WO2012120906A1 - 電力線通信装置、電力線通信システム、電力線通信方法、及び電力線通信プログラム - Google Patents

電力線通信装置、電力線通信システム、電力線通信方法、及び電力線通信プログラム Download PDF

Info

Publication number
WO2012120906A1
WO2012120906A1 PCT/JP2012/001660 JP2012001660W WO2012120906A1 WO 2012120906 A1 WO2012120906 A1 WO 2012120906A1 JP 2012001660 W JP2012001660 W JP 2012001660W WO 2012120906 A1 WO2012120906 A1 WO 2012120906A1
Authority
WO
WIPO (PCT)
Prior art keywords
power line
line communication
power
communication device
timing
Prior art date
Application number
PCT/JP2012/001660
Other languages
English (en)
French (fr)
Inventor
宣貴 児玉
久雄 古賀
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP12754690.1A priority Critical patent/EP2672632A4/en
Priority to JP2013503406A priority patent/JP5906401B2/ja
Priority to US14/002,958 priority patent/US20130334872A1/en
Publication of WO2012120906A1 publication Critical patent/WO2012120906A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/542Systems for transmission via power distribution lines the information being in digital form
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00016Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00034Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving an electric power substation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00036Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving switches, relays or circuit breakers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/548Systems for transmission via power distribution lines the power on the line being DC
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5404Methods of transmitting or receiving signals via power distribution lines
    • H04B2203/5416Methods of transmitting or receiving signals via power distribution lines by adding signals to the wave form of the power source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/18Systems supporting electrical power generation, transmission or distribution using switches, relays or circuit breakers, e.g. intelligent electronic devices [IED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/121Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using the power network as support for the transmission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/124Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wired telecommunication networks or data transmission busses

Definitions

  • the present invention relates to a power line communication device, a power line communication system, a power line communication method, and a power line communication program.
  • a power line communication device that performs power line communication (PLC) that is communication via a power line supplies power to each electrical device via the power line and controls each electrical device via the same power line. Data such as control data can be transmitted.
  • PLC power line communication
  • the power source used for power line communication is a switching power source using a switching element that converts power in order to obtain desired output power from input power
  • communication noise switching noise
  • switching noise occurs when the switching element is turned on and off. Will occur. In this case, data may not be accurately communicated via the power line.
  • a power line communication device that performs power line communication while avoiding on / off switching of the DC power supply is known (for example, see Patent Document 1).
  • This power line communication device monitors the output of a switching power supply, detects switching noise present in the power supply output, and generates a detection signal. Then, using this detection signal as a synchronization signal, a control signal to be transmitted to a plurality of units is superimposed on the power line. Thereby, the generation
  • Patent Document 1 in order to recognize the generation timing of switching noise, it is necessary to always transmit a detection signal of switching noise. As a result, the transmission efficiency of the power line may decrease, or the processing load of the power line communication device may increase.
  • the present invention has been made in view of the above circumstances, and can perform reliable power line communication without requiring detection of switching noise, a power line communication device, a power line communication method, a power line communication method, and power line communication.
  • the purpose is to provide a program.
  • the power line communication device of the present invention is a power line communication device that performs communication via a power line, and controls a communication unit that communicates data via the power line and supply power supplied from a power source via the power line. And a switch control unit that performs on / off control of the switch unit while avoiding a reception timing that is a timing of receiving data by the communication unit.
  • the switching timing for power control is determined in accordance with the data reception timing. Therefore, reliable power line communication can be performed without requiring detection of switching noise.
  • the communication unit receives transmission timing information that is timing information at which data is transmitted from another power line communication device, and the switch control unit is received by the communication unit. Further, on / off control of the switch unit is performed while avoiding the reception timing corresponding to the transmission timing information.
  • the data reception timing can be recognized, and the switching timing for power control can be determined in accordance with the data reception timing. Thereby, reliable power line communication can be performed.
  • the power line communication device of the present invention includes a storage unit that stores transmission timing information that is information on a timing at which data is transmitted by another power line communication device, and the switch control unit is stored in the storage unit. On / off control of the switch unit is performed avoiding the reception timing corresponding to the transmission timing information.
  • the data reception timing can be recognized, and the switching timing for power control can be determined in accordance with the data reception timing. Thereby, reliable power line communication can be performed.
  • the switch control unit performs on / off control of the switch unit so that the transmission timing by another power line communication device and the off timing when the switch unit is off are synchronized.
  • the switch control unit when the switch control unit has an off timing at which the switch unit is off for less than a predetermined time, the transmission timing by another power line communication device and an on state at which the switch unit is on. On / off control of the switch unit is performed so that the timing is synchronized.
  • the switch control unit when the switch control unit has an ON timing at which the switch unit is ON for a predetermined time or more, a transmission timing by another power line communication device and an ON timing of the switch unit are synchronized. On / off control of the switch unit is performed.
  • the power line communication device of the present invention includes a power supply voltage detection unit that detects an output voltage of the power supply, and a power supply current detection unit that detects an output current of the power supply, and the switch control unit includes the power supply voltage.
  • the switch control unit includes the power supply voltage.
  • the data receiving unit receives power instruction data for instructing the supply power from another power line communication device, and the switch control unit is received by the communication unit. Based on the power instruction data, the duty ratio of the switch unit is determined.
  • the power supplied from the power source can be adjusted so that the power is intended by another power line communication device. For example, it is possible to adjust so that the power supplied by a plurality of power supplies becomes the maximum as a whole.
  • the power line communication device of the present invention includes a power supply voltage detection unit that detects an output voltage of the power supply, a power supply current detection unit that detects an output current of the power supply, and the switch unit, and the output voltage of the power supply A transformer part for transforming the output voltage, and a transformer voltage detector for detecting an output voltage of the transformer part, wherein the switch controller detects the output voltage of the power source and the power source current detected by the power source voltage detector. Based on the output current of the power source detected by the unit, the switch detects the voltage detected by the transformer voltage detection unit so as to be the voltage indicated by the power instruction data received by the data receiving unit. The duty ratio of the part is determined.
  • the power supplied from the power source can be adjusted so that the power is intended by another power line communication device. For example, it is possible to adjust so that the power supplied by a plurality of power supplies becomes the maximum as a whole.
  • the power line communication system of the present invention is a power line communication system in which a plurality of power line communication devices communicate via a power line, and the first power line communication device is connected to the second power line communication device via the power line.
  • the second power line communication device For transmitting data to the second power line communication device for controlling supply power supplied from a power source via the power line, avoiding a reception timing that is a timing for receiving the data via the power line. On / off control of the switch unit is performed.
  • the switching timing for power control is determined in accordance with the data reception timing by the second power line communication device. Therefore, reliable power line communication can be performed without requiring detection of switching noise.
  • the power line communication system of the present invention includes a plurality of the second power line communication devices, and the first power line communication device is different for communicating data to each of the second power line communication devices.
  • a time interval is allocated, and the second power line communication device performs on / off control of the switch unit while avoiding the time interval allocated by the first power line communication device.
  • each of the second power line communication devices performs on / off control of the switch unit autonomously and avoiding different time intervals assigned as communicable intervals. Power line communication can be performed.
  • the power line communication method of the present invention is a power line communication method for performing communication via a power line, avoiding a step of communicating data via the power line and a reception timing that is a timing of receiving data. And a step of performing on / off control of a switch unit for controlling power supplied from a power source via the power line.
  • the switching timing for power control is determined in accordance with the data reception timing. Therefore, reliable power line communication can be performed without requiring detection of switching noise.
  • the power line communication program of the present invention is a program for causing a computer to execute each step of the power line communication method.
  • the switching timing for power control is determined in accordance with the data reception timing. Therefore, reliable power line communication can be performed without requiring detection of switching noise.
  • reliable power line communication can be performed without detecting switching noise.
  • the block diagram which shows the structural example of the MPPT controller in embodiment of this invention The block diagram which shows the detailed hardware structural example of the communication part in embodiment of this invention.
  • the figure for demonstrating the example of on-off control of the switch part in embodiment of this invention The figure for demonstrating the other example of on-off control of the switch part in embodiment of this invention
  • MPPT maximum electric power point tracking control
  • the figure for demonstrating the switching timing of the switch part in embodiment of this invention The figure for demonstrating the switching timing of the switch part in embodiment of this invention
  • the figure which shows the 3rd example of the communication timing in the solar energy power generation system in embodiment of this invention The figure for demonstrating the switching timing of the switch part in embodiment of this invention.
  • a solar power generation system As a power line communication system of this embodiment, for example, there is a solar power generation system. Moreover, as a power line communication apparatus of this embodiment, there is an MPPT controller that performs maximum power point tracking control (MPPT: Maximum Power Point Tracking) for maximizing the power generated by solar power generation.
  • MPPT Maximum Power Point Tracking
  • FIG. 1 is a diagram illustrating a configuration example of a photovoltaic power generation system according to an embodiment of the present invention.
  • the photovoltaic power generation system 1 shown in FIG. 1 includes a photovoltaic power generation (PV) panel 10, an MPPT controller 20, and a power conditioner 30.
  • the MPPT controller 20 includes an MPPT controller 20M that operates as an MPPT master device and an MPPT controller 20S that operates as an MPPT slave device.
  • each MPPT controller 20S is connected to each PV panel 10 via the power line PL.
  • the MPPT controller 20M manages the MPPT controller 20S and is connected in series with each MPPT controller 20S via the power line PL.
  • the power conditioner 30 is connected to the MPPT controller 20M through the power line PL.
  • the PV panel 10 is a panel including a solar cell that converts light energy into electric power by the photoelectric effect.
  • the PV panel 10 may be a solar battery cell that is a single solar battery or a solar battery module in which a plurality of solar batteries are combined.
  • Each PV panel 10 may be connected in series or in parallel at a geographically close place, or may be connected in series or in parallel at a geographically distant place.
  • a higher voltage can be obtained by connecting the PV panels 10 in series.
  • the MPPT controller 20M transmits control data to the MPPT controller 20S in order to control the supply power supplied from each PV panel 10 so that the total sum of the power generated by each PV panel 10 is maximized.
  • Each MPPT controller 20S inputs the generated power of the corresponding PV panel 10 and controls it to have a desired power.
  • the desired power is determined by control data from the MPPT controller 20M, and basically differs for each MPPT controller 20S.
  • the power conditioner 30 converts DC power corresponding to power generated by each PV panel 10 output from the MPPT controller 20M into AC power.
  • FIG. 2 is a block diagram illustrating a configuration example of the MPPT controller 20.
  • the MPPT controller 20 includes a first voltage sensor 21, a current sensor 22, a DC / DC converter 23, a second voltage sensor 24, a communication unit 25, and a microprocessor (MPU: Micro Processing Unit) 26.
  • MPU Micro Processing Unit
  • the first voltage sensor 21 detects the output voltage of the PV panel 10 connected to the MPPT controller 20.
  • the current sensor 22 detects the output current of the PV panel 10 connected to the MPPT controller 20.
  • the DC / DC converter 23 includes a switch unit 23S having a switching element for power conversion.
  • the switch unit 23S controls supply power supplied from the PV panel 10 as a power source via the power line PL by switching on and off as appropriate.
  • DC / DC converter 23 is connected to power line PL.
  • the DC / DC converter 23 receives the output voltage of the PV panel 10 connected to the MPPT controller 20, and transforms the input voltage using the switch unit 23S.
  • the DC / DC converter 23 may be a linear type using an integrated circuit for power conversion.
  • the second voltage sensor 24 detects the output voltage (voltage after transformation) of the DC / DC converter 23.
  • the communication unit 25 communicates data via the power line PL. Therefore, data is received through the power line PL or data is transmitted through the power line PL. Further, the DC / DC converter 23 and the communication unit 25 are connected to the power line PL. The detailed configuration of the communication unit 25 will be described later.
  • the MPU 26 performs on / off control (switching control) of the switch unit 23S while avoiding the timing of receiving data by the communication unit 25. At this time, the MPU 26 transmits a PWM (Pulse Width Modulation) signal, which is a signal for performing on / off control of the switch unit 23 ⁇ / b> S, to the DC / DC converter 23. Details of the on / off control of the switch unit 23S will be described later.
  • PWM Pulse Width Modulation
  • the MPU 26 uses the control data (the voltage detected by the second voltage sensor 24 based on the voltage detected by the first voltage sensor 21 and the current detected by the current sensor 22) received by the communication unit 25 ( For example, the duty ratio of the switch unit 23S of the DC / DC converter 23 is controlled so that the voltage value is instructed by power instruction data for instructing the power value. Details of the control of the duty ratio of the switch unit 23S will be described later.
  • a power line communication program for executing each step of the power line communication method described in this embodiment is stored in a predetermined memory (not shown) or the like in the MPPT controller 20.
  • the MPPT controller 20 shown in FIG. 2 is connected to the power line PL and constitutes the photovoltaic power generation system 1 together with other MPPT controllers 20.
  • FIG. 3 is a block diagram illustrating a detailed hardware configuration example of the communication unit 25.
  • the communication unit 25 includes a main IC (Integrated Circuit) 210, a memory 220, a low-pass filter (LPF) 230, a band-pass filter (BPF) 240, a driver IC 250, and a coupler 260.
  • the communication unit 25 is configured by a circuit module, for example.
  • the main IC 210 includes a CPU (Central Processing Unit) 211, a PLC / MAC (Power Line Communication / Media Access Control Layer) block 212, a PLC / PHY (Power Line Communication / Physical Layer) block 213, a DA converter (DAC; D / D / A converter 214, an AD converter (ADC; A / D converter) 215, and a variable amplifier (VGA) 216.
  • the main IC 210 is an integrated circuit that functions as a control circuit that performs power line communication.
  • the main IC 210 is connected to the MPU 26 and transmits / receives data by serial communication.
  • the CPU 211 has a 32-bit RISC (Reduced Instruction Set Computer) processor.
  • the PLC / MAC block 212 manages the MAC layer (Media / Access / Control / layer) of the transmission / reception signal
  • the PLC / PHY block 213 manages the PHY layer (Physical / layer) of the transmission / reception signal.
  • the DA converter 214 converts a digital signal into an analog signal.
  • the AD converter 215 converts an analog signal into a digital signal.
  • the variable amplifier 216 amplifies the signal input from the BPF 240.
  • the memory 220 is a semiconductor storage device such as a RAM (Random Access Memory) or a ROM (Read Only Memory).
  • the LPF 230 allows low frequency components of the signal input from the DAC 214 to pass and blocks other components.
  • the BPF 240 passes a predetermined frequency band component of the signal input from the coupler 260 and blocks other components.
  • the driver IC 250 is an IC for operating a predetermined device.
  • the coupler 260 includes a coil transformer 261 and coupling capacitors 262a and 262b.
  • the CPU 211 uses the data stored in the memory 220 to control the operation of the PLC / MAC block 212 and the PLC / PHY block 213, and also controls the entire communication unit 25.
  • Communication by the communication unit 25 is roughly performed as follows. Data to be transmitted stored in the memory 220 or the like is sent to the main IC 210.
  • the main IC 210 generates a digital transmission signal by performing digital signal processing on the data.
  • the generated digital transmission signal is converted into an analog signal by the DA converter 214 and output to the power line PL via the low-pass filter 230, the driver IC 250, and the coupler 260.
  • the signal received from the power line 700 is sent to the band pass filter 240 via the coupler 260, and after gain adjustment is performed by the variable amplifier 216, the signal is converted to a digital signal by the AD converter 215.
  • the converted digital signal is converted into digital data by performing digital signal processing.
  • the converted digital data is stored in the memory 220, for example.
  • the communication unit 25 uses a multicarrier signal such as an OFDM (Orthogonal Frequency Division Multiplexing) signal generated using a plurality of subcarriers as a signal for transmission.
  • the communication unit 25 converts the data to be transmitted into a multicarrier transmission signal such as an OFDM signal and outputs it, and processes the multicarrier reception signal such as an OFDM signal to convert it into reception data.
  • Digital signal processing for these conversions is mainly performed by the PLC / PHY block 213.
  • the MPPT controller 20M receives the voltage information (voltage information) detected by the first voltage sensor 21 and the current information (current information) detected by the current sensor 22 from the MPPT controller 20S via the power line PL. To do.
  • the MPPT controller 20M calculates the optimum voltage value of the PV panel 10 and current value of the PV panel in the PV panel 10 based on the voltage information and current information of the MPPT controller 20S.
  • the optimal voltage value and current value are the voltage value and current value of each PV panel 10 that maximizes the power in the entire PV panel 10.
  • the optimum voltage value and current value depend on the orientation of the PV panel 10, the installation location of the PV panel 10, the weather, and the like, and thus basically differ for each PV panel 10.
  • the MPPT controller 20M includes the calculated voltage value and current value of the PV panel 10 in the optimum voltage information and the optimum current information, and transmits them to the MPPT controller 20S corresponding to the PV panel 10 via the power line PL.
  • the optimum voltage information and the optimum current information are an example of power instruction data for instructing the power supplied from the PV panel 10. Further, the optimum power information calculated from the optimum voltage information and the optimum current information may be transmitted to the MPPT controller 20S.
  • the MPPT controller 20S receives optimum voltage information and optimum current information from the MPPT controller 20M through the power line PL. Then, the MPPT controller 20S performs on / off control of the switch unit 23S of the DC / DC converter 23 so that the voltage value included in the received optimal voltage information and the current value included in the optimal current information are obtained.
  • FIG. 4 is a diagram for explaining an example of on / off control of the switch unit 23S.
  • the voltage value V1 and the current value I1 indicate the voltage value and the current value detected at the previous stage (on the PV panel 10 side) of the DC / DC converter 23, and the voltage value and the current detected by the first voltage sensor 21. This corresponds to the current value detected by the sensor 22.
  • the values of the voltage and current generated by photovoltaic power generation are shown as they are without being affected by the switching by the switch unit 23S.
  • the voltage value V2 and the current value I2 indicate the voltage value and current value in the DC / DC converter 23, more specifically, the voltage value and current value immediately after the switch unit 23S.
  • the voltage is a predetermined voltage value when the switch unit 23S is on, and the voltage value is 0 when it is off.
  • the current the current value increases when the switch unit 23S is on, and the current value decreases when the switch unit 23S is off.
  • the voltage value V3 and the current value I3 indicate a voltage value and a current value detected at the subsequent stage (on the power line PL side) of the DC / DC converter 23.
  • the voltage value is a voltage detected by the second voltage sensor 24. Corresponds to the value.
  • both the voltage value and the current value are smoothed by a diode part, a coil part, a capacitor part, etc. in the DC / DC converter 23.
  • FIG. 5 is a diagram for explaining another example of the on / off control of the switch unit 23S.
  • the waveforms of the voltage values V4 to V6 and the current values I4 to I6 are the same as the waveforms of the voltage values V1 to V3 and the current values I1 to I3 shown in FIG. 4, but the switch unit 23S is more than that described in FIG. Long off time. Therefore, the smoothed voltage value V6 and the smoothed current value I6 are smaller than the voltage value V3 and the current value I3 shown in FIG. That is, the longer the switch-on time, the larger the voltage value and current value, and the longer the switch-off time, the smaller the voltage value and current value.
  • FIG. 6 is a flowchart showing an example of maximum power point tracking control (MPPT) by the MPU 26.
  • the first voltage sensor 21 detects the output voltage V (k) of the PV panel 10. Further, the current sensor 22 detects the output current I (k) of the PV panel 10 (step S101). Note that k indicates time.
  • the MPU 26 determines that the output power P (k) of the PV panel 10 is the output power P (k) of the PV panel 10 before the change of the previous duty ratio. It is determined whether it is larger than -1) (step S103). That is, it is determined whether P (k) ⁇ P (k ⁇ 1)> 0.
  • the MPU 26 When P (k) ⁇ P (k ⁇ 1) ⁇ 0 (No in step S103), the MPU 26 indicates that the output voltage V (k) of the PV panel 10 is the output of the PV panel 10 before the change of the previous duty ratio. It is determined whether or not the voltage is higher than the voltage V (k ⁇ 1) (step S104). That is, it is determined whether V (k) ⁇ V (k ⁇ 1)> 0.
  • step S104 the MPU 26 controls the switch unit 23S so that the voltage Vref detected by the second voltage sensor 24 becomes small. That is, the MPU 26 transmits a PWM signal for controlling the switch unit 23S to the DC / DC converter 23 so that the duty ratio of the switch unit 23S decreases (step S105).
  • the MPU 26 controls the switch unit 23S so that the voltage Vref detected by the second voltage sensor 24 is increased. That is, the MPU 26 transmits a PWM signal for controlling the switch unit 23S to the DC / DC converter 23 so that the duty ratio of the switch unit 23S is increased (step S106).
  • step S103 when P (k) ⁇ P (k ⁇ 1)> 0 (Yes in step S103), the MPU 26 indicates that the output voltage V (k) of the PV panel 10 is the PV panel 10 before the change of the previous duty ratio. It is determined whether or not the output voltage V (k ⁇ 1) is greater than (step S107). That is, it is determined whether V (k) ⁇ V (k ⁇ 1)> 0.
  • the MPU 26 controls the switch unit 23S so that the voltage Vref detected by the second voltage sensor 24 becomes small. That is, the MPU 26 transmits a PWM signal for controlling the switch unit 23S to the DC / DC converter 23 so that the duty ratio of the switch unit 23S decreases (step S108).
  • Step S107 the MPU 26 controls the switch unit 23S so that the voltage Vref detected by the second voltage sensor 24 is increased. That is, the MPU 26 transmits a PWM signal for controlling the switch unit 23S to the DC / DC converter 23 so that the duty ratio of the switch unit 23S increases (step S109).
  • MPPT maximum power point tracking control
  • 7 and 8 are diagrams for explaining the switching timing of the switch unit 23S.
  • Switching noise may occur on the power line PL at the timing when the switch unit 23S is turned from on to off and at the timing when it is turned from off to on (switching timing).
  • the switching noise is generated in the vicinity of the switch unit 23S (DC / DC converter 23) of the MPPT controller 20S for controlling the power supplied from the PV panel 10. Therefore, if the timing at which data is received by the communication unit 25 of the MPPT controller 20S overlaps with the switching timing, it is greatly affected by switching noise.
  • the communication unit 25 of the MPPT controller 20S avoids the timing of receiving data via the power line PL and performs on / off control (switching) of the switch unit 23S. As a result, it is possible to accurately perform a data decoding process without superimposing switching noise on the received data.
  • the switching timing is the timing at which the communication unit 25 of the MPPT controller 20S receives data. Therefore, the effect of switching noise is small. Accordingly, when the MPPT controller 20M subsequently receives the data, the MPPT controller 20M can accurately perform the data decoding process or the like.
  • the communication unit 25 of the MPPT controller 20S transmits data via the power line PL at the switching timing, and receives data via the power line PL immediately after the transmission.
  • the communication unit 25 of the MPPT controller 20M receives data via the power line PL at the switching timing, and transmits data via the power line PL immediately after receiving the data.
  • the timing at which the MPPT controller 20S receives the head portion and the end portion of the data frame and the switching timing of the switch unit 23S may overlap.
  • the timing at which the MPPT controller 20S receives the head portion and the end portion of the data frame and the switching timing of the switch unit 23S overlap means that “the MPPT controller 20S receives data. This may be included in “switching the switch unit 23S while avoiding timing”.
  • the amount of overlap between data and switching timing is allowed up to about 10% of the PLC1 frame, although it depends on the communication environment.
  • the data from the MPPT controller 20S to the MPPT controller 20M is, for example, voltage information and current information of the MPPT controller 20S.
  • the data from the MPPT controller 20M to the MPPT controller 20S is optimum voltage information and optimum current information of the MPPT controller 20M.
  • data is communicated between the MPPT controller 20M and the MPPT controller 20S using a PLC frame.
  • TDMA / TDD Time Dimension Multiple Access / Time Time Division Duplex
  • FIG. 9 is a diagram illustrating a first example of communication timing in the solar power generation system 1.
  • communication is performed for each 12 slots in the uplink (MPTT controller 20M ⁇ MPPT controller 20S) / downlink (MPPT controller 20S ⁇ MPPT controller 20M). That is, one PLC frame is composed of 24 slots. Further, since 10 msec is allocated to one PLC frame, the transmission rate is 1.152 MBPS.
  • slot (SL) 0 to slot (SL) 11 are used for uplink communication, and SL12 to SL23 are used for downlink communication.
  • SL0 beacon signal BS as data from MPPT controller 20M is transmitted.
  • SL12 a data signal DS as data from the MPPT controller 20S is transmitted.
  • the beacon signal BS is a signal for controlling communication by each MPPT controller 20S, and is transmitted periodically.
  • the beacon signal BS includes information on slot numbers of slots to be assigned to each MPPT controller 20S, information for requesting voltage information and current information to each MPPT controller 20S, voltage information transmitted from each MPPT controller 20S, and The optimum voltage information and the optimum current information for the current information are included.
  • the data signal DS includes voltage information and current information of the MPPT controller 20S.
  • information indicating the transmission timing of the beacon signal BS may be included in the beacon signal BS.
  • the MPPT controller 20S can know the transmission timing of the beacon signal BS by receiving the beacon signal BS. Therefore, the MPPT controller 20S can adjust the reception timing corresponding to the transmission timing of the beacon signal BS and the switching timing of the switch unit 23S so as not to overlap.
  • the MPU 26 of the MPPT controller 20S can easily recognize the reception timing corresponding to the transmission timing, for example, by calculating the difference between the past transmission timing and the reception timing and holding it as a history.
  • the information indicating the transmission timing of the beacon signal BS is not included in the transmitted beacon signal BS, but the MPPT controller 20S receives information indicating the transmission timing in advance in the memory 220 of the communication unit 25 or the reception corresponding to the transmission timing. The timing may be maintained.
  • the MPPT controller 20S performs on / off control of the switch unit 23S while avoiding reception timing corresponding to such transmission timing.
  • FIG. 10 is a diagram illustrating an example of a relationship between communication timing and switching timing in the photovoltaic power generation system 1.
  • the MPU 26 of the MPPT controller 20S synchronizes the transmission timing of the beacon signal BS by the MPPT controller 20M and the timing interval (off timing interval OFF) in which the switch unit 23S is off. That is, the MPU 26 performs on / off control of the switch unit 23S so that the transmission timing of the beacon signal BS and the off-timing period OFF of the switch unit 23S overlap.
  • the MPU 26 transmits the beacon signal transmission timing by the MPPT controller 20M and the timing period when the switch unit 23S is on. (ON timing section ON) may be synchronized. That is, the MPU 26 controls the ON / OFF of the switch unit 23S so that the transmission timing of the beacon signal BS and the ON timing interval ON of the switch unit 23S overlap when the OFF timing interval OFF of the switch unit 23S is less than a predetermined time. May be performed.
  • the MPU 26 transmits the beacon signal BS transmission timing by the MPPT controller 20M. And the ON timing section ON of the switch unit 23S may be synchronized. That is, the MPU 26 controls the ON / OFF of the switch unit 23S so that the transmission timing of the beacon signal BS and the ON timing interval ON of the switch unit 23S overlap when the ON timing interval ON of the switch unit 23S is equal to or longer than a predetermined time. May be performed.
  • the beacon signal BS is transmitted by the MPPT controller 20M.
  • the communication unit 25 of the MPPT controller 20M transmits a beacon signal BS to each MPPT controller 20S via the power line PL at a predetermined timing after activation.
  • the communication unit 25 of each MPPT controller 20S receives the beacon signal BS in synchronization with the predetermined timing via the power line PL.
  • the MPU 26 of each MPPT controller 20S performs on / off control of the switch unit 23S based on the received beacon signal BS. Since the beacon signal BS includes information instructing each MPPT controller 20S to perform on / off control at different timings, the MPPT controller 20S performs on / off control of the switch unit 23S in an autonomous and distributed manner. .
  • FIG. 11 is a diagram illustrating a second example of communication timing in the solar power generation system 1.
  • the MPPT controller 20M and the MPPT controller 20S communicate for each frame (for example, every 10 ms).
  • 24 MPPT controllers 20S as slave units are installed.
  • One set (Set) is composed of 24 PLC frames.
  • One set means the number of connectable terminals.
  • One PLC frame is composed of 24 slots.
  • the MPPT controller 20M and the first MPPT controller 20S communicate, and in the frame 1 (FR1), the MPPT controller 20M and the second MPPT controller 20S communicate.
  • the frame number may be associated with the identification number for identifying the MPPT controller 20S.
  • the beacon signal BS is transmitted by the MPPT controller 20M in slot 0 (SL0), and the data signal DS as a response signal to the beacon signal BS is transmitted by the MPPT controller 20S in slot 12.
  • the beacon signal BS includes information on the frame number to be assigned to each MPPT controller 20S instead of or together with the slot number.
  • the MPU 26 of the MPPT controller 20S shortens the period of the PLC frame (that is, reduces the slot time interval) or decreases the number of slots in the PLC frame.
  • the number of PLC frames per set may be increased.
  • FIG. 12 is a diagram illustrating a third example of communication timing in the solar power generation system 1.
  • the MPPT controller 20M and the MPPT controller 20S communicate for each slot.
  • twelve MPPT controllers 20S as slave units are installed.
  • one PLC frame is composed of 24 slots, for example, 10 ms.
  • the communication unit 25 of the MPPT controller 20M transmits a data signal DSM (DSM1, DSM2,%) To each MPPT controller 20S separately from or superimposed on the beacon signal BS.
  • the communication unit 25 of the MPPT controller 20S transmits a data signal DSS (DSS1, DSS2,%) As a response signal to the data signal DSM.
  • the data signal DSM1 is communicated from the MPPT controller 20M to the first MPPT controller 20S
  • slot 10 the data signal DSM2 is communicated from the MPPT controller 20M to the second MPPT controller 20S. Is done.
  • the data signal DSS1 is communicated from the first MPPT controller 20S to the MPPT controller 20M
  • the data signal DSS2 is communicated from the second MPPT controller 20S to the MPPT controller 20M. Is done.
  • the slot number may be associated with the identification number for identifying the MPPT controller 20S.
  • the MPU 26 of the MPPT controller 10S may decrease the number of PLC frames per set and increase the number of slots per frame.
  • the data signal DSM includes information on slot numbers of slots to be allocated to the MPPT controller 20S, information for requesting voltage information and current information from the MPPT controller 20S, and voltage information and current information transmitted from the MPPT controller 20S.
  • the optimum voltage information and the optimum current information are included.
  • the data signal DSS includes voltage information and current information of the MPPT controller 20S.
  • information indicating the transmission timing of the MPPT controller 20M may be included in the data signal DSM.
  • the transmission timing may include transmission timings for all MPPT controllers 20S including other MPPT controllers 20S, or may include only transmission timings for individual MPPT controllers 20S.
  • the MPPT controller 20S can know the transmission timing by the MPPT controller 20M by receiving this data. Therefore, the MPPT controller 20S can adjust the reception timing corresponding to the transmission timing by the MPPT controller 20M and the switching timing of the switch unit 23S so as not to overlap.
  • the MPPT controller 20S holds the information indicating the transmission timing or the reception timing corresponding to the transmission timing in the memory 220 or the like of the communication unit 25 in advance. Also good.
  • each slot is an example of a time interval for communicating data
  • the MPU 26 of the MPPT controller 20M determines which slot is assigned to which MPPT controller 20S. Then, the MPU 26 of the MPPT controller 20S performs on / off control of the switch unit 23S so as to avoid the assigned communicable slot, that is, the slot and the switching timing do not overlap.
  • the MPU 2 of the MPPT controller 20S performs on / off control of the switch unit 23S while avoiding the reception timing by the MPPT controller 20S corresponding to the transmission timing by the MPPT controller 20M.
  • reliable power line communication can be performed without requiring a special device for detecting switching noise.
  • the MPU 26 of the MPPT controller 20S may perform the following control.
  • the MPU 26 of the MPPT controller 20S may control the communication unit 25 to transmit data to be transmitted to the MPPT controller 20M a plurality of times. Thereby, robust communication can be performed.
  • the MPU 26 may control the communication unit 25 so as to divide the data into a plurality of frames (for example, frame 0 and frame 1), The communication unit 25 may be controlled to transmit using other slots (for example, slots other than the slot 0 and the slot 12).
  • data transmission from the MPPT controller 20S to the MPPT controller 20M may be performed by the MPU 26 to control the communication unit 25 so as to be performed every time at a predetermined timing, or the state (here, detected by the first voltage sensor 21). Or the current detected by the current sensor 22) may be controlled to be performed only when the communication unit 25 changes.
  • the MPU 26 may change the operation mode of the MPPT controller 20S to the sleep mode.
  • the MPU 26 periodically starts and determines whether or not there is a change in the state, and the MPPT controller 20S is intermittently operated or stopped at times other than this determination. Thereby, when the state constantly changes, data transmission by the communication unit 25 is performed every time, and when the state does not change, the mode can be changed to the sleep mode to reduce power consumption.
  • the MPU 26 may reduce the frequency of on / off control of the switch unit 23S.
  • the present invention is useful for a power line communication device, a power line communication system, a power line communication program, and the like that can perform reliable power line communication without detecting switching noise.
  • Photovoltaic power generation system 10 PV panel 20 MPPT controller 20M MPPT controller (master unit) 20S MPPT controller (slave unit) 30 power conditioner 21 first voltage sensor 22 current sensor 23 DC / DC converter 23S switch unit 24 second voltage sensor 25 communication unit 26 MPU 210 Main IC 211 CPU 212 PLC / MAC block 213 PLC / PHY block 214 DAC 215 ADC 216 VGA 220 Memory 230 LPF 240 BPF 250 Driver IC 260 Coupler PL Power line

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

 スイッチングノイズの検出を必要とせずに、確実な電力線通信を行うことができる電力線通信装置を提供する。本電力線通信装置は、電力線PLを介して通信を行うMPPTコントローラ20Sであって、電力線PLを介してデータを通信する通信部25と、電力線PLを介してPVパネル10から供給される供給電力を制御するためのスイッチ部23Sと、通信部2によりデータを受信するタイミングを避けて、スイッチ部23Sのオンオフ制御を行うMPU26と、を備える。

Description

電力線通信装置、電力線通信システム、電力線通信方法、及び電力線通信プログラム
 本発明は、電力線通信装置、電力線通信システム、電力線通信方法、及び電力線通信プログラム、に関する。
 従来、電力線を介した通信である電力線通信(PLC:Power Line Communication)を行う電力線通信装置は、電力線を介して各電気機器へ電力を供給するとともに、同じ電力線を介して各電気機器を制御するための制御データ等のデータを送信することができる。
 ところで、電力線通信に用いられる電源が、入力電力から所望の出力電力を得るために電力を変換するスイッチング素子を用いたスイッチング電源である場合には、スイッチング素子のオンオフ時に通信ノイズ(スイッチングノイズ)が発生してしまう。この場合、電力線を介してデータを正確に通信することができないことがあった。
 このようなスイッチングノイズの影響を軽減するために、直流電源のスイッチングのオンオフ時を避けて電力線通信を行う電力線通信装置が知られている(例えば、特許文献1参照)。この電力線通信装置は、スイッチング電源の出力を監視し、電源出力に存在するスイッチングノイズを検出し、検出信号を生成する。そして、この検出信号を同期信号として、複数のユニットに送信すべき制御信号を電力線に重畳する。これにより、スイッチングノイズの発生タイミングを確実に回避して、電力線通信を行うことができる。
日本国特開2006-109147号公報
 しかしながら、特許文献1に示された技術では、スイッチングノイズの発生タイミングを認識するためには、常にスイッチングノイズの検出信号を送信し続けなければならなかった。これにより、電力線の伝送効率が低下したり、電力線通信装置の処理負荷が増大したりすることがあった。
 本発明は、上記事情に鑑みてなされたものであって、スイッチングノイズの検出を必要とせずに、確実な電力線通信を行うことができる電力線通信装置、電力線通信システム、電力線通信方法、及び電力線通信プログラムを提供することを目的とする。
 本発明の電力線通信装置は、電力線を介して通信を行う電力線通信装置であって、前記電力線を介してデータを通信する通信部と、前記電力線を介して電源から供給される供給電力を制御するためのスイッチ部と、前記通信部によりデータを受信するタイミングである受信タイミングを避けて、前記スイッチ部のオンオフ制御を行うスイッチ制御部と、を備える。
 この構成によれば、データの受信タイミングに合わせて、電力制御のためのスイッチングタイミングを決定している。したがって、スイッチングノイズの検出を必要とせずに、確実な電力線通信を行うことができる。
 また、本発明の電力線通信装置は、前記通信部が、他の電力線通信装置からデータが送信されるタイミングの情報である送信タイミング情報を受信し、前記スイッチ制御部が、前記通信部により受信された前記送信タイミング情報に対応する前記受信タイミングを避けて、前記スイッチ部のオンオフ制御を行う。
 この構成によれば、データの受信タイミングを認識することができ、データの受信タイミングに合わせて、電力制御のためのスイッチングタイミングを決定することができる。これにより、確実な電力線通信を行うことができる。
 また、本発明の電力線通信装置は、他の電力線通信装置によりデータが送信されるタイミングの情報である送信タイミング情報を記憶する記憶部を備え、前記スイッチ制御部が、前記記憶部に記憶された前記送信タイミング情報に対応する前記受信タイミングを避けて、前記スイッチ部のオンオフ制御を行う。
 この構成によれば、データの受信タイミングを認識することができ、データの受信タイミングに合わせて、電力制御のためのスイッチングタイミングを決定することができる。これにより、確実な電力線通信を行うことができる。
 また、本発明の電力線通信装置は、前記スイッチ制御部が、他の電力線通信装置による送信タイミング及び前記スイッチ部がオフであるオフタイミングが同期するよう、前記スイッチ部のオンオフ制御を行う。
 この構成によれば、送信タイミングに対応する受信タイミングとスイッチングタイミングとが重複しないよう調整することができるので、確実な電力線通信を行うことができる。
 また、本発明の電力線通信装置は、前記スイッチ制御部が、前記スイッチ部がオフであるオフタイミングが所定時間未満である場合、他の電力線通信装置による送信タイミング及び前記スイッチ部がオンであるオンタイミングが同期するよう、前記スイッチ部のオンオフ制御を行う。
 この構成によれば、送信タイミングに対応する受信タイミングとスイッチングタイミングとが重複しないよう調整することができるので、確実な電力線通信を行うことができる。
 また、本発明の電力線通信装置は、前記スイッチ制御部が、前記スイッチ部がオンであるオンタイミングが所定時間以上である場合、他の電力線通信装置による送信タイミング及び前記スイッチ部のオンタイミングが同期するよう、前記スイッチ部のオンオフ制御を行う。
 この構成によれば、送信タイミングに対応する受信タイミングとスイッチングタイミングとが重複しないよう調整することができるので、確実な電力線通信を行うことができる。
 また、本発明の電力線通信装置は、前記電源の出力電圧を検出する電源電圧検出部と、前記電源の出力電流を検出する電源電流検出部と、を備え、前記スイッチ制御部が、前記電源電圧検出部により検出された前記電源の出力電圧と前記電源電流検出部により検出された前記電源の出力電流とが不変である場合、前記スイッチ部のオンオフ制御の頻度を低減させる。
 この構成によれば、電源の出力電力が一定の場合には特に電力制御の必要がない状況であると推定できるので、オンオフ制御の頻度を小さくすることで、電圧検出、電流検出、スイッチ部のオンオフ制御等に伴う電力消費を低減させることができる。
 また、本発明の電力線通信装置は、前記データ受信部が、他の電力線通信装置から前記供給電力を指示するための電力指示データを受信し、前記スイッチ制御部が、前記通信部により受信された電力指示データに基づいて、前記スイッチ部のデューティ比を決定する。
 この構成によれば、他の電力線通信装置が意図する電力となるように、電源からの供給電力を調整することができる。例えば、複数の電源による供給電力が全体として最大となるように調整することができる。
 また、本発明の電力線通信装置は、前記電源の出力電圧を検出する電源電圧検出部と、前記電源の出力電流を検出する電源電流検出部と、前記スイッチ部を有し、前記電源の出力電圧を変圧する変圧部と、前記変圧部の出力電圧を検出する変圧電圧検出部と、を備え、前記スイッチ制御部が、前記電源電圧検出部により検出された前記電源の出力電圧と前記電源電流検出部により検出された前記電源の出力電流とに基づいて、前記変圧電圧検出部により検出される電圧が、前記データ受信部により受信された電力指示データで示された電圧となるように、前記スイッチ部のデューティ比を決定する。
 この構成によれば、他の電力線通信装置が意図する電力となるように、電源からの供給電力を調整することができる。例えば、複数の電源による供給電力が全体として最大となるように調整することができる。
 また、本発明の電力線通信システムは、電力線を介して複数の電力線通信装置が通信を行う電力線通信システムであって、第1の電力線通信装置が、前記電力線を介して、第2の電力線通信装置へデータを送信し、第2の電力線通信装置が、前記電力線を介して前記データを受信するタイミングである受信タイミングを避けて、前記電力線を介して電源から供給される供給電力を制御するためのスイッチ部のオンオフ制御を行う。
 この構成によれば、第2の電力線通信装置によるデータの受信タイミングに合わせて、電力制御のためのスイッチングタイミングを決定している。したがって、スイッチングノイズの検出を必要とせずに、確実な電力線通信を行うことができる。
 また、本発明の電力線通信システムは、前記第2の電力線通信装置を複数備え、前記第1の電力線通信装置が、前記第2の電力線通信装置の各々に対して、データを通信するための異なる時間区間を割り当て、前記第2の電力線通信装置が、前記第1の電力線通信装置により割り当てられた時間区間を避けて、前記スイッチ部のオンオフ制御を行う。
 この構成によれば、第2の電力線通信装置の各々が、通信可能区間として割り当てられた異なる時間区間を避けて、自律分散的にスイッチ部のオンオフ制御を行うので、各電力線通信装置が確実な電力線通信を行うことができる。
 また、本発明の電力線通信方法は、電力線を介して通信を行うための電力線通信方法であって、前記電力線を介してデータを通信するステップと、データを受信するタイミングである受信タイミングを避けて、前記電力線を介して電源から供給される供給電力を制御するためのスイッチ部のオンオフ制御を行うステップと、を有する。
 この方法によれば、データの受信タイミングに合わせて、電力制御のためのスイッチングタイミングを決定している。したがって、スイッチングノイズの検出を必要とせずに、確実な電力線通信を行うことができる。
 また、本発明の電力線通信プログラムは、上記電力線通信方法の各ステップをコンピュータに実行させるためのプログラムである。
 このプログラムによれば、データの受信タイミングに合わせて、電力制御のためのスイッチングタイミングを決定している。したがって、スイッチングノイズの検出を必要とせずに、確実な電力線通信を行うことができる。
 本発明によれば、スイッチングノイズの検出を必要とせずに、確実な電力線通信を行うことができる。
本発明の実施形態における太陽光発電システムの構成例を示すブロック図 本発明の実施形態におけるMPPTコントローラの構成例を示すブロック図 本発明の実施形態における通信部の詳細なハードウェア構成例を示すブロック図 本発明の実施形態におけるスイッチ部のオンオフ制御例を説明するための図 本発明の実施形態におけるスイッチ部のオンオフ制御の他の例を説明するための図 本発明の第1の実施形態におけるMPUによる最大電力点追従制御(MPPT)の一例を示すフローチャート 本発明の実施形態におけるスイッチ部のスイッチングタイミングを説明するための図 本発明の実施形態におけるスイッチ部のスイッチングタイミングを説明するための図 本発明の実施形態における太陽光発電システムにおける通信タイミングの第1例を示す図 本発明の実施形態における太陽光発電システムにおける通信タイミングとスイッチングタイミングとの関係の一例を示す図 本発明の実施形態における太陽光発電システムにおける通信タイミングの第2例を示す図 本発明の実施形態における太陽光発電システムにおける通信タイミングの第3例を示す図
 以下、本発明の実施形態について、図面を用いて説明する。
 本実施形態の電力線通信システムとしては、例えば、太陽光発電システムがある。また、本実施形態の電力線通信装置としては、太陽光発電による発電電力を最大にするための最大電力点追従制御(MPPT:Maximum Power Point Tracking)を行うMPPTコントローラがある。以下、電力線通信システムの一例として太陽光発電システム、電力線通信装置の一例としてMPPTコントローラ、について主に説明する。
 図1は、本発明の実施形態における太陽光発電システムの構成例を示す図である。図1に示す太陽光発電システム1では、太陽光発電(PV:Photo Voltaic)パネル10、MPPTコントローラ20、パワーコンディショナー30、を有して構成される。MPPTコントローラ20は、MPPT親機として動作するMPPTコントローラ20M、MPPT子機として動作するMPPTコントローラ20S、を含む。
 図1に示す例では、PVパネル10が電力線PLを介して直列に複数接続されており、各PVパネル10に対して各MPPTコントローラ20Sが電力線PLを介して接続されている。また、MPPTコントローラ20Mは、MPPTコントローラ20Sを管理しており、各MPPTコントローラ20Sと電力線PLを介して直列に接続されている。パワーコンディショナー30は、MPPTコントローラ20Mと電力線PLを介して接続されている。
 PVパネル10は、光電効果により、光エネルギーを電力に変換する太陽電池を含むパネルである。ここでのPVパネル10とは、太陽電池単体である太陽電池セルであってもよいし、複数の太陽電池が組み合わされた太陽電池モジュールであってもよい。また、各PVパネル10は、地理的に近接した場所で直列や並列に接続されていてもよいし、地理的に離れた場所で直列や並列に接続されていてもよい。なお、図1に示したように、PVパネル10を直列に接続することで、より高い電圧を得ることができる。
 MPPTコントローラ20Mは、各PVパネル10により発電される発電電力の総和が最大となるように各PVパネル10から供給される供給電力を制御するため、MPPTコントローラ20Sに対して制御データを送信する。
 各MPPTコントローラ20Sは、対応するPVパネル10の発電電力を入力し、所望の電力となるように制御する。所望の電力は、MPPTコントローラ20Mからの制御データにより決定され、基本的にはMPPTコントローラ20S毎に異なる。
 パワーコンディショナー30は、MPPTコントローラ20Mから出力された各PVパネル10による発電電力に相当する直流電力を、交流電力に変換する。
 次に、MPPTコントローラ20の具体的な構成について説明する。
 図2は、MPPTコントローラ20の構成例を示すブロック図である。
 MPPTコントローラ20は、第1電圧センサ21、電流センサ22、DC/DCコンバータ23、第2電圧センサ24、通信部25、マイクロプロセッサ(MPU:Micro Processing Unit)26、を備える。
 第1電圧センサ21は、MPPTコントローラ20に接続されたPVパネル10の出力電圧を検出する。
 電流センサ22は、MPPTコントローラ20に接続されたPVパネル10の出力電流を検出する。
 DC/DCコンバータ23は、電力変換用のスイッチング素子を有するスイッチ部23Sを備える。スイッチ部23Sは、オンとオフを適時切り替えることにより、電力線PLを介して電源としてのPVパネル10から供給される供給電力を制御するものである。また、DC/DCコンバータ23は、電力線PLに接続されている。また、DC/DCコンバータ23は、MPPTコントローラ20に接続されたPVパネル10の出力電圧を入力し、スイッチ部23Sを用いて、入力された電圧を変圧する。なお、DC/DCコンバータ23は、電力変換用の集積回路を用いたリニア方式のものであっても良い。
 第2電圧センサ24は、DC/DCコンバータ23の出力電圧(変圧後の電圧)を検出する。
 通信部25は、電力線PLを介してデータを通信する。したがって、電力線PLを介してデータを受信したり、電力線PLを介してデータを送信したりする。また、DC/DCコンバータ23及び通信部25は、電力線PLに接続されている。なお、通信部25の詳細な構成等については後述する。
 MPU26は、通信部25によりデータを受信するタイミングを避けて、スイッチ部23Sのオンオフ制御(スイッチング制御)を行う。このとき、MPU26は、スイッチ部23Sのオンオフ制御を行うための信号であるPWM(Pulse Width Modulation)信号を、DC/DCコンバータ23へ送信する。スイッチ部23Sのオンオフ制御の詳細については後述する。
 また、MPU26は、第1電圧センサ21により検出された電圧及び電流センサ22により検出された電流に基づいて、第2電圧センサ24により検出される電圧が、通信部25により受信された制御データ(例えば、電力値を指示するための電力指示データ)により指示される電圧値となるよう、DC/DCコンバータ23のスイッチ部23Sのデューティ比を制御する。スイッチ部23Sのデューティ比の制御の詳細については後述する。
 なお、本実施形態で説明する電力線通信方法の各ステップを実行させるための電力線通信プログラムは、MPPTコントローラ20内の所定のメモリ(不図示)等に格納される。
 また、図2に示したMPPTコントローラ20は、電力線PLに接続され、他のMPPTコントローラ20と共に太陽光発電システム1を構成する。
 次に、MPPTコントローラ20の通信部25の詳細について説明する。
 図3は、通信部25の詳細なハードウェア構成例を示すブロック図である。
 通信部25は、メインIC(Integrated Circuit)210、メモリ220、ローパスフィルタ(LPF)230、バンドパスフィルタ(BPF)240、ドライバIC250、カプラ260、を備える。通信部25は、例えば回路モジュールにより構成される。
 メインIC210は、CPU(Central Processing Unit)211、PLC・MAC(Power Line Communication・Media Access Control layer)ブロック212、PLC・PHY(Power Line Communication・Physical layer)ブロック213、DA変換器(DAC;D/A Converter)214、AD変換器(ADC;A/D Converter)215、可変増幅器(VGA;Variable Gain Amplifier)216、を備える。なお、メインIC210は、電力線通信を行う制御回路として機能する集積回路である。なお、メインIC210は、MPU26と接続され、シリアル通信によりデータの送受を行う。
 CPU211は、32ビットのRISC(Reduced Instruction Set Computer)プロセッサを実装している。PLC・MACブロック212は、送受信信号のMAC層(Media Access Control layer)を管理し、PLC・PHYブロック213は、送受信信号のPHY層(Physical layer)を管理する。DA変換器214は、デジタル信号をアナログ信号に変換する。AD変換器215は、アナログ信号をデジタル信号に変換する。可変増幅器216は、BPF240から入力される信号を増幅する。
 メモリ220は、RAM(Random Access Memory)やROM(Read Only Memory)等の半導体記憶装置である。LPF230は、DAC214から入力される信号のうち低周波成分を通過させ、それ以外の成分を遮断する。BPF240は、カプラ260から入力される信号のうち所定周波数帯成分を通過させ、それ以外の成分を遮断する。ドライバIC250は、所定機器を動作させるためのICである。カプラ260は、コイルトランス261、及びカップリング用コンデンサ262a、262bで構成されている。
 なお、CPU211は、メモリ220に記憶されたデータを利用して、PLC・MACブロック212、及びPLC・PHYブロック213の動作を制御するとともに、通信部25全体の制御も行う。
 通信部25による通信は、概略次のように行われる。メモリ220等に記憶された送信すべきデータは、メインIC210に送られる。メインIC210は、データに対してデジタル信号処理を施すことによってデジタル送信信号を生成する。そして、生成されたデジタル送信信号は、DA変換器214によってアナログ信号に変換され、ローパスフィルタ230、ドライバIC250、カプラ260、を介して電力線PLに出力される。
 電力線700から受信された信号は、カプラ260を経由してバンドパスフィルタ240に送られ、可変増幅器216でゲイン調整がされた後、AD変換器215でデジタル信号に変換される。そして、変換されたデジタル信号は、デジタル信号処理を施すことによって、デジタルデータに変換される。変換されたデジタルデータは、例えばメモリ220に記憶される。
 次に、メインIC210によって実現されるデジタル信号処理の一例について説明する。通信部25は、複数のサブキャリアを用いて生成されるOFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)信号などのマルチキャリア信号を伝送用の信号として使用するものである。通信部25は、送信対象のデータをOFDM信号などのマルチキャリア送信信号に変換して出力すると共に、OFDM信号などのマルチキャリア受信信号を処理して受信データに変換する。これらの変換のためのデジタル信号処理は、主としてPLC・PHYブロック213で行われる。
 次に、太陽光発電システム1におけるデータ通信について説明する。
 ここでは、1つのデータ通信例として、MPPTコントローラ20MとMPPTコントローラ20Sとの間の最大電力点追従制御(MPPT)のためのデータ通信について説明する。このデータ通信は、後述する通信タイミングにおいて実施される。
 まず、MPPTコントローラ20Mは、電力線PLを介して、MPPTコントローラ20Sから第1電圧センサ21により検出された電圧の情報(電圧情報)と電流センサ22により検出された電流の情報(電流情報)を受信する。
 続いて、MPPTコントローラ20Mは、MPPTコントローラ20Sの電圧情報及び電流情報に基づいて、PVパネル10において最適なPVパネル10の電圧値、PVパネルの電流値を算出する。ここで、最適な電圧値、電流値とは、PVパネル10全体での電力が最大となるような各PVパネル10の電圧値、電流値である。この最適な電圧値及び電流値は、PVパネル10の向き、PVパネル10の設置場所、天候等に依存するため、基本的にはPVパネル10毎に異なる。
 続いて、MPPTコントローラ20Mは、算出されたPVパネル10の電圧値及び電流値を最適電圧情報及び最適電流情報に含めて、電力線PLを介して、PVパネル10に対応するMPPTコントローラ20Sへ送信する。最適電圧情報及び最適電流情報は、PVパネル10からの供給電力を指示するための電力指示データの一例である。また、最適電圧情報及び最適電流情報から算出される最適電力情報を、MPPTコントローラ20Sへ送信するようにしてもよい。
 続いて、MPPTコントローラ20Sは、電力線PLを介して、MPPTコントローラ20Mから最適電圧情報及び最適電流情報を受信する。そして、MPPTコントローラ20Sは、受信された最適電圧情報に含まれる電圧値及び最適電流情報に含まれる電流値となるように、DC/DCコンバータ23のスイッチ部23Sのオンオフ制御を行う。
 次に、MPPTコントローラ20SのMPU26が行うスイッチ部23Sのオンオフ制御について説明する。
 図4は、スイッチ部23Sのオンオフ制御例を説明するための図である。
 電圧値V1及び電流値I1は、DC/DCコンバータ23の前段(PVパネル10側)で検出される電圧値及び電流値を示すものであり、第1電圧センサ21により検出される電圧値及び電流センサ22により検出される電流値に相当する。この段階では、スイッチ部23Sによるスイッチングの影響を受けおらず、太陽光発電された電圧及び電流の値をそのまま示している。
 電圧値V2及び電流値I2は、DC/DCコンバータ23における電圧値及び電流値、より詳細には、スイッチ部23S直後の電圧値及び電流値を示すものである。この段階では、電圧については、スイッチ部23Sがオンのときには所定電圧値となり、オフのときには電圧値が0となる。また、電流については、スイッチ部23Sがオンのときには電流値が上昇し、オフのときには電流値が下降する。
 電圧値V3及び電流値I3は、DC/DCコンバータ23の後段(電力線PL側)で検出される電圧値及び電流値を示すものであり、この電圧値は第2電圧センサ24により検出される電圧値に相当する。この段階では、電圧値及び電流値ともに、DC/DCコンバータ23におけるダイオード部、コイル部、コンデンサ部等により平滑化されている。
 また、図5は、スイッチ部23Sのオンオフ制御の他の例を説明するための図である。
 電圧値V4~V6及び電流値I4~I6の波形は、図4に示した電圧値V1~V3及び電流値I1~I3の波形と同様であるが、図4で説明したものよりもスイッチ部23Sのオフ時間が長い。このため、平滑化された電圧の電圧値V6及び平滑化された電流の電流値I6は、図4に示した電圧値V3及び電流値I3よりも小さくなる。つまり、スイッチオンの時間が長い程電圧値及び電流値が大きくなり、スイッチオフの時間が長い程電圧値及び電流値が小さくなる。
 次に、MPPTコントローラ20SのMPU26による最大電力点追従制御(MPPT)の一例について説明する。
 図6は、MPU26による最大電力点追従制御(MPPT)の一例を示すフローチャートである。
 まず、第1電圧センサ21が、PVパネル10の出力電圧V(k)を検出する。また、電流センサ22が、PVパネル10の出力電流I(k)を検出する(ステップS101)。なお、kは時刻を示している。
 続いて、MPU26は、PVパネル10の出力電力P(k)が、前回のデューティー比(スイッチング周期)の変更前のPVパネル10の出力電力P(k-1)と等しいか否かを判定する(ステップS102)。つまり、P(k)-P(k-1)=0であるか否かを判定する。
 P(k)-P(k-1)=0の場合、MPU26は、PWM信号を送信しない。したがって、MPU26はスイッチ部23Sのデューティ比の変更を行わず、現在のPVパネル10の出力電圧及び出力電流が維持される。
 一方、P(k)-P(k-1)≠0の場合、MPU26は、PVパネル10の出力電力P(k)が、前回のデューティ比の変更前のPVパネル10の出力電力P(k-1)よりも大きいか否かを判定する(ステップS103)。つまり、P(k)-P(k-1)>0であるか否かを判定する。
 P(k)-P(k-1)≦0の場合(ステップS103のNo)、MPU26は、PVパネル10の出力電圧V(k)が、前回のデューティ比の変更前のPVパネル10の出力電圧V(k-1)よりも大きいか否かを判定する(ステップS104)。つまり、V(k)-V(k-1)>0であるか否かを判定する。
 V(k)-V(k-1)>0の場合(ステップS104のYes)、MPU26は、第2電圧センサ24により検出される電圧Vrefが小さくなるように、スイッチ部23Sを制御する。つまり、MPU26は、スイッチ部23Sのデューティ比が減少するようにスイッチ部23Sを制御するためのPWM信号を、DC/DCコンバータ23へ送信する(ステップS105)。
 V(k)-V(k-1)≦0の場合(ステップS104のNo)、MPU26は、第2電圧センサ24により検出される電圧Vrefが大きくなるように、スイッチ部23Sを制御する。つまり、MPU26は、スイッチ部23Sのデューティ比が増大するようにスイッチ部23Sを制御するためのPWM信号を、DC/DCコンバータ23へ送信する(ステップS106)。
 一方、P(k)-P(k-1)>0の場合(ステップS103のYes)、MPU26は、PVパネル10の出力電圧V(k)が、前回のデューティ比の変更前のPVパネル10の出力電圧V(k-1)よりも大きいか否かを判定する(ステップS107)。つまり、V(k)-V(k-1)>0であるか否かを判定する。
 V(k)-V(k-1)≦0の場合(ステップS107のNo)、MPU26は、第2電圧センサ24により検出される電圧Vrefが小さくなるように、スイッチ部23Sを制御する。つまり、MPU26は、スイッチ部23Sのデューティ比が減少するようにスイッチ部23Sを制御するためのPWM信号を、DC/DCコンバータ23へ送信する(ステップS108)。
 V(k)-V(k-1)>0の場合(ステップS107のYes)、MPU26は、第2電圧センサ24により検出される電圧Vrefが大きくなるように、スイッチ部23Sを制御する。つまり、MPU26は、スイッチ部23Sのデューティ比が増大するようにスイッチ部23Sを制御するためのPWM信号を、DC/DCコンバータ23へ送信する(ステップS109)。
 このようなMPPTコントローラ20Sによる最大電力点追従制御(MPPT)によれば、天候等により左右されるPVパネル10による発電電力を、各PVパネル10の総和が最大となるように制御することができ、システム全体として効率よく発電を行うことができる。
 次に、本実施形態のスイッチ部23Sのスイッチングタイミングについて説明する。
 図7及び図8は、スイッチ部23Sのスイッチングタイミングを説明するための図である。
 スイッチ部23Sがオンからオフになるタイミング及びオフからオンになるタイミング(スイッチングタイミング)で、電力線PL上にスイッチングノイズが発生することがある。また、このスイッチングノイズは、PVパネル10から供給される電力を制御するためのMPPTコントローラ20Sのスイッチ部23S近傍(DC/DCコンバータ23)で発生する。したがって、MPPTコントローラ20Sの通信部25によるデータを受信するタイミングとスイッチングタイミングとが重複すると、スイッチングノイズの影響を大きく受ける。
 そこで、図7に示すように、MPPTコントローラ20Sの通信部25は、電力線PLを介してデータを受信するタイミングを避けて、スイッチ部23Sのオンオフ制御(スイッチング)を行うようにする。これにより、受信されるデータにスイッチングノイズが重畳されることなく、正確にデータの復号化処理等を行うことができる。
 なお、図7に示すように、MPPTコントローラ20Sの通信部25によるデータを送信するタイミングとスイッチングタイミングとが重複しても、当該スイッチングタイミングは、MPPTコントローラ20Sの通信部25がデータを受信するタイミングではないので、スイッチングノイズの影響は小さい。したがって、その後にMPPTコントローラ20Mは、そのデータを受信した場合には、正確にデータの復号化処理等を行うことができる。
 例えば、MPPTコントローラ20Sの通信部25は、図8に示すように、スイッチングタイミングに電力線PLを介してデータを送信し、送信した直後に電力線PLを介してデータを受信する。一方、MPPTコントローラ20Mの通信部25は、スイッチングタイミングに電力線PLを介してデータを受信し、受信した直後に電力線PLを介してデータを送信する。
 データの受信タイミングとスイッチングタイミングは重複しないようにする、すなわち、データを受信するタイミングを避けて、スイッチ部23Sのスイッチングを行うことが望ましい。
 しかしながら、通信が可能な限りにおいては、MPPTコントローラ20Sがデータフレームの先頭部分や終端部分を受信するタイミングとスイッチ部23Sのスイッチングタイミングが重複しても構わない。
 したがって、通信が可能な限りにおいては、「MPPTコントローラ20Sがデータフレームの先頭部分や終端部分を受信するタイミングとスイッチ部23Sのスイッチングタイミングが重複すること」は、「MPPTコントローラ20Sがデータを受信するタイミングを避けて、スイッチ部23Sのスイッチングを行うこと」に含めて考えても良い。
 データとスイッチングタイミングの重複量は、通信環境にもよるが、PLC1フレームの10%程度まで許容できる。
 ここでのMPPTコントローラ20SからMPPTコントローラ20Mへのデータとは、例えばMPPTコントローラ20Sの電圧情報及び電流情報である。また、MPPTコントローラ20MからMPPTコントローラ20Sへのデータとは、MPPTコントローラ20Mの最適電圧情報及び最適電流情報である。
 次に、太陽光発電システム1におけるデータ通信の通信タイミングについて説明する。
 本実施形態では、MPPTコントローラ20MとMPPTコントローラ20Sとの間では、PLCフレームを用いてデータが通信される。また、通信方式としては、TDMA/TDD(Time Dimension Multiple Access / Time Division Duplex)通信を想定している。
 まず、太陽光発電システム1における通信タイミングの第1例について説明する。
 図9は、太陽光発電システム1における通信タイミングの第1例を示す図である。図9に示す例では、上り(MPTTコントローラ20M→MPPTコントローラ20S)/下り(MPPTコントローラ20S→MPPTコントローラ20M))で各12スロットの通信が行われる。つまり、PLCフレーム1フレームは、24個のスロットで構成される。また、PLCフレーム1フレームあたり10msecが割り当てられているので、伝送速度は1.152MBPSとなる。
 図9に示す例では、スロット(SL)0~スロット(SL)11は上り通信に用いられ、SL12~SL23は下り通信に用いられる。ここでは、SL0において、MPPTコントローラ20Mからのデータとしてのビーコン信号BSが伝送される。また、例えば、SL12において、MPPTコントローラ20Sからのデータとしてのデータ信号DSが伝送される。なお、ビーコン信号BSは、各MPPTコントローラ20Sによる通信を制御するための信号であり、定期的に送信される。
 ここで、ビーコン信号BSには、各MPPTコントローラ20Sに割り当てるスロットのスロット番号の情報、各MPPTコントローラ20Sに電圧情報及び電流情報を要求するための情報、各MPPTコントローラ20Sから送信される電圧情報及び電流情報に対する最適電圧情報及び最適電流情報、などが含まれる。また、データ信号DSには、MPPTコントローラ20Sの電圧情報及び電流情報が含まれる。
 さらに、ビーコン信号BSの送信タイミングを示す情報(例えば、送信間隔の情報、送信時刻の情報)が、ビーコン信号BSに含まれてもよい。この場合、MPPTコントローラ20Sは、このビーコン信号BSを受信することで、ビーコン信号BSの送信タイミングを知ることができる。したがって、MPPTコントローラ20Sは、ビーコン信号BSの送信タイミングに対応する受信タイミングとスイッチ部23Sのスイッチングタイミングとが重複しないように調整することができる。なお、MPPTコントローラ20SのMPU26は、例えば過去の送信タイミングと受信タイミングとの差を算出して履歴として保持しておくことで、送信タイミングに対応する受信タイミングを容易に認識可能である。
 なお、送信されるビーコン信号BSにビーコン信号BSの送信タイミングを示す情報を含めるのではなく、MPPTコントローラ20Sが、あらかじめ通信部25のメモリ220等に送信タイミングを示す情報又は送信タイミングに対応する受信タイミングを保持しておいてもよい。
 MPPTコントローラ20Sは、このような送信タイミングに対応する受信タイミング避けて、スイッチ部23Sのオンオフ制御を行う。
 図10は、太陽光発電システム1における通信タイミングとスイッチングタイミングとの関係の一例を示す図である。
 MPPTコントローラ20Sによるデータ受信時にスイッチングノイズが発生すると、スイッチングノイズの影響を受けやすい。そこで、図10に示すように、MPPTコントローラ20SのMPU26は、MPPTコントローラ20Mによるビーコン信号BSの送信タイミングと、スイッチ部23Sがオフであるタイミングの区間(オフタイミング区間OFF)と、を同期させる。つまり、MPU26は、ビーコン信号BSの送信タイミングとスイッチ部23Sのオフタイミング区間OFFとが重複するよう、スイッチ部23Sのオンオフ制御を行う。
 また、スイッチ部23Sのオフタイミング区間OFFがビーコン信号BSのスロット時間(時間幅)以下である場合、MPU26は、MPPTコントローラ20Mによるビーコン信号の送信タイミングと、スイッチ部23Sがオンであるタイミングの区間(オンタイミング区間ON)と、を同期させてもよい。つまり、MPU26は、スイッチ部23Sのオフタイミング区間OFFが所定時間未満である場合には、ビーコン信号BSの送信タイミングとスイッチ部23Sのオンタイミング区間ONとが重複するよう、スイッチ部23Sのオンオフ制御を行ってもよい。
 また、スイッチ部23Sのオフタイミング区間OFFとは無関係に、スイッチ部23Sのオンタイミング区間ONがビーコン信号BSのスロット時間以上である場合には、MPU26は、MPPTコントローラ20Mによるビーコン信号BSの送信タイミングと、スイッチ部23Sのオンタイミング区間ONと、を同期させてもよい。つまり、MPU26は、スイッチ部23Sのオンタイミング区間ONが所定時間以上である場合には、ビーコン信号BSの送信タイミングとスイッチ部23Sのオンタイミング区間ONとが重複するよう、スイッチ部23Sのオンオフ制御を行ってもよい。
 なお、先の説明では、MPPTコントローラ20Mによりビーコン信号BSが送信されることを想定したが、MPPTコントローラ20Mにより他のデータを送信する場合であっても、同様の同期処理を行うことが好ましい。
 ここで、太陽光発電システム1におけるデータ通信の通信シーケンスの一例について説明する。
 まず、MPPTコントローラ20Mの通信部25は、起動してから所定のタイミングで、電力線PLを介して、ビーコン信号BSを各MPPTコントローラ20Sへ送信する。各MPPTコントローラ20Sの通信部25は、電力線PLを介して、上記の所定のタイミングに同期してビーコン信号BSを受信する。そして、各MPPTコントローラ20SのMPU26は、受信されたビーコン信号BSに基づいて、スイッチ部23Sのオンオフ制御を行う。ビーコン信号BSには、各MPPTコントローラ20Sが異なるタイミングでオンオフ制御を行うよう指示する情報が含まれているので、MPPTコントローラ20Sは、各々自律分散的にスイッチ部23Sのオンオフ制御を行うことになる。
 次に、太陽光発電システム1における通信タイミングの第2例について説明する。
 図11は、太陽光発電システム1における通信タイミングの第2例を示す図である。図11に示す例では、フレーム毎(例えば10ms毎)にMPPTコントローラ20MとMPPTコントローラ20Sとが通信する。また、子機としてのMPPTコントローラ20Sは24台設置されている。また、1セット(Set)は、24個のPLCフレームで構成される。なお、1セットとは、接続可能な端末台数を意味する。また、PLCフレーム1フレームは、24個のスロットで構成される。
 例えば、フレーム0(FR0)では、MPPTコントローラ20Mと第1のMPPTコントローラ20Sとが通信し、フレーム1(FR1)では、MPPTコントローラ20Mと第2のMPPTコントローラ20Sとが通信する。このように、フレーム番号とMPPTコントローラ20Sを識別するための識別番号とを対応させてもよい。また、例えば、ビーコン信号BSは、スロット0(SL0)でMPPTコントローラ20Mにより送信され、ビーコン信号BSに対する応答信号としてのデータ信号DSは、スロット12でMPPTコントローラ20Sにより送信される。
 なお、本通信例では、ビーコン信号BSには、スロット番号の代わりに又はスロット番号とともに、各MPPTコントローラ20Sに割り当てるフレーム番号の情報が含まれる。
 また、MPPTコントローラ20Sの台数を増加する場合には、MPPTコントローラ20SのMPU26は、PLCフレームの周期を短くしたり(つまりスロットの時間区間を小さくしたり)、PLCフレーム内のスロット数を減少させることで、1セットあたりのPLCフレーム数を増やしてもよい。
 次に、太陽光発電システム1における通信タイミングの第3例について説明する。
 図12は、太陽光発電システム1における通信タイミングの第3例を示す図である。図12に示す例では、スロット毎にMPPTコントローラ20MとMPPTコントローラ20Sとが通信する。また、子機としてのMPPTコントローラ20Sは12台設置されている。また、PLCフレーム1フレームは、24個のスロットで構成され、例えば10msである。
 また、MPPTコントローラ20Mの通信部25は、ビーコン信号BSとは別に、又はビーコン信号BSに重畳させて、各MPPTコントローラ20Sに対するデータ信号DSM(DSM1、DSM2、・・・)を送信する。一方、MPPTコントローラ20Sの通信部25は、データ信号DSMに対する応答信号としてのデータ信号DSS(DSS1、DSS2、・・・)を送信する。
 例えば、スロット2(SL2)では、MPPTコントローラ20Mから第1のMPPTコントローラ20Sへデータ信号DSM1が通信され、スロット10(SL10)では、MPPTコントローラ20Mから第2のMPPTコントローラ20Sへデータ信号DSM2が通信される。また、スロット14(SL14)では、第1のMPPTコントローラ20SからMPPTコントローラ20Mへデータ信号DSS1が通信され、スロット22(SL22)では、第2のMPPTコントローラ20SからMPPTコントローラ20Mへデータ信号DSS2が通信される。このように、スロット番号とMPPTコントローラ20Sを識別するための識別番号とを対応させてもよい。
 また、MPPTコントローラ10Sの台数を増加する場合には、MPPTコントローラ10SのMPU26は、1セットあたりのPLCフレーム数を減らして、1フレームあたりのスロット数を増やしてもよい。
 ここで、データ信号DSMには、MPPTコントローラ20Sに割り当てるスロットのスロット番号の情報、MPPTコントローラ20Sに電圧情報及び電流情報を要求するための情報、MPPTコントローラ20Sから送信される電圧情報及び電流情報に対する最適電圧情報及び最適電流情報、などが含まれる。また、データ信号DSSには、MPPTコントローラ20Sの電圧情報及び電流情報が含まれる。
 さらに、MPPTコントローラ20Mの送信タイミングを示す情報(例えば、送信間隔の情報、送信時刻の情報)が、データ信号DSMに含まれてもよい。送信タイミングとは、他のMPPTコントローラ20Sを含む全てのMPPTコントローラ20Sに対する送信タイミングを含むものでもよいし、個別のMPPTコントローラ20Sに対する送信タイミングのみを含むものでもよい。この場合、MPPTコントローラ20Sは、このデータを受信することで、MPPTコントローラ20Mによる送信タイミングを知ることができる。したがって、MPPTコントローラ20Sは、MPPTコントローラ20Mによる送信タイミングに対応する受信タイミングとスイッチ部23Sのスイッチングタイミングとが重複しないように調整することができる。
 なお、データ信号DSMに送信タイミングを示す情報を含めるのではなく、MPPTコントローラ20Sが、あらかじめ通信部25のメモリ220等に送信タイミングを示す情報又は送信タイミングに対応する受信タイミングを保持しておいてもよい。
 また、各スロットは、データを通信するための時間区間の一例であり、MPPTコントローラ20MのMPU26が、どのスロットを、どのMPPTコントローラ20Sに割り当てるかを決定する。そして、MPPTコントローラ20SのMPU26は、割り当てられた通信可能なスロットを避けて、つまりスロットとスイッチングタイミングとが重複しないように、スイッチ部23Sのオンオフ制御を行う。
 このような本実施形態の太陽光発電システム1によれば、MPPTコントローラ20Mによる送信タイミングに対応するMPPTコントローラ20Sによる受信タイミングを避けて、MPPTコントローラ20SのMPU2がスイッチ部23Sのオンオフ制御を行うことで、特別にスイッチングノイズを検出するための装置を必要とせずに、確実な電力線通信を行うことができる。
 さらに、先に説明した以外に、MPPTコントローラ20SのMPU26は、以下のような制御を行ってもよい。
 MPPTコントローラ20SのMPU26は、MPPTコントローラ20Mへ送信すべきデータを複数回送信するよう通信部25を制御してもよい。これにより、ロバストな通信を行うことができる。
 また、MPPTコントローラ20Sが送信すべきデータの情報量が大きい場合には、MPU26は、複数フレーム(例えばフレーム0とフレーム1)に分けて送信するように通信部25を制御してもよいし、他のスロット(例えばスロット0及びスロット12以外のスロット)を用いて送信するように通信部25を制御してもよい。
 また、MPPTコントローラ20SからMPPTコントローラ20Mへのデータ送信は、MPU26が、所定のタイミングで毎回行うように通信部25を制御してもよいし、状態(ここでは、第1電圧センサ21により検出される電圧又は電流センサ22により検出される電流)が変化したときにのみ行うように通信部25を制御してもよい。
 また、状態が変化しない場合には、MPU26が、MPPTコントローラ20Sの動作モードをスリープモードに変更してもよい。スリープモードでは、MPU26が、定期的に起動して状態に変化があるか否かを判定し、この判定時以外にはMPPTコントローラ20Sの動作を間欠的に行う、もしくは動作を停止させる。これにより、状態が常時変化する場合には通信部25によるデータ送信を毎回行い、状態が変化しない場合にはスリープモードに遷移して電力消費を低減させることができる。
 このように、MPU26は、第1電圧センサ21より検出された電圧と電流センサ22により検出された電流とが不変である場合には、スイッチ部23Sのオンオフ制御の頻度を低減させてもよい。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2011年3月10日出願の日本特許出願No.2011-053203に基づくものであり、その内容はここに参照として取り込まれる。
 本発明は、スイッチングノイズの検出を必要とせずに、確実な電力線通信を行うことができる電力線通信装置、電力線通信システム、及び電力線通信プログラム等に有用である。
1 太陽光発電システム
10 PVパネル
20 MPPTコントローラ
20M MPPTコントローラ(親機)
20S MPPTコントローラ(子機)
30 パワーコンディショナー
21 第1電圧センサ
22 電流センサ
23 DC/DCコンバータ
23S スイッチ部
24 第2電圧センサ
25 通信部26 MPU
210 メインIC
211 CPU
212 PLC・MACブロック
213 PLC・PHYブロック
214 DAC
215 ADC
216 VGA
220 メモリ
230 LPF
240 BPF
250 ドライバIC
260 カプラ
PL 電力線

Claims (13)

  1.  電力線を介して通信を行う電力線通信装置であって、
     前記電力線を介してデータを通信する通信部と、
     前記電力線を介して電源から供給される供給電力を制御するためのスイッチ部と、
     前記通信部によりデータを受信するタイミングである受信タイミングを避けて、前記スイッチ部のオンオフ制御を行うスイッチ制御部と、
     を備える電力線通信装置。
  2.  請求項1に記載の電力線通信装置であって、
     前記通信部は、他の電力線通信装置からデータが送信されるタイミングの情報である送信タイミング情報を受信し、
     前記スイッチ制御部は、前記通信部により受信された前記送信タイミング情報に対応する前記受信タイミングを避けて、前記スイッチ部のオンオフ制御を行う電力線通信装置。
  3.  請求項1に記載の電力線通信装置であって、更に、
     他の電力線通信装置によりデータが送信されるタイミングの情報である送信タイミング情報を記憶する記憶部を備え、
     前記スイッチ制御部は、前記記憶部に記憶された前記送信タイミング情報に対応する前記受信タイミングを避けて、前記スイッチ部のオンオフ制御を行う電力線通信装置。
  4.  請求項2または3に記載の電力線通信装置であって、
     前記スイッチ制御部は、他の電力線通信装置による送信タイミング及び前記スイッチ部がオフであるオフタイミングが同期するよう、前記スイッチ部のオンオフ制御を行う電力線通信装置。
  5.  請求項2または3に記載の電力線通信装置であって、
     前記スイッチ制御部は、前記スイッチ部がオフであるオフタイミングが所定時間未満である場合、他の電力線通信装置による送信タイミング及び前記スイッチ部がオンであるオンタイミングが同期するよう、前記スイッチ部のオンオフ制御を行う電力線通信装置。
  6.  請求項2または3に記載の電力線通信装置であって、
     前記スイッチ制御部は、前記スイッチ部がオンであるオンタイミングが所定時間以上である場合、他の電力線通信装置による送信タイミング及び前記スイッチ部のオンタイミングが同期するよう、前記スイッチ部のオンオフ制御を行う電力線通信装置。
  7.  請求項1ないし6のいずれか1項に記載の電力線通信装置であって、更に、
     前記電源の出力電圧を検出する電源電圧検出部と、
     前記電源の出力電流を検出する電源電流検出部と、
     を備え、
     前記スイッチ制御部は、前記電源電圧検出部により検出された前記電源の出力電圧と前記電源電流検出部により検出された前記電源の出力電流とが不変である場合、前記スイッチ部のオンオフ制御の頻度を低減させる電力線通信装置。
  8.  請求項1ないし7のいずれか1項に記載の電力線通信装置であって、
     前記データ受信部は、他の電力線通信装置から前記供給電力を指示するための電力指示データを受信し、
     前記スイッチ制御部は、前記通信部により受信された電力指示データに基づいて、前記スイッチ部のデューティ比を決定する電力線通信装置。
  9.  請求項8に記載の電力線通信装置であって、更に、
     前記電源の出力電圧を検出する電源電圧検出部と、
     前記電源の出力電流を検出する電源電流検出部と、
     前記スイッチ部を有し、前記電源の出力電圧を変圧する変圧部と、
     前記変圧部の出力電圧を検出する変圧電圧検出部と、
     を備え、
     前記スイッチ制御部は、前記電源電圧検出部により検出された前記電源の出力電圧と前記電源電流検出部により検出された前記電源の出力電流とに基づいて、前記変圧電圧検出部により検出される電圧が、前記データ受信部により受信された電力指示データで示された電圧となるように、前記スイッチ部のデューティ比を決定する電力線通信装置。
  10.  電力線を介して複数の電力線通信装置が通信を行う電力線通信システムであって、
     第1の電力線通信装置は、
     前記電力線を介して、第2の電力線通信装置へデータを送信し、
     第2の電力線通信装置は、
     前記電力線を介して前記データを受信するタイミングである受信タイミングを避けて、前記電力線を介して電源から供給される供給電力を制御するためのスイッチ部のオンオフ制御を行う電力線通信システム。
  11.  請求項10に記載の電力線通信システムであって、
     前記第2の電力線通信装置を複数備え、
     前記第1の電力線通信装置は、前記第2の電力線通信装置の各々に対して、データを通信するための異なる時間区間を割り当て、
     前記第2の電力線通信装置は、前記第1の電力線通信装置により割り当てられた時間区間を避けて、前記スイッチ部のオンオフ制御を行う電力線通信システム。
  12.  電力線を介して通信を行うための電力線通信方法であって、
     前記電力線を介してデータを通信するステップと、
     データを受信するタイミングである受信タイミングを避けて、前記電力線を介して電源から供給される供給電力を制御するためのスイッチ部のオンオフ制御を行うステップと、
     を有する電力線通信方法。
  13.  請求項12に記載の電力線通信方法の各ステップをコンピュータに実行させるための電力線通信プログラム。
PCT/JP2012/001660 2011-03-10 2012-03-09 電力線通信装置、電力線通信システム、電力線通信方法、及び電力線通信プログラム WO2012120906A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12754690.1A EP2672632A4 (en) 2011-03-10 2012-03-09 Power line communication device, power line communication system, power line communication method, and power line communication program
JP2013503406A JP5906401B2 (ja) 2011-03-10 2012-03-09 電力線通信装置、電力線通信システム、電力線通信方法、及び電力線通信プログラム
US14/002,958 US20130334872A1 (en) 2011-03-10 2012-03-09 Power line communication device, power line communication system, power line communication method, and power line communication program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011053203 2011-03-10
JP2011-053203 2011-03-10

