WO2012120716A1 - W/oエマルションの製造方法及び乳化物 - Google Patents

W/oエマルションの製造方法及び乳化物 Download PDF

Info

Publication number
WO2012120716A1
WO2012120716A1 PCT/JP2011/072304 JP2011072304W WO2012120716A1 WO 2012120716 A1 WO2012120716 A1 WO 2012120716A1 JP 2011072304 W JP2011072304 W JP 2011072304W WO 2012120716 A1 WO2012120716 A1 WO 2012120716A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
emulsion
water
phase
dielectric constant
Prior art date
Application number
PCT/JP2011/072304
Other languages
English (en)
French (fr)
Inventor
田嶋 和夫
今井 洋子
Original Assignee
学校法人神奈川大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人神奈川大学 filed Critical 学校法人神奈川大学
Publication of WO2012120716A1 publication Critical patent/WO2012120716A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/32Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions or oil emulsions
    • C10L1/328Oil emulsions containing water or any other hydrophilic phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • B01F23/4105Methods of emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/715Feeding the components in several steps, e.g. successive steps

Definitions

  • the present invention relates to a method for producing a W / O emulsion and an emulsion containing the W / O emulsion.
  • a surfactant when emulsifying and dispersing a functional oil base or functional granule in water, a surfactant was selected according to the required HLB of the functional oil base and the properties of the granule surface, and emulsified and dispersed. .
  • the required HLB value of the surfactant used as an emulsifier needs to be properly used depending on whether an O / W type emulsion is made or a W / O type emulsion, and further, thermal stability and aging Since the stability is not sufficient, a wide variety of surfactants were mixed and used (see Non-Patent Documents 1 to 4, etc.).
  • physicochemical emulsification methods such as an HLB method, a phase inversion emulsification method, a phase inversion temperature emulsification method, and a gel emulsification method are generally performed. Since the basis of emulsion preparation is to reduce the interfacial energy at the oil / water interface and to stabilize the system thermodynamically, it is very cumbersome and labor intensive to select the most suitable emulsifier In addition, when many kinds of oils are mixed, stable emulsification is almost impossible.
  • Patent Document 1 discloses an emulsifier containing a closed vesicle having a particle size distribution of 200 nm to 800 nm, which is formed of an amphipathic substance that spontaneously forms a closed vesicle, and in which the emulsifier is dispersed. On the other hand, it is disclosed that various emulsions were produced by adding various oils. Patent Document 1 also discloses that both an O / W emulsion and a W / O emulsion were produced by changing the amount ratio of water and oil.
  • the present invention has been made in view of the above circumstances, and a first object thereof is to provide a method for producing a W / O emulsion having a wide allowable range of conditions. Moreover, this invention sets it as the 2nd objective to provide the W / O emulsion which is excellent in emulsion stability.
  • the water phase and the oil phase can be determined as either the internal phase or the external phase of the emulsion depending on the environment at the time when the water that becomes the water phase and the oil that becomes the oil phase are brought into contact with each other.
  • the present invention has been completed. Specifically, the present invention provides the following.
  • a method for producing a W / O emulsion comprising a step of adding water to be contained and to become an aqueous phase of the emulsion, and mixing the oil and water.
  • the hydrophilization treatment includes a step of mixing a high dielectric constant material having a higher dielectric constant than the emulsification target and having compatibility with the emulsification target with respect to the emulsification target. Production method.
  • the W / O emulsion and the O / W emulsion maintain the emulsified state by interposing the closed vesicles and / or the particles at the interface between the water phase and the oil phase ( The emulsion according to 13) or (14).
  • the oil and water are added to the oil that becomes the oil phase by adding water that contains the particles of the polycondensation polymer having closed vesicles of amphiphilic substances and / or hydroxyl groups and that becomes the water phase.
  • the oil phase is the outer phase and the water phase is the inner phase, and a W / O emulsion excellent in emulsion stability is obtained.
  • the method for producing a W / O emulsion according to the present invention comprises a closed endoplasmic reticulum formed by an amphiphile that spontaneously forms a closed endoplasmic reticulum with respect to the oil that contains the object to be emulsified and becomes the oil phase of the emulsion, and / or Alternatively, the method includes a step of adding water that contains particles of a polycondensation polymer having a hydroxyl group and that becomes an aqueous phase of an emulsion, and mixing oil and water.
  • a W / O emulsion in which the oil phase is the outer phase and the water phase is the inner phase and excellent in emulsion stability can be obtained.
  • a W / O emulsion was obtained only when the amount of oil in the mixture was increased to 70% by mass or more, whereas in the method of the present invention, water ( The amount ratio of water (including amphiphile) and oil (water: oil) is not particularly limited, but a W / O emulsion can be obtained in a wide range of, for example, 90:10 to 20:80.
  • the mixing is preferably performed by starting stirring before the addition of water to the oil is completed, whereby the added water is always surrounded by a relatively large amount of oil.
  • mixing and stirring should just follow a conventionally well-known method (for example, refer patent document 1), the detail is abbreviate
  • the addition of water is not particularly limited, and may be performed by dropping or the like, and is preferably performed in an amount of 50% by mass or less, more preferably 40% by volume or less of the amount of the addition target including oil. is there.
  • the addition target includes oil and water added up to that point (only oil immediately after the start of addition).
  • the mode of addition may be continuous or intermittent (that is, the divided batch is added separately).
  • the ratio of the addition amount per unit time to be added to the flow rate per unit time to be added may be 50% by volume or less.
  • the amphiphilic substance is not particularly limited, but is a polyoxyethylene hydrogenated castor oil derivative represented by the following general formula 1, or a dialkylammonium derivative, a trialkylammonium derivative or a tetraalkylammonium derivative represented by the general formula 2. , Derivatives of halogenated salts of dialkenyl ammonium derivatives, trialkenyl ammonium derivatives, or tetraalkenyl ammonium derivatives.
  • E which is the average added mole number of ethylene oxide, is 3 to 100. If E is excessive, the type of good solvent that dissolves the amphiphilic substance is limited, and thus the degree of freedom in producing hydrophilic nanoparticles is narrowed.
  • the upper limit of E is preferably 50, more preferably 40, and the lower limit of E is preferably 5.
  • R 1 and R 2 are each independently an alkyl group or alkenyl group having 8 to 22 carbon atoms
  • R 3 and R 4 are each independently hydrogen or an alkyl group having 1 to 4 carbon atoms
  • X is F, Cl, Br or I.
  • phospholipids As the amphiphile, phospholipids, phospholipid derivatives, etc. may be adopted.
  • phospholipid among the structures represented by the following general formula 3, DLPC (1,2-Dilauroyl-sn-glycero-3-phospho-rac-1-choline) having a carbon chain length of 12, DMPC (1,2-Dimyristol-sn-glycero-3-phospho-rac-1-choline), DPPC with a carbon chain length of 16 (1,2-Dipalmityl-sn-glycero-3-phospho-rac-1-choline) Can be adopted.
  • DLPG (1,2-Diilauroyl-sn-glycero-3-phospho-rac-1-glycerol) Na salt or NH4 salt
  • DPPG 1,2-Dipalmitoyyl-sn-glycero-3 having a carbon chain length of 16 -Phospho-rac-1-glycerol
  • egg yolk lecithin or soybean lecithin may be employed as the phospholipid.
  • the polycondensation polymer having a hydroxyl group may be either a natural polymer or a synthetic polymer, and may be appropriately selected according to the use of the emulsifier.
  • natural polymers are preferable from the viewpoint of safety and generally inexpensive, and sugar polymers described below are more preferable from the viewpoint of excellent emulsifying function.
  • the particles include both single particles of the polycondensation polymer and those in which the single particles are connected, but do not include aggregates (having a network structure) before being formed into single particles.
  • Sugar polymer is a polymer having a glucoside structure such as cellulose and starch.
  • a glucoside structure such as cellulose and starch.
  • monosaccharides such as ribose, xylose, rhamnose, fucose, glucose, mannose, glucuronic acid, gluconic acid, xanthan gum, gum arabic, guar gum, caraya gum, carrageenan , Pectin, fucoidan, quinseed gum, tranto gum, locust bean gum, galactomannan, curdlan, gellan gum, fucogel, casein, gelatin, starch, collagen and other natural polymers, methylcellulose, ethylcellulose, methylhydroxypropylcellulose, carboxymethylcellulose, Hydroxymethylcellulose, hydroxypropylcellulose, sodium carboxymethylcellulose, propylene glycol alginate, cellulose Crystals, starch-acrylic acid sodium graft polymer, semi-synthetic polymers such as
  • Closed endoplasmic reticulum and / or particles can be produced by a method such as adding the above-mentioned amphiphile and / or polycondensation polymer having a hydroxyl group to a dispersion medium (that is, water) and stirring (for example, Patent Document 1). reference).
  • a dispersion medium that is, water
  • Such closed vesicles and particles have an average particle size of about 200 nm to 800 nm before the formation of the emulsion, but have an average particle size of about 8 to 500 nm in the W / O emulsion structure.
  • grains of the polycondensation polymer which have the closed endoplasmic reticulum of an amphiphile and a hydroxyl group may contain only one, or both. When both are included, for example, separately emulsified emulsions may be mixed.
  • the particles of the polycondensation polymer having closed vesicles of amphiphilic substances and hydroxyl groups can emulsify a wide range of combinations of water phase and oil phase (for details, Japanese Patent No. 3855203).
  • the emulsification object which comprises an oil phase is not specifically limited, It is all things, such as light oil, A heavy oil, C heavy oil, tar, biodiesel fuel, regenerated heavy oil, waste cooking oil, natural product oil (vegetable oil, mineral oil) It may be.
  • a wide range of combinations of an aqueous phase and an oil phase can be emulsified in a wide amount ratio, and an emulsion excellent in emulsification stability can be produced.
  • the specific gravity of the inner phase is different from the specific gravity of the outer phase, coacervation may occur due to the difference in specific gravity. Even if coacervation occurs, the emulsified state does not collapse. Therefore, there is no particular problem in applications (for example, foods and drinks, seasonings) in which the aqueous phase and the external phase can be mixed at the time of use.
  • the method of the present invention may further include a step of performing a hydrophilic treatment for improving the hydrophilicity of oil and / or a step of performing a hydrophobic treatment for improving the hydrophobicity of closed vesicles and / or particles.
  • a hydrophilic treatment for improving the hydrophilicity of oil and / or a step of performing a hydrophobic treatment for improving the hydrophobicity of closed vesicles and / or particles.
  • the dispersibility of an aqueous phase improves more and it can suppress a coacervation.
  • the mechanism is not particularly limited, the hydrophilicity of the oil and / or the hydrophobicity of the water facilitates the concentration of the hydrophilic amphiphile at the interface between the oil phase and the water phase. It is presumed that the coalescence between phases is suppressed.
  • the hydrophilization treatment is not particularly limited, but may include a step of mixing a high dielectric constant material having a higher dielectric constant than the emulsification target and having compatibility with the emulsification target. This increases the dielectric constant of the oil and improves the adhesion stability of the closed vesicles and / or particles at the interface.
  • the hydrophilization treatment is desirably performed at and / or before the time of mixing water and oil.
  • This step is particularly useful when the dielectric constant of the emulsification target is low (for example, when the emulsification target has a relative dielectric constant of 2.1 or lower (22 ° C.)).
  • emulsification targets include, but are not limited to, light oil, long-chain saturated hydrocarbons (liquid paraffin, octadecane, etc.), vegetable oils (long-chain glycerides), and the like.
  • the dielectric constant of the emulsification target is originally high (for example, when the emulsification target includes biodiesel fuel or the like and has a relative dielectric constant (22 ° C.) of 2.2 or more), this step is not performed. However, sufficient dispersibility can be obtained.
  • the high or low dielectric constant means a relative high or low by comparison with the emulsification target, and the high dielectric constant material that can be used is determined according to the dielectric constant of the emulsification target.
  • the amount of the high dielectric constant material added may be appropriately selected according to the dielectric constant to be emulsified, the desired dielectric constant, etc., but is such an amount that the relative dielectric constant (22 ° C.) of the oil is 2.2 or more. It is preferable that there is, more preferably 2.4 or more. Thereby, a W / O emulsion having sufficient dispersibility can be obtained.
  • the dielectric constant (22 degreeC) in this invention points out what was measured with the dielectric constant meter Model 871 (made by Nippon Heil) for liquids.
  • the hydrophobizing treatment is not particularly limited, but may include a step of heating water.
  • the heating of water may be performed by directly heating water before mixing water and oil, or by heating oil during mixing and indirectly heating water.
  • the present invention provides a polycondensation polymer having closed vesicles and / or hydroxyl groups formed by an amphiphile that spontaneously forms closed vesicles with respect to the oil that contains the object to be emulsified and becomes the oil phase of the emulsion.
  • an emulsion containing a W / O emulsion obtained by adding water that becomes the aqueous phase of the emulsion and mixing the oil and water is also included.
  • Such an emulsion has the same emulsion stability and composition (substantially free of O / W emulsion containing closed vesicles of amphiphiles and / or polycondensation polymer particles having a hydroxyl group). As long as it is not limited to what was manufactured by the said method.
  • the present invention also provides a polycondensation polymer having a closed endoplasmic reticulum and / or a hydroxyl group, which is formed by an amphipathic substance whose inner phase is an aqueous phase and whose outer phase is an oil phase and spontaneously forms a closed endoplasmic reticulum.
  • An emulsion in which the amount of the O / W emulsion containing the polycondensation polymer particles having an occupancy in the emulsion is 20% by volume or less is also included.
  • the amount of the O / W emulsion can be obtained by gently adding the emulsion to water and measuring the increased volume of the aqueous phase.
  • the amount of the O / W emulsion in the emulsion is preferably 15% by volume or less, more preferably 10% by volume or less, 7.5% by volume or less, 5% by volume or less, 2.5%. % By volume or less.
  • the emulsion of the present invention is excellent in emulsification dispersibility as described above, and can be suitably used in various applications. Although it does not specifically limit as a use, A fuel, lubricating oil, cosmetics, a pharmaceutical, a foodstuff, a paint, a cleaning agent etc. are mentioned.
  • the fuel using the emulsion of the present invention can contain a large amount of water, and the NOx concentration in the exhaust gas can be reduced.
  • the lubricating oil using the emulsion of the present invention is excellent in heat exchange efficiency because the specific heat is increased by water. Moreover, since the outer phase of the emulsion of the present invention is water, it is possible to suppress the burden on the equipment (for example, engine, piping) that comes into contact.
  • Example 1 Commercially available A-heavy oil or medium chain triglyceride (MCT) was used as an emulsification target.
  • MCT medium chain triglyceride
  • HCO-40 a derivative having an average added mole number (E) of ethylene oxide (EO) of 40 (hereinafter referred to as HCO-40).
  • E average added mole number
  • HCO-40 ethylene oxide
  • a well-emulsified emulsion can be obtained by adding water containing closed vesicles of amphiphile to oil, regardless of the amount of amphiphile. I understood.
  • Example 2 Example 1 with the exception that the oils, amphiphilic closed vesicles or polycondensation polymer particles having hydroxyl groups used in Table 2 except that the amount of water in the emulsifier is shown in Table 2 Emulsions were prepared in the same procedure, and the emulsification performance was evaluated.
  • HCO-10 is a derivative having an average added mole number (E) of ethylene oxide (EO) of 10
  • 2S10G is decaglyceryl distearate.
  • Emulsions were prepared in the same procedure as in Example 1 except that the oil and amphiphile closed vesicles shown in Tables 3 and 4 were used, and the emulsification performance was evaluated.
  • the amount of amphiphile was 2% by mass in all cases.
  • liquid paraffin (light) is “High Coal K-230” (manufactured by Kaneda)
  • liquid paraffin (heavy) is liquid paraffin (manufactured by Wako Pure Chemical Industries, Ltd.).
  • the evaluation result C indicates that the water particles in the emulsified state are aggregated although the emulsified state is maintained (the phenomenon that the emulsified state collapses and the water particles coalesce is clearly defined). Different).
  • D-5S is decaglyceryl pentastearate
  • D-3O is decaglyceryl trioleate
  • D-5O is decaglyceryl pentaoleate
  • Di is diglyceryl monostearate
  • S-1P is sorbitan monopalmitate
  • PR-15 is hexaglyceryl polyricinoleate
  • 5IS10G is decaglyceryl pentaisostearate
  • SO-10 is sorbitan monooleate
  • SO-15 is sorbitan sesquioleate.
  • Example 4 An emulsion is prepared in the same procedure as in Example 1 except that the polycondensation polymer particles having closed vesicles or hydroxyl groups of oil and amphiphile are used as shown in Table 5, and emulsification performance is obtained. evaluated.
  • Table 6 as closed vesicles of oil and amphiphile, water was added at a rate of 0.1 g / second and stirred for 10 minutes with a disperser or a home hand mixer. Except for this, an emulsion was prepared in the same procedure as in Example 1, and the emulsification performance was evaluated.
  • 3OG10 is decaglyceryl trioleate
  • palm oil is a mixed oil of hardened palm oil and rapeseed oil
  • recycled heavy oil is recycled heavy oil (derived from used lubricating oil) This oil contains kerosene.
  • Example 5 The amount of amphiphile and water was set as shown in Table 7, and an emulsion was prepared by the same procedure as in Example 1 except that water and oil were heated to 55 ° C., and the emulsification performance was evaluated.
  • Example 6 The oil used is a biodiesel fuel (relative permittivity (22 ° C.) 3.56; referred to as BDF) added at a mass ratio shown in Table 8 to light oil (relative permittivity (22 ° C.) 2.14).
  • BDF biological permittivity
  • An emulsion was prepared in the same manner as in Example 1, except that the mass ratio of water and oil was unified at 13 (including 12% by mass of water and 1% by mass of HCO-10): 87.
  • Table 8 shows the results of observing the emulsified state by holding each emulsion at room temperature for 1 month.
  • Example 7 Except for the point that oleic acid (relative permittivity (22 ° C.) 2.46) was mixed at a molar ratio shown in Table 9 to octane (relative permittivity (22 ° C.) 1.95) as an oil. Emulsions were prepared in the same procedure as in No. 6, and the emulsification performance was evaluated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Colloid Chemistry (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

 条件の許容範囲が広いW/Oエマルションの製造方法を提供すること。 W/Oエマルションの製造方法は、乳化対象を含みかつエマルションの油相になる油に対し、自発的に閉鎖小胞体を形成する両親媒性物質により形成された閉鎖小胞体及び/又は水酸基を有する重縮合ポリマーの粒子を含みかつエマルションの水相になる水を添加し、油及び水を混合する工程を有する。混合は、油に対する水の添加が終了する前に撹拌を開始することで行うことが好ましい。また、水の添加は、を含む被添加対象の量の50質量%以下の量で行うことが好ましい。

Description

W/Oエマルションの製造方法及び乳化物
 本発明は、W/Oエマルションの製造方法、及びW/Oエマルションを含む乳化物に関する。
 従来、機能性油性基剤又は機能性顆粒を水に乳化分散させる場合には、機能性油性基剤の所要HLBや顆粒表面の性質に応じて界面活性剤を選択し、乳化分散を行っていた。また、乳化剤として用いられる界面活性剤の所要HLB値は、O/W型エマルションを作る場合とW/O型エマルションを作る場合とのそれぞれに応じて使い分ける必要があり、しかも、熱安定性や経時安定性が十分でないため、多種多様な界面活性剤を混合して用いていた(非特許文献1~4等参照)。
 しかしながら、界面活性剤は、生分解性が低く、泡立ちの原因となるので、環境汚染等の深刻な問題となっている。また、機能性油性基剤の乳化製剤の調製法として、HLB法、転相乳化法、転相温度乳化法、ゲル乳化法等の物理化学的な乳化方法が一般に行われているが、いずれも油/水界面の界面エネルギーを低下させ、熱力学的に系を安定化させる作用をエマルション調製の基本としているので、最適な乳化剤を選択するために非常に煩雑かつ多大な労力を有しており、まして、多種類の油が混在していると、安定に乳化させることは殆ど不可能であった。
 そこで、特許文献1には、自発的に閉鎖小胞体を形成する両親媒性物質により形成され、200nm~800nmの粒度分布を有する閉鎖小胞体を含有する乳化剤が開示され、この乳化剤が分散した水に対し、種々の油を添加することで、種々の乳化物を製造したことが開示されている。また、特許文献1には、水と油の量比を変更することで、O/Wエマルション及びW/Oエマルションの双方を製造したことも開示されている。
特開2006-241424号公報
"Emulsion Science" Edited by P. Sherman, Academic Press Inc. (1969) "Microemulsions-Theory and Practice" Edited by Leon M. price, Academic Press Inc. (1977) 「乳化・可溶化の技術」 辻薦,工学図書出版(1976) 「機能性界面活性剤の開発技術」 シー・エム・シー出版(1998)
 しかし、特許文献1の方法では、O/Wエマルション及びW/Oエマルションのいずれが製造されるかは、水と油の量比によって決定されるところ、O/Wエマルションは広範囲に亘る量比において製造できるものの、W/Oエマルションは、水に対する油の量比が相当に高い条件下でしか製造できない。また、特許文献1の方法で得られるW/Oエマルションを含む乳化物は、乳化安定性が充分には高くなく、分離した水相を含みやすい。
 本発明は、以上の実情に鑑みてなされたものであり、条件の許容範囲が広いW/Oエマルションの製造方法を提供することを第1の目的とする。また、本発明は、乳化安定性に優れるW/Oエマルションを提供することを第2の目的とする。
 本発明者らは、水相になる水と、油相になる油とを接触させる時点での環境により、水相及び油相がエマルションの内相及び外相のいずれになるかを決定できることを見出し、本発明を完成するに至った。具体的に、本発明は以下のものを提供する。
 (1) 乳化対象を含みかつエマルションの油相になる油に対し、自発的に閉鎖小胞体を形成する両親媒性物質により形成された閉鎖小胞体及び/又は水酸基を有する重縮合ポリマーの粒子を含みかつ前記エマルションの水相になる水を添加し、前記油及び水を混合する工程を有するW/Oエマルションの製造方法。
 (2) 前記油の量に対する前記水の添加量の質量比を20/80以上にする(1)記載の製造方法。
 (3) 前記混合は、前記油に対する前記水の添加が終了する前に撹拌を開始することで行う(1)又は(2)記載の製造方法。
 (4) 前記水の添加は、前記油を含む被添加対象の量の50質量%以下の量で行う(1)から(3)いずれか記載の製造方法。
 (5) 前記油の親水性を向上させる親水化処理を行う工程を更に有する(1)から(4)いずれか記載の製造方法。
 (6) 前記親水化処理は、前記乳化対象に対し、前記乳化対象より高い誘電率を有しかつ前記乳化対象との相溶性を有する高誘電率材料を混合する工程を有する(5)記載の製造方法。
 (7) 前記乳化対象は、2.1以下の比誘電率(22℃)を有する(6)記載の製造方法。
 (8) 前記高誘電率材料は、前記油の比誘電率(22℃)が2.2以上になる量で混合する(6)又は(7)記載の製造方法。
 (9) 前記乳化対象は軽油を含み、前記高誘電率材料はバイオディーゼル燃料を含む(6)から(8)いずれか記載の製造方法。
 (10) 前記閉鎖小胞体及び/又は前記粒子の疎水性を向上させる疎水化処理を行う工程を更に有する(1)から(9)いずれか記載の製造方法。
 (11) 前記疎水化処理は、前記水を加熱する工程を有する(10)記載の製造方法。
 (12) 前記加熱は、前記水の温度を40℃以上に昇温させる(11)記載の製造方法。
 (13) 乳化対象を含みかつエマルションの油相になる油に対し、自発的に閉鎖小胞体を形成する両親媒性物質により形成された閉鎖小胞体及び/又は水酸基を有する重縮合ポリマーの粒子を含みかつ前記エマルションの水相になる水を添加し、前記油及び水を混合してなるW/Oエマルションを含む乳化物。
 (14) 内相が水相であり、外相が油相であり、自発的に閉鎖小胞体を形成する両親媒性物質により形成された閉鎖小胞体及び/又は糖ポリマーの粒子を含むW/Oエマルションを含み、
 内相が油相であり、外相が水相であり、前記閉鎖小胞体及び/又は前記粒子を含むO/Wエマルションが乳化物に占める量が20体積%以下である乳化物。
 (15) 前記W/Oエマルション及び前記O/Wエマルションは、前記水相と前記油相との界面に前記閉鎖小胞体及び/又は前記粒子が介在することで乳化状態を維持するものである(13)又は(14)記載の乳化物。
 本発明によれば、油相になる油に対し、両親媒性物質の閉鎖小胞体及び/又は水酸基を有する重縮合ポリマーの粒子を含みかつ水相になる水を添加することで、油と水との量比が相当に広い許容範囲内である場合において、油相が外相でありかつ水相が内相であり、乳化安定性に優れるW/Oエマルションが得られる。
 以下、本発明の実施形態を説明するが、これが本発明を限定するものではない。
 本発明に係るW/Oエマルションの製造方法は、乳化対象を含みかつエマルションの油相になる油に対し、自発的に閉鎖小胞体を形成する両親媒性物質により形成された閉鎖小胞体及び/又は水酸基を有する重縮合ポリマーの粒子を含みかつエマルションの水相になる水を添加し、油及び水を混合する工程を有する。これにより、油と水との量比が相当に広い許容範囲内である場合において、油相が外相でありかつ水相が内相であり、乳化安定性に優れるW/Oエマルションが得られる。具体的に、特許文献1に示される方法では、混合物における油の量を70質量%以上と多量にした場合にのみW/Oエマルションが得られたのに対し、本発明の方法では、水(両親媒性物質も含む)と油との量比(水:油)が、特に限定されないが、例えば90:10~20:80といった広範な範囲において、W/Oエマルションを得ることができる。
 油に対し水を添加することで、油に水が接触した時点において、水が相対的に多量の油で包囲され、これによりW/Oエマルションが得られやすくなる。そこで、混合は、油に対する水の添加が終了する前に撹拌を開始することで行うことが好ましく、これにより、添加される水が常に相対的に多量の油で包囲される。なお、混合、撹拌は、従来公知の方法に従えばよいため(例えば特許文献1参照)、詳細は省略する。
 また、水の添加は、特に限定されないが、滴下等で行えばよく、また、油を含む被添加対象の量の50質量%以下の量で行うことが好ましく、より好ましくは40体積%以下である。被添加対象とは、油と、それまでに添加された水とを含む(添加開始直後では油のみ)。添加の態様は、連続、又は間欠(つまり、分割されたバッチを分けて添加する)のいずれでもよい。連続添加の場合、添加対象の単位時間あたり添加量の、被添加対象の単位時間あたり流量に対する比率が、50体積%以下であればよい。
 両親媒性物質としては、特に限定されないが、下記の一般式1で表されるポリオキシエチレン硬化ひまし油の誘導体、もしくは一般式2で表されるジアルキルアンモニウム誘導体、トリアルキルアンモニウム誘導体、テトラアルキルアンモニウム誘導体、ジアルケニルアンモニウム誘導体、トリアルケニルアンモニウム誘導体、又はテトラアルケニルアンモニウム誘導体のハロゲン塩の誘導体が挙げられる。
 一般式1
Figure JPOXMLDOC01-appb-C000001
 式中、エチレンオキシドの平均付加モル数であるEは、3~100である。Eが過大になると、両親媒性物質を溶解する良溶媒の種類が制限されるため、親水性ナノ粒子の製造の自由度が狭まる。Eの上限は好ましくは50であり、より好ましくは40であり、Eの下限は好ましくは5である。
 一般式2
Figure JPOXMLDOC01-appb-C000002
 式中、R1及びR2は、各々独立して炭素数8~22のアルキル基又はアルケニル基であり、R3及びR4は、各々独立して水素又は炭素数1~4のアルキル基であり、XはF、Cl、Br又はIである。
 両親媒性物質としては、リン脂質やリン脂質誘導体等を採用してもよい。リン脂質としては、下記の一般式3で示される構成のうち、炭素鎖長12のDLPC(1,2-Dilauroyl-sn-glycero-3-phospho-rac-1-choline)、炭素鎖長14のDMPC(1,2-Dimyristoyl-sn-glycero-3-phospho-rac-1-choline)、炭素鎖長16のDPPC(1,2-Dipalmitoyl-sn-glycero-3-phospho-rac-1-choline)が採用可能である。
 一般式3
Figure JPOXMLDOC01-appb-C000003
 また、下記の一般式4で示される構成のうち、炭素鎖長12のDLPG(1,2-Dilauroyl-sn-glycero-3-phospho-rac-1-glycerol)のNa塩又はNH4塩、炭素鎖長14のDMPG(1,2-Dimyristoyl-sn-glycero-3-phospho-rac-1-glycerol)のNa塩又はNH4塩、炭素鎖長16のDPPG(1,2-Dipalmitoyl-sn-glycero-3-phospho-rac-1-glycerol)のNa塩又はNH4塩を採用してもよい。
 一般式4
Figure JPOXMLDOC01-appb-C000004
 更に、リン脂質として卵黄レシチン又は大豆レシチン等を採用してもよい。
 また、水酸基を有する重縮合ポリマーは、天然高分子又は合成高分子のいずれであってもよく、乳化剤の用途に応じて適宜選択されてよい。ただし、安全性に優れ、一般的に安価である点で、天然高分子が好ましく、乳化機能に優れる点で以下に述べる糖ポリマーがより好ましい。なお、粒子とは、重縮合ポリマーが単粒子したもの、又はその単粒子同士が連なったもののいずれも包含する一方、単粒子化される前の凝集体(網目構造を有する)は包含しない。
 糖ポリマーは、セルロース、デンプン等のグルコシド構造を有するポリマーである。例えば、リボース、キシロース、ラムノース、フコース、グルコース、マンノース、グルクロン酸、グルコン酸等の単糖類の中からいくつかの糖を構成要素として微生物が産生するもの、キサンタンガム、アラビアゴム、グアーガム、カラヤガム、カラギーナン、ペクチン、フコイダン、クインシードガム、トラントガム、ローカストビーンガム、ガラクトマンナン、カードラン、ジェランガム、フコゲル、カゼイン、ゼラチン、デンプン、コラーゲン等の天然高分子、メチルセルロース、エチルセルロース、メチルヒドロキシプロピルセルロース、カルボキシメチルセルロース、ヒドロキシメチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロースナトリウム、アルギン酸プロピレングリコールエステル、セルロース結晶体、デンプン・アクリル酸ナトリウムグラフト重合体、疎水化ヒドロキシプロピルメチルセルロース等の半合成高分子、ポリビニルアルコール、ポリビニルピロリドン、カルボキシビニルポリマー、ポリアクリル酸塩、ポリエチレンオキシド等の合成高分子が挙げられる。
 閉鎖小胞体及び/又は粒子は、上記の両親媒性物質及び/又は水酸基を有する重縮合ポリマーを分散媒(つまり水)中に添加し、撹拌する等の方法で製造できる(例えば、特許文献1参照)。かかる閉鎖小胞体及び粒子は、エマルション形成前では平均粒子径200nm~800nm程度であるが、W/Oエマルション構造においては平均粒子径8~500nm程度である。なお、両親媒性物質の閉鎖小胞体及び水酸基を有する重縮合ポリマーの粒子は、一方のみが含まれても、双方が含まれてもよい。双方が含まれる場合には、例えば、別々に乳化したエマルションを混合してよい。
 両親媒性物質の閉鎖小胞体及び水酸基を有する重縮合ポリマーの粒子は、幅広い水相及び油相の組み合わせを乳化させることができる(詳細は特許第3855203号公報)。このため、油相を構成する乳化対象は特に限定されず、軽油、A重油、C重油、タール、バイオディーゼル燃料、再生重油、廃食油、天然物油剤(植物油、鉱物油)等のあらゆるものであってよい。
 本発明の方法によれば、幅広い水相及び油相の組み合わせを、幅広い量比で乳化させることができ、乳化安定性に優れた乳化物を製造することができる。ただし、内相の比重が外相の比重と異なる場合、比重の違いによりコアセルベーションが生じることがある。コアセルベーションが生じても、乳化状態は崩壊しないため、使用時に水相及び外相を混合できる用途(例えば、飲食品、調味料)においては、特に問題がない。一方、そうでない用途(例えば、燃料)においては、コアセルベーションを抑制することが有益である。
 そこで、本発明の方法は、油の親水性を向上させる親水化処理を行う工程、及び/又は、閉鎖小胞体及び/又は粒子の疎水性を向上させる疎水化処理を行う工程を更に有することが好ましい。これにより、水相の分散性がより向上し、コアセルベーションを抑制することができる。なお、機構は特に限定されないが、油が親水化及び/又は水が疎水化することで、親水性を有する両親媒性物質を油相及び水相の界面へと集中させやすく、これにより、水相同士の合一が抑制されることであると推測される。
 親水化処理は、特に限定されないが、乳化対象に対し、乳化対象より高い誘電率を有しかつ乳化対象との相溶性を有する高誘電率材料を混合する工程を有してよい。これにより、油の誘電率が増加し、界面における閉鎖小胞体及び/又は粒子の付着安定性が向上する。親水化処理は、水及び油を混合する時点及び/又はそれより前に行うことが望ましい。
 この工程は、乳化対象の誘電率が低い場合(例えば、乳化対象が2.1以下の比誘電率(22℃)を有する場合)に特に有用である。このような乳化対象としては、特に限定されないが、軽油、長鎖飽和炭化水素(流動パラフィン、オクタデカン等)、植物油(長鎖グリセリド)等が挙げられる。一方、乳化対象の誘電率が元来高い場合(例えば、乳化対象がバイオディーゼル燃料等を含み、2.2以上の比誘電率(22℃)を有する場合)には、この工程を行わなくても、充分な分散性を得ることはできる。
 誘電率の高低は、乳化対象との比較による相対的な高低を意味し、使用し得る高誘電率材料は、乳化対象の誘電率に応じて決定される。また、高誘電率材料の添加量は、乳化対象の誘電率及び所望の誘電率等に応じて適宜選択されてよいが、油の比誘電率(22℃)が2.2以上になる量であることが好ましく、より好ましくは2.4以上である。これにより、充分な分散性を有するW/Oエマルションを得ることができる。なお、本発明における比誘電率(22℃)は、液体用誘電率計Model 871(日本ルフト社製)により測定されたものを指す。
 疎水化処理は、特に限定されないが、水を加熱する工程を有してよい。水の加熱は、水及び油の混合前の水を直接加熱してもよく、混合中に油を加熱し、間接的に水を加熱してもよい。なお、水の温度を40℃以上に昇温させることが好ましい。
 特許文献1に示される方法では、水及び油を混合するとO/Wエマルションが形成され、油の量が過剰になると、一部のO/Wエマルションが転相を生じてW/Oエマルションが形成される。このため、得られる乳化物には、自発的に閉鎖小胞体を形成する両親媒性物質により形成された閉鎖小胞体及び/又は水酸基を有する重縮合ポリマーの粒子を含むO/Wエマルションが相当量で含まれることを避けられず、乳化安定性も不充分である。これに対し、本発明の方法では、水及び油を混合すると、内相が水相であり、外相が油相であるW/Oエマルションが形成される。このため、本発明の方法で得られる乳化物は、転相を経ていないため、自発的に閉鎖小胞体を形成する両親媒性物質により形成された閉鎖小胞体及び/又は水酸基を有する重縮合ポリマーの粒子を含むO/Wエマルションを実質的に含まず、乳化安定性に優れる。
 従って、本発明は、乳化対象を含みかつエマルションの油相になる油に対し、自発的に閉鎖小胞体を形成する両親媒性物質により形成された閉鎖小胞体及び/又は水酸基を有する重縮合ポリマーの粒子を含みかつ前記エマルションの水相になる水を添加し、前記油及び水を混合してなるW/Oエマルションを含む乳化物も包含する。なお、かかる乳化物は、同様の乳化安定性及び組成(両親媒性物質の閉鎖小胞体及び/又は水酸基を有する重縮合ポリマーの粒子を含むO/Wエマルションを実質的に含まない)が得られる限り、上記方法によって製造されたものに限定されない。
 また、本発明は、内相が水相であり、外相が油相であり、自発的に閉鎖小胞体を形成する両親媒性物質により形成された閉鎖小胞体及び/又は水酸基を有する重縮合ポリマーの粒子を含むW/Oエマルションを含み、内相が油相であり、外相が水相であり、自発的に閉鎖小胞体を形成する両親媒性物質により形成された閉鎖小胞体及び/又は水酸基を有する重縮合ポリマーの粒子を含むO/Wエマルションが乳化物に占める量が20体積%以下である乳化物も包含する。なお、O/Wエマルションの量は、乳化物を静かに水へと添加し、水相の増加した体積を計測することによって得られる。O/Wエマルションが乳化物に占める量は、乳化物に対し、15体積%以下であることが好ましく、より好ましくは10体積%以下、7.5体積%以下、5体積%以下、2.5体積%以下である。
 本発明の乳化物は、前述のように乳化分散性に優れ、種々の用途において好適に使用できる。用途としては、特に限定されないが、燃料、潤滑油、香粧品、医薬品、食品、ペイント、洗浄剤等が挙げられる。本発明の乳化物を用いた燃料は、水を多量に含むこともでき、排ガス中のNOx濃度を低減できる。本発明の乳化物を用いた潤滑油は、水により比熱が増すため、熱交換効率に優れる。また、本発明の乳化物は外相が水であるため、接触する機器類(例えば、エンジン、配管)への負担を抑制することもできる。
 <実施例1>
 市販品のA-重油又は中鎖トリグリセリド(MCT)を乳化対象として用いた。また、両親媒性物質としては、親水性のナノ微粒子を形成するポリオキシエチレン硬化ひまし油の誘導体のうち、エチレンオキシド(EO)の平均付加モル数(E)が40である誘導体(以下、HCO-40という)を用い、これを、表1に示す比率で、水で分散させた分散液を水として使用した。油に対し、水を0.5g/秒の速度で、油と水の質量比が80:20(ただし、両親媒性物質は油に含める)になるように添加し、ホモジナイザーで20000rpm、5分間に亘り撹拌してエマルションを含む乳化物を調製した。
 乳化物を静かに水へと添加し、水相の増加した体積を計測したところ、いずれの乳化物もW/Oエマルションを多量に含み、O/Wエマルションが乳化物に占める量は5体積%であった。このような乳化物を室温で1ヶ月に亘り保持し、乳化状態を観察した。この結果を表1に示す。なお、表1において、Aは静置下で乳化状態が安定である、Bは乳化状態が維持されるものの、コアセルベーションが生じている、ことをそれぞれ指す。
Figure JPOXMLDOC01-appb-T000005
 表1に示されるように、油に対し、両親媒性物質の閉鎖小胞体を含む水を添加することで、両親媒性物質の量にかかわらず、良好に乳化した乳化物が得られることが分かった。
 <実施例2>
 油、両親媒性物質の閉鎖小胞体又は水酸基を有する重縮合ポリマーの粒子として、表2に示すものを用い、乳化剤における水の量を表2に示すようにした点を除き、実施例1と同様の手順で乳化物を調製し、乳化性能を評価した。なお、表2において「HCO-10」はエチレンオキシド(EO)の平均付加モル数(E)が10である誘導体であり、「2S10G」はジステアリン酸デカグリセリルである。
Figure JPOXMLDOC01-appb-T000006
 表2に示されるように、種々の油を良好に乳化させ、またコアセルベーションを起こさせなかった。
 <実施例3>
 油及び両親媒性物質の閉鎖小胞体として、表3及び4に示すものを用いた点を除き、実施例1と同様の手順で乳化物を調製し、乳化性能を評価した。なお、両親媒性物質の量は、いずれも2質量%とした。表3及び4において、流動パラフィン(軽)とは「ハイコールK-230」(カネダ社製)であり、流動パラフィン(重)とは流動パラフィン(和光純薬工業社製)である。また、評価結果のCとは、乳化状態が維持されるものの、乳化状態にある水粒子同士が凝集していることを指す(乳化状態が崩壊し、水粒子が合一する現象とは明確に異なる)。なお、表4において、「D-5S」はペンタステアリン酸デカグリセリルであり、「D-3O」はトリオレイン酸デカグリセリルであり、「D-5O」はペンタオレイン酸デカグリセリルであり、「Di-1S」はモノステアリン酸ジグリセリルであり、「S-1P」はモノパルミチン酸ソルビタンであり、「PR-15」はポリリシノレイン酸ヘキサグリセリルであり、「5IS10G」はペンタイソステアリン酸デカグリセリルであり、「SO-10」はモノオレイン酸ソルビタンであり、「SO-15」はセスキオレイン酸ソルビタンである。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表3及び4に示されるように、任意の両親媒性物質により、種々の油を良好に乳化させることができた。
 <実施例4>
 油及び両親媒性物質の閉鎖小胞体又は水酸基を有する重縮合ポリマーの粒子として、表5に示すものを用いた点を除き、実施例1と同様の手順で乳化物を調製し、乳化性能を評価した。また、油及び両親媒性物質の閉鎖小胞体として、表6に示すものを用い、水の添加速度を0.1g/秒とし、ディスパーサ又は家庭用ハンドミキサで10分間に亘って撹拌した点を除き、実施例1と同様の手順で乳化物を調製し、乳化性能を評価した。表5において「3OG10」とはトリオレイン酸デカグリセリルであり、「パーム油」とはパーム硬化油及び菜種油の混合油であり、「再生重油」とは再生重油(使用済みの潤滑油に由来)に灯油を配合した油である。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表5及び6に示されるように、両親媒性物質により、種々の油を良好に乳化させることができた。
 <実施例5>
 両親媒性物質及び水の量を表7に示すようにし、水及び油を55℃に加熱した点を除き、実施例1と同様の手順で乳化物を調製し、乳化性能を評価した。
Figure JPOXMLDOC01-appb-T000011
 表7に示されるように、水を加熱することで、コアセルベーションの発生が抑制された。
 <実施例6>
 油として、軽油(比誘電率(22℃)2.14)に対し、バイオディーゼル燃料(比誘電率(22℃)3.56;BDFという)を表8に示す質量比で添加したものを用い、水及び油の質量比を13(12質量%の水と1質量%のHCO-10とを含む):87で統一した点を除き、実施例1と同様の手順で乳化物を調製した。各乳化物を室温で1ヶ月に亘り保持し、乳化状態を観察した結果を表8に示す。
Figure JPOXMLDOC01-appb-T000012
 表8に示されるように、誘電率が2.2以上になる量でバイオディーゼル燃料を混合することで、コアセルベーションを抑制できた。
 <実施例7>
 油として、オクタン(比誘電率(22℃)1.95)に対し、オレイン酸(比誘電率(22℃)2.46)を、表9に示すモル比で混合した点を除き、実施例6と同様の手順で乳化物を調製し、乳化性能を評価した。
Figure JPOXMLDOC01-appb-T000013
 表9に示されるように、誘電率が2.2以上になる量でオレイン酸を混合することで、コアセルベーションを抑制できた。

Claims (15)

  1.  乳化対象を含みかつエマルションの油相になる油に対し、自発的に閉鎖小胞体を形成する両親媒性物質により形成された閉鎖小胞体及び/又は水酸基を有する重縮合ポリマーの粒子を含みかつ前記エマルションの水相になる水を添加し、前記油及び水を混合する工程を有するW/Oエマルションの製造方法。
  2.  前記油の量に対する前記水の添加量の質量比を20/80以上にする請求項1記載の製造方法。
  3.  前記混合は、前記油に対する前記水の添加が終了する前に撹拌を開始することで行う請求項1又は2記載の製造方法。
  4.  前記水の添加は、前記油を含む被添加対象の量の50質量%以下の量で行う請求項1から3いずれか記載の製造方法。
  5.  前記油の親水性を向上させる親水化処理を行う工程を更に有する請求項1から4いずれか記載の製造方法。
  6.  前記親水化処理は、前記乳化対象に対し、前記乳化対象より高い誘電率を有しかつ前記乳化対象との相溶性を有する高誘電率材料を混合する工程を有する請求項5記載の製造方法。
  7.  前記乳化対象は、2.1以下の比誘電率(22℃)を有する請求項6記載の製造方法。
  8.  前記高誘電率材料は、前記油の比誘電率(22℃)が2.2以上になる量で混合する請求項6又は7記載の製造方法。
  9.  前記乳化対象は軽油を含み、前記高誘電率材料はバイオディーゼル燃料を含む請求項6から8いずれか記載の製造方法。
  10.  前記閉鎖小胞体及び/又は前記粒子の疎水性を向上させる疎水化処理を行う工程を更に有する請求項1から9いずれか記載の製造方法。
  11.  前記疎水化処理は、前記水を加熱する工程を有する請求項10記載の製造方法。
  12.  前記加熱は、前記水の温度を40℃以上に昇温させる請求項11記載の製造方法。
  13.  乳化対象を含みかつエマルションの油相になる油に対し、自発的に閉鎖小胞体を形成する両親媒性物質により形成された閉鎖小胞体及び/又は水酸基を有する重縮合ポリマーの粒子を含みかつ前記エマルションの水相になる水を添加し、前記油及び水を混合してなるW/Oエマルションを含む乳化物。
  14.  内相が水相であり、外相が油相であり、自発的に閉鎖小胞体を形成する両親媒性物質により形成された閉鎖小胞体及び/又は水酸基を有する重縮合ポリマーの粒子を含むW/Oエマルションを含み、
     内相が油相であり、外相が水相であり、前記閉鎖小胞体及び/又は前記粒子を含むO/Wエマルションが乳化物に占める量が20体積%以下である乳化物。
  15.  前記W/Oエマルション及び前記O/Wエマルションは、前記水相と前記油相との界面に前記閉鎖小胞体及び/又は前記粒子が介在することで乳化状態を維持するものである請求項13又は14記載の乳化物。
PCT/JP2011/072304 2011-03-09 2011-09-29 W/oエマルションの製造方法及び乳化物 WO2012120716A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-051479 2011-03-09
JP2011051479A JP5831828B2 (ja) 2011-03-09 2011-03-09 W/oエマルションの製造方法及び乳化物

Publications (1)

Publication Number Publication Date
WO2012120716A1 true WO2012120716A1 (ja) 2012-09-13

Family

ID=46797702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072304 WO2012120716A1 (ja) 2011-03-09 2011-09-29 W/oエマルションの製造方法及び乳化物

Country Status (2)

Country Link
JP (1) JP5831828B2 (ja)
WO (1) WO2012120716A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH116615A (ja) * 1997-06-17 1999-01-12 Setsuo Matsumoto 重質油燃焼方法およびそれに用いる装置
JP2006241424A (ja) * 2004-09-03 2006-09-14 Univ Kanagawa エマルション燃料

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104946A (ja) * 2008-10-31 2010-05-13 Riso Kagaku Corp 逆ベシクルを用いて形成された油中水(w/o)型エマルション

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH116615A (ja) * 1997-06-17 1999-01-12 Setsuo Matsumoto 重質油燃焼方法およびそれに用いる装置
JP2006241424A (ja) * 2004-09-03 2006-09-14 Univ Kanagawa エマルション燃料

Also Published As

Publication number Publication date
JP5831828B2 (ja) 2015-12-09
JP2012187465A (ja) 2012-10-04

Similar Documents

Publication Publication Date Title
JP3855203B2 (ja) 乳化分散剤及びこれを用いた乳化分散方法並びに乳化物
US9506001B2 (en) Emulsification dispersants, a method for emulsification and dispersion using the emulsification dispersants, emulsions, and emulsion fuels
US9366387B2 (en) Process of preparing improved heavy and extra heavy crude oil emulsions by use of biosurfactants in water and product thereof
EP3218452B1 (en) Water in diesel oil fuel micro-emulsions.
EP1668100A2 (en) Method for manufacturing an emulsified fuel
CN103788402B (zh) 一种碳量子点/锂皂石乳液稳定体系及制备石蜡乳液的方法
AU761001B2 (en) Method for preparing an emulsified fuel and implementing device
NO20180541A1 (en) Low solids oil based well fluid with particle-stabilized emulsion
CN106281287A (zh) 一种环保性无氟助排剂及制备方法
JP5831828B2 (ja) W/oエマルションの製造方法及び乳化物
CN109929635B (zh) 一种超稳定Pickering柴油乳状液及其制备方法
CN115428934B (zh) 一种应用于食品和医药领域的双连续乳液及其制备方法
RU2331464C1 (ru) Эмульгирующие диспергирующие средства, способ эмульгирования и диспергирования с использованием эмульгирующих диспергирующих средств, эмульсии и эмульсионные топлива
WO2011162093A1 (ja) 乳化物製造用親水性ナノ粒子の製造方法
JP5652920B2 (ja) 乳化剤製造用材料の製造方法、乳化剤の製造方法、経口投与組成物用乳化剤、及び経口投与組成物
AU2015273150B2 (en) Emulsification of hydrophobic organophosphorous compounds
JP6274477B2 (ja) 乳化剤製造用材料の製造方法、乳化剤製造用材料、及び乳化剤の製造方法
Cabaleiro et al. Preparation and characterization of stable methyl myristate− in− water nanoemulsions as advanced working fluids for cooling systems
WO2012012644A1 (en) Three-phase emulsified fuel and methods of preparation and use
CN109929634B (zh) 一种可快速破乳的柴油乳状液及其制备方法
JP2002187834A (ja) 小胞体分散液の製造方法
WO2009084277A1 (ja) 多相エマルジョン構造からなる燃料およびその製造方法
JP2009173854A (ja) 多相エマルジョン構造からなる燃料およびその製造方法
WO2017184419A1 (en) Systems and methods for manufacturing emulsified fuel
CS277028B6 (cs) Emulzní silikonový odpěňovač a způsob jeho přípravy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860255

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12013501804

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1301004847

Country of ref document: TH

122 Ep: pct application non-entry in european phase

Ref document number: 11860255

Country of ref document: EP

Kind code of ref document: A1