WO2012120994A1 - 制御装置 - Google Patents

制御装置 Download PDF

Info

Publication number
WO2012120994A1
WO2012120994A1 PCT/JP2012/053944 JP2012053944W WO2012120994A1 WO 2012120994 A1 WO2012120994 A1 WO 2012120994A1 JP 2012053944 W JP2012053944 W JP 2012053944W WO 2012120994 A1 WO2012120994 A1 WO 2012120994A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
module
power
unit
identification information
Prior art date
Application number
PCT/JP2012/053944
Other languages
English (en)
French (fr)
Inventor
和正 大澤
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to JP2013503440A priority Critical patent/JP5633764B2/ja
Priority to CN201280011343.7A priority patent/CN103403635B/zh
Priority to EP12754789.1A priority patent/EP2682831A4/en
Publication of WO2012120994A1 publication Critical patent/WO2012120994A1/ja
Priority to US14/016,230 priority patent/US9229509B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0428Safety, monitoring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/05Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts
    • G05B19/058Safety, monitoring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/10Plc systems
    • G05B2219/11Plc I-O input output
    • G05B2219/1198Activate output only if power of the output signal is sufficient
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/10Plc systems
    • G05B2219/15Plc structure of the system
    • G05B2219/15096Cpu controls power supply on I-O modules
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/21Pc I-O input output
    • G05B2219/21151Activate output only if power sufficient

Definitions

  • the present invention relates to a building block type control device having a plurality of modules.
  • Patent Document 1 a building block type control device configured by connecting a plurality of modules is known (for example, see Patent Document 1).
  • This prior art control device programmable controller
  • the CPU module determines the suitability of the power supply capacity of the power supply module following the initialization process.
  • the motor control module, the communication module, the signal processing module, and other high-function modules are provided with a processor for performing logical operations and the like.
  • the current consumption is small even when determining the suitability of the power supply capacity.
  • the power supply capacity is insufficient when determining the suitability of the power supply capacity, the power supply voltage from the power supply module is lowered or the power supply is cut off. As a result, there is a possibility that normal processor operation cannot be obtained and the suitability of the power supply capacity cannot be accurately determined.
  • the present invention has been made in view of such problems, and provides a control device capable of accurately determining the suitability of a power supply capacity regardless of the power supply capacity of the power supply module provided. With the goal.
  • a control device of the present invention is a building block type control device including a plurality of modules including at least a power supply module and a CPU module, and the CPU module includes a power supply capacity of the power supply module.
  • a processor having a determination control function for determining suitability of the power supply capacity of the power supply module by comparing the total current consumption of each module other than the power supply module, Supplying a first power source used for determining compatibility of the power source capacity including a power source supplied to the processor and a second power source used for other purposes as at least two independent power systems; To do.
  • FIG. 1 is a configuration diagram conceptually illustrating an example of an overall configuration of a programmable controller according to an embodiment. It is explanatory drawing which represents notionally the structure of each module with which the programmable controller was equipped, the signal path
  • 3 is a block diagram conceptually showing details of an ID reading circuit block.
  • FIG. 3 is a timing chart conceptually showing output timings of various signals.
  • FIG. 3 is a block diagram conceptually showing details of a unit ID. It is a flowchart showing the content of the control processing performed by a microprocessor.
  • FIG. 6 is an explanatory diagram conceptually showing the configuration of each module equipped in the programmable controller, the signal path between each module, and the energization path between each module in a modification in which the microprocessor itself reads the unit ID from each module. is there. It is a flowchart showing the content of the control processing performed by a microprocessor based on the program stored in the program storage part. It is explanatory drawing which represents notionally the structure of each module with which the programmable controller was equipped in the modification which controls supply of a 2nd power supply with an enable signal, the signal path
  • the programmable controller 1 (control device) of the present embodiment is a building block type controller including a plurality of modules including a power supply module 100 and a CPU module 200, and has a predetermined direction (FIG. 1).
  • a plurality of functional modules 300 can be added in the middle and left and right directions.
  • the building block format is a format in which modules are box-shaped (blocks) and modules are added in units of blocks. Examples of the functional module 300 that can be added include a discrete I / O module, an analog I / O module, a pulse I / O module, a communication module, and a motion module that controls driving of a motor.
  • High-functional functional modules such as communication modules and motion modules are equipped with a processor such as a microprocessor.
  • the programmable controller 1 includes a power supply module 100, a CPU module 200, and two functional modules 300A and 300B in this order from the left side to the right side in FIG.
  • Connectors 101L and 101R are provided on both sides of the power supply module 100
  • connectors 201L and 201R are provided on both sides of the CPU module 200
  • connectors 301L and 301R are provided on both sides of each functional module 300A and 300B. It has been.
  • the connectors of the adjacent modules are respectively fitted, that is, the connector 101R of the power supply module 100 and the connector 201L of the CPU module 200 are fitted, and the connector 201R of the CPU module 200 and the connector 301L of the functional module 300A.
  • the connector 301R of the functional module 300A and the connector 301L of the functional module 300B are fitted, whereby the power supply module 100, the CPU module 200, and the functional modules 300A and 300B are connected to each other.
  • the programmable controller 1 includes the power supply module 100, the CPU module 200, and the functional modules 300A and 300B in this order from the left side to the right side will be described as an example.
  • the power supply module 100 includes a converter 102 (first power supply device) connected to a primary power supply 400 of AC (Alternating Current) or DC (Direct Current), a relay 103, and identification information of itself. And a unit ID section 104 (identification information output section) that outputs an ID signal corresponding to the unit ID.
  • the converter 102 generates a power supply voltage (VCC) based on the commercial power supplied from the primary power supply 400, and supplies the generated power supply voltage as the first power supply via the first power supply system line L1.
  • the power supply voltage is supplied as the second power supply via the relay 103 and the second power supply system line L2. In other words, this corresponds to generating the first power supply and the second power supply and supplying the generated first power supply and second power supply as two independent power supply systems.
  • the first power source is a power source used for determining the suitability of the power source capacity of the power source module 100 described later, including the power source supplied to the microprocessor 202 of the CPU module 200 described later, and the second power source is other than that ( For example, it is a power source used for data exchange between the CPU module 200 and each of the function modules 300A and 300B, and for operating a microprocessor of each of the function modules 300A and 300B.
  • the second power source is supplied via one second power source line L2 (supplied as one power source system).
  • the present invention is not limited to this, and the second power source line is supplied via two or more power source lines. May be supplied (supplied as two or more power supply systems).
  • the relay 103 switches between cutoff and supply of the second power from the converter 102 by opening and closing the contact. That is, the second power supply from the converter 102 is shut off by opening the contact, and the second power supply from the converter 102 is supplied via the second power supply system line L2 by closing the contact.
  • the functional module 300A includes a microprocessor, an I / O unit, and a communication unit (not shown), and performs data exchange with the microprocessor, the I / O unit, the communication unit, the CPU module 200, and the functional module 300B. It has a module control unit 302A having a bus function, a unit ID unit 303A (identification information output unit) that outputs an ID signal corresponding to its own unit ID, and a pull-down resistor 304A.
  • the functional module 300B includes a microprocessor, an I / O unit, and a communication unit (not shown), and performs data exchange with the microprocessor, the I / O unit, the communication unit, the CPU module 200, and the functional module 300A.
  • a module control unit 302B having a bus function, a unit ID unit 303B (identification information output unit) that outputs an ID signal corresponding to its own unit ID, and a pull-down resistor 304B are included.
  • the CPU module 200 corresponds to a microprocessor 202 (processor) that performs various types of overall control, a bus control unit 203 having a bus function for exchanging data with each of the functional modules 300A and 300B, and its own unit ID.
  • a unit ID section 204 (identification information output section) for outputting an ID signal
  • a data table storage section 205 (first storage section)
  • an ID reading circuit block 206 (identification information reading section)
  • a status display for performing various displays
  • a portion 207 (display portion) and a pull-down resistor 208 are included.
  • the microprocessor 202 includes the power supply capacity of the power supply module 100 that is the capacity of the power supply output from the converter 102 of the power supply module 100 and the current consumption of each module other than the power supply module 100, that is, the CPU module 200 and the functional modules 300A and 300B. And a determination control function for determining suitability of the power supply capacity of the power supply module 100 by comparing with the total value of the power supply module 100.
  • the microprocessor 202 determines that the power supply capacity of the power supply module 100 is suitable, the microprocessor 202 further determines whether or not the power supply module 100 can be replaced with a power supply module having a smaller capacity on the corresponding product lineup. . Details of the determination performed by the microprocessor 202 will be described later.
  • the data table storage unit 205 is composed of a nonvolatile memory.
  • the data table storage unit 205 includes data composed of unit IDs of a plurality of modules and module information corresponding to the unit IDs (power supply capacity information of power supply modules, current consumption information of CPU modules and functional modules, etc.).
  • the table is stored.
  • a nonvolatile memory provided in the microprocessor 202 may store the data table. That is, a nonvolatile memory provided in the microprocessor 202 may be used as the first storage unit.
  • FIG. 3A shows an example of the configuration of the unit ID of the power supply module 100 and an example of a data table including unit IDs of a plurality of power supply modules and module information corresponding to the unit IDs.
  • the unit ID of the power supply module 100 is composed of 8 bits (1 byte), that is, ID0 to ID7.
  • ID0 to ID2 is “PS_ID”
  • ID3 to ID6 is “Spare”
  • ID7 is “1”
  • ID0 to ID2 which is “PS_ID” is used to indicate the power supply capacity information of the power supply module 100.
  • Module information including is shown. Note that ID3 to ID6, which are “Spare”, are not currently used to represent module information, and are areas used to represent module information together with ID0 to ID2 in the future.
  • ID0 to ID2 which are “PS_ID” among the 8-bit unit IDs of ID0 to ID7 are shown (ID3 to ID7 are not shown).
  • ID3 to ID7 are not shown.
  • “DC 24V input” is entered in the “Specification” column as module information of the power supply module to which unit IDs “2”, “0”, “0” are assigned as “PS_ID” ID2, ID1, and ID0.
  • VCC3A output is entered ".
  • FIG. 3B shows an example of the configuration of unit IDs of the CPU module 200 and the functional module 300, and a data table including unit IDs of a plurality of CPU modules and functional modules and module information corresponding to the unit IDs. An example is shown.
  • the unit ID of the CPU module 200 is composed of ID0 to ID7, similar to the unit ID of the power supply module 100.
  • ID0 to ID5 are “UNIT_ID”
  • ID6 is “0”
  • ID7 is “1”
  • “UNIT_ID” ID0 to ID5 and ID6 “0” are used for the CPU module 200.
  • Module information including current consumption information is shown.
  • the unit ID of the functional module 300 is composed of ID0 to ID7, similar to the unit IDs of the power supply module 100 and the CPU module 200.
  • ID0 to ID5 are “UNIT_ID”, ID6 is “1”, ID7 is “1”, and “UNIT_ID” ID0 to ID5 and ID6 “1” are used to set the function module 300.
  • Module information including current consumption information is shown.
  • ID0 to ID5 and ID6 which are “UNIT_ID” are shown among the 8-bit unit IDs of ID0 to ID7 (illustration of ID7 is omitted).
  • ID6 and “UNIT_ID” ID5, ID4, ID3, ID2, ID1, ID0 are assigned unit IDs “0” “0” “0” “0” “0” “0”.
  • module information of the received modules that is, functional modules
  • “DC input unit 32 points” is stored in the “Specification” column and “0.2” is stored in the “Current consumption (A)” column.
  • the ID read circuit block 206 outputs a CLK signal, which is a unit ID output command, to the unit ID sections 104, 204, 303A, and 303B of the power supply module 100, the CPU module 200, and the functional modules 300A and 300B. To do. At the same time, the ID signals output from the unit ID sections 104, 204, 303A, and 303B are input according to the CLK signal, and the corresponding unit ID is stored. As shown in FIG. 4, the ID read circuit block 206 includes an oscillation circuit block 2061, a CLK control block 2062, an LD control block 2063, a terminal code detection block 2064, a data set block 2066, and a unit ID register 2067. A read buffer 2068 and an address decoder 2069.
  • the oscillation circuit block 2061 generates CLK original oscillation.
  • the CLK control block 2062 outputs the CLK signal to each of the unit ID units 104, 204, 303A, and 303B based on the CLK original oscillation generated from the oscillation circuit block 2061.
  • the original oscillation clock is connected to the CLK control block 2062, but it may be shared with the clock source supplied to the microprocessor 202.
  • the LD control block 2063 outputs an LD signal that causes each unit ID section 104, 204, 303A, 303B to preset a unit ID.
  • the terminal code detection block 2064 includes a shift register 2065. The terminal code detection block 2064 constantly monitors eight consecutive ID signals latched by the shift register 2065 and detects a terminal code.
  • the data set block 2066 sets a unit ID to the unit ID register 2067 based on the ID signal from each unit ID section 104, 204, 303A, 303B.
  • the unit ID is read from the unit ID register 2067 to the read buffer 2068.
  • the address decoder 2069 outputs an area selection signal to the unit ID register 2067.
  • the status display unit 207 is configured by a lamp such as an LED (Light Emitting Diode), a liquid crystal display, or the like.
  • the status display unit 207 displays a predetermined error or warning (details will be described later) in accordance with the result of the determination performed by the microprocessor 202.
  • the programmable controller 1 configured as described above, as shown in FIG. 2, when the power of the programmable controller 1 is turned on, commercial power is supplied from the primary-side power supply 400 to the converter 102 of the power supply module 100, and the power supply First, only the first power is supplied from the module 100 to the other CPU modules 200 and the functional modules 300A and 300B. That is, the first power generated by the converter 102 is energized to the first power supply line L1, and the unit ID section 104 of the power supply module 100 and the status display section 207 of the CPU module 200 are connected via the first power supply line L1.
  • the first power is supplied to the unit ID unit 204, the ID reading circuit block 206, the microprocessor 202, and the unit ID units 303A and 303B of the functional modules 300A and 300B.
  • the power of the programmable controller 1 when the power of the programmable controller 1 is turned on, the contact of the relay 103 is opened, the second power generated by the converter 102 is cut off, and the CPU module 200 and the functional module 300A from the power module 100 are cut off. , 300B, the second power is not supplied. In other words, the second power is not supplied to the bus control unit 203 of the CPU module 200 and the module control units 302A and 302B of the functional modules 300A and 300B via the second power supply line L2.
  • the power supply module 100 when the power supply of the programmable controller 1 is turned on, the power supply module 100 only supplies the first power supply to the other CPU modules 200 and the functional modules 300A and 300B via the first power supply line L1. To supply.
  • the microprocessor 202 of the CPU module 200 executes a predetermined initialization process, and then the ID An activation request is output to the LD control block 2063 of the read circuit block 206.
  • the LD control block 2063 first outputs an LD signal to the unit ID sections 104, 204, 303A, and 303B of the power supply module 100, the CPU module 200, and the functional modules 300A and 300B. To do.
  • each unit ID section 104, 204, 303A, 303B is a shift register in which eight flip-flops capable of holding 1-bit data (“0” or “1”) are cascade-connected.
  • Each of the unit ID units 104, 204, 303A, and 303B is connected in series with a pull-up resistor and a pull-down resistor.
  • the unit IDs of the power supply module 100, the CPU module 200, and the functional module 300 are each composed of 8 bits, that is, ID0 to ID7.
  • “00000000” in which all of ID0 to ID7 are “0” cannot be assigned as a unit ID.
  • ID0 to ID6 are “0” and “1”, that is, pull-up (H level) / pull-down (L level) is different for each module, and ID7 is fixed to “1”, that is, pull-up (H level). .
  • Each unit ID section 104, 204, 303A, 303B when pulsed with the LD signal from the LD control block 2063, converts the 8-bit data composed of ID0 to ID7 into the corresponding H, G, F, E. , D, C, B, A are input to the eight flip-flops in the shift register one bit at a time, and set as a unit ID.
  • the LD control block 2063 After outputting the LD signal as described above, the LD control block 2063 outputs a CLK start request to the CLK control block 2062.
  • the CLK control block 2062 continuously outputs a CLK signal to each of the unit ID units 104, 204, 303A, and 303B.
  • the CLK control block 2062 outputs the CLK signal once, the data is shifted by one stage in the shift registers of the unit ID units 104, 204, 303A, and 303B.
  • the first-stage flip-flop (the flip-flop corresponding to the input of A) of the shift register in the unit ID section 303B of the functional module 300B not provided with the module on the right side is connected to the pull-down resistor 304B. “0” in which the GND potential is applied is input.
  • Is output as an ID signal and input to the first-stage flip-flop (a flip-flop corresponding to the input of A) of the shift register in the unit ID portion of the module provided on the left side of the module.
  • the data held in the flip-flop of the last-stage shift register in the unit ID unit 104 of the power supply module 100 is output as an ID signal and input to the terminal code detection block 2064 and the data set block 2066.
  • the terminal code detection block 2064 constantly monitors the input ID signal, and an ID signal of “0” by the action of the GND potential connected to the pull-down resistor 304B of the functional module 300B not provided with the module on the right side is 8 If the terminal code “00000000” is detected, the unit ID is read from all modules, that is, the power supply module 100, the CPU module 200, and the functional modules 300A and 300B. Then, a CLK stop request is output to the CLK control block 2062.
  • the CLK control block 2062 When the CLK control block 2062 receives a CLK stop request from the terminal code detection block 2064, the CLK control block 2062 stops outputting the CLK signal to each of the unit ID units 104, 204, 303 A, and 303 B and outputs a completion signal to the microprocessor 202. To do.
  • the ID signal is also input to the data set block 2066, and the data set block 2066 converts the input ID signal into 8-bit unit (1 byte unit) parallel data (unit ID or terminal). Code “00000000”) and set in the unit ID register 2067.
  • the microprocessor 202 When the completion signal from the CLK control block 2062 is input, the microprocessor 202 outputs a control signal to the address decoder 2069 via the address bus and causes the unit ID register 2067 to output an area selection signal. At the same time, a read signal is output to the read buffer 2068, and the 8-bit parallel data set in the unit ID register 2067 is read in order from the upper address in units of 1 byte (or in units of 1 word). The read data is acquired in order via the data bus. Thereby, unit ID is acquired in order about all of power supply module 100, CPU module 200, and functional modules 300A and 300B. Finally, by acquiring the terminal code “00000000”, it is possible to recognize that the unit ID read immediately before was the last unit ID (unit ID of the functional module 300B).
  • the microprocessor 202 accesses the data table stored in the table data storage unit 205, and based on the acquired unit ID, corresponding module information, that is, the power supply module 100, the CPU module 200, and the functional module 300A. , 300B, module information is acquired. Then, the microprocessor 202 uses the acquired module information to determine suitability of the power supply capacity of the power supply module 100, and when determining that the power supply capacity of the power supply module 100 is suitable, the relay of the power supply module 100 A control signal is output to 103 and the contact of relay 103 is closed. As a result, the second power generated by the converter 102 is supplied from the power supply module 100 to the other CPU modules 200 and the functional modules 300A and 300B. That is, the second power is supplied to the bus control unit 203 of the CPU module 200 and the module control units 302A and 302B of the functional modules 300A and 300B via the second power supply line L2.
  • the bus controller 203 of the CPU module 200 When the bus controller 203 of the CPU module 200 is energized, the bus function of the bus controller 203 operates normally, and the module controllers 302A and 302B of the functional modules 300A and 300B are energized.
  • the bus functions of the module control units 302A and 302B operate normally.
  • the CPU module 200 and the functional modules 300A and 300B start normal operation, and data exchange between the CPU module 200 and the functional modules 300A and 300B becomes possible, so that the programmable controller 1 operates normally. Be started.
  • step S10 the microprocessor 202 executes a predetermined initialization process.
  • step S20 the microprocessor 202 outputs an activation request to the LD control block 2063 of the ID reading circuit block 206.
  • step S30 the microprocessor 202 determines whether or not a completion signal is input from the CLK control block 2062 of the ID read circuit block 206. Until the completion signal is input, the determination in step S30 is not satisfied and the loop waits. When the completion signal is input, the determination in step S30 is satisfied and the process proceeds to step S40.
  • step S40 the microprocessor 202 outputs a control signal to the address decoder 2069 of the ID read circuit block 206 and also outputs a read signal to the read buffer 2068 of the ID read circuit block 206.
  • the 8-bit parallel data (unit ID or terminal code “00000000”) set in the unit ID register 2067 is read out in order from the upper address in units of 1 byte, and the read data is obtained in order. Thereby, unit ID is acquired about all of the power supply module 100, CPU module 200, and functional module 300A, 300B.
  • step S50 the microprocessor 202 accesses the data table stored in the table data storage unit 205, and based on the unit ID acquired in step S40, the corresponding module information, that is, the power supply module 100, the CPU module. Module information is acquired for all of the 200 and functional modules 300A and 300B.
  • step S60 the microprocessor 202 refers to the current consumption information in the module information of the CPU modules 200 and functional modules 300A and 300B other than the power supply module 100 acquired in step S50, and the current consumption of the CPU module 200 is determined.
  • the information and the current consumption of each functional module 300A, 300B are integrated, and the total value of the current consumption of the CPU module 200 and functional module 300A, 300B is calculated.
  • step S70 the microprocessor 202 refers to the power capacity information in the module information of the power module 100 acquired in step S50, and acquires the power capacity of the power module 100. Then, by comparing the acquired power capacity of the power module 100 with the total current consumption of the CPU module 200 and the functional modules 300A and 300B calculated in step S60, the power capacity of the power module 100 is determined as the CPU module. It is determined whether the current consumption is equal to or greater than the total current consumption of 200 and functional modules 300A and 300B. Thereby, the suitability of the power capacity of the power module 100 is determined. When the power supply capacity of the power supply module 100 is less than the total current consumption of the CPU module 200 and the functional modules 300A and 300B, it is determined that the power supply capacity of the power supply module 100 is not suitable, and the process proceeds to step S80.
  • step S80 the microprocessor 202 outputs a display signal to the status display unit 207, and displays an error display instructing the operator to replace the power supply module with a larger power supply capacity.
  • the status display unit 207 is configured by an LED
  • the light may be turned on
  • the status display unit 207 is configured by a liquid crystal display
  • the fact may be displayed. .
  • finished the process shown in this flowchart is complete
  • finished finished.
  • step S70 if the power supply capacity of the power supply module 100 is equal to or greater than the total current consumption of the CPU module 200 and the functional modules 300A and 300B in step S70, it is determined that the power supply capacity of the power supply module 100 is suitable. The process moves to step S90.
  • step S90 the microprocessor 202 determines whether or not the power supply module 100 can be replaced with a smaller-capacity power supply module on a corresponding product lineup stored in, for example, a memory (not shown). Thereby, the validity of selection of the power supply module 100 is determined. If it is possible to replace the power supply module with a smaller capacity on the product lineup, it is determined that the selection of the power supply module 100 is not appropriate, and the process proceeds to step S100.
  • step S100 the microprocessor 202 outputs a display signal to the status display unit 207, and provides a power supply module having an appropriate capacity on the product lineup to the operator (for example, a power supply module having a necessary minimum power supply capacity). Display a warning message prompting you to change to
  • the power supply capacity of the power supply module 100 is 10A
  • the total current consumption of the CPU module 200 and the functional modules 300A and 300B is 4A
  • a power supply module with a power supply capacity of 8A is used as a smaller capacity power supply module in the product lineup.
  • a display prompting replacement with a power supply module with a power supply capacity closer to the total current consumption value 4A is made as a warning display.
  • the status display unit 207 is configured by an LED
  • light is flashed infrequently, and replacement with a power module having a small capacity of two ranks or more is performed.
  • the light may be flashed frequently, or when the status display unit 207 is configured with a liquid crystal display, the above-described contents may be displayed. Thereafter, the process proceeds to step S110.
  • step S90 if it is not possible to replace the power supply module with a smaller capacity on the product lineup in step S90, it is determined that the selection of the power supply module 100 is appropriate, and the process proceeds to step S110.
  • step S110 the microprocessor 202 controls the power supply module 100 so that the second power supply from the converter 102 is supplied from the power supply module 100 to the other CPU modules 200 and the functional modules 300A and 300B. That is, a control signal is output to the relay 103 of the power supply module 100, the contact of the relay 103 is closed, and the bus controller 203 of the CPU module 200 and each functional module are connected via the second power supply line L2. The second power is supplied to the module control units 302A and 302B of 300A and 300B. As a result, the CPU module 200 and the functional modules 300A and 300B start normal operation, and data exchange between the CPU module 200 and the functional modules 300A and 300B becomes possible, so that the programmable controller 1 operates normally. Be started.
  • the power supply module 100 supplies the first power supply via the first power supply system line L1, and the second power supply via the second power supply system line L2. Supply.
  • the power supply module 100 supplies the first power supply via the first power supply system line L1, and the second power supply via the second power supply system line L2. Supply.
  • the power supply module 100 supplies the first power supply via the first power supply system line L1, and the second power supply via the second power supply system line L2. Supply.
  • the power of the programmable controller 1 is turned on and commercial power is supplied to the power supply module 100, first, the first power is supplied from the power supply module 100 to the other modules 200, 300A, 300B, and the CPU module.
  • 200 microprocessors 202 determine the suitability of the power supply capacity, and then supply a second power supply to exchange data between the CPU module 200 and the other functional modules 300A and 300B, and the microprocessors of the functional modules 300A and 300B. Can be operated.
  • the microprocessor 202 of the CPU module 200 is properly operated. By operating, it is possible to accurately determine that the power supply capacity is not suitable (insufficient). Therefore, the suitability of the power supply capacity can be accurately determined regardless of the power supply capacity of the installed power supply module 100.
  • the power supply module 100 supplies only the first power supply when the power of the programmable controller 1 is turned on. Thereby, the current consumption at the time of determining the suitability of the power supply capacity of the power supply module 100 can be reduced, and the suitability can be accurately determined even when the power supply capacity of the power supply module 100 is small.
  • the microprocessor 202 of the CPU module 200 controls the power supply module 100 so as to supply the second power supply only when it is determined that the power supply capacity of the power supply module 100 is suitable.
  • the power supply module 100 switches between the converter 102 that generates the first power supply and the second power supply from the primary-side power supply 400 and the cutoff and supply of the second power supply from the converter 102 by opening and closing the contacts. And a relay 103. Then, when the microprocessor 202 of the CPU module 200 determines that the power supply capacity of the power supply module 100 is suitable, it closes the contact of the relay 103 and supplies the second power supply. When the microprocessor 202 of the CPU module 200 determines that the power supply capacity of the power supply module 100 is suitable, the contact of the relay 103 of the power supply module 100 is closed to ensure that the power supply module 100 supplies the second power supply. Can be controlled.
  • the unit ID sections 104, 204, 303A, and 303B of the power supply module 100, the CPU module 200, and the functional modules 300A and 300B are An ID signal corresponding to the unit ID is output. Then, the microprocessor 202 of the CPU module 200 acquires the unit ID, refers to the data table stored in the data table storage unit 205 based on the unit ID, and the CPU modules 200 and functions other than the power supply module 100 The suitability of the power supply capacity of the power supply module 100 is determined by calculating the total current consumption of the modules 300A and 300B.
  • the power supply module 100, the CPU module 200, and the functional modules 300A and 300B do not need to output module information itself when determining the suitability of the power supply capacity of the power supply module 100. Since only the ID signal corresponding to the unit ID having a small data amount needs to be output, the data transfer amount is reduced, and the current consumption when determining the suitability of the power supply capacity of the power supply module 100 can be further reduced. In addition, since the amount of data transfer is small, the suitability of the power supply capacity of the power supply module 100 can be quickly determined.
  • the CPU module 200 outputs a CLK signal to the unit ID units 104, 204, 303A, and 303B of the power supply module 100, the CPU module 200, and the functional modules 300A and 300B, and converts the CLK signal into the CLK signal.
  • it has an ID read circuit block 206 that inputs ID signals output from the power supply module 100, the CPU module 200, and the functional modules 300A and 300B and stores the corresponding unit ID.
  • the microprocessor 202 of the CPU module 200 has a power supply capacity of the power supply module 100 that is equal to or greater than the total current consumption of the CPU modules 200 and functional modules 300A and 300B other than the power supply module 100. If it is determined that the power supply module is suitable, it is further determined whether or not the power supply module 100 can be replaced with a smaller capacity power supply module on the corresponding product lineup.
  • the operator is warned, and it is possible to prompt the user to replace the power supply module with an appropriate capacity on the product lineup (for example, a power supply module having a necessary minimum power supply capacity). .
  • an appropriate capacity on the product lineup for example, a power supply module having a necessary minimum power supply capacity.
  • the CPU module 200 displays an error display when the microprocessor 202 determines that the power supply capacity of the power supply module 100 is not suitable, and the microprocessor 202 displays the power supply module 100 on the corresponding product lineup.
  • the state display unit 207 displays a warning when it is determined that the power supply module can be replaced with a smaller capacity power supply module.
  • the ID reading circuit block 206 different from the microprocessor 202 is the power supply module 100, the CPU module 200, and the functional modules 300A and 300B.
  • the present invention is not limited to this, and the microprocessor itself may read the unit ID from the power supply module 100, the CPU module 200, and the functional modules 300A and 300B.
  • the CPU module 200 in the present modification includes a microprocessor 202 ′ (processor) that performs various overall controls, the bus control unit 203, the unit ID unit 204, and a data table storage.
  • the unit ID storage unit 210 (third storage unit), the above-described state display unit 207, and a pull-down resistor 208 are included.
  • a memory provided in the microprocessor 202 ′ may be used as the second storage unit or the third storage unit.
  • the microprocessor 202 ′ executes a predetermined initialization process, and then starts its own output port,
  • the LD signal is output to the unit ID sections 104, 204, 303A, and 303B of the module 100, the CPU module 200, and the functional modules 300A and 300B.
  • each unit ID part 104,204,303A, 303B sets unit ID.
  • the microprocessor 202 ′ continuously outputs a CLK signal to each unit ID section 104, 204, 303A, 303B.
  • the route of the ID signal output from each of the unit ID units 104, 204, 303A, and 303B is the same as that in the above embodiment, but the ID signal finally reaches the micro signal unlike the above embodiment. It becomes an input port of the processor 202 '.
  • the ID signal input to the microprocessor 202 ′ is converted into parallel data (unit ID or terminal code “00000000”) in units of 8 bits (1 byte unit) and set in a unit ID register (not shown).
  • the microprocessor 202 ′ continuously outputs the CLK signal until the terminal code “00000000” is detected.
  • the microprocessor 202 ′ stops outputting the CLK signal.
  • the 8-bit parallel data set in the unit ID register is read in order from the upper address in units of 1 byte (or in units of 1 word), and when the terminal code “00000000” is read, the reading is terminated,
  • the read unit ID is stored in the unit ID storage unit 210. Thereafter, referring to the data table stored in the data table storage unit 205 based on the unit ID stored in the unit ID storage unit 210, the above-described determination and the like are performed.
  • Step S10 is equivalent to FIG. 7 described above, and the microprocessor 202 ′ executes an initialization process.
  • step S25 the microprocessor 202 'outputs an LD signal to the unit ID sections 104, 204, 303A, and 303B of the power supply module 100, the CPU module 200, and the functional modules 300A and 300B.
  • step S35 the microprocessor 202 ′ continuously outputs the CLK signal to each unit ID section 104, 204, 303A, 303B.
  • an ID signal is output from each unit ID section 104, 204, 303A, 303B.
  • the procedure of step S35 corresponds to the first procedure described in the claims.
  • step S40 ' the microprocessor 202' inputs the ID signal output from the unit ID section 104 of the power supply module 100 and converts it into 1-byte parallel data (unit ID or terminal code "00000000"). And stored in the unit ID storage unit 210.
  • unit ID is acquired about all of the power supply module 100, CPU module 200, and functional module 300A, 300B.
  • the procedure of step S40 ′ corresponds to the second procedure described in the claims.
  • step S50 ′ the microprocessor 202 ′ accesses the data table stored in the table data storage unit 205, and based on the unit ID stored in the unit ID storage unit 210 in step S40 ′, the corresponding module.
  • Information that is, module information is acquired for all of the power supply module 100, the CPU module 200, and the functional modules 300A and 300B.
  • step S60 and step S70 in this modification corresponds to the third procedure described in the claims.
  • the microprocessor 202 ′ itself of the CPU module 200 reads the unit ID from the power supply module 100, the CPU module 200, and the functional modules 300A and 300B, thereby providing an ID separately from the microprocessor 202 ′. There is no need to provide a read circuit block, and the number of components can be reduced.
  • the primary power supply 400 is connected to the converter 102 to generate a power supply voltage, and the microprocessor 202 is connected to the contact of the relay 103.
  • supply of the 2nd power supply was controlled by controlling opening and closing, it is not restricted to this. That is, the primary power supply 400 is connected to two power supply devices, each generates a power supply voltage, and the microprocessor 202 outputs a control signal to one power supply device, thereby controlling the supply of the second power supply. May be.
  • the power supply module 100 in this modification is connected to the converter 102 ′ (second power supply device) connected to the primary power supply 400, the unit ID unit 104, and the primary power supply 400. And a converter 105 (third power supply device) with an enable function.
  • the converter 102 ′ generates a power supply voltage based on the commercial power supplied from the primary power supply 400, and supplies the generated power supply voltage as the first power supply via the first power supply system line L1.
  • the converter 105 with an enable function generates a power supply voltage based on the commercial power supplied from the primary power supply 400, and controls the supply of the second power using the generated power supply voltage as a second power supply.
  • the microprocessor 202 of the CPU module 200 determines the suitability of the power supply capacity of the power supply module 100 in the same manner as described above, and determines that the power supply capacity of the power supply module 100 is suitable.
  • a signal (control signal) is output to supply the second power supply via the second power supply system line L2. That is, the second power is supplied to the bus control unit 203 of the CPU module 200 and the module control units 302A and 302B of the functional modules 300A and 300B via the second power supply line L2.
  • the same effect as the above embodiment can be obtained. Further, according to this modification, when the microprocessor 202 of the CPU module 200 determines that the power supply capacity of the power supply module 100 is suitable, the power supply module 100 outputs the enable signal to the converter 105 with the enable function, whereby the power supply module 100 It can be reliably controlled to supply power.
  • the microprocessor 202 of the CPU module 200 obtains the unit ID. By comparing the unit IDs with each other, it is determined whether or not the configurations (types and order) of the plurality of modules equipped in the programmable controller 1 match before the programmable controller 1 is powered off and after the power is turned on. You may do it. As a result, if the microprocessor 202 of the CPU module 200 determines that the configurations of the plurality of modules do not match before the programmable controller 1 is powered off and after the power is turned on, maintenance occurs or the programmable controller 1 fails. Thus, it is possible to warn the operator.
  • a relay output module that generates noise is placed next to a functional module having a high-speed processor or a high-speed synchronous memory, or an input module or output module that generates a large amount of heat is continuously arranged.
  • the microprocessor 202 of the CPU module 200 can determine this and call the operator's attention.
  • the unit IDs of the power supply module 100, the CPU module 200, and the functional modules 300A and 300B acquired by the microprocessor 202 of the CPU module 200 as described above.
  • the module in which the function of the CPU module 200 does not correspond to the power supply module 100 and the functional modules 300A and 300B installed in the programmable controller 1 by referring to the data table stored in the data table storage unit 205 based on the above. It may be determined whether or not is included. Accordingly, when a module that does not correspond to the function of the CPU module 200 is mounted, the microprocessor 202 can determine that and call the operator's attention.
  • the CPU module 200 is configured to have the status display unit 207, but the status display unit 207 may not be provided.
  • the CPU module 200 may be configured to output a display signal to an external display device (PC or the like) via wired or wireless communication, and cause the display device to perform display.
  • Programmable controller control device 100 Power supply module (module) 102 Converter (first power supply) 102 'converter (second power supply) 103 Relay 104 Unit ID part (identification information output part) 105 Converter with enable function (third power supply) 200 CPU module (module) 202 Microprocessor (processor) 202 'Microprocessor (processor) 204 Unit ID part (identification information output part) 205 Data table storage unit (first storage unit) 206 ID reading circuit block (identification information reading unit) 207 Status display section (display section) 209 Program storage unit (second storage unit) 210 Unit ID storage unit (third storage unit) 300A, B Function module (module) 303A, B Unit ID part (identification information output part) 400 Primary power supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Programmable Controllers (AREA)
  • Power Sources (AREA)

