WO2012120973A1 - Defect inspection method, defect inspection apparatus, and method for manufacturing substrate - Google Patents

Defect inspection method, defect inspection apparatus, and method for manufacturing substrate Download PDF

Info

Publication number
WO2012120973A1
WO2012120973A1 PCT/JP2012/053180 JP2012053180W WO2012120973A1 WO 2012120973 A1 WO2012120973 A1 WO 2012120973A1 JP 2012053180 W JP2012053180 W JP 2012053180W WO 2012120973 A1 WO2012120973 A1 WO 2012120973A1
Authority
WO
WIPO (PCT)
Prior art keywords
defective
defect
infrared camera
substrate
wiring
Prior art date
Application number
PCT/JP2012/053180
Other languages
French (fr)
Japanese (ja)
Inventor
正和 柳瀬
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201280009272.7A priority Critical patent/CN103380366B/en
Priority to JP2013503430A priority patent/JP5628410B2/en
Publication of WO2012120973A1 publication Critical patent/WO2012120973A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/20Investigating the presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N2021/9513Liquid crystal panels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/308Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation
    • G01R31/309Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation of printed or hybrid circuits or circuit substrates
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/145Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen
    • G09G2360/147Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen the originated light output being determined for each pixel

Definitions

  • the present invention relates to a wiring defect inspection method and a defect inspection apparatus suitable for detecting defects in a wiring board on which a large number of wirings such as a liquid crystal panel and a solar battery panel are formed.
  • a manufacturing process of a liquid crystal panel is roughly divided into an array (TFT) process, a cell (liquid crystal) process, and a module process.
  • TFT array
  • a gate electrode, a semiconductor film, a source / drain electrode, a protective film, and a transparent electrode are formed on a transparent substrate, and then an array inspection is performed to short-circuit or break a wiring such as an electrode or a wiring. Etc. are inspected for defects.
  • an inspection method for specifying the position of a defect there is a visual inspection in which an operator observes and specifies a substrate with a microscope.
  • this inspection method places a heavy burden on the operator, and it is difficult to determine a defect visually.
  • the position of the defect was wrong.
  • an infrared inspection has been proposed in which a substrate is photographed with an infrared camera, image processing is performed, and a defect position is automatically specified.
  • Patent Document 1 relates to an infrared inspection. As shown in FIG. 6, a conventional electrical inspection is performed with one terminal of each of a scanning line 61 and a signal line 62 of a thin film transistor substrate being electrically connected. After conducting a continuity test in the same manner as the method, a short-circuited pixel address is specified for a substrate determined to be defective by the continuity test.
  • a potential difference is applied between the scanning line 61 and the signal line 62, heat generation due to the current flowing in the scanning line 61 and the signal line 62 where the short-circuit occurs is detected, and the short-circuit position 63 is specified.
  • an infrared microscope 65 is used according to the intensity of infrared light emitted from a heat generating portion of a minute region of about 10 to 30 ⁇ m, and the terminal portions of the scanning line 61 and the signal line 62 are scanned along the broken line 66. Then, the wiring that generates heat is detected.
  • the short-circuit position 63 is specified as the short-circuit position 63 or the short-circuit candidate region 63 in which a short-circuit defect may occur.
  • the short-circuit candidate region 63 sequentially positions the wiring pattern of the short-circuit pixel address within the field of view of the infrared microscope 65, detects the infrared image, and identifies the short-circuit position 63 from the intensity.
  • the short circuit position 63 is specified by these, and a short circuit is corrected by wiring correction methods, such as a laser 67. FIG.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 4-72552 (Publication Date: March 6, 1992)”
  • the conventional infrared inspection has the following problems.
  • the infrared image detector 65 detects the infrared light intensity in a minute region, and in order to detect the heat generating part, the scanning line 61 and the signal line 62 on the substrate. Had to scan. Therefore, there is a problem that the longer the inspection area is, such as a large liquid crystal panel or a mother substrate on which a plurality of liquid crystal panels are formed, the longer the time required for infrared inspection and the lower the throughput.
  • the present invention has been made to solve the above-described problems, and the object of the present invention is to provide a wiring that can identify a defective portion in a short time by effectively combining resistance inspection and infrared inspection. It is to provide a defect inspection method and a defect inspection apparatus.
  • a defect inspection method for detecting a defect position from a mother substrate on which a plurality of wiring boards are formed including a defective substrate having a defective portion or a defective portion by performing a resistance inspection on each of the plurality of wiring boards.
  • another defect inspection method is a defect inspection method for detecting a defect position of a wiring from a mother substrate on which a plurality of wiring boards are formed, and each of the plurality of wiring boards has a resistance.
  • a step of detecting a defective substrate having a defective portion or a defective block including the defective portion by inspecting, a step of applying a voltage to the defective substrate or the defective block, and heating the defective portion; and the defect A step of photographing the defective substrate or the defect block that has generated heat with a first infrared camera, and a step of measuring the position of the defective portion from an image photographed by the first infrared camera. It is characterized by.
  • a method for manufacturing a substrate comprising: forming a mother substrate on which a plurality of wiring substrates are formed by forming at least one of a gate electrode, a source electrode, and a drain electrode on the substrate; A substrate forming step to form, a step of detecting a defective substrate having a defective portion or a defective block including the defective portion by performing resistance inspection on each of the plurality of wiring substrates, and a voltage applied to the defective substrate or the defective block , The step of causing the defect portion to generate heat, the step of photographing the defect substrate or the defect block where the defect portion generates heat with a first infrared camera, and the image photographed with the first infrared camera And macro-measuring the position of the defective portion.
  • the defect inspection apparatus is a defect inspection apparatus for detecting a defect position from a mother board on which a plurality of wiring boards are formed, and each of the plurality of wiring boards is subjected to resistance inspection.
  • a voltage application unit that applies a voltage to a defective substrate or defect block that has been found to have a defect by resistance inspection by the resistance measurement unit; and the defective substrate or the defect block to which a voltage is applied by the voltage application unit
  • FIG. 1 is a block diagram illustrating the configuration of the defect inspection apparatus 100 according to the first embodiment.
  • a defect inspection apparatus 100 according to the first embodiment inspects defects such as wiring in a plurality of liquid crystal panels 2 formed on a mother substrate 1.
  • a probe 3 for conducting the liquid crystal panel 2 and a probe 3 are connected to the defect inspection apparatus 100 according to the first embodiment.
  • Probe moving means 4 for moving on each liquid crystal panel 2, infrared camera 5 for acquiring an infrared image, camera moving means 6 for moving the infrared camera 5 on the liquid crystal panel 2, and probe moving means 4 And a main control section 7 for controlling the camera moving means 6.
  • the probe 3 is connected to a resistance measuring unit 8 for measuring the resistance between the wirings of the liquid crystal panel 2 and a voltage applying unit 9 for applying a voltage between the wirings of the liquid crystal panel 2.
  • the measurement unit 8 and the voltage application unit 9 are controlled by the main control unit 7.
  • the main control unit 7 is connected to a data storage unit 10 that stores resistance values between wirings and image data.
  • FIG. 2 is a perspective view illustrating a configuration of the defect inspection apparatus 100 according to the first embodiment.
  • an alignment stage 11 is installed on a base, and the mother substrate 1 is placed on the alignment stage 11, and the position is adjusted in parallel with the XY coordinate axes of the probe moving means 4 and the camera moving means 6.
  • an optical camera 12 for confirming the position of the mother substrate 1 is disposed above the alignment stage 11.
  • the probe moving means 4 is slidably installed on a guide rail 13 a disposed outside the alignment stage 11.
  • Guide rails 13b and 13c are also provided on the main body side of the probe moving means 4 so that the mount portion 14a can be moved along the guide rails 13 in the XYZ coordinate directions.
  • a probe 3 corresponding to the liquid crystal panel 2 is mounted on the mount portion 14a.
  • the camera moving means 6 is slidably installed on a guide rail 13d arranged outside the probe moving means 4.
  • the main body of the camera moving means 6 is also provided with guide rails 13e, 13f, and the three mount portions 14b, 14c, 14d can be moved separately along the guide rails 13 in the XYZ coordinate directions. It is like that.
  • the mounting parts 14b and 14c are equipped with a measurement camera for measuring the defective part.
  • the first infrared camera 5a for macro measurement and the second infrared camera 5b for micro measurement are mounted, and the optical camera 16 is mounted on the mount portion 14d.
  • the infrared camera 5a is an infrared camera for macro measurement whose field of view is expanded to about 520 ⁇ 405 mm.
  • the infrared camera 5a is configured by combining, for example, four infrared cameras in order to widen the field of view.
  • the infrared camera 5b is an infrared camera for micro-measurement that has a small field of view of about 32 ⁇ 24 mm but can perform high-resolution imaging.
  • the camera moving means 5 may be equipped with a laser irradiation device for correcting a defective part by adding a mount portion 14.
  • a laser irradiation device for correcting a defective part by adding a mount portion 14.
  • the probe moving means 4 and the camera moving means 6 are installed on separate guide rails 13a and 13d, the probe moving means 4 and the camera moving means 6 can move in the X coordinate direction without interference with each other. Therefore, the infrared cameras 5a and 5b and the optical camera 16 can be further moved on the liquid crystal panel 2 in a state where the probe 3 is in contact with the liquid crystal panel 2.
  • FIG. 3A is a plan view of the liquid crystal panel 2 formed on the mother substrate 1.
  • the liquid crystal panel 2 includes a pixel portion 17 in which a TFT is formed at each intersection where a scanning line and a signal line intersect, and a driving circuit portion 18 that drives the scanning line and the signal line, respectively.
  • Terminal portions 19 a to 19 d are provided at the edge of the liquid crystal panel 2, and the terminal portions 19 a to 19 d are connected to the wirings of the pixel portion 17 and the drive circuit portion 18.
  • the liquid crystal panel 2 is manufactured by forming a gate electrode, a semiconductor film, a source electrode, a drain electrode, a protective film, and a transparent electrode on a transparent substrate.
  • FIG. 3B is a plan view of the probe 3 for conducting with the terminal portions 19a to 19d provided on the liquid crystal panel 2.
  • the probe 3 has a frame shape that is substantially the same size as the liquid crystal panel 2, and includes a plurality of probe needles 21a to 21d corresponding to the terminal portions 19a to 19d.
  • the plurality of probe needles 21a to 21d can individually connect one probe needle 21 to the resistance measuring unit 8 and the voltage applying unit 9 via a switching relay (not shown). Therefore, the probe 3 can selectively connect a plurality of wirings connected to the terminal portions 19a to 19d, or can connect a plurality of wirings together.
  • the probe 3 since the probe 3 has a frame shape that is almost the same size as the liquid crystal panel 2, when the positions of the terminal portions 19a to 19d and the probe needles 21a to 21d are aligned, Can be confirmed by the optical camera 16.
  • the defect inspection apparatus 100 includes the probe 3 and the resistance measurement unit 8 connected to the probe 3.
  • the probe 3 is electrically connected to the liquid crystal panel 2, and the resistance of each wiring is connected. Value, resistance value between adjacent wirings, and the like can be measured.
  • the defect inspection apparatus 100 includes a probe 3, a voltage application unit 9 connected to the probe 3, and infrared cameras 5 a and 5 b, and wiring of the liquid crystal panel 2 through the probe 3. Further, the heat generated by applying a voltage between the wirings and causing a current to flow through the defective part can be measured by the infrared cameras 5a and 5b, and the position of the defective part can be specified.
  • a single inspection apparatus can be used for both resistance inspection and infrared inspection.
  • FIG. 4 is a flowchart of a defect inspection method using the defect inspection apparatus 100 according to the first embodiment.
  • defect inspection is sequentially performed on the plurality of liquid crystal panels 2 formed on the mother substrate 1 through steps S ⁇ b> 1 to S ⁇ b> 10.
  • step S1 the mother substrate 1 is placed on the alignment stage 11 of the defect inspection apparatus 100, and the position of the substrate is adjusted to be parallel to the XY coordinate axes.
  • step S2 the probe 2 is moved to the upper part of the liquid crystal panel 2 to be inspected by the probe moving means 9, and the probe needles 21a to 21d are brought into contact with the terminal portions 19a to 19d of the liquid crystal panel 2.
  • step S3 corresponding to the various defect modes, wiring for resistance inspection and between wirings are selected, and the probe needle 21 to be conducted is switched.
  • step S4 resistance inspection is performed, the resistance value between the selected wirings and wirings is measured, and the presence or absence of a defect is inspected by comparison with a normal resistance value.
  • FIG. 5 schematically shows the positions of defects generated in the pixel portion 17 as an example.
  • FIG. 5A shows a defect 23 that is short-circuited at a position where the wiring X and the wiring Y intersect vertically, such as a scanning line and a signal line.
  • a defect 23 is caused by switching the probe needle 19 to be conducted to 19a and 19d or 19b and 19c shown in FIG. 3, and the wiring X1 to X10 and the wiring Y1 to Y10 have a one-to-one resistance value between the wirings.
  • By measuring the presence or absence and position of a short circuit can be specified.
  • FIG. 5B shows a defect 23 short-circuited between adjacent wirings X, such as a scanning line and an auxiliary capacitance line.
  • a defect 23 is obtained by switching the probe needle 19 to be conducted between the odd number 19b and the even number 19d, and measuring the resistance value between the adjacent wires X1 to X10, thereby connecting the shorted wire. Can be identified.
  • FIG. 5C shows a defect 23 short-circuited between adjacent wirings Y, such as a signal line and an auxiliary capacitance line.
  • a defect 23 is obtained by switching the probe needle 19 to be switched between the odd number 19a and the even number 19c, and measuring the resistance value between the adjacent wires Y1 to Y10, thereby connecting the shorted wire. Can be identified.
  • step S5 it is determined whether or not to perform infrared inspection based on the presence and state of the defect 23. If there is a defect 23, the infrared inspection in step 6 is performed, and if there is no defect 23, the infrared inspection is not performed.
  • step 9 For example, as shown in FIG. 5A, when the short circuit 23 occurs at the intersection of the wiring X and the wiring Y, an abnormality is detected in the wiring X4 and the wiring Y4 by the resistance inspection between the wirings. However, when a short circuit 23 occurs between adjacent wirings as shown in FIGS.
  • a pair of wirings for example, between the wiring X3 and the wiring X4
  • the short circuit position by infrared inspection because the position of the short circuit cannot be specified in the length direction of the wiring.
  • step S6 infrared inspection is performed.
  • the range of infrared inspection is narrowed down to the defect block 24.
  • the defect block 24 is set so that the defective wiring and the periphery thereof are within the field of view of the infrared camera.
  • Step 7 sets a voltage value to be applied to the wiring in the defective block 24.
  • the voltage value applied to the wiring is adjusted by the voltage application unit 10, and a voltage of about several tens of volts is normally applied.
  • Step 8 is to detect the infrared light emitted from the defect portion 23 by photographing the defect block 24 that has generated heat due to the current flowing through the defect portion with the infrared camera 5.
  • the first infrared camera 5a for macro measurement that can fit the entire defect block 24 within the field of view is used. For this reason, the whole defect block 24 can be measured without scanning the infrared camera 5a, and the time for infrared inspection can be shortened.
  • the defect position is specified from the positional relationship between the defective portion 23 and the wiring, and is stored in the data storage unit 10.
  • the resistance value of the defect portion 23 is often larger than that of the wiring, and the heat generation is concentrated on the defect portion 23 and looks like a dot. Therefore, the defect position can be easily identified in the thermal image.
  • the periphery of the heat generating part may be measured in detail with the second infrared camera 5b for micro measurement. Since the position of the heat generating portion is specified by the first infrared camera 5a for macro measurement, the second infrared camera 5b for micro measurement can be directly aligned with the heat generating portion, and the defect portion 23 More detailed measurement can be performed in a short time with respect to information such as a shape necessary for correction of the image.
  • step 9 it is determined whether or not all inspections in various defect modes have been completed for the liquid crystal panel 2 being inspected. If there is an uninspected defect mode, the process returns to step S3, and the probe 3 is adjusted to the next defect mode. The connection is switched and the defect inspection is repeated.
  • step 10 it is determined whether the defect inspection of all the liquid crystal panels 2 has been completed for the mother substrate 1 being inspected. If there are any uninspected liquid crystal panels 2, the process returns to step S1 to determine whether the next inspection target The probe is moved to the liquid crystal panel 2 and the defect inspection is repeated.
  • the presence / absence of a defect is determined by resistance inspection, and the range of infrared inspection is narrowed down to the defect block 24 including the defective portion so as to be within the field of view of the infrared camera.
  • the infrared camera 5 does not need to be scanned over the entire substrate, and the time for infrared inspection can be shortened.
  • the first infrared camera 5a for macro measurement and the second infrared camera 5b for micro measurement are performed in two stages, whereby the first infrared camera 5a for macro measurement is used.
  • the position of the heat generating part is specified, and the second infrared camera 5b for micro measurement can be directly adjusted to the position of the heat generating part without scanning the entire substrate, and detailed measurement of the defective part can be performed in a short time. It can be carried out.
  • the resistance value measured by another resistance inspection apparatus may be used in the defect inspection method of the present invention to narrow down defect blocks to be subjected to infrared inspection.

Abstract

According to one embodiment of the present invention, a defect inspection method for detecting a defect position on a mother substrate having a plurality of wiring substrates formed thereon includes: a step of detecting a defective substrate, which has a defective portion, or a defective block, which includes the defective portion, by performing resistance inspection to each of the wiring substrates; a step of having the defective portion generate heat by applying a voltage to the defective substrate or the defective block; a step of photographing, by means of a first infrared camera, the defective substrate or the defective block where the defective portion has generated heat; and a step of measuring the position of the defective portion by means of macro-measurement, on the basis of an image photographed by means of the first infrared camera.

Description

欠陥検査方法、欠陥検査装置、及び基板の製造方法Defect inspection method, defect inspection apparatus, and substrate manufacturing method
 本発明は、液晶パネルや太陽電池パネル等、多数の配線が形成された配線基板の欠陥検出に好適な配線の欠陥検査方法及び欠陥検査装置に関するものである。 The present invention relates to a wiring defect inspection method and a defect inspection apparatus suitable for detecting defects in a wiring board on which a large number of wirings such as a liquid crystal panel and a solar battery panel are formed.
 配線基板の一例として、例えば、液晶パネルの製造プロセスは、アレイ(TFT)工程、セル(液晶)工程、モジュール工程に大別される。このうち、アレイ工程では、透明基板上に、ゲート電極、半導体膜、ソース・ドレイン電極、保護膜、透明電極が形成された後、アレイ検査が行なわれ、電極や配線等の配線の短絡や断線等の欠陥の有無が検査される。 As an example of a wiring board, for example, a manufacturing process of a liquid crystal panel is roughly divided into an array (TFT) process, a cell (liquid crystal) process, and a module process. Among these, in the array process, a gate electrode, a semiconductor film, a source / drain electrode, a protective film, and a transparent electrode are formed on a transparent substrate, and then an array inspection is performed to short-circuit or break a wiring such as an electrode or a wiring. Etc. are inspected for defects.
 通常、アレイ検査では、このような欠陥を、配線の端部にプローブを接触させ、配線両端における電気抵抗や、隣接する配線間の電気抵抗、電気容量を測定することにより検出している。しかしながら、アレイ検査において、配線部の欠陥の有無を検出できても、その欠陥の位置を特定するのは容易ではなかった。 Usually, in the array inspection, such a defect is detected by bringing a probe into contact with the end of the wiring and measuring the electrical resistance at both ends of the wiring, the electrical resistance between adjacent wirings, and the capacitance. However, even if the presence or absence of a defect in the wiring portion can be detected in the array inspection, it is not easy to specify the position of the defect.
 例えば、欠陥の位置の特定する検査方法として、作業者が基板を顕微鏡で観察して特定する目視検査があるが、この検査方法は作業者の負担が大きく、また、目視では欠陥の判別が難しく、欠陥の位置を誤ることもあった。このため、基板を赤外カメラで撮影して画像処理を行い、欠陥位置を自動で特定する赤外検査が提案されている。 For example, as an inspection method for specifying the position of a defect, there is a visual inspection in which an operator observes and specifies a substrate with a microscope. However, this inspection method places a heavy burden on the operator, and it is difficult to determine a defect visually. Sometimes, the position of the defect was wrong. For this reason, an infrared inspection has been proposed in which a substrate is photographed with an infrared camera, image processing is performed, and a defect position is automatically specified.
 特許文献1は赤外検査に関するものであり、図6に示すように、薄膜トランジスタ基板の走査線61と信号線62の、いずれも一方の端子を電気的に接続した状態で、従来の電気的検査方法と同様に導通検査がおこなわれた後、導通検査で不良と判定された基板を対象に短絡画素番地が特定される。 Patent Document 1 relates to an infrared inspection. As shown in FIG. 6, a conventional electrical inspection is performed with one terminal of each of a scanning line 61 and a signal line 62 of a thin film transistor substrate being electrically connected. After conducting a continuity test in the same manner as the method, a short-circuited pixel address is specified for a substrate determined to be defective by the continuity test.
 短絡画素番地特定では、走査線61と信号線62の間に電位差を与え、短絡の発生した走査線61と信号線62に流れる電流による発熱を検出し、短絡位置63を特定する。これには、10~30μm程度の微小領域の発熱部から放射される赤外光の強度に応じた赤外顕微鏡65を用い、走査線61と信号線62の端子部を破線66に沿って走査し、発熱している配線を検出する。これにより、短絡位置63、または、短絡欠陥が発生している可能性がある短絡候補領域63として特定される。また、短絡候補領域63は、短絡画素番地の配線パターンを赤外顕微鏡65の視野内に順次位置決めし、その赤外画像を検出してその強度から短絡位置63を特定する。これらにより短絡位置63が特定され、レーザ67等の配線修正法により短絡が修正される。 In the short-circuit pixel address specification, a potential difference is applied between the scanning line 61 and the signal line 62, heat generation due to the current flowing in the scanning line 61 and the signal line 62 where the short-circuit occurs is detected, and the short-circuit position 63 is specified. For this purpose, an infrared microscope 65 is used according to the intensity of infrared light emitted from a heat generating portion of a minute region of about 10 to 30 μm, and the terminal portions of the scanning line 61 and the signal line 62 are scanned along the broken line 66. Then, the wiring that generates heat is detected. Thereby, it is specified as the short-circuit position 63 or the short-circuit candidate region 63 in which a short-circuit defect may occur. The short-circuit candidate region 63 sequentially positions the wiring pattern of the short-circuit pixel address within the field of view of the infrared microscope 65, detects the infrared image, and identifies the short-circuit position 63 from the intensity. The short circuit position 63 is specified by these, and a short circuit is corrected by wiring correction methods, such as a laser 67. FIG.
日本国公開特許公報「特開平4-72552号公報(公開日:平成4年3月6日)」Japanese Patent Publication “Japanese Patent Laid-Open No. 4-72552 (Publication Date: March 6, 1992)”
 しかしながら、従来の赤外検査では以下に示す問題がある。例えば、特許文献1の検査方法は、赤外画像検出器65が微小領域の赤外光強度を検出するものであり、発熱部を検出するためには、基板上の走査線61や信号線62を走査しなければならなかった。したがって、大型液晶パネルや、複数の液晶パネルが形成されるマザー基板のように、検査領域が広範囲に至るほど、赤外検査に要する時間が長くなり、スループットを低下させる問題があった。 However, the conventional infrared inspection has the following problems. For example, in the inspection method of Patent Document 1, the infrared image detector 65 detects the infrared light intensity in a minute region, and in order to detect the heat generating part, the scanning line 61 and the signal line 62 on the substrate. Had to scan. Therefore, there is a problem that the longer the inspection area is, such as a large liquid crystal panel or a mother substrate on which a plurality of liquid crystal panels are formed, the longer the time required for infrared inspection and the lower the throughput.
 そこで本発明は、上記課題を解決するためになされたものであり、その目的は、抵抗検査と赤外検査を効果的に組合わせることにより、欠陥個所を短時間で特定することができる配線の欠陥検査方法及び欠陥検査装置を提供することにある。 Accordingly, the present invention has been made to solve the above-described problems, and the object of the present invention is to provide a wiring that can identify a defective portion in a short time by effectively combining resistance inspection and infrared inspection. It is to provide a defect inspection method and a defect inspection apparatus.
 複数の配線基板が形成されたマザー基板の中から欠陥位置を検出するための欠陥検査方法であって、複数の配線基板をそれぞれ抵抗検査することにより、欠陥部を有する欠陥基板または欠陥部が含まれる欠陥ブロックを検出する工程と、欠陥基板または欠陥ブロックに電圧を印加し、欠陥部を発熱させる工程と、欠陥部が発熱した欠陥基板または欠陥ブロックを第1の赤外カメラで撮影する工程と、第1の赤外カメラで撮影した画像から欠陥部の位置をマクロ計測する工程とからなることを特徴とする。 A defect inspection method for detecting a defect position from a mother substrate on which a plurality of wiring boards are formed, including a defective substrate having a defective portion or a defective portion by performing a resistance inspection on each of the plurality of wiring boards. A step of detecting a defective block, a step of applying a voltage to the defective substrate or the defective block to generate heat in the defective portion, and a step of photographing the defective substrate or defective block in which the defective portion has generated heat with a first infrared camera, And a step of macro-measuring the position of the defect portion from the image photographed by the first infrared camera.
 また、本発明に係る別の欠陥検査方法は、複数の配線基板が形成されたマザー基板の中から配線の欠陥位置を検出するための欠陥検査方法であって、前記複数の配線基板をそれぞれ抵抗検査することにより、欠陥部を有する欠陥基板または前記欠陥部が含まれる欠陥ブロックを検出する工程と、前記欠陥基板または前記欠陥ブロックに電圧を印加し、前記欠陥部を発熱させる工程と、前記欠陥部が発熱した前記欠陥基板または前記欠陥ブロックを第1の赤外カメラで撮影する工程と、前記第1の赤外カメラで撮影した画像から前記欠陥部の位置を計測する工程と、を含むことを特徴とする。 Further, another defect inspection method according to the present invention is a defect inspection method for detecting a defect position of a wiring from a mother substrate on which a plurality of wiring boards are formed, and each of the plurality of wiring boards has a resistance. A step of detecting a defective substrate having a defective portion or a defective block including the defective portion by inspecting, a step of applying a voltage to the defective substrate or the defective block, and heating the defective portion; and the defect A step of photographing the defective substrate or the defect block that has generated heat with a first infrared camera, and a step of measuring the position of the defective portion from an image photographed by the first infrared camera. It is characterized by.
 また、本発明に係る、基板の製造方法は、基板上に、ゲート電極、ソース電極、および、ドレイン電極のうちの少なくとも1つの配線を形成して、複数の配線基板が形成されたマザー基板を形成する基板形成工程と、前記複数の配線基板をそれぞれ抵抗検査することにより、欠陥部を有する欠陥基板または前記欠陥部が含まれる欠陥ブロックを検出する工程と、前記欠陥基板または前記欠陥ブロックに電圧を印加し、前記欠陥部を発熱させる工程と、前記欠陥部が発熱した前記欠陥基板または前記欠陥ブロックを第1の赤外カメラで撮影する工程と、前記第1の赤外カメラで撮影した画像から前記欠陥部の位置をマクロ計測する工程と、を含むことを特徴とする。 According to another aspect of the present invention, there is provided a method for manufacturing a substrate, comprising: forming a mother substrate on which a plurality of wiring substrates are formed by forming at least one of a gate electrode, a source electrode, and a drain electrode on the substrate; A substrate forming step to form, a step of detecting a defective substrate having a defective portion or a defective block including the defective portion by performing resistance inspection on each of the plurality of wiring substrates, and a voltage applied to the defective substrate or the defective block , The step of causing the defect portion to generate heat, the step of photographing the defect substrate or the defect block where the defect portion generates heat with a first infrared camera, and the image photographed with the first infrared camera And macro-measuring the position of the defective portion.
 また本発明に係る欠陥検査装置は、複数の配線基板が形成されたマザー基板の中から欠陥位置を検出するための欠陥検査装置であって、前記複数の配線基板をそれぞれ抵抗検査する抵抗測定部と、前記抵抗測定部による抵抗検査により欠陥を有すると判明した欠陥基板あるいは欠陥ブロックに電圧を印加する電圧印加部と、前記電圧印加部により電圧が印加された前記欠陥基板または前記欠陥ブロックを撮影する赤外カメラと、前記赤外カメラで撮影した画像から前記欠陥部の位置を計測する制御部と、を備えていることを特徴とする。 The defect inspection apparatus according to the present invention is a defect inspection apparatus for detecting a defect position from a mother board on which a plurality of wiring boards are formed, and each of the plurality of wiring boards is subjected to resistance inspection. A voltage application unit that applies a voltage to a defective substrate or defect block that has been found to have a defect by resistance inspection by the resistance measurement unit; and the defective substrate or the defect block to which a voltage is applied by the voltage application unit An infrared camera, and a control unit that measures the position of the defective part from an image photographed by the infrared camera.
 本発明によれば、配線の欠陥個所を短時間に効率よく検出することができる。 According to the present invention, it is possible to efficiently detect a defective portion of the wiring in a short time.
本発明の欠陥検査装置の構成を示すブロック図である。It is a block diagram which shows the structure of the defect inspection apparatus of this invention. 本発明の欠陥検査装置の構成を示す斜視図である。It is a perspective view which shows the structure of the defect inspection apparatus of this invention. 液晶パネルとプローブの平面図である。It is a top view of a liquid crystal panel and a probe. 本発明の欠陥検査方法を示すフローチャートである。It is a flowchart which shows the defect inspection method of this invention. 画素部の欠陥を示す模式図である。It is a schematic diagram which shows the defect of a pixel part. 従来の欠陥検査方法を示す説明図である。It is explanatory drawing which shows the conventional defect inspection method.
 以下、図1から図5に示す図面を参照して、本発明の実施の形態について詳細に説明する。なお、本実施形態では、液晶パネルの欠陥検査に適用した例について説明するが、PDP、有機EL等の他の表示パネルや太陽電池パネルなど、多数の配線が形成される配線基板について広く適用することが可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings shown in FIGS. In addition, although this embodiment demonstrates the example applied to the defect inspection of a liquid crystal panel, it applies widely to the wiring board in which many wirings are formed, such as other display panels, such as PDP and organic EL, and a solar cell panel. It is possible.
 図1は、実施例1の欠陥検査装置100の構成を示すブロック図である。実施例1の欠陥検査装置100は、マザー基板1上に形成された複数の液晶パネル2において配線等の欠陥を検査するものであり、液晶パネル2と導通させるためのプローブ3と、プローブ3を各液晶パネル2上に移動させるプローブ移動手段4と、赤外画像を取得するための赤外カメラ5と、赤外カメラ5を液晶パネル2上で移動させるカメラ移動手段6と、プローブ移動手段4とカメラ移動手段6を制御する主制御部7を備えている。 FIG. 1 is a block diagram illustrating the configuration of the defect inspection apparatus 100 according to the first embodiment. A defect inspection apparatus 100 according to the first embodiment inspects defects such as wiring in a plurality of liquid crystal panels 2 formed on a mother substrate 1. A probe 3 for conducting the liquid crystal panel 2 and a probe 3 are connected to the defect inspection apparatus 100 according to the first embodiment. Probe moving means 4 for moving on each liquid crystal panel 2, infrared camera 5 for acquiring an infrared image, camera moving means 6 for moving the infrared camera 5 on the liquid crystal panel 2, and probe moving means 4 And a main control section 7 for controlling the camera moving means 6.
 また、プローブ3には、液晶パネル2の配線間の抵抗を測定するための抵抗測定部8と、液晶パネル2の配線間に電圧を印加するための電圧印加部9が接続されており、抵抗測定部8と電圧印加部9は主制御部7により制御されるようになっている。 The probe 3 is connected to a resistance measuring unit 8 for measuring the resistance between the wirings of the liquid crystal panel 2 and a voltage applying unit 9 for applying a voltage between the wirings of the liquid crystal panel 2. The measurement unit 8 and the voltage application unit 9 are controlled by the main control unit 7.
 また、主制御部7は、配線間の抵抗値や画像データを記憶するデータ記憶部10と接続されている。 The main control unit 7 is connected to a data storage unit 10 that stores resistance values between wirings and image data.
 図2は、実施例1の欠陥検査装置100の構成を示す斜視図である。欠陥検査装置100は、基台上にアライメントステージ11が設置されており、アライメントステージ11にはマザー基板1が載置され、プローブ移動手段4及びカメラ移動手段6のXY座標軸と平行に位置調整される。また、アライメントステージ11の上方には、マザー基板1の位置を確認するための光学カメラ12が配置されている。 FIG. 2 is a perspective view illustrating a configuration of the defect inspection apparatus 100 according to the first embodiment. In the defect inspection apparatus 100, an alignment stage 11 is installed on a base, and the mother substrate 1 is placed on the alignment stage 11, and the position is adjusted in parallel with the XY coordinate axes of the probe moving means 4 and the camera moving means 6. The Further, an optical camera 12 for confirming the position of the mother substrate 1 is disposed above the alignment stage 11.
 プローブ移動手段4は、アライメントステージ11の外側に配置されたガイドレール13aにスライド可能に設置されている。また、プローブ移動手段4の本体側にもガイドレール13b、13cが設けられており、マウント部14aがこれらのガイドレール13に沿ってXYZの各座標方向に移動できるように設けられている。このマウント部14aには、液晶パネル2に対応したプローブ3が搭載されている。 The probe moving means 4 is slidably installed on a guide rail 13 a disposed outside the alignment stage 11. Guide rails 13b and 13c are also provided on the main body side of the probe moving means 4 so that the mount portion 14a can be moved along the guide rails 13 in the XYZ coordinate directions. A probe 3 corresponding to the liquid crystal panel 2 is mounted on the mount portion 14a.
 カメラ移動手段6は、プローブ移動手段4の外側に配置されたガイドレール13dにスライド可能に設置されている。また、カメラ移動手段6の本体にもガイドレール13e、13fが設けられており、3箇所のマウント部14b、14c、14dがこれらのガイドレール13に沿ってXYZの各座標方向に別々に移動できるようになっている。 The camera moving means 6 is slidably installed on a guide rail 13d arranged outside the probe moving means 4. The main body of the camera moving means 6 is also provided with guide rails 13e, 13f, and the three mount portions 14b, 14c, 14d can be moved separately along the guide rails 13 in the XYZ coordinate directions. It is like that.
 マウント部14bと14cには、欠陥部を計測する計測用のカメラが搭載されている。本実施形態では、マクロ計測用の第1の赤外カメラ5aとミクロ計測用の第2の赤外カメラ5bが搭載され、また、マウント部14dには、光学カメラ16が搭載されている。 The mounting parts 14b and 14c are equipped with a measurement camera for measuring the defective part. In the present embodiment, the first infrared camera 5a for macro measurement and the second infrared camera 5b for micro measurement are mounted, and the optical camera 16 is mounted on the mount portion 14d.
 赤外カメラ5aは、視野が520×405mm程度まで広げられたマクロ計測するための赤外カメラである。赤外カメラ5aは、視野を広げるため、例えば、4台の赤外カメラを組合わせて構成されている。また、赤外カメラ5bは、視野が32×24mm程度と小さいが高分解能の撮影が行える、ミクロ計測するための赤外カメラである。 The infrared camera 5a is an infrared camera for macro measurement whose field of view is expanded to about 520 × 405 mm. The infrared camera 5a is configured by combining, for example, four infrared cameras in order to widen the field of view. The infrared camera 5b is an infrared camera for micro-measurement that has a small field of view of about 32 × 24 mm but can perform high-resolution imaging.
 なお、カメラ移動手段5には、マウント部14を追加して、欠陥個所を修正するためのレーザ照射装置を搭載することもできる。レーザ照射装置を搭載することにより、欠陥部の位置を特定した後、欠陥部にレーザ照射をして、欠陥修正を連続して行うことができる。 It should be noted that the camera moving means 5 may be equipped with a laser irradiation device for correcting a defective part by adding a mount portion 14. By mounting the laser irradiation apparatus, after the position of the defect portion is specified, the defect portion can be irradiated with laser to continuously perform defect correction.
 プローブ移動手段4とカメラ移動手段6は、別々のガイドレール13a、13dに設置されているため、アライメントステージ13の上方をX座標方向に、互いに干渉されずに移動することができる。このため、液晶パネル2にプローブ3を接触させた状態で、さらに、液晶パネル2上に赤外カメラ5a、5b、光学カメラ16を移動させることができる。 Since the probe moving means 4 and the camera moving means 6 are installed on separate guide rails 13a and 13d, the probe moving means 4 and the camera moving means 6 can move in the X coordinate direction without interference with each other. Therefore, the infrared cameras 5a and 5b and the optical camera 16 can be further moved on the liquid crystal panel 2 in a state where the probe 3 is in contact with the liquid crystal panel 2.
 図3(a)は、マザー基板1に形成される液晶パネル2の平面図である。液晶パネル2には、走査線と信号線が交差する各交点にTFTが形成された画素部17と、走査線と信号線をそれぞれ駆動する駆動回路部18が形成されている。液晶パネル2の縁部には、端子部19a~19dが設けられており、端子部19a~19dは画素部17や駆動回路部18の各配線と繋がっている。 FIG. 3A is a plan view of the liquid crystal panel 2 formed on the mother substrate 1. The liquid crystal panel 2 includes a pixel portion 17 in which a TFT is formed at each intersection where a scanning line and a signal line intersect, and a driving circuit portion 18 that drives the scanning line and the signal line, respectively. Terminal portions 19 a to 19 d are provided at the edge of the liquid crystal panel 2, and the terminal portions 19 a to 19 d are connected to the wirings of the pixel portion 17 and the drive circuit portion 18.
 なお、この液晶パネル2は、透明基板上に、ゲート電極、半導体膜、ソース電極、ドレイン電極、保護膜、及び透明電極が形成されることで作製されている。 The liquid crystal panel 2 is manufactured by forming a gate electrode, a semiconductor film, a source electrode, a drain electrode, a protective film, and a transparent electrode on a transparent substrate.
 図3(b)は、液晶パネル2に設けられた端子部19a~19dと導通させるためのプローブ3の平面図である。プローブ3は、液晶パネル2の大きさとほぼ同じ大きさの枠状の形状をなしており、端子部19a~19dに対応した複数のプローブ針21a~21dを備えている。複数のプローブ針21a~21dは、図示しないスイッチングリレーを介して、プローブ針21の一本づつを個別に、抵抗測定部8、電圧印加部9に接続できるようになっている。このため、プローブ3は、端子部19a~19dにつながる複数の配線を選択的に接続させたり、複数の配線をまとめて接続させることができる。 FIG. 3B is a plan view of the probe 3 for conducting with the terminal portions 19a to 19d provided on the liquid crystal panel 2. FIG. The probe 3 has a frame shape that is substantially the same size as the liquid crystal panel 2, and includes a plurality of probe needles 21a to 21d corresponding to the terminal portions 19a to 19d. The plurality of probe needles 21a to 21d can individually connect one probe needle 21 to the resistance measuring unit 8 and the voltage applying unit 9 via a switching relay (not shown). Therefore, the probe 3 can selectively connect a plurality of wirings connected to the terminal portions 19a to 19d, or can connect a plurality of wirings together.
 また、プローブ3は、液晶パネル2とほぼ同じ大きさの枠状の形状をなしているため、端子部19a~19dとプローブ針21a~21dの位置を合わせる際に、プローブ3の枠部の内側から光学カメラ16で確認することができる。 In addition, since the probe 3 has a frame shape that is almost the same size as the liquid crystal panel 2, when the positions of the terminal portions 19a to 19d and the probe needles 21a to 21d are aligned, Can be confirmed by the optical camera 16.
 上記のように、実施例1の欠陥検査装置100は、プローブ3と、プローブ3と接続された抵抗測定部8を備えており、プローブ3を液晶パネル2に導通させて、それぞれの配線の抵抗値や、隣接する配線間の抵抗値などを測定することができる。 As described above, the defect inspection apparatus 100 according to the first embodiment includes the probe 3 and the resistance measurement unit 8 connected to the probe 3. The probe 3 is electrically connected to the liquid crystal panel 2, and the resistance of each wiring is connected. Value, resistance value between adjacent wirings, and the like can be measured.
 また、実施例1の欠陥検査装置100は、プローブ3と、プローブ3と接続された電圧印加部9と、赤外カメラ5a、5bとを備えており、プローブ3を介して液晶パネル2の配線や配線間に電圧を印加し、欠陥部に電流が流れることによる発熱を、赤外カメラ5a、5bで計測し、欠陥部の位置を特定することができる。 Further, the defect inspection apparatus 100 according to the first embodiment includes a probe 3, a voltage application unit 9 connected to the probe 3, and infrared cameras 5 a and 5 b, and wiring of the liquid crystal panel 2 through the probe 3. Further, the heat generated by applying a voltage between the wirings and causing a current to flow through the defective part can be measured by the infrared cameras 5a and 5b, and the position of the defective part can be specified.
 したがって、本発明の欠陥検査装置100によれば、1台の検査装置により、抵抗検査と赤外検査を兼用して行なうことができる。 Therefore, according to the defect inspection apparatus 100 of the present invention, a single inspection apparatus can be used for both resistance inspection and infrared inspection.
 図4は、実施例1の欠陥検査装置100を用いた欠陥検査方法のフローチャートである。本発明の欠陥検査方法は、図4に示すように、マザー基板1に形成された複数の液晶パネル2について、S1からS10のステップにより、順次、欠陥検査が実施される。 FIG. 4 is a flowchart of a defect inspection method using the defect inspection apparatus 100 according to the first embodiment. In the defect inspection method of the present invention, as shown in FIG. 4, defect inspection is sequentially performed on the plurality of liquid crystal panels 2 formed on the mother substrate 1 through steps S <b> 1 to S <b> 10.
 ステップS1では、欠陥検査装置100のアライメントステージ11にマザー基板1が載置され、XY座標軸と平行になるよう基板の位置が調整される。 In step S1, the mother substrate 1 is placed on the alignment stage 11 of the defect inspection apparatus 100, and the position of the substrate is adjusted to be parallel to the XY coordinate axes.
 ステップS2では、プローブ移動手段9によりプローブ2が検査対象となる液晶パネル2の上部に移動され、プローブ針21a~21dが液晶パネル2の端子部19a~19dに接触される。 In step S2, the probe 2 is moved to the upper part of the liquid crystal panel 2 to be inspected by the probe moving means 9, and the probe needles 21a to 21d are brought into contact with the terminal portions 19a to 19d of the liquid crystal panel 2.
 ステップS3では、各種欠陥のモードに対応して、抵抗検査するための配線や配線間が選択され、導通させるプローブ針21の切り替えが行なわれる。 In step S3, corresponding to the various defect modes, wiring for resistance inspection and between wirings are selected, and the probe needle 21 to be conducted is switched.
 ステップS4では、抵抗検査が行なわれ、選択された配線や配線間の抵抗値が測定され、正常な抵抗値との比較により欠陥の有無が検査される。 In step S4, resistance inspection is performed, the resistance value between the selected wirings and wirings is measured, and the presence or absence of a defect is inspected by comparison with a normal resistance value.
 図5は、一例として、画素部17に生じる欠陥の位置を模式的に示している。図5(a)は、例えば、走査線と信号線のように、配線Xと配線Yが上下に交差する位置で短絡した欠陥23を示している。このような欠陥23は、導通させるプローブ針19を、図3に示した19aと19d、若しくは、19bと19cに切り替えて、配線X1~X10と配線Y1~Y10について一対一で配線間の抵抗値を測定することにより、短絡の有無と位置を特定できる。 FIG. 5 schematically shows the positions of defects generated in the pixel portion 17 as an example. FIG. 5A shows a defect 23 that is short-circuited at a position where the wiring X and the wiring Y intersect vertically, such as a scanning line and a signal line. Such a defect 23 is caused by switching the probe needle 19 to be conducted to 19a and 19d or 19b and 19c shown in FIG. 3, and the wiring X1 to X10 and the wiring Y1 to Y10 have a one-to-one resistance value between the wirings. By measuring the presence or absence and position of a short circuit can be specified.
 図5(b)は、例えば、走査線と補助容量線のように、隣接する配線Xの配線間で短絡した欠陥23を示している。このような欠陥23は、導通させるプローブ針19を、19bの奇数番と19dの偶数番に切り替えて、配線X1~X10の隣り合う配線間の抵抗値を測定することにより、短絡の有る配線を特定できる。 FIG. 5B shows a defect 23 short-circuited between adjacent wirings X, such as a scanning line and an auxiliary capacitance line. Such a defect 23 is obtained by switching the probe needle 19 to be conducted between the odd number 19b and the even number 19d, and measuring the resistance value between the adjacent wires X1 to X10, thereby connecting the shorted wire. Can be identified.
 図5(c)は、例えば、信号線と補助容量線のように、隣接する配線Yの配線間で短絡した欠陥23を示している。このような欠陥23は、導通させるプローブ針19を、19aの奇数番と19cの偶数番に切り替えて、配線Y1~Y10の隣り合う配線間の抵抗値を測定することにより、短絡の有る配線を特定できる。 FIG. 5C shows a defect 23 short-circuited between adjacent wirings Y, such as a signal line and an auxiliary capacitance line. Such a defect 23 is obtained by switching the probe needle 19 to be switched between the odd number 19a and the even number 19c, and measuring the resistance value between the adjacent wires Y1 to Y10, thereby connecting the shorted wire. Can be identified.
 ステップS5では、欠陥23の有無と状態により赤外検査を行なうかどうか判断しており、欠陥23が有る場合はステップ6の赤外検査を行ない、欠陥23がない場合は赤外検査を行なわずにステップ9に移行する。例えば、図5(a)に示すように、配線Xと配線Yが交差する個所で短絡23が生じる場合は、配線間の抵抗検査により、配線X4と配線Y4に異常が検出されるので、短絡の位置まで特定することができるが、図5(b)や図5(c)のように、隣接する配線間で短絡23生じる場合は、一対の配線、例えば、配線X3と配線X4の間に短絡が有ることは特定できるが、その配線の長さ方向においては短絡の位置を特定できないため、短絡位置を赤外検査により特定することが必要となる。 In step S5, it is determined whether or not to perform infrared inspection based on the presence and state of the defect 23. If there is a defect 23, the infrared inspection in step 6 is performed, and if there is no defect 23, the infrared inspection is not performed. To step 9. For example, as shown in FIG. 5A, when the short circuit 23 occurs at the intersection of the wiring X and the wiring Y, an abnormality is detected in the wiring X4 and the wiring Y4 by the resistance inspection between the wirings. However, when a short circuit 23 occurs between adjacent wirings as shown in FIGS. 5B and 5C, a pair of wirings, for example, between the wiring X3 and the wiring X4 Although it can be specified that there is a short circuit, it is necessary to specify the short circuit position by infrared inspection because the position of the short circuit cannot be specified in the length direction of the wiring.
 ステップS6では、赤外検査が行なわれるが、ここで、赤外カメラ5を走査する時間を短縮するため、赤外検査の範囲を欠陥ブロック24に絞り込んでいる。この欠陥ブロック24は、欠陥の有る配線とその周辺が赤外カメラの視野に収まるように設定される。 In step S6, infrared inspection is performed. Here, in order to shorten the time for scanning the infrared camera 5, the range of infrared inspection is narrowed down to the defect block 24. The defect block 24 is set so that the defective wiring and the periphery thereof are within the field of view of the infrared camera.
 例えば、図5(b)のような欠陥がある場合、抵抗検査の結果から、X3-X4間とX5-X6間の2つの配線間に短絡があることが判っているので、検査対象とする範囲を斜線で囲むX3からX6の欠陥ブロック24に絞込み、この欠陥ブロック24についてのみ赤外検査が行なわれる。もし、複数の短絡があって一つの視野内に収まらない場合は、別の欠陥ブロック24に分かれて設定される。 For example, if there is a defect as shown in FIG. 5B, it is known from the result of the resistance inspection that there is a short circuit between the two wires between X3-X4 and X5-X6. The range is narrowed down to the defect blocks 24 from X3 to X6 surrounded by diagonal lines, and only the defect block 24 is subjected to infrared inspection. If there are a plurality of short circuits and they do not fit within one field of view, they are divided into different defect blocks 24 and set.
 ステップ7は、欠陥ブロック24内の配線に印加する電圧値を設定している。配線に印加する電圧値は、電圧印加部10によって調整され、通常、数十ボルト程度の電圧が印加される。 Step 7 sets a voltage value to be applied to the wiring in the defective block 24. The voltage value applied to the wiring is adjusted by the voltage application unit 10, and a voltage of about several tens of volts is normally applied.
 ステップ8は、欠陥部に電流が流れて発熱した欠陥ブロック24を、赤外カメラ5で撮影し、欠陥部23から放出される赤外光を検出している。ここで、欠陥ブロック24の全体を視野内に収めることができるマクロ計測用の第1の赤外カメラ5aを用いている。このため、赤外カメラ5aを走査せずに欠陥ブロック24の全体を計測することができ、赤外検査の時間を短縮することができる。計測された熱画像は、電流が流れる欠陥部23とその配線の温度が周辺よりも高く表示されるので、欠陥部23と配線の位置関係から欠陥位置が特定され、データ記憶部10に記憶される。特に、欠陥部23の抵抗値は配線よりも大きい場合が多く、発熱が欠陥部23に集中し点状に見えるため、熱画像において欠陥位置を容易に特定することができる。 Step 8 is to detect the infrared light emitted from the defect portion 23 by photographing the defect block 24 that has generated heat due to the current flowing through the defect portion with the infrared camera 5. Here, the first infrared camera 5a for macro measurement that can fit the entire defect block 24 within the field of view is used. For this reason, the whole defect block 24 can be measured without scanning the infrared camera 5a, and the time for infrared inspection can be shortened. In the measured thermal image, since the temperature of the defective portion 23 through which current flows and the wiring thereof are displayed higher than the surroundings, the defect position is specified from the positional relationship between the defective portion 23 and the wiring, and is stored in the data storage unit 10. The In particular, the resistance value of the defect portion 23 is often larger than that of the wiring, and the heat generation is concentrated on the defect portion 23 and looks like a dot. Therefore, the defect position can be easily identified in the thermal image.
 なお、ステップ8において、さらに、発熱部の周辺をミクロ計測用の第2の赤外カメラ5bで詳細に計測してもよい。マクロ計測用の第1の赤外カメラ5aにより、発熱部の位置が特定されているため、ミクロ計測用の第2の赤外カメラ5bを、直接、発熱部に合わせることができ、欠陥部23の修正に必要となる形状などの情報について、さらに詳細な計測を短時間で行なうことができる。 In step 8, the periphery of the heat generating part may be measured in detail with the second infrared camera 5b for micro measurement. Since the position of the heat generating portion is specified by the first infrared camera 5a for macro measurement, the second infrared camera 5b for micro measurement can be directly aligned with the heat generating portion, and the defect portion 23 More detailed measurement can be performed in a short time with respect to information such as a shape necessary for correction of the image.
 ステップ9は、検査中の液晶パネル2について、各種欠陥モードの全検査が終了しているか判断され、未検査の欠陥モードがあれば、スッテプS3に戻り、次の欠陥モードに合せてプローブ3の接続が切り替えられ、欠陥検査が繰り返される。 In step 9, it is determined whether or not all inspections in various defect modes have been completed for the liquid crystal panel 2 being inspected. If there is an uninspected defect mode, the process returns to step S3, and the probe 3 is adjusted to the next defect mode. The connection is switched and the defect inspection is repeated.
 ステップ10は、検査中のマザー基板1について、全ての液晶パネル2の欠陥検査が終了しているか判断され、未検査の液晶パネル2が残っていれば、スッテプS1に戻り、次の検査対象となる液晶パネル2にプローブが移動されて、欠陥検査が繰り返される。 In step 10, it is determined whether the defect inspection of all the liquid crystal panels 2 has been completed for the mother substrate 1 being inspected. If there are any uninspected liquid crystal panels 2, the process returns to step S1 to determine whether the next inspection target The probe is moved to the liquid crystal panel 2 and the defect inspection is repeated.
 本発明の欠陥検査方法によれば、抵抗検査により欠陥の有無を判断し、赤外検査の範囲を欠陥部が含まれる欠陥ブロック24に絞込み、赤外カメラの視野内に収まるようにしているため、赤外カメラ5を基板全体に走査させる必要がなく、赤外検査の時間を短縮することができる。 According to the defect inspection method of the present invention, the presence / absence of a defect is determined by resistance inspection, and the range of infrared inspection is narrowed down to the defect block 24 including the defective portion so as to be within the field of view of the infrared camera. The infrared camera 5 does not need to be scanned over the entire substrate, and the time for infrared inspection can be shortened.
 また、赤外検査において、マクロ計測用の第1の赤外カメラ5aとミクロ計測用の第2の赤外カメラ5bの2段階で行なうことにより、マクロ計測用の第1の赤外カメラ5aで発熱部の位置を特定し、ミクロ計測用の第2の赤外カメラ5bを基板全体に走査させずに、直接、発熱部の位置に合わせることができ、欠陥部の詳細な計測を短時間で行うことができる。 In addition, in the infrared inspection, the first infrared camera 5a for macro measurement and the second infrared camera 5b for micro measurement are performed in two stages, whereby the first infrared camera 5a for macro measurement is used. The position of the heat generating part is specified, and the second infrared camera 5b for micro measurement can be directly adjusted to the position of the heat generating part without scanning the entire substrate, and detailed measurement of the defective part can be performed in a short time. It can be carried out.
 以上、本発明の実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施の形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施の形態についても本発明の技術的範囲に含まれる。 As mentioned above, although embodiment of this invention was described, this invention is not limited to said embodiment, A various change is possible in the range shown to the claim, and it discloses by different embodiment, respectively. Embodiments obtained by appropriately combining the technical means are also included in the technical scope of the present invention.
 例えば、別の抵抗検査装置により測定した抵抗値を、本発明の欠陥検査方法で用いて、赤外検査を行なう欠陥ブロックを絞り込んでもよい。 For example, the resistance value measured by another resistance inspection apparatus may be used in the defect inspection method of the present invention to narrow down defect blocks to be subjected to infrared inspection.
1 マザー基板
2 液晶パネル
3 プローブ
4 プローブ移動手段
5、5a、5b 赤外カメラ
6 カメラ移動手段
7 主制御部
8 抵抗測定部
9 電圧印加部
10 データ記憶部
DESCRIPTION OF SYMBOLS 1 Mother board | substrate 2 Liquid crystal panel 3 Probe 4 Probe moving means 5, 5a, 5b Infrared camera 6 Camera moving means 7 Main control part 8 Resistance measurement part 9 Voltage application part 10 Data storage part

Claims (7)

  1.  複数の配線基板が形成されたマザー基板の中から欠陥位置を検出するための欠陥検査方法であって、
     前記複数の配線基板をそれぞれ抵抗検査することにより、欠陥部を有する欠陥基板または前記欠陥部が含まれる欠陥ブロックを検出する工程と、
     前記欠陥基板または前記欠陥ブロックに電圧を印加し、前記欠陥部を発熱させる工程と、
     前記欠陥部が発熱した前記欠陥基板または前記欠陥ブロックを第1の赤外カメラで撮影する工程と、
     前記第1の赤外カメラで撮影した画像から前記欠陥部の位置をマクロ計測する工程とからなることを特徴とする欠陥検査方法。
    A defect inspection method for detecting a defect position from a mother board on which a plurality of wiring boards are formed,
    Detecting a defective substrate having a defective part or a defective block including the defective part by performing resistance inspection on each of the plurality of wiring boards;
    Applying a voltage to the defective substrate or the defective block to heat the defective portion;
    Photographing the defective substrate or the defective block in which the defective portion has generated heat with a first infrared camera;
    And a step of macro-measuring the position of the defect portion from an image photographed by the first infrared camera.
  2.  前記欠陥部の位置を、第2の赤外カメラで撮影する工程と、
     前記第2の赤外カメラで撮影した画像から前記欠陥位置をミクロ計測する工程とを含むことを特徴とする請求項1に記載の欠陥検査方法。
    Photographing the position of the defective portion with a second infrared camera;
    The defect inspection method according to claim 1, further comprising a step of micro-measuring the defect position from an image photographed by the second infrared camera.
  3.  複数の配線基板が形成されたマザー基板の中から配線の欠陥位置を検出するための欠陥検査方法であって、
     前記複数の配線基板をそれぞれ抵抗検査することにより、欠陥部を有する欠陥基板または前記欠陥部が含まれる欠陥ブロックを検出する工程と、
     前記欠陥基板または前記欠陥ブロックに電圧を印加し、前記欠陥部を発熱させる工程と、
     前記欠陥部が発熱した前記欠陥基板または前記欠陥ブロックを第1の赤外カメラで撮影する工程と、
     前記第1の赤外カメラで撮影した画像から前記欠陥部の位置を計測する工程と、
    を含むことを特徴とする欠陥検査方法。
    A defect inspection method for detecting a defect position of a wiring from a mother board on which a plurality of wiring boards are formed,
    Detecting a defective substrate having a defective portion or a defective block including the defective portion by performing resistance inspection on each of the plurality of wiring boards;
    Applying a voltage to the defective substrate or the defective block to heat the defective portion;
    Photographing the defective substrate or the defective block in which the defective portion has generated heat with a first infrared camera;
    Measuring the position of the defective portion from an image taken by the first infrared camera;
    A defect inspection method comprising:
  4.  前記計測する工程は、マクロ計測工程であり、
     上記欠陥検査方法は、さらに、
     前記欠陥部の位置を、第2の赤外カメラで撮影する工程と、
     前記第2の赤外カメラで撮影した画像から前記欠陥位置をミクロ計測する工程と、
    を含むことを特徴とする請求項3に記載の欠陥検査方法。
    The step of measuring is a macro measurement step,
    The defect inspection method further includes:
    Photographing the position of the defective portion with a second infrared camera;
    Micro-measuring the defect position from an image taken by the second infrared camera;
    The defect inspection method according to claim 3, further comprising:
  5.  基板上に、ゲート電極、ソース電極、および、ドレイン電極のうちの少なくとも1つの配線を形成して、複数の配線基板が形成されたマザー基板を形成する基板形成工程と、
     前記複数の配線基板をそれぞれ抵抗検査することにより、欠陥部を有する欠陥基板または前記欠陥部が含まれる欠陥ブロックを検出する工程と、
     前記欠陥基板または前記欠陥ブロックに電圧を印加し、前記欠陥部を発熱させる工程と、
     前記欠陥部が発熱した前記欠陥基板または前記欠陥ブロックを第1の赤外カメラで撮影する工程と、
     前記第1の赤外カメラで撮影した画像から前記欠陥部の位置をマクロ計測する工程と、
    を含むことを特徴とする基板の製造方法。
    Forming a mother substrate on which a plurality of wiring substrates are formed by forming at least one wiring of a gate electrode, a source electrode, and a drain electrode on the substrate;
    Detecting a defective substrate having a defective portion or a defective block including the defective portion by performing resistance inspection on each of the plurality of wiring boards;
    Applying a voltage to the defective substrate or the defective block to heat the defective portion;
    Photographing the defective substrate or the defective block in which the defective portion has generated heat with a first infrared camera;
    Macro-measuring the position of the defect from the image taken by the first infrared camera;
    A method for manufacturing a substrate, comprising:
  6.  複数の配線基板が形成されたマザー基板の中から欠陥位置を検出するための欠陥検査装置であって、
     前記複数の配線基板をそれぞれ抵抗検査する抵抗測定部と、
     前記抵抗測定部による抵抗検査により欠陥を有すると判明した欠陥基板あるいは欠陥ブロックに電圧を印加する電圧印加部と、
     前記電圧印加部により電圧が印加された前記欠陥基板または前記欠陥ブロックを撮影する赤外カメラと、
     前記赤外カメラで撮影した画像から前記欠陥部の位置を計測する制御部と、
    を備えていることを特徴とする欠陥検査装置。
    A defect inspection apparatus for detecting a defect position from a mother board on which a plurality of wiring boards are formed,
    A resistance measuring unit for performing resistance inspection on each of the plurality of wiring boards;
    A voltage application unit that applies a voltage to a defective substrate or defect block that has been found to have a defect by a resistance inspection by the resistance measurement unit;
    An infrared camera that photographs the defective substrate or the defective block to which a voltage is applied by the voltage application unit;
    A control unit for measuring the position of the defective part from an image photographed by the infrared camera;
    A defect inspection apparatus comprising:
  7.  上記赤外カメラは、第1の赤外カメラと、第2の赤外カメラとを有し、
     上記第1の赤外カメラは、上記第2の赤外カメラよりも視野が広く、また、前記第2の赤外カメラは、上記第1の赤外カメラよりも分解能が高いことを特徴とする請求項6に記載の欠陥検査装置。
    The infrared camera has a first infrared camera and a second infrared camera,
    The first infrared camera has a wider field of view than the second infrared camera, and the second infrared camera has a higher resolution than the first infrared camera. The defect inspection apparatus according to claim 6.
PCT/JP2012/053180 2011-03-09 2012-02-10 Defect inspection method, defect inspection apparatus, and method for manufacturing substrate WO2012120973A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280009272.7A CN103380366B (en) 2011-03-09 2012-02-10 Defect inspection method, defect inspection apparatus, and method for manufacturing substrate
JP2013503430A JP5628410B2 (en) 2011-03-09 2012-02-10 Defect inspection method, defect inspection apparatus, and substrate manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011051123 2011-03-09
JP2011-051123 2011-03-09

Publications (1)

Publication Number Publication Date
WO2012120973A1 true WO2012120973A1 (en) 2012-09-13

Family

ID=46797942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053180 WO2012120973A1 (en) 2011-03-09 2012-02-10 Defect inspection method, defect inspection apparatus, and method for manufacturing substrate

Country Status (3)

Country Link
JP (1) JP5628410B2 (en)
CN (1) CN103380366B (en)
WO (1) WO2012120973A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109142453A (en) * 2018-08-30 2019-01-04 武汉华星光电技术有限公司 Display panel and display panel testing method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5261540B2 (en) * 2011-06-24 2013-08-14 シャープ株式会社 Defect inspection apparatus and defect inspection method
CN104569722A (en) * 2014-12-31 2015-04-29 江苏武进汉能光伏有限公司 Test method of thin-film battery micro-short circuit
CN105158678A (en) * 2015-10-23 2015-12-16 湖北三江航天万峰科技发展有限公司 Printed circuit board short-circuit fault rapid detection device
JP6871070B2 (en) 2017-06-06 2021-05-12 浜松ホトニクス株式会社 Semiconductor device inspection method
CN107065247A (en) * 2017-06-07 2017-08-18 惠科股份有限公司 A kind of display panel testing method, apparatus and system
CN107192759B (en) * 2017-06-09 2019-08-27 湖南大学 A kind of photovoltaic cell lossless detection method and system based on induction optical heat radiation
CN107655937A (en) * 2017-08-25 2018-02-02 南京航空航天大学 A kind of structural damage monitors in real time and localization method
CN109991489A (en) * 2017-12-30 2019-07-09 深圳市泰瑞达科技有限公司 A kind of the safety detection circuit and its system of heating coating component
CN111458353B (en) * 2020-05-29 2023-03-10 无锡和博永新科技有限公司 Positive and negative detection method for resistance substrate
CN113469293B (en) * 2021-09-02 2021-11-09 成都数联云算科技有限公司 Panel array short circuit detection method and device, electronic equipment and storage medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472552A (en) * 1990-07-13 1992-03-06 Hitachi Ltd Thin film transistor base and method and device for inspecting it
JPH08233559A (en) * 1995-02-27 1996-09-13 Sharp Corp Inspecting apparatus for wiring board
JPH0949759A (en) * 1995-08-07 1997-02-18 Hitachi Electron Eng Co Ltd Objective-replacing mechanism for infrared camera
JP2004301658A (en) * 2003-03-31 2004-10-28 Shimadzu Corp Substrate inspection device
JP2005503532A (en) * 2000-11-30 2005-02-03 キャンデゼント テクノロジーズ コーポレイション Method and system for infrared detection of electrical short-circuit defects
JP2006505764A (en) * 2002-01-23 2006-02-16 マレナ システムズ コーポレーション Infrared thermography for defect detection and analysis
JP2009121894A (en) * 2007-11-14 2009-06-04 Fujitsu Ltd Method and device for inspecting defect of conductor pattern

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3229411B2 (en) * 1993-01-11 2001-11-19 株式会社日立製作所 Method of detecting defects in thin film transistor substrate and method of repairing the same
JP2003248208A (en) * 2002-02-22 2003-09-05 Fujitsu Display Technologies Corp Method for manufacturing liquid crystal panel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472552A (en) * 1990-07-13 1992-03-06 Hitachi Ltd Thin film transistor base and method and device for inspecting it
JPH08233559A (en) * 1995-02-27 1996-09-13 Sharp Corp Inspecting apparatus for wiring board
JPH0949759A (en) * 1995-08-07 1997-02-18 Hitachi Electron Eng Co Ltd Objective-replacing mechanism for infrared camera
JP2005503532A (en) * 2000-11-30 2005-02-03 キャンデゼント テクノロジーズ コーポレイション Method and system for infrared detection of electrical short-circuit defects
JP2006505764A (en) * 2002-01-23 2006-02-16 マレナ システムズ コーポレーション Infrared thermography for defect detection and analysis
JP2004301658A (en) * 2003-03-31 2004-10-28 Shimadzu Corp Substrate inspection device
JP2009121894A (en) * 2007-11-14 2009-06-04 Fujitsu Ltd Method and device for inspecting defect of conductor pattern

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109142453A (en) * 2018-08-30 2019-01-04 武汉华星光电技术有限公司 Display panel and display panel testing method

Also Published As

Publication number Publication date
JP5628410B2 (en) 2014-11-19
CN103380366A (en) 2013-10-30
JPWO2012120973A1 (en) 2014-07-17
CN103380366B (en) 2017-04-12

Similar Documents

Publication Publication Date Title
JP5628410B2 (en) Defect inspection method, defect inspection apparatus, and substrate manufacturing method
JP5705976B2 (en) Wiring defect inspection method, wiring defect inspection apparatus, and semiconductor substrate manufacturing method
JP5261540B2 (en) Defect inspection apparatus and defect inspection method
TWI518318B (en) Wiring defect detecting method and wiring defect detecting apparatus
TW201740118A (en) Systems and methods for facilitating inspection of a device under test comprising a plurality of panels
WO2013145839A1 (en) Defect detection apparatus
JP5744212B2 (en) Wiring defect detection method, wiring defect detection apparatus, and semiconductor substrate manufacturing method
JP5323906B2 (en) Wiring defect detection method and wiring defect detection apparatus
WO2013128738A1 (en) Defect detection method, defect detection device, and method for producing semiconductor substrate
JP5832909B2 (en) WIRING DEFECT DETECTION DEVICE HAVING INFRARED CAMERA AND ABNORMALITY DETECTING METHOD FOR DETECTING ABNORMALITY OF THE IR
JP5077544B2 (en) TFT array inspection method and TFT array inspection apparatus
JP2014153177A (en) Inspection device and inspection method
JP2012078127A (en) Tft array inspection device and tft array inspection method
JP2014025902A (en) Method and apparatus for detecting defects, and method of manufacturing semiconductor substrates
KR102070056B1 (en) System and method of testing organic light emitting display device
KR20050065823A (en) Repair apparatus for liquid crystal display device
JP5893436B2 (en) Tip position specifying method and tip position specifying device for specifying the tip position of a line area displayed as an image, and position specifying method and position specifying device for specifying the position of a short-circuit defect
JP2013108854A (en) Wiring defect inspection method and wiring defect inspection apparatus
JP2006267787A (en) Display panel and its manufacturing method
KR20060014581A (en) Apparatus for repairing substrate and method of repairing substrate using the same
KR100908327B1 (en) Thin film forming device using laser
JPH04219790A (en) Short-circuit failure position detecting method and short-circuit failure repairing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12754401

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013503430

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12754401

Country of ref document: EP

Kind code of ref document: A1