WO2012118207A1 - 局所地図生成装置、局所地図生成システム、グローバル地図生成装置、グローバル地図生成システム、及びプログラム - Google Patents

局所地図生成装置、局所地図生成システム、グローバル地図生成装置、グローバル地図生成システム、及びプログラム Download PDF

Info

Publication number
WO2012118207A1
WO2012118207A1 PCT/JP2012/055464 JP2012055464W WO2012118207A1 WO 2012118207 A1 WO2012118207 A1 WO 2012118207A1 JP 2012055464 W JP2012055464 W JP 2012055464W WO 2012118207 A1 WO2012118207 A1 WO 2012118207A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
trajectory
information
local
local map
Prior art date
Application number
PCT/JP2012/055464
Other languages
English (en)
French (fr)
Inventor
祥子 小島
鈴木 徳祥
淳一 目黒
Original Assignee
株式会社豊田中央研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田中央研究所 filed Critical 株式会社豊田中央研究所
Priority to US14/002,890 priority Critical patent/US9103680B2/en
Publication of WO2012118207A1 publication Critical patent/WO2012118207A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3833Creation or updating of map data characterised by the source of data
    • G01C21/3848Data obtained from both position sensors and additional sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes

Definitions

  • the present invention relates to a local map generation device, a local map generation system, a global map generation device, a global map generation system, and a program, and in particular, generates a local map or a global map in which environmental information around a moving object is recorded.
  • the present invention relates to a local map generation device, a local map generation system, a global map generation device, a global map generation system, and a program.
  • the present invention has been made to solve the above problems.
  • the local map generation device is mounted on a mobile body and acquires environmental information around the mobile body as viewed from the installation position. And information on the position of each of the GPS satellites transmitted from each of a plurality of GPS satellites, information on the distance between each of the GPS satellites and the mobile object, and the relative of the mobile object to each of the GPS satellites
  • a satellite information acquisition unit that acquires satellite information including information related to speed; and a velocity vector including a traveling direction of the mobile object based on the satellite information acquired by the satellite information acquisition unit, or a speed of the mobile object and
  • a calculating unit that calculates speed information indicating the traveling direction of the moving body, and the speed information of the moving body calculated by the calculating unit are integrated to calculate a locus of the position of the moving body.
  • a local map generation unit that records in each region on the local map including the locus of the position of the moving body, which is determined based on the traveling direction of the environment information and the installation position and orientation of the environment information acquisition unit Has been.
  • a program according to a second aspect of the present invention is a program for a local map generating apparatus that includes an environment information acquisition unit that includes a computer mounted on a mobile body and acquires environmental information around the mobile body as viewed from the installation position.
  • a program for causing each unit to function, information relating to the position of each of the GPS satellites transmitted from each of a plurality of GPS satellites, information relating to the distance between each of the GPS satellites and the mobile object, and the GPS satellites A satellite information acquisition unit that acquires satellite information including information related to the relative speed of the mobile body with respect to each of the above, a velocity vector including a traveling direction of the mobile body based on the satellite information acquired by the satellite information acquisition unit, Alternatively, a calculating unit that calculates speed information indicating a speed of the moving body and a traveling direction of the moving body, and the moving body calculated by the calculating unit.
  • the trajectory calculation unit that accumulates degree information and calculates the trajectory of the position of the moving object, and each point on the trajectory of the position of the moving object calculated by the trajectory calculation unit is acquired by the environment information acquisition unit.
  • the environmental information is determined on a local map including a trajectory of the position of the moving object, which is determined based on the traveling direction of the moving object at each point on the trajectory and the installation position and orientation of the environment information acquisition unit. It is a program for making it function as a local map production
  • the environment information acquisition unit acquires the environment information around the moving body viewed from the installation position.
  • Information on the position of each of the GPS satellites transmitted from each of the plurality of GPS satellites, information on the distance between each of the GPS satellites and the moving body, and the relative speed of the moving body with respect to each of the GPS satellites by the satellite information acquisition unit Get satellite information including information.
  • the calculation unit calculates a velocity vector including the traveling direction of the moving body, or speed information indicating the moving body speed and the traveling direction of the moving body.
  • the trajectory calculating unit calculates the trajectory of the position of the moving object by integrating the speed information of the moving object calculated by the calculating unit.
  • the environment information acquired by the environment information acquisition unit for each point on the trajectory of the position of the moving object calculated by the trajectory calculation unit by the local map generation unit is set as the traveling direction of the moving object at each point on the trajectory.
  • the information is recorded in each region on the local map including the locus of the position of the moving body, which is determined based on the installation position and orientation of the environment information acquisition unit.
  • the velocity information is integrated to calculate the trajectory of the moving body, and the surrounding environment information acquired for each point on the trajectory of the moving body is recorded in each area on the local map, thereby simplifying With the configuration, a highly accurate map can be generated.
  • a local map generation device is mounted on a mobile body, and an environmental information acquisition unit that acquires environmental information around the mobile body as viewed from the installation position, and the motion of the mobile body
  • a motion state detection unit for detecting a state
  • an azimuth angle estimation unit for estimating an azimuth angle in a reference direction of the mobile body based on the motion state of the mobile body detected by the motion state detection unit, and the motion state
  • the movement state of the moving body detected by the detection unit is integrated, and the position of the moving body is calculated based on the accumulated movement state of the moving body and the azimuth angle estimated by the azimuth angle estimation unit.
  • a trajectory calculation unit that calculates a trajectory of the moving object, and the environmental information acquired by the environmental information acquisition unit for each point on the trajectory of the position of the moving object calculated by the trajectory calculation unit Said shift in A local map generation unit that records in each region on the local map including a trajectory of the position of the moving body, which is determined based on the traveling direction of the body and the installation position and posture of the environment information acquisition unit. It is configured.
  • a program for a local map generation device that includes an environment information acquisition unit that includes a computer mounted on a mobile body and acquires environmental information around the mobile body as viewed from the installation position.
  • An azimuth angle estimation unit, the movement state of the moving body detected by the movement state detection unit is integrated, and the accumulated movement state of the moving body and the azimuth angle estimated by the azimuth angle estimation unit
  • the local map including the trajectory of the position of the moving body, the environment information determined based on the traveling direction of the moving body at each point on the trajectory and the installation position and orientation of the environment information acquisition unit It is a program for making it function as a local map production
  • the environment information acquisition unit acquires the environment information around the moving body viewed from the installation position.
  • the movement state detection unit detects the movement state of the moving body.
  • the azimuth angle estimation unit estimates the azimuth angle of the moving body in the reference direction based on the movement state of the moving body detected by the movement state detection unit.
  • the trajectory calculation unit accumulates the movement state of the moving body detected by the movement state detection unit, and based on the accumulated movement state of the moving body and the azimuth angle estimated by the azimuth angle estimation unit, The locus of the position is calculated.
  • the environment information acquired by the environment information acquisition unit for each point on the trajectory of the position of the moving object calculated by the trajectory calculation unit by the local map generation unit is set as the traveling direction of the moving object at each point on the trajectory.
  • the information is recorded in each region on the local map including the locus of the position of the moving body, which is determined based on the installation position and orientation of the environment information acquisition unit.
  • the azimuth angle of the moving body is estimated and the movement state is integrated to calculate the trajectory of the moving body, and the surrounding environment information acquired for each point on the trajectory of the moving body is By recording in the area, it is possible to generate a highly accurate map with a simple configuration.
  • a global map generation device includes the above-described local map generation device, a local map storage unit that stores the plurality of generated local maps, and the local map between a plurality of local maps.
  • the environment information recorded in the information, and combining the plurality of local maps in a state in which the environment information is verified, and at least on the locus of the plurality of local maps combined by the combining unit A plurality of local maps synthesized by the synthesizing unit on a global map represented by an absolute coordinate system based on the absolute position estimated by the position estimating unit; And a global map generating means for recording.
  • the local map is generated by the local map generation device, and the local map storage means stores the generated plurality of local maps.
  • the environment information recorded in the local map is collated between the plurality of local maps by the synthesizing means, and the plurality of local maps are synthesized with the environment information collated.
  • the absolute position of at least one point on the trajectories of the plurality of local maps synthesized by the synthesizing unit is estimated by the position estimating unit.
  • the global map generating means records a plurality of local maps synthesized by the synthesizing means on the global map represented by the absolute coordinate system based on the absolute position estimated by the position estimating means.
  • a highly accurate local map is generated, a plurality of local maps are synthesized by collating environment information recorded in the local map, and a plurality of synthesized local maps are displayed on the global map represented by an absolute coordinate system.
  • a highly accurate global map can be generated with a simple configuration.
  • a global map generation device includes a local map generation device including the satellite information acquisition unit, a local map storage unit that stores the generated local map, and a plurality of local maps.
  • a combination unit that compares the environment information recorded in the local map and combines the plurality of local maps in a state in which the environment information is compared; and the plurality of local maps combined by the combination unit
  • a position estimating means for estimating an absolute position of at least one point on the locus; and the synthesized means synthesized on the global map represented by an absolute coordinate system based on the absolute position estimated by the position estimating means.
  • a global map generating device including a global map generating means for recording a plurality of local maps, wherein the local map generating means is controlled by the trajectory calculating means.
  • the satellite information acquired by the satellite information acquisition unit is recorded in the local map for the at least one point on the trajectory of the position of the mobile body that is output, and the position estimation unit is configured to store the plurality of local maps.
  • the plurality of the synthesized plurality based on the relative position between the at least one point of each of the plurality of local maps obtained based on the collation result and the satellite information recorded in each of the plurality of local maps.
  • the absolute position of the at least one point on the locus of the local map is estimated.
  • the local map is generated by the local map generation device, and the local map storage means stores the plurality of generated local maps.
  • the local map generation means records the satellite information acquired by the satellite information acquisition means on the local map for at least one point on the trajectory of the position of the moving object calculated by the trajectory calculation means.
  • the environment information recorded in the local map is collated between the plurality of local maps by the synthesizing means, and the plurality of local maps are synthesized with the environment information collated.
  • the absolute position of at least one point on the trajectories of the plurality of synthesized local maps is estimated.
  • the global map generating means records a plurality of local maps synthesized by the synthesizing means on the global map represented by the absolute coordinate system based on the absolute position estimated by the position estimating means.
  • a highly accurate local map is generated, a plurality of local maps are synthesized by collating environment information recorded in the local map, and a plurality of synthesized local maps are displayed on the global map represented by an absolute coordinate system.
  • a highly accurate global map can be generated with a simple configuration.
  • the computer-readable medium for storing the program of the present invention is not particularly limited, and may be a hard disk or a ROM. Further, it may be a CD-ROM, DVD disk, magneto-optical disk or IC card. Furthermore, the program may be downloaded from a server or the like connected to the network.
  • the local map generation device and program integrates speed information or estimates the azimuth angle of a moving body and integrates a motion state, thereby moving the trajectory of the moving body.
  • a highly accurate map can be generated with a simple configuration. The effect is obtained.
  • a global map is generated that generates a highly accurate local map, synthesizes a plurality of local maps by collating environment information recorded in the local map, and expressed in an absolute coordinate system. Further, by recording a plurality of synthesized local maps, an effect is obtained that a highly accurate global map can be generated with a simple configuration.
  • the present invention is applied to a local map generating device that is mounted on a vehicle and acquires GPS information transmitted from a GPS satellite and generates a local map in which an image of the periphery of the host vehicle is recorded.
  • a local map generating device that is mounted on a vehicle and acquires GPS information transmitted from a GPS satellite and generates a local map in which an image of the periphery of the host vehicle is recorded.
  • the case where is applied will be described as an example.
  • the local map generation device 10 includes a GPS receiving unit 12 that receives radio waves from GPS satellites, an imaging device 14 that images the front of the host vehicle, and GPS reception. Based on the received signal from the GPS satellite received by the unit 12 and the forward image captured by the imaging device 14, a local map represented by a coordinate system with the position of the host vehicle as the origin is generated and generated in the past And a computer 20 that outputs the local map of the surrounding area to the driving support device 18.
  • the imaging device 14 is an example of an environment information acquisition unit.
  • the GPS receiver 12 receives radio waves from a plurality of GPS satellites, acquires GPS satellite information from received signals from all GPS satellites, and outputs the information to the computer 20.
  • the imaging device 14 repeatedly captures a front image as shown in FIG. 2A and outputs it to the computer 20.
  • the driving support device 18 acquires a positional relationship with the control object ahead based on the input local map, and performs driving support such as a curve alarm and temporary stop support.
  • the computer 20 includes a storage device such as a CPU, a ROM that stores a program for realizing a local map generation processing routine described later, a RAM that temporarily stores data, and an HDD.
  • a storage device such as a CPU, a ROM that stores a program for realizing a local map generation processing routine described later, a RAM that temporarily stores data, and an HDD.
  • the computer 20 is represented as a functional block according to a local map generation processing routine described below. As shown in FIG. 1, the computer 20 acquires GPS satellite information for all GPS satellites that have received radio waves from the GPS receiver 12, and also includes GPS pseudorange data, Doppler frequency, and GPS satellite position coordinates.
  • a GPS information acquisition unit 22 that calculates and acquires the position
  • a speed / vector calculation unit 24 that calculates the position and speed vector of the host vehicle at each time based on the acquired GPS information
  • a calculated predetermined time A trajectory calculation unit 26 that calculates a trajectory of the position of the host vehicle at a predetermined time by accumulating the speed vectors, an image acquisition unit 28 that acquires a front image captured at each time by the imaging device 14, and an acquired front image
  • a projection image generation unit 30 that generates a projection image that is projected onto a plane so as to be a bird's-eye view, and along the calculated locus for a predetermined time
  • a local map generating unit 32 for generating a local map which records the projected images of each point, and a local map storage unit 34 for storing a plurality of local maps generated.
  • the position / velocity vector calculation unit 24 is an example of a calculation unit and a position calculation unit.
  • the GPS information acquisition unit 22 acquires GPS satellite information and GPS pseudorange data for all GPS satellites that have received radio waves from the GPS reception unit 12. Further, the GPS information acquisition unit 22 sets the Doppler frequency of the received signal from each GPS satellite based on the known frequency of the signal transmitted from each GPS satellite and the frequency of the received signal received from each GPS satellite. calculate. The Doppler frequency is obtained by observing the Doppler shift amount of the carrier frequency due to the relative speed between the GPS satellite and the own vehicle.
  • the position / velocity vector calculation unit 24 includes a position calculation unit 51 that calculates the position of the GPS satellite and the position of the host vehicle based on the acquired GPS information, and the Doppler frequency of each acquired GPS satellite. Based on the relative speed calculation unit 60 for calculating the relative speed of the vehicle with respect to each GPS satellite, and the satellite speed for calculating the velocity vector of each GPS satellite based on the acquired time series data of the position coordinates of each GPS satellite.
  • the position calculation unit 51 calculates the position coordinates of the GPS satellites based on the orbit information of the GPS satellites and the time when the GPS satellites transmitted radio waves.
  • the position calculation unit 51 calculates the position of the host vehicle using the GPS pseudorange data of each GPS satellite acquired by the GPS information acquisition unit 22 as follows.
  • the position of the host vehicle is estimated according to the principle of triangulation based on the known position coordinates of GPS satellites and the pseudo distance that is the propagation distance of the received signal received from each GPS satellite.
  • the true distance r j to the GPS satellite is expressed by the following equation (1)
  • the pseudorange ⁇ j observed by GPS is expressed by the following equation (2).
  • (X j , Y j , Z j ) is the position coordinate of the GPS satellite j
  • (x, y, z) is the position coordinate of the host vehicle.
  • s is a distance error due to a clock error of the GPS receiver 12.
  • the relative speed calculation unit 60 calculates the relative speed of the host vehicle with respect to each GPS satellite from the Doppler frequency of the received signal from each GPS satellite according to the following equation (4) representing the relationship between the Doppler frequency and the relative speed with respect to the GPS satellite. calculate.
  • v j is a relative velocity with respect to the GPS satellite j
  • D1 j is a Doppler frequency (a Doppler shift amount) obtained from the GPS satellite j.
  • C is the speed of light
  • F 1 is a known L1 frequency of a signal transmitted from a GPS satellite.
  • the satellite velocity calculation unit 62 calculates the velocity vector (three-dimensional velocity VX j , VY j , VZ j ) of each GPS satellite from the acquired time series data of the position coordinates of each GPS satellite using the differentiation of Kepler's equation. calculate. For example, using the method described in a non-patent document (Pratap Misra and Per Eng, the original Japanese Navigational Society GPS Study Group translation: “Sophisticated GPS Basic Concept / Positioning Principle / Signal and Receiver”, Shoyo Bunko, 2004.) The velocity vector of each GPS satellite can be calculated.
  • the satellite direction calculation unit 66 based on the calculated position of the own vehicle and the position coordinates of each GPS satellite, the angular relationship between the position of each GPS satellite j and the position of the own vehicle (elevation angle ⁇ j with respect to the horizontal direction, north direction) the phi j) azimuth angle to be calculated as the direction of each GPS satellite.
  • the satellite direction own vehicle speed calculating unit 68 calculates the relative speed v j of the own vehicle with respect to each calculated GPS satellite, the velocity vector (VX j , VY j , VZ j ) of each GPS satellite, and the direction R j ( Based on ⁇ j , ⁇ j ), the speed Vv j of the host vehicle in the direction of each GPS satellite j is calculated according to the following equation (5).
  • v j is a relative speed of the host vehicle with respect to the GPS satellite j (relative speed with respect to the GPS satellite in the satellite direction).
  • Vv j is the vehicle speed in the direction of the GPS satellite j, and vCb is a clock bias fluctuation.
  • the own vehicle speed in the direction of the GPS satellite is calculated not only by the three-dimensional position of the GPS satellite position but only by the orientation relationship with the GPS satellite.
  • the GPS satellite is far away, and the angle change per minute is 0.5 degrees because it makes two rounds of the earth in one day.
  • the clock error between the GPS satellite and the GPS receiver is usually 1 msec or less, the azimuth relationship with the GPS satellite is not greatly affected.
  • the GPS satellite is far away, even if an error of about several hundred meters occurs in determining the position of the own vehicle, the orientation relationship with the GPS satellite is not greatly affected. For this reason, even if it is a situation where an error is likely to ride on the pseudorange, the own vehicle speed in the GPS satellite direction can be calculated relatively accurately.
  • the own vehicle speed calculation unit 70 performs optimum estimation of the speed vector of the own vehicle, as will be described below.
  • the optimal value of the speed vector (Vx, Vy, Vz) of the host vehicle is calculated by solving the simultaneous equation (7).
  • the trajectory calculation unit 26 calculates the trajectory of the position of the host vehicle at the predetermined time by integrating the calculated speed vectors of the host vehicle for the predetermined time.
  • the projection image generation unit 30 generates a projection image obtained by projecting the acquired front image onto a plane (road surface) as shown in FIG. 2B. At this time, an area related to the road surface structure such as a road surface mark is detected, and a projection image is generated by projecting the detected road surface structure area onto the road surface. Note that the road surface structure region may be detected after the front image is projected onto the road surface.
  • the vehicle coordinate system (Xv, Yv, Zv) centering on the antenna of the GPS receiver 12 of the host vehicle and the perpendicular foot at the center of the imaging device 14 are used as the origin.
  • the correspondence with the camera coordinate system (Xc ′, Yc ′, Zc ′) is defined as the following equation (8).
  • vLateral, vLongitudinal, and vHeight represent offset components of the origin of the vehicle coordinate system and the camera coordinate system
  • represents the imaging direction of the imaging device 14 (axis of the camera coordinate system) and the vehicle coordinate system in the XY plane. This represents the angle formed by the axis (the traveling direction of the host vehicle).
  • Height represents the height of the installation position of the imaging device 14, and ⁇ c represents an angle formed by the imaging direction of the imaging device 14 (axis of the camera coordinate system) and the axis of the vehicle coordinate system in the YZ plane.
  • M is the number of pixels in the horizontal direction of the front image, and ⁇ is the length [mm] in the horizontal direction of the front image.
  • N is the number of pixels in the vertical direction of the front image, and ⁇ is the length [mm] of the front image in the vertical direction.
  • (M 0 , n 0 ) is the imaging center on the front image, and f is the focal length.
  • the local map generation unit 32 generates a local map in which projection images at each point are recorded along the calculated locus for a predetermined time.
  • the position (Ui, Ei, Ni) on the local map on the image (mi, ni) detected at the vehicle position (ev, nv, uv) on the local map is in accordance with the following equation (10). Calculated.
  • is a roll angle
  • is a pitch angle
  • is a yaw angle (azimuth angle: an angle in a vehicle traveling direction with reference to the north direction).
  • Zvi, Xvi, Yvi) T is a position obtained by projecting the position (mi, ni) on the horizontal plane in the coordinate system of the vehicle center, and is obtained from the above equations (8) and (9).
  • the camera viewpoint is acquired by highly accurate trajectory estimation, and a road surface image is recorded along the trajectory to generate a highly accurate local map.
  • the trajectory estimation using the GPS Doppler frequency can estimate the absolute azimuth, and thus has a feature that the trajectory estimation without the azimuth drift is possible and the accumulation error is small.
  • a local map is generated in a range that can ensure the accuracy and range required for each application (for example, to obtain a stop line 50 m ahead with accuracy of 0.3 m).
  • the trajectory estimation error in this embodiment is, for example, 0.1 to 1 m per 100 m, and high-precision local map generation can be expected within this range. Since the position accuracy obtained by the position calculation unit 51 is not so high (several meters to several tens of meters) and the absolute position may have an error, the generated local map is an actual road surface as shown in FIG. There is a possibility of deviation from the mark position. However, since the accumulation error is small within a certain range, a local map with high relative position accuracy can be obtained.
  • a local map is generated with a trajectory from a certain absolute position as a base point.
  • the local map is not in conformity with the linear shape of the trajectory but it is appropriate to unify in the orthogonal coordinate system.
  • information obtained from the camera image road surface paint layer
  • trajectory information trajectory information layer
  • integrated information obtained from them running road information layer
  • meaningful information semantic information
  • the local map generation unit 32 further records the position (absolute position) of the host vehicle calculated by the position calculation unit 51 with respect to the start point of the trajectory of the host vehicle in the local map as the origin of the local map.
  • the local map storage unit 34 stores a plurality of local maps generated by the local map generation unit 32.
  • the computer 20 further collates the local map retrieval unit 36 that retrieves the local map generated around the current position of the host vehicle with the local map generated at the present time and the searched local map, together with the collation result. And a collation unit 38 that outputs the retrieved local map to the driving support device 18.
  • the local map search unit 36 uses the local map generated around the position of the host vehicle as a key using the position of the host vehicle calculated by the position calculation unit 51 as a local map storage unit. Search from 34.
  • the matching unit 38 performs matching based on the projection image recorded on the local map between the local map generated at the current time and the searched local map, and along with the relative position between the local maps based on the matching result,
  • the searched local map is output to the driving support device 18.
  • collation based on the projection image for example, a plurality of feature points may be extracted from the projection image, and collation may be performed by associating the feature points.
  • the driving support device 18 acquires the position of the region related to the road surface structure on the projection image recorded in the local map based on the input relative position, and based on the acquired position and the road surface structure, Provide driving support such as curve warning and temporary stop support.
  • the computer 20 When the GPS receiver 12 repeatedly receives radio waves from a plurality of GPS satellites, the computer 20 repeatedly executes a local map generation processing routine shown in FIG.
  • step 100 the computer 20 executes a local map generation process, and generates a local map relating to the vicinity of the locus on which the host vehicle is traveling.
  • step 102 the computer 20 uses the position of the origin of the local map generated in step 100 (the position of the host vehicle calculated in step 136 described later) as a key, and generates the local generated around the position.
  • the map is retrieved from the local map storage unit 34 and acquired.
  • the computer 20 translates the local map generated in step 100 by the translation amount ⁇ d set in step 104 or step 116 described later.
  • the computer 20 calculates a correlation value with the local map acquired in step 102. In the calculation of the correlation value, the computer 20 extracts feature points from the projection image recorded in the local map, associates the feature points between the local maps, and performs a result of the association (for example, the association is performed). The correlation value may be calculated based on the distance between the feature points.
  • step 110 the computer 20 determines whether or not the correlation value calculated in step 108 is greater than the maximum correlation value. If the correlation value is equal to or less than the maximum value, the process proceeds to step 114. On the other hand, when the calculated correlation value is larger than the maximum correlation value, in step 112, the computer 20 updates the maximum correlation value and proceeds to step 114.
  • step 114 the computer 20 determines whether or not the parallel movement amount ⁇ d is within a predetermined search range. If it is within the search range, in step 116, the computer 20 updates the translation amount ⁇ d to ⁇ d + ⁇ d, and returns to step 106. On the other hand, if the parallel movement amount ⁇ d exceeds the predetermined search range, the computer 20 proceeds to step 118 and determines the parallel movement amount at which the correlation value becomes the maximum value.
  • step 120 the computer 20 obtains the relative position of the local map acquired in step 102 with respect to the current local map, based on the translation amount determined in step 118.
  • the computer 20 outputs the local map acquired in step 102 to the driving support device 18 together with the obtained relative position, and ends the local map generation processing routine.
  • the above step 100 is realized by the local map generation process shown in FIG.
  • step 130 the computer 20 acquires information on a plurality of GPS satellites from the GPS receiver 12, and calculates and acquires GPS pseudorange data, Doppler frequencies, and position coordinates of the GPS satellites of the plurality of GPS satellites. To do.
  • step 132 the computer 20 acquires a front image captured by the imaging device 14.
  • step 134 the computer 20 generates a projection image obtained by projecting the forward image acquired in step 132 on the road surface.
  • step 136 the computer 20 calculates the position of the own vehicle according to the above equations (1) to (3) using the GPS pseudorange data of each GPS satellite.
  • step 138 the computer 20 executes a speed vector calculation process, which will be described later, to estimate a speed vector.
  • the computer 20 determines whether or not a predetermined time has elapsed since the start of processing. If the predetermined time has not elapsed, the computer 20 returns to step 130. On the other hand, when the predetermined time has elapsed, the computer 20 determines that the projection image and the velocity vector for the predetermined time have been obtained, and proceeds to step 142.
  • step 142 the computer 20 integrates the speed vectors for the predetermined time calculated in step 138 to calculate the trajectory of the host vehicle.
  • step 144 the computer 20 records the projection image generated in step 134 for each point of the trajectory along the trajectory of the host vehicle calculated in step 142 to generate a local map. , Stored in the local map storage unit 34, and returns.
  • step 138 is realized by the speed vector calculation process shown in FIG.
  • step 150 the computer 20 according to the above (4) equation, the Doppler frequency of the received signal from each GPS satellite, and calculates the relative velocity v j of the vehicle with respect to each GPS satellite.
  • step 152 the computer 20 uses the time series data of the position coordinates of each GPS satellite, and uses the differential of Kepler's equation to calculate the velocity vector (VX j , VY j , VZ j ) of each GPS satellite. Is calculated.
  • step 154 the computer 20 determines the position of each GPS satellite j and the own vehicle based on the position of the own vehicle calculated in step 136 and the position coordinates of each GPS satellite acquired in step 130.
  • the angular relationship R j and the position of (the azimuth angle phi j with respect to the horizontal direction elevation theta j, for north) is calculated as the direction of the respective GPS satellites.
  • step 156 the computer 20 determines the relative speed v j of the host vehicle to each GPS satellite calculated in step 150, and the velocity vector V j (VX j , VY) of each GPS satellite calculated in step 152. j , VZ j ), and the speed of the vehicle in the direction of each GPS satellite j according to the above equation (5) based on the direction R j ( ⁇ j , ⁇ j ) of each GPS satellite calculated in step 154.
  • Vv j is calculated.
  • step 158 the computer 20 calculates the optimum value of the speed vector (Vx, Vy, Vz) of the host vehicle according to the above formulas (6) and (7) and returns.
  • the local map generation device calculates the trajectory of the host vehicle by integrating the velocity vectors calculated using the Doppler frequency, and sets each trajectory on the trajectory of the host vehicle.
  • the road projection image acquired for the points is recorded in each area on the local map.
  • the local map generation device is characterized by using a highly accurate trajectory, the cross product error of the trajectory within a certain range is small.
  • the accuracy of the relative positional relationship between the information is increased. Therefore, even if the absolute position accuracy is not correct, the local map accuracy can be ensured. Therefore, the map information can be used effectively in the local map, and appropriate driving support can be performed.
  • the second embodiment is different from the first embodiment in that the local map generation device generates a local map without using GPS information.
  • the local map generation device 210 detects the imaging device 14, the magnetic sensor 212 that detects the azimuth of the traveling direction of the host vehicle, and the yaw rate of the host vehicle. Based on the detected values of the gyro sensor 213, the speed sensor 214 that detects the speed of the host vehicle, the magnetic sensor 212, the gyro sensor 213, and the speed sensor 214, and the front image captured by the imaging device 14, And a computer 220 for generating a map.
  • the magnetic sensor 212, the gyro sensor 213, and the speed sensor 214 are examples of the motion state detection unit.
  • the computer 220 determines the azimuth determining unit 224 that determines the azimuth angle of the traveling direction of the host vehicle, the determined azimuth angle, the detection value from the gyro sensor 213, and the speed sensor 214.
  • a trajectory calculation unit 226 that calculates the trajectory of the host vehicle at a predetermined time based on the detected value, an image acquisition unit 28, a projection image generation unit 30, a local map generation unit 32, and a local map storage unit 34. I have.
  • the locus calculation unit 226 integrates the yaw rate for a predetermined time detected by the gyro sensor 213 and the speed for a predetermined time detected by the speed sensor 214.
  • the trajectory calculation unit 226 calculates the trajectory of the position of the host vehicle at the predetermined time based on the accumulated result and the azimuth angle of the traveling direction determined by the azimuth determination unit 224.
  • step 250 the computer 220 acquires sensor outputs from each of the magnetic sensor 212, the gyro sensor 213, and the speed sensor 214.
  • step 132 the computer 220 acquires the front image captured by the imaging device 14.
  • step 134 the computer 220 generates a projection image obtained by projecting the forward image acquired in step 132 on the road surface.
  • step 140 the computer 220 determines whether or not a predetermined time has elapsed since the start of the processing. If the predetermined time has not elapsed, the computer 220 returns to step 250. On the other hand, if the predetermined time has elapsed, the computer 220 determines that a projection image and sensor output for a predetermined time have been obtained, and the process proceeds to step 252.
  • step 252 the computer 220 determines the azimuth angle of the traveling direction of the host vehicle at the start point of the trajectory calculated in step 254 described later, based on the output from the magnetic sensor 212 acquired in step 250.
  • step 254 the computer 220 determines the trajectory of the host vehicle based on the outputs from the gyro sensor 213 and the speed sensor 214 for the predetermined time acquired in step 250 and the azimuth angle determined in step 252. Is calculated.
  • step 144 the computer 220 records the projection image generated in step 134 for each point of the trajectory along the trajectory of the host vehicle calculated in step 142 to generate a local map. , Stored in the local map storage unit 34, and returns.
  • the local map generation device estimates the azimuth angle of the host vehicle from the magnetic sensor, integrates the yaw rate and speed detected by the gyro sensor and the speed sensor, The trajectory of the own vehicle is calculated.
  • the local map generation device records road surface projection images acquired for each point on the trajectory of the host vehicle in each region on the local map. Thereby, the local map production
  • the local map generation device calculates the trajectory of the host vehicle by combining the velocity vector calculated from the GPS information and the sensor output from the magnetic sensor, the gyro sensor, and the velocity sensor. This is different from the first embodiment.
  • the local map generation device 310 includes a GPS receiver 12, an imaging device 14, a magnetic sensor 212, a gyro sensor 213, a speed sensor 214, and a GPS receiver. 12, a computer 320 that generates a local map based on the received signal from the GPS satellite received by 12, the detection values of the magnetic sensor 212, the gyro sensor 213, and the speed sensor 214, and the forward image captured by the imaging device 14. And.
  • the computer 320 includes a GPS information acquisition unit 22, a position / velocity vector calculation unit 24, an azimuth determination unit 224, a determined azimuth angle, a detection value from the gyro sensor 213, a detection value from the speed sensor 214, and a calculation A trajectory calculation unit 326 that calculates the trajectory of the host vehicle at a predetermined time based on the speed vector, an image acquisition unit 28, a projection image generation unit 30, a local map generation unit 32, and a local map storage unit 34 are provided. ing.
  • the trajectory calculation unit 326 accumulates speed vectors for a predetermined time and tracks the position of the host vehicle at the predetermined time, as in the first embodiment, when the GPS positioning status has not deteriorated. Is calculated. In addition, when the GPS positioning status is deteriorated, the trajectory calculation unit 326 is detected by the yaw rate and speed sensor 214 for a predetermined time detected by the gyro sensor 213, as in the second embodiment. The speeds for the predetermined time are integrated. The trajectory calculation unit 326 calculates the trajectory of the position of the host vehicle at the predetermined time based on the accumulated result and the azimuth angle in the traveling direction determined by the azimuth determination unit 224.
  • trajectory may always be estimated using the GPS receiving unit 12, the magnetic sensor 212, the gyro sensor 213, and the speed sensor 214 regardless of the positioning situation.
  • the local map generation device calculates the trajectory of the moving body by accumulating the velocity vectors calculated based on the Doppler frequency, and the road surface projection image acquired for each point on the trajectory of the host vehicle is Record each area on the map.
  • generation apparatus can produce
  • the local map generation device estimates the azimuth angle of the host vehicle from the magnetic sensor and integrates the yaw rate and speed detected by the gyro sensor and the speed sensor, Is calculated.
  • the local map generation device records road surface projection images acquired for each point on the trajectory of the host vehicle in each region on the local map. Thereby, the local map production
  • the global map generation device 410 includes a GPS reception unit 12, an imaging device 14, a reception signal from a GPS satellite received by the GPS reception unit 12, and imaging.
  • a local map is generated based on the forward image captured by the device 14, the local maps are combined to generate a global map, and information on the periphery of the host vehicle obtained from the global map is output to the driving support device 18.
  • a computer 420 a computer 420.
  • the computer 420 is represented by function blocks according to a global map generation processing routine and a driving support control processing routine described below. As shown in FIG. 15, the computer 420 calculates the GPS information acquisition unit 22, the position / velocity vector calculation unit 24, the trajectory calculation unit 26, the image acquisition unit 28, and the projection image generation unit 30.
  • a local map generating unit 432 that generates a local map recording a projection image along a trajectory for a predetermined time, and records GPS information obtained at the start point of the trajectory (the origin of the local map) in the local map;
  • the local map storage unit 34, the local map search unit 36, and the local map collation that collates the generated local map with the retrieved local map and outputs the relative position of the two local maps based on the collation result.
  • the calmap composition unit 440 the GPS information acquisition unit 442 that acquires GPS information from each of the generated local map and the searched local map, the GPS information of the two acquired local maps, and the relative of the two local maps
  • a position estimation unit 444 that estimates an absolute position based on the position
  • a global map generation unit 446 that records a combined local map on the global map based on the estimated absolute position
  • a global map storage unit 448 that stores a combined local map on the global map based on the estimated absolute position.
  • the local map generation unit 432 generates a local map as in the first embodiment. Further, the local map generation unit 432 further records the GPS information as shown in FIG. 16 acquired by the GPS information acquisition unit 22 with respect to the start point in the trajectory of the host vehicle in the local map.
  • the point where GPS information is recorded need not be the origin of the local map (the start point of the trajectory), and may be recorded every measurement, at regular intervals, or at a specific location. If a plurality of local maps can be collated and the global accuracy can be improved, the data type and holding frequency are not limited.
  • the local map matching unit 438 performs matching based on the projection image recorded on the local map between the generated local map and the searched local map, and calculates the relative position between the local maps based on the matching result.
  • the data is output to the local map composition unit 440.
  • the local map synthesis unit 440 synthesizes the generated local map and the searched local map in a state of matching based on the collation result by the local map collation unit 438.
  • the relative positional relationship of the periphery is recorded with high accuracy within a certain range.
  • a plurality of local maps are prepared by running a plurality of times as shown in FIGS. Even if there is a deviation in the starting point or range of the generated multiple local maps, the relative positional relationship between the recorded information is correct. Therefore, as shown in FIG. It becomes possible to acquire the relative positional relationship between them with high accuracy.
  • a positioning result using a general GPS has an error of several meters to several tens of meters in the city center.
  • high accuracy can be achieved by using the relative positional relationship of a plurality of local maps and the GPS information at that time to obtain the optimum value of the positioning result.
  • Positioning using normal GPS cannot be performed unless there are four or more visible satellites.
  • the reflected wave becomes the main wave, there is a possibility that the positioning error will be increased due to the large influence.
  • the number of satellites can be virtually increased by using the GPS information obtained at other points at the time of another travel using the relative positional relationship. Further, since satellites at different times can be used, there is no possibility that the arrangement of the satellites is biased, and the accuracy may be improved. In addition, since the number of satellites increases, it is easy to eliminate satellites with large errors, and accuracy can be improved.
  • the GPS information acquisition unit 442 acquires GPS information recorded for the origin from each of the generated local map and the searched local map.
  • the position estimation unit 444 estimates the absolute position of the origin of the local map generated at the current time based on the acquired GPS information of the two local maps and the relative position of the two local maps.
  • a formula is established for each pseudo-range of each acquired GPS satellite, and a formula for the number of collected data is established. Since the clock bias, which is the clock error of the receiver, differs for each reception timing, it is necessary to estimate the clock bias for the number of stored data. Since the unknowns are (Xv, Yv, Zv) and n Cb, the equation can be solved if the number of 3 + n satellites is secured by accumulation. However, it is usually not realistic to always measure at the same point in the moving body.
  • the above equation (13) is the same as the above equation (11) because the unknown is 3 + n because the relative position between the positions at each time is obtained. Therefore, the same situation as repeatedly measuring at the same point can be realized.
  • FIG. 20 shows the optimum position estimation using the relative position relationship between the origins of the collated local maps and the GPS information at that time.
  • this optimal position estimation information necessary for the above equation (13) is acquired from the previous stage, and optimal estimation is performed.
  • the estimated parameters are 3 + n of the three-dimensional position and the clock bias of the receiver at each time.
  • the parameters can be reduced depending on the height limit and the performance of the receiver.
  • the position estimation is performed using the GPS information of each point using the relative positional relationship, the number of parameters for the optimum position estimation and the method for obtaining the optimum solution are not particularly limited.
  • the number of satellites can be increased virtually, so that the accuracy of positioning is expected to be improved by the effect of averaging. Not only the effect of averaging but also the number of satellites is increasing, so the combination of satellites necessary for positioning can be changed in various ways.
  • a specific satellite is used for positioning and the positioning result is different from other combinations, there is a high possibility that the signal from the satellite is multipath. Since it is easy to determine multipath by accumulation, accuracy can be expected by positively performing multipath determination and not using satellite information that is considered multipath. Further, when obtaining a positioning solution, correction information or base station data may be used.
  • the position estimation unit 444 performs local generation generated at the current time according to the above equation (13) based on the GPS information of two or more combined local maps and the relative positions of the two local maps. Estimate the absolute position with respect to the map origin. When the number of unknowns is four and the number of satellites is five or more, the position estimation unit 444 estimates the absolute position for each combination of satellites, and performs multipath determination based on the estimated absolute position. The information of the satellite determined as multipath is removed, and the absolute position of the origin of the local map generated at the present time is estimated again. When the unknown number is 3 + n, multipath determination can be performed if there are 4 + n satellites. The estimation of the absolute position may be performed for the origin of the searched local map, or may be performed for each of the origins of two or more local maps.
  • the global map generation unit 446 records the synthesized local map in an area determined according to the absolute position estimated by the position estimation unit 444 on the global map expressed in the absolute coordinate system.
  • the global map storage unit 448 stores the global map generated by the global map generation unit 446.
  • the computer 420 further acquires map information around the host vehicle from the global map storage unit 448 based on the position of the host vehicle calculated by the position calculation unit 51, and obtains map information to be output to the driving support device 18.
  • Part 450 is provided.
  • the map information acquisition unit 450 uses the position of the host vehicle calculated by the position calculation unit 51 as a key, and maps information (information recorded in the local map) recorded from the global map storage unit 448 around the position of the host vehicle. ) And output to the driving support device 18.
  • the computer 420 executes the global map generation processing routine shown in FIGS.
  • step 100 the computer 420 executes the local map generation process shown in FIG. 10 to generate a local map related to the periphery of the locus on which the host vehicle is traveling.
  • step 458 the computer 420 records the GPS information acquired for the start point of the locus in step 130 in the generated local map.
  • step 102 the computer 420 searches the local map storage unit 34 for a local map generated around the position using the position of the origin of the local map generated in step 100 as a key. .
  • the computer 420 translates the local map generated in step 100 by a set translation amount ⁇ d.
  • the computer 420 calculates a correlation value with the local map acquired in step 102.
  • step 110 the computer 420 determines whether the correlation value calculated in step 108 is greater than the maximum correlation value. If it is less than or equal to the maximum value, the computer 420 proceeds to step 114. On the other hand, if the calculated correlation value is larger than the maximum correlation value, in step 112, the computer 420 updates the maximum correlation value and proceeds to step 114.
  • step 114 the computer 420 determines whether or not the parallel movement amount ⁇ d is within a predetermined search range. If within the search range, in step 116, the computer 420 updates the parallel movement amount ⁇ d to ⁇ d + ⁇ d, and returns to step 106. On the other hand, when the parallel movement amount ⁇ d exceeds the predetermined search range, the computer 420 proceeds to step 118 and determines the parallel movement amount having the maximum correlation value.
  • step 460 the computer 420 obtains the relative position of the origin of the local map acquired in step 102 with respect to the origin of the current local map, based on the translation amount determined in step 118.
  • the computer 420 synthesizes the local map generated in step 100 with the local map acquired in step 102 in a state where the local map is translated by the set parallel movement amount ⁇ d.
  • the computer 420 acquires the GPS information recorded in step 458 and the GPS information of the origin recorded in the local map acquired in step 102.
  • the computer 420 estimates the absolute position of the origin of the local map generated in step 100 based on the relative position calculated in step 460 and the GPS information acquired in step 462. To do.
  • step 466 the computer 420 records the local map synthesized in step 460 on the global map based on the absolute position estimated in step 464, and ends the global map generation processing routine. .
  • the driving support control processing routine shown in FIG. 23 is repeatedly executed by the computer 420.
  • step 470 the computer 420 acquires information on a plurality of GPS satellites from the GPS receiver 12, and calculates and acquires GPS pseudorange data, Doppler frequencies, and GPS satellite position coordinates of the plurality of GPS satellites. To do.
  • step 472 the computer 420 calculates the position of the host vehicle according to the above equations (1) to (3) using the GPS pseudorange data of each GPS satellite.
  • step 474 the computer 420 acquires surrounding map information from the global map storage unit 448 using the position of the host vehicle calculated in step 472 as a key.
  • step 476 the computer 420 outputs the map information acquired in step 474 to the driving support device 18 and ends the driving support control processing routine.
  • the global map generating apparatus generates a local map with high accuracy, and synthesizes a plurality of local maps by collating road surface projection images recorded in the local map.
  • the global map generation apparatus records a plurality of synthesized local maps on a global map represented by an absolute coordinate system according to the estimated absolute position. Thereby, the global map generation apparatus can generate a highly accurate global map with a simple configuration.
  • the constraint is performed at an absolute position that is a common coordinate system. Since the accuracy of normal navigation GPS is at most several meters, absolute accuracy is low in a single run. On the other hand, since the relative accuracy of the local map generated by repeatedly traveling is high, the relative positional relationship between the plurality of local maps can be acquired with high accuracy. If the relative position between the local maps can be acquired, the accuracy is improved by optimizing the absolute position using the relative positional relationship as a constraint.
  • GPS information when each local map is generated can be collected, and positioning can be performed with a plurality of data. By doing so, the number of satellites increases, it becomes easier to eliminate satellites with larger errors, and higher accuracy of the absolute position can be expected. In this way, the global map generation device can generate a global map with higher accuracy than the GPS positioning accuracy due to repeated effects.
  • the vehicle travels with a dedicated measuring vehicle and extracts necessary information manually.
  • the global map generation device is a sensor mounted on a general vehicle, and can generate a map with the same accuracy as a highly accurate measurement vehicle, thus reducing the cost of generating the map. be able to.
  • the global map generation device uses data that can be acquired by ordinary vehicles and can always measure the data, so it is easy to update the map with high accuracy and reduce the maintenance cost of the map. it can.
  • the global map generation device uses a highly accurate trajectory to generate a local map in which relative accuracy is ensured, and relative positions between the local maps are obtained by aligning a plurality of local maps obtained by repeated driving. Get the position with high accuracy.
  • the global map generation device can ensure absolute accuracy using the relative positional relationship as a constraint.
  • the global map generation device can integrate the GPS information at different points obtained while traveling by estimating the relative position between the local maps and mediating the relative position. Therefore, the global map generation device does not need to acquire GPS information at the same point.
  • the global map generation device can increase the number of satellites in a simulated manner by using GPS information for a plurality of times. It becomes possible and the positioning rate is improved.
  • the global map generation device estimates the absolute position by performing optimal estimation based on the positioning result recorded in each of the synthesized local maps. This is different from the embodiment.
  • the computer 520 of the global map generation apparatus 510 includes a GPS information acquisition unit 22, a position / velocity vector calculation unit 24, a trajectory calculation unit 26, and an image acquisition unit. 28, a projection image generation unit 30, a local map generation unit 32, a local map storage unit 34, a local map search unit 36, a local map collation unit 438, a local map synthesis unit 440, and a generated local map And a position estimation unit 544 that estimates an absolute position based on a positioning result recorded for each of the searched local maps, a global map generation unit 446, a global map storage unit 448, and a map information acquisition unit 450.
  • a position estimation unit 544 that estimates an absolute position based on a positioning result recorded for each of the searched local maps, a global map generation unit 446, a global map storage unit 448, and a map information acquisition unit 450.
  • the local map generation unit 32 generates a local map in which projection images are recorded along the calculated trajectory for a predetermined time, and the position (positioning result) calculated by the position calculation unit 51 for each point of the trajectory. Record in local map.
  • the position estimation unit 544 is generated by performing optimal estimation using, for example, the least square method based on the positioning result of each point recorded for each of the generated local map and the searched local map. The absolute position of each point on the local map trajectory is estimated.
  • the global map generating apparatus performs the optimum estimation based on the relative position between the local maps and the positioning result recorded on the local map.
  • generation apparatus can estimate an absolute position with a sufficient precision, and can produce
  • the global map generation device may record the positioning result for the origin or specific point of the locus on the local map, and optimally estimate the absolute position based on the positioning result.
  • the local map generation device or the global map generation device has been described as an example in which the positioning result is recorded for the origin of the locus on the local map.
  • the present invention is not limited to this.
  • the local map generation device or the global map generation device may record positioning results for other specific points of the locus on the local map.
  • the local map generation device or the global map generation device may record the positioning result for each point of the locus on the local map.
  • the local map generation device or the global map generation device may record only the result that can be measured with high accuracy by interference positioning such as RTK-GPS.
  • the local map generation device or the global map generation device may record the position of the host vehicle obtained by integrating the GPS and various sensors.
  • the local map generation device or the global map generation device may perform positioning using a fixed point that can always be measured by a beacon or the like. Further, the local map generation device or the global map generation device may perform positioning using a specific point obtained from the image. In this case, the local map generation device or the global map generation device provides an image collation database that stores images by associating accurate position information, and collates a captured image with an image in the image collation database, What is necessary is just to measure.
  • the local map generation device or the global map generation device may estimate the distance to the object by stereo using a plurality of imaging devices, and use the value as environment information. Further, the local map generation device or the global map generation device may directly measure the distance to an object existing in the vicinity using a laser radar. Further, the local map generation device or the global map generation device may acquire surrounding environment information by combining an imaging device and a laser.
  • a local map storage unit and a global map storage unit may be provided in a server that can communicate with the vehicle. As a result, even if the host vehicle travels for the first time, the local map generation device or the global map generation device can use the map information as long as the other vehicle travels.
  • the global map generation apparatus estimates the absolute position when generating the global map has been described as an example, but the present invention is not limited to this.
  • the technique for estimating the absolute position described in the fourth embodiment or the fifth embodiment may be applied to the local map generation device according to the first to third embodiments. .
  • the absolute position accuracy of a specific point on the local map can be improved, so the accuracy of the local map described in the relative position is improved, and not only the relative position accuracy but also the absolute position accuracy can be improved. It becomes possible.
  • the local map generation device or the global map generation device has been described by way of example of calculating the velocity vector, but the present invention is not limited to this.
  • the local map generation device or the global map generation device may calculate the azimuth angle of the host vehicle, detect the speed of the host vehicle, and use speed information including the azimuth angle and the speed of the host vehicle.
  • the local map generation device or the global map generation device may calculate the locus from the azimuth angle and speed of the host vehicle for a predetermined time.
  • the global map generation device may calculate the trajectory of the host vehicle without using the GPS information, or calculate the trajectory of the host vehicle using the GPS information and various sensor outputs.
  • the local map generation device or the global map generation device may calculate the position of the host vehicle using a combined navigation result obtained by combining a GPS measurement value, a gyroscope, and a speed sensor.
  • generation apparatus and global map generation apparatus of this invention are mounted is not limited to a vehicle.
  • the local map generation device or the global map generation device may be mounted on the robot, or the local map generation device or the global map generation device may be configured as a portable terminal so that a pedestrian can carry it.
  • the local map generation device and the global map generation device may be realized by a server, not by a mobile body, or may be mounted on a device on a road or other mobile body around.
  • the image acquisition device mounted on the mobile body, the GPS receiver, the magnetic ship sensor, the gyro sensor, the information acquisition device that acquires various information from the speed sensor, and the information acquisition device mounted on the mobile body What is necessary is just to comprise the local map production
  • a computer-readable medium is a computer-readable medium that includes a computer and a local map generation device that includes an environmental information acquisition unit that acquires environmental information around the mobile unit as viewed from the installation position. For each of the GPS satellites transmitted from each of a plurality of GPS satellites, information on the distance between each of the GPS satellites and the mobile object, and the GPS satellites.
  • a satellite information acquisition unit for acquiring satellite information including information on the relative speed of the mobile body with respect to each, a velocity vector including a traveling direction of the mobile body based on the satellite information acquired by the satellite information acquisition unit, or A calculating unit that calculates speed information indicating a speed of the moving body and a traveling direction of the moving body, and the front of the moving body calculated by the calculating unit;
  • a trajectory calculation unit that calculates the trajectory of the position of the moving object by integrating speed information, and the environment information acquisition unit acquires each point on the trajectory of the position of the moving object calculated by the trajectory calculation unit.
  • the environmental information is determined on a local map including a trajectory of the position of the moving object, which is determined based on the traveling direction of the moving object at each point on the trajectory and the installation position and orientation of the environment information acquisition unit. It is a computer readable medium which memorize
  • a computer-readable medium is a computer-readable medium that includes a computer and a local map generation device that includes an environmental information acquisition unit that acquires environmental information around the mobile unit as viewed from the installation position.
  • An angle estimation unit integrating the movement state of the moving body detected by the movement state detection unit, and based on the accumulated movement state of the moving body and the azimuth angle estimated by the azimuth angle estimation unit
  • a trajectory calculation unit that calculates a trajectory of the position of the moving object, and each point on the trajectory of the position of the moving object calculated by the trajectory calculation unit by the environment information acquisition unit.
  • the obtained environment information is determined based on the traveling direction of the moving body at each point on the locus and the position and orientation of the environment information acquisition unit, and includes a local locus including the locus of the position of the moving body. It is a computer-readable medium which memorize

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Automation & Control Theory (AREA)
  • Computer Graphics (AREA)
  • Theoretical Computer Science (AREA)
  • Navigation (AREA)
  • Instructional Devices (AREA)

Abstract

 撮像装置(14)は前方画像を撮像し、GPS情報取得部(22)は、ドップラー周波数を含む衛星情報を取得する。位置・速度ベクトル算出部(24)は、ドップラー周波数を用いて速度ベクトルを算出する。軌跡算出部(26)は、自車両の位置の軌跡を算出する。投影画像生成部(30)は、前方画像から路面に投影した投影画像を生成する。ローカルマップ生成部(32)は、自車両の軌跡上の各点について得られた路面画像を、軌跡上の各点における移動体の進行方向と、撮像装置(14)の設置位置及び姿勢とに基づいて定められる、ローカルマップの各領域に記録する。これにより、局所地図生成装置は、簡易な構成で、精度の高い地図を生成することができるようにする。

Description

局所地図生成装置、局所地図生成システム、グローバル地図生成装置、グローバル地図生成システム、及びプログラム
 本発明は、局所地図生成装置、局所地図生成システム、グローバル地図生成装置、グローバル地図生成システム、及びプログラムに係り、特に、移動体の周辺の環境情報を記録した局所地図、またはグローバル地図を生成する局所地図生成装置、局所地図生成システム、グローバル地図生成装置、グローバル地図生成システム、及びプログラムに関する。
 従来、計測された位置とビデオカメラからアフィン変換して生成された路面画像に対し、複数車線のデータを統合するときなどに生じる路面画像の位置ずれを考慮し、評価された位置精度に応じて精度が高いパスを基準パスとして、路面画像を統合する路面表示地図生成方法が知られている(特開2010-175756号公報)。
 しかしながら、上記の特開2010-175756号公報に記載の技術は、高精度な位置と高精度な軌跡が予め取得できる計測車両を想定したものであり、一般の車両には適用できない、という問題がある。また、路面マークの位置合わせについても基準パスを想定し、精度が高いほうに合わせる手法を用いているが、これは高精度計測車両であれば可能であるものである。通常のナビ用GPSでは、特に都心部において数10mの測位誤差が生じる可能性があり、郊外路でも数mの精度であるため、基準パスへ位置を合わせようとしても、精度は向上しない、という問題がある。
 本発明は、上記の問題点を解決するためになされたものである。
 上記目的を達成するために、本発明の第1の態様に係る局所地図生成装置は、移動体に搭載され、かつ、設置位置から見た前記移動体の周辺の環境情報を取得する環境情報取得部と、複数のGPS衛星の各々から送信された前記GPS衛星の各々の位置に関する情報、前記GPS衛星の各々と前記移動体との距離に関する情報、及び前記GPS衛星の各々に対する前記移動体の相対速度に関する情報を含む衛星情報を取得する衛星情報取得部と、前記衛星情報取得部により取得された前記衛星情報に基づいて、前記移動体の進行方向を含む速度ベクトル、又は前記移動体の速度及び前記移動体の進行方向を示す速度情報を算出する算出部と、前記算出部により算出された前記移動体の前記速度情報を積算して、前記移動体の位置の軌跡を算出する軌跡算出部と、前記軌跡算出部によって算出された前記移動体の位置の軌跡上の各点について前記環境情報取得部によって取得された前記環境情報を、前記軌跡上の各点における前記移動体の進行方向と、前記環境情報取得部の設置位置及び姿勢とに基づいて定められる、前記移動体の位置の軌跡を含む局所地図上の各領域に記録する局所地図生成部と、を含んで構成されている。
 本発明の第2の態様に係るプログラムは、コンピュータを、移動体に搭載され、かつ、設置位置から見た前記移動体の周辺の環境情報を取得する環境情報取得部を含む局所地図生成装置の各部として機能させるためのプログラムであって、複数のGPS衛星の各々から送信された前記GPS衛星の各々の位置に関する情報、前記GPS衛星の各々と前記移動体との距離に関する情報、及び前記GPS衛星の各々に対する前記移動体の相対速度に関する情報を含む衛星情報を取得する衛星情報取得部、前記衛星情報取得部により取得された前記衛星情報に基づいて、前記移動体の進行方向を含む速度ベクトル、又は前記移動体の速度及び前記移動体の進行方向を示す速度情報を算出する算出部、前記算出部により算出された前記移動体の前記速度情報を積算して、前記移動体の位置の軌跡を算出する軌跡算出部、及び前記軌跡算出部によって算出された前記移動体の位置の軌跡上の各点について前記環境情報取得部によって取得された前記環境情報を、前記軌跡上の各点における前記移動体の進行方向と、前記環境情報取得部の設置位置及び姿勢とに基づいて定められる、前記移動体の位置の軌跡を含む局所地図上の各領域に記録する局所地図生成部として機能させるためのプログラムである。
 本発明の第1の態様及び第2の態様によれば、環境情報取得部によって、設置位置から見た移動体の周辺の環境情報を取得する。衛星情報取得部によって、複数のGPS衛星の各々から送信されたGPS衛星の各々の位置に関する情報、GPS衛星の各々と移動体との距離に関する情報、及びGPS衛星の各々に対する移動体の相対速度に関する情報を含む衛星情報を取得する。
 そして、算出部によって、衛星情報取得部により取得され衛星情報に基づいて、移動体の進行方向を含む速度ベクトル、又は移動体の速度及び移動体の進行方向を示す速度情報を算出する。軌跡算出部によって、算出部により算出された移動体の速度情報を積算して、移動体の位置の軌跡を算出する。
 そして、局所地図生成部によって、軌跡算出部によって算出された移動体の位置の軌跡上の各点について環境情報取得部によって取得された環境情報を、軌跡上の各点における移動体の進行方向と、環境情報取得部の設置位置及び姿勢とに基づいて定められる、移動体の位置の軌跡を含む局所地図上の各領域に記録する。
 このように、速度情報を積算して移動体の軌跡を算出し、移動体の軌跡上の各点について取得された周辺の環境情報を、局所地図上の各領域に記録することにより、簡易な構成で、精度の高い地図を生成することができる。
 本発明の第3の態様に係る局所地図生成装置は、移動体に搭載され、かつ、設置位置から見た前記移動体の周辺の環境情報を取得する環境情報取得部と、前記移動体の運動状態を検出する運動状態検出部と、前記運動状態検出部により検出された前記移動体の運動状態に基づいて、前記移動体の基準方向の方位角を推定する方位角推定部と、前記運動状態検出部により検出された前記移動体の運動状態を積算し、前記積算された前記移動体の運動状態と、前記方位角推定部によって推定された前記方位角とに基づいて、前記移動体の位置の軌跡を算出する軌跡算出部と、前記軌跡算出部によって算出された前記移動体の位置の軌跡上の各点について前記環境情報取得部によって取得された前記環境情報を、前記軌跡上の各点における前記移動体の進行方向と、前記環境情報取得部の設置位置及び姿勢とに基づいて定められる、前記移動体の位置の軌跡を含む局所地図上の各領域に記録する局所地図生成部と、を含んで構成されている。
 本発明の第4の態様に係るプログラムは、コンピュータを、移動体に搭載され、かつ、設置位置から見た前記移動体の周辺の環境情報を取得する環境情報取得部を含む局所地図生成装置の各部として機能させるためのプログラムであって、前記移動体の運動状態を検出する運動状態検出部により検出された前記移動体の運動状態に基づいて、前記移動体の基準方向の方位角を推定する方位角推定部、前記運動状態検出部により検出された前記移動体の運動状態を積算し、前記積算された前記移動体の運動状態と、前記方位角推定部によって推定された前記方位角とに基づいて、前記移動体の位置の軌跡を算出する軌跡算出部、及び前記軌跡算出部によって算出された前記移動体の位置の軌跡上の各点について前記環境情報取得部によって取得された前記環境情報を、前記軌跡上の各点における前記移動体の進行方向と、前記環境情報取得部の設置位置及び姿勢とに基づいて定められる、前記移動体の位置の軌跡を含む局所地図上の各領域に記録する局所地図生成部として機能させるためのプログラムである。
 本発明の第3の態様及び第4の態様によれば、環境情報取得部によって、設置位置から見た移動体の周辺の環境情報を取得する。運動状態検出部によって、移動体の運動状態を検出する。
 そして、方位角推定部によって、運動状態検出部により検出された移動体の運動状態に基づいて、移動体の基準方向の方位角を推定する。軌跡算出部によって、運動状態検出部により検出された移動体の運動状態を積算し、積算された移動体の運動状態と、方位角推定部によって推定された方位角とに基づいて、移動体の位置の軌跡を算出する。
 そして、局所地図生成部によって、軌跡算出部によって算出された移動体の位置の軌跡上の各点について環境情報取得部によって取得された環境情報を、軌跡上の各点における移動体の進行方向と、環境情報取得部の設置位置及び姿勢とに基づいて定められる、移動体の位置の軌跡を含む局所地図上の各領域に記録する。
 このように、移動体の方位角を推定すると共に運動状態を積算して移動体の軌跡を算出し、移動体の軌跡上の各点について取得された周辺の環境情報を、局所地図上の各領域に記録することにより、簡易な構成で、精度の高い地図を生成することができる。
 本発明の第5の態様に係るグローバル地図生成装置は、上記の局所地図生成装置と、前記生成された複数の局所地図を記憶した局所地図記憶手段と、複数の局所地図間で、前記局所地図に記録された前記環境情報を照合し、前記環境情報を照合させた状態で前記複数の局所地図を合成する合成手段と、前記合成手段によって合成された前記複数の局所地図の前記軌跡上の少なくとも1点の絶対位置を推定する位置推定手段と、前記位置推定手段によって推定された絶対位置に基づいて、絶対座標系で表わされるグローバル地図上に、前記合成手段によって合成された前記複数の局所地図を記録するグローバル地図生成手段と、を含んで構成されている。
 本発明の第5の態様によれば、局所地図生成装置によって局所地図を生成し、局所地図記憶手段は、生成された複数の局所地図を記憶する。
 そして、合成手段によって、複数の局所地図間で、局所地図に記録された環境情報を照合し、環境情報を照合させた状態で複数の局所地図を合成する。位置推定手段によって、合成手段によって合成された複数の局所地図の軌跡上の少なくとも1点の絶対位置を推定する。
 そして、グローバル地図生成手段によって、位置推定手段によって推定された絶対位置に基づいて、絶対座標系で表わされるグローバル地図上に、合成手段によって合成された複数の局所地図を記録する。
 このように、精度の高い局所地図を生成し、局所地図に記録された環境情報を照合して複数の局所地図を合成し、絶対座標系で表わされるグローバル地図上に、合成された複数の局所地図を記録することにより、簡単な構成で、精度の高いグローバル地図を生成することができる。
 本発明の第6の態様に係るグローバル地図生成装置は、上記の衛星情報取得手段を含む局所地図生成装置と、前記生成された局所地図を記憶した局所地図記憶手段と、複数の局所地図間で、前記局所地図に記録された前記環境情報を照合し、前記環境情報を照合させた状態で前記複数の局所地図を合成する合成手段と、前記合成手段によって合成された前記複数の局所地図の前記軌跡上の少なくとも1点の絶対位置を推定する位置推定手段と、前記位置推定手段によって推定された絶対位置に基づいて、絶対座標系で表わされるグローバル地図上に、前記合成手段によって合成された前記複数の局所地図を記録するグローバル地図生成手段と、を含むグローバル地図生成装置であって、前記局所地図生成手段は、前記軌跡算出手段によって算出された前記移動体の位置の軌跡上の前記少なくとも1点について、前記衛星情報取得手段によって取得された前記衛星情報を前記局所地図に記録し、前記位置推定手段は、前記複数の局所地図の照合結果に基づいて求められる前記複数の局所地図の各々の前記少なくとも1点間の相対位置と、前記複数の局所地図の各々に記録された前記衛星情報とに基づいて、前記合成された前記複数の局所地図の前記軌跡上の前記少なくとも1点の絶対位置を推定することを特徴としている。
 本発明の第6の態様によれば、局所地図生成装置によって局所地図を生成し、局所地図記憶手段は、記生成された複数の局所地図を記憶する。このとき、局所地図生成手段は、軌跡算出手段によって算出された移動体の位置の軌跡上の少なくとも1点について、衛星情報取得手段によって取得された衛星情報を局所地図に記録する。
 そして、合成手段によって、複数の局所地図間で、局所地図に記録された環境情報を照合し、環境情報を照合させた状態で複数の局所地図を合成する。位置推定手段によって、複数の局所地図の照合結果に基づいて求められる複数の局所地図の各々の少なくとも1点間の相対位置と、複数の局所地図の各々に記録された衛星情報とに基づいて、合成された複数の局所地図の軌跡上の少なくとも1点の絶対位置を推定する。
 そして、グローバル地図生成手段によって、位置推定手段によって推定された絶対位置に基づいて、絶対座標系で表わされるグローバル地図上に、合成手段によって合成された複数の局所地図を記録する。
 このように、精度の高い局所地図を生成し、局所地図に記録された環境情報を照合して複数の局所地図を合成し、絶対座標系で表わされるグローバル地図上に、合成された複数の局所地図を記録することにより、簡単な構成で、精度の高いグローバル地図を生成することができる。
 なお、本発明のプログラムを記憶するコンピュータ可読媒体は、特に限定されず、ハードディスクであってもよいし、ROMであってもよい。また、CD-ROMやDVDディスク、光磁気ディスクやICカードであってもよい。更にまた、該プログラムを、ネットワークに接続されたサーバ等からダウンロードするようにしてもよい。
 以上説明したように、本発明の一態様である局所地図生成装置及びプログラムは、速度情報を積算して、あるいは、移動体の方位角を推定すると共に運動状態を積算して、移動体の軌跡を算出し、移動体の軌跡上の各点について取得された周辺の環境情報を、局所地図上の各領域に記録することにより、簡易な構成で、精度の高い地図を生成することができる、という効果が得られる。
 また、本発明のグローバル地図生成装置によれば、精度の高い局所地図を生成し、局所地図に記録された環境情報を照合して複数の局所地図を合成し、絶対座標系で表わされるグローバル地図上に、合成された複数の局所地図を記録することにより、簡単な構成で、精度の高いグローバル地図を生成することができる、という効果が得られる。
第1の実施の形態に係る局所地図生成装置を示すブロック図である。 前方画像の一例を示す図である。 前方画像を路面に投影する様子を示す図である。 本発明の第1の実施の形態に係る局所地図生成装置の位置・速度ベクトル算出部を示すブロック図である。 車両座標系とカメラ座標系を説明するための図である。 車両座標系とカメラ座標系を説明するための図である。 前方画像上の位置を路面に投影したときの位置を説明するための図である。 自車両の軌跡に沿って投影画像を記録する様子を示す図である。 実際の路面とローカルマップ上の投影画像とのずれを説明するための図である。 ローカルマップのデータ構成の例を示す図である。 第1の実施の形態に係る局所地図生成装置のコンピュータにおけるローカルマップ生成処理ルーチンの内容を示すフローチャートである。 第1の実施の形態に係る局所地図生成装置のコンピュータにおけるローカルマップ生成処理の内容を示すフローチャートである。 第1の実施の形態に係る局所地図生成装置のコンピュータにおける速度ベクトル算出処理の内容を示すフローチャートである。 第2の実施の形態に係る局所地図生成装置を示すブロック図である。 第2の実施の形態に係る局所地図生成装置のコンピュータにおけるローカルマップ生成処理の内容を示すフローチャートである。 第3の実施の形態に係る局所地図生成装置を示すブロック図である。 第4の実施の形態に係るグローバル地図生成装置を示すブロック図である。 GPS情報の一例を示す図である。 複数回走行において生成されたローカルマップを示す図である。 複数回走行において生成されたローカルマップを示す図である。 複数回走行において生成されたローカルマップを照合した様子を示す図である。 複数回走行において生成されたローカルマップの各々の原点で取得したGPS情報を用いて絶対位置を推定するための方法を説明するための図である。 第4の実施の形態に係るグローバル地図生成装置のコンピュータにおけるグローバルマップ生成処理ルーチンの内容を示すフローチャートである。 第4の実施の形態に係るグローバル地図生成装置のコンピュータにおけるグローバルマップ生成処理ルーチンの内容を示すフローチャートである。 第4の実施の形態に係るグローバル地図生成装置のコンピュータにおける運転支援制御処理ルーチンの内容を示すフローチャートである。 第5の実施の形態に係るグローバル地図生成装置を示すブロック図である。
 以下、図面を参照して本発明の実施の形態を詳細に説明する。なお、第1の実施の形態では、車両に搭載され、GPS衛星から発信されたGPS情報を取得すると共に、自車両の周辺の画像を記録したローカルマップを生成する局所地図生成装置に、本発明を適用した場合を例に説明する。
 図1に示すように、第1の実施の形態に係る局所地図生成装置10は、GPS衛星からの電波を受信するGPS受信部12と、自車両の前方を撮像する撮像装置14と、GPS受信部12によって受信されたGPS衛星からの受信信号、及び撮像装置14によって撮像された前方画像に基づいて、自車両の位置を原点とした座標系で表わされるローカルマップを生成すると共に、過去に生成された周辺のローカルマップを運転支援装置18へ出力するコンピュータ20と、を備えている。なお、撮像装置14が、環境情報取得部の一例である。
 GPS受信部12は、複数のGPS衛星からの電波を受信して、受信した全てのGPS衛星からの受信信号から、GPS衛星の情報を取得し、コンピュータ20に出力する。
 撮像装置14は、図2Aに示すような前方画像を繰り返し撮像し、コンピュータ20へ出力する。
 運転支援装置18は、入力されたローカルマップに基づいて、前方の制御対象との位置関係を取得し、カーブ警報や一時停止支援などの運転支援を行う。
 コンピュータ20は、CPU、後述するローカルマップ生成処理ルーチンを実現するためのプログラムを記憶したROM、データを一時的に記憶するRAM、及びHDD等の記憶装置で構成されている。
 コンピュータ20を以下で説明するローカルマップ生成処理ルーチンに従って機能ブロックで表す。図1に示すように、コンピュータ20は、GPS受信部12から、電波を受信した全てのGPS衛星について、GPS衛星の情報を取得すると共に、GPS擬似距離データ、ドップラー周波数、及びGPS衛星の位置座標を算出して取得するGPS情報取得部22と、取得したGPS情報に基づいて、各時刻における自車両の位置及び速度ベクトルを算出する位置・速度ベクトル算出部24と、算出された所定時間分の速度ベクトルを積算して、所定時間における自車両の位置の軌跡を算出する軌跡算出部26と、撮像装置14によって各時刻において撮像された前方画像を取得する画像取得部28と、取得した前方画像を、鳥瞰図となるように平面に投影した投影画像を生成する投影画像生成部30と、算出された所定時間の軌跡に沿って、各地点の投影画像を記録したローカルマップを生成するローカルマップ生成部32と、生成された複数のローカルマップを記憶するローカルマップ記憶部34とを備えている。なお、位置・速度ベクトル算出部24が、算出部及び位置算出部の一例である。
 GPS情報取得部22は、GPS受信部12から、電波を受信した全てのGPS衛星について、GPS衛星の情報を取得すると共に、GPS擬似距離データを取得する。また、GPS情報取得部22は、各GPS衛星から送信される信号の既知の周波数と、各GPS衛星から受信した受信信号の周波数とに基づいて、各GPS衛星からの受信信号のドップラー周波数を各々算出する。なお、ドップラー周波数は、GPS衛星と自車との相対速度による、搬送波周波数のドップラーシフト量を観測したものである。
 位置・速度ベクトル算出部24は、図3に示すように、取得したGPS情報に基づいて、GPS衛星の位置及び自車両の位置を算出する位置算出部51と、取得した各GPS衛星のドップラー周波数に基づいて、各GPS衛星に対する自車両の相対速度を算出する相対速度算出部60と、取得した各GPS衛星の位置座標の時系列データに基づいて、各GPS衛星の速度ベクトルを算出する衛星速度算出部62と、算出された自車両の位置及び各GPS衛星の位置座標に基づいて、各GPS衛星の方向(角度の関係)を算出する衛星方向算出部66と、算出された相対速度、各GPS衛星の速度ベクトル、及び各GPS衛星の方向に基づいて、各GPS衛星方向の自車両の速度を算出する衛星方向自車速算出部68と、算出された複数の各GPS衛星方向の自車両の速度に基づいて、自車両の速度ベクトルを算出する自車両速度算出部70と、を含んだ構成で表すことができる。
 位置算出部51は、GPS衛星の軌道情報及びGPS衛星が電波を送信した時刻に基づいて、GPS衛星の位置座標を各々算出する。
 また、位置算出部51は、以下のように、GPS情報取得部22によって取得された各GPS衛星のGPS擬似距離データを用いて、自車両の位置を算出する。
 GPSを用いた測位では、既知であるGPS衛星の位置座標と、各GPS衛星から受信した受信信号の伝播距離である擬似距離とに基づいて、三角測量の原理に従って、自車両の位置が推定される。
 ここで、GPS衛星までの真の距離rは、以下の(1)式で表され、GPSで観測される擬似距離ρは、以下の(2)式で表される。
Figure JPOXMLDOC01-appb-M000001
 ただし、(X,Y,Z)がGPS衛星jの位置座標であり、(x,y,z)が自車両の位置座標である。sは、GPS受信部12の時計誤差による距離誤差である。
 上記(1)式、(2)式より、4つ以上のGPS衛星のGPS擬似距離データから得られる以下の(3)式の連立方程式を解くことによって、自車両の位置(x、y、z)が算出される。
Figure JPOXMLDOC01-appb-M000002
 相対速度算出部60は、ドップラー周波数とGPS衛星に対する相対速度との関係を表わす以下の(4)式に従って、各GPS衛星からの受信信号のドップラー周波数から、各GPS衛星に対する自車両の相対速度を算出する。
Figure JPOXMLDOC01-appb-M000003
 ただし、vはGPS衛星jに対する相対速度であり、D1はGPS衛星jから得られるドップラー周波数(ドップラーシフト量)である。また、Cは光速であり、Fは、GPS衛星から送信される信号の既知のL1周波数である。
 衛星速度算出部62は、取得した各GPS衛星の位置座標の時系列データから、ケプラーの方程式の微分を用いて、各GPS衛星の速度ベクトル(3次元速度VX、VY、VZ)を算出する。例えば、非特許文献(Pratap Misra and Per Enge原著 日本航海学会GPS研究会訳:“精説GPS基本概念・測位原理・信号と受信機”正陽文庫,2004.)に記載された方法を用いて、各GPS衛星の速度ベクトルを算出することができる。
 衛星方向算出部66は、算出された自車両の位置及び各GPS衛星の位置座標に基づいて、各GPS衛星jの位置と自車両の位置との角度関係(水平方向に対する仰角θ、北方向に対する方位角φ)を、各GPS衛星の方向として算出する。
 衛星方向自車速算出部68は、算出された各GPS衛星に対する自車両の相対速度v、各GPS衛星の速度ベクトル(VX、VY、VZ)、及び各GPS衛星の方向R(θ、φ)に基づいて、以下の(5)式に従って、各GPS衛星jの方向の自車両の速度Vvを算出する。
Figure JPOXMLDOC01-appb-M000004
 vは、GPS衛星jに対する自車両の相対速度(衛星方向におけるGPS衛星との相対速度)である。また、Vsは、自車方向のGPS衛星jの速度であり、Vs=R[VX,VY,VZにより求まる。また、Vvは、GPS衛星jの方向の自車速であり、vCbは、クロックバイアス変動である。
 上述したように、GPS衛星方向の自車速は、GPS衛星位置の三次元位置ではなく、GPS衛星との方位関係によってのみ算出される。GPS衛星は遥か遠方にあり、1日で地球をほぼ2周するため1分間の角度変化は0.5度である。通常、GPS衛星とGPS受信機との時計誤差は通常1msec以下であるため、GPS衛星との方位関係に大きな影響はない。また、同じくGPS衛星は遥か遠方にあるため、自車の位置決定に数100m程度の誤差が生じていたとしても、GPS衛星との方位関係に大きな影響はない。このため、擬似距離に誤差が乗りやすい状況であったとしても、GPS衛星方向の自車速は、比較的正確に算出され得る。
 自車両速度算出部70は、以下に説明するように、自車両の速度ベクトルの最適推定を行う。
 まず、自車の速度ベクトルを(Vx,Vy,Vz)としたとき、GPS衛星方向の自車両の速度Vvとの関係は以下の(6)式で表される。
Figure JPOXMLDOC01-appb-M000005
 各GPS衛星jについて得られる上記(6)式より、Vx,Vy,Vz及びCbを推定値とした、以下の(7)式で表される連立方程式が得られる。
Figure JPOXMLDOC01-appb-M000006
 電波を受信したGPS衛星が4個以上である場合に、上記(7)式の連立方程式を解くことによって、自車両の速度ベクトル(Vx,Vy,Vz)の最適値を算出する。
 軌跡算出部26は、算出された所定時間分の自車両の速度ベクトルを積算して、当該所定時間における自車両の位置の軌跡を算出する。
 投影画像生成部30は、取得した前方画像を、図2Bに示すように、平面(路面)に投影した投影画像を生成する。このとき、路面マークなどの路面構造に関する領域を検出し、検出された路面構造領域を、路面に投影した投影画像を生成する。なお、前方画像を路面に投影してから、路面構造領域を検出するようにしてもよい。
 例えば、図4A、図4Bに示すように、自車両のGPS受信部12のアンテナを中心とした車両座標系(Xv,Yv,Zv)と、撮像装置14の中心の垂線の足を原点としたカメラ座標系(Xc’,Yc’,Zc’)との対応関係を、以下の(8)式のように定義する。
Figure JPOXMLDOC01-appb-M000007
 ただし、vLateral、vLongitudinal、vHeightは、車両座標系とカメラ座標系との原点のオフセット成分を表わし、φは、XY平面における、撮像装置14の撮像方向(カメラ座標系の軸)と車両座標系の軸(自車両の進行方向)とのなす角を表わす。
 そして、図5に示すように、前方画像上の検出位置(m,n)を、以下の(9)式のように投影画像上における位置(x、y)に変換することにより、投影画像を生成する。
Figure JPOXMLDOC01-appb-M000008
 ただし、Heightは、撮像装置14の設置位置の高さを表わし、θcは、YZ平面における、撮像装置14の撮像方向(カメラ座標系の軸)と車両座標系の軸とのなす角を表わす。また、Mは前方画像の横方向のピクセル数であり、αは、前方画像の横方向の長さ[mm]である。Nは前方画像の縦方向のピクセル数であり、βは、前方画像の縦方向の長さ[mm]である。(m0,n0)は、前方画像上の撮像中心であり、fは、焦点距離である。
 ローカルマップ生成部32は、図6に示すように、算出された所定時間の軌跡に沿って、各地点における投影画像を記録したローカルマップを生成する。ここで、ローカルマップ上の車両位置(ev,nv,uv)において検出された画像上(mi,ni)の、ローカルマップ上の位置(Ui,Ei,Ni)は、以下の(10)式に従って算出される。
Figure JPOXMLDOC01-appb-M000009
 ただし、φは、ロール角であり、θはピッチ角であり、Ψはヨー角(方位角:北方向を基準とした車両進行方向の角度)である。(Zvi,Xvi,Yvi)Tは車両中心の座標系における、位置(mi,ni)を水平面に投影した位置であり、上記(8)式、(9)式から求められる。
 上記のように、カメラの視点は高精度な軌跡推定によって取得し、その軌跡に沿って路面画像を記録していくことで高精度なローカルマップを生成する。特に、GPSのドップラー周波数を用いた軌跡推定は絶対方位の推定が可能であるため、方位角のドリフトがない軌跡推定が可能であり、蓄積誤差も少ない特徴がある。
 また、アプリケーションごとに必要とされる精度及び範囲(たとえば50m先の停止線を0.3mの精度で取得したいなど)を確保できる範囲でローカルマップを生成する。本実施の形態における軌跡推定誤差は、例えば、100mあたり0.1~1mであり、その範囲であれば高精度なローカルマップ生成が期待できる。位置算出部51で得られる位置精度はさほど高くなく(数m~数10m)、絶対位置には誤差がある可能性があるため、生成されたローカルマップは、図7のように実際の道路路面マークの位置とはズレが生じる可能性がある。しかしながら、一定範囲においては蓄積誤差が少ないため、相対位置精度が高いローカルマップが得られる。
 また、ローカルマップの構成の実例を図8に示す。たとえば、ある絶対位置を基点とし、そこから軌跡でローカルマップは生成される。その時の、方位推定精度が高いGPSドップラーを利用するため、ローカルマップは軌跡の線形にそった形ではなく、直交座標系で統一することが適当であることが一つの特徴である。
 また、一つのマップ上にすべての情報が展開されてもよい。上記図8に示すように、カメラ画像から得られる情報(路面ペイントレイヤ)と軌跡の情報(軌跡情報レイヤ)とそれらから得られる統合情報(走路情報レイヤ)と、意味付けされた情報(意味情報レイヤ又は規制情報レイヤ)とが分かれた層に保持され、情報の更新やアルゴリズム改良が容易な形であることが望ましい。ただし、情報の構成方法は上記の限りではない。
 また、ローカルマップ生成部32は、更に、上記の自車両の軌跡の始点について位置算出部51によって算出された自車両の位置(絶対位置)を、ローカルマップの原点として、ローカルマップに記録する。
 ローカルマップ記憶部34は、ローカルマップ生成部32によって生成された複数のローカルマップが記憶されている。
 コンピュータ20は、更に、自車両の現在位置の周辺について生成されたローカルマップを検索するローカルマップ検索部36と、現時点で生成されたローカルマップと検索されたローカルマップとを照合し、照合結果と共に、検索されたローカルマップを運転支援装置18へ出力する照合部38とを備えている。
 ローカルマップ検索部36は、ローカルマップが生成された場合に、位置算出部51によって算出された自車両の位置をキーとして、自車両の位置の周辺について生成されたローカルマップを、ローカルマップ記憶部34から検索する。
 照合部38は、現時点で生成されたローカルマップと検索されたローカルマップとの間で、ローカルマップ上に記録された投影画像に基づく照合を行い、照合結果に基づくローカルマップ間の相対位置と共に、検索されたローカルマップを、運転支援装置18へ出力する。なお、投影画像に基づく照合では、例えば、投影画像から複数の特徴点を抽出し、特徴点間の対応付けによって、照合を行えばよい。
 また、ローカルマップの検索には、必ずしも現在生成されたローカルマップで照合をとる必要はなく、撮像1回毎の投影画像や短い距離のローカルマップ(生成途中のもの)を用いて照合してもよい。
 このとき、運転支援装置18では、入力された相対位置に基づいて、ローカルマップに記録された投影画像上の路面構造に関する領域の位置を取得し、取得した位置と、路面構造とに基づいて、カーブ警報や一時停止支援などの運転支援を行う。
 次に、第1の実施の形態に係る局所地図生成装置10の作用について説明する。
 まず、GPS受信部12によって、複数のGPS衛星から電波を繰り返し受信しているときに、コンピュータ20において、図9に示すローカルマップ生成処理ルーチンが繰り返し実行される。
 まず、ステップ100において、コンピュータ20は、ローカルマップ生成処理を実行し、自車両が走行している軌跡の周辺に関するローカルマップを生成する。
 そして、ステップ102において、コンピュータ20は、上記ステップ100で生成されたローカルマップの原点の位置(後述するステップ136で算出された自車両の位置)をキーとして、当該位置の周辺について生成されたローカルマップを、ローカルマップ記憶部34から検索して取得する。
 次のステップ104では、コンピュータ20は、上記ステップ100で生成されたローカルマップの平行移動量Δd(=(Δei,Δni,Δui))の初期値を設定する。また、コンピュータ20は、後述する相関値の最大値を初期値として0に設定する。ステップ106において、コンピュータ20は、上記ステップ100で生成されたローカルマップを、上記ステップ104又は後述するステップ116で設定された平行移動量Δdだけ平行移動させる。ステップ108で、コンピュータ20は、上記ステップ102で取得したローカルマップとの相関値を算出する。相関値の算出では、コンピュータ20は、ローカルマップに記録されている投影画像から特徴点を抽出し、ローカルマップ間で特徴点の対応付けを行い、対応付けを行った結果(例えば、対応付けられた特徴点間の距離)に基づいて、相関値を算出すればよい。
 そして、ステップ110では、コンピュータ20は、上記ステップ108で算出された相関値が、相関値の最大値より大きいか否かを判定し、最大値以下である場合には、ステップ114へ移行する。一方、算出された相関値が、相関値の最大値より大きい場合には、ステップ112において、コンピュータ20は、相関値の最大値を更新して、ステップ114へ移行する。
 ステップ114では、コンピュータ20は、平行移動量Δdが予め定められた探索範囲内であるか否かを判定する。探索範囲内であると、ステップ116において、コンピュータ20は、平行移動量Δdを、Δd+δdに更新して、上記ステップ106へ戻る。一方、平行移動量Δdが予め定められた探索範囲を超えた場合には、コンピュータ20は、ステップ118へ移行し、相関値が最大値となった平行移動量を決定する。
 そして、ステップ120において、コンピュータ20は、上記ステップ118で決定された平行移動量に基づいて、現在のローカルマップに対する、上記ステップ102で取得したローカルマップの相対位置を求める。コンピュータ20は、求められた相対位置と共に、上記ステップ102で取得したローカルマップを、運転支援装置18に出力して、ローカルマップ生成処理ルーチンを終了する。
 上記ステップ100は、図10に示すローカルマップ生成処理によって実現される。
 まず、ステップ130において、コンピュータ20は、GPS受信部12から複数のGPS衛星の情報を取得すると共に、複数のGPS衛星のGPS擬似距離データ、ドップラー周波数、及びGPS衛星の位置座標を算出して取得する。
 そして、ステップ132において、コンピュータ20は、撮像装置14によって撮像された前方画像を取得する。次のステップ134では、コンピュータ20は、上記ステップ132で取得した前方画像を、路面に投影した投影画像を生成する。
 そして、ステップ136において、コンピュータ20は、各GPS衛星のGPS擬似距離データを用いて、上記(1)~(3)式に従って、自車両の位置を算出する。
 次に、ステップ138で、コンピュータ20は、後述する速度ベクトル算出処理を実行して、速度ベクトルを推定する。そして、ステップ140において、コンピュータ20は、処理を開始してから所定時間経過したか否かを判定し、所定時間経過していない場合には、上記ステップ130へ戻る。一方、所定時間経過した場合には、コンピュータ20は、所定時間分の投影画像及び速度ベクトルが得られたと判断し、ステップ142へ移行する。
 ステップ142では、コンピュータ20は、上記ステップ138で算出された所定時間分の速度ベクトルを積算して、自車両の軌跡を算出する。そして、ステップ144において、コンピュータ20は、上記ステップ142で算出された自車両の軌跡に沿って、軌跡の各点について、上記ステップ134で生成された投影画像を記録して、ローカルマップを生成し、ローカルマップ記憶部34に格納し、リターンする。
 また、上記ステップ138は、図11に示す速度ベクトル算出処理によって実現される。
 ステップ150において、コンピュータ20は、上記(4)式に従って、各GPS衛星からの受信信号のドップラー周波数から、各GPS衛星に対する自車両の相対速度vを算出する。
 次に、ステップ152で、コンピュータ20は、取得した各GPS衛星の位置座標の時系列データから、ケプラーの方程式の微分を用いて、各GPS衛星の速度ベクトル(VX、VY、VZ)を算出する。
 次に、ステップ154で、コンピュータ20は、上記ステップ136で算出された自車両の位置、及び上記ステップ130で取得された各GPS衛星の位置座標に基づいて、各GPS衛星jの位置と自車両の位置との角度関係R(水平方向に対する仰角θ、北方向に対する方位角φ)を、各GPS衛星の方向として算出する。
 次に、ステップ156で、コンピュータ20は、上記ステップ150で算出された各GPS衛星に対する自車両の相対速度v、上記ステップ152で算出された各GPS衛星の速度ベクトルV(VX、VY、VZ)、及び上記ステップ154で算出された各GPS衛星の方向R(θ、φ)に基づいて、上記(5)式に従って、各GPS衛星jの方向の自車両の速度Vvを算出する。(5)式における自車方向のGPS衛星jの速度Vsは、Vs=R[VX,VY,VZにより算出される。
 次に、ステップ158で、コンピュータ20は、上記(6)式、及び(7)式に従って、自車両の速度ベクトル(Vx,Vy,Vz)の最適値を算出して、リターンする。
 以上説明したように、第1の実施の形態に係る局所地図生成装置は、ドップラー周波数を用いて算出された速度ベクトルを積算して、自車両の軌跡を算出し、自車両の軌跡上の各点について取得された路面投影画像を、ローカルマップ上の各領域に記録する。これにより、局所地図生成装置は、簡易な構成で、精度の高いローカルマップを生成することができる。
 また、局所地図生成装置は、高精度な軌跡を利用することを特徴とするため、一定の範囲内の軌跡の異積誤差は小さい。高精度軌跡に沿って検出した路面構造情報を記録することによって、情報間の相対位置関係の精度は高くなる。そのため、絶対的な位置精度は正しくなくても、ローカルな地図精度が確保できるため、ローカルマップ内では地図の情報を有効に利用でき、適切な運転支援を行なうことができる。
 次に、第2の実施の形態に係る局所地図生成装置について説明する。なお、第1の実施の形態と同様の構成となる部分については、同一符号を付して説明を省略する。
 第2の実施の形態では、局所地図生成装置が、GPS情報を用いずに、ローカルマップを生成している点が、第1の実施の形態と異なっている。
 図12に示すように、第2の実施の形態に係る局所地図生成装置210は、撮像装置14と、自車両の進行方向の方位角を検出する磁気センサ212と、自車両のヨーレートを検出するジャイロセンサ213と、自車両の速度を検出する速度センサ214と、磁気センサ212、ジャイロセンサ213、及び速度センサ214の各検出値と、撮像装置14によって撮像された前方画像とに基づいて、ローカルマップを生成するコンピュータ220と、を備えている。なお、磁気センサ212、ジャイロセンサ213、及び速度センサ214は、運動状態検出部の一例である。
 コンピュータ220は、磁気センサ212の検出値に基づいて、自車両の進行方向の方位角を決定する方位決定部224と、決定された方位角、ジャイロセンサ213からの検出値、及び速度センサ214からの検出値に基づいて、所定時間における自車両の軌跡を算出する軌跡算出部226と、画像取得部28と、投影画像生成部30と、ローカルマップ生成部32と、ローカルマップ記憶部34とを備えている。
 軌跡算出部226は、ジャイロセンサ213によって検出された所定時間分のヨーレート及び速度センサ214によって検出された所定時間分の速度を積算する。軌跡算出部226は、積算した結果と、方位決定部224によって決定された進行方向の方位角とに基づいて、当該所定時間における自車両の位置の軌跡を算出する。
 次に、第2の実施の形態におけるローカルマップ生成処理について、図13を参照して説明する。なお、第1の実施の形態と同様の処理については同一符号を付して説明を省略する。
 まず、ステップ250において、コンピュータ220は、磁気センサ212、ジャイロセンサ213、及び速度センサ214の各々からセンサ出力を取得する。そして、ステップ132において、コンピュータ220は、撮像装置14によって撮像された前方画像を取得する。次のステップ134では、コンピュータ220は、上記ステップ132で取得した前方画像を、路面に投影した投影画像を生成する。
 そして、ステップ140において、コンピュータ220は、処理を開始してから所定時間経過したか否かを判定し、所定時間経過していない場合には、上記ステップ250へ戻る。一方、所定時間経過した場合には、コンピュータ220は、所定時間分の投影画像及びセンサ出力が得られたと判断し、ステップ252へ移行する。
 ステップ252では、コンピュータ220は、上記ステップ250で取得した磁気センサ212からの出力に基づいて、後述するステップ254で算出する軌跡の始点における自車両の進行方向の方位角を決定する。
 そして、ステップ254において、コンピュータ220は、上記ステップ250で取得した所定時間分のジャイロセンサ213及び速度センサ214からの出力と、上記ステップ252で決定された方位角とに基づいて、自車両の軌跡を算出する。そして、ステップ144において、コンピュータ220は、上記ステップ142で算出された自車両の軌跡に沿って、軌跡の各点について、上記ステップ134で生成された投影画像を記録して、ローカルマップを生成し、ローカルマップ記憶部34に格納し、リターンする。
 なお、第2の実施の形態に係る局所地図生成装置の他の構成及び作用については、第1の実施の形態と同様であるため、説明を省略する。
 以上説明したように、第2の実施の形態に係る局所地図生成装置は、磁気センサから自車両の方位角を推定すると共に、ジャイロセンサ及び速度センサによって検出されるヨーレート及び速度を積算して、自車両の軌跡を算出する。局所地図生成装置は、自車両の軌跡上の各点について取得された路面投影画像を、ローカルマップ上の各領域に記録する。これにより、局所地図生成装置は、簡易な構成で、精度の高いローカルマップを生成することができる。
 次に、第3の実施の形態に係る局所地図生成装置について説明する。なお、第1の実施の形態と同様の構成となる部分については、同一符号を付して説明を省略する。
 第3の実施の形態では、局所地図生成装置が、GPS情報から算出される速度ベクトルと、磁気センサ、ジャイロセンサ、及び速度センサからのセンサ出力とを組み合わせて、自車両の軌跡を算出している点が、第1の実施の形態と異なっている。
 図14に示すように、第3の実施の形態に係る局所地図生成装置310は、GPS受信部12、撮像装置14と、磁気センサ212と、ジャイロセンサ213と、速度センサ214と、GPS受信部12によって受信されたGPS衛星からの受信信号、磁気センサ212、ジャイロセンサ213、及び速度センサ214の各検出値、並びに撮像装置14によって撮像された前方画像に基づいて、ローカルマップを生成するコンピュータ320と、を備えている。
 コンピュータ320は、GPS情報取得部22、位置・速度ベクトル算出部24、方位決定部224と、決定された方位角、ジャイロセンサ213からの検出値、速度センサ214からの検出値、及び算出された速度ベクトルに基づいて、所定時間における自車両の軌跡を算出する軌跡算出部326と、画像取得部28と、投影画像生成部30と、ローカルマップ生成部32と、ローカルマップ記憶部34とを備えている。
 軌跡算出部326は、GPSの測位状況が劣化していない場合に、上記第1の実施の形態と同様に、所定時間分の速度ベクトルを積算して、当該所定時間における自車両の位置の軌跡を算出する。また、軌跡算出部326は、GPSの測位状況が劣化している場合には、上記第2の実施の形態と同様に、ジャイロセンサ213によって検出された所定時間分のヨーレート及び速度センサ214によって検出された所定時間分の速度を積算する。軌跡算出部326は、積算した結果と、方位決定部224によって決定された進行方向の方位角とに基づいて、当該所定時間における自車両の位置の軌跡を算出する。
 なお、特に測位状況にかかわらず、常時、GPS受信部12、磁気センサ212、ジャイロセンサ213、及び速度センサ214を用いて軌跡を推定してもよい。
 なお、第3の実施の形態に係る局所地図生成装置の他の構成及び作用については、第1の実施の形態と同様であるため、説明を省略する。
 このように、局所地図生成装置は、ドップラー周波数に基づいて算出される速度ベクトルを積算して移動体の軌跡を算出し、自車両の軌跡上の各点について取得された路面投影画像を、ローカルマップ上の各領域に記録する。これにより、局所地図生成装置は、簡易な構成で、精度の高いローカルマップを生成することができる。また、局所地図生成装置は、GPS情報が得られない場合においても、磁気センサから自車両の方位角を推定すると共に、ジャイロセンサ及び速度センサにより検出されたヨーレート及び速度を積算して、自車両の軌跡を算出する。局所地図生成装置は、自車両の軌跡上の各点について取得された路面投影画像を、ローカルマップ上の各領域に記録する。これにより、局所地図生成装置は、安定して、ローカルマップを生成することができる。
 次に、第4の実施の形態について説明する。第4の実施の形態では、絶対座標系で表わされるグローバルマップを生成するグローバル地図生成装置に、本発明を適用した場合を例に説明する。なお、第1の実施の形態と同様の構成となる部分については、同一符号を付して説明を省略する。
 図15に示すように、第4の実施の形態に係るグローバル地図生成装置410は、GPS受信部12と、撮像装置14と、GPS受信部12によって受信されたGPS衛星からの受信信号、及び撮像装置14によって撮像された前方画像に基づいて、ローカルマップを生成し、ローカルマップを合成して、グローバルマップを生成すると共に、グローバルマップから得られる自車両周辺の情報を運転支援装置18へ出力するコンピュータ420と、を備えている。
 コンピュータ420を以下で説明するグローバルマップ生成処理ルーチン及び運転支援制御処理ルーチンに従って機能ブロックで表す。コンピュータ420は、上記図15に示すように、GPS情報取得部22と、位置・速度ベクトル算出部24と、軌跡算出部26と、画像取得部28と、投影画像生成部30と、算出された所定時間の軌跡に沿って、投影画像を記録したローカルマップを生成すると共に、当該軌跡の始点(当該ローカルマップの原点)において得られたGPS情報をローカルマップに記録するローカルマップ生成部432と、ローカルマップ記憶部34と、ローカルマップ検索部36と、生成されたローカルマップと検索されたローカルマップとを照合すると共に、照合結果に基づいて、2つのローカルマップの相対位置を出力するローカルマップ照合部438と、照合させた状態で、生成されたローカルマップと検索されたローカルマップとを合成するローカルマップ合成部440と、生成されたローカルマップ及び検索されたローカルマップの各々からGPS情報を取得するGPS情報取得部442と、取得した2つのローカルマップのGPS情報と、2つのローカルマップの相対位置とに基づいて、絶対位置を推定する位置推定部444と、推定された絶対位置に基づいて、合成したローカルマップを、グローバルマップ上に記録するグローバルマップ生成部446と、グローバルマップ記憶部448と、を備えている。
 ローカルマップ生成部432は、上記の第1の実施の形態と同様に、ローカルマップを生成する。また、ローカルマップ生成部432は、更に、上記の自車両の軌跡における始点について、GPS情報取得部22によって取得された、図16に示すようなGPS情報を、ローカルマップに記録する。
 なお、GPS情報を記録する地点はローカルマップの原点(軌跡の始点)である必要はなく、計測回のたびに記録していてもよいし、一定間隔でもよいし、特定の箇所でもよい。複数のローカルマップの照合が可能であり、グローバルな精度向上が可能であるならば、そのデータ種別や保持頻度は問わない。
 ローカルマップ照合部438は、生成されたローカルマップと検索されたローカルマップとの間で、ローカルマップ上に記録された投影画像に基づく照合を行い、照合結果に基づくローカルマップ間の相対位置を、ローカルマップ合成部440へ出力する。
 ローカルマップ合成部440は、ローカルマップ照合部438による照合結果に基づいて、生成されたローカルマップと検索されたローカルマップとを照合させた状態で合成する。
 次に、本実施の形態の原理について説明する。
 ローカルマップ生成部432によって生成された高精度なローカルマップは、一定の範囲内においては周辺の相対位置関係が精度よく記録されている。その高精度な相対位置関係が保持されたローカルマップを、図17、図18に示すように複数回走行によって複数枚用意する。生成された複数枚のローカルマップは、その起点や範囲にズレはあったとしても、記録された情報間の相対位置関係が正しいため、図19に示すように、情報同士の対応付けによってローカルマップ間の相対位置関係を精度よく取得することが可能になる。
 一方、一般的なGPSを用いた測位結果は数m~都心部では数十mの誤差をもつ。しかしながら、複数枚のローカルマップの相対位置関係とその時のGPS情報とを利用し、測位結果の最適値を求めることで高精度化が可能になる。
 通常のGPSを用いた測位は可視衛星が4以上存在しないと測位ができない。また反射波が主波となるような場合、その影響を大きく受け測位誤差が大きくなる可能性がある。しかしながら、相対位置関係を利用して別走行時の他地点で得られたGPS情報を利用することで、仮想的に衛星数を増加させることができる。また、別時刻の衛星を用いることができるため、衛星の配置に偏りがなくなり、精度が向上する可能性がある。また、衛星数が増加することから誤差の大きい衛星を排除しやすくなり、精度向上を実現できる。
 そこで、本実施の形態では、GPS情報取得部442によって、生成されたローカルマップ及び検索されたローカルマップの各々から、原点について記録されたGPS情報を取得する。
 また、位置推定部444は、取得した2つのローカルマップのGPS情報と、2つのローカルマップの相対位置とに基づいて、現時点で生成されたローカルマップの原点の絶対位置を推定する。
 ここで、2つの地点で得られたGPS情報と、2つの地点の相対位置とを用いて、絶対位置を推定する原理について説明する。
 まず、同一地点(Xv、Yv、Zv)におけるGPSデータの蓄積による位置推定では、以下の(11)式が成立する。
Figure JPOXMLDOC01-appb-M000010
 取得した各GPS衛星の擬似距離ごとに式が成立し、蓄積したデータ数分集めた数の式が成立する。受信機の時計誤差であるクロックバイアスは受信タイミングごとに異なるため、蓄積データ数分のクロックバイアスを推定する必要がある。未知数は(Xv、Yv、Zv)とn個のCbであるため、3+n個分の衛星数が蓄積によって確保されていれば方程式を解くことができる。しかし、通常、移動体において常に同一地点で計測することは現実的ではない。
 上記(11)式は、測位地点が異なる、各地点(Xv(t0),‘Yv(t0),Zv(t0)),(Xv(ti),Yv(ti),Zv(ti))ごとにも成立するため、以下の(12)式に示す方程式が得られる。
Figure JPOXMLDOC01-appb-M000011
 移動車両の場合、同一地点での取得が困難であるため、上記(12)式の方程式に相当する。上記(12)式はデータを取得した時刻に相当する位置(Xv(ti),Yv(ti),Zv(ti))ごとに成立するため、未知数が4×nとなり、蓄積の意味がない。しかしながら、本実施の形態では、各位置間の相対位置を、ローカルマップの照合結果から取得し、相対位置(ΔXi0(t0),ΔYi0(t0),ΔZi0(t0))を求め、相対位置を用いて(Xv(ti),Yv(ti),Zv(ti))は(Xv(ti),Yv(ti),Zv(ti))=(Xv(t0)-Δxi0(t0),Yv(t0)-Δyi0(t0),Zv(t0)-Δzi0(t0))と表現できる。そのため、上記(12)式が、以下の(13)式の形に書き換えられる。
Figure JPOXMLDOC01-appb-M000012
 上記(13)式は各時刻での位置間の相対位置が得られているため、未知数は3+nとなるため、上記(11)式と同じになる。よって、同一地点で繰り返し計測することと同じ状況を実現できる。
 また、照合されたローカルマップの原点間の相対位置関係とその時のGPS情報とを用いた、最適位置推定について図20に示す。この最適位置推定では、上記(13)式に必要な情報を前段から取得し、最適推定を行う。上記(13)式において、推定パラメータは3次元位置と各時刻の受信機のクロックバイアスの3+n個としたが、高さの制限や受信機の性能などによって、パラメータを減ずることもできる。相対位置関係を用いて、各地点のGPS情報を用いて位置推定をする限りにおいては、特に最適位置推定のパラメータ数やその最適解の求め方については、特に限定しない。
 上記の最適位置推定において、衛星数を仮想的に増加させることが可能であるため、平均化の効果により測位精度の向上が見込まれる。平均化の効果だけでなく、衛星数が増えているため、測位に必要な衛星の組み合わせを様々に変化させることができる。特定の衛星を測位に利用した場合に他の組み合わせと測位結果が異なる場合、その衛星から信号がマルチパスである可能性が高い。蓄積によりマルチパスの判定が容易であるため、積極的にマルチパス判定を行い、マルチパスと考えられる衛星の情報を用いないようにすることで、精度向上が期待できる。また、測位解を求める際、補正情報や基地局のデータを用いてもよい。
 以上説明したように、位置推定部444は、合成した2つ以上のローカルマップのGPS情報と、2つのローカルマップの相対位置とに基づいて、上記(13)式に従って、現時点で生成されたローカルマップの原点について、絶対位置を推定する。また、未知数が4つのとき、衛星数が5以上である場合には、位置推定部444は、衛星の組み合わせ毎に、絶対位置を推定し、推定された絶対位置に基づいて、マルチパス判定を行い、マルチパスと判定された衛星の情報を除去して、再度、現時点で生成されたローカルマップの原点の絶対位置の推定を行う。未知数が3+nの場合、4+nの衛星数があるとマルチパス判定ができる。なお、絶対位置の推定は、検索されたローカルマップの原点について行ってもよく、2つ以上のローカルマップの原点の各々について行ってもよい。
 グローバルマップ生成部446は、絶対座標系で表されたグローバルマップ上の、位置推定部444によって推定された絶対位置に従って定められる領域に、合成されたローカルマップを記録する。
 グローバルマップ記憶部448は、グローバルマップ生成部446によって生成されたグローバルマップが記憶されている。
 コンピュータ420は、更に、位置算出部51によって算出された自車両の位置に基づいて、グローバルマップ記憶部448から、自車両の周辺のマップ情報を取得し、運転支援装置18へ出力するマップ情報取得部450を備えている。
 マップ情報取得部450は、位置算出部51によって算出された自車両の位置をキーとして、グローバルマップ記憶部448から、自車両の位置の周辺について記録されたマップ情報(ローカルマップに記録された情報)を検索し、運転支援装置18へ出力する。
 次に、第4の実施の形態に係るグローバル地図生成装置410の作用について説明する。なお、第1の実施の形態と同様の処理については、同一符号を付して説明を省略する。
 まず、GPS受信部12によって、複数のGPS衛星から電波を繰り返し受信しているときに、コンピュータ420において、図21、22に示すグローバルマップ生成処理ルーチンが繰り返し実行される。
 まず、ステップ100において、コンピュータ420は、上記図10に示すローカルマップ生成処理を実行し、自車両が走行している軌跡の周辺に関するローカルマップを生成する。次のステップ458では、コンピュータ420は、上記ステップ130で軌跡の始点について取得されたGPS情報を、生成されたローカルマップに記録する。
 そして、ステップ102において、コンピュータ420は、上記ステップ100で生成されたローカルマップの原点の位置をキーとして、当該位置の周辺について生成されたローカルマップを、ローカルマップ記憶部34から検索して取得する。
 次のステップ104では、コンピュータ420は、上記ステップ100で生成されたローカルマップの平行移動量Δd(=(Δei,Δni,Δui))の初期値を設定すると共に、相関値の最大値を0に設定する。ステップ106において、コンピュータ420は、上記ステップ100で生成されたローカルマップを、設定された平行移動量Δdだけ平行移動させる。ステップ108で、コンピュータ420は、上記ステップ102で取得したローカルマップとの相関値を算出する。
 そして、ステップ110では、コンピュータ420は、上記ステップ108で算出された相関値が、相関値の最大値より大きいか否かを判定する。最大値以下である場合には、コンピュータ420は、ステップ114へ移行する。一方、算出された相関値が、相関値の最大値より大きい場合には、ステップ112において、コンピュータ420は、相関値の最大値を更新して、ステップ114へ移行する。
 ステップ114では、コンピュータ420は、平行移動量Δdが予め定められた探索範囲内であるか否かを判定する。探索範囲内であると、ステップ116において、コンピュータ420は、平行移動量Δdを、Δd+δdに更新して、上記ステップ106へ戻る。一方、平行移動量Δdが予め定められた探索範囲を超えた場合には、コンピュータ420は、ステップ118へ移行し、相関値が最大値となった平行移動量を決定する。
 そして、ステップ460において、コンピュータ420は、上記ステップ118で決定された平行移動量に基づいて、現在のローカルマップの原点に対する、上記ステップ102で取得したローカルマップの原点の相対位置を求める。コンピュータ420は、上記ステップ100で生成されたローカルマップを、設定された平行移動量Δdだけ平行移動させた状態で、上記ステップ102で取得したローカルマップと合成する。
 次のステップ462では、コンピュータ420は、上記ステップ458で記録されたGPS情報を取得すると共に、上記ステップ102で取得したローカルマップに記録された原点のGPS情報を取得する。そして、ステップ464において、コンピュータ420は、上記ステップ460で算出された相対位置と、上記ステップ462で取得したGPS情報とに基づいて、上記ステップ100で生成されたローカルマップの原点の絶対位置を推定する。
 そして、ステップ466において、コンピュータ420は、上記ステップ464で推定された絶対位置に基づいて、グローバルマップ上に、上記ステップ460で合成されたローカルマップを記録して、グローバルマップ生成処理ルーチンを終了する。
 上記のグローバルマップ生成処理ルーチンが繰り返し実行されることにより、複数地点において、合成されたローカルマップが記録されたグローバルマップが生成される。
 また、コンピュータ420によって、図23に示す運転支援制御処理ルーチンが繰り返し実行される。
 まず、ステップ470において、コンピュータ420は、GPS受信部12から複数のGPS衛星の情報を取得すると共に、複数のGPS衛星のGPS擬似距離データ、ドップラー周波数、及びGPS衛星の位置座標を算出して取得する。
 そして、ステップ472において、コンピュータ420は、各GPS衛星のGPS擬似距離データを用いて、上記(1)~(3)式に従って、自車両の位置を算出する。次のステップ474では、コンピュータ420は、グローバルマップ記憶部448から、上記ステップ472で算出された自車両の位置をキーとして、周辺のマップ情報を取得する。コンピュータ420は、ステップ476において、上記ステップ474で取得したマップ情報を、運転支援装置18に出力して、運転支援制御処理ルーチンを終了する。
 以上説明したように、第4の実施の形態に係るグローバル地図生成装置は、精度の高いローカルマップを生成し、ローカルマップに記録された路面投影画像を照合して複数のローカルマップを合成する。グローバル地図生成装置は、推定された絶対位置に従って、絶対座標系で表わされるグローバルマップ上に、合成された複数のローカルマップを記録する。これにより、グローバル地図生成装置は、簡単な構成で、精度の高いグローバルマップを生成することができる。
 軌跡精度が高いため、一定範囲内の相対精度は高いが、広範囲になると誤差が蓄積する。そのため、なんらかの拘束条件が必要であり、本実施の形態では、共通の座標系である絶対位置で拘束する。通常のナビ用GPSの精度はせいぜい数メートルであるため、一度の走行では絶対的な精度が低い。一方、繰り返し走行して生成されたローカルマップの相対精度は高いため、複数のローカルマップ間の相対位置関係は高精度に取得可能である。ローカルマップ間の相対位置が取得できれば、相対位置関係を拘束条件にして、絶対位置を最適化することで精度が向上する。ナビ用GPSを用いた場合、たとえば各ローカルマップを生成したときのGPS情報を集め、複数回分のデータで測位を行うことができる。そうすることで衛星の数が増え、さらに誤差の大きい衛星を排除しやすくなり、絶対位置の高精度化が期待できる。このように、グローバル地図生成装置は、繰り返し効果により、GPSの測位精度より高い精度で、グローバルマップを生成することができる。
 また、通常は、専用の計測車両で走行し、人手によって必要な情報を抽出するものである。しかし、本実施の形態では、グローバル地図生成装置は、一般車両に搭載されるセンサで、高精度な計測車両と同等の精度で、地図を生成することができるため、地図の生成コストを低減することができる。
 また、グローバル地図生成装置は、一般車両によって取得可能なデータを用いており、常時データの計測が可能であるため、高精度な地図の更新が容易であり、地図のメンテナンスコストを低減することができる。
 また、グローバル地図生成装置は、高精度な軌跡を利用して、相対的な精度が確保されたローカルマップを生成し、繰り返し走行によって得られた複数のローカルマップの位置あわせによってローカルマップ間の相対位置を高精度に取得する。グローバル地図生成装置は、その相対位置関係を拘束条件として、絶対精度を確保することができる。
 また、グローバル地図生成装置は、ローカルマップ間の相対位置を推定し、相対位置を媒介させることにより、走行しながら得られた異なる地点でのGPS情報同士を統合することが可能になる。そのため、グローバル地図生成装置は、同一地点でGPS情報を取得する必要がない。
 また、1回のGPS情報の取得では衛星数が不足する場合においても、グローバル地図生成装置は、複数回分のGPS情報を用いることで、衛星数を模擬的に増加させることができるため、測位が可能になり、測位率が向上する。
 次に、第5の実施の形態に係るグローバル地図生成装置について説明する。なお、第1の実施の形態及び第4の実施の形態と同様の構成となる部分については、同一符号を付して説明を省略する。
 第5の実施の形態では、グローバル地図生成装置は、合成されたローカルマップの各々に記録された測位結果に基づいて、最適推定を行うことにより、絶対位置を推定している点が、第4の実施の形態と異なっている。
 図24に示すように、第5の実施の形態に係るグローバル地図生成装置510のコンピュータ520は、GPS情報取得部22と、位置・速度ベクトル算出部24と、軌跡算出部26と、画像取得部28と、投影画像生成部30と、ローカルマップ生成部32と、ローカルマップ記憶部34と、ローカルマップ検索部36と、ローカルマップ照合部438と、ローカルマップ合成部440と、生成されたローカルマップ及び検索されたローカルマップの各々について記録された測位結果に基づいて、絶対位置を推定する位置推定部544と、グローバルマップ生成部446と、グローバルマップ記憶部448と、マップ情報取得部450とを備えている。
 ローカルマップ生成部32は、算出された所定時間の軌跡に沿って、投影画像を記録したローカルマップを生成すると共に、当該軌跡の各地点について位置算出部51により算出された位置(測位結果)をローカルマップに記録する。
 位置推定部544は、生成されたローカルマップ及び検索されたローカルマップの各々について記録された、各点の測位結果に基づいて、例えば、最小二乗法などを用いた最適推定を行って、生成されたローカルマップの軌跡上の各地点の絶対位置を推定する。
 なお、第5の実施の形態に係るグローバル地図生成装置510の構成及び作用については、第4の実施の形態と同様であるため、説明を省略する。
 このように、グローバル地図生成装置は、ローカルマップ間の相対位置と、ローカルマップ上に記録された測位結果とに基づいて、最適推定を行う。これにより、グローバル地図生成装置は、精度良く絶対位置を推定することができ、精度の高いグローバルマップを生成することができる。
 なお、上記の実施の形態では、グローバル地図生成装置が、ローカルマップ上の軌跡の各点について測位結果を記録する場合を例に説明したが、これに限定されるものではない。グローバル地図生成装置は、ローカルマップ上の軌跡の原点や特定点について測位結果を記録し、これらの測位結果に基づいて、絶対位置を最適推定するようにしてもよい。
 また、上記の第1の実施の形態~第4の実施の形態では、局所地図生成装置又はグローバル地図生成装置は、ローカルマップ上の軌跡の原点について測位結果を記録する場合を例に説明したが、これに限定されるものではない。局所地図生成装置又はグローバル地図生成装置は、ローカルマップ上の軌跡の他の特定点について測位結果を記録するようにしてもよい。
 また、局所地図生成装置又はグローバル地図生成装置は、ローカルマップ上の軌跡の各点について測位結果を記録するようにしてもよい。この場合、局所地図生成装置又はグローバル地図生成装置は、RTK-GPSなどの干渉測位によって高精度に計測できた結果のみを記録するようにしてもよい。また、局所地図生成装置又はグローバル地図生成装置は、GPSと各種センサとを統合して求めた自車両の位置を記録するようにしてもよい。
 また、局所地図生成装置又はグローバル地図生成装置は、ビーコンなどによって、常に計測できる固定点を利用して、測位しても良い。また、局所地図生成装置又はグローバル地図生成装置は、画像から得られる特定の地点を利用して測位してもよい。この場合には、局所地図生成装置又はグローバル地図生成装置は、正確な位置情報を対応付けて画像を記憶した画像照合データベースを設け、撮像画像と、画像照合データベースの画像とを照合することにより、測位するようにすればよい。
 また、周辺の環境情報を取得する手段として撮像装置を用いた場合を例に説明したが、これに限定されるものではない。局所地図生成装置又はグローバル地図生成装置は、複数台の撮像装置を用いて、ステレオによって物体までの距離を推定し、その値を、環境情報として用いてもいい。また、局所地図生成装置又はグローバル地図生成装置は、レーザレーダを用いて、周辺に存在する物体までの距離を直接計測するようにしてもよい。また、局所地図生成装置又はグローバル地図生成装置は、撮像装置とレーザーとを組み合わせて、周辺の環境情報を取得するようにしてもよい。
 また、ローカルマップ記憶部やグローバルマップ記憶部を、車両と通信可能なサーバに設けてもよい。これによって、自車両が初めて走行する道路であっても、他車両が走行した道路であれば、局所地図生成装置又はグローバル地図生成装置は、マップの情報を利用することが可能になる。
 また、グローバル地図生成装置が、グローバルマップを生成する際に、絶対位置を推定する場合を例に説明したが、これに限定されるものではない。上記第4の実施の形態または第5の実施の形態で説明した絶対位置を推定する技術を、上記第1の実施の形態~第3の実施の形態の局所地図生成装置に適用してもよい。これによって、ローカルマップ上の特定点の絶対位置精度を向上させることができるため、相対位置で記述されたローカルマップの精度も向上し、相対位置精度だけでなく、絶対位置精度を向上させることも可能になる。
 また、上記実施の形態では、局所地図生成装置又はグローバル地図生成装置は、速度ベクトルを算出する場合を例に説明したが、これに限定されるものではない。局所地図生成装置又はグローバル地図生成装置は、自車両の方位角を算出すると共に、自車両の速度を検出し、自車両の方位角と速度からなる速度情報を用いてもよい。この場合には、局所地図生成装置又はグローバル地図生成装置は、所定時間分の自車両の方位角と速度とから軌跡を算出するようにすればよい。
 また、上記の第4の実施の形態、第5の実施の形態において、上記の第2の実施の形態または第3の実施の形態で説明した技術を適用してもよい。例えば、グローバル地図生成装置は、GPS情報を用いずに自車両の軌跡を算出したり、GPS情報と各種センサ出力とを用いて自車両の軌跡を算出するようにしてもよい。
 また、局所地図生成装置又はグローバル地図生成装置は、GPSの計測値とジャイロ、速度センサの組み合わせによる複合航法結果を用いて、自車両の位置を算出するようにしてもよい。
 また、上記実施の形態では、車両に搭載される局所地図生成装置やグローバル地図生成装置について説明したが、本発明の局所地図生成装置やグローバル地図生成装置が搭載される移動体は車両に限定されない。例えば、局所地図生成装置またはグローバル地図生成装置をロボットに搭載してもよいし、歩行者が携帯できるように局所地図生成装置またはグローバル地図生成装置をポータブル端末として構成するようにしてもよい。
 また、局所地図生成装置やグローバル地図生成装置が、移動体ではなく、サーバによって実現されたり、路上の装置や他の周囲にある移動体に搭載されていてもよい。この場合には、移動体に搭載された撮像装置やGPS受信部、磁気船センサ、ジャイロセンサ、速度センサから各種情報を取得する情報取得装置と、移動体に搭載された情報取得装置によって取得した各種情報に基づいて局所地図を生成する局所地図生成装置とを含む局所地図生成システムを構成すればよい。あるいは、移動体に搭載された情報取得装置と、当該情報取得装置によって取得した各種情報に基づいてグローバル地図を生成するグローバル地図生成装置とからなるグローバル地図生成システムを構成すればよい。
 本発明の一態様のコンピュータ可読媒体は、コンピュータを、移動体に搭載され、かつ、設置位置から見た前記移動体の周辺の環境情報を取得する環境情報取得部を含む局所地図生成装置の各部として機能させるためのプログラムであって、複数のGPS衛星の各々から送信された前記GPS衛星の各々の位置に関する情報、前記GPS衛星の各々と前記移動体との距離に関する情報、及び前記GPS衛星の各々に対する前記移動体の相対速度に関する情報を含む衛星情報を取得する衛星情報取得部、前記衛星情報取得部により取得された前記衛星情報に基づいて、前記移動体の進行方向を含む速度ベクトル、又は前記移動体の速度及び前記移動体の進行方向を示す速度情報を算出する算出部、前記算出部により算出された前記移動体の前記速度情報を積算して、前記移動体の位置の軌跡を算出する軌跡算出部、及び前記軌跡算出部によって算出された前記移動体の位置の軌跡上の各点について前記環境情報取得部によって取得された前記環境情報を、前記軌跡上の各点における前記移動体の進行方向と、前記環境情報取得部の設置位置及び姿勢とに基づいて定められる、前記移動体の位置の軌跡を含む局所地図上の各領域に記録する局所地図生成部として機能させるためのプログラムを記憶したコンピュータ可読媒体である。
 本発明の一態様のコンピュータ可読媒体は、コンピュータを、移動体に搭載され、かつ、設置位置から見た前記移動体の周辺の環境情報を取得する環境情報取得部を含む局所地図生成装置の各部として機能させるためのプログラムであって、前記移動体の運動状態を検出する運動状態検出部により検出された前記移動体の運動状態に基づいて、前記移動体の基準方向の方位角を推定する方位角推定部、前記運動状態検出部により検出された前記移動体の運動状態を積算し、前記積算された前記移動体の運動状態と、前記方位角推定部によって推定された前記方位角とに基づいて、前記移動体の位置の軌跡を算出する軌跡算出部、及び前記軌跡算出部によって算出された前記移動体の位置の軌跡上の各点について前記環境情報取得部によって取得された前記環境情報を、前記軌跡上の各点における前記移動体の進行方向と、前記環境情報取得部の設置位置及び姿勢とに基づいて定められる、前記移動体の位置の軌跡を含む局所地図上の各領域に記録する局所地図生成部として機能させるためのプログラムを記憶したコンピュータ可読媒体である。
 日本出願2011-46349の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記載された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (16)

  1.  移動体に搭載され、かつ、設置位置から見た前記移動体の周辺の環境情報を取得する環境情報取得部と、
     複数のGPS衛星の各々から送信された前記GPS衛星の各々の位置に関する情報、前記GPS衛星の各々と前記移動体との距離に関する情報、及び前記GPS衛星の各々に対する前記移動体の相対速度に関する情報を含む衛星情報を取得する衛星情報取得部と、
     前記衛星情報取得部により取得された前記衛星情報に基づいて、前記移動体の進行方向を含む速度ベクトル、又は前記移動体の速度及び前記移動体の進行方向を示す速度情報を算出する算出部と、
     前記算出部により算出された前記移動体の前記速度情報を積算して、前記移動体の位置の軌跡を算出する軌跡算出部と、
     前記軌跡算出部によって算出された前記移動体の位置の軌跡上の各点について前記環境情報取得部によって取得された前記環境情報を、前記軌跡上の各点における前記移動体の進行方向と、前記環境情報取得部の設置位置及び姿勢とに基づいて定められる、前記移動体の位置の軌跡を含む局所地図上の各領域に記録する局所地図生成部と、
     を含む局所地図生成装置。
  2.  移動体に搭載され、かつ、設置位置から見た前記移動体の周辺の環境情報を取得する環境情報取得部と、
     前記移動体の運動状態を検出する運動状態検出部と、
     前記運動状態検出部により検出された前記移動体の運動状態に基づいて、前記移動体の基準方向の方位角を推定する方位角推定部と、
     前記運動状態検出部により検出された前記移動体の運動状態を積算し、前記積算された前記移動体の運動状態と、前記方位角推定部によって推定された前記方位角とに基づいて、前記移動体の位置の軌跡を算出する軌跡算出部と、
     前記軌跡算出部によって算出された前記移動体の位置の軌跡上の各点について前記環境情報取得部によって取得された前記環境情報を、前記軌跡上の各点における前記移動体の進行方向と、前記環境情報取得部の設置位置及び姿勢とに基づいて定められる、前記移動体の位置の軌跡を含む局所地図上の各領域に記録する局所地図生成部と、
     を含む局所地図生成装置。
  3.  複数のGPS衛星の各々から送信された前記GPS衛星の各々の位置に関する情報、前記GPS衛星の各々と前記移動体との距離に関する情報、及び前記GPS衛星の各々に対する前記移動体の相対速度に関する情報を含む衛星情報を取得する衛星情報取得部と、
     前記衛星情報取得部により取得された前記衛星情報に基づいて、前記移動体の進行方向を含む速度ベクトル、又は前記移動体の速度及び前記移動体の進行方向を示す速度情報を算出する算出部と、を更に含み、
     前記方位角推定部は、前記運動状態検出部により検出された前記移動体の運動状態、及び前記算出部によって算出された前記速度情報に基づいて、前記移動体の基準方向の方位角を推定し、
     前記軌跡算出部は、前記運動状態検出部により検出された前記移動体の運動状態、前記算出部によって算出された前記速度情報、及び前記方位角推定部によって推定された前記方位角に基づいて、前記移動体の位置の軌跡を算出する請求項2記載の局所地図生成装置。
  4.  前記算出部は、前記GPS衛星の各々の位置に関する情報、及び前記GPS衛星の各々と前記移動体との距離に関する情報から得られる前記移動体の位置に基づいて、前記移動体から見た前記GPS衛星の各々の方向を算出し、時系列の前記GPS衛星の各々の位置に関する情報に基づいて、前記GPS衛星の各々の速度を算出し、前記移動体から見た前記GPS衛星の各々の方向、前記GPS衛星の各々の速度、及び前記GPS衛星の各々に対する前記移動体の相対速度に関する情報に基づいて、前記移動体のGPS衛星の各々の方向の速度を算出し、複数の前記移動体のGPS衛星の各々の方向の速度に基づいて、前記移動体の速度ベクトルを算出する請求項1記載の局所地図生成装置。
  5.  前記GPS衛星の各々の位置に関する情報を、衛星軌道情報とし、前記GPS衛星の各々と前記移動体との距離に関する情報を、擬似距離情報とし、前記GPS衛星の各々に対する前記移動体の相対速度に関する情報を、ドップラー周波数情報とした請求項1記載の局所地図生成装置。
  6.  前記環境情報取得部を、前記移動体の周辺を撮像する撮像部、又は前記移動体の周辺に存在する物体までの距離情報を計測するレーザレーダとした請求項1記載の局所地図生成装置。
  7.  請求項1に記載の局所地図生成装置と、
     前記生成された複数の局所地図を記憶した局所地図記憶部と、
     複数の局所地図間で、前記局所地図に記録された前記環境情報を照合し、前記環境情報を照合させた状態で前記複数の局所地図を合成する合成部と、
     前記合成部によって合成された前記複数の局所地図の前記軌跡上の少なくとも1点の絶対位置を推定する位置推定部と、
     前記位置推定部によって推定された絶対位置に基づいて、絶対座標系で表わされるグローバル地図上に、前記合成部によって合成された前記複数の局所地図を記録するグローバル地図生成部と、
     を含むグローバル地図生成装置。
  8.  請求項1に記載の局所地図生成装置と、
     前記生成された局所地図を記憶した局所地図記憶部と、
     複数の局所地図間で、前記局所地図に記録された前記環境情報を照合し、前記環境情報を照合させた状態で前記複数の局所地図を合成する合成部と、
     前記合成部によって合成された前記複数の局所地図の前記軌跡上の少なくとも1点の絶対位置を推定する位置推定部と、
     前記位置推定部によって推定された絶対位置に基づいて、絶対座標系で表わされるグローバル地図上に、前記合成部によって合成された前記複数の局所地図を記録するグローバル地図生成部と、を含むグローバル地図生成装置であって、
     前記局所地図生成部は、前記軌跡算出部によって算出された前記移動体の位置の軌跡上の前記少なくとも1点について、前記衛星情報取得部によって取得された前記衛星情報を前記局所地図に記録し、
     前記位置推定部は、前記複数の局所地図の照合結果に基づいて求められる前記複数の局所地図の各々の前記少なくとも1点間の相対位置と、前記複数の局所地図の各々に記録された前記衛星情報とに基づいて、前記合成された前記複数の局所地図の前記軌跡上の前記少なくとも1点の絶対位置を推定することを特徴とするグローバル地図生成装置。
  9.  前記移動体の絶対位置を算出する位置算出部を更に含み、
     前記局所地図生成部は、前記軌跡算出部によって算出された前記移動体の位置の軌跡上の前記少なくとも1点について前記位置算出部によって算出された絶対位置を、前記局所地図に記録し、
     前記位置推定部は、前記合成部によって合成された前記複数の局所地図の各々の前記少なくとも1点について記録された絶対位置に基づいて、前記少なくとも1点の絶対位置を推定する請求項1記載のグローバル地図生成装置。
  10.  コンピュータを、移動体に搭載され、かつ、設置位置から見た前記移動体の周辺の環境情報を取得する環境情報取得部を含む局所地図生成装置の各部として機能させるためのプログラムであって、
     複数のGPS衛星の各々から送信された前記GPS衛星の各々の位置に関する情報、前記GPS衛星の各々と前記移動体との距離に関する情報、及び前記GPS衛星の各々に対する前記移動体の相対速度に関する情報を含む衛星情報を取得する衛星情報取得部、
     前記衛星情報取得部により取得された前記衛星情報に基づいて、前記移動体の進行方向を含む速度ベクトル、又は前記移動体の速度及び前記移動体の進行方向を示す速度情報を算出する算出部、
     前記算出部により算出された前記移動体の前記速度情報を積算して、前記移動体の位置の軌跡を算出する軌跡算出部、及び
     前記軌跡算出部によって算出された前記移動体の位置の軌跡上の各点について前記環境情報取得部によって取得された前記環境情報を、前記軌跡上の各点における前記移動体の進行方向と、前記環境情報取得部の設置位置及び姿勢とに基づいて定められる、前記移動体の位置の軌跡を含む局所地図上の各領域に記録する局所地図生成部
     として機能させるためのプログラム。
  11.  コンピュータを、移動体に搭載され、かつ、設置位置から見た前記移動体の周辺の環境情報を取得する環境情報取得部を含む局所地図生成装置の各部として機能させるためのプログラムであって、
     前記移動体の運動状態を検出する運動状態検出部により検出された前記移動体の運動状態に基づいて、前記移動体の基準方向の方位角を推定する方位角推定部、
     前記運動状態検出部により検出された前記移動体の運動状態を積算し、前記積算された前記移動体の運動状態と、前記方位角推定部によって推定された前記方位角とに基づいて、前記移動体の位置の軌跡を算出する軌跡算出部、及び
     前記軌跡算出部によって算出された前記移動体の位置の軌跡上の各点について前記環境情報取得部によって取得された前記環境情報を、前記軌跡上の各点における前記移動体の進行方向と、前記環境情報取得部の設置位置及び姿勢とに基づいて定められる、前記移動体の位置の軌跡を含む局所地図上の各領域に記録する局所地図生成部
     として機能させるためのプログラム。
  12.  移動体に搭載され、かつ、設置位置から見た前記移動体の周辺の環境情報を取得する環境情報取得部、及び
     複数のGPS衛星の各々から送信された前記GPS衛星の各々の位置に関する情報、前記GPS衛星の各々と前記移動体との距離に関する情報、及び前記GPS衛星の各々に対する前記移動体の相対速度に関する情報を含む衛星情報を取得する衛星情報取得部
     を含む情報取得装置と、
     前記衛星情報取得部により取得された前記衛星情報に基づいて、前記移動体の進行方向を含む速度ベクトル、又は前記移動体の速度及び前記移動体の進行方向を示す速度情報を算出する算出部、
     前記算出部により算出された前記移動体の前記速度情報を積算して、前記移動体の位置の軌跡を算出する軌跡算出部、及び
     前記軌跡算出部によって算出された前記移動体の位置の軌跡上の各点について前記環境情報取得部によって取得された前記環境情報を、前記軌跡上の各点における前記移動体の進行方向と、前記環境情報取得部の設置位置及び姿勢とに基づいて定められる、前記移動体の位置の軌跡を含む局所地図上の各領域に記録する局所地図生成部
     を含む局所地図生成装置と、
     を含む局所地図生成システム。
  13.  移動体に搭載され、かつ、設置位置から見た前記移動体の周辺の環境情報を取得する環境情報取得部、及び
     前記移動体の運動状態を検出する運動状態検出部
     を含む情報取得装置と、
     前記運動状態検出部により検出された前記移動体の運動状態に基づいて、前記移動体の基準方向の方位角を推定する方位角推定部、
     前記運動状態検出部により検出された前記移動体の運動状態を積算し、前記積算された前記移動体の運動状態と、前記方位角推定部によって推定された前記方位角とに基づいて、前記移動体の位置の軌跡を算出する軌跡算出部、及び
     前記軌跡算出部によって算出された前記移動体の位置の軌跡上の各点について前記環境情報取得部によって取得された前記環境情報を、前記軌跡上の各点における前記移動体の進行方向と、前記環境情報取得部の設置位置及び姿勢とに基づいて定められる、前記移動体の位置の軌跡を含む局所地図上の各領域に記録する局所地図生成部
     を含む局所地図生成装置と、
     を含む局所地図生成システム。
  14.  移動体に搭載され、かつ、設置位置から見た前記移動体の周辺の環境情報を取得する環境情報取得部、及び
     複数のGPS衛星の各々から送信された前記GPS衛星の各々の位置に関する情報、前記GPS衛星の各々と前記移動体との距離に関する情報、及び前記GPS衛星の各々に対する前記移動体の相対速度に関する情報を含む衛星情報を取得する衛星情報取得部
     を含む情報取得装置と、
     前記衛星情報取得部により取得された前記衛星情報に基づいて、前記移動体の進行方向を含む速度ベクトル、又は前記移動体の速度及び前記移動体の進行方向を示す速度情報を算出する算出部、
     前記算出部により算出された前記移動体の前記速度情報を積算して、前記移動体の位置の軌跡を算出する軌跡算出部、
     前記軌跡算出部によって算出された前記移動体の位置の軌跡上の各点について前記環境情報取得部によって取得された前記環境情報を、前記軌跡上の各点における前記移動体の進行方向と、前記環境情報取得部の設置位置及び姿勢とに基づいて定められる、前記移動体の位置の軌跡を含む局所地図上の各領域に記録する局所地図生成部、
     前記生成された複数の局所地図を記憶した局所地図記憶部、
     複数の局所地図間で、前記局所地図に記録された前記環境情報を照合し、前記環境情報を照合させた状態で前記複数の局所地図を合成する合成部、
     前記合成部によって合成された前記複数の局所地図の前記軌跡上の少なくとも1点の絶対位置を推定する位置推定部、及び
     前記位置推定部によって推定された絶対位置に基づいて、絶対座標系で表わされるグローバル地図上に、前記合成部によって合成された前記複数の局所地図を記録するグローバル地図生成部と、
     を含むグローバル地図生成装置と、
     を含むグローバル地図生成システム。
  15.  移動体に搭載され、かつ、設置位置から見た前記移動体の周辺の環境情報を取得する環境情報取得部、及び
     前記移動体の運動状態を検出する運動状態検出部
     を含む情報取得装置と、
     前記運動状態検出部により検出された前記移動体の運動状態に基づいて、前記移動体の基準方向の方位角を推定する方位角推定部、
     前記運動状態検出部により検出された前記移動体の運動状態を積算し、前記積算された前記移動体の運動状態と、前記方位角推定部によって推定された前記方位角とに基づいて、前記移動体の位置の軌跡を算出する軌跡算出部、
     前記軌跡算出部によって算出された前記移動体の位置の軌跡上の各点について前記環境情報取得部によって取得された前記環境情報を、前記軌跡上の各点における前記移動体の進行方向と、前記環境情報取得部の設置位置及び姿勢とに基づいて定められる、前記移動体の位置の軌跡を含む局所地図上の各領域に記録する局所地図生成部、
     前記生成された複数の局所地図を記憶した局所地図記憶部、
     複数の局所地図間で、前記局所地図に記録された前記環境情報を照合し、前記環境情報を照合させた状態で前記複数の局所地図を合成する合成部、
     前記合成部によって合成された前記複数の局所地図の前記軌跡上の少なくとも1点の絶対位置を推定する位置推定部、及び
     前記位置推定部によって推定された絶対位置に基づいて、絶対座標系で表わされるグローバル地図上に、前記合成部によって合成された前記複数の局所地図を記録するグローバル地図生成部と、
     を含むグローバル地図生成装置と、
     を含むグローバル地図生成システム。
  16.  移動体に搭載され、かつ、設置位置から見た前記移動体の周辺の環境情報を取得する環境情報取得部、及び
     複数のGPS衛星の各々から送信された前記GPS衛星の各々の位置に関する情報、前記GPS衛星の各々と前記移動体との距離に関する情報、及び前記GPS衛星の各々に対する前記移動体の相対速度に関する情報を含む衛星情報を取得する衛星情報取得部
     を含む情報取得装置と、
     前記衛星情報取得部により取得された前記衛星情報に基づいて、前記移動体の進行方向を含む速度ベクトル、又は前記移動体の速度及び前記移動体の進行方向を示す速度情報を算出する算出部、
     前記算出部により算出された前記移動体の前記速度情報を積算して、前記移動体の位置の軌跡を算出する軌跡算出部、
     前記軌跡算出部によって算出された前記移動体の位置の軌跡上の各点について前記環境情報取得部によって取得された前記環境情報を、前記軌跡上の各点における前記移動体の進行方向と、前記環境情報取得部の設置位置及び姿勢とに基づいて定められる、前記移動体の位置の軌跡を含む局所地図上の各領域に記録する局所地図生成部、
     前記生成された局所地図を記憶した局所地図記憶部、
     複数の局所地図間で、前記局所地図に記録された前記環境情報を照合し、前記環境情報を照合させた状態で前記複数の局所地図を合成する合成部、
     前記合成部によって合成された前記複数の局所地図の前記軌跡上の少なくとも1点の絶対位置を推定する位置推定部、及び
     前記位置推定部によって推定された絶対位置に基づいて、絶対座標系で表わされるグローバル地図上に、前記合成部によって合成された前記複数の局所地図を記録するグローバル地図生成部と、を含むグローバル地図生成装置と、
     を含むグローバル地図生成システムであって、
     前記局所地図生成部は、前記軌跡算出部によって算出された前記移動体の位置の軌跡上の前記少なくとも1点について、前記衛星情報取得部によって取得された前記衛星情報を前記局所地図に記録し、
     前記位置推定部は、前記複数の局所地図の照合結果に基づいて求められる前記複数の局所地図の各々の前記少なくとも1点間の相対位置と、前記複数の局所地図の各々に記録された前記衛星情報とに基づいて、前記合成された前記複数の局所地図の前記軌跡上の前記少なくとも1点の絶対位置を推定することを特徴とするグローバル地図生成システム。
PCT/JP2012/055464 2011-03-03 2012-03-02 局所地図生成装置、局所地図生成システム、グローバル地図生成装置、グローバル地図生成システム、及びプログラム WO2012118207A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/002,890 US9103680B2 (en) 2011-03-03 2012-03-02 Local map generating device, local map generating system, global map generating device, global map generating system, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011046349A JP5589900B2 (ja) 2011-03-03 2011-03-03 局所地図生成装置、グローバル地図生成装置、及びプログラム
JP2011-046349 2011-03-03

Publications (1)

Publication Number Publication Date
WO2012118207A1 true WO2012118207A1 (ja) 2012-09-07

Family

ID=46758131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055464 WO2012118207A1 (ja) 2011-03-03 2012-03-02 局所地図生成装置、局所地図生成システム、グローバル地図生成装置、グローバル地図生成システム、及びプログラム

Country Status (3)

Country Link
US (1) US9103680B2 (ja)
JP (1) JP5589900B2 (ja)
WO (1) WO2012118207A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108007471A (zh) * 2016-10-28 2018-05-08 北京四维图新科技股份有限公司 车辆引导区块获取方法和装置以及自动驾驶方法和系统
CN111060135A (zh) * 2019-12-10 2020-04-24 亿嘉和科技股份有限公司 一种基于局部地图的地图修正方法及系统
CN111891047A (zh) * 2020-07-21 2020-11-06 苏州车萝卜汽车电子科技有限公司 一种投射显示的设备和方法
CN112400122A (zh) * 2019-08-26 2021-02-23 北京航迹科技有限公司 定位目标对象的系统和方法
JP2023516821A (ja) * 2020-05-11 2023-04-20 ネイバーラボス コーポレーション 車両位置決定方法及びシステム

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9123152B1 (en) * 2012-05-07 2015-09-01 Google Inc. Map reports from vehicles in the field
JP6354120B2 (ja) * 2013-05-21 2018-07-11 株式会社デンソー 道路情報送信装置、地図生成装置、道路情報収集システム
US10533863B2 (en) 2014-10-10 2020-01-14 Here Global B.V. Apparatus and associated methods for use in lane-level mapping of road intersections
US9891057B2 (en) 2015-03-23 2018-02-13 Kabushiki Kaisha Toyota Chuo Kenkyusho Information processing device, computer readable storage medium, and map data updating system
WO2017057053A1 (ja) * 2015-09-30 2017-04-06 ソニー株式会社 情報処理装置、情報処理方法
DE102015225472A1 (de) * 2015-12-16 2017-06-22 Robert Bosch Gmbh Verfahren und Vorrichtung zum Erstellen einer Karte
JP6852638B2 (ja) 2017-10-10 2021-03-31 トヨタ自動車株式会社 自動運転車両の配車システム、自動運転車両、及び配車方法
KR102406515B1 (ko) * 2017-10-31 2022-06-10 현대자동차주식회사 차량의 헤딩 추정 장치 및 방법
KR102561263B1 (ko) 2018-04-04 2023-07-28 삼성전자주식회사 지도 데이터를 생성하는 전자 장치 및 그 동작 방법
WO2020014929A1 (zh) * 2018-07-19 2020-01-23 深圳市大疆创新科技有限公司 地图构建方法、可移动平台及计算机可读存储介质
JP7135690B2 (ja) * 2018-10-04 2022-09-13 ソニーグループ株式会社 情報処理装置および方法、プログラム、並びに移動体制御システム
WO2020078572A1 (en) * 2018-10-19 2020-04-23 Harman Becker Automotive Systems Gmbh Global map creation using fleet trajectories and observations
CN111380543B (zh) * 2018-12-29 2023-05-05 沈阳美行科技股份有限公司 地图数据生成方法及装置
WO2020209144A1 (ja) * 2019-04-09 2020-10-15 パイオニア株式会社 位置推定装置、推定装置、制御方法、プログラム及び記憶媒体
CN110517531B (zh) * 2019-09-05 2021-08-17 武汉中海庭数据技术有限公司 一种基于高精度地图数据的多层停车场定位方法
CN112731505A (zh) * 2020-12-09 2021-04-30 深圳市锐驰曼科技发展有限公司 一种基于车载视频终端环境过滤突变gps速度的方法
CN112685527A (zh) * 2020-12-31 2021-04-20 北京迈格威科技有限公司 建立地图的方法、装置和电子系统
DE102021208525A1 (de) 2021-08-05 2023-02-09 Volkswagen Aktiengesellschaft Verfahren und Kartenerzeugungseinrichtung für ein Fahrzeug zur Erzeugung einer hochauflösenden Karte einer Bodenfläche in einem Fahrzeugumfeld
WO2023149358A1 (ja) * 2022-02-01 2023-08-10 キヤノン株式会社 制御システム、制御方法、及び記憶媒体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007249103A (ja) * 2006-03-20 2007-09-27 Zenrin Co Ltd 道路画像作成システム及び道路画像作成方法,及び道路画像合成装置
JP2008249639A (ja) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp 自己位置標定装置、自己位置標定方法および自己位置標定プログラム
JP2009109203A (ja) * 2007-10-26 2009-05-21 Seiko Epson Corp 測位システム、端末装置、情報処理装置、測位システムの制御方法及び測位システムの制御プログラム
JP2009223220A (ja) * 2008-03-18 2009-10-01 Zenrin Co Ltd 路面標示地図生成方法
JP2009250895A (ja) * 2008-04-09 2009-10-29 Sumitomo Electric Ind Ltd 方位特定装置、方位特定方法及びコンピュータプログラム
JP2010175756A (ja) * 2009-01-29 2010-08-12 Zenrin Co Ltd 路面標示地図生成方法及び路面標示地図生成装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL117279A (en) * 1996-02-27 2000-01-31 Israel Aircraft Ind Ltd System for detecting obstacles on a railway track
JPH1063181A (ja) 1996-08-22 1998-03-06 Japan Radio Co Ltd 地図データベース作成編集支援方法
US5999878A (en) * 1997-04-11 1999-12-07 Navigation Technologies Corp. System and method for acquiring geographic data for forming a digital database of road geometry in a geographic region
JP2003506785A (ja) * 1999-08-06 2003-02-18 ロードリスク テクノロジーズ エルエルシー 静止物体検出の方法および装置
JP2002206934A (ja) * 2001-01-11 2002-07-26 Matsushita Electric Ind Co Ltd ナビゲーション装置
TW586012B (en) * 2002-10-23 2004-05-01 Eastern Broadcasting Co Ltd Real time positioning and audio/video formation supplying system and method thereof
JP3725134B2 (ja) * 2003-04-14 2005-12-07 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム、移動通信端末、及びプログラム。
JP2005173784A (ja) * 2003-12-09 2005-06-30 Nec Corp 映像情報配信システム及び方法と装置並びにプログラム
JP2005134429A (ja) 2003-10-28 2005-05-26 Pioneer Electronic Corp 交通状況報知装置、そのシステム、その方法、そのプログラム、および、そのプログラムを記録した記録媒体
US7228230B2 (en) 2004-11-12 2007-06-05 Mitsubishi Denki Kabushiki Kaisha System for autonomous vehicle navigation with carrier phase DGPS and laser-scanner augmentation
JP2006242978A (ja) 2005-02-28 2006-09-14 Mitsubishi Heavy Ind Ltd 移動経路地図作成方法
JP5388082B2 (ja) 2006-09-07 2014-01-15 株式会社豊田中央研究所 静止物地図生成装置
WO2011039822A1 (ja) * 2009-10-02 2011-04-07 三菱電機株式会社 駐車支援装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007249103A (ja) * 2006-03-20 2007-09-27 Zenrin Co Ltd 道路画像作成システム及び道路画像作成方法,及び道路画像合成装置
JP2008249639A (ja) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp 自己位置標定装置、自己位置標定方法および自己位置標定プログラム
JP2009109203A (ja) * 2007-10-26 2009-05-21 Seiko Epson Corp 測位システム、端末装置、情報処理装置、測位システムの制御方法及び測位システムの制御プログラム
JP2009223220A (ja) * 2008-03-18 2009-10-01 Zenrin Co Ltd 路面標示地図生成方法
JP2009250895A (ja) * 2008-04-09 2009-10-29 Sumitomo Electric Ind Ltd 方位特定装置、方位特定方法及びコンピュータプログラム
JP2010175756A (ja) * 2009-01-29 2010-08-12 Zenrin Co Ltd 路面標示地図生成方法及び路面標示地図生成装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108007471A (zh) * 2016-10-28 2018-05-08 北京四维图新科技股份有限公司 车辆引导区块获取方法和装置以及自动驾驶方法和系统
CN108007471B (zh) * 2016-10-28 2021-06-29 北京四维图新科技股份有限公司 车辆引导区块获取方法和装置以及自动驾驶方法和系统
CN112400122A (zh) * 2019-08-26 2021-02-23 北京航迹科技有限公司 定位目标对象的系统和方法
CN111060135A (zh) * 2019-12-10 2020-04-24 亿嘉和科技股份有限公司 一种基于局部地图的地图修正方法及系统
CN111060135B (zh) * 2019-12-10 2021-12-17 亿嘉和科技股份有限公司 一种基于局部地图的地图修正方法及系统
JP2023516821A (ja) * 2020-05-11 2023-04-20 ネイバーラボス コーポレーション 車両位置決定方法及びシステム
JP7269453B2 (ja) 2020-05-11 2023-05-08 ネイバーラボス コーポレーション 車両位置決定方法及びシステム
JP7481534B2 (ja) 2020-05-11 2024-05-10 ネイバーラボス コーポレーション 車両位置決定方法及びシステム
CN111891047A (zh) * 2020-07-21 2020-11-06 苏州车萝卜汽车电子科技有限公司 一种投射显示的设备和方法

Also Published As

Publication number Publication date
US9103680B2 (en) 2015-08-11
US20140074393A1 (en) 2014-03-13
JP2012185202A (ja) 2012-09-27
JP5589900B2 (ja) 2014-09-17

Similar Documents

Publication Publication Date Title
WO2012118207A1 (ja) 局所地図生成装置、局所地図生成システム、グローバル地図生成装置、グローバル地図生成システム、及びプログラム
US10371530B2 (en) Systems and methods for using a global positioning system velocity in visual-inertial odometry
JP4897542B2 (ja) 自己位置標定装置、自己位置標定方法および自己位置標定プログラム
JP5673071B2 (ja) 位置推定装置及びプログラム
JP6656886B2 (ja) 情報処理装置、制御方法、プログラム及び記憶媒体
JP5261842B2 (ja) 移動体位置検出方法および移動体位置検出装置
JP2012207919A (ja) 異常値判定装置、測位装置、及びプログラム
CN102089624A (zh) 用于建立公路地图和确定车辆位置的方法和系统
JP5286653B2 (ja) 静止物地図生成装置
CN110914711A (zh) 定位装置
JP6589410B2 (ja) 地図生成装置及びプログラム
JP2012242317A (ja) キャリブレーション装置、キャリブレーション装置のキャリブレーション方法およびキャリブレーションプログラム
CN103033822B (zh) 移动信息确定装置、方法以及接收机
JP2009074861A (ja) 移動量計測装置及び位置計測装置
KR20150083161A (ko) 영상센서를 이용한 위성항법시스템 신호의 오차 보정 방법 및 장치
CN110057356A (zh) 一种隧道内车辆定位方法及装置
JP2006284281A (ja) 自車情報認識装置及び自車情報認識方法
JP4986883B2 (ja) 標定装置、標定方法および標定プログラム
JP2012098185A (ja) 方位角推定装置及びプログラム
JP5994237B2 (ja) 測位装置及びプログラム
JP4884109B2 (ja) 移動軌跡算出方法、移動軌跡算出装置及び地図データ生成方法
Davidson et al. Uninterrupted portable car navigation system using GPS, map and inertial sensors data
JP6613961B2 (ja) 状態推定装置、情報端末、情報処理システム、及びプログラム
JP2020073931A (ja) 情報処理装置、制御方法、プログラム及び記憶媒体
JP5062141B2 (ja) 移動体用測位装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14002890

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12752253

Country of ref document: EP

Kind code of ref document: A1