Abstract

プログラマブルコントローラ(1)は、電源モジュール(100)とCPUモジュール(200)とを含む複数のモジュールを備えたビルディングブロック形式のコントローラであり、CPUモジュール(200)は、電源モジュール(100)の電源容量と、当該電源モジュール(100)以外の各モジュール(200,300A,300B)の消費電流の合計値とを比較することにより、電源モジュール(100)の電源容量の適合性の判定を行う判定制御機能を備えるマイクロプロセッサ(202)を有し、電源モジュール(100)は、マイクロプロセッサ(202)に供給される電源を含む電源モジュール(100)の電源容量の適合性の判定に用いられる第1電源と、それ以外に用いられる第2電源とを、少なくとも2つの独立した電源系統として供給する。

Description

制御装置
 本発明は、複数のモジュールを備えたビルディングブロック形式の制御装置に関する。
 従来、複数のモジュールを接続して構成するビルディングブロック形式の制御装置が知られている(例えば、特許文献1参照)。この従来技術の制御装置(プログラマブル・コントローラ)は、接続されるモジュール全体の消費電流を算出し、電源モジュールの電源容量と比較をして、電源モジュールの適合性を判定する。
特開平01-184503号公報
 上記従来技術では、制御装置の電源を投入すると、CPUモジュールは、初期化処理に続いて電源モジュールの電源容量の適合性の判定を行う。このとき、モータ制御モジュール、通信モジュール、信号処理モジュール、及びその他の高機能のモジュールでは、論理演算などを行うためにプロセッサを備えている。この結果、電源容量の適合性の判定時と言えども消費電流が少ないとは言えない。電源容量の適合性の判定時に電源容量が不足する場合では、電源モジュールからの電源電圧の低下又は電源遮断となる。この結果、正常なプロセッサの動作を得ることができず、電源容量の適合性を正確に判断することができないおそれがあった。
 本発明はこのような問題点に鑑みてなされたものであり、装備された電源モジュールの電源容量の大小にかかわらず、電源容量の適合性を正確に判断することができる制御装置を提供することを目的とする。
 上記目的を達成するために、本発明の制御装置は、少なくとも電源モジュールとCPUモジュールを含む複数のモジュールを備えたビルディングブロック形式の制御装置であって、前記CPUモジュールは、前記電源モジュールの電源容量と、当該電源モジュール以外の各モジュールの消費電流の合計値とを比較することにより、前記電源モジュールの電源容量の適合性の判定を行う判定制御機能を備えるプロセッサを有し、前記電源モジュールは、前記プロセッサに供給される電源を含む前記電源容量の適合性の判定に用いられる第1電源と、それ以外に用いられる第2電源とを、少なくとも2つの独立した電源系統として供給することを特徴とする。
 本発明によれば、装備された電源モジュールの電源容量の大小にかかわらず、制御装置の電源容量の適合性を正確に判断することができる。
一実施の形態のプログラマブルコントローラの全体構成の一例を概念的に表す構成図である。 プログラマブルコントローラに装備された各モジュールの構成、各モジュール間の信号経路、及び各モジュール間の通電経路を概念的に表す説明図である。 ユニットID部の構成の一例及びデータテーブルの一例を表す説明図である。 ID読み出し回路ブロックの詳細を概念的に表すブロック図である。 各種信号の出力タイミングを概念的に表すタイミングチャートである。 ユニットIDの詳細を概念的に表すブロック図である。 マイクロプロセッサによって行われる制御処理の内容を表すフローチャートである。 マイクロプロセッサ自身が各モジュールからユニットIDの読み出しを行う変形例における、プログラマブルコントローラに装備された各モジュールの構成、各モジュール間の信号経路、及び各モジュール間の通電経路を概念的に表す説明図である。 プログラム記憶部に格納されたプログラムに基づいてマイクロプロセッサによって行われる制御処理の内容を表すフローチャートである。 第2電源をイネーブル信号で供給制御する変形例における、プログラマブルコントローラに装備された各モジュールの構成、各モジュール間の信号経路、及び各モジュール間の通電経路を概念的に表す説明図である。
 以下、一実施の形態について図面を参照しつつ説明する。
 図1に示すように、本実施形態のプログラマブルコントローラ1(制御装置)は、電源モジュール100とCPUモジュール200とを含む複数のモジュールを備えたビルディングブロック形式のコントローラであり、所定の方向(図1中左右方向)に複数の機能モジュール300を増設可能に構成されている。ビルディングブロック形式とは、モジュールを箱状(ブロック)にしてモジュールをブロック単位で増設する形式である。また、増設可能な機能モジュール300としては、例えば、ディスクリートI/Oモジュール、アナログI/Oモジュール、パルスI/Oモジュール、通信モジュール、モータの駆動制御を行うモーションモジュール等があり、これらのうち、通信モジュールやモーションモジュール等の高機能な機能モジュールは、マイクロプロセッサ等のプロセッサを搭載している。
 この例では、プログラマブルコントローラ1は、電源モジュール100と、CPUモジュール200と、2つの機能モジュール300A,300Bとを、図1中左側から右側に向かってこの順番で備えている。電源モジュール100の両側面にはコネクタ101L,101Rが設けられ、CPUモジュール200の両側面にはコネクタ201L,201Rが設けられ、各機能モジュール300A,300Bの両側面にはコネクタ301L,301Rが各々設けられている。そして、隣接するモジュールのコネクタが各々嵌合されることにより、すなわち、電源モジュール100のコネクタ101RとCPUモジュール200のコネクタ201Lとが嵌合され、CPUモジュール200のコネクタ201Rと機能モジュール300Aのコネクタ301Lとが嵌合され、機能モジュール300Aのコネクタ301Rと機能モジュール300Bのコネクタ301Lとが嵌合されることにより、電源モジュール100、CPUモジュール200、及び機能モジュール300A,300Bが各々接続されている。
 以下では、プログラマブルコントローラ1が、電源モジュール100、CPUモジュール200、及び機能モジュール300A,300Bを、左側から右側に向かってこの順番で備えている場合を例にとって説明する。
 図2に示すように、電源モジュール100は、AC(Alternating Current)又はDC(Direct Current)の一次側電源400に接続されたコンバータ102(第1電源装置)と、リレー103と、自身の識別情報であるユニットIDに対応するID信号を出力するユニットID部104(識別情報出力部)とを有している。
 コンバータ102は、一次側電源400から供給された商用電源に基づき電源電圧(VCC)を生成し、生成した電源電圧を第1電源として、第1電源系ラインL1を介して供給すると共に、生成した電源電圧を第2電源として、リレー103及び第2電源系ラインL2を介して供給する。これは言い換えれば、第1電源及び第2電源を生成し、生成した第1電源及び第2電源を、2つの独立した電源系統として供給することに相当する。第1電源は、後述のCPUモジュール200のマイクロプロセッサ202に供給される電源を含む、後述の電源モジュール100の電源容量の適合性の判定に用いられる電源であり、第2電源は、それ以外(例えば、CPUモジュール200と各機能モジュール300A,300Bとのデータ交換や、各機能モジュール300A,300Bのマイクロプロセッサを動作させる等)に用いられる電源である。なお、この例では、第2電源を、1つの第2電源系ラインL2を介して供給(1つの電源系統として供給)しているが、これに限られず、2つ以上の電源系ラインを介して供給(2つ以上の電源系統として供給)するようにしてもよい。
 リレー103は、接点開閉することによりコンバータ102からの第2電源の遮断及び供給を切り替える。すなわち、接点を開成することによりコンバータ102からの第2電源を遮断し、接点を閉成することによりコンバータ102からの第2電源を第2電源系ラインL2を介して供給する。
 機能モジュール300Aは、図示しないマイクロプロセッサ、I/O部、及び通信部を備え、これらマイクロプロセッサ、I/O部、及び通信部や、CPUモジュール200及び機能モジュール300Bとのデータ交換を行うためのバス機能を備えたモジュール制御部302Aと、自身のユニットIDに対応するID信号を出力するユニットID部303A(識別情報出力部)と、プルダウン抵抗304Aとを有している。
 機能モジュール300Bは、図示しないマイクロプロセッサ、I/O部、及び通信部を備え、これらマイクロプロセッサ、I/O部、及び通信部や、CPUモジュール200及び機能モジュール300Aとのデータ交換を行うためのバス機能を備えたモジュール制御部302Bと、自身のユニットIDに対応するID信号を出力するユニットID部303B(識別情報出力部)と、プルダウン抵抗304Bとを有している。
 CPUモジュール200は、全体の各種制御を行うマイクロプロセッサ202(プロセッサ)と、各機能モジュール300A,300Bとのデータ交換を行うためのバス機能を備えたバス制御部203と、自身のユニットIDに対応するID信号を出力するユニットID部204(識別情報出力部)と、データテーブル記憶部205(第1記憶部)と、ID読み出し回路ブロック206(識別情報読み出し部)と、各種表示を行う状態表示部207(表示部)と、プルダウン抵抗208を有している。
 マイクロプロセッサ202は、電源モジュール100のコンバータ102から出力される電源の容量である電源モジュール100の電源容量と、電源モジュール100以外の各モジュール、すなわち、CPUモジュール200及び機能モジュール300A,300Bの消費電流の合計値とを比較することにより、電源モジュール100の電源容量の適合性の判定を行う判定制御機能を備えている。また、マイクロプロセッサ202は、電源モジュール100の電源容量が適合すると判定した場合に、さらに、電源モジュール100を対応する製品ラインナップ上におけるより小容量の電源モジュールに交換可能であるか否かを判定する。なお、このマイクロプロセッサ202が行う判定の詳細については、後述する。
 データテーブル記憶部205は、不揮発性メモリで構成されている。このデータテーブル記憶部205には、複数のモジュールのユニットIDと、当該ユニットIDに対応するモジュール情報(電源モジュールの電源容量情報、CPUモジュールや機能モジュールの消費電流情報等)とで構成されたデータテーブルが記憶されている。なお、マイクロプロセッサ202内に備えられた不揮発性のメモリが上記データテーブルを記憶するようにしてもよい。すなわち、マイクロプロセッサ202内に備えられた不揮発性のメモリを第1記憶部としてもよい。
 図3(a)に、電源モジュール100のユニットIDの構成の一例、及び、複数の電源モジュールのユニットIDと当該ユニットIDに対応するモジュール情報とで構成されたデータテーブルの一例を示す。
 図3(a)に示すように、電源モジュール100のユニットIDは、8ビット(1バイト)、すなわち、ID0~ID7で構成されている。この例では、ID0~ID7のうち、ID0~ID2を「PS_ID」、ID3~ID6を「Spare」、ID7を「1」として、「PS_ID」であるID0~ID2により、電源モジュール100の電源容量情報を含むモジュール情報が表されている。なお、「Spare」であるID3~ID6は、現時点ではモジュール情報を表すために使用されておらず、将来的にID0~ID2と共にモジュール情報を表すために使用される領域である。
 図3(a)中右側に示すデータテーブルでは、ID0~ID7の8ビットのユニットIDのうち、「PS_ID」であるID0~ID2だけを示している(ID3~ID7の図示を省略している)。例えば、このデータテーブルでは、「PS_ID」であるID2,ID1,ID0が「0」「0」「0」となるユニットIDが割り当てられた電源モジュールのモジュール情報として、「仕様」欄に「DC24V入力、VCC3A出力」と記憶されている。
 図3(b)に、CPUモジュール200及び機能モジュール300のユニットIDの構成の一例、及び、複数のCPUモジュール及び機能モジュールのユニットIDと当該ユニットIDに対応するモジュール情報とで構成されたデータテーブルの一例を示す。
 図3(b)に示すように、CPUモジュール200のユニットIDは、上記電源モジュール100のユニットIDと同様、ID0~ID7で構成されている。この例では、ID0~ID7のうち、ID0~ID5を「UNIT_ID」、ID6を「0」、ID7を「1」として、「UNIT_ID」であるID0~ID5及びID6「0」により、CPUモジュール200の消費電流情報を含むモジュール情報が表されている。また、機能モジュール300のユニットIDは、上記電源モジュール100及びCPUモジュール200のユニットIDと同様、ID0~ID7で構成されている。この例では、ID0~ID7のうち、ID0~ID5を「UNIT_ID」、ID6を「1」、ID7を「1」として、「UNIT_ID」であるID0~ID5及びID6「1」により、機能モジュール300の消費電流情報を含むモジュール情報が表されている。
 図3(b)中右側に示すデータテーブルでは、ID0~ID7の8ビットのユニットIDのうち、「UNIT_ID」であるID0~ID5及びID6だけを示している(ID7の図示を省略している)。例えば、このデータテーブルでは、ID6及び「UNIT_ID」であるID5,ID4,ID3,ID2,ID1,ID0が「0」「0」「0」「0」「0」「0」となるユニットIDが割り当てられたモジュール、すなわち、機能モジュールのモジュール情報として、「仕様」欄に「DC入力ユニット32点」及び「消費電流(A)」欄に「0.2」と記憶されている。
 図2に戻り、ID読み出し回路ブロック206は、電源モジュール100、CPUモジュール200、及び機能モジュール300A,300BのユニットID部104,204,303A,303Bに対しユニットIDの出力指令であるCLK信号を出力する。またこれと共に、CLK信号に応じて各ユニットID部104,204,303A,303Bから出力された上記ID信号を入力して対応するユニットIDを記憶する。このID読み出し回路ブロック206は、図4に示すように、発振回路ブロック2061と、CLK制御ブロック2062と、LD制御ブロック2063と、端末コード検出ブロック2064と、データセットブロック2066と、ユニットIDレジスタ2067と、リードバッファ2068と、アドレスデコーダ2069とを備えている。
 発振回路ブロック2061は、CLK原発振を発生する。CLK制御ブロック2062は、発振回路ブロック2061から発生されたCLK原発振に基づき、各ユニットID部104,204,303A,303Bに対し上記CLK信号を出力する。なお、この例では、CLK制御ブロック2062に原発振クロックが接続されているが、マイクロプロセッサ202に供給するクロック源と共用であってもよい。LD制御ブロック2063は、各ユニットID部104,204,303A,303Bに対しユニットIDをプリセットさせるLD信号を出力する。端末コード検出ブロック2064は、シフトレジスタ2065を備えており、このシフトレジスタ2065でラッチした上記ID信号の連続8回分を常時監視して端末コードを検出する。データセットブロック2066は、各ユニットID部104,204,303A,303Bからの上記ID信号に基づき、ユニットIDレジスタ2067に対しユニットIDをセットする。リードバッファ2068には、ユニットIDレジスタ2067からユニットIDが読み出される。アドレスデコーダ2069は、ユニットIDレジスタ2067に対しエリア選択信号を出力する。
 図2に戻り、状態表示部207は、例えばLED(Light Emitting Diode)等のランプや液晶ディスプレイ等で構成されている。この状態表示部207は、マイクロプロセッサ202が行う上記判定の結果に応じて、所定のエラー表示や警告表示を行う(詳細は後述)。
 上記のように構成されたプログラマブルコントローラ1においては、図2に示すように、プログラマブルコントローラ1の電源が投入されると、一次側電源400から電源モジュール100のコンバータ102に商用電源が供給され、電源モジュール100から他のCPUモジュール200及び機能モジュール300A,300Bに対し、まず第1電源のみが供給される。すなわち、コンバータ102により生成された第1電源が第1電源系ラインL1に通電され、第1電源系ラインL1を介して、電源モジュール100のユニットID部104と、CPUモジュール200の状態表示部207、ユニットID部204、ID読み出し回路ブロック206、及びマイクロプロセッサ202と、各機能モジュール300A,300BのユニットID部303A,303Bとに第1電源が供給される。なお、プログラマブルコントローラ1の電源が投入された際にはリレー103の接点が開成しており、コンバータ102により生成された第2電源は遮断され、電源モジュール100から他のCPUモジュール200及び機能モジュール300A,300Bに対し、第2電源が供給されないようになっている。すなわち、第2電源系ラインL2を介して、CPUモジュール200のバス制御部203と、各機能モジュール300A,300Bのモジュール制御部302A,302Bとに第2電源が供給されないようになっている。以上のように、電源モジュール100は、プログラマブルコントローラ1の電源が投入された際には、他のCPUモジュール200及び機能モジュール300A,300Bに対し、第1電源系ラインL1を介して第1電源のみを供給するようになっている。
 そして、図2、図4、及び図5に示すように、CPUモジュール200のマイクロプロセッサ202は、コンバータ102から第1電源が供給されると、所定の初期化処理を実行して、その後、ID読み出し回路ブロック206のLD制御ブロック2063に対し起動要求を出力する。LD制御ブロック2063は、マイクロプロセッサ202からの起動要求を入力すると、まず、電源モジュール100、CPUモジュール200、及び機能モジュール300A,300BのユニットID部104,204,303A,303Bに対しLD信号を出力する。
 ここで、各ユニットID部104,204,303A,303Bは、図6に示すように、1ビットのデータ(「0」又は「1」)を保持可能な8つのフリップフロップをカスケード接続したシフトレジスタ、プルアップ抵抗、プルダウン抵抗等で各々構成されており、これら各ユニットID部104,204,303A,303Bのシフトレジスタは、シリーズに接続されている。また、電源モジュール100、CPUモジュール200、及び機能モジュール300のユニットIDは、上述したように、8ビット、すなわち、ID0~ID7で各々構成されている。但し、本実施形態では、ID0~ID7の全てが「0」となる「00000000」をユニットIDとして割り当てることができないようになっている。ID0~ID6は、「0」「1」、すなわちプルアップ(Hレベル)・プルダウン(Lレベル)がモジュール毎に異なり、ID7は、「1」、すなわちプルアップ(Hレベル)に固定されている。そして、各ユニットID部104,204,303A,303Bは、LD制御ブロック2063からのLD信号をパルス入力すると、ID0~ID7で構成される8ビットのデータを、対応するH,G,F,E,D,C,B,Aの入力を介して1ビットずつシフトレジスタ内の8つのフリップフロップに各々入力して、ユニットIDとしてセットする。
 LD制御ブロック2063は、上記のようにLD信号を出力した後、CLK制御ブロック2062に対しCLK開始要求を出力する。CLK制御ブロック2062は、LD制御ブロック2063からのCLK開始要求を入力すると、各ユニットID部104,204,303A,303Bに対しCLK信号を連続的に出力する。そして、CLK制御ブロック2062がCLK信号を1回出力する度に、各ユニットID部104,204,303A,303Bのシフトレジスタでは、データが1段ずつシフトしていく。
 このとき、右側にモジュールが備えられていない機能モジュール300BのユニットID部303Bにおけるシフトレジスタの1段目のフリップフロップ(Aの入力に対応するフリップフロップ)には、上記プルダウン抵抗304Bに接続されたGND電位が作用した「0」が入力される。また、電源モジュール100以外のCPUモジュール200及び機能モジュール300A,300BのユニットID部204,303A,303Bにおけるシフトレジスタの最終段のフリップフロップ(Hの入力に対応するフリップフロップ)に保持されていたデータは、ID信号として出力されて、当該モジュールの左側に備えられたモジュールのユニットID部におけるシフトレジスタの1段目のフリップフロップ(Aの入力に対応するフリップフロップ)に入力される。また、電源モジュール100のユニットID部104における最終段のシフトレジスタのフリップフロップに保持されていたデータは、ID信号として出力されて、端末コード検出ブロック2064及びデータセットブロック2066に入力される。
 端末コード検出ブロック2064は、入力されたID信号を常時監視して、右側にモジュールが備えられていない機能モジュール300Bのプルダウン抵抗304Bに接続されたGND電位の作用による「0」のID信号が8回連続で入力された場合に、端末コード「00000000」を検出して、全てのモジュール、すなわち、電源モジュール100、CPUモジュール200、及び機能モジュール300A,300BからユニットIDを読み出したことを識別する。そして、CLK制御ブロック2062に対しCLK停止要求を出力する。
 なお、この例では、8ビット全てが「0」となる「00000000」をユニットIDに割り当てることができないようにし、CPUモジュール200及び機能モジュール300A,300Bがプルダウン抵抗208,304A,304Bを各々備える構成としているが、これに限られない。すなわち、8ビット全てが「1」となる「11111111」をユニットIDに割り当てることができないようにし、CPUモジュール200及び機能モジュール300A,300Bがプルアップ抵抗を各々備える構成としてもよい。この場合には、機能モジュール300BのユニットID部303Bにおけるシフトレジスタの1段目のフリップフロップには、プルアップ抵抗に接続されたVCC電位が作用した「1」がID信号として入力され、端末コード検出ブロック2064は、「1」のID信号が8回連続で入力された場合に、端末コード「11111111」を検出して、CLK制御ブロック2062に対しCLK停止要求を出力する。
 CLK制御ブロック2062は、端末コード検出ブロック2064からのCLK停止要求を入力すると、各ユニットID部104,204,303A,303Bに対するCLK信号の出力を停止して、マイクロプロセッサ202に対し完了信号を出力する。一方、上述のようにID信号はデータセットブロック2066に対しても入力されており、データセットブロック2066は、入力されたID信号を8ビット単位(1バイト単位)のパラレルデータ(ユニットID又は端末コード「00000000」)に変換して、ユニットIDレジスタ2067にセットする。
 マイクロプロセッサ202は、CLK制御ブロック2062からの完了信号を入力すると、アドレスバスを介してアドレスデコーダ2069に対し制御信号を出力し、ユニットIDレジスタ2067に対しエリア選択信号を出力させる。またこれと共に、リードバッファ2068に対しリード信号を出力し、ユニットIDレジスタ2067にセットされた8ビット単位のパラレルデータを上位アドレスから順番に、1バイト単位(又は1ワード単位でもよい)で読み出して、その読み出したデータをデータバスを介して順番に取得する。これにより、電源モジュール100、CPUモジュール200、及び機能モジュール300A,300Bの全てについてユニットIDを順番に取得する。なお、最後に、端末コード「00000000」を取得することで、直前に読み込んだユニットIDが最後のユニットID(機能モジュール300BのユニットID)であったことを認識できるようになっている。
 その後、マイクロプロセッサ202は、上記テーブルデータ記憶部205に記憶されたデータテーブルにアクセスし、上記取得したユニットIDに基づき、対応するモジュール情報、すなわち、電源モジュール100、CPUモジュール200、及び機能モジュール300A,300Bの全てについてモジュール情報を取得する。そして、マイクロプロセッサ202は、取得したモジュール情報を用いて、電源モジュール100の電源容量の適合性の判定等を行って、電源モジュール100の電源容量が適合すると判定した場合に、電源モジュール100のリレー103に対し制御信号を出力して、リレー103の接点を閉成させる。これにより、電源モジュール100から他のCPUモジュール200及び機能モジュール300A,300Bに対し、コンバータ102により生成された第2電源を供給する。すなわち、第2電源系ラインL2を介して、CPUモジュール200のバス制御部203と、各機能モジュール300A,300Bのモジュール制御部302A,302Bとに第2電源を供給する。
 そして、CPUモジュール200のバス制御部203に通電されることにより、バス制御部203のバス機能が正常に動作し、各機能モジュール300A,300Bのモジュール制御部302A,302Bに通電されることにより、各モジュール制御部302A,302Bのバス機能が正常に動作する。これにより、CPUモジュール200及び各機能モジュール300A,300Bが通常動作を開始して、CPUモジュール200と各機能モジュール300A,300Bとのデータ交換が可能となることにより、プログラマブルコントローラ1として正常な動作が開始される。
 以上説明した機能を実現するために、マイクロプロセッサ202によって行われる制御処理の内容を、図7により順を追って説明する。
 図7において、このフローチャートに示す処理は、プログラマブルコントローラ1の電源が投入され、電源モジュール100から第1電源系ラインL1を介してマイクロプロセッサ202に対しコンバータ102からの第1電源が供給された際に開始される。まずステップS10で、マイクロプロセッサ202は、所定の初期化処理を実行する。
 その後、ステップS20で、マイクロプロセッサ202は、ID読み出し回路ブロック206のLD制御ブロック2063に対し起動要求を出力する。
 そして、ステップS30に移り、マイクロプロセッサ202は、ID読み出し回路ブロック206のCLK制御ブロック2062から完了信号が入力されたかどうかを判定する。完了信号が入力されるまでステップS30の判定が満たされず、ループ待機し、完了信号が入力されたらステップS30の判定が満たされて、ステップS40に移る。
 ステップS40では、マイクロプロセッサ202は、ID読み出し回路ブロック206のアドレスデコーダ2069に対し制御信号を出力すると共に、ID読み出し回路ブロック206のリードバッファ2068に対しリード信号を出力して、ID読み出し回路ブロック206のユニットIDレジスタ2067にセットされた8ビット単位のパラレルデータ(ユニットID又は端末コード「00000000」)を上位アドレスから順番に、1バイト単位で読み出して、その読み出したデータを順番に取得する。これにより、電源モジュール100、CPUモジュール200、及び機能モジュール300A,300Bの全てについてユニットIDを取得する。
 その後、ステップS50で、マイクロプロセッサ202は、テーブルデータ記憶部205に記憶されたデータテーブルにアクセスし、上記ステップS40で取得したユニットIDに基づき、対応するモジュール情報、すなわち、電源モジュール100、CPUモジュール200、及び機能モジュール300A,300Bの全てについてモジュール情報を取得する。
 そして、ステップS60に移り、マイクロプロセッサ202は、上記ステップS50で取得した電源モジュール100以外のCPUモジュール200及び機能モジュール300A,300Bのモジュール情報における消費電流情報を参照して、CPUモジュール200の消費電流情報及び各機能モジュール300A,300Bの消費電流を積算し、CPUモジュール200及び機能モジュール300A,300Bの消費電流の合計値を算出する。
 その後、ステップS70で、マイクロプロセッサ202は、上記ステップS50で取得した電源モジュール100のモジュール情報における電源容量情報を参照して、電源モジュール100の電源容量を取得する。そして、その取得した電源モジュール100の電源容量と、上記ステップS60で算出したCPUモジュール200及び機能モジュール300A,300Bの消費電流の合計値とを比較することにより、電源モジュール100の電源容量がCPUモジュール200及び機能モジュール300A,300Bの消費電流の合計値以上であるかどうかを判定する。これにより、電源モジュール100の電源容量の適合性を判定する。電源モジュール100の電源容量がCPUモジュール200及び機能モジュール300A,300Bの消費電流の合計値未満である場合には、電源モジュール100の電源容量が適合しないと判定して、ステップS80に移る。
 ステップS80では、マイクロプロセッサ202は、状態表示部207に対し表示信号を出力し、操作者に対しより大きな電源容量を有する電源モジュールへの交換を促す旨のエラー表示を表示させる。例えば、状態表示部207がLEDで構成される場合には光を点灯させるようにしてもよいし、状態表示部207が液晶ディスプレイで構成される場合にはその旨を表示させるようにしてもよい。その後、このフローチャートに示す処理を終了する。
 一方、上記ステップS70において、電源モジュール100の電源容量がCPUモジュール200及び機能モジュール300A,300Bの消費電流の合計値以上であった場合には、電源モジュール100の電源容量が適合すると判定して、ステップS90に移る。
 ステップS90では、マイクロプロセッサ202は、電源モジュール100を、例えば図示しないメモリ等に記憶された対応する製品ラインナップ上におけるより小容量の電源モジュールに交換可能であるか否かを判定する。これにより、電源モジュール100の選定の妥当性を判定する。製品ラインナップ上におけるより小容量の電源モジュールに交換可能である場合には、電源モジュール100の選定が妥当ではないと判定して、ステップS100に移る。
 ステップS100では、マイクロプロセッサ202は、状態表示部207に対し表示信号を出力し、操作者に対し上記製品ラインナップ上における適切な容量の電源モジュール(例えば、必要最低限の電源容量を有する電源モジュール)への交換を促す旨の警告表示を表示させる。例えば、電源モジュール100の電源容量が10A、CPUモジュール200及び機能モジュール300A,300Bの消費電流の合計値が4Aであり、製品ラインナップにおけるより小容量の電源モジュールとして、電源容量が8Aの電源モジュールと、電源容量が5Aの電源モジュールとがある場合には、上記消費電流の合計値4Aにより近い電源容量が5Aの電源モジュールへの交換を促す表示が警告表示として行われる。また例えば、状態表示部207がLEDで構成される場合において、1ランク小容量の電源モジュールへの交換を促す場合には光を低頻度点滅させ、2ランク以上小容量の電源モジュールへの交換を促す場合には光を高頻度点滅させるようにしてもよいし、状態表示部207が液晶ディスプレイで構成される場合には上記のような内容を表示させるようにしてもよい。その後、ステップS110に移る。
 一方、上記ステップS90において、製品ラインナップ上におけるより小容量の電源モジュールに交換可能でなかった場合には、電源モジュール100の選定が妥当であったと判定して、ステップS110に移る。
 ステップS110では、マイクロプロセッサ202は、電源モジュール100から他のCPUモジュール200及び機能モジュール300A,300Bに対し、コンバータ102からの第2電源を供給するように電源モジュール100を制御する。すなわち、電源モジュール100のリレー103に対し制御信号を出力して、リレー103の接点を閉成させて、第2電源系ラインL2を介して、CPUモジュール200のバス制御部203と、各機能モジュール300A,300Bのモジュール制御部302A,302Bとに第2電源を供給する。これにより、CPUモジュール200及び各機能モジュール300A,300Bが通常動作を開始して、CPUモジュール200と各機能モジュール300A,300Bとのデータ交換が可能となることにより、プログラマブルコントローラ1として正常な動作が開始される。その後、このフローチャートに示す処理を終了する。なお、このフローに示す処理は、プログラマブルコントローラ1の電源が投入され、電源モジュール100から第1電源系ラインL1を介してマイクロプロセッサ202に対しコンバータ102からの第1電源が供給される度に、マイクロプロセッサ202により実行される。
 以上説明したように、本実施形態のプログラマブルコントローラ1においては、電源モジュール100が、第1電源を第1電源系ラインL1を介して供給し、第2電源を第2電源系ラインL2を介して供給する。これにより、プログラマブルコントローラ1の電源が投入され、電源モジュール100に商用電源が供給された際に、電源モジュール100から他のモジュール200,300A,300Bに対し、まず第1電源を供給してCPUモジュール200のマイクロプロセッサ202により電源容量の適合性の判定を行い、その後に第2電源を供給し、CPUモジュール200と他の機能モジュール300A,300Bとのデータ交換や各機能モジュール300A,300Bのマイクロプロセッサを動作させる等が可能となる。
 このとき、第1電源は、CPUモジュール200のマイクロプロセッサ202の周辺回路、及び、電源モジュール100、CPUモジュール200、及び機能モジュール300A,300BのユニットIDを送出するための回路のみに供給すれば足り、これらの回路の消費電流は、電源モジュール100、CPUモジュール200、及び機能モジュール300A,300Bの通常動作時の消費電流に比べて大幅に小さい。その結果、電源モジュール100の電源容量が当該電源モジュール100以外のCPUモジュール200及び機能モジュール300A,300Bの通常動作時の消費電流の合計値より小さい場合でも、CPUモジュール200のマイクロプロセッサ202を正常に動作させて、電源容量が適合しない(不足する)ことを正確に判定することができる。したがって、装備された電源モジュール100の電源容量の大小にかかわらず、電源容量の適合性を正確に判断することができる。
 また、本実施形態では特に、電源モジュール100が、プログラマブルコントローラ1の電源が投入された際に第1電源のみを供給する。これにより、電源モジュール100の電源容量の適合性判定時の消費電流を小さくし、電源モジュール100の電源容量が小さい場合でもその適合性を正確に判断することができる。また、本実施形態では、CPUモジュール200のマイクロプロセッサ202が、電源モジュール100の電源容量が適合すると判定した場合にのみ、第2電源を供給するように電源モジュール100を制御する。これにより、電源モジュール100からの電源電圧の不足により電源モジュール100、CPUモジュール200、及び機能モジュール300A,300Bの動作が不安定となるのを防止し、プログラマブルコントローラ1を正常に動作させることができる。
 また、本実施形態では特に、電源モジュール100は、一次側電源400から第1電源及び第2電源を生成するコンバータ102と、接点開閉することによりコンバータ102からの第2電源の遮断及び供給を切り替えるリレー103とを有している。そして、CPUモジュール200のマイクロプロセッサ202は、電源モジュール100の電源容量が適合すると判定した場合に、リレー103の接点を閉成させて第2電源を供給する。CPUモジュール200のマイクロプロセッサ202が、電源モジュール100の電源容量が適合すると判定した場合に電源モジュール100のリレー103の接点を閉成させることで、電源モジュール100が第2電源を供給するように確実に制御することができる。
 また、本実施形態では特に、電源モジュール100の電源容量の適合性の判定の際に、電源モジュール100、CPUモジュール200、及び機能モジュール300A,300BのユニットID部104,204,303A,303Bが、ユニットIDに対応するID信号を出力する。そして、CPUモジュール200のマイクロプロセッサ202が、それらのユニットIDを取得し、当該ユニットIDに基づきデータテーブル記憶部205に記憶されたデータテーブルを参照して、電源モジュール100以外のCPUモジュール200及び機能モジュール300A,300Bの消費電流の合計値を算出することで、電源モジュール100の電源容量の適合性の判定を行う。このような構成とすることで、電源モジュール100の電源容量の適合性の判定の際に、電源モジュール100、CPUモジュール200、及び機能モジュール300A,300Bは、モジュール情報自体を出力する必要がなく、データ量の小さなユニットIDに対応するID信号のみを出力すればよいので、データ転送量が少なくなり、電源モジュール100の電源容量の適合性判定時の消費電流をさらに小さくすることができる。また、データ転送量が少ないため、電源モジュール100の電源容量の適合性の判定を速やかに行うことができる。
 また、本実施形態では特に、CPUモジュール200が、電源モジュール100、CPUモジュール200、及び機能モジュール300A,300BのユニットID部104,204,303A,303Bに対しCLK信号を出力すると共に、CLK信号に応じて電源モジュール100、CPUモジュール200、及び機能モジュール300A,300Bから出力されたID信号を入力して対応するユニットIDを記憶するID読み出し回路ブロック206を有する。これにより、CPUモジュール200のマイクロプロセッサ202自身が電源モジュール100、CPUモジュール200、及び機能モジュール300A,300BからユニットIDの読み出しを行う必要がなくなるので、入出力インターフェースの少ないマイクロプロセッサ202を有するCPUモジュール200を用いて、プログラマブルコントローラ1を構成することができる。
 また、本実施形態では特に、次のような効果を得ることができる。すなわち、電源モジュール100の電源容量がCPUモジュール200及び機能モジュール300A,300Bの消費電流の合計値以上であっても、それが必要量を大きく超えている場合、電源モジュール100に係る費用の増大を招くことになる。そこで本実施形態においては、CPUモジュール200のマイクロプロセッサ202は、電源モジュール100の電源容量が当該電源モジュール100以外のCPUモジュール200及び機能モジュール300A,300Bの消費電流の合計値以上であり電源容量が適合すると判定した場合に、さらに、電源モジュール100を対応する製品ラインナップ上におけるより小容量の電源モジュールに交換可能であるか否かを判定する。これにより、交換可能である場合には操作者に警告し、製品ラインナップ上における適切な容量の電源モジュール(例えば、必要最低限の電源容量を有する電源モジュール)への交換を促すことが可能となる。その結果、電源モジュール100に係る費用を抑制することができる。
 また、本実施形態では特に、CPUモジュール200は、マイクロプロセッサ202が電源モジュール100の電源容量が適合しないと判定した場合にエラー表示を行うと共に、マイクロプロセッサ202が電源モジュール100を対応する製品ラインナップ上におけるより小容量の電源モジュールに交換可能であると判定した場合に警告表示を行う状態表示部207を有する。これにより、電源モジュール100の電源容量が適合しない場合には、操作者により大きな電源容量を有する電源モジュールへの交換を促し、電源モジュール100をより小容量の電源モジュールに交換可能である場合には、操作者に必要最低限の電源容量を有する電源モジュールへの交換を促すことができる。その結果、適切な電源モジュール100へ確実に交換することができる。
 なお、実施の形態は、上記内容に限られるものではなく、その趣旨及び技術的思想を逸脱しない範囲内で種々の変形が可能である。以下、そのような変形例を順を追って説明する。
 (1)マイクロプロセッサ自身が各モジュールからユニットIDの読み出しを行う場合
 上記実施形態においては、マイクロプロセッサ202とは別のID読み出し回路ブロック206が電源モジュール100、CPUモジュール200、及び機能モジュール300A,300BからユニットIDの読み出しを行っていたが、これに限られず、マイクロプロセッサ自身が電源モジュール100、CPUモジュール200、及び機能モジュール300A,300BからユニットIDの読み出しを行ってもよい。
 図8に示すように、本変形例におけるCPUモジュール200は、全体の各種制御を行うマイクロプロセッサ202′(プロセッサ)と、前述のバス制御部203と、前述のユニットID部204と、データテーブル記憶部205と、マイクロプロセッサ202′に接続され、電源モジュール100、CPUモジュール200、及び機能モジュール300A,300BからユニットIDを読み出すためのプログラムが格納されたプログラム記憶部209(第2記憶部)と、ユニットID記憶部210(第3記憶部)と、前述の状態表示部207と、プルダウン抵抗208を有している。なお、マイクロプロセッサ202′内に備えられたメモリを第2記憶部や第3記憶部としてもよい。
 本変形例においては、マイクロプロセッサ202′は、前述のようにしてコンバータ102から第1電源が供給されると、所定の初期化処理を実行して、その後、自身の出力ポートを起動し、電源モジュール100、CPUモジュール200、及び機能モジュール300A,300BのユニットID部104,204,303A,303Bに対しLD信号を出力する。これにより、各ユニットID部104,204,303A,303Bは、ユニットIDをセットする。その後、マイクロプロセッサ202′は、各ユニットID部104,204,303A,303Bに対しCLK信号を連続的に出力する。このとき、各ユニットID部104,204,303A,303Bから出力されるID信号の経路は上記実施形態と同様であるが、最終的にID信号が到達するのは、上記実施形態と異なり、マイクロプロセッサ202′の入力ポートとなる。マイクロプロセッサ202′に入力されたID信号は、8ビット単位(1バイト単位)のパラレルデータ(ユニットID又は端末コード「00000000」)に変換されて、図示しないユニットIDレジスタにセットされる。なお、マイクロプロセッサ202′は、端末コード「00000000」を検出するまで、CLK信号の出力を連続的に行い、端末コード「00000000」を検出したら、CLK信号の出力を停止する。そして、ユニットIDレジスタにセットされた8ビット単位のパラレルデータを上位アドレスから順番に、1バイト単位(又は1ワード単位でもよい)で読み出し、端末コード「00000000」を読み出したら読み出しを終了して、読み出したユニットIDをユニットID記憶部210に記憶する。その後は、ユニットID記憶部210に記憶されたユニットIDに基づきデータテーブル記憶部205に記憶されたデータテーブルを参照して、前述の判定等を行う。
 以上説明した機能を実現するために、プログラム記憶部209に格納されたプログラムに基づいてマイクロプロセッサ202′によって行われる制御処理の内容を、図9により順を追って説明する。
 図9において、このフローチャートに示す処理は、プログラマブルコントローラ1の電源が投入され、電源モジュール100から第1電源系ラインL1を介してマイクロプロセッサ202′に対しコンバータ102からの第1電源が供給された場合に開始される。ステップS10は前述の図7と同等であり、マイクロプロセッサ202′は、初期化処理を実行する。
 その後、ステップS25で、マイクロプロセッサ202′は、電源モジュール100、CPUモジュール200、及び機能モジュール300A,300BのユニットID部104,204,303A,303Bに対しLD信号を出力する。
 そして、ステップS35に移り、マイクロプロセッサ202′は、各ユニットID部104,204,303A,303Bに対しCLK信号を連続的に出力する。これにより、各ユニットID部104,204,303A,303BからID信号が出力される。このステップS35の手順が、特許請求の範囲に記載の第1手順に相当する。
 その後、ステップS40′で、マイクロプロセッサ202′は、電源モジュール100のユニットID部104から出力されたID信号を入力し、1バイト単位のパラレルデータ(ユニットID又は端末コード「00000000」)に変換して、ユニットID記憶部210に記憶する。これは、各ユニットID部104,204,303A,303Bから出力されたユニットIDを入力してユニットID記憶部210に記憶することと同等である。これにより、電源モジュール100、CPUモジュール200、及び機能モジュール300A,300Bの全てについてユニットIDを取得する。このステップS40′の手順が、特許請求の範囲に記載の第2手順に相当する。
 そして、ステップS50′に移り、マイクロプロセッサ202′は、テーブルデータ記憶部205に記憶されたデータテーブルにアクセスし、上記ステップS40′でユニットID記憶部210に記憶したユニットIDに基づき、対応するモジュール情報、すなわち、電源モジュール100、CPUモジュール200、及び機能モジュール300A,300Bの全てについてモジュール情報を取得する。
 その後のステップS60~ステップS110は、前述の図7と同様であるので、説明を省略する。なお、本変形例におけるステップS60及びステップS70の手順は、特許請求の範囲に記載の第3手順に相当する。
 本変形例によれば、上記実施形態と同様の効果を得ることができる。さらに本変形例によれば、CPUモジュール200のマイクロプロセッサ202′自身が電源モジュール100、CPUモジュール200、及び機能モジュール300A,300BからユニットIDの読み出しを行うことにより、マイクロプロセッサ202′とは別にID読み出し回路ブロックを設ける必要がなくなり、部品点数を低減することができる。
 (2)第2電源をイネーブル信号で供給制御する場合
 上記実施形態においては、一次側電源400をコンバータ102に接続し、コンバータ102で電源電圧を生成すると共に、マイクロプロセッサ202がリレー103の接点の開閉を制御することにより、第2電源の供給を制御していたが、これに限られない。すなわち、一次側電源400を2つの電源装置に接続し、各々で電源電圧を生成すると共に、マイクロプロセッサ202が一方の電源装置に対し制御信号を出力することにより、第2電源の供給を制御してもよい。
 図10に示すように、本変形例における電源モジュール100は、一次側電源400に接続されたコンバータ102′(第2電源装置)と、前述のユニットID部104と、一次側電源400に接続されたイネーブル機能付きコンバータ105(第3電源装置)とを有している。
 コンバータ102′は、一次側電源400から供給された商用電源に基づき電源電圧を生成し、生成した電源電圧を第1電源として、第1電源系ラインL1を介して供給する。
 イネーブル機能付きコンバータ105は、一次側電源400から供給された商用電源に基づき電源電圧を生成し、生成した電源電圧を第2電源として、当該第2電源の供給を制御する。
 そして、CPUモジュール200のマイクロプロセッサ202が、前述と同様に電源モジュール100の電源容量の適合性の判定を行い、電源モジュール100の電源容量が適合すると判定した場合に、イネーブル機能付きコンバータ105にイネーブル信号(制御信号)を出力して、第2電源系ラインL2を介して第2電源を供給させる。すなわち、第2電源系ラインL2を介して、CPUモジュール200のバス制御部203と、各機能モジュール300A,300Bのモジュール制御部302A,302Bとに第2電源を供給させる。
 本変形例によれば、上記実施形態と同様の効果を得ることができる。さらに本変形例によれば、CPUモジュール200のマイクロプロセッサ202が、電源モジュール100の電源容量が適合すると判定した場合にイネーブル機能付きコンバータ105にイネーブル信号を出力することで、電源モジュール100が第2電源を供給するように確実に制御することができる。
 (3)電源断前及び投入後のモジュール構成の一致・不一致を判定する場合
 すなわち、CPUモジュール200のマイクロプロセッサ202が、プログラマブルコントローラ1の電源断前に取得したユニットIDと、電源投入の後に取得したユニットIDとを比較することにより、プログラマブルコントローラ1に装備された複数のモジュールの構成(種類や順番)がプログラマブルコントローラ1の電源断前及び電源投入の後において一致しているか否かを判定するようにしてもよい。これにより、CPUモジュール200のマイクロプロセッサ202が、複数のモジュールの構成がプログラマブルコントローラ1の電源断の前及び電源投入の後において一致しないと判定した場合には、メンテナンスの発生やプログラマブルコントローラ1の故障等が発生したものと判断し、操作者に警告することが可能となる。
 (4)モジュールの位置関係の適否を判定する場合
 すなわち、CPUモジュール200のマイクロプロセッサ202が、前述のようにして取得した電源モジュール100、CPUモジュール200、及び機能モジュール300A,300BのユニットIDの順番に基づき、前述のデータテーブル記憶部205に記憶されたデータテーブルを参照することで、プログラマブルコントローラ1に装備された電源モジュール100、CPUモジュール200、及び機能モジュール300A,300Bの位置関係の適否を判定するようにしてもよい。これにより、例えば高速なプロセッサや高速な同期式メモリを有する機能モジュールの隣にノイズを発生するリレー出力モジュールを配置したり、発熱量の多い入力モジュールや出力モジュールを連続して配置したりといったような、モジュールの仕様により隣り合った配置が好ましくない位置関係がある場合に、CPUモジュール200のマイクロプロセッサ202がそれを判定して操作者に注意を促すことが可能となる。
 (5)CPUモジュールがサポートしないモジュールの有無を判定する場合
 すなわち、CPUモジュール200のマイクロプロセッサ202が、前述のようにして取得した電源モジュール100、CPUモジュール200、及び機能モジュール300A,300BのユニットIDに基づき、前述のデータテーブル記憶部205に記憶されたデータテーブルを参照することで、プログラマブルコントローラ1に装備された電源モジュール100及び機能モジュール300A,300BにCPUモジュール200の機能が対応していないモジュールが含まれるか否かを判定するようにしてもよい。これにより、CPUモジュール200の機能が対応していないモジュールが装着された場合には、マイクロプロセッサ202がそれを判定して操作者に注意を促すことが可能となる。
 (6)状態表示部を装置外部に設ける場合
 上記実施形態では、CPUモジュール200が状態表示部207を有するように構成したが、状態表示部207を有しない構成としてもよい。この場合、CPUモジュール200が表示信号を有線あるいは無線通信を介して外部の表示機器(PC等)に出力し、当該表示機器に表示を行わせる構成としてもよい。
 また、以上既に述べた以外にも、上記実施形態や各変形例による手法を適宜組み合わせて利用しても良い。
 その他、一々例示はしないが、上記実施形態や各変形例は、その趣旨を逸脱しない範囲内において、種々の変更が加えられて実施されるものである。
 1      プログラマブルコントローラ(制御装置)
 100    電源モジュール(モジュール)
 102    コンバータ(第1電源装置)
 102′   コンバータ(第2電源装置)
 103    リレー
 104    ユニットID部(識別情報出力部)
 105    イネーブル機能付きコンバータ(第3電源装置)
 200    CPUモジュール(モジュール)
 202    マイクロプロセッサ(プロセッサ)
 202′   マイクロプロセッサ(プロセッサ)
 204    ユニットID部(識別情報出力部)
 205    データテーブル記憶部(第1記憶部)
 206    ID読み出し回路ブロック(識別情報読み出し部)
 207    状態表示部(表示部)
 209    プログラム記憶部(第2記憶部)
 210    ユニットID記憶部(第3記憶部)
 300A,B 機能モジュール(モジュール)
 303A,B ユニットID部(識別情報出力部)
 400    一次側電源

Claims (13)

  1.  少なくとも電源モジュール(100)とCPUモジュール(200)を含む複数のモジュール(100,200,300A,300B)を備えたビルディングブロック形式の制御装置であって、
     前記CPUモジュール(200)は、
     前記電源モジュール(100)の電源容量と、当該電源モジュール(100)以外の各モジュールの消費電流の合計値とを比較することにより、前記電源モジュール(100)の電源容量の適合性の判定を行う判定制御機能を備えるプロセッサ(202;202′)を有し、
     前記電源モジュール(100)は、
     前記プロセッサ(202;202′)に供給される電源を含む前記電源容量の適合性の判定に用いられる第1電源と、それ以外に用いられる第2電源とを、少なくとも2つの独立した電源系統として供給する
    ことを特徴とする制御装置(1)。
  2.  前記電源モジュール(100)は、
     前記制御装置(1)の電源が投入された際に前記第1電源のみを供給し、
     前記プロセッサ(202;202′)は、
     前記電源モジュール(100)の電源容量が前記消費電流の合計値以上である場合に、前記電源モジュール(100)の電源容量が適合すると判定し、前記第2電源を供給するように前記電源モジュール(100)を制御する
    ことを特徴とする請求項1に記載の制御装置(1)。
  3.  前記電源モジュール(100)は、
     一次側電源(400)から前記第1電源及び第2電源を生成する第1電源装置(102)と、
     接点開閉することにより前記第1電源装置(102)からの前記第2電源の遮断及び供給を切り替えるリレー(103)と、を有し、
     前記プロセッサ(202;202′)は、
     前記電源モジュール(100)の電源容量が適合すると判定した場合に、前記リレー(103)を閉成させて前記第2電源を供給する
    ことを特徴とする請求項2に記載の制御装置(1)。
  4.  前記電源モジュール(100)は、
     一次側電源(400)から前記第1電源を生成する第2電源装置(102′)と、
     一次側電源(400)から前記第2電源を生成すると共に、前記第2電源の供給を制御可能な第3電源装置(105)を有し、
     前記プロセッサ(202;202′)は、
     前記電源モジュール(100)の電源容量が適合すると判定した場合に、前記第3電源装置に制御信号を出力して前記第2電源を供給させる
    ことを特徴とする請求項2に記載の制御装置(1)。
  5.  前記複数のモジュール(100,200,300A,300B)は、
     前記第1電源が供給され、自身の識別情報を出力する識別情報出力部(104,204,303A,303B)をそれぞれ有し、
     前記CPUモジュール(200)は、
     前記識別情報と対応するモジュール情報とで構成されたデータテーブルが記憶された第1記憶部(205)を有し、
     前記プロセッサ(202;202′)は、
     前記複数のモジュール(100,200,300A,300B)の全てについて前記識別情報を取得し、当該識別情報に基づき前記データテーブルを参照して、前記消費電流の合計値を算出することで、前記電源モジュール(100)の電源容量の適合性の判定を行う
    ことを特徴とする請求項1乃至4のいずれか1項に記載の制御装置(1)。
  6.  前記CPUモジュール(200)は、
     各モジュールの前記識別情報出力部(104,204,303A,303B)に対し前記識別情報の出力指令を出力すると共に、前記出力指令に応じて各モジュールの前記識別情報出力部(104,204,303A,303B)から出力された前記識別情報を入力して記憶する識別情報読み出し部(206)を有し、
     前記プロセッサ(202;202′)は、
     前記識別情報読み出し部(206)から前記識別情報を取得する
    ことを特徴とする請求項5に記載の制御装置(1)。
  7.  前記CPUモジュール(200)は、
     前記プロセッサ(202′)に接続された第2記憶部(209)を有し、
     前記プロセッサ(202′)は、
     前記第2記憶部(209)に格納されたプログラムに基づいて、
     各モジュールの前記識別情報出力部(104,204,303A,303B)に対し前記識別情報の出力指令を出力する第1手順(S35)と、
     各モジュールの前記識別情報出力部(104,204,303A,303B)から出力された前記識別情報を入力して第3記憶部(210)に記憶する第2手順(S40′)と、
     前記第3記憶部に記憶した識別情報に基づき前記データテーブルを参照して、前記消費電流の合計値を算出することで、前記電源モジュール(100)の電源容量の適合性の判定を行う第3手順(S60,S70)と、を実行する
    ことを特徴とする請求項5に記載の制御装置(1)。
  8.  前記プロセッサ(202;202′)は、
     取得した前記識別情報の順番に基づき、前記データテーブルを参照することで、前記複数のモジュール(100,200,300A,300B)の位置関係の適否を判定する
    ことを特徴とする請求項5乃至7のいずれか1項に記載の制御装置(1)。
  9.  前記プロセッサ(202;202′)は、
     前記制御装置(1)の電源断の前及び電源投入の後における前記識別情報同士を比較することにより、前記複数のモジュール(100,200,300A,300B)の構成が前記制御装置(1)の電源断の前及び電源投入の後において一致しているか否かを判定する
    ことを特徴とする請求項5乃至8のいずれか1項に記載の制御装置(1)。
  10.  少なくとも1つの機能モジュール(300A,300B)をさらに備え、
     前記プロセッサ(202;202′)は、
     取得した前記識別情報に基づき、前記データテーブルを参照することで、前記複数のモジュール(100,200,300A,300B)に前記CPUモジュール(200)の機能が対応していないモジュールが含まれるか否かを判定する
    ことを特徴とする請求項5乃至9のいずれか1項に記載の制御装置(1)。
  11.  前記プロセッサ(202;202′)は、
     前記電源モジュール(100)の電源容量が適合すると判定した場合に、さらに、前記電源モジュール(100)を対応する製品ラインナップ上におけるより小容量のモジュールに交換可能であるか否かを判定する
    ことを特徴とする請求項1乃至10のいずれか1項に記載の制御装置(1)。
  12.  前記CPUモジュール(200)は、
     前記プロセッサ(202;202′)が前記電源モジュール(100)の電源容量が適合しないと判定した場合にエラー表示を行うと共に、前記プロセッサ(202;202′)が前記電源モジュール(100)を対応する製品ラインナップ上におけるより小容量のモジュールに交換可能であると判定した場合に警告表示を行う表示部(207)を有する
    ことを特徴とする請求項11に記載の制御装置(1)。
  13.  前記表示部(207)は、
     前記警告表示として、前記製品ラインナップ上における適切な容量のモジュールへの交換を促す表示を行う
    ことを特徴とする請求項12に記載の制御装置(1)。
     
PCT/JP2012/053944 2011-03-04 2012-02-20 制御装置 WO2012120994A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013503440A JP5633764B2 (ja) 2011-03-04 2012-02-20 制御装置
CN201280011343.7A CN103403635B (zh) 2011-03-04 2012-02-20 控制装置
EP12754789.1A EP2682831A4 (en) 2011-03-04 2012-02-20 CONTROL DEVICE
US14/016,230 US9229509B2 (en) 2011-03-04 2013-09-03 Control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011048095 2011-03-04
JP2011-048095 2011-03-04

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/016,230 Continuation-In-Part US9229509B2 (en) 2011-03-04 2013-09-03 Control device
US14/016,230 Continuation US9229509B2 (en) 2011-03-04 2013-09-03 Control device

Publications (1)

Publication Number Publication Date
WO2012120994A1 true WO2012120994A1 (ja) 2012-09-13

Family

ID=46797963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053944 WO2012120994A1 (ja) 2011-03-04 2012-02-20 制御装置

Country Status (6)

Country Link
US (1) US9229509B2 (ja)
EP (1) EP2682831A4 (ja)
JP (1) JP5633764B2 (ja)
CN (1) CN103403635B (ja)
TW (1) TWI488014B (ja)
WO (1) WO2012120994A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014115813A (ja) * 2012-12-10 2014-06-26 Fuji Electric Co Ltd 診断装置、プログラマブルコントローラシステム、診断方法。
JP2016164736A (ja) * 2015-03-06 2016-09-08 アズビル株式会社 監視制御システム
JP2020087894A (ja) * 2018-11-30 2020-06-04 シーシーエス株式会社 光照射器用電源装置及び光照射システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6051547B2 (ja) * 2012-03-15 2016-12-27 オムロン株式会社 制御装置
EP2980663B1 (en) * 2013-03-29 2017-08-23 Mitsubishi Electric Corporation Plc system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184503A (ja) * 1988-01-19 1989-07-24 Koyo Electron Ind Co Ltd プログラマブル・コントローラ
JP2002108417A (ja) * 2000-09-29 2002-04-10 Keyence Corp 増設型plcシステム及びこれに組み込まれる発信ユニット、受信ユニット並びにエンドユニット
JP2010092391A (ja) * 2008-10-10 2010-04-22 Koyo Electronics Ind Co Ltd ビルディングブロックタイプのプログラマブルコントローラ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0887307A (ja) * 1994-09-20 1996-04-02 Hitachi Ltd プログラマブルコントローラ
US6892265B2 (en) * 2001-02-14 2005-05-10 Berkley Process Control, Inc. Configurable connectorized I/O system
US7049710B2 (en) * 2002-11-05 2006-05-23 Square D Company Power bus for distributed ride through capability
US7353415B2 (en) * 2005-04-11 2008-04-01 Dell Products L.P. System and method for power usage level management of blades installed within blade servers
TWI477016B (zh) * 2006-07-24 2015-03-11 Newire Inc 與導電扁線一起使用的電源裝置、導電扁線系統、監控導電扁線的方法及與導電扁線一起使用之主動安全裝置
US8024586B2 (en) * 2007-06-12 2011-09-20 Hewlett-Packard Development Company, L.P. Determining power requirements by requesting auxiliary powered memory for server's each onboard component's need
FR2917922B1 (fr) * 2007-06-25 2009-07-31 Schneider Electric Ind Sas Communication par courant porteur pour les tableaux centralises de commande
CN101430584A (zh) * 2007-11-08 2009-05-13 上海京城高新技术开发有限公司 一种光伏电充电带隐插手写功能手提电脑
CN101246361B (zh) * 2008-03-26 2010-07-07 杭州华三通信技术有限公司 电源管理方法及系统
US8484493B2 (en) * 2008-10-29 2013-07-09 Dell Products, Lp Method for pre-chassis power multi-slot blade identification and inventory
CN101800432B (zh) * 2009-02-06 2012-06-06 精英电脑股份有限公司 系统电源监控装置及其方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184503A (ja) * 1988-01-19 1989-07-24 Koyo Electron Ind Co Ltd プログラマブル・コントローラ
JP2002108417A (ja) * 2000-09-29 2002-04-10 Keyence Corp 増設型plcシステム及びこれに組み込まれる発信ユニット、受信ユニット並びにエンドユニット
JP2010092391A (ja) * 2008-10-10 2010-04-22 Koyo Electronics Ind Co Ltd ビルディングブロックタイプのプログラマブルコントローラ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014115813A (ja) * 2012-12-10 2014-06-26 Fuji Electric Co Ltd 診断装置、プログラマブルコントローラシステム、診断方法。
JP2016164736A (ja) * 2015-03-06 2016-09-08 アズビル株式会社 監視制御システム
JP2020087894A (ja) * 2018-11-30 2020-06-04 シーシーエス株式会社 光照射器用電源装置及び光照射システム
JP7063795B2 (ja) 2018-11-30 2022-05-09 シーシーエス株式会社 光照射器用電源装置及び光照射システム

Also Published As

Publication number Publication date
CN103403635B (zh) 2015-11-25
CN103403635A (zh) 2013-11-20
US9229509B2 (en) 2016-01-05
EP2682831A4 (en) 2014-08-13
EP2682831A1 (en) 2014-01-08
TW201303536A (zh) 2013-01-16
JP5633764B2 (ja) 2014-12-03
JPWO2012120994A1 (ja) 2014-07-17
TWI488014B (zh) 2015-06-11
US20140006814A1 (en) 2014-01-02

Similar Documents

Publication Publication Date Title
JP5633764B2 (ja) 制御装置
US7971085B2 (en) Method and apparatus for supplying power, and display device
KR100653065B1 (ko) 전자기기 시스템 및 그 제어방법
TW200825911A (en) Plc
JP2012123673A (ja) 給電切替装置、給電切替装置制御方法、及び給電制御プログラム
US10962959B2 (en) Relay, control method, and non-transitory computer-readable recording medium for power supply control
US20070296714A1 (en) Display apparatus and control method thereof
JP2006245956A (ja) 通信機器用の接続装置
CN105718248A (zh) 片上系统和用于片上系统端口功能初始化的方法和装置
US9886075B2 (en) Three-way handshaking method and computer readable media
CN114008984B (zh) 计算机可读存储介质以及管理方法
JP2007079660A (ja) メモリカード用入出力装置及びその制御方法
KR101438341B1 (ko) 프로그래머블 컨트롤러 시스템
JP2006277733A (ja) プログラマブル・コントローラ・システム
US10147385B2 (en) Online gamma adjustment system of liquid crystal
JP4550754B2 (ja) データ書込制御装置
JP4509991B2 (ja) プログラマブル表示器、プログラムおよびそれを記録した記録媒体
JP2007164398A (ja) ロボット制御装置の制御方法及びロボット制御装置
KR100482815B1 (ko) Lcd 모듈의 구동 시스템 및 방법
JP2008052619A (ja) 複数のロボット制御装置用電源装置からなる電源システム
KR920009755B1 (ko) Pos 터미널의 전원 원격 제어방법
TWI567562B (zh) 具有可擴充功能之驅動器
JP2005188803A (ja) 電気機器制御装置
JP2002220168A (ja) エレベータシステム
JP2007264754A (ja) 制御モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12754789

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013503440

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012754789

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012754789

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE