WO2012118190A1 - ヒアルロン酸またはその塩を含む水溶液 - Google Patents

ヒアルロン酸またはその塩を含む水溶液 Download PDF

Info

Publication number
WO2012118190A1
WO2012118190A1 PCT/JP2012/055423 JP2012055423W WO2012118190A1 WO 2012118190 A1 WO2012118190 A1 WO 2012118190A1 JP 2012055423 W JP2012055423 W JP 2012055423W WO 2012118190 A1 WO2012118190 A1 WO 2012118190A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous solution
hyaluronic acid
salt
solution containing
soluble iron
Prior art date
Application number
PCT/JP2012/055423
Other languages
English (en)
French (fr)
Inventor
健司 能見
賢太郎 島田
忠志 守川
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to KR1020137026030A priority Critical patent/KR20140024862A/ko
Priority to JP2013502421A priority patent/JP5957438B2/ja
Priority to CN2012800110299A priority patent/CN103442718A/zh
Publication of WO2012118190A1 publication Critical patent/WO2012118190A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/726Glycosaminoglycans, i.e. mucopolysaccharides
    • A61K31/728Hyaluronic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/20Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing sulfur, e.g. dimethyl sulfoxide [DMSO], docusate, sodium lauryl sulfate or aminosulfonic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/23Sulfur; Selenium; Tellurium; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/44Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/735Mucopolysaccharides, e.g. hyaluronic acid; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin

Definitions

  • the present invention has a low content of divalent soluble iron and includes at least one selected from the group consisting of metal thiosulfate, metal thiocyanate, thioketones, sulfides, thioureas, and thiosemicarbazides.
  • the present invention relates to an aqueous solution containing hyaluronic acid or a salt thereof containing a classified reducing agent.
  • Hyaluronic acid is known as a polysaccharide composed of linked disaccharide units of N-acetylglucosamine and glucuronic acid.
  • Hyaluronic acid is generally used as a raw material for pharmaceuticals, cosmetics, foods and the like.
  • As a production method of hyaluronic acid there are a method of producing with an extract from a chicken crown or the like, and a method of producing by a fermentation method using a microorganism.
  • Patent Document 1 describes that hyaluronic acid was produced by fermentation using Streptococcus tin-epidemicus.
  • the yield and molecular weight of hyaluronic acid are higher when ferrous sulfate is added to a concentration of 3 times during the culture (Example 3) than when not added (Example 1). It is described that it has increased.
  • Patent Document 2 describes that hyaluronic acid powder was produced by fermentation using Streptococcus equi (ATCC9527).
  • Patent Document 3 describes experimental data indicating that sodium hyaluronate crystals produced based on the method of Patent Document 2 contain a large amount of calcium, magnesium, and iron.
  • Patent Document 3 discloses a sodium hyaluronate crystal in which the content of calcium, magnesium, and iron is reduced to less than 10 ppm by further contacting a chelate resin with the hyaluronic acid-containing liquid obtained based on the method of Patent Document 2. It is described that obtained.
  • the hyaluronic acid powder contained a lot of calcium, magnesium, and iron, and the purity of sodium hyaluronate was low.
  • Patent Document 3 Thirdly, in the production method of Patent Document 3, it is described that the content of calcium, magnesium, and iron in the sodium hyaluronate crystal is reduced to less than 10 ppm, but what was the specific content? Is unknown. The analysis results are in the order of ppm and lack precision. Furthermore, it is not described what specific effects can be obtained by reducing the contents of calcium, magnesium, and iron.
  • the present invention has been made in view of the above circumstances, the content of divalent soluble iron is 5 ppb or less, thiosulfate metal salts, thiocyanate metal salts, thioketones, sulfides, thioureas, and
  • An object of the present invention is to provide an aqueous solution containing hyaluronic acid or a salt thereof having high stability because it contains a reducing agent classified into one or more selected from the group consisting of thiosemicarbazides.
  • the present inventors have found that the higher the content of divalent soluble iron mixed in the hyaluronate aqueous solution, the higher the hyaluronic acid molecule It was found for the first time that the stability of was reduced. In addition, the inventors surprisingly found that the stability of hyaluronic acid molecules does not decrease even when the content of trivalent soluble iron is large, and the content of divalent soluble iron is large. We have also found that the stability of hyaluronic acid molecules is reduced.
  • the present inventors reduced the content of divalent soluble iron mixed in an aqueous solution containing hyaluronic acid or a salt thereof, and improved the stability of hyaluronic acid molecules by divalent soluble iron.
  • a reducing agent classified into any of thiosulfate metal salts, metal thiocyanate, thioketones, sulfides, thioureas, and thiosemicarbazides It has been found for the first time that the decrease in stability of hyaluronic acid molecules due to divalent soluble iron can be suppressed.
  • the inventors surprisingly found that even when reducing compounds, Na bromide, Na hydrogen sulfite, Na sulfide, Na thioglycolate, glucose, and ascorbic acid were added.
  • the present inventors have found that the decrease in stability of hyaluronic acid molecules due to divalent soluble iron is not suppressed, and that the addition often reduces the stability, thereby completing the present invention.
  • the content of divalent soluble iron is 5 ppb or less, and the group consisting of metal thiosulfate, metal thiocyanate, thioketones, sulfides, thioureas, and thiosemicarbazides
  • An aqueous solution containing a reducing agent classified into one or more selected from the group consisting of hyaluronic acid or a salt thereof is provided.
  • the aqueous solution containing this hyaluronic acid or a salt thereof has been demonstrated in Examples to be described later that the intrinsic viscosity remaining rate after storage is good. Therefore, it is suitable for raw materials such as pharmaceuticals, cosmetics and foods.
  • a pharmaceutical composition comprising an aqueous solution containing the above hyaluronic acid or a salt thereof.
  • This pharmaceutical composition contains an aqueous solution containing hyaluronic acid or a salt thereof having a good residual intrinsic viscosity after storage. For this reason, it is difficult for a decrease in viscosity or a decrease in quality to occur over time.
  • an injection for treating arthritis comprising an aqueous solution containing the above hyaluronic acid or a salt thereof.
  • This injection for treatment of arthropathy includes an aqueous solution containing hyaluronic acid or a salt thereof having a good residual intrinsic viscosity after storage. Therefore, good retention is obtained when administered in or around the joint.
  • a cosmetic composition comprising an aqueous solution containing the hyaluronic acid or a salt thereof.
  • This cosmetic composition contains an aqueous solution containing hyaluronic acid or a salt thereof having an excellent residual viscosity after storage. For this reason, it is difficult for a decrease in viscosity or a decrease in quality to occur over time.
  • a composition containing hyaluronic acid or a salt thereof and divalent soluble iron, a metal thiosulfate, a metal thiocyanate, a thioketone, a sulfide, a thiourea, and a thio A reducing agent classified into one or more selected from the group consisting of semicarbazides, and a step of dissolving the aqueous solution in an aqueous solution, wherein the composition contains an aqueous solution such that the concentration of hyaluronic acid or a salt thereof is 10 mg / mL.
  • aqueous solution containing hyaluronic acid or a salt thereof wherein the content of divalent soluble iron in the aqueous solution when dissolved is 5 ppb or less. According to this production method, it is possible to produce hyaluronic acid or a salt thereof having an excellent residual residual viscosity after storage.
  • a composition containing hyaluronic acid or a salt thereof and divalent soluble iron, a metal thiosulfate, a metal thiocyanate, a thioketone, a sulfide, a thiourea, and a thio A reducing agent classified into one or more selected from the group consisting of semicarbazides, and a step of dissolving the aqueous solution in an aqueous solution, wherein the composition contains an aqueous solution such that the concentration of hyaluronic acid or a salt thereof is 10 mg / mL.
  • a stabilizer for stabilizing an aqueous solution containing hyaluronic acid or a salt thereof having a content of divalent soluble iron of 5 ppb or less is provided. If the reducing agent is contained in an aqueous solution containing hyaluronic acid or a salt thereof having a divalent soluble iron content of 5 ppb or less, the intrinsic viscosity remaining rate after storage is significantly improved. Proven in examples. Therefore, if this stabilizer is added to an aqueous solution containing hyaluronic acid or a salt thereof having a divalent soluble iron content of 5 ppb or less, the stabilizer can be remarkably stabilized.
  • the content of divalent soluble iron is 5 ppb or less, and is selected from the group consisting of metal thiosulfate, metal thiocyanate, thioketones, sulfides, thioureas, and thiosemicarbazides. Therefore, an aqueous solution containing hyaluronic acid or a salt thereof having high stability can be obtained.
  • FIG. 1 is a graph showing changes in the intrinsic viscosity residual rate when sodium hyaluronate powder is added to an aqueous solution containing divalent soluble iron and L-methionine.
  • the content of divalent soluble iron is 5 ppb or less, and the group consisting of metal thiosulfate, metal thiocyanate, thioketones, sulfides, thioureas, and thiosemicarbazides
  • An aqueous solution containing hyaluronic acid or a salt thereof containing a reducing agent classified into one or more selected from An aqueous solution containing hyaluronic acid or a salt thereof having such a composition has a high residual residual viscosity after storage and is excellent in physical stability, as demonstrated in Examples described later. In addition, the viscosity and quality are hardly lowered even after long-term storage or after a long period of time, and it is suitable for raw materials such as pharmaceuticals, cosmetics and foods.
  • the above reducing agents are all sulfur-containing reducing agents.
  • the metal thiosulfate may be, for example, potassium thiosulfate or sodium thiosulfate.
  • the metal thiocyanate may be, for example, potassium thiocyanate or sodium thiocyanate.
  • the thioketones may be, for example, thiopental.
  • the sulfides may be, for example, L-methionine or DL-methionine.
  • the above thioureas are compounds having a structure of RNC ( ⁇ S) —NR, and may be, for example, H 2 NC ( ⁇ S) —NH 2 or the like.
  • the above thiosemicarbazides are compounds having a structure of RNC ( ⁇ S) —NH—NR, and may be, for example, H 2 —NC ( ⁇ S) —NH—NH 2 . From the viewpoint of further improving the stability of an aqueous solution containing hyaluronic acid or a salt thereof, L-methionine or sodium thiosulfate is preferable.
  • the above 5 ppb or less may be, for example, 0.001, 0.01, 0.1, 0.5, 1, 2, 4, or 5 ppb.
  • the content may be equal to or less than the value exemplified here, or may be in the range of any two values. This content is preferably smaller from the viewpoint of improving the stability of an aqueous solution containing hyaluronic acid or a salt thereof.
  • the content of the reducing agent contained in the aqueous solution containing the hyaluronic acid or a salt thereof of the present embodiment is, for example, 5, 10, 30, 50, 100, 150, 300, 500, 800, 1000, 1500, 2000, It may be 5000 or 10000 ⁇ g / mL. Moreover, this content rate may be in the range of any two values exemplified here.
  • the content is preferably 10 ⁇ g / mL or more, more preferably 100 ⁇ g / mL or more from the viewpoint of further improving the stability of the aqueous solution containing hyaluronic acid or a salt thereof.
  • the content is preferably 2000 ⁇ g / mL or less, more preferably 1500 ⁇ g / mL or less, from the viewpoint of reducing production cost or improving operability.
  • the average molecular weight of sodium hyaluronate or a salt thereof contained in the aqueous solution containing hyaluronic acid or a salt thereof of the present embodiment is, for example, 500,000, 800,000, 1,000,000, 1.5 million, 1.8 million, 2 million, 2.5 million, 300 May be 5 million, 5 million, or 8 million. This average molecular weight may be within the range of any two values exemplified here. From the viewpoint of further improving the viscosity of an aqueous solution containing hyaluronic acid or a salt thereof, it is preferably 1 million or more, more preferably 1.5 million or more.
  • An aqueous solution containing high-viscosity hyaluronic acid or a salt thereof is excellent in retention in the affected area when used as an injection for the treatment of arthropathy.
  • the average molecular weight of hyaluronic acid or a salt thereof contained in an aqueous solution containing hyaluronic acid or a salt thereof is calculated by measuring Laurent's formula (LAURENT et al., Biochim Biophys Acta. 1960 Aug 26; 42: 476-485 .).
  • the content of hyaluronic acid or a salt thereof contained in the aqueous solution containing hyaluronic acid or a salt thereof according to the present embodiment is, for example, 0.1, 1, 5, 8, 9, 10, 11, 12, 15, or 20 mg / mL. It may be. This content may be within the range of any two values exemplified here. From the viewpoint of therapeutic effect or operability when used for injections and the like, it is preferably in the range of 5 and 15 mg / mL, more preferably in the range of 8 and 12 mg / mL.
  • the pH of the aqueous solution containing hyaluronic acid or a salt thereof according to this embodiment may be, for example, 5.5, 6, 6.5, 6.8, 7, 7.8, 8, 8.5, or 9. This pH may be within the range of any two values exemplified herein.
  • the pH is preferably in the range of 6.5 and 8 from the viewpoint of stability, and more preferably in the range of 6.8 and 7.8.
  • the aqueous solution containing hyaluronic acid or a salt thereof includes, for example, a composition containing hyaluronic acid or a salt thereof and divalent soluble iron, a metal thiosulfate, a metal thiocyanate, a thioketone, a sulfide.
  • a reducing agent classified into one or more selected from the group consisting of thioureas, thioureas, and thiosemicarbazides in an aqueous solution, wherein the composition has a concentration of hyaluronic acid or a salt thereof of 10 mg / ML can be obtained by a method for producing an aqueous solution containing hyaluronic acid or a salt thereof, wherein the content of divalent soluble iron in the aqueous solution when dissolved in an aqueous solution is 5 ppb or less.
  • This production method does not necessarily require complicated steps, and is excellent in productivity or cost.
  • hyaluronic acid salt may be, for example, sodium hyaluronate, potassium hyaluronate, zinc hyaluronate, calcium hyaluronate, magnesium hyaluronate, or ammonium hyaluronate.
  • sodium hyaluronate is preferable from the viewpoint that a desired viscosity or a therapeutic effect on arthropathy can be expected.
  • the chemical name of sodium hyaluronate is, for example, [ ⁇ 3) -2-acetamido-2-deoxy- ⁇ -D-glucopyranosyl- (1 ⁇ 4) - ⁇ -D-sodium glucopyranosyluronate- (1 ⁇ ] n (IUPAC) Can be represented.
  • divalent soluble iron is iron in a soluble state and is divalent. It can also be expressed as Fe 2+ or divalent iron.
  • the aqueous solution containing hyaluronic acid or a salt thereof according to this embodiment can be used as a raw material of a pharmaceutical composition.
  • the pharmaceutical composition contains an aqueous solution containing hyaluronic acid or a salt thereof excellent in stability, the viscosity and quality are hardly lowered even after long-term storage. Further, for example, when it is administered in or around the joint, it can stay in the affected area for a long time or a desired time.
  • the dosage form of this pharmaceutical composition is not particularly limited, but an injection is preferable from the viewpoint that it can be directly administered to an affected area such as a joint.
  • a syringe, a vial, or an ampoule can be used as the container for the injection.
  • it can be administered alone, but can be mixed with one or more pharmacologically acceptable carriers or excipients and any well known in the pharmaceutical arts. It is preferably provided as a pharmaceutical preparation produced by the method.
  • This pharmaceutical composition is prepared according to the dosage form by using a buffer (eg, phosphate buffer, sodium acetate buffer), a soothing agent (eg, lidocaine hydrochloride, procaine hydrochloride, etc.), a stabilizer (eg, human serum albumin).
  • a buffer eg, phosphate buffer, sodium acetate buffer
  • a soothing agent eg, lidocaine hydrochloride, procaine hydrochloride, etc.
  • a stabilizer eg, human serum albumin
  • the pharmaceutical composition may also contain sodium hydrogen phosphate, crystalline sodium dihydrogen phosphate, and sodium chloride as additives.
  • the adjusted pharmaceutical composition can be administered to, for example, humans and mammals (eg, rats, mice, rabbits, dogs, monkeys, sheep, pigs, cows, cats, etc.).
  • the pharmaceutical composition includes a composition used for the purpose of prevention.
  • the administration method of this pharmaceutical composition can be appropriately selected depending on the age, symptoms, affected area, etc. of the subject.
  • 2.5 mL of an adult can be administered into the knee joint cavity 5 times continuously every week.
  • it can be administered at intervals of 2 to 4 weeks.
  • 2.5 mL of an adult once a week for 5 consecutive shoulder joints (shoulder joint cavity, subacromial bursa, or biceps long head tendon) can be administered within the tendon sheath).
  • 2.5 mL of an adult can be administered into the knee joint cavity 5 times continuously every week. It may also be administered in combination with an appropriate chemotherapeutic agent.
  • Examples of the pharmacological action of this pharmaceutical composition include: a) viscoelasticity or lubrication action by hyaluronate binding to the cartilage tissue and covering the surface, b) cartilage matrix stabilization action (degeneration suppression) C) analgesic action by covering the surface of inflammatory cells and synovial cells, or by suppressing the production of analgesic substances, or d) close to arthritis with synovial and cartilage degeneration Examples thereof include inflammatory effects expressed by affecting synovial cells, chondrocytes, or inflammatory cells such as neutrophils and macrophages. By these actions, for example, reduction of pain, improvement of daily life activities and joint range of motion are expected.
  • the aqueous solution containing hyaluronic acid or a salt thereof according to this embodiment can be used as a raw material for a cosmetic composition.
  • the cosmetic composition includes an aqueous solution containing hyaluronic acid or a salt thereof excellent in stability, the viscosity and quality are not easily lowered even after long-term storage.
  • the moisturizing effect tends to be sustained.
  • ⁇ Stabilization method, etc.> Other embodiments include a composition containing hyaluronic acid or a salt thereof and divalent soluble iron and a metal thiosulfate, a metal thiocyanate, a thioketone, a sulfide, a thiourea, and a thiosemicarbazide And a reducing agent classified into one or more selected from the group consisting of: an aqueous solution, wherein the composition is dissolved in the aqueous solution so that the concentration of hyaluronic acid or a salt thereof is 10 mg / mL