Publications (1)

Publication Number Publication Date
WO2012120906A1 true WO2012120906A1 (ja) 2012-09-13

Family

ID=46797877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001660 WO2012120906A1 (ja) 2011-03-10 2012-03-09 電力線通信装置、電力線通信システム、電力線通信方法、及び電力線通信プログラム

Country Status (4)

Country Link
US (1) US20130334872A1 (ja)
EP (1) EP2672632A4 (ja)
JP (1) JP5906401B2 (ja)
WO (1) WO2012120906A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027434A1 (ja) * 2012-08-17 2014-02-20 株式会社日立アドバンストデジタル 多元接続通信システムおよび太陽光発電システム
EP2814185A1 (en) * 2013-06-13 2014-12-17 Delta Electronics, Inc. Method and apparatus for routing power line communication
CN104242701A (zh) * 2013-06-13 2014-12-24 台达电子工业股份有限公司 直流转交流转换器、微逆变器及其太阳能系统
CN105591670A (zh) * 2016-03-12 2016-05-18 吕海峰 基于电力线通信的光伏组件状态信息监控装置及监控方法
WO2016079910A1 (ja) * 2014-11-21 2016-05-26 公立大学法人大阪市立大学 駆動制御装置およびそれを有する駆動制御システム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10117043B2 (en) * 2014-09-22 2018-10-30 Symbol Technologies, Llc Serially-connected bluetooth low energy nodes
JP2016116110A (ja) * 2014-12-16 2016-06-23 富士通株式会社 通信装置
JP6518793B2 (ja) * 2016-01-04 2019-05-22 日立オートモティブシステムズ株式会社 電力線通信装置、および電力線通信装置を備えた電子制御装置
DE102016206439A1 (de) 2016-04-15 2017-10-19 Ziehl-Abegg Se Schnittstelleneinheit, System und Verfahren zum Übertragen von Daten über eine Energieversorgungsleitung
JP6699480B2 (ja) * 2016-09-16 2020-05-27 株式会社デンソー 信号処理装置
US11398749B2 (en) * 2017-05-22 2022-07-26 Solaredge Technologies Ltd. Method and apparatus to enable communication and control in a power system
EP3503337A1 (en) * 2017-12-20 2019-06-26 General Electric Company Grid isolating wind farm control

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006109147A (ja) 2004-10-06 2006-04-20 Canon Inc 電力線通信装置およびその制御方法
JP2006320182A (ja) * 2005-05-16 2006-11-24 Matsushita Electric Works Ltd 給電システム、給電制御装置、給電装置、及び給電方法
WO2011016466A1 (ja) * 2009-08-06 2011-02-10 住友電気工業株式会社 電力線通信装置、通信機能付き電源回路、電気機器及び制御監視システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7626834B2 (en) * 2006-06-29 2009-12-01 Enecsys Limited Double ended converter with output synchronous rectifier and auxiliary input regulator
EP2389717A2 (en) * 2009-01-21 2011-11-30 Enphase Energy, Inc. Method and apparatus for characterizing a circuit coupled to an ac line
US20100198424A1 (en) * 2009-01-30 2010-08-05 Toru Takehara Method for reconfigurably connecting photovoltaic panels in a photovoltaic array

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006109147A (ja) 2004-10-06 2006-04-20 Canon Inc 電力線通信装置およびその制御方法
JP2006320182A (ja) * 2005-05-16 2006-11-24 Matsushita Electric Works Ltd 給電システム、給電制御装置、給電装置、及び給電方法
WO2011016466A1 (ja) * 2009-08-06 2011-02-10 住友電気工業株式会社 電力線通信装置、通信機能付き電源回路、電気機器及び制御監視システム

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHIHCHIANG HUA ET AL.: "Implementation of a DSP-controlled photovoltaic system with peak power tracking", IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, vol. 45, no. ISSUE., February 1998 (1998-02-01), pages 99 - 107, XP000735209 *
EDUARDO ROMAN ET AL.: "Intelligent PV Module for Grid-Connected PV Systems", IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, vol. 53, no. 4, August 2006 (2006-08-01), pages 1066 - 1073, XP055087344 *
HIROTAKA KOIZUMI ET AL.: "A Novel Microcontroller for Grid-Connected Photovoltaic Systems", IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, vol. 53, no. ISSUE., December 2006 (2006-12-01), pages 1889 - 1897, XP011151197 *
See also references of EP2672632A4
X.ZHANG ET AL.: "Design of Single Phase Grid- connected Photovoltaic Power Plant based on String Inverters", 2006 1ST IEEE INDUSTRIAL ELECTRONICS AND APPLICATIONS, 24 May 2006 (2006-05-24), pages 1 - 5, XP031026585 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027434A1 (ja) * 2012-08-17 2014-02-20 株式会社日立アドバンストデジタル 多元接続通信システムおよび太陽光発電システム
EP2814185A1 (en) * 2013-06-13 2014-12-17 Delta Electronics, Inc. Method and apparatus for routing power line communication
CN104242701A (zh) * 2013-06-13 2014-12-24 台达电子工业股份有限公司 直流转交流转换器、微逆变器及其太阳能系统
CN104244467A (zh) * 2013-06-13 2014-12-24 台达电子工业股份有限公司 电力线路由系统及其路由方法
EP2814131A3 (en) * 2013-06-13 2015-03-25 Delta Electronics, Inc. Photovoltaic micro inverter with power line carrier communication
WO2016079910A1 (ja) * 2014-11-21 2016-05-26 公立大学法人大阪市立大学 駆動制御装置およびそれを有する駆動制御システム
JPWO2016079910A1 (ja) * 2014-11-21 2017-08-31 公立大学法人大阪市立大学 駆動制御装置およびそれを有する駆動制御システム
US10411758B2 (en) 2014-11-21 2019-09-10 Osaka City University Drive control apparatus that receives power and a plurality of frequency-multiplexed control signals
CN105591670A (zh) * 2016-03-12 2016-05-18 吕海峰 基于电力线通信的光伏组件状态信息监控装置及监控方法

Also Published As

Publication number Publication date
JPWO2012120906A1 (ja) 2014-07-17
EP2672632A4 (en) 2014-07-23
EP2672632A1 (en) 2013-12-11
US20130334872A1 (en) 2013-12-19
JP5906401B2 (ja) 2016-04-20

Similar Documents

Publication Publication Date Title
JP5906401B2 (ja) 電力線通信装置、電力線通信システム、電力線通信方法、及び電力線通信プログラム
US20140161201A1 (en) Power line communication device, solar power generation system, power line communication method, and power line communication program
JP5188656B1 (ja) インバータシステム、及び通信方法
US8860241B2 (en) Systems and methods for using a power converter for transmission of data over the power feed
JP5721855B2 (ja) パワーコンディショナ、パワーコンディショナシステム及びパワーコンディショナシステムの制御方法
WO2010062662A2 (en) Systems and methods for using a power converter for transmission of data over the power feed
US11323786B2 (en) General purpose single chip controller
WO2009094540A4 (en) Simplified maximum power point control utilizing the pv array voltage at the maximum power point
JP5637234B2 (ja) 単独運転検出装置、パワーコンディショナ、分散型電源システム、プログラム、および単独運転検出方法
US20170012436A1 (en) Inverter, In Particular as Part of a Power Generation Network, and Method
US10170909B2 (en) Converter and photovoltaic generation systems with converter
KR101561640B1 (ko) 고전압 직류-직류 변환기가 필요없는 전력편차처리형 마이크로 컨버터 장치
US10551445B2 (en) Pulse width modulated binary frequency shift keying
EP3128664B1 (en) Power conversion system
CN110649688B (zh) 一种基于电池温度检测的无线充电控制系统及方法
JP6048991B1 (ja) 電力変換制御システム
EP4024663B1 (en) Wireless charging apparatus, device to be charged, charging system and method, and storage medium
JP2019075840A (ja) 電力変換制御システム
CN114744921B (zh) 一种智能电源适配器系统
JP2014142910A (ja) 制御装置、発電制御装置、太陽光発電システム、制御方法、及び発電制御方法
JP2014027722A (ja) 電源システムおよび電力変換装置
WO2022227083A1 (zh) 一种功率变换器盒及光伏系统
JP2017188999A (ja) 電力変換制御システム
JP6890302B2 (ja) 電力変換システム
JP2006278712A (ja) 太陽光発電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12754690

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013503406

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14002958

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012754690

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE