように、アンカANC1,ANC2は支持基板SS上に支持され、導電体で形成されている。可動電極MEは、例えば支持基板SS表面に垂直に配向した弾性変形可能な金属シートで形成され、アンカANC1,ANC2に支持されている。可動電極MEの下辺と支持基板SSとの間にはギャップが形成され、可動電極を変位可能にしている。図1Aに示すように、可動電極MEの両側に、可動電極の両電極面に対向する側面を有し、対向側面上に絶縁層IF1,IF2を備える固定電極FE1,FE2が配置され、支持基板SSに支持されている。可動電極MEと固定電極FE1,FE2の間には、図1A中、CVで示すキャビティCV(自由空間)が形成され、可動電極の変位可能空間を確保している。
 このような構成は、例えば支持基板上、レジストマスクで画定した空間にメッキを行うことで固定電極を形成し、絶縁膜を形成し、再度支持基板上、レジストマスクで画定した空間にメッキを行うことでアンカと可動電極を形成して作製することができる。なお、金属シートは積層金属層を含んでもよく、合金層を含んでもよい。
 図1Cに示すように、固定電極FE1と可動電極MEとの間に直流電圧を印加すると、固定電極FE1と可動電極MEとの間に静電引力が生じ、可動電極MEを固定電極FE1に引き付ける。可動電極MEを十分変形可能な形態に形成することにより、固定電極FE1と対向する可動電極MEの大部分の面積は、絶縁膜IF1を介して、固定電極FE1に密着する。
 図1Dに示すように、固定電極FE1と可動電極MEの間のバイアス電源をオフにし、固定電極FE2と可動電極MEの間に直流電圧を印加する。可動電極MEと固定電極FE1との間の静電引力は消滅し、新たに可動電極MEと固定電極FE2との間に静電引力が生じる。可動電極MEは、固定電極FE1を離れ、絶縁膜IF2を介して固定電極FE2に引き寄せられ、密着する。
 従来、可動電極の弾性復元力のみによって可動電極を固定電極から引き離していた場合と較べると、弾性復元力と静電引力とによって可動電極を固定電極から強制的に引き離すので動作の信頼性は向上するであろう。
 図1Cの状態では可動電極MEは第2の固定電極FE2から引き離された位置にあり、図1Dの状態では可動電極MEは第1の電極FE1から引き離された位置にある。距離が増大していると、静電引力は減少する。可動電極の一部は第1の固定電極に近い位置に規制し、他の一部は第2の固定電極に近い位置に規制すれば、確実に静電引力が作用する位置を確保することができる。
 図2Aは、第2の実施例による可変容量素子の概略斜視図である。支持Si基板51の上に、活性Si層53がボンディング酸化シリコン膜52で結合されたSOI(silicon
oinsulator)基板を用いる。例えば、支持Si基板51は300μm~500μmの厚さを有し、ボンディング酸化シリコン膜52は2μm~7μmの厚さを有する。活性Si層53は、500Ωcm以上の高抵抗率の単結晶Si層であり、20μm~30μmの厚さを有する。
 活性Si層53の全厚さを貫通するトレンチを埋め込んで、固定電極11,12が可動電極10を挟んで、対向側面を平行にして形成されている。可動電極10、固定電極11,12の対向側面の高さは、活性Si層53の厚さと同じ20μm~30μmである。固定電極11,12は、例えば長さ500μmで、20μmの距離を置いて対向配置される。固定電極11,12の間の活性Si層53は除去され、その空間内に可動電極10が配置されている。可動電極10収容空間の下のボンディング酸化シリコン膜52は除去され、可動電極10の自由度を確保している。可動電極10は、例えば厚さ2μm~5μmで、固定電極11,12より長い長さを有する。
 可動電極10は両端でアンカ16,17に支持されている。可動電極10、固定電極11,12、アンカ16,17は、例えばAuまたはCuを主成分とし、同一のメッキ工程で形成される。可変容量は固定電極11,12、可動電極10、可動電極を支持するアンカ16,17で構成されている。一方の固定電極11の可動電極と対向しない上面(容量としては側面)上には、酸化シリコン、窒化シリコン、アルミナ等の誘電体膜18が厚さ0.2μm~0.5μm形成され、その上にAu,Al等を主成分とする電極19が形成され、固定容量を形成している。さらに、固定電極11,12の上面から外部に延在するSi-Cr合金膜の抵抗素子21,22が形成され、抵抗素子の他端には電極23,24が接続されている。アンカ16は高周波信号線路31,32間の電極25に接続されている。
 図2Bを参照する。電極間の短絡を防止するため、固定電極の表面に絶縁膜13が形成されている。固定電極11,12の表面を、例えば窒化シリコンの絶縁膜13で覆い、可動電極10と固定電極11、12間の短絡が防止されている。本実施例では、アンカ16,17の表面にも絶縁膜13を形成し、可変容量の電極と周囲の活性Si層53との間の絶縁を促進している。可動電極10の表面には絶縁膜を形成せず、可動電極の柔軟性を確保し、絶縁膜の剥離を回避している。
 可動電極10は、平行に配置された固定電極11,12の側壁間で、非対称に、図中左側で低く、右側で高く配置されている。可動電極10はアンカ16の図中下端からアンカ17の図中上端に延在するように形成されている。即ち、アンカ16に近い可動電極10左部分は、固定電極11より固定電極12に近く配置され、アンカ17に近い可動電極10右部分は、固定電極12より固定電極11に近く配置される。
 可動電極10と固定電極12との間に電圧を印加すると、静電引力により可動電極10は固定電極12に引き寄せられる。距離が近い可動電極10の左部分で、固定電極12に可動電極10が引き寄せられ、次第に可動電極10の右側部分も固定電極12に引き寄せられる。可動電極10の右端は、固定電極12より固定電極11に近く配置されているので、固定電極12から離れている。
 図2Cを参照する。可動電極10と固定電極11との間に電圧を印加すると、静電引力により可動電極10は固定電極11に引き寄せられる。可動電極10の右端は固定電極12より固定電極11に近く配置されているので、速やかに固定電極11に引き寄せられ、次第に可動電極10の左側部分も固定電極11に引き寄せられる。
 このように、配向配置された固定電極11、12間で、可動電極は一方で固定電極11に近く、他方で固定電極12に近く、斜めに配置されるので、いずれの固定電極に引き寄せられる場合にも、引力が作用しやすい部分が有り、速やかに変更動作が行える。
 以下、図3A~3Lを参照して、図2Aに示す可変容量素子を含む半導体装置の製造方法の主要プロセスを説明する。
 図3Aに示すように、例えば厚さ300μm~500μmのSi基板51上に、例えば、厚さ約5μmのボンディング酸化シリコン膜52を介して、500Ωcm以上の高抵抗率を有する、厚さ25μmの活性Si層53が結合されたSOI基板を用意する。
 図3Bに示すように、活性Si層53上に固定電極収容用のトレンチTR1,TR2を画定する開口を有するレジストパターンPR1を形成する。レジストパターンPR1はアンカを画定する開口も有する。レジストパターンをマスクとして、例えばディープRIEにより活性Si層53の全厚さをエッチングする。ディープRIEは、SiエッチングガスとしてCF(+O)、SF(+O又は+H)を用いる。その後、レジストパターンPR1は除去する。
 図4Aに示すように、例えば、トレンチTR1,TR2は距離20μmで対向配置された長さ500μmの平行な側面を有する。右側のトレンチTR2が幅広なのは、その上に固定容量を形成するためである。アンカ用トレンチTR3,TR4は固定電極間に可動電極を支持する構成を有する。上側のアンカには、電極が接続される。
 図3Cに示すように、モノシラン、ジシラン等のシラン系ガスとアンモニアガスを用いたCVD又は低圧(LP)CVDにより、基板表面上に厚さ0.1μm~0.5μmの窒化シリコン膜54を堆積する。露出している活性Si層53、ボンディング酸化シリコン膜52表面は窒化シリコン膜54で覆われる。この窒化シリコン膜54は固定電極表面を覆う絶縁膜として機能する。図4Aは透視した形で、トレンチ表面に堆積した窒化シリコン膜54を示す。
 図3Dに示すように、窒化シリコン膜54上に、可動電極を画定する開口を有するレジストパターンPR2を形成し、開口内に露出した活性Si層53の全厚さをディープRIEによりエッチングする。図4Bは開口の平面形状を示す。窒化シリコン膜54堆積後に可動電極用のスリットを形成することにより、可動電極表面には絶縁膜を形成しない。アンカ形成用トレンチ側壁の一部とオーバーラップさせることにより、可動電極とアンカの電気的導通を確保する。
 レジストパターンPR2を除去して図3E,4Cに示す状態とする。トレンチTR1~TR4は活性Si層53の全厚さを除去し、その内面上に窒化シリコン膜54が堆積されている。スリットSは窒化シリコン膜54を有さず、一定の幅、例えば約2μm、で活性Si層53の全厚さを貫通する。
 図3Fに示すように、基板表面に、例えばTi層を厚さ50nm程度堆積し、その上にAu層を厚さ500nm程度堆積してシード層55を形成する。Ti層の代わりに、厚さ50nm程度のCr層を用いることもできる。シード層55は、電解メッキ時の給電層となる。
 図3Gに示すように、メッキ不要部分のシード層55を覆うレジストパターンPR3を形成し、電解メッキでAu層56を堆積し、トレンチTR、スリットSを埋め戻す。なお、Auに代え、Cuを電解メッキすることもできる。その後、レジストパターンPR3は除去し、露出したシード層55はエッチング又はミリングなどにより除去する。
 図3Hに示すように、電極を形成した基板上に、誘電体膜パターニング用のレジストパターンPR4を形成し、酸化シリコン膜、窒化シリコン膜、又は酸化アルミニウム膜等の誘電体膜18を厚さ0.2μm~0.5μmスパッタリングで堆積し、レジストパターンPR4上に堆積した誘電体膜はレジストパターンPR4と共にリフトオフする。
 図3Iに示すように、レジストパターンPR4を除去した基板上に、抵抗素子パターニング用のレジストパターンPR5を形成し、Cr-Si合金膜をスパッタリングで堆積し、レジストパターンPR5上のCr-Si合金膜はリフトオフして除去する。例えば、Si(70-90):Cr(30-10)のスパッタリングターゲットを用いて厚さ0.2μm程度(シート抵抗300-600Ω□)のSi-Cr合金膜を形成し、抵抗素子21,22を形成する。なお、誘電体膜形成前に抵抗膜を形成してもよい。
 図3Jに示すように、レジストパターンPR5を除去した基板上に、電極パターニング用のレジストパターンPR6を形成し、Ti/Au積層又はTi/Al積層の電極をスパッタリングで厚さ1μm程度堆積し、レジストパターンPR6上の電極はリフトオフして除去する。図4Dに示す電極19,23,24,25がこのようにして形成される。
 図3Kに示すように、固定電極間の領域に開口を有するレジストパターンPR7を基板上に形成し、CHFガスを用いたドライエッチングで窒化シリコン膜54をエッチングし、露出したシリコン層をSFガスとCFガスとを用いたディープRIEにより除去する。図4Eにおいて、斜線を付した領域がエッチング対象領域となる。
 図3Lに示すように、露出した酸化シリコン膜52をCFガスを用いたドライエッチングで除去する。なお、酸化シリコン膜のエッチングはバッファード弗酸を用いたウェットエッチングやベーパード弗酸による気相エッチングで除去することもできる。等方性を有するエッチングで酸化シリコン膜を除去すると、サイドエッチングにより、露出領域から周囲に入り込んだ領域で酸化シリコン膜が除去される。このようにして、図2Aに示す、可変容量を有する半導体装置を作製することができる。
 可変容量は、オン状態とオフ状態とで、例えば0.9pF(オフ状態)~5.6pF(オン状態)程度の、容量変化を示す。 
 図5Aは、このようにして構成された可変容量の応用回路の1例を示す等価回路図である。高周波線路31-25-32のノード25に可動電極10が接続され、固定電極11,12との間に可変容量33,34を形成している。固定電極11は、固定容量35を介して接地されると共に、抵抗素子21を介してスイッチSWの端子24に接続される。他方の固定電極12は抵抗素子22を介してスイッチSWの他方の端子23に接続され、可変容量回路39を構成している。スイッチSWの切り換え端子と高周波線路との間に直流電源36とインダクタ37の直列接続が接続される。リークを実質的に防止するため、抵抗素子21,22は10kΩ以上であり、インダクタは約100nH以上である。
 高周波信号線路31-25-32に可変容量33,34を接続し、可変容量33とグランドとの間に固定容量35を接続し、可変容量33,34と外部電源36との間に抵抗素子21,22が接続される。外部電源36の他方の極と高周波信号線路31-25-32との間にはインダクタ37が接続され、高周波成分を遮断している。抵抗素子21,22により、高周波信号線路31-25-32に流れる信号の外部電源36への漏れを防止している。固定容量35により外部電源とグランドとの間の短絡を防止している。可動電極10が、固定電極11側に引き寄せられるか、固定電極12側に引き寄せられるかで2つのデジタル状態の一方が選択される。
 図5Bは、応用回路の他の構成例を示す等価回路図である。高周波信号線路31-25-32に複数の可変容量回路39-1、・・・39-iが接続され、外部電源36-1、・・・36-iを介して共通インダクタ37に接続されている。複数の可変容量回路は容量値に差があり、複数ビットに対応する。多ビット回路に適した構成である。
 第2の実施例においては、アンカと可動電極の接続位置により、可動電極を対向固定電極間の空間において斜めに配置し、可動電極の位置変更を容易にした。さらに、可動電極の移動範囲を制限するストッパを設けることもできる。
 図6Aに示すように、アンカ16,17に並べてストッパ41a。41bを配置する。ストッパ41aはアンカ16と共に、可動電極10を固定電極12近傍の空間内に配置させる。ストッパ41bはアンカ17と共に、可動電極10を固定電極11近傍の空間内に配置させる。言い換えれば、可動電極10が固定電極11に近い右端部分で、可動電極10と固定電極12の間にストッパ41bが配置され、可動電極10が固定電極12に近づくのを防止する。可動電極10が固定電極12に近い左端部分で、可動電極10と固定電極11の間にストッパ41aが配置され、可動電極10が固定電極11に近づくのを防止する。
 各固定電極近傍に配置される幅を確保することにより、駆動時に確実に可動電極に駆動力を印加することができよう。ストッパ41は、図3Bに示すエッチング時のパターンを変更することで形成できる。図3C,4Aに示す工程においてストッパ表面には絶縁膜が形成される。なお、ストッパを4角柱形状にすると、角部が可動電極に過度の応力を印加氏、可動電極を変形させる可能性もある。
 図6Bに示すように、角部を丸め込んだり、図6Cに示すように円柱形上にしたり、図6Dに示すように多角柱形状にして、可動電極に印加され得る応力を緩和することもできる。
 以上、実施例に沿って本発明を説明したが、本発明はこれらに限られるものではない。例示としてあげた材料、数値は限定的なものではない。例えば、SOI基板に代えて、支持基板上にエッチング特性の異なる2層の犠牲層を有する積層基板を用いて、図3A~3Lに示す如き工程を行い、図1A,図2Aに示す如き構成を製造することも可能である。その場合、図2Aに示すボンディング酸化シリコン膜52、活性シリコン層53をエッチング特性の異なる犠牲膜とする。コントロールエッチング等を利用することにより支持基板上に単層の犠牲膜を有する積層基板を用いることもできる。種々の周知技術を取り込むことも可能である。その他、種々の変更、置換、改良、修正、組み合わせ等が可能なことは当業者に自明であろう。
 

Claims (20)

  1.  物理的支持を与える支持基板と、
     前記支持基板上に形成され、前記支持基板表面に垂直方向の支持部を有する、1対のアンカと、 
     前記1対のアンカの支持部に支持され、対向する第1、第2の側面が電極面を構成し、少なくとも一部弾性変形可能な可動電極と、
     前記支持基板上に支持され、前記可動電極の第1の側面に対向する第1の電極面を有する第1の固定電極と、
     前記支持基板上に支持され、前記可動電極の第2の側面に対向する第2の電極面を有する第2の固定電極と、
    を有する可変容量素子を有する電子機器。
  2.  前記第1の固定電極の第1の電極面上に配置された第1の絶縁膜と、
     前記第2の固定電極の第2の電極面上に配置された第2の絶縁膜と、
    をさらに有する請求項1記載の可変容量素子を有する電子機器。
  3.  前記可動電極は金属シートで形成された、請求項2記載の可変容量素子を有する電子機器。
  4.  前記第1の固定電極の第1の電極面と前記第2の固定電極の第2の電極面との間の空間において、前記可動電極は1端では前記第2の電極面より前記第1の電極面に近く、他端では前記第1の電極面より前記第2の電極面に近く配置されている、請求項3記載の可変容量素子を有する電子機器。
  5.  前記1対のアンカの一方の支持部は前記第2の電極面より前記第1の電極面に近く配置され、前記1対のアンカの他方の支持部は前記第1の電極面より前記第2の電極面に近く配置されて、前記可動電極を支持している請求項4記載の可変容量素子を有する電子機器。
  6.  前記第1の電極面と前記第2の電極面とが平行であり、前記1対のアンカが前記第1の電極面と前記第2の電極面との間の空間において、前記可動電極を前記第1、第2の電極面に対して斜めに配置する請求項4記載の可変容量素子を有する電子機器。
  7.  前記第1、第2の固定電極、前記1対のアンカ、前記可動電極は同一の金属材料から形成されている、請求項4記載の可変容量素子を有する電子機器。
  8.  前記金属材料はAuまたはCuを含む、請求項7記載の可変容量素子を有する電子機器。
  9.  前記1対のアンカの内側領域で、前記可動電極の位置を前記第1の固定電極側及び前記第2の固定電極側に規制する第1及び第2のストッパ、
    をさらに有する請求項2記載の可変容量素子を有する電子機器。
  10.  前記第1及び第2のストッパは、前記支持基板上に形成されたボンディング酸化シリコン膜、前記ボンディング酸化シリコン膜上に形成されたシリコン層を含む請求項9記載の可変容量素子を有する電子機器。
  11.  前記第1、第2の固定電極の一方に接続された固定容量、
    をさらに有する、請求項2記載の可変容量素子を有する電子機器。
  12.  前記第1、第2の固定電極に接続された第1、第2の抵抗素子、
    をさらに有する、請求項2記載の可変容量素子を有する電子機器。
  13.  支持基板上に犠牲層を有する基板を準備し、
     前記基板の表面に対向する固定電極形状の開口を有する第1マスクを形成し、
     前記第1マスクの開口に露出した前記犠牲層をエッチングして、固定電極収容用のトレンチを形成し、
     前記基板の表面に、前記固定電極間に配置される可動電極形状のスリット状開口を有する第2マスクを形成し、
     前記スリット状開口に露出した前記犠牲膜をエッチングして、可動電極収容用のスリットを形成し、
     前記トレンチ内、及び前記スリット内に金属材料を堆積すること、
    を含む可変容量を有する電子機器を製造する方法。
  14.  前記トレンチを形成した後、前記トレンチ内面上に絶縁膜を形成し、
     その後、前記第2マスクを形成し、前記スリットを形成する、
    請求項13記載の可変容量を有する電子機器を製造する方法。
  15.  前記金属材料を堆積する際、
     前記トレンチ、前記トレンチ内面を覆うシード層を形成し、
     不要部分の上にレジストパターンを形成し、
     金属材料の電解メッキを行い、
     レジストパターンを除去し、
     露出したシード層を除去する、
    請求項14記載の可変容量を有する電子機器を製造する方法。
  16.  前記金属材料を堆積した後、
     前記固定電極の一方の上に誘電体膜を形成し、
     前記誘電体膜の上に導電層を形成して固定容量を形成する、
    請求項15記載の可変容量を有する電子機器を製造する方法。
  17.  前記導電層を形成する前に、前記固定電極に接続された抵抗素子を形成し、
     前記導電層を形成する際、前記抵抗素子に接続される電極も形成する、
    請求項16記載の可変容量を有する電子機器を製造する方法。
  18.  前記誘電体膜の形成、前記導電層の形成、前記抵抗素子の形成の少なくとも1つは、
     所定形状の開口を有するレジストパターンを形成し、
     前記誘電体膜、前記導電層、または前記抵抗素子の層をスパッタリングで形成し、
     前記レジストパターンを除去すると共に、その上の膜をリフトオフする、
    請求項17記載の可変容量を有する電子機器を製造する方法。
  19.  前記犠牲層がエッチング特性の異なる、下部犠牲膜と上部犠牲層の積層であり、
     前記導電層を形成した後、
     前記固定電極間の前記上部犠牲層をエッチング除去し、
     露出した下部犠牲膜に対し、サイドエッチングを含むエッチングを行なうことにより、前記可動電極と前記支持基板との間に空間を形成する、
    請求項14記載の可変容量を有する電子機器を製造する方法。
  20.  前記下部犠牲膜が酸化シリコンで形成され、前記上部犠牲層がシリコン層で形成されている請求項19記載の可変容量を有する電子機器を製造する方法。
     
PCT/JP2011/001542 2011-03-16 2011-03-16 可変容量素子を有する電子機器とその製造方法 WO2012123991A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013504402A JP5545410B2 (ja) 2011-03-16 2011-03-16 可変容量素子を有する電子機器とその製造方法
CN201180069245.4A CN103430260B (zh) 2011-03-16 2011-03-16 具有可变电容元件的电子设备及其制造方法
PCT/JP2011/001542 WO2012123991A1 (ja) 2011-03-16 2011-03-16 可変容量素子を有する電子機器とその製造方法
US13/973,165 US9312071B2 (en) 2011-03-16 2013-08-22 Electronic device having variable capacitance element and manufacture method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/001542 WO2012123991A1 (ja) 2011-03-16 2011-03-16 可変容量素子を有する電子機器とその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/973,165 Continuation US9312071B2 (en) 2011-03-16 2013-08-22 Electronic device having variable capacitance element and manufacture method thereof

Publications (1)

Publication Number Publication Date
WO2012123991A1 true WO2012123991A1 (ja) 2012-09-20

Family

ID=46830131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001542 WO2012123991A1 (ja) 2011-03-16 2011-03-16 可変容量素子を有する電子機器とその製造方法

Country Status (4)

Country Link
US (1) US9312071B2 (ja)
JP (1) JP5545410B2 (ja)
CN (1) CN103430260B (ja)
WO (1) WO2012123991A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101272983B1 (ko) * 2011-12-20 2013-06-11 엘지이노텍 주식회사 커패시터
JP7123881B2 (ja) * 2019-08-28 2022-08-23 株式会社東芝 センサ

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004074341A (ja) * 2002-08-15 2004-03-11 Murata Mfg Co Ltd 半導体装置
US20050155851A1 (en) * 2002-10-21 2005-07-21 Hrl Laboratories, Llc. Variable capacitance membrane actuator for wide band tuning of microstrip resonators and filters
JP2005209625A (ja) * 2003-12-22 2005-08-04 Matsushita Electric Ind Co Ltd Memsスイッチ
JP2008182134A (ja) * 2007-01-26 2008-08-07 Fujitsu Ltd 可変キャパシタ
JP2009059866A (ja) * 2007-08-31 2009-03-19 Omron Corp 素子集合体及びその製造方法
JP2009233836A (ja) * 2008-03-28 2009-10-15 Yamaha Corp Memsおよびmems製造方法
JP2009252672A (ja) * 2008-04-10 2009-10-29 Fujitsu Ltd スイッチング素子製造方法およびスイッチング素子
JP2010199214A (ja) * 2009-02-24 2010-09-09 Oki Semiconductor Co Ltd Memsチューナブルキャパシタ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5901031A (en) * 1995-02-01 1999-05-04 Murata Manufacturing Co., Ltd. Variable capacitor
US6065341A (en) * 1998-02-18 2000-05-23 Denso Corporation Semiconductor physical quantity sensor with stopper portion
JP3489534B2 (ja) 2000-04-20 2004-01-19 トヨタ自動車株式会社 センサ装置及びセンサ素子
US6597560B2 (en) * 2001-03-13 2003-07-22 Rochester Institute Of Technology Micro-electro-mechanical varactor and a method of making and using thereof
EP1343190A3 (en) * 2002-03-08 2005-04-20 Murata Manufacturing Co., Ltd. Variable capacitance element
JP4410085B2 (ja) 2004-11-24 2010-02-03 日本電信電話株式会社 可変容量素子及びその製造方法
JP4484778B2 (ja) * 2005-07-08 2010-06-16 富士フイルム株式会社 微小薄膜可動素子および微小薄膜可動素子アレイ並びに微小薄膜可動素子の駆動方法
JP2010199241A (ja) 2009-02-24 2010-09-09 Fujitsu Ltd 半導体装置
JP2011018831A (ja) * 2009-07-10 2011-01-27 Toshiba Corp 可変容量素子
JP5204066B2 (ja) * 2009-09-16 2013-06-05 株式会社東芝 Memsデバイス

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004074341A (ja) * 2002-08-15 2004-03-11 Murata Mfg Co Ltd 半導体装置
US20050155851A1 (en) * 2002-10-21 2005-07-21 Hrl Laboratories, Llc. Variable capacitance membrane actuator for wide band tuning of microstrip resonators and filters
JP2005209625A (ja) * 2003-12-22 2005-08-04 Matsushita Electric Ind Co Ltd Memsスイッチ
JP2008182134A (ja) * 2007-01-26 2008-08-07 Fujitsu Ltd 可変キャパシタ
JP2009059866A (ja) * 2007-08-31 2009-03-19 Omron Corp 素子集合体及びその製造方法
JP2009233836A (ja) * 2008-03-28 2009-10-15 Yamaha Corp Memsおよびmems製造方法
JP2009252672A (ja) * 2008-04-10 2009-10-29 Fujitsu Ltd スイッチング素子製造方法およびスイッチング素子
JP2010199214A (ja) * 2009-02-24 2010-09-09 Oki Semiconductor Co Ltd Memsチューナブルキャパシタ

Also Published As

Publication number Publication date
JPWO2012123991A1 (ja) 2014-07-17
CN103430260A (zh) 2013-12-04
US20130342954A1 (en) 2013-12-26
CN103430260B (zh) 2016-03-30
JP5545410B2 (ja) 2014-07-09
US9312071B2 (en) 2016-04-12

Similar Documents

Publication Publication Date Title
US10160635B2 (en) MEMS device and process for RF and low resistance applications
US9728653B2 (en) MEMS device
KR100499823B1 (ko) 정전 액추에이터 및 해당 액추에이터를 이용한 정전마이크로 릴레이와 그 밖의 기기
JP3890952B2 (ja) 容量可変型キャパシタ装置
JP4414263B2 (ja) マイクロスイッチング素子およびマイクロスイッチング素子製造方法
JP4879760B2 (ja) マイクロスイッチング素子およびマイクロスイッチング素子製造方法
JP5193639B2 (ja) マイクロマシン装置及びマイクロマシン装置の製造方法
JP2003258502A (ja) Rfmems素子
KR20120114167A (ko) 전기기계 변환장치 및 그 제조방법
US8901709B2 (en) Electrical device having movable electrode
JP2008146939A (ja) マイクロスイッチング素子
JP2006261515A (ja) ウエットエッチング方法、マイクロ可動素子製造方法、およびマイクロ可動素子
JP5881635B2 (ja) Mems装置
JP5545410B2 (ja) 可変容量素子を有する電子機器とその製造方法
TW201230114A (en) Electrostatically actuated micro-mechanical switching device
US20120255841A1 (en) Rf mems switch device and manufacturing method thereof
KR20130060115A (ko) 전자 디바이스와 그 제조 방법
CN111627759B (zh) 一种基于驻极体的可重构驱动电压rf mems开关及其制备方法
JP4628275B2 (ja) マイクロスイッチング素子およびマイクロスイッチング素子製造方法
JP2010225654A (ja) 半導体装置
JP5227566B2 (ja) アクチュエータ
JP2009252516A (ja) Memsスイッチ
WO2013051064A1 (ja) Memsスイッチ
JP2010221307A (ja) 電気装置
KR100357164B1 (ko) 마이크로 가변 커패시터

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180069245.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861023

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013504402

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11861023

Country of ref document: EP

Kind code of ref document: A1