  • This is a method for promoting stabilization of an aqueous solution containing hyaluronic acid or a salt thereof, wherein the content of divalent soluble iron in the aqueous solution is 5 ppb or less. According to this method, an aqueous solution containing hyaluronic acid or a salt thereof having high physical stability can be obtained. Further,
  • the reducing agent can be used as a raw material for an aqueous solution stabilizer containing hyaluronic acid or a salt thereof. If this stabilizer is used, the physical stability of an aqueous solution containing hyaluronic acid or a salt thereof having a divalent soluble iron content of 5 ppb or less can be improved.
  • This stabilizer may be in powder or liquid form. In the case of liquid, a buffer may be included.
  • Example 1 A sodium hyaluronate aqueous solution was prepared by the following procedure. First, 1 liter of a medium consisting of 5% glucose, 0.2% monopotassium phosphate, 1.0% polypeptone, and 0.5% yeast extract was heat sterilized, and then Streptococcus ex FM-100 (Mikken Kenjo) No. 9027). The culture was carried out for 20 hours at 200 rpm with stirring, at a temperature of 33 ° C., and at pH 8.5 (control by automatic dropping of 20% sodium hydroxide) while aeration of air at 1 vvm.
  • a medium consisting of 5% glucose, 0.2% monopotassium phosphate, 1.0% polypeptone, and 0.5% yeast extract was heat sterilized, and then Streptococcus ex FM-100 (Mikken Kenjo) No. 9027). The culture was carried out for 20 hours at 200 rpm with stirring, at a temperature of 33 ° C., and at pH 8.5 (control by automatic dropping of 20%
  • This solution was filtered with a cell filtration device and dialyzed against water for 12 hours to recover the hyaluronic acid solution in the dialysis membrane.
  • the collection container used was an inner surface made of glass in order to prevent iron contamination.
  • Sodium chloride was added to 2.5% here, and ethanol was added twice as much as the hyaluronic acid solution to precipitate sodium hyaluronate.
  • the precipitate was washed 5 times with ethanol, and the impurities were thoroughly washed out and then air-dried at 40 ° C. for 10 hours to obtain Na hyaluronic acid powder.
  • the obtained sodium hyaluronate powder was dissolved in an aqueous solution containing 2 mM phosphate buffer and 0.9% sodium chloride, and sodium hyaluronate containing 5, 8, 10, 12, 15 mg / mL of hyaluronic acid Na, respectively.
  • An aqueous solution was obtained.
  • the intrinsic viscosity was measured, and the molecular weight of Na hyaluronate was calculated using Laurent's formula.
  • Streptococcus equi FM-100 was cultured according to the procedure described in Example 1, and a sodium hyaluronate aqueous solution was purified by the same procedure as that described in Example 1 of Patent Document 3 (Japanese Patent Laid-Open No. 2008-280430). Specifically, first, 1 liter of a medium consisting of 5% glucose, 0.2% potassium phosphate, 1.0% polypeptone, and 0.5% yeast extract is heat sterilized, and then Streptococcus ex FM-100 is added. Vaccinated.
  • the culture was carried out for 20 hours at 200 rpm with stirring, at a temperature of 33 ° C., and at pH 8.5 (control by automatic dropping of 20% sodium hydroxide) while aeration of air at 1 vvm.
  • the culture solution is diluted 10 times with ion-exchanged water, and 5 g of activated carbon (Shirakaba RW50-T manufactured by Takeda Pharmaceutical Co., Ltd.) and pearlite (LocaHelp # 409, Mitsui Mining & Smelting Co., Ltd.) are added to the 2.5 L aqueous solution. 30 g was added, treated for 1 hour, and filtered using Nutsche.
  • the obtained sodium hyaluronate powder was dissolved in an aqueous solution containing 2 mM phosphate buffer and 0.9% sodium chloride, and sodium hyaluronate containing 5, 8, 10, 12, 15 mg / mL of hyaluronic acid Na, respectively.
  • An aqueous solution was obtained.
  • the intrinsic viscosity was measured, and the molecular weight of Na hyaluronate was determined using the Laurent equation.
  • Example 1 (1) Analysis of soluble iron
  • the hyaluronic acid Na powder prepared in Example 1 and Comparative Example 1 was dissolved in an aqueous solution containing 2 mM phosphate buffer and 0.9% sodium chloride, and the hyaluronic acid Na was dissolved in 5, 8
  • An aqueous sodium hyaluronate solution containing 10, 12, or 15 mg / mL was prepared (No. 1 to 10), respectively.
  • the amount of divalent soluble iron, the amount of divalent and trivalent soluble iron, and the total amount of iron were measured by the following procedures (1-1) to (1-3). did.
  • the total iron amount includes soluble and insoluble iron amounts.
  • the detection limit of the bivalent soluble iron amount, the bivalent and trivalent soluble iron amount, and the total iron amount was 5 ppb.
  • Example 1 From the above results, 1) that the method described in Example 1 can be used, it is possible to prepare an aqueous solution of sodium hyaluronate having a mixed amount of divalent soluble iron of 5 ppb or less, and 2) hyaluronic acid can be obtained by divalent soluble iron. It was found that the intrinsic viscosity after storage of the aqueous acid Na solution was lowered, and 3) trivalent soluble iron did not affect the intrinsic viscosity after storage of the aqueous hyaluronate solution.
  • Example 2 Various additives were dissolved in an aqueous solution containing 2 mM phosphate buffer and 0.9% sodium chloride as shown in Table 5 (No. 23 to 34). Next, the sodium hyaluronate powder prepared in Example 1 was dissolved in each aqueous solution so as to have a concentration of 10 mg / mL. Furthermore, after storing at 80 ° C. for 24 hours, the intrinsic viscosity and the intrinsic viscosity residual ratio (%) were measured.
  • glycine, L-aspartate Na, and purified sucrose are non-reducing compounds.
  • L-methionine, Na thiosulfate, Na bromide, Na hydrogen sulfite, Na sulfide, Na thioglycolate, glucose, and ascorbic acid are reducing compounds.
  • the stability of the aqueous hyaluronate solution was improved when the aqueous solution prepared by dissolving the sodium hyaluronate powder prepared in Example 1 contained L-methionine or sodium thiosulfate. Further, even if the compound has reducible properties like L-methionine and Na thiosulfate, it is rather stable when it contains sodium bisulfite, sodium sulfide, Na thioglycolate, glucose, and ascorbic acid. The sex was decreasing.
  • Example 3 Various additives were dissolved in an aqueous solution containing 2 mM phosphate buffer and 0.9% sodium chloride as shown in Table 6 (Nos. 35 to 41). Further, 11.3 ppb (5 ppb as divalent soluble iron) was added to each aqueous solution. Next, the sodium hyaluronate powder prepared in Example 1 was dissolved in each aqueous solution so as to have a concentration of 10 mg / mL. Then, after storing for 24 hours at 80 ° C., the intrinsic viscosity and the intrinsic viscosity residual ratio (%) were measured.
  • the aqueous solution in which the sodium hyaluronate powder prepared in Example 1 was dissolved contained 5 ppb of divalent soluble iron, and the stability of the aqueous hyaluronate solution was lowered. Furthermore, it was found that the decrease in stability was significantly suppressed by L-methionine or Na thiosulfate.
  • Example 4 L-methionine was dissolved in an aqueous solution containing 2 mM phosphate buffer and 0.9% sodium chloride at concentrations shown in Table 7 (No. 42 to 48). Next, the sodium hyaluronate powder prepared in Example 1 was dissolved in each aqueous solution so as to have a concentration of 10 mg / mL. Furthermore, after storing at 80 ° C. for 24 hours, the intrinsic viscosity and the intrinsic viscosity residual ratio (%) were measured.
  • the aqueous solution in which the hyaluronic acid Na powder prepared in Example 1 was dissolved contained 10 ⁇ g / mL or more of L-methionine, and the stability of the aqueous hyaluronic acid solution was improved. Further, the improvement of the stability became moderate when L-methionine was contained at 100 ⁇ g / mL.
  • Fig. 1 shows the results of Table 8 and Table 3 as a graph. From FIG. 1, it can be seen that when the hyaluronic solution containing a low concentration of divalent soluble iron contains 1000 ⁇ g / mL of L-methionine, the stability of the aqueous solution of sodium hyaluronate is improved. This stabilizing effect was particularly remarkable when the divalent soluble iron concentration was 5 ppb or less.
  • the aqueous solution of sodium hyaluronate having a low content of divalent soluble iron had an improved residual intrinsic viscosity after storage. Furthermore, when L-methionine was contained in the sodium hyaluronate aqueous solution, the intrinsic viscosity remaining rate was further improved.
  • This aqueous sodium hyaluronate solution has high stability and is less likely to cause a decrease in viscosity or quality even after long-term storage, and thus is excellent as a raw material for pharmaceutical compositions, for example. Moreover, since it is suitable for long-term storage, the cost can be reduced.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Birds (AREA)
  • Dermatology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Rheumatology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Cosmetics (AREA)
  • Medicinal Preparation (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

 安定性が高いヒアルロン酸またはその塩を含む水溶液を明らかにする。 2価の溶解性鉄の含有率が5ppb以下であり、チオ硫酸金属塩類、チオシアン酸金属塩類、チオケトン類、スルフィド類、チオ尿素類、およびチオセミカルバジド類からなる群から選ばれる1種以上に分類される還元剤を含有する、ヒアルロン酸またはその塩を含む水溶液を提供する。

Description

ヒアルロン酸またはその塩を含む水溶液
 本発明は、2価の溶解性鉄の含有率が低く、チオ硫酸金属塩類、チオシアン酸金属塩類、チオケトン類、スルフィド類、チオ尿素類、およびチオセミカルバジド類からなる群から選ばれる1種以上に分類される還元剤を含有する、ヒアルロン酸またはその塩を含む水溶液に関する。
 ヒアルロン酸とは、N-アセチルグルコサミンとグルクロン酸の二糖単位が連結して構成されている多糖として知られている。ヒアルロン酸は、一般的に医薬品・化粧品・食品等の原材料として使用されている。ヒアルロン酸の生産方法としては、鶏の鶏冠等からの抽出物により製造する方法や、微生物を用いた発酵法により生産する方法がある。
 例えば、特許文献1にはストレプトコッカスズーエピデミカスを用いて、発酵法によりヒアルロン酸を生産したことが記載されている。この特許文献1には、培養中に硫酸第一鉄を3倍の濃度になるように添加した場合(実施例3)、添加しない場合(実施例1)よりもヒアルロン酸の収率および分子量が増加したことが記載されている。
 また、特許文献2にはストレプトコッカス・エクイ(ATCC9527)を用いて、発酵法によりヒアルロン酸粉末を生産したことが記載されている。特許文献3には、特許文献2の方法に基づいて生産したヒアルロン酸ナトリウム結晶には、カルシウム、マグネシウム、および鉄が多く含有されていることを表す実験データが記載されている。また特許文献3には、特許文献2の方法に基づいて得たヒアルロン酸含有液にさらにキレート樹脂を接触させることで、カルシウム、マグネシウム、および鉄の含有率が10ppm未満に減少したヒアルロン酸ナトリウム結晶を得たことが記載されている。
特開平9-56394 特公平7-2117 特開2008-280430
 しかしながら、上記文献記載の従来技術は以下の点で改善の余地を有していた。
 第一に特許文献1の生産方法では、硫酸第一鉄(硫酸鉄(II)、FeSO)を大量に培地に添加しているため、精製後のヒアルロン酸含有溶液に鉄が混入しやすいと考えられる。また、硫酸第一鉄を大量に含む培地から鉄を取り除くには、通常よりも多くのコストが必要になる。
 第二に特許文献2の生産方法では、ヒアルロン酸粉末にカルシウム、マグネシウム、および鉄が多く含まれており、ヒアルロン酸ナトリウムの純度が低かった。
 第三に特許文献3の生産方法では、ヒアルロン酸ナトリウム結晶中のカルシウム、マグネシウム、および鉄の含有率を10ppm未満に減少させたことが記載されているが、具体的に含有率がいくつであったかは不明である。またその分析結果はppmオーダーであり、精密性に欠けている。さらに、カルシウム、マグネシウム、および鉄の含有率を減少させたことによって、具体的にどのような効果が得られるのかは記載されていない。
 本発明は上記事情に鑑みてなされたものであり、2価の溶解性鉄の含有率が5ppb以下であり、チオ硫酸金属塩類、チオシアン酸金属塩類、チオケトン類、スルフィド類、チオ尿素類、およびチオセミカルバジド類からなる群から選ばれる1種以上に分類される還元剤を含むために、安定性が高いヒアルロン酸またはその塩を含む水溶液を提供することを目的とする。
 本発明者らは、ヒアルロン酸またはその塩を含む水溶液に含まれる不純物に関する研究を行った結果、ヒアルロン酸塩水溶液中に混入している2価の溶解性鉄の含有率が高いほどヒアルロン酸分子の安定性が減少することを初めて見出した。また、本発明者らは、驚くべきことに、3価の溶解性鉄の含有率が大きくてもヒアルロン酸分子の安定性は減少せず、2価の溶解性鉄の含有率が大きい場合に限ってヒアルロン酸分子の安定性の減少が起こっていることも見出した。
 そこで、本発明者らは、ヒアルロン酸またはその塩を含む水溶液中に混入している2価の溶解性鉄の含有率を低減させるとともに、2価の溶解性鉄によるヒアルロン酸分子の安定性の減少を抑制する添加物を探し求めたところ、チオ硫酸金属塩類、チオシアン酸金属塩類、チオケトン類、スルフィド類、チオ尿素類、およびチオセミカルバジド類のいずれかに分類される還元剤を添加することによって、2価の溶解性鉄によるヒアルロン酸分子の安定性の減少を抑制することができることを初めて見出した。また、本発明者らは、驚くべきことに、還元性の化合物であっても、臭化Na、亜硫酸水素Na、硫化Na、チオグリコール酸Na、ブドウ糖、およびアスコルビン酸を添加した場合には、2価の溶解性鉄によるヒアルロン酸分子の安定性の減少が抑制されず、かえって添加したことによって安定性が減少することも多いことを見出し、本発明を完成した。
 即ち、本発明によれば、2価の溶解性鉄の含有率が5ppb以下であり、チオ硫酸金属塩類、チオシアン酸金属塩類、チオケトン類、スルフィド類、チオ尿素類、およびチオセミカルバジド類からなる群から選ばれる1種以上に分類される還元剤を含有する、ヒアルロン酸またはその塩を含む水溶液が提供される。このヒアルロン酸またはその塩を含む水溶液は、保存後の極限粘度残存率が良好であることが、後述する実施例で実証されている。そのため、医薬品・化粧品・食品等の原材料に好適である。
 また、本発明によれば、上記ヒアルロン酸またはその塩を含む水溶液を含む、医薬組成物が提供される。この医薬組成物は、保存後の極限粘度残存率が良好なヒアルロン酸またはその塩を含む水溶液を含む。そのため、時間経過とともに生じる粘度の低下、または品質の低下が生じにくい。
 また、本発明によれば、上記ヒアルロン酸またはその塩を含む水溶液を含む、関節症治療用注射剤が提供される。この関節症治療用注射剤は、保存後の極限粘度残存率が良好なヒアルロン酸またはその塩を含む水溶液を含む。そのため、関節内またはその周辺に投与した場合に、良好な滞留性が得られる。
 また、本発明によれば、上記ヒアルロン酸またはその塩を含む水溶液を含む、化粧料組成物が提供される。この化粧料組成物は、保存後の極限粘度残存率が良好なヒアルロン酸またはその塩を含む水溶液を含む。そのため、時間経過とともに生じる粘度の低下、または品質の低下が生じにくい。
 また、本発明によれば、ヒアルロン酸またはその塩、および2価の溶解性鉄を含有する組成物と、チオ硫酸金属塩類、チオシアン酸金属塩類、チオケトン類、スルフィド類、チオ尿素類、およびチオセミカルバジド類からなる群から選ばれる1種以上に分類される還元剤と、を水溶液に溶解させる工程を含み、上記組成物は、ヒアルロン酸またはその塩の濃度が10mg/mLとなるように水溶液に溶解した時の、水溶液中の2価の溶解性鉄の含有率が5ppb以下である、ヒアルロン酸またはその塩を含む水溶液の生産方法が提供される。この生産方法によれば、保存後の極限粘度残存率が良好なヒアルロン酸またはその塩を生産できる。
 また、本発明によれば、ヒアルロン酸またはその塩、および2価の溶解性鉄を含有する組成物と、チオ硫酸金属塩類、チオシアン酸金属塩類、チオケトン類、スルフィド類、チオ尿素類、およびチオセミカルバジド類からなる群から選ばれる1種以上に分類される還元剤と、を水溶液に溶解させる工程を含み、上記組成物は、ヒアルロン酸またはその塩の濃度が10mg/mLとなるように水溶液に溶解した時の、水溶液中の2価の溶解性鉄の含有率が5ppb以下である、ヒアルロン酸またはその塩を含む水溶液の安定化促進方法が提供される。上記還元剤を、2価の溶解性鉄の含有率が5ppb以下のヒアルロン酸またはその塩を含む水溶液に含有させれば、保存後の極限粘度残存率が顕著に向上することが、後述する実施例で実証されている。そのため、この安定化促進方法によれば、ヒアルロン酸またはその塩を含む水溶液の安定化を顕著に促進することができる。
 また、本発明によれば、チオ硫酸金属塩類、チオシアン酸金属塩類、チオケトン類、スルフィド類、チオ尿素類、およびチオセミカルバジド類からなる群から選ばれる1種以上に分類される還元剤を含む、2価の溶解性鉄の含有率が5ppb以下のヒアルロン酸またはその塩を含む水溶液を安定化するための、安定化剤が提供される。上記還元剤を、2価の溶解性鉄の含有率が5ppb以下のヒアルロン酸またはその塩を含む水溶液に含有させれば、保存後の極限粘度残存率が顕著に向上することが、後述する実施例で実証されている。そのため、この安定化剤を、2価の溶解性鉄の含有率が5ppb以下のヒアルロン酸またはその塩を含む水溶液に添加すれば、顕著に安定化させることができる。
 本発明によれば、2価の溶解性鉄の含有率が5ppb以下であり、チオ硫酸金属塩類、チオシアン酸金属塩類、チオケトン類、スルフィド類、チオ尿素類、およびチオセミカルバジド類からなる群から選ばれる1種以上に分類される還元剤を含むために、安定性が高いヒアルロン酸またはその塩を含む水溶液が得られる。
図1は、2価の溶解性鉄およびL-メチオニンを含有する水溶液に、ヒアルロン酸ナトリウム粉末を添加したときの、極限粘度残存率の変化を表したグラフである。
 以下、本発明の実施の形態について詳細に説明する。なお、同様な内容については繰り返しの煩雑を避けるために、適宜説明を省略する。
 <ヒアルロン酸またはその塩を含む水溶液>
 本発明の一実施形態は、2価の溶解性鉄の含有率が5ppb以下であり、チオ硫酸金属塩類、チオシアン酸金属塩類、チオケトン類、スルフィド類、チオ尿素類、およびチオセミカルバジド類からなる群から選ばれる1種以上に分類される還元剤を含む、ヒアルロン酸またはその塩を含む水溶液である。このような組成からなるヒアルロン酸またはその塩を含む水溶液は、後述する実施例で実証されているように、保存後の極限粘度残存率が高く、物理的な安定性に優れている。また、長期保存後または長期時間経過後にも粘度や品質の低下が生じにくく、例えば医薬品・化粧品・食品等の原材料に好適である。
 上記の還元剤は、全て硫黄含有の還元剤である。上記のチオ硫酸金属塩類は、例えばチオ硫酸カリウムまたはチオ硫酸ナトリウム等であってもよい。上記のチオシアン酸金属塩類は、例えばチオシアン酸カリウムまたはチオシアン酸ナトリウム等であってもよい。上記のチオケトン類は、例えばチオペンタール等であってもよい。上記のスルフィド類は、例えばL-メチオニンまたはDL-メチオニン等であってもよい。上記のチオ尿素類は、R-N-C(=S)-N-Rの構造を有する化合物であり、例えばH2N-C(=S)-NH2等であってもよい。上記のチオセミカルバジド類は、R-N-C(=S)-NH-N-Rの構造を有する化合物であり、例えばH2-N-C(=S)-NH-NH2等であってもよい。ヒアルロン酸またはその塩を含む水溶液の安定性をより向上させるという観点からは、L-メチオニンまたはチオ硫酸ナトリウムが好ましい。
 上記の5ppb以下は、例えば0.001、0.01、0.1、0.5、1、2、4、または5ppbであってもよい。またこの含有率は、ここで例示した値以下、またはいずれか2つの値の範囲内であってもよい。この含有率は、ヒアルロン酸またはその塩を含む水溶液の安定性を向上させるという観点からは、より少ない方が好ましい。
 本実施形態のヒアルロン酸またはその塩を含む水溶液に含まれる、上記の還元剤の含有率は、例えば5、10、30、50、100、150、300、500、800、1000、1500、2000、5000または10000μg/mLであってもよい。またこの含有率は、ここで例示したいずれか2つの値の範囲内であってもよい。またこの含有率は、ヒアルロン酸またはその塩を含む水溶液の安定性をより向上させるという観点からは、10μg/mL以上が好ましく、100μg/mL以上がより好ましい。またこの含有率は、生産コスト低減、または操作性向上の観点からは2000μg/mL以下が好ましく、1500μg/mL以下がより好ましい。
 本実施形態のヒアルロン酸またはその塩を含む水溶液に含まれる、ヒアルロン酸ナトリウムまたはその塩の平均分子量は、例えば50万、80万、100万、150万、180万、200万、250万、300万、500万、または800万であってもよい。この平均分子量は、ここで例示したいずれか2つの値の範囲内であってもよい。ヒアルロン酸またはその塩を含む水溶液の粘性をより向上させるという観点からは、100万以上が好ましく、150万以上がより好ましい。粘性の高いヒアルロン酸またはその塩を含む水溶液は、関節症治療用の注射剤として使用した場合、患部での滞留性に優れている。ヒアルロン酸またはその塩を含む水溶液に含まれるヒアルロン酸またはその塩の平均分子量は、極限粘度を測定した後、Laurentの式(LAURENT et al., Biochim Biophys Acta. 1960 Aug 26;42:476-485.)を用いて算出することができる。
 本実施形態のヒアルロン酸またはその塩を含む水溶液に含まれる、ヒアルロン酸またはその塩の含有量は、例えば、0.1、1、5、8、9、10、11、12、15、または20mg/mLであってもよい。この含有率は、ここで例示したいずれか2つの値の範囲内であってもよい。治療効果、または注射剤等に使用する際の操作性の観点からは、5と15mg/mLの値の範囲内が好ましく、8と12mg/mLの値の範囲内がより好ましい。
 本実施形態のヒアルロン酸またはその塩を含む水溶液のpHは、例えば5.5、6、6.5、6.8、7、7.8、8、8.5、または9であってもよい。このpHは、ここで例示したいずれか2つの値の範囲内であってもよい。またこのpHは、安定性の観点からは、6.5と8の値の範囲内が好ましく、6.8と7.8の値の範囲内がより好ましい。
 本実施形態のヒアルロン酸またはその塩を含む水溶液は、例えば、ヒアルロン酸またはその塩、および2価の溶解性鉄を含有する組成物と、チオ硫酸金属塩類、チオシアン酸金属塩類、チオケトン類、スルフィド類、チオ尿素類、およびチオセミカルバジド類からなる群から選ばれる1種以上に分類される還元剤と、を水溶液に溶解させる工程を含み、上記組成物は、ヒアルロン酸またはその塩の濃度が10mg/mLとなるように水溶液に溶解した時の、水溶液中の2価の溶解性鉄の含有率が5ppb以下である、ヒアルロン酸またはその塩を含む水溶液の生産方法によって得ることができる。この生産方法は複雑な工程を必ずしも必要とせず、生産性またはコスト面で優れている。
 本明細書において「ヒアルロン酸の塩」とは、例えばヒアルロン酸ナトリウム、ヒアルロン酸カリウム、ヒアルロン酸亜鉛、ヒアルロン酸カルシウム、ヒアルロン酸マグネシウム、またはヒアルロン酸アンモニウムであってもよい。この中でも、所望の粘性、または関節症への治療効果が期待できるという観点からは、ヒアルロン酸ナトリウムが好ましい。ヒアルロン酸ナトリウムの化学名は、例えば[→3)-2-acetamido-2-deoxy-β-D-glucopyranosyl-(1→4)-β-D-sodium glucopyranosyluronate-(1→]n(IUPAC)で表すことができる。
 本明細書において「2価の溶解性鉄」とは、溶解性の状態にある鉄で2価のものである。Fe2+や2価鉄と表記することもできる。
 <医薬組成物等>
 本実施形態のヒアルロン酸またはその塩を含む水溶液は、医薬組成物の原材料として使用できる。この場合、上記医薬組成物は安定性に優れたヒアルロン酸またはその塩を含む水溶液を含むため、長期保存後にも粘度や品質の低下が生じにくい。また、例えば関節内またはその周辺に投与した場合に、患部に長時間または所望の時間滞留することができる。この医薬組成物の剤形は特に限定されないが、関節等の患部へ直接投与することができるという観点からは注射剤が好ましい。注射剤の容器としては、例えばシリンジ、バイアル、またはアンプルを使用できる。投与に際しては、単独で投与することも可能ではあるが、薬理学的に許容される1つまたはそれ以上の担体もしくは賦形剤と一緒に混合し、製剤学の技術分野においてよく知られる任意の方法により製造した医薬製剤として提供することが好ましい。この医薬組成物は投与形態に合わせて、緩衝剤(例えば、リン酸塩緩衝液、酢酸ナトリウム緩衝液)、無痛化剤(例えば、塩酸リドカイン、塩酸プロカインなど)、安定剤(例えば、ヒト血清アルブミン、ポリエチレングリコールなど)、保存剤(例えば、ベンジルアルコール、フェノールなど)、酸化防止剤などと配合してもよい。またこの医薬組成物は、添加剤としてリン酸水素ナトリウム、結晶リン酸二水素ナトリウム、塩化ナトリウムを含んでいてもよい。調整された医薬組成物は、例えばヒトや哺乳動物(例えばラット、マウス、ウサギ、イヌ、サル、ヒツジ、ブタ、ウシ、ネコなど)に対して投与することができる。なお医薬組成物には、予防を目的として使用される組成物を含む。
 この医薬組成物の投与方法は被験者の年齢、症状、患部等により適宜選択することができる。変形性膝関節症の治療に使用する場合には、例えば、成人1回2.5mLを1週間毎に連続5回膝関節腔内に投与することができる。または、症状の維持を目的とする場合は、2~4週間隔で投与することができる。また肩関節周囲炎の治療に使用する場合には、例えば、成人1回2.5mLを1週間毎に連続5回肩関節(肩関節腔、肩峰下滑液包、または上腕二頭筋長頭腱腱鞘)内に投与することができる。また関節リウマチにおける膝関節痛の治療に使用する場合には、例えば、成人1回2.5mLを1週間毎に連続5回膝関節腔内に投与することができる。また、適切な化学療法薬と併用で投与してもよい。
 この医薬組成物の薬理作用としては、例えば、a)ヒアルロン酸塩が軟骨組織に結合し表面を被覆することによる粘弾性もしくは潤滑作用、b)軟骨基質の安定化による関節軟骨保護作用(変性抑制作用、修復作用等)、c)炎症性細胞及び滑膜細胞の表面を被覆することによる、もしくは発痛増強物質の産生抑制等による鎮痛作用、またはd)滑膜及び軟骨変性を伴う関節炎と密接な関わりをもつ滑膜細胞、軟骨細胞、もしくは好中球やマクロファージといった炎症性細胞に影響を及ぼして発現される炎症作用、を挙げることができる。これら作用により、例えば疼痛の軽減、または日常生活活動や関節可動域の改善が期待される。
 本実施形態のヒアルロン酸またはその塩を含む水溶液は、化粧料組成物の原材料として使用できる。この場合、上記化粧料組成物は、安定性に優れたヒアルロン酸またはその塩を含む水溶液を含むため、長期保存後にも粘度や品質の低下が生じにくい。また、保湿用の化粧料組成物として使用する場合、保湿効果が持続しやすい。
 <安定化方法等>
 他の実施形態は、ヒアルロン酸またはその塩、および2価の溶解性鉄を含有する組成物と、チオ硫酸金属塩類、チオシアン酸金属塩類、チオケトン類、スルフィド類、チオ尿素類、およびチオセミカルバジド類からなる群から選ばれる1種以上に分類される還元剤と、を水溶液に溶解させる工程を含み、上記組成物は、ヒアルロン酸またはその塩の濃度が10mg/mLとなるように水溶液に溶解した時の、水溶液中の2価の溶解性鉄の含有率が5ppb以下である、ヒアルロン酸またはその塩を含む水溶液の安定化促進方法である。この方法によれば、物理的な安定性が高い、ヒアルロン酸またはその塩を含む水溶液を得ることができる。またこの方法は、複雑な工程を必ずしも必要とせず、利便性に優れている。
 また、上記還元剤はヒアルロン酸またはその塩を含む水溶液の安定化剤の原材料として使用できる。この安定化剤を用いれば、2価の溶解性鉄の含有率が5ppb以下の、ヒアルロン酸またはその塩を含む水溶液の、物理的な安定性を向上させることができる。この安定化剤は、粉末状または液状であってもよい。また液状の場合には緩衝剤を含んでいてもよい。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。また、上記実施形態に記載の構成を組み合わせて採用することもできる。
 以下、本発明を実施例によりさらに説明するが、本発明はこれらに限定されるものではない。
 <実施例1>
 以下の手順で、ヒアルロン酸Na水溶液を調整した。まず、グルコース5%、リン酸第1カリウム0.2%、ポリペプトン1.0%、酵母エキス0.5%からなる培地1リットルを加熱殺菌後、ストレプトコッカス・エキFM-100(微工研条寄第9027号)を接種した。空気を1vvmで通気しながら、撹拌200回転/分、温度33℃、pH8.5(20%水酸化ナトリウムの自動滴下によるコントロール)で20時間培養した。この液を菌体ろ過装置によりろ過し、水に対して12時間透析して透析膜内のヒアルロン酸溶液を回収した。回収容器は、鉄の混入を防ぐため、内表面がガラス製のものを用いた。ここに塩化ナトリウムを2.5%となるように添加し、エタノールをヒアルロン酸溶液の2倍量加えてヒアルロン酸Naを沈殿させた。沈殿をエタノールで5回洗浄し、不純物を十分に洗い流してから40℃で10時間風乾し、ヒアルロン酸Naの粉末を得た。
 次に、得られたヒアルロン酸Na粉末を、2mMリン酸バッファーおよび0.9%塩化ナトリウムを含む水溶液に溶解し、ヒアルロン酸Naをそれぞれ5、8、10、12、15mg/mL含むヒアルロン酸Na水溶液を得た。さらに、極限粘度を測定し、Laurentの式を用いてヒアルロン酸Naの分子量を求めた結果、253万であった。
 <比較例1>
 実施例1に記載の手順でストレプトコッカス・エキFM-100を培養し、特許文献3(特開2008-280430)の実施例1に記載の手順と同様の手順で、ヒアルロン酸Na水溶液を精製した。具体的には、まず、グルコース5%、リン酸第1カリウム0.2%、ポリペプトン1.0%、酵母エキス0.5%からなる培地1リットルを加熱殺菌後、ストレプトコッカス・エキFM-100を接種した。空気を1vvmで通気しながら、撹拌200回転/分、温度33℃、pH8.5(20%水酸化ナトリウムの自動滴下によるコントロール)で20時間培養した。培養液を、イオン交換水を用いて10倍に希釈し、その2.5L水溶液に活性炭(武田薬品社製の白鷺RW50-T)を5g、パーライト(三井金属鉱業株式会社のロカヘルプ♯409)を30g添加して1時間処理し、ヌッチェを用いて濾過した。この操作を2回繰り返して培地中の有機成分を除去し、ヒアルロン酸Na含有液を調整した。次に、内径15mm、高さ300mmのクロマトカラムに三菱化学社製ダイヤイオンCR11を68ml充填し、樹脂を再生した。このクロマトカラムに上記ヒアルロン酸Na含有液2.5Lを、SV=18(1200ml/hr)で通液した。クロマトカラム通過液1Lに食塩2gを溶解し、pH7に調整後、2-プロパノールで析出を行い、40℃で真空乾燥し、ヒアルロン酸Naの粉末を得た。
 次に、得られたヒアルロン酸Na粉末を、2mMリン酸バッファーおよび0.9%塩化ナトリウムを含む水溶液に溶解し、ヒアルロン酸Naをそれぞれ5、8、10、12、15mg/mL含むヒアルロン酸Na水溶液を得た。さらに、極限粘度を測定し、Laurentの式を用いてヒアルロン酸Naの分子量を求めた結果、240万であった。
 <評価例1>
 (1)溶解性鉄の分析
 実施例1および比較例1で調製したヒアルロン酸Naの粉末を、2mMリン酸バッファーおよび0.9%塩化ナトリウムを含む水溶液に溶解し、ヒアルロン酸Naを5、8、10、12、または15mg/mL含有するヒアルロン酸Na水溶液をそれぞれ調製した(No.1~10)。次に、それぞれの水溶液について、鉄量2価の溶解性鉄量、2価および3価の溶解性鉄量、および全鉄量を下記(1-1)~(1-3)の手順で測定した。全鉄量には溶解性および不溶解性の鉄量を含む。鉄量2価の溶解性鉄量、2価および3価の溶解性鉄量、および全鉄量の検出限界は、5ppbであった。
 (1-1)2価の溶解性鉄の分析方法
 a)ヒアルロン酸Na水溶液2.75gをサンプル瓶に分取する。
 b)チオシアン酸カリウム溶液0.1mL、1,10-フェナントロリン溶液0.05mLを添加して混合する。
 c)約10mLに希釈した後、約10分間放置する。
 d)クロロホルム5mLを加えた後、密栓する。5分間振り混ぜ、抽出する。
 e)静置後、クロロホルム相を4mL分取し、別のサンプル瓶に移す。
 f)ホットプレート上で蒸発乾固した後、濃硝酸0.5mLを加え酸分解する。
 g)希硝酸(1+100)2mLを加え、残分を溶解する。
 h)ICP発光分析でFeを定量する。
 (1-2)2価および3価の溶解性鉄の分析方法
 a)ヒアルロン酸Na水溶液2.75gをサンプル瓶に分取する。
 b)塩酸ヒドロキシルアミン溶液0.2mLを添加する。
 c)1,10-フェナントロリン溶液0.2mL、チオシアン酸カリウム溶液0.5mLを添加する。
 d)約10mLに希釈した後、約10分間放置する。
 e)4-メチル-2-ペンタノン5mLを加えた後、密栓する。1分間振り混ぜ、抽出する。
 f)静置後、4-メチル-2-ペンタノン相を4mL分取し、別のサンプル瓶に移す。
 g)ホットプレート上で蒸発乾固した後、濃硝酸0.5mLを加え酸分解する。
 h)希硝酸(1+100)2mLを加え、残分を溶解する。
 i)ICP発光分析でFeを定量する。
 (1-3)全鉄の分析方法
 a)ヒアルロン酸Na水溶液2.75gをサンプル瓶に分取する。
 b)HCl(1+1)0.1mLを加えホットプレートで加熱する。
 c)上記(1-2)2価および3価の溶解性鉄の分析方法のb)以降の操作を行う。
 (1-4)鉄量の分析結果
 上記(1-1)~(1-3)の分析結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 (2)極限粘度測定
 2mMリン酸バッファーおよび0.9%塩化ナトリウムを含む水溶液に対して、実施例1または比較例1で調製したヒアルロン酸Naの粉末を、ヒアルロン酸Na濃度が10mg/mLとなるようにそれぞれ溶解した(No.11~12)。さらに、80°Cで24時間保存した後、極限粘度および極限粘度残存率(%)を測定した結果を表2に示す。なお、極限粘度は第十五改正日本薬局方第二追補「精製ヒアルロン酸ナトリウム」の粘度の項の記載に従い測定した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 2mMリン酸バッファーおよび0.9%塩化ナトリウムを含む水溶液に対して、表3に示すように塩化鉄(II)(FeCl2)を溶解した(No.13~19)。次に、それぞれの水溶液に実施例1で調製したヒアルロン酸Naの粉末を、ヒアルロン酸Na濃度が10mg/mLとなるように溶解した。さらに、80°Cで24時間保存した後、極限粘度および極限粘度残存率(%)を測定した。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 2mMリン酸バッファーおよび0.9%塩化ナトリウムを含む水溶液に対して、表4に示すように塩化鉄(III)(FeCl3)を溶解した(No.20~22)。次に、それぞれの水溶液に実施例1で調製したヒアルロン酸Naの粉末を、ヒアルロン酸Na濃度が10mg/mLとなるように溶解した。さらに、80°Cで24時間保存した後、極限粘度および極限粘度残存率(%)を測定した。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 以上の結果から、1)実施例1に記載の方法を用いれば、2価の溶解性鉄の混入量が5ppb以下のヒアルロン酸Na水溶液を調整できること、2)2価の溶解性鉄によって、ヒアルロン酸Na水溶液の保存後の極限粘度が低下すること、3)3価の溶解性鉄は、ヒアルロン酸Na水溶液の保存後の極限粘度に影響を与えないこと、がわかった。
 <評価例2>
 2mMリン酸バッファーおよび0.9%塩化ナトリウムを含む水溶液に対して、表5に示すように各種添加物を溶解した(No.23~34)。次に、それぞれの水溶液に実施例1で調製したヒアルロン酸Naの粉末を、濃度が10mg/mLとなるように溶解した。さらに、80°Cで24時間保存した後、極限粘度および極限粘度残存率(%)を測定した。なお、上記添加物のうち、グリシン、L-アスパラギン酸Na、精製白糖は非還元性の化合物である。L-メチオニン、チオ硫酸Na、臭化Na、亜硫酸水素Na、硫化Na、チオグリコール酸Na、ブドウ糖、およびアスコルビン酸は還元性の化合物である。
Figure JPOXMLDOC01-appb-T000005
 ・添加剤
 L-メチオニン:和光純薬社、133-01602
 チオ硫酸Na:和光純薬社、190-13845
 グリシン:和光純薬社、036435
 L-アスパラギン酸Na:和光純薬社、193-01262
 臭化Na:和光純薬社、193-01505
 亜硫酸水素Na:和光純薬社、190-01375
 硫化Na:和光純薬社、197-03362
 チオグリコール酸Na:和光純薬社、590-11762
 ブドウ糖:和光純薬社、076-05705
 精製白糖(ショ糖):和光純薬社、196-13705
 アスコルビン酸Na:和光純薬社、196-01252
 以上の結果、実施例1で調製したヒアルロン酸Naの粉末を溶解させた水溶液は、L-メチオニンまたはチオ硫酸Naを含有させると、ヒアルロン酸Na水溶液の安定性が向上することがわかった。また、L-メチオニンおよびチオ硫酸Naと同じく還元性の性質を有する化合物であっても、亜硫酸水素Na、硫化Na、チオグリコール酸Na、ブドウ糖、およびアスコルビン酸を含有させた場合には、むしろ安定性が低下していた。
 <評価例3>
 2mMリン酸バッファーおよび0.9%塩化ナトリウムを含む水溶液に対して、表6に示すように各種添加物を溶解した(No.35~41)。さらに、それぞれの水溶液に塩化鉄(II)を11.3ppb(2価の溶解性鉄として5ppb)添加した。次に、それぞれの水溶液に実施例1で調製したヒアルロン酸Naの粉末を、濃度が10mg/mLとなるように溶解した。その後、80°Cで24時間保存した後、極限粘度および極限粘度残存率(%)を測定した。
Figure JPOXMLDOC01-appb-T000006
 以上の結果、実施例1で調製したヒアルロン酸Naの粉末を溶解させた水溶液は、2価の溶解性鉄を5ppb含有させると、ヒアルロン酸Na水溶液の安定性が低下することが示された。さらには、その安定性の低下は、L-メチオニンまたはチオ硫酸Naによって顕著に抑制されることがわかった。
 <評価例4>
 2mMリン酸バッファーおよび0.9%塩化ナトリウムを含む水溶液に対して、表7に示す濃度でL-メチオニンを溶解した(No.42~48)。次に、それぞれの水溶液に実施例1で調製したヒアルロン酸Naの粉末を、濃度が10mg/mLとなるように溶解した。さらに、80°Cで24時間保存した後、極限粘度および極限粘度残存率(%)を測定した。
Figure JPOXMLDOC01-appb-T000007
 以上の結果から、実施例1で調製したヒアルロン酸Naの粉末を溶解させた水溶液は、L-メチオニンを10μg/mL以上含有させると、ヒアルロン酸Na水溶液の安定性が向上することがわかった。また、その安定性の向上は、L-メチオニンを100μg/mL含有したあたりで緩やかになった。
 <評価例5>
 2mMリン酸バッファーおよび0.9%塩化ナトリウムを含む水溶液に対して、L-メチオニンを、濃度が1000μg/mLとなるように溶解した。さらに、それぞれの水溶液に表8に示す濃度の塩化鉄(II)を添加した(No.49~54)。次に、それぞれの水溶液に実施例1で調製したヒアルロン酸Naの粉末を、濃度が10mg/mLとなるように溶解した。その後、80°Cで24時間保存した後、極限粘度および極限粘度残存率(%)を測定した。
Figure JPOXMLDOC01-appb-T000008
 表8の結果と、表3の結果をグラフにすると、図1の通りである。この図1から、2価の溶解性鉄濃度が低濃度含まれているヒアルロン溶液に、L-メチオニンを1000μg/mL含有させると、ヒアルロン酸Na水溶液の安定性が向上することがわかる。この安定化効果は、特に2価の溶解性鉄濃度が5ppb以下のときに顕著であった。
 以上のように、2価の溶解性鉄の含有率が低いヒアルロン酸Na水溶液は、保存後の極限粘度残存率が向上していた。さらには、そのヒアルロン酸Na水溶液にL-メチオニンを含有させると、より一層極限粘度残存率が向上した。このヒアルロン酸Na水溶液は安定性が高く、長期保存後にも粘度や品質の低下が生じにくいため、例えば医薬組成物等の原材料として優れている。また、長期保存に適しているためコストも抑えられる。
 以上、本発明を実施例に基づいて説明した。この実施例はあくまで例示であり、種々の変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。

Claims (12)

  1.  2価の溶解性鉄の含有率が5ppb以下であり、
     チオ硫酸金属塩類、チオシアン酸金属塩類、チオケトン類、スルフィド類、チオ尿素類、およびチオセミカルバジド類からなる群から選ばれる1種以上に分類される還元剤を含有する、ヒアルロン酸またはその塩を含む水溶液。
  2.  前記ヒアルロン酸またはその塩の濃度が、5~15mg/mLである、請求項1に記載のヒアルロン酸またはその塩を含む水溶液。
  3.  前記還元剤が、L-メチオニンまたはチオ硫酸ナトリウムである、請求項1または2に記載のヒアルロン酸またはその塩を含む水溶液。
  4.  前記還元剤の含有量が10~10000μg/mLである、請求項1~3いずれかに記載のヒアルロン酸またはその塩を含む水溶液。
  5.  前記ヒアルロン酸またはその塩の平均分子量が100万以上である、請求項1~4いずれかに記載のヒアルロン酸またはその塩を含む水溶液。
  6.  前記ヒアルロン酸の前記塩が、ヒアルロン酸ナトリウムである、請求項1~5いずれかに記載のヒアルロン酸またはその塩を含む水溶液。
  7.  請求項1~6いずれかに記載のヒアルロン酸またはその塩を含む水溶液を含む、医薬組成物。
  8.  請求項1~6いずれかに記載のヒアルロン酸またはその塩を含む水溶液を含む、関節症治療用注射剤。
  9.  請求項1~6いずれかに記載のヒアルロン酸またはその塩を含む水溶液を含む、化粧料組成物。
  10.  ヒアルロン酸またはその塩、および2価の溶解性鉄を含有する組成物と、
     チオ硫酸金属塩類、チオシアン酸金属塩類、チオケトン類、スルフィド類、チオ尿素類、およびチオセミカルバジド類からなる群から選ばれる1種以上に分類される還元剤と、
     を水溶液に溶解させる工程を含み、
     前記組成物は、ヒアルロン酸またはその塩の濃度が10mg/mLとなるように水溶液に溶解した時の、水溶液中の2価の溶解性鉄の含有率が5ppb以下である、
     ヒアルロン酸またはその塩を含む水溶液の生産方法。
  11.  ヒアルロン酸またはその塩、および2価の溶解性鉄を含有する組成物と、
     チオ硫酸金属塩類、チオシアン酸金属塩類、チオケトン類、スルフィド類、チオ尿素類、およびチオセミカルバジド類からなる群から選ばれる1種以上に分類される還元剤と、
     を水溶液に溶解させる工程を含み、
     前記組成物は、ヒアルロン酸またはその塩の濃度が10mg/mLとなるように水溶液に溶解した時の、水溶液中の2価の溶解性鉄の含有率が5ppb以下である、
     ヒアルロン酸またはその塩を含む水溶液の安定化促進方法。
  12.  チオ硫酸金属塩類、チオシアン酸金属塩類、チオケトン類、スルフィド類、チオ尿素類、およびチオセミカルバジド類からなる群から選ばれる1種以上に分類される還元剤を含む、
     2価の溶解性鉄の含有率が5ppb以下のヒアルロン酸またはその塩を含む水溶液を安定化するための、安定化剤。
PCT/JP2012/055423 2011-03-02 2012-03-02 ヒアルロン酸またはその塩を含む水溶液 WO2012118190A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137026030A KR20140024862A (ko) 2011-03-02 2012-03-02 히알루론산 또는 히알루론산염을 포함하는 수용액
JP2013502421A JP5957438B2 (ja) 2011-03-02 2012-03-02 ヒアルロン酸またはその塩を含む水溶液
CN2012800110299A CN103442718A (zh) 2011-03-02 2012-03-02 含透明质酸或透明质酸盐的水溶液

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011045769 2011-03-02
JP2011-045769 2011-03-02

Publications (1)

Publication Number Publication Date
WO2012118190A1 true WO2012118190A1 (ja) 2012-09-07

Family

ID=46758115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055423 WO2012118190A1 (ja) 2011-03-02 2012-03-02 ヒアルロン酸またはその塩を含む水溶液

Country Status (4)

Country Link
JP (1) JP5957438B2 (ja)
KR (1) KR20140024862A (ja)
CN (1) CN103442718A (ja)
WO (1) WO2012118190A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019131479A (ja) * 2018-01-29 2019-08-08 株式会社リタファーマ 舌苔除去材及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108210517A (zh) * 2018-04-03 2018-06-29 赵亮 一种基于玻璃酸钠的可高效激活latent-TGFβ药物及其制备方法与应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10212303A (ja) * 1997-01-31 1998-08-11 Denki Kagaku Kogyo Kk ヒアルロン酸ナトリウム水溶液用安定化組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1247175B (it) * 1991-04-19 1994-12-12 Fidia Spa Procedimento per la purificazione di acido ialuronico e frazione di acido ialuronico puro per uso oftalmico.
JP2006104461A (ja) * 2004-09-10 2006-04-20 Seikagaku Kogyo Co Ltd グリコサミノグリカン画分中の不純物の除去方法
EP2039777A4 (en) * 2006-06-07 2011-11-30 Kyowa Hakko Bio Co Ltd PROCESS FOR PURIFYING HYALURONIC ACID SALT
JP2009011315A (ja) * 2007-06-05 2009-01-22 Mitsubishi Rayon Co Ltd ヒアルロン酸の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10212303A (ja) * 1997-01-31 1998-08-11 Denki Kagaku Kogyo Kk ヒアルロン酸ナトリウム水溶液用安定化組成物

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HERP,A. ET AL.: "Correlation between the autoxidation of ferrous ions or of L-ascorbic acid and the depolymerization of hyaluronate", CARBOHYDRATE RESEARCH, vol. 16, no. 2, 1971, pages 395 - 407 *
PIGMAN,W. ET AL.: "Depolymerization of hyaluronic acid by the ORD reaction", ARTHRITIS & RHEUMATISM, vol. 4, no. 3, 1961, pages 240 - 252 *
WONG,S.F. ET AL.: "The role of superoxide and hydroxyl radicals in the degradation of hyaluronic acid induced by metal ions and by ascorbic acid", JOURNAL OF INORGANIC BIOCHEMISTRY, vol. 14, no. 2, 1981, pages 127 - 34 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019131479A (ja) * 2018-01-29 2019-08-08 株式会社リタファーマ 舌苔除去材及びその製造方法
JP7022406B2 (ja) 2018-01-29 2022-02-18 株式会社リタファーマ 舌苔除去材及びその製造方法

Also Published As

Publication number Publication date
JP5957438B2 (ja) 2016-07-27
JPWO2012118190A1 (ja) 2014-07-07
KR20140024862A (ko) 2014-03-03
CN103442718A (zh) 2013-12-11

Similar Documents

Publication Publication Date Title
RU2620341C2 (ru) Стабилизированная композиция пеметрекседа
EA201200490A1 (ru) Стабильный совместный состав, содержащий хиалуронидазу и иммуноглобулин, и способы его применения
JP3779200B2 (ja) ヒアルロン酸及び/又はその塩の水溶液の安定化組成物
EP1225898B1 (en) Pharmaceutical compositions containing a fluoroquinolone antibiotic drug and xanthan gum
JP2009235075A (ja) NaCl含有インスリン製剤
JP5957438B2 (ja) ヒアルロン酸またはその塩を含む水溶液
KR19980033113A (ko) 국소 마취제 수용액, 국소 마취제의 용해도를 개선시키는 방법, 신경독성이 감소된 국소 마취제 및 국소 마취제의 신경 독성을 감소시키는 방법
JP5957442B2 (ja) 樹脂製バレルを有するシリンジ内にヒアルロン酸又はその塩を含む水溶液を充填してなるプレフィルドシリンジ
JPH10212303A (ja) ヒアルロン酸ナトリウム水溶液用安定化組成物
EP3409292B1 (en) Stabilized aqueous composition comprising chondroitin sulfate and hyaluronic acid
JP5981783B2 (ja) ヒアルロン酸またはその塩およびプロピレングリコールを含有する点眼液
JP5957439B2 (ja) ヒアルロン酸またはその塩を含む水溶液
JP5957441B2 (ja) ヒアルロン酸またはその塩を含む水溶液
EP3881841B1 (en) Pharmaceutical composition
JP5957440B2 (ja) ヒアルロン酸またはその塩を含む水溶液
EP0421297B1 (en) Injectable preparations containing cephalosporin medicament and the use thereof
JPH11302197A (ja) ヒアルロン酸安定化組成物
JP5234046B2 (ja) 鉄コロイド製剤
JP5686830B2 (ja) 鉄コロイド製剤
EP1920779A1 (en) Technique for stabilization of yw753 reparation
JP2022167158A (ja) 経皮吸収促進剤
JP2011111420A (ja) ソフトコンタクトレンズ用眼科組成物
JP2003146880A (ja) ビタミンb1類含有内服用液剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752612

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013502421

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137026030

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12752612

Country of ref document: EP

Kind code of ref document: A1