WO2012117682A1 - タンクドームフランジ部の構造 - Google Patents

タンクドームフランジ部の構造 Download PDF

Info

Publication number
WO2012117682A1
WO2012117682A1 PCT/JP2012/001060 JP2012001060W WO2012117682A1 WO 2012117682 A1 WO2012117682 A1 WO 2012117682A1 JP 2012001060 W JP2012001060 W JP 2012001060W WO 2012117682 A1 WO2012117682 A1 WO 2012117682A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
flange
tank dome
flange portion
dome
Prior art date
Application number
PCT/JP2012/001060
Other languages
English (en)
French (fr)
Inventor
純平 堀田
巧 吉田
和泉 徳喜
良介 浦口
洋祐 津村
村岸 治
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to RU2013144386/11A priority Critical patent/RU2535357C1/ru
Priority to CN201280010488.5A priority patent/CN103384627B/zh
Priority to KR1020147033445A priority patent/KR101837032B1/ko
Priority to EP12752472.6A priority patent/EP2682337B1/en
Priority to KR1020137010498A priority patent/KR20130084665A/ko
Publication of WO2012117682A1 publication Critical patent/WO2012117682A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/04Vessels not under pressure with provision for thermal insulation by insulating layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/03Orientation
    • F17C2201/035Orientation with substantially horizontal main axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/054Size medium (>1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0617Single wall with one layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0103Exterior arrangements
    • F17C2205/0111Boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0153Details of mounting arrangements
    • F17C2205/0157Details of mounting arrangements for transport
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/23Manufacturing of particular parts or at special locations
    • F17C2209/234Manufacturing of particular parts or at special locations of closing end pieces, e.g. caps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/031Dealing with losses due to heat transfer
    • F17C2260/033Dealing with losses due to heat transfer by enhancing insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships

Definitions

  • the present invention relates to a structure of a tank dome flange portion provided in a tank for a liquefied gas carrier ship in which liquefied gas such as low temperature liquefied natural gas (LNG) is stored.
  • liquefied gas such as low temperature liquefied natural gas (LNG)
  • the liquefied gas tank 1 is provided in a horizontally long tank main body 2 and an upper portion of the tank main body 2.
  • the tank dome 3 is provided.
  • the tank body 2 includes a horizontal cylindrical body 2a, and both openings of the body 2a are closed by a substantially hemispherical lid 2b.
  • the tank dome 3 has a vertical cylindrical side wall 3a, and the upper opening of the side wall 3a is closed by a substantially hemispherical lid 3b.
  • the tank dome 3 is provided with a plurality of pipes for supplying and discharging liquefied gas to and from the tank main body 2.
  • a heat insulating material 4 is provided on the surface of the liquefied gas tank 1 so that the heat of the outside air does not enter the liquefied gas tank 1.
  • the tank body 2 is provided with a tank cover 6 that covers the heat insulating material 4 from the space 5
  • the tank dome 3 is also provided with a dome cover (not shown) that covers the heat insulating material 4 from the space. It has been.
  • the flange part 8 is provided in the side wall 3a of the tank dome 3.
  • the flange portion 8 is an annular plate-like body and projects substantially horizontally from the outer surface of the side wall 3 a of the tank dome 3.
  • the difference between the liquefied gas tank 9 shown in FIG. 19 and the liquefied gas tank 1 shown in FIG. 17 is the shape of the tank main body 2, and the rest of the configuration is the same, so the description of the equivalent parts is omitted. .
  • the tank dome flange structure 10 has an annular expansion rubber portion 11 between the upper opening edge of the tank cover 6 and the lower surface of the annular flange portion 8. It is the structure provided.
  • This expansion rubber portion 11 has a function of sealing the space 5 formed inside thereof regardless of the thermal expansion and contraction of the tank main body portion 2 and the flange portion 8 and the like, and seals the space 5. .
  • the present invention has been made to solve the above-described problems, and provides a structure of a tank dome flange portion that can suppress a temperature rise of a low-temperature liquefied gas stored in a tank main body portion.
  • the purpose is that.
  • the structure of the tank dome flange portion includes a flange portion projecting outward from the outer surface of the side wall of the tank dome provided in the tank body portion in which low-temperature liquefied gas is stored, and the tank body portion as a space.
  • a heat input suppression material portion made of fiber reinforced plastic is provided at least in a predetermined portion located between the side wall of the tank dome and the expansion rubber portion.
  • the tank main body portion can store low-temperature liquefied gas, and the tank dome supplies liquefied gas to the tank. And a pipe for discharging.
  • the tank cover and the flange portion cover the tank body portion with a space therebetween. Since the expansion rubber part is deformable, the inner space of the tank cover can be sealed regardless of the thermal expansion and thermal contraction of the tank body part, the tank dome, and the flange part.
  • the heat input suppressing material portion made of fiber reinforced plastic is provided in the predetermined portion of the flange portion, the heat of the outside air is on the outer peripheral edge side of the flange portion. It is possible to prevent heat from entering the low-temperature tank dome. Thereby, the temperature rise of the liquefied gas stored by the tank main-body part can be suppressed.
  • the heat input suppression material portion is provided at a predetermined portion located at least between the side wall of the tank dome and the expansion rubber portion of the flange portion, the expansion rubber portion is cooled by the low temperature tank dome and the low temperature brittleness. Can be prevented.
  • a heat shrinkage absorbing portion for absorbing deformation due to shrinkage is provided.
  • the tank body, the tank dome, and the flange are thermally contracted by the low-temperature liquefied gas stored in the tank body, and the outer peripheral side of the flange is deformed in the direction of being pulled inward.
  • the deformation due to the heat shrinkage can be absorbed by the heat shrinkage absorbing portion.
  • the load which arises in the joined part of the heat input suppression material part made from fiber reinforced plastic of a flange part, and the other part can be reduced.
  • the heat input suppression material portion is formed over a range from the predetermined portion of the flange portion to the outer peripheral edge portion of the flange portion.
  • the heat shrinkage absorbing portion has a bent shape including a substantially L-shaped or substantially U-shaped cross section in the radial direction of the flange portion.
  • the cross-sectional shape is substantially L-shaped or substantially U-shaped.
  • the L-shaped angle can be deformed or the U-shaped width can be expanded.
  • the heat shrinkage absorbing portion is formed in the heat input suppressing material portion, or the heat input suppressing material portion is formed in the heat shrinkage absorbing portion.
  • a heat input suppression material part can have both a heat contraction absorption function and a heat input suppression function, or a heat contraction absorption part has both a heat contraction absorption function and a heat input suppression function. Can be combined. Therefore, simplification of the structure can be achieved.
  • the flange portion is formed by integrally forming the connecting part on the tank dome side and the heat input suppression material portion from the heat input suppression material portion made of fiber reinforced plastic. It is what has been.
  • the flange portion has an inner peripheral side portion on the tank dome side from the heat input suppression material portion made of fiber reinforced plastic, and includes a connecting component and a base end component,
  • the heat input suppressing material part and the connecting part are integrally formed, and the connecting part integrally formed with the heat input suppressing material part is connected to the base part connected to the side wall of the tank dome.
  • the heat input suppression material part made of fiber reinforced plastic and the connection part can be reliably combined, The airtightness of the connecting portion can be easily ensured. And, by connecting the connecting part integrated with the heat input suppressing material part to the base part connected to the side wall of the tank dome, the degree of freedom of alignment of the connecting part between the connecting part and the base end part Will improve.
  • the flange portion is made of a metal on the inner peripheral side portion on the tank dome side from the heat input suppression material portion made of fiber reinforced plastic.
  • the heat input suppression material portion is made of glass fiber reinforced plastic or carbon fiber reinforced plastic.
  • the material can be made of glass fiber reinforced plastic or carbon fiber reinforced plastic according to the strength and heat insulation performance required by the heat input suppressing material part.
  • the structure of the tank dome flange according to the present invention heat input from the outside air can be reduced, and the temperature rise of the liquefied gas stored in the tank main body can be suppressed.
  • FIG. 1 is a longitudinal sectional view showing a structure of a tank dome flange portion according to the first embodiment of the present invention.
  • FIG. 2 (a) is a diagram showing the results of temperature distribution simulation of each part of the structure of the tank dome flange portion according to the first embodiment
  • FIG. 2 (b) is a diagram obtained by removing the heat insulating material from FIG. 2 (a). It is a figure.
  • FIG. 3 is a longitudinal sectional view showing a state where the tank dome and the flange portion shown in FIG. 1 are deformed by heat contraction.
  • 4A is a partial cross-sectional perspective view of a simulation model showing a state before the tank dome and the flange portion shown in FIG. 1 are thermally contracted
  • FIG. 4B is a flange portion shown in FIG. It is a partial section expansion perspective view of the model for simulation showing.
  • 5A is a partial cross-sectional perspective view of a simulation result showing a state in which the tank dome and the flange portion shown in FIG. 4A are thermally contracted
  • FIG. 5B is a flange portion shown in FIG.
  • FIG. 6A is a view showing the result of temperature distribution simulation of each part of the structure of the tank dome flange portion according to the second embodiment of the invention
  • FIG. 6B is the tank shown in FIG. It is a figure which shows the result of the temperature distribution simulation of a dome and a flange part.
  • FIG. 6A is a view showing the result of temperature distribution simulation of each part of the structure of the tank dome flange portion according to the second embodiment of the invention
  • FIG. 6B is the tank shown in FIG. It is a figure which shows the result of the temperature distribution simulation of a dome and a flange part.
  • FIG. 7 is a longitudinal sectional view showing a state where the tank dome and the flange portion shown in FIG.
  • FIG. 8A is a diagram showing a result of temperature distribution simulation of each part of the structure of the conventional tank dome flange portion
  • FIG. 8B is a temperature distribution of the tank dome and flange portion shown in FIG. It is a figure which shows the result of simulation.
  • FIG. 9 is a partial longitudinal sectional view showing the structure of the tank dome flange portion according to the third embodiment of the invention.
  • FIG. 10 is a partial longitudinal sectional view showing the structure of the tank dome flange portion according to the fourth embodiment of the invention.
  • FIG. 11 is a partial longitudinal sectional view showing the structure of a tank dome flange portion according to the fifth embodiment of the invention.
  • FIG. 12 is a partial longitudinal sectional view showing the structure of the tank dome flange portion according to the sixth embodiment of the invention.
  • FIG. 13 is a partial longitudinal sectional view showing a structure of a tank dome flange portion according to the seventh embodiment of the invention.
  • FIG. 14 is a partial longitudinal sectional view showing a structure of a tank dome flange portion according to the eighth embodiment of the invention.
  • FIG. 15 is a partial longitudinal sectional view showing the structure of the tank dome flange portion according to the ninth embodiment of the invention.
  • FIG. 16 is a partial longitudinal sectional view showing the structure of the tank dome flange portion according to the tenth embodiment of the invention.
  • FIG. 17 is a schematic longitudinal sectional view showing a conventional substantially cylindrical liquefied gas tank.
  • FIG. 18 is a partially enlarged perspective view showing a tank dome provided in the conventional liquefied gas tank shown in FIG.
  • FIG. 19 (a) is a partial longitudinal sectional view showing the structure of a tank dome flange portion of another conventional spherical liquefied gas tank
  • FIG. 19 (b) is a plan view of the tank dome shown in FIG. 19 (a). .
  • the tank dome flange structure 21 of this embodiment is provided in a liquefied gas tank in which liquefied gas such as low-temperature liquefied natural gas (LNG) is stored, for example, and is applied to the conventional liquefied gas tank 1 shown in FIG.
  • LNG low-temperature liquefied natural gas
  • tank dome flange structure 21 of this embodiment is applied to, for example, a liquefied gas tank provided in a liquefied gas carrier ship.
  • a liquefied gas tank 1 to which the structure 21 of the tank dome flange portion shown in FIG. 1 is applied is provided on a tank main body 2 (see FIG. 17) in which low-temperature liquefied gas is stored, and an upper portion of the tank main body 2.
  • the flange part 22 has the inner peripheral side part 23 and the outer peripheral side part 24, as shown in FIG.
  • the tank dome flange structure 21 includes an annular flange portion 22 that projects substantially horizontally from the outer surface of the side wall 3 a of the tank dome 3, a lower surface of the flange portion 22, and a tank cover. And an annular expansion rubber part 11 for sealing the space 5.
  • the inner peripheral side part 23 of this flange part 22 is arrange
  • the base end portion 23a is an annular plate-like body, and its inner peripheral edge is joined to the outer surface of the side wall 3a of the metal (for example, aluminum alloy) tank dome 3 by welding, for example, Projects almost horizontally from the outer surface.
  • the connection part 23b is a short cylindrical body, is arrange
  • the outer peripheral side portion 24 is disposed outside the inner peripheral side portion 23 and is integrally formed of fiber reinforced plastic (hereinafter referred to as FRP).
  • FRP fiber reinforced plastic
  • the cross-sectional shape of the radial direction in the flange part 22 is formed in the substantially L shape.
  • the outer peripheral side portion 24 includes a vertical portion 24a and a horizontal portion 24b. Further, a short cylindrical reinforcing portion 25 is provided on the outer peripheral edge of the horizontal portion 24b. Further, the lower portion of the vertical portion 24a is joined to the connecting portion 23b by integral molding.
  • the connecting portion 23b inner peripheral side portion 23
  • the vertical portion 24a outer peripheral side portion 24
  • the connection part 23b is arrange
  • the connecting portion 23b of the inner peripheral side portion 23 is directed to the vertical portion 24a of the outer peripheral side portion 24. Deformation in the inner direction (direction in which airtightness is ensured). As a result, it is possible to prevent the airtightness between the two from being broken by thermal contraction of the tank dome 3 or the like.
  • a heat insulating material 4 having a predetermined thickness is provided on the entire outer surface of the tank dome 3.
  • the entire surface of the inner peripheral side portion 23 of the flange portion 22 is also covered with the heat insulating material 4.
  • the inner peripheral surface of the vertical portion 24 a and the outer peripheral surface of the lower portion of the vertical portion 24 a on the outer peripheral side portion 24 of the flange portion 22 are also covered with the heat insulating material 4.
  • the heat insulating material 4 is not provided on the upper and lower surfaces of the horizontal portion 24b in the outer peripheral side portion 24 of the flange portion 22.
  • the horizontal portion 24b itself has heat resistance. This is because the horizontal portion 24b and the metal inner peripheral side portion 23 are arranged at an interval.
  • the heat of the outside air enters the tank dome 3 from the metal inner peripheral part 23. Heating can be suppressed.
  • the expansion rubber portion 11 shown in FIG. 1 is a deformable rubber-like elastic body formed in an annular shape.
  • the expansion rubber portion 11 is disposed between the lower surface of the outer peripheral portion of the outer peripheral side portion 24 constituting the flange portion 22 and the upper opening edge portion of the tank cover 6.
  • the upper portion of the expansion rubber portion 11 is coupled to the lower surface of the outer peripheral portion of the flange portion 22 with a bolt 27, and the lower portion is coupled to the upper opening edge of the tank cover 6 with the bolt 27.
  • the heat input suppression material portion is for suppressing the heat of the outside air from being transmitted to the tank dome 3 through the flange portion 22. And the function can be achieved by making the outer peripheral side part 24 of the flange part 22 into the heat input suppression material part made from FRP with small heat conductivity.
  • GFRP glass fiber reinforced plastic
  • CFRP carbon fiber reinforced plastic
  • the outer peripheral side portion 24 of the flange portion 22 is made of, for example, GFRP. 24 can fulfill the function as the heat input suppression material portion.
  • the inner peripheral side portion 23 is made of metal without making the entire flange portion 22 made of FRP.
  • the inner peripheral side portion 23 is made of the side wall of the metal tank dome 3. It is because it can be welded to 3a, and it is set as the same construction as the past.
  • FIG. 2A is a diagram showing the result of temperature distribution simulation of each part of the tank dome flange structure 21 shown in FIG. 1, and FIG. 2B is the tank dome 3 shown in FIG. It is a figure which shows the result of the temperature distribution simulation of the flange part 22.
  • the horizontal portion 24b of the outer peripheral side portion 24 made of FRP and the upper portion of the vertical portion 24a in the flange portion 22 are substantially at the outside air temperature.
  • the thermal conductivity of the outer peripheral side portion 24 made of FRP is small, almost no heat is transmitted to the lower portion of the vertical portion 24a covered with the heat insulating material 4 and the connecting portion 23b coupled thereto. Therefore, the temperature of the lower portion of the vertical portion 24a and the connecting portion 23b coupled thereto is slightly higher than the temperature of the tank dome 3 but is low.
  • the temperature of the base end portion 23 a of the metal inner peripheral side portion 23 in the flange portion 22 is substantially the same as the temperature of the tank dome 3 and is low. Therefore, it can be seen that the heat of the outside air is hardly transmitted to the tank dome 3 through the flange portion 22.
  • the tank body 2 (see FIG. 17) can store the low-temperature liquefied gas
  • the tank dome 3 Is provided with a pipe (not shown) for supplying and discharging the liquefied gas to and from the liquefied gas tank.
  • the tank cover 6 and the flange portion 22 can cover the tank body portion 2 with the space 5 therebetween. And since the expansion rubber part 11 is deformable, the inner space 5 of the tank cover 6 can be sealed regardless of the thermal expansion and thermal contraction of the tank main body part 2, the tank dome 3, and the flange part 22. .
  • the airtightness of the space 5 inside the tank cover 6 can be ensured.
  • nitrogen gas or the like can be appropriately hermetically sealed in the space 5.
  • the outer peripheral side portion 24 of the flange portion 22 is made of FRP, and the outer peripheral side portion 24 is made of the heat input suppressing material portion. Therefore, it is possible to suppress the heat of the outside air from entering the low temperature tank dome 3 side from the outer peripheral edge side of the flange portion 22.
  • the heat input suppression material portion is formed over a range from a predetermined portion between the outer surface of the side wall 3a of the tank dome 3 and the expansion rubber portion 11 to the outer peripheral edge portion of the flange portion 22. Therefore, the amount of heat that the heat of the outside air enters from the outer peripheral edge side of the flange portion 22 to the low-temperature tank dome 3 side can be effectively suppressed.
  • the outer peripheral side portion 24 of the flange portion 22 made of FRP, at least a predetermined portion of the flange portion 22 located between the side wall 3a of the tank dome 3 and the expansion rubber portion 11 is used. Therefore, the expansion rubber portion 11 can be prevented from being cooled and embrittled at a low temperature by the low temperature tank dome 3.
  • the heat shrinkage absorbing portion is provided in a portion of the flange portion 22 that is located at least between the side wall 3 a of the tank dome 3 and the expansion rubber portion 11.
  • the heat shrinkage absorbing portion is a bent portion having a substantially L-shaped cross section in the radial direction in the flange portion 22, and is perpendicular to the horizontal portion 24 b in the outer peripheral side portion 24 of the flange portion 22. It is a part including the bending part which the part 24a couple
  • the heat shrinkage absorbing portion shown in FIG. 1 is a bent portion having a substantially L-shaped cross section in the radial direction in the flange portion 22, the heat of the tank dome 3, the flange portion 22, etc., as shown in FIG.
  • the angle of the heat shrinkage absorbing portion having a substantially L-shaped cross section is deformed in a direction in which the angle expands inward. Can do.
  • the load generated at the joint between the FRP heat input suppressing material portion (outer peripheral side portion 24) and the inner peripheral side portion 23 of the flange portion 22 can be reduced.
  • a heat input suppression material part has both a heat shrinkage absorption function and a heat input suppression function.
  • the structure can be simplified and the structure can be simplified.
  • the heat input suppressing material portion may be formed in the heat shrinkage absorbing portion. If it does in this way, a heat contraction absorption part can have both a heat contraction absorption function and a heat input suppression function, and can attain simplification of a structure.
  • FIG. 4A is a partial cross-sectional perspective view of a simulation model showing a state before the tank dome 3 and the flange portion 22 shown in FIG. 1 are thermally contracted.
  • FIG. 4B is a partial cross-sectional enlarged perspective view of the simulation result showing the flange portion 22 shown in FIG.
  • FIG. 5A is a partial cross-sectional perspective view of a simulation result showing a state in which the tank dome 3 and the flange portion 22 shown in FIG.
  • FIG. 5B is a partial cross-sectional enlarged perspective view of the simulation result showing the flange portion 22 shown in FIG.
  • the displacement amount to the radial inside of a tank is represented by the density of the color, and it has shown that the displacement amount is so large that a color is light.
  • FIG. 6A is a diagram showing the result of temperature distribution simulation of each part of the structure 31 of the tank dome flange portion according to the second embodiment
  • FIG. 6B is the tank shown in FIG. It is a figure which shows the result of the temperature distribution simulation of the dome 3 and the flange part 32.
  • FIG. FIG. 7 is a longitudinal sectional view showing a state where the tank dome 3 and the flange portion 32 shown in FIG.
  • the flange portion 32 of the tank dome flange portion structure 31 according to the second embodiment shown in FIGS. 6A and 6B includes an inner peripheral side portion 33 and an outer peripheral side portion 34.
  • the inner peripheral side portion 33 and the outer peripheral side portion 34 are each formed of an annular flat plate-like body.
  • the inner peripheral side portion 33 is made of a metal such as an aluminum alloy as in the first embodiment
  • the outer peripheral side portion 34 is made of FRP as in the first embodiment and is a heat input suppressing material portion.
  • the outer peripheral edge portion of the inner peripheral side portion 33 and the inner peripheral edge portion of the outer peripheral side portion 34 are vertically inserted so as to maintain airtightness in a state where they are overlapped with each other. Are connected to each other by a plurality of bolts.
  • the surfaces of the two that are in close contact with each other are joined, for example, by integral molding of the two, and are hermetically sealed.
  • a heat insulating material 4 having a predetermined thickness is provided on the entire outer surface of the tank dome 3.
  • the entire surface of the inner peripheral side portion 33 of the flange portion 32 and the inner peripheral edge portion of the outer peripheral side portion 34 are also covered with the heat insulating material 4.
  • the outer peripheral side portion 34 made of FRP in the flange portion 32 has a substantially outside air temperature.
  • the thermal conductivity of the outer peripheral side portion 34 made of FRP is small, almost no heat is transmitted to the inner peripheral edge portion of the outer peripheral side portion 34 covered with the heat insulating material 4.
  • the temperature of the inner peripheral edge portion of the outer peripheral side portion 34 is slightly higher than the temperature of the tank dome 3 but is low. Therefore, the temperature of the metal inner peripheral side portion 33 in the flange portion 32 is substantially equal to the temperature of the tank dome 3 and is low. Therefore, it can be seen that the heat of the outside air is hardly transmitted to the tank dome 3 through the flange portion 32.
  • FIG. 8A is a diagram showing a result of temperature distribution simulation of each part of the structure 10 of the conventional tank dome flange portion shown in FIG. 19, for example
  • FIG. 8B is a diagram shown in FIG. It is a figure which shows the result of the temperature distribution simulation of the tank dome 3 and the flange part 8.
  • FIG. 8A is a diagram showing a result of temperature distribution simulation of each part of the structure 10 of the conventional tank dome flange portion shown in FIG. 19, for example
  • FIG. 8B is a diagram shown in FIG. It is a figure which shows the result of the temperature distribution simulation of the tank dome 3 and the flange part 8.
  • FIG. 8A is a diagram showing a result of temperature distribution simulation of each part of the structure 10 of the conventional tank dome flange portion shown in FIG. 19, for example
  • FIG. 8B is a diagram shown in FIG. It is a figure which shows the result of the temperature distribution simulation of the tank dome 3 and the flange part 8.
  • FIG. 8A is a diagram showing a
  • the flange portion 8 of the conventional tank dome flange portion structure 10 shown in FIGS. 8 (a) and 8 (b) is formed of a single annular flat plate, and the material thereof is an aluminum alloy or the like. It is made of metal.
  • the heat insulating material 4 of predetermined thickness is provided in the whole outer surface of the tank dome 3. As shown in FIG. The entire surface of the portion on the tank dome 3 side from the substantially central portion in the radial direction of the flange portion 8 is covered with the heat insulating material 4.
  • the flange portion 8 is made of metal and has high thermal conductivity, and is provided with a heat input suppression material portion. Therefore, although the portion of the flange portion 8 on the tank dome 3 side is covered with the heat insulating material 4, the heat of the outside air enters the flange portion 8 covered with the heat insulating material 4, It can be seen that the temperature rises to the vicinity of the inner peripheral edge of the flange portion 8. Thereby, it can be seen that the heat of the outside air is input to the tank dome 3 more than in the first and second embodiments.
  • This flange portion 22 is in a state before being welded to the side wall 3a of the tank dome 3, and an outer peripheral side portion 24 made of FRP (having a heat shrinkage absorbing portion formed of a heat input suppressing material portion) and a metal inner portion
  • FRP heat shrinkage absorbing portion formed of a heat input suppressing material portion
  • a base end part (base end part) 23 a constituting the peripheral side part 23 and a connecting part (connecting part) 23 b constituting the metal inner peripheral side part 23 are provided. Therefore, first, the base end part (base end part) 23a and the connection part (connection part) 23b are manufactured.
  • a composite part in which the heat input suppressing material part and the connecting part 23b are integrated using a molding die or the like is made.
  • the integrally formed heat input suppressing material portion and the connecting component 23b is bonded to each other, for example, the surface of the metal connecting component 23b is roughened,
  • the FRP which is a heat input suppressing material portion, can be joined to the surface of the connecting component 23b.
  • the base end part 23 a constituting the metal inner peripheral side portion 23 is welded and joined to the outer surface of the side wall 3 a of the tank dome 3.
  • the connecting component 23 b integrated with the heat input suppressing material portion is welded and joined to the base end component 23 a coupled to the side wall 3 a of the tank dome 3 at a desired position. To do. In this way, the flange portion 22 can be provided on the tank dome 3.
  • the degree of freedom of alignment of the joint part between the connection part 23a and the metal connection part 23b is improved.
  • the joining quality is improved, and the airtightness of the joining portion between the FRP heat input suppressing material portion and the metal connecting part 23b can be easily ensured by the integrated composite part.
  • FIG. 9 is different from the first embodiment shown in FIG. 1 in that the outer peripheral side portion 24 and the reinforcing portion 25 of the flange portion 22 are FRP in the first embodiment shown in FIG.
  • the outer peripheral portion 40 of the outer peripheral side portion 42 of the flange portion 39 is made of a metal such as an aluminum alloy.
  • the outer peripheral side main body 41 made of FRP is connected to each other with a bolt 27.
  • the second embodiment is the same as the first embodiment shown in FIG. By doing in this way, the piping support (not shown) which suppresses vibration of piping can be welded to the outer peripheral part 40.
  • FIG. 9 is different from the first embodiment shown in FIG. 1 in that the outer peripheral side portion 24 and the reinforcing portion 25 of the flange portion 22 are FRP in the first embodiment shown in FIG.
  • the outer peripheral portion 40 of the outer peripheral side portion 42 of the flange portion 39 is made of a metal such as an aluminum alloy.
  • the outer peripheral side main body 41 made of FRP is connected to each
  • outer peripheral side part main body 41 shown in FIG. 9 is a heat input suppression material part.
  • the heat shrinkage absorbing portion is configured by an outer peripheral side body 41 including the vertical portion 24a.
  • connection part 23b was arrange
  • FIG. 10 shows a structure 54 of the tank dome flange portion according to the fourth embodiment of the present invention.
  • the difference between the fourth embodiment shown in FIG. 10 and the first embodiment shown in FIG. 1 is that the flange portions 55 and 22 are different.
  • the connecting portion 23b of the annular inner peripheral side portion 23 and the vertical portion 24a of the annular outer peripheral side portion 24 are overlapped on the outer side and the inner side. In the state, they are connected to each other by a plurality of bolts 26 inserted in the horizontal direction.
  • circular shaped outer peripheral side part 24 are described below. Are connected by a connecting structure.
  • the connecting portion 23b of the inner peripheral side portion 23 and the vertical portion 24a of the outer peripheral side portion 24 are each bent to have a substantially L-shaped cross section.
  • the two circular horizontal portions 56 and 57 that are bent and parallel to the horizontal direction are joined to each other by a plurality of bolts 26 that are inserted in the vertical direction in a state where they are overlapped with each other.
  • the second embodiment is the same as the first embodiment shown in FIG. 1, and the same parts are denoted by the same reference numerals, and the description thereof is omitted.
  • the outer peripheral side part 24 shown in FIG. 10 is a heat shrinkage absorption part, and is also a heat input suppression material part. Further, as shown in FIG. 10, the horizontal portions 56 and 57 are arranged outside the inner space 5 of the tank cover 6, but instead, they are arranged on the inner space 5 side of the tank cover 6. Also good.
  • FIG. 11 shows a structure 61 of the tank dome flange portion according to the fifth embodiment of the present invention.
  • the flange portion 62 of the structure 61 of the tank dome flange portion according to the fifth embodiment shown in FIG. 11 includes an inner peripheral side portion 63, an outer peripheral side portion 64, a heat input suppressing material portion 65, and heat shrinkage absorbing portions 66, 67. It has.
  • the inner peripheral side portion 63 and the outer peripheral side portion 64 are each formed of an annular flat plate body, and both are made of a metal such as an aluminum alloy.
  • the heat input suppression material portion 65 is made of FRP as in the first embodiment.
  • this heat input suppression material part 65 is a substantially short cylindrical shape, and the cross-sectional shape of radial direction is a substantially Z shape.
  • the surfaces of the upper horizontal portion 65a of the heat input suppression material portion 65 and the inner peripheral portion of the outer peripheral side portion 64 that are in close contact with each other are joined together by, for example, integral molding, and are fastened with bolts 68 so as to maintain airtightness.
  • the surfaces of the lower horizontal portion 65b of the heat input suppressing material portion 65 and the outer peripheral portion of the inner peripheral side portion 63 that are in close contact with each other are joined by, for example, an adhesive, and are fastened with bolts 68 so as to keep airtightness.
  • a heat insulating material 4 having a predetermined thickness is provided on the entire outer surface of the tank dome 3.
  • Each of the inner peripheral side portion 63 and the heat input suppressing material portion 65 of the flange portion 62 is covered with the heat insulating material 4.
  • the upper and lower end portions of the heat input suppression material portion 65 have functions as heat shrinkage absorption portions 66 and 67.
  • a pipe support (not shown) is attached to the outer peripheral side portion 64 as described in the third embodiment shown in FIG. Can be welded.
  • FIG. 12 shows a structure 72 of the tank dome flange portion according to the sixth embodiment of the present invention.
  • the difference between the sixth embodiment shown in FIG. 12 and the fifth embodiment shown in FIG. 11 is that the flange portions 73 and 62 are different.
  • the heat input suppressing material portion 65 has a substantially Z-shaped radial cross section, whereas the flange of the sixth embodiment shown in FIG. 12.
  • the heat input suppression material portion 74 has a substantially I-shaped cross section in the radial direction.
  • each horizontal part 65a, 65b provided in each of the upper and lower ends of the heat input suppression material part 74 extending inward and outward in the radial direction has bolts 68 on the inner peripheral side part 63 and the outer peripheral side part 64, It is concluded at 69.
  • FIG. 13 shows a structure 46 of the tank dome flange portion according to the seventh embodiment of the present invention.
  • the difference between the seventh embodiment shown in FIG. 13 and the second embodiment shown in FIGS. 6 and 7 is that the flange portions 47 and 32 are different.
  • circular shaped outer peripheral side part 34 are mutually piled up and down. These are coupled to each other by a plurality of bolts (not shown) inserted in the vertical direction.
  • the outer peripheral edge portion of the annular inner peripheral side portion 33 and the inner peripheral edge portion of the annular outer peripheral side portion 34 are substantially L in cross section. It is bent into a letter shape.
  • the two short cylindrical vertical portions 48 and 49 that are bent and parallel to the vertical direction are coupled to each other by a plurality of bolts 50 that are inserted in the horizontal direction in a state of being overlapped on the inner side and the outer side.
  • the second embodiment is the same as the second embodiment shown in FIG. 6, and the equivalent parts are denoted by the same reference numerals, and the description thereof is omitted.
  • the two bent portions of the flange portion 47 that are bent to have a substantially L-shaped cross section are the heat shrinkage absorbing portions 51.
  • the outer peripheral side portion 34 is a heat input suppression material portion.
  • FIG. 14 shows a structure 77 of the tank dome flange portion according to the eighth embodiment of the present invention.
  • the difference between the eighth embodiment shown in FIG. 14 and the second embodiment shown in FIG. 6 is that the flange portions 78 and 32 are different.
  • the heat shrinkage absorbing portion 79 is not provided on the outer peripheral side portion 34 of the flange portion 32 of the second embodiment shown in FIG. 6, whereas the outer peripheral side of the flange portion 78 of the eighth embodiment shown in FIG.
  • the portion 80 is provided with a heat shrinkage absorbing portion 79.
  • the second embodiment is the same as the second embodiment shown in FIG. 6, and the equivalent parts are denoted by the same reference numerals, and the description thereof is omitted.
  • the heat shrinkage absorbing portion 79 provided on the outer peripheral side portion 80 of the flange portion 78 of the eighth embodiment shown in FIG. 14 has a substantially U-shaped radial cross section at the flange portion 78.
  • the outer periphery side portion 80 of the flange portion 78 tends to be thermally deformed in the direction of being pulled inward by the heat shrinkage of the tank dome 3 and the flange portion 78.
  • this cross-sectional shape can be deformed in the direction in which the portion of the heat shrinkage absorbing portion 79 having a substantially U-shape is expanded. Thereby, deformation of the outer peripheral side portion 80 of the flange portion 78 can be suppressed.
  • this outer peripheral side part 80 is a product made from FRP, and is a heat input suppression material part.
  • FIG. 15 is different from the second embodiment shown in FIG. 6 in the second embodiment shown in FIG. 6 in which the outer peripheral side portion 34 of the flange portion 32 is integrally formed of FRP.
  • the outer peripheral portion 85 of the outer peripheral side portion 34 of the flange portion 84 is made of metal such as aluminum alloy, and the outer peripheral portion 85 is made of FRP outer peripheral side.
  • the part body 86 has been fastened and fixed with bolts 27.
  • the second embodiment is the same as the second embodiment shown in FIG. 6, and the equivalent parts are denoted by the same reference numerals, and the description thereof is omitted.
  • a pipe support (not shown) can be welded to the outer peripheral portion 85 as described in the third embodiment shown in FIG.
  • FIG. 16 shows a structure 89 of the tank dome flange portion according to the tenth embodiment of the present invention.
  • the difference between the tenth embodiment shown in FIG. 16 and the second embodiment shown in FIG. 6 is that the flange portions 90 and 32 are different.
  • circular shaped outer peripheral side part 34 are mutually piled up and down. These are coupled to each other by a plurality of bolts inserted in the vertical direction.
  • a short cylinder is provided on each of the outer peripheral edge portion of the annular inner peripheral side portion 33 and the inner peripheral edge portion of the annular outer peripheral side portion 34.
  • Shaped joints 91 and 92 are fixedly provided.
  • the two short cylindrical joints 91 and 92 are connected to each other by a plurality of bolts inserted in the horizontal direction in a state where the inner peripheral surface and the outer peripheral surface are overlapped with each other.
  • the second embodiment is the same as the second embodiment shown in FIG. 6, and the equivalent parts are denoted by the same reference numerals, and the description thereof is omitted.
  • the two short cylindrical joints 91 and 92 shown in FIG. 16 protrude both upward and downward of the flange 90, and each of the upper and lower parts of the joints 91 and 92 has a large number of bolts. It is concluded by And since the inner peripheral side part 33 and the outer peripheral side part 34 of the flange part 90 are arrange
  • the joint portion between the metal portion of the flange portion and the FRP portion is formed by integrally bonding the metal portion and the FRP portion in order to ensure airtightness. You may join by an adhesive agent.
  • the configuration in which the flange portion of each of the above embodiments and the heat insulating material 4 covering the flange portion are provided on the side wall 3a of the tank dome 3 is symmetrical in the vertical direction (upside down). (Direction).
  • the structure of the tank dome flange part according to the present invention has an excellent effect of suppressing the temperature rise of the low-temperature liquefied gas stored in the tank body part. Suitable for application to flange structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

 タンク本体部に貯留されている低温の液化ガスの温度上昇を抑制することができるようにすること。 低温の液化ガスが貯留されるタンク本体部と、タンク本体部の上部に設けられているタンクドーム(3)と、タンクドーム(3)から略水平に張り出しているフランジ部(22)と、タンク本体部を空間(5)を隔てて覆うタンクカバー(6)と、フランジ部(22)とタンクカバー(6)の上側開口縁部との間に設けられ、空間(5)を密封するためのエキスパンションラバー部(11)とを備える液化ガスタンクに設けられているタンクドームフランジ部の構造(21)において、フランジ部(22)のうち、少なくともタンクドーム(3)の側壁(3a)とエキスパンションラバー部(11)との間に位置する所定部分に、繊維強化プラスチック製の入熱抑制材料部を設けた構成。

Description

タンクドームフランジ部の構造
 本発明は、例えば低温の液化天然ガス(LNG)等の液化ガスが貯留される液化ガス運搬船用タンクに設けられるタンクドームフランジ部の構造に関する。
 上記従来の液化ガス運搬船に設けられている液化ガスタンクの一例として、例えば図17に示すものがあり、この液化ガスタンク1は、横長のタンク本体部2と、このタンク本体部2の上部に設けられたタンクドーム3とを備えている。このタンク本体部2は、横型の円筒形状の胴部2aを備え、この胴部2aの両方の各開口部が略半球形状の蓋体2bによって閉じられている。
 そして、タンクドーム3は、縦型の円筒形状の側壁3aを有し、この側壁3aの上側開口部は、略半球形状の蓋体3bによって閉じられている。また、図には示さないが、このタンクドーム3は、タンク本体部2に対して液化ガスの供給及び排出を行なうための複数の配管等が取り付けられている。
 更に、図17に示すように、この液化ガスタンク1の表面には、防熱材4が設けられ、外気の熱がこの液化ガスタンク1に入熱しないように構成されている。そして、タンク本体部2には、防熱材4と空間5を隔てて覆うタンクカバー6が設けられ、タンクドーム3にも、防熱材4と空間を隔てて覆うドームカバー(図示せず)が設けられている。
 そして、図18に示すように、タンクドーム3の側壁3aには、フランジ部8が設けられている。このフランジ部8は、円環状の板状体であり、タンクドーム3の側壁3aの外面から略水平に張り出している。
 次に、図19(a)、(b)を参照して、液化ガス運搬船に設けられている球形の液化ガスタンク9のタンクドームフランジ部構造10を説明する(例えば、特許文献1参照)。
 この図19に示す液化ガスタンク9と、図17に示す液化ガスタンク1とが相違するところは、タンク本体部2の形状であり、それ以外は同等の構成であるので、同等部分の説明を省略する。
 図19(a)に示すように、このタンクドームフランジ部の構造10は、タンクカバー6の上側開口縁部と、円環状のフランジ部8の下面との間に円環状のエキスパンションラバー部11が設けられている構造である。このエキスパンションラバー部11は、タンク本体部2及びフランジ部8等の熱膨張及び熱収縮に拘わらず、これらの内側に形成されている空間5を密封する機能を有し、当該空間5を密封する。
実開昭62-12593号公報
 しかし、図19に示す従来のタンクドームフランジ部の構造10では、フランジ部8が金属製であるので、外気の熱がこの金属製のフランジ部8から入熱してタンクドーム3及びタンク本体部2に伝わり、タンク本体部2に貯留されている液化ガスの温度上昇を招いてしまうことになる。
 これを防ぐために、このタンク本体部2、タンクドーム3、及びフランジ部8等に設けられる防熱材4を含む断熱材の使用量を多くする必要がある。
 本発明は、上記のような課題を解決するためになされたものであり、タンク本体部に貯留されている低温の液化ガスの温度上昇を抑制することができるタンクドームフランジ部の構造を提供することを目的としている。
 本発明に係るタンクドームフランジ部の構造は、低温の液化ガスが貯留されるタンク本体部に設けられたタンクドームの側壁の外面から外方に張り出しているフランジ部と、前記タンク本体部を空間を隔てて覆うタンクカバーと、前記フランジ部と前記タンクカバーとの間に設けられ、前記空間を密封するためのエキスパンションラバー部とを備える液化ガスタンクに設けられているタンクドームフランジ部の構造において、前記フランジ部のうち、少なくとも前記タンクドームの側壁と前記エキスパンションラバー部との間に位置する所定部分に、繊維強化プラスチック製の入熱抑制材料部を設けたことを特徴とするものである。
 本発明に係るタンクドームフランジ部の構造が設けられている液化ガスタンクによると、そのタンク本体部は、低温の液化ガスを貯留することができ、タンクドームは、当該タンクに対して液化ガスの供給及び排出を行なうための配管が取り付けられている。タンクカバー及びフランジ部は、タンク本体部を空間を隔てて覆っている。そして、エキスパンションラバー部は、変形自在であるので、タンク本体部、タンクドーム、及びフランジ部の熱膨張及び熱収縮に拘わらず、タンクカバーの内側空間を密封することができる。
 そして、本発明に係るタンクドームフランジ部の構造によると、フランジ部の前記所定部分に繊維強化プラスチック製の入熱抑制材料部を設けているので、外気の熱が、フランジ部の外周縁部側から低温のタンクドーム側に入熱することを抑制することができる。これによって、タンク本体部に貯留されている液化ガスの温度上昇を抑制することができる。
 また、フランジ部のうち、少なくともタンクドームの側壁とエキスパンションラバー部との間に位置する所定部分に入熱抑制材料部を設けているので、低温のタンクドームによってエキスパンションラバー部が冷却されて低温脆化することを防止できる。
 この発明に係るタンクドームフランジ部の構造において、前記フランジ部のうち、少なくとも前記タンクドームの側壁と前記エキスパンションラバー部との間に位置する部分に、当該フランジ部及び前記タンクドームを含む部分の熱収縮による変形を吸収する熱収縮吸収部を設けたものである。
 このようにすると、タンク本体部に貯留されている低温の液化ガスによって、タンク本体部、タンクドーム及びフランジ部が熱収縮して、このフランジ部の外周側部が内側に引っ張られる方向に変形しようとしても、この熱収縮による変形を熱収縮吸収部によって吸収することができる。これによって、フランジ部の繊維強化プラスチック製の入熱抑制材料部と、それ以外の部分との結合部に生じる荷重を低減することができる。
 この発明に係るタンクドームフランジ部の構造において、前記入熱抑制材料部は、前記フランジ部の前記所定部分から前記フランジ部の外周縁部までの範囲に亘って形成されているものである。
 このようにすると、外気の熱が、フランジ部の外周縁部側から低温のタンクドーム側へ入熱する熱量を効果的に抑制することができる。
 この発明に係るタンクドームフランジ部の構造において、前記熱収縮吸収部は、前記フランジ部における半径方向の断面形状が略L字形状又は略U字形状を含む屈曲形状を成すものである。
 このようにすると、タンクドーム及びフランジ部等の熱収縮によって、このフランジ部の外周側部が内側に引っ張られる方向に変形しようとするときに、断面形状が略L字形状又は略U字形状を含む屈曲形状の熱収縮吸収部の部分で、例えばL字形状の角度が広がる、もしくはU字形状の幅が広がる方向に変形することができる。これによって、簡単な構成を採用しながらも、熱収縮に基づいてフランジ部が変形しようとする力を吸収することができて、フランジ部の外周側部の変形を抑制することができる。
 この発明に係るタンクドームフランジ部の構造において、前記熱収縮吸収部が前記入熱抑制材料部に形成され、又は前記入熱抑制材料部が前記熱収縮吸収部に形成されているものである。
 このようにすると、入熱抑制材料部は、熱収縮吸収機能と入熱抑制機能の両方を兼ね備えることができるし、又は、熱収縮吸収部は、熱収縮吸収機能と入熱抑制機能の両方を兼ね備えることができる。よって、構造の簡単化を図ることができる。
 この発明に係るタンクドームフランジ部の構造において、前記フランジ部は、繊維強化プラスチック製の前記入熱抑制材料部より前記タンクドーム側の連結部品と、前記入熱抑制材料部とが一体成形によって形成されているものである。
 このようにすると、両者の結合部分の気密性を確実に確保することができるし、フランジ部製造の生産性の向上を図ることができる。
 この発明に係るタンクドームフランジ部の構造において、前記フランジ部は、繊維強化プラスチック製の前記入熱抑制材料部より前記タンクドーム側の内周側部が、連結部品と基端部品とからなり、前記入熱抑制材料部と前記連結部品とが一体に成形され、前記入熱抑制材料部と一体成形された前記連結部品を、前記タンクドームの側壁に結合された前記基端部品に対して結合することによって、前記フランジ部における前記入熱抑制材料部及び前記タンクドーム側の前記内周側部を形成したものである。
 このように、入熱抑制材料部と連結部品とを一体化した複合部品を作ることによって、繊維強化プラスチック製の入熱抑制材料部と、連結部品とを確実に結合させることができるので、その結合部分の気密性を簡単に確保することができる。そして、入熱抑制材料部と一体化した連結部品を、タンクドームの側壁に結合された基端部品に対して結合することによって、連結部品と基端部との結合部分の位置合わせの自由度が向上する。
 この発明に係るタンクドームフランジ部の構造において、前記フランジ部は、繊維強化プラスチック製の前記入熱抑制材料部より前記タンクドーム側の内周側部を金属製としたものである。
 この金属製の内周側部を金属製とすることにより、フランジ部とタンクドーム側壁を溶接することができ、従来と同じ施工となる。
 この発明に係るタンクドームフランジ部の構造において、前記入熱抑制材料部は、ガラス繊維強化プラスチック製又は炭素繊維強化プラスチック製としたものである。
 これにより、入熱抑制材料部が必要とする強度と防熱性能に応じて、その材質をガラス繊維強化プラスチック又は炭素繊維強化プラスチックとすることができる。
 本発明に係るタンクドームフランジ部の構造によると、外気からの入熱を減少させることができ、タンク本体部に貯留されている液化ガスの温度上昇を抑制することができる。
図1は、この発明の第1実施形態に係るタンクドームフランジ部の構造を示す縦断面図である。 図2(a)は、同第1実施形態に係るタンクドームフランジ部の構造の各部分の温度分布シミュレーションの結果を示す図、図2(b)は、図2(a)から防熱材を除いた図である。 図3は、図1に示すタンクドーム及びフランジ部が熱収縮して変形した状態を示す縦断面図である。 図4(a)は、図1に示すタンクドーム及びフランジ部が熱収縮する前の状態を示すシミュレーション用モデルの部分断面斜視図、図4(b)は、図4(a)に示すフランジ部を示すシミュレーション用モデルの部分断面拡大斜視図である。 図5(a)は、図4(a)に示すタンクドーム及びフランジ部が熱収縮した状態を示すシミュレーション結果の部分断面斜視図、図5(b)は、図5(a)に示すフランジ部を示すシミュレーション結果の部分断面拡大斜視図である。 図6(a)は、同発明の第2実施形態に係るタンクドームフランジ部の構造の各部分の温度分布シミュレーションの結果を示す図、図6(b)は、図6(a)に示すタンクドーム及びフランジ部の温度分布シミュレーションの結果を示す図である。 図7は、図6(b)に示すタンクドーム及びフランジ部が熱収縮して変形した状態を示す縦断面図である。 図8(a)は、従来のタンクドームフランジ部の構造の各部分の温度分布シミュレーションの結果を示す図、図8(b)は、図8(a)に示すタンクドーム及びフランジ部の温度分布シミュレーションの結果を示す図である。 図9は、同発明の第3実施形態に係るタンクドームフランジ部の構造を示す部分縦断面図である。 図10は、同発明の第4実施形態に係るタンクドームフランジ部の構造を示す部分縦断面図である。 図11は、同発明の第5実施形態に係るタンクドームフランジ部の構造を示す部分縦断面図である。 図12は、同発明の第6実施形態に係るタンクドームフランジ部の構造を示す部分縦断面図である。 図13は、同発明の第7実施形態に係るタンクドームフランジ部の構造を示す部分縦断面図である。 図14は、同発明の第8実施形態に係るタンクドームフランジ部の構造を示す部分縦断面図である。 図15は、同発明の第9実施形態に係るタンクドームフランジ部の構造を示す部分縦断面図である。 図16は、同発明の第10実施形態に係るタンクドームフランジ部の構造を示す部分縦断面図である。 図17は、従来の略円筒形の液化ガスタンクを示す概略縦断面図である。 図18は、図17に示す従来の液化ガスタンクに設けられているタンクドームを示す部分拡大斜視図である。 図19(a)は、他の従来の球形の液化ガスタンクのタンクドームフランジ部の構造を示す部分縦断面図、図19(b)は、図19(a)に示すタンクドームの平面図である。
 以下、本発明に係るタンクドームフランジ部の構造の第1実施形態を、図1~図5を参照して説明する。この実施形態のタンクドームフランジ部の構造21は、例えば低温の液化天然ガス(LNG)等の液化ガスが貯留される液化ガスタンクに設けられるものであり、図17に示す従来の液化ガスタンク1に適用したものを例に挙げて説明する。よって、従来の液化ガスタンク1と同等部分は、同一の図面符号で示し、それらの詳細な説明を省略する。
 また、この実施形態のタンクドームフランジ部の構造21は、例えば液化ガス運搬船に設けられている液化ガスタンクに適用したものである。
 図1に示すタンクドームフランジ部の構造21が適用される液化ガスタンク1は、低温の液化ガスが貯留されるタンク本体部2(図17参照)と、このタンク本体部2の上部に設けられているタンクドーム3と、タンク本体部2を空間を隔てて覆うタンクカバー6とを備えている。
 フランジ部22は、図1に示すように、内周側部23と外周側部24とを有している。
 そして、このタンクドームフランジ部の構造21は、図1に示すように、タンクドーム3の側壁3aの外面から略水平に張り出している円環状のフランジ部22と、フランジ部22の下面とタンクカバー6の上側開口縁部との間に設けられ、空間5を密封するための円環状のエキスパンションラバー部11とを備えている。
 そして、このフランジ部22の内周側部23は、タンクドーム3側に配置され、それぞれが金属製(例えばアルミ合金製)の基端部23aと連結部23bとを備えている。この基端部23aは、円環状の板状体であり、その内周縁部が、金属製(例えばアルミ合金製)のタンクドーム3の側壁3aの外面に例えば溶接によって接合され、その側壁3aの外面から略水平に張り出している。また、連結部23bは、短円筒状体であり、鉛直方向に配置され、その下端部が基端部23aの外周縁部の上面に例えば溶接によって接合されている。
 また、外周側部24は、図1に示すように、内周側部23の外側に配置され、繊維強化プラスチック(以下、FRP)製の一体成形されたものである。この外周側部24は、フランジ部22における半径方向の断面形状が略L字形状に形成されている。そして、この外周側部24は、鉛直部24aと水平部24bとを備えている。また、水平部24bの外周縁部には、短円筒形の補強部25が設けられている。更に、この鉛直部24aの下部は、連結部23bと一体成形によって接合されている。
 このように、連結部23b(内周側部23)と鉛直部24a(外周側部24)とが接合されていることによって、この結合部分の気密性が確保されている。そして、図1に示すように、連結部23bが鉛直部24aよりも外側に配置されている。これによって、後述するように、タンクドーム3及びフランジ部22の内周側部23等が熱収縮したときに、内周側部23の連結部23bが、外周側部24の鉛直部24aに向かう内側方向(気密性が確保される方向)に変形する。その結果、タンクドーム3等の熱収縮によって、両者間の気密性が破られないようにすることができる。
 更に、図1に示すように、タンクドーム3の外面全体には、所定の厚みの防熱材4が設けられている。そして、フランジ部22の内周側部23の表面全体も、防熱材4で被覆されている。そして、フランジ部22の外周側部24における鉛直部24aの内周面、及び鉛直部24a下部の外周面も防熱材4で被覆されている。ただし、図1に示すように、フランジ部22の外周側部24における水平部24bの上下の各面に防熱材4を設けていないのは、この水平部24b自体が防熱性を有しており、この水平部24bと金属製の内周側部23とが間隔を隔てて配置されているからである。
 このように、金属製の内周側部23、及び鉛直部24aの一部を防熱材4で被覆することによって、外気の熱がこの金属製の内周側部23からタンクドーム3側に入熱することを抑制することができる。
 また、図1に示すエキスパンションラバー部11は、円環状に形成された変形自在なゴム様弾性体である。このエキスパンションラバー部11は、フランジ部22を構成する外周側部24の外周部の下面と、タンクカバー6の上側開口縁部との間に配置されている。このエキスパンションラバー部11の上部は、フランジ部22の外周部の下面にボルト27で結合され、その下部は、タンクカバー6の上側開口縁部にボルト27で結合されている。
 次に、図1を参照して、このタンクドームフランジ部の構造21が備えている入熱抑制材料部について説明する。
 入熱抑制材料部は、外気の熱がフランジ部22を通ってタンクドーム3に伝達されることを抑制するためのものである。そして、フランジ部22の外周側部24を熱伝導率の小さいFRP製の入熱抑制材料部とすることによって、その機能を達成できるようにしている。
 なお、フランジ部22の外周側部24の材質であるFRPとして、ガラス繊維強化プラスチック(以下、GFRP)又は炭素繊維強化プラスチック(以下、CFRP)を使用することができる。
 これらGFRP及びCFRPは、アルミ合金やステンレス鋼等の金属と比較して、熱伝導率が非常に小さいために、フランジ部22の外周側部24を例えばGFRP製とすることによって、この外周側部24が入熱抑制材料部としての機能を果たすことができる。
 ここで、図1に示すように、フランジ部22の全体をFRP製とせずに、内周側部23を金属製としたのは、この内周側部23を金属製のタンクドーム3の側壁3aに溶接できるようにして、従来と同じ施工にするためである。
 図2(a)は、図1に示すタンクドームフランジ部の構造21の各部分の温度分布シミュレーションの結果を示す図であり、図2(b)は、図2(a)に示すタンクドーム3及びフランジ部22の温度分布シミュレーションの結果を示す図である。
 これら図2(a)、(b)から分かるように、フランジ部22におけるFRP製の外周側部24の水平部24b、及び鉛直部24aの上部は、略外気温度となっている。しかし、このFRP製の外周側部24の熱伝導率が小さいので、防熱材4で被覆されているその鉛直部24aの下部及びこれと結合する連結部23bには、熱が殆ど伝達されておらず、従って、この鉛直部24aの下部及びこれと結合する連結部23bの温度は、タンクドーム3の温度よりも僅かに高いが低温である。そして、フランジ部22における金属製の内周側部23の基端部23aの温度は、タンクドーム3の温度と略等しく低温である。従って、外気の熱が、このフランジ部22を通ってタンクドーム3に殆ど伝達されていないことが分かる。
 次に、上記のように構成されたタンクドームフランジ部の構造21の作用を説明する。まず、この図1に示すタンクドームフランジ部の構造21が設けられている液化ガスタンクによると、そのタンク本体部2(図17参照)は、低温の液化ガスを貯留することができ、タンクドーム3は、液化ガスタンクに対して液化ガスの供給及び排出を行なうための配管(図示せず)が取り付けられている。タンクカバー6及びフランジ部22は、タンク本体部2を空間5を隔てて覆うことができる。そして、エキスパンションラバー部11は、変形自在であるので、タンク本体部2、タンクドーム3、及びフランジ部22の熱膨張及び熱収縮に拘わらず、タンクカバー6の内側空間5を密封することができる。
 従って、タンクカバー6の内側の空間5の気密性を確保することができ、例えばこの空間5内に窒素ガス等を適切に気密封止しておくことができる。
 また、上記のように構成されたタンクドームフランジ部の構造21によると、図1に示すように、フランジ部22の外周側部24をFRP製とし、この外周側部24を入熱抑制材料部としているので、外気の熱が、フランジ部22の外周縁部側から低温のタンクドーム3側に入熱することを抑制することができる。
 そして、この入熱抑制材料部は、タンクドーム3の側壁3aの外面と、エキスパンションラバー部11との間の所定部分からフランジ部22の外周縁部までの範囲に亘って形成されたものであるので、外気の熱が、フランジ部22の外周縁部側から低温のタンクドーム3側へ入熱する熱量を効果的に抑制することができる。
 これによって、タンク本体部2に貯留されている液化ガスの温度上昇を効果的に抑制することができる。
 また、フランジ部22の外周側部24をFRP製とすることによって、フランジ部22のうち、少なくともタンクドーム3の側壁3aとエキスパンションラバー部11との間に位置する所定部分に入熱抑制材料部を設けた構成となっているので、低温のタンクドーム3によってエキスパンションラバー部11が冷却されて低温脆化することを防止できる。
 次に、図1を参照して、このタンクドームフランジ部の構造21が備えている熱収縮吸収部について説明する。
 熱収縮吸収部は、タンクドーム3及びフランジ部22を含む部分が、タンク本体部2に貯留されている液化ガスによって冷却されて熱収縮したときに、このフランジ部22の外周側部24が変形することを抑制するためのものである。この熱収縮吸収部は、図1に示すように、フランジ部22のうち、少なくともタンクドーム3の側壁3aと、エキスパンションラバー部11との間に位置する部分に設けられている。
 更に具体的に説明すると、この熱収縮吸収部は、フランジ部22における半径方向の断面形状が略L字の屈曲形状を成すものであり、フランジ部22の外周側部24における水平部24bと鉛直部24aとが結合する屈曲部を含む部分である。
 図1に示す熱収縮吸収部は、フランジ部22における半径方向の断面形状が略L字の屈曲形状を成すものであるので、図3に示すように、タンクドーム3及びフランジ部22等の熱収縮によって、このフランジ部22の外周側部24が内側に引っ張られる方向に熱変形しようとするときに、断面形状が略L字形状の熱収縮吸収部の角度が内側に広がる方向に変形することができる。
 これによって、簡単な構成を採用しながらも、熱変形に基づいてフランジ部22全体が変形することを熱収縮吸収部の部分的変形により、フランジ部22の外周側部24の変形を抑制することができる。
 更に、フランジ部22のFRP製の入熱抑制材料部(外周側部24)と、内周側部23との結合部に生じる荷重を低減することができる。
 そして、図1に示すように、熱収縮吸収部は、入熱抑制材料部に形成されている構成としたので、入熱抑制材料部は、熱収縮吸収機能と、入熱抑制機能の両方を兼ね備えることができ、構造の簡単化を図ることができる。
 勿論、図には示さないが、上記に代えて、入熱抑制材料部が熱収縮吸収部に形成された構成としてもよい。このようにすると、熱収縮吸収部は、熱収縮吸収機能と入熱抑制機能の両方を兼ね備えることができ、構造の簡単化を図ることができる。
 次に、図4及び図5の説明をする。図4(a)は、図1に示すタンクドーム3及びフランジ部22が熱収縮する前の状態を示すシミュレーション用モデルの部分断面斜視図である。図4(b)は、図4(a)に示すフランジ部22を示すシミュレーション結果の部分断面拡大斜視図である。図5(a)は、図4(a)に示すタンクドーム3及びフランジ部22が熱収縮した状態を示すシミュレーション結果の部分断面斜視図である。
 図5(b)は、図5(a)に示すフランジ部22を示すシミュレーション結果の部分断面拡大斜視図である。
 なお、図5(a)、(b)に示すフランジ部22において、色の濃度でタンクの半径方向内側への変位量を表しており、色が薄いほど変位量が大きいことを示している。
 図5(b)に示すように、タンクドーム3及びフランジ部22が熱収縮した状態では、フランジ部22の外周側部24、補強部25、及び熱収縮吸収部において、特に鉛直部24aの部分で変位量が大きく変化していることから、鉛直部24aの部分で熱収縮を吸収していることがわかる。
 次に、図6~図8を参照して、本発明の第2実施形態等のタンクドームフランジ部の構造31等の温度分布シミュレーションの結果、並びに、タンクドーム3及びフランジ部32等が熱収縮して変形した例を挙げて説明する。
 図6(a)は、第2実施形態に係るタンクドームフランジ部の構造31の各部分の温度分布シミュレーションの結果を示す図であり、図6(b)は、図6(a)に示すタンクドーム3及びフランジ部32の温度分布シミュレーションの結果を示す図である。そして、図7は、図6(b)に示すタンクドーム3及びフランジ部32が熱収縮して変形した状態を示す縦断面図である。
 この図6及び図7に示す第2実施形態に係るタンクドームフランジ部の構造31と、図2及び図3に示す第1実施形態に係るタンクドームフランジ部の構造21とが相違するところは、図2(b)に示す第1実施形態では、断面形状が略L字形状の熱収縮吸収部が設けられているのに対して、図6(b)に示す第2実施形態では、このような熱収縮吸収部が設けられていないところである。これ以外は、第1実施形態と同等であり、それらの説明を省略する。
 この図6(a)、(b)に示す第2実施形態に係るタンクドームフランジ部の構造31のフランジ部32は、内周側部33と外周側部34とを備えている。そして、これら内周側部33及び外周側部34は、それぞれ円環状の平板状体で形成されている。また、内周側部33は、第1実施形態と同様にアルミ合金等の金属製であり、外周側部34は、第1実施形態と同様にFRP製であり、入熱抑制材料部である。そして、図には示さないが、内周側部33の外周縁部と、外周側部34の内周縁部とは、互いに上下に重ね合わされた状態で、気密性を保つように鉛直方向に挿通する複数のボルトで互いに結合されている。そして、両者の互いに密着する面は、例えば両者の一体成形によって接合しており気密封止されている。
 更に、図6(a)に示すように、タンクドーム3の外面全体には、所定の厚みの防熱材4が設けられている。そして、フランジ部32の内周側部33の表面全体、及び外周側部34の内周縁部も、防熱材4で被覆されている。
 図6(a)、(b)から分かるように、フランジ部32におけるFRP製の外周側部34は、略外気温度となっている。しかし、このFRP製の外周側部34の熱伝導率が小さいので、防熱材4で被覆されているこの外周側部34の内周縁部には、熱が殆ど伝達されておらず、従って、この外周側部34の内周縁部の温度は、タンクドーム3の温度よりも僅かに高いが低温である。よって、フランジ部32における金属製の内周側部33の温度は、タンクドーム3の温度と略等しく低温である。従って、外気の熱が、このフランジ部32を通ってタンクドーム3に殆ど伝達されていないことが分かる。
 図8(a)は、例えば図19に示す従来のタンクドームフランジ部の構造10の各部分の温度分布シミュレーションの結果を示す図であり、図8(b)は、図8(a)に示すタンクドーム3及びフランジ部8の温度分布シミュレーションの結果を示す図である。
 この図8(a)、(b)に示す従来のタンクドームフランジ部の構造10のフランジ部8は、1枚の円環状の平板状体で形成されており、その材質は、アルミ合金等の金属製である。
 そして、図8(a)に示すように、タンクドーム3の外面全体には、所定の厚みの防熱材4が設けられている。そして、フランジ部8の半径方向の略中央部からタンクドーム3側の部分の表面全体が防熱材4で被覆されている。
 図8(a)、(b)から分かるように、従来のタンクドームフランジ部の構造10では、フランジ部8は、金属製であり熱伝導率が大きく、しかも、入熱抑制材料部が設けられていないので、フランジ部8のタンクドーム3側の部分が防熱材4で被覆されているにも拘わらず、外気の熱が、この防熱材4で被覆されているフランジ部8に入熱して、フランジ部8の内周縁部付近まで温度が上昇していることが分かる。これによって、外気の熱が、第1及び第2実施形態よりも多くタンクドーム3に入熱していることが分かる。
 次に、図1に示すタンクドーム3に設けられているフランジ部22の製造方法を説明する。このフランジ部22は、タンクドーム3の側壁3aに溶接される前の状態として、FRP製の外周側部24(入熱抑制材料部で熱収縮吸収部を構成したもの)と、金属製の内周側部23を構成する基端部品(基端部)23aと、金属製の内周側部23を構成する連結部品(連結部)23bとを備えている。よって、まず、基端部品(基端部)23a、及び連結部品(連結部)23bを製造する。
 次に、入熱抑制材料部と連結部品23bとを、成形型等を使用して一体化した複合部品を作る。ここで、一体成形された入熱抑制材料部と連結部品23bとが互いに接合できるようにするために、例えば金属製の連結部品23bの表面に対して粗面処理をしてあり、これによって、入熱抑制材料部であるFRPが連結部品23bの表面に接合できるようにしてある。
 また、金属製の内周側部23を構成する基端部品23aを、図1に示すように、タンクドーム3の側壁3aの外面に溶接して接合しておく。しかる後に、図1に示すように、入熱抑制材料部と一体化された連結部品23bを、タンクドーム3の側壁3aに結合された基端部品23aに対して所望の位置に溶接して接合する。このようにして、タンクドーム3にフランジ部22を設けることができる。
 このように、入熱抑制材料部と連結部品23bとを一体化した複合部品を作ることによって、連結部品23aと金属製の連結部品23bとの結合部分の位置合わせの自由度が向上するので、接合品質が向上し、一体化した複合部品によりFRPの入熱抑制材料部と金属製の連結部品23bとの接合部分の気密性を簡単に確保することができる。
 これによって、タンクカバー6内の空間5の気密性を確実に確保することができる。
 次に、本発明の第3実施形態に係るタンクドームフランジ部の構造38を、図9を参照して説明する。この図9に示す第3実施形態と、図1に示す第1実施形態とが相違するところは、図1に示す第1実施形態では、フランジ部22の外周側部24および補強部25をFRP製の一体成形としたが、これに対して、図9に示す第3実施形態では、フランジ部39の外周側部42における外周部40をアルミ合金等の金属製とし、この外周部40と、FRP製の外周側部本体41とをボルト27で互いに結合したところである。これ以外は、図1に示す第1実施形態と同等であり、同等部分を同一の図面符号で示し、それらの説明を省略する。このようにすることによって、配管の振動を抑制する配管サポート(図示せず)を外周部40に溶接することができる。
 そして、図9に示す外周側部本体41は、入熱抑制材料部である。そして、熱収縮吸収部は、鉛直部24aを含む外周側部本体41で構成されている。
 なお、図9に示すように、連結部23bを鉛直部24aの半径方向の外側に配置したが、これに代えて、連結部23bを鉛直部24aの半径方向の内側に配置してもよい。
 図10は、本発明の第4実施形態に係るタンクドームフランジ部の構造54を示している。この図10に示す第4実施形態と、図1に示す第1実施形態と相違するところは、フランジ部55と22とが相違するところである。
 図1に示す第1実施形態のフランジ部22では、円環状の内周側部23の連結部23bと、円環状の外周側部24の鉛直部24aとは、互いに外側と内側に重ね合わされた状態で、水平方向に挿通する複数のボルト26で互いに結合されている。
 これに対して、図10に示す第4実施形態のフランジ部55では、円環状の内周側部23の連結部23bと、円環状の外周側部24の鉛直部24aとは、以下に記載する結合構造によって結合されている。
 内周側部23の連結部23b、及び外周側部24の鉛直部24aは、それぞれ断面略L字形状に屈曲形成されている。そして、この屈曲形成されて水平方向と平行する2つの円環状の水平部56、57は、互いに上下に重ね合わされた状態で、鉛直方向に挿通する複数のボルト26で互いに結合されている。これ以外は、図1に示す第1実施形態と同等であり、同等部分を同一の図面符号で示し、それらの説明を省略する。
 図10に示す外周側部24が熱収縮吸収部であり、入熱抑制材料部でもある。また、図10に示すように、水平部56、57は、タンクカバー6の内側空間5に対してその外側に配置したが、これに代えて、タンクカバー6の内側空間5側に配置してもよい。
 図11は、本発明の第5実施形態に係るタンクドームフランジ部の構造61を示している。この図11に示す第5実施形態に係るタンクドームフランジ部の構造61のフランジ部62は、内周側部63、外周側部64、入熱抑制材料部65、及び熱収縮吸収部66、67を備えている。そして、内周側部63及び外周側部64は、それぞれ円環状の平板状体で形成され、いずれもアルミ合金等の金属製である。入熱抑制材料部65は、第1実施形態と同様にFRP製である。
 そして、この入熱抑制材料部65は、図11に示すように、略短円筒形であり、半径方向の断面形状が略Z字形状である。そして、この入熱抑制材料部65の上側水平部65aと、外周側部64における内周部との互いに密着する面は、例えば一体成形により接合しており、気密を保つようにボルト68で締結されている。また、入熱抑制材料部65の下側水平部65bと、内周側部63における外周部との互いに密着する面は、例えば接着剤により接合しており、気密を保つようにボルト68で締結されている。
 更に、図11に示すように、タンクドーム3の外面全体には、所定の厚みの防熱材4が設けられている。そして、フランジ部62の内周側部63、及び入熱抑制材料部65のそれぞれが、防熱材4で被覆されている。そして、入熱抑制材料部65の上下の各端部は、熱収縮吸収部66、67としての機能を有している。
 そして、図11に示すように、外周側部64をアルミ合金等の金属製とすると、図9に示す第3実施形態で説明したように、配管サポート(図示せず)を外周側部64に溶接することができる。
 図12は、本発明の第6実施形態に係るタンクドームフランジ部の構造72を示している。この図12に示す第6実施形態と、図11に示す第5実施形態と相違するところは、フランジ部73と62が相違するところである。
 図11に示す第5実施形態のフランジ部62では、入熱抑制材料部65を、その半径方向の断面形状を略Z字形状としたのに対して、図12に示す第6実施形態のフランジ部73では、入熱抑制材料部74を、その半径方向の断面形状を略I字形状としたところである。そして、この入熱抑制材料部74の上下の各端部に設けられている半径方向の内側及び外側に延びる各水平部65a、65bが、内周側部63及び外周側部64にボルト68、69で締結されている。
 これ以外は、図11に示す第5実施形態と同等であり、同等部分を同一の図面符号で示し、それらの説明を省略する。
 図13は、本発明の第7実施形態に係るタンクドームフランジ部の構造46を示している。この図13に示す第7実施形態と、前述した図6及び図7に示す第2実施形態と相違するところは、フランジ部47と32とが相違するところである。
 図6に示す第2実施形態のフランジ部32では、円環状の内周側部33の外周縁部と、円環状の外周側部34の内周縁部とは、互いに上下に重ね合わされた状態で、鉛直方向に挿通する複数のボルト(図示せず)で互いに結合されている。
 これに対して、図13に示す第7実施形態のフランジ部47では、円環状の内周側部33の外周縁部、及び円環状の外周側部34の内周縁部は、それぞれ断面略L字形状に屈曲形成されている。そして、この屈曲形成されて鉛直方向と平行する2つの短円筒形の鉛直部48、49は、互いに内側と外側に重ね合わされた状態で、水平方向に挿通する複数のボルト50で互いに結合されている。これ以外は、図6に示す第2実施形態と同等であり、同等部分を同一の図面符号で示し、それらの説明を省略する。
 このフランジ部47の断面略L字形状に屈曲形成されている2つの屈曲部分が熱収縮吸収部51である。外周側部34は、入熱抑制材料部である。
 このようにすると、図13に示すフランジ部47の内周側部33に対して、タンクドーム3側に引っ張られる方向に熱変形しようとしても、2つの略L字形状の熱収縮吸収部51が開く方向に変形して、この熱変形に基づく熱収縮を吸収することができ、フランジ部47の外周側部34の変形を抑制することができる。
 そして、図13に示す2つの短円筒形の鉛直部48、49は、フランジ部47の上方に向かって突出しており、タンクカバー6の内側空間5内に配置されてはいないので、この2つの鉛直部48、49に形成されている多数のボルト孔が、その内側空間5の気密性を低下させる原因となり難くすることができる。
 図14は、本発明の第8実施形態に係るタンクドームフランジ部の構造77を示している。この図14に示す第8実施形態と、図6に示す第2実施形態と相違するところは、フランジ部78と32とが相違するところである。
 図6に示す第2実施形態のフランジ部32の外周側部34には、熱収縮吸収部79が設けられていないのに対して、図14に示す第8実施形態のフランジ部78の外周側部80には、熱収縮吸収部79が設けられているところである。これ以外は、図6に示す第2実施形態と同等であり、同等部分を同一の図面符号で示し、それらの説明を省略する。
 図14に示す第8実施形態のフランジ部78の外周側部80に設けられている熱収縮吸収部79は、フランジ部78における半径方向の断面形状が略U字形状である。熱収縮吸収部79を、このように略U字形状とすると、タンクドーム3及びフランジ部78等の熱収縮によって、このフランジ部78の外周側部80が内側に引っ張られる方向に熱変形しようとしても、この断面形状が略U字形状の熱収縮吸収部79の部分が広がる方向に変形することができる。これによって、フランジ部78の外周側部80の変形を抑制することができる。そして、この外周側部80は、FRP製であり、入熱抑制材料部である。
 次に、本発明の第9実施形態に係るタンクドームフランジ部の構造83を、図15を参照して説明する。この図15に示す第9実施形態と、図6に示す第2実施形態とが相違するところは、図6に示す第2実施形態では、フランジ部32の外周側部34をFRP製の一体成形としたが、これに対して、図15に示す第9実施形態では、フランジ部84の外周側部34における外周部85をアルミ合金等の金属製とし、この外周部85をFRP製の外周側部本体86にボルト27で締め付け固定したところである。これ以外は、図6に示す第2実施形態と同等であり、同等部分を同一の図面符号で示し、それらの説明を省略する。
 そして、図15に示すように、外周部85を金属製とすると、図9に示す第3実施形態で説明したように、配管サポート(図示せず)を外周部85に溶接することができる。
 図16は、本発明の第10実施形態に係るタンクドームフランジ部の構造89を示している。この図16に示す第10実施形態と、図6に示す第2実施形態と相違するところは、フランジ部90と32とが相違するところである。
 図6に示す第2実施形態のフランジ部32では、円環状の内周側部33の外周縁部と、円環状の外周側部34の内周縁部とは、互いに上下に重ね合わされた状態で、鉛直方向に挿通する複数のボルトで互いに結合されている。
 これに対して、図16に示す第10実施形態のフランジ部90では、円環状の内周側部33の外周縁部、及び円環状の外周側部34の内周縁部には、それぞれ短円筒形の接合部91、92が固定して設けられている。そして、これら2つの短円筒形の接合部91、92は、互いに内周面と外周面とが重ね合わされた状態で、水平方向に挿通する複数のボルトで互いに結合されている。これ以外は、図6に示す第2実施形態と同等であり、同等部分を同一の図面符号で示し、それらの説明を省略する。
 この図16に示す2つの短円筒形の接合部91、92は、フランジ部90の上方と下方の両方に向かって突出しており、この接合部91、92の上部及び下部のそれぞれが多数のボルトによって締結されている。そして、この接合部91、92の上部に締結されたボルトと、その下部に締結されたボルトとの間の位置にフランジ部90の内周側部33及び外周側部34が配置されているので、タンクドーム3が熱収縮してフランジ部90が変形したときでも、確実にタンクカバー6の内側空間5の気密性を確保することができる。
 ただし、上記各実施形態において、フランジ部の金属製の部分とFRP製の部分との接合部分は、気密性を確保するために、金属製の部分とFRP製の部分とを一体成形によって接合してもよいし、接着剤によって接合してもよい。
 そして、図には示さないが、上記各実施形態のフランジ部、及びこのフランジ部を被覆する防熱材4をタンクドーム3の側壁3aに設けている構成を、各図において、上下対称(上下逆方向)となる構成としてもよい。
 以上のように、本発明に係るタンクドームフランジ部の構造は、タンク本体部に貯留されている低温の液化ガスの温度上昇を抑制することができる優れた効果を有し、このようなタンクドームフランジ部の構造に適用するのに適している。
 1 液化ガスタンク
 2 タンク本体部
 2a 胴部
 2b 蓋体
 3 タンクドーム
 3a 側壁
 3b 蓋体
 4 防熱材
 5 空間
 6 タンクカバー
 8 フランジ部
 11 エキスパンションラバー部
 12 配管
 21 タンクドームフランジ部の構造
 22 フランジ部
 23 内周側部
 23a 基端部(基端部品)
 23b 連結部(連結部品)
 24 外周側部(入熱抑制材料部、熱収縮吸収部)
 24a 鉛直部
 24b 水平部
 25 補強部
 26、27、35、50、68、69 ボルト
 31 タンクドームフランジ部の構造
 32 フランジ部
 33 内周側部
 34 外周側部
 38 タンクドームフランジ部の構造
 39 フランジ部
 40 外周部
 41 外周側部本体(入熱抑制材料部)
 42 外周側部
 46 タンクドームフランジ部の構造
 47 フランジ部
 48、49 鉛直部
 51 熱収縮吸収部
 54 タンクドームフランジ部の構造
 55 フランジ部
 56、57 水平部
 61 タンクドームフランジ部の構造
 62 フランジ部
 63 内周側部
 64 外周側部
 65 入熱抑制材料部
 65a、65b 水平部
 66、67 熱収縮吸収部
 72 タンクドームフランジ部の構造
 73 フランジ部
 74 入熱抑制材料部
 77 タンクドームフランジ部の構造
 78 フランジ部
 79 熱収縮吸収部
 80 外周側部
 83 タンクドームフランジ部の構造
 84 フランジ部
 85 外周部
 86 外周側部本体
 89 タンクドームフランジ部の構造
 90 フランジ部
 91、92 接合部
 

Claims (9)

  1.  低温の液化ガスが貯留されるタンク本体部に設けられているタンクドームの側壁の外面から外方に張り出しているフランジ部と、
     前記タンク本体部を空間を隔てて覆うタンクカバーと、
     前記フランジ部と前記タンクカバーとの間に設けられ、前記空間を密封するためのエキスパンションラバー部とを備える液化ガスタンクに設けられているタンクドームフランジ部の構造において、
     前記フランジ部のうち、少なくとも前記タンクドームの側壁と前記エキスパンションラバー部との間に位置する所定部分に、繊維強化プラスチック製の入熱抑制材料部を設けたことを特徴とするタンクドームフランジ部の構造。
  2.  前記フランジ部のうち、少なくとも前記タンクドームの側壁と前記エキスパンションラバー部との間に位置する部分に、当該フランジ部及び前記タンクドームを含む部分の熱収縮を吸収する熱収縮吸収部を設けたことを特徴とする請求項1記載のタンクドームフランジ部の構造。
  3.  前記入熱抑制材料部は、前記フランジ部の前記所定部分から前記フランジ部の外周縁部までの範囲に亘って形成されていることを特徴とする請求項1記載のタンクドームフランジ部の構造。
  4.  前記熱収縮吸収部は、前記フランジ部における半径方向の断面形状が略L字形状又は略U字形状を含む屈曲形状を成すものであることを特徴とする請求項2記載のタンクドームフランジ部の構造。
  5.  前記熱収縮吸収部が前記入熱抑制材料部に形成され、又は前記入熱抑制材料部が前記熱収縮吸収部に形成されていることを特徴とする請求項2記載のタンクドームフランジ部の構造。
  6.  前記フランジ部は、繊維強化プラスチック製の前記入熱抑制材料部より前記タンクドーム側の連結部品と、前記入熱抑制材料部とが一体成形によって形成されていることを特徴とする請求項1記載のタンクドームフランジ部の構造。
  7.  前記フランジ部は、繊維強化プラスチック製の前記入熱抑制材料部より前記タンクドーム側の内周側部が、連結部品と基端部品とからなり、前記入熱抑制材料部と前記連結部品とが一体に成形され、前記入熱抑制材料部と一体成形された前記連結部品を、前記タンクドームの側壁に結合された前記基端部品に対して結合することによって、前記フランジ部における前記入熱抑制材料部及び前記タンクドーム側の前記内周側部を形成したことを特徴とする請求項1記載のタンクドームフランジ部の構造。
  8.  前記フランジ部は、繊維強化プラスチック製の前記入熱抑制材料部より前記タンクドーム側の内周側部が金属製であることを特徴とする請求項1記載のタンクドームフランジ部の構造。
  9.  前記入熱抑制材料部は、ガラス繊維強化プラスチック製又は炭素繊維強化プラスチック製であることを特徴とする請求項1記載のタンクドームフランジ部の構造。
     
PCT/JP2012/001060 2011-03-03 2012-02-17 タンクドームフランジ部の構造 WO2012117682A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2013144386/11A RU2535357C1 (ru) 2011-03-03 2012-02-17 Конструкция фланцевого участка купола резервуара
CN201280010488.5A CN103384627B (zh) 2011-03-03 2012-02-17 气罐顶盖凸缘部的结构
KR1020147033445A KR101837032B1 (ko) 2011-03-03 2012-02-17 탱크 돔 플랜지부의 구조
EP12752472.6A EP2682337B1 (en) 2011-03-03 2012-02-17 Tank dome flange portion structure
KR1020137010498A KR20130084665A (ko) 2011-03-03 2012-02-17 탱크 돔 플랜지부의 구조

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011046664A JP5670225B2 (ja) 2011-03-03 2011-03-03 タンクドームフランジ部の構造
JP2011-046664 2011-03-03

Publications (1)

Publication Number Publication Date
WO2012117682A1 true WO2012117682A1 (ja) 2012-09-07

Family

ID=46757628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001060 WO2012117682A1 (ja) 2011-03-03 2012-02-17 タンクドームフランジ部の構造

Country Status (6)

Country Link
EP (1) EP2682337B1 (ja)
JP (1) JP5670225B2 (ja)
KR (2) KR101837032B1 (ja)
CN (1) CN103384627B (ja)
RU (1) RU2535357C1 (ja)
WO (1) WO2012117682A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014118206A (ja) 2012-12-19 2014-06-30 Kawasaki Heavy Ind Ltd 液化ガス用輸送容器
KR20190005475A (ko) 2017-07-06 2019-01-16 이동원 가변용량 냉매 저장수단을 구비한 고효율 히트 펌프
KR20190005471A (ko) 2017-07-06 2019-01-16 이동원 가변용량 냉매 저장수단을 구비한 히트 펌프
EP3853152A1 (en) * 2018-09-18 2021-07-28 Aeler Technologies SA Hybrid smart composite container and method of operating the container
CN112805514A (zh) 2018-11-15 2021-05-14 李东源 改善了效率的热泵
JP7273508B2 (ja) * 2018-12-28 2023-05-15 川崎重工業株式会社 船舶
JP2020158068A (ja) * 2019-03-28 2020-10-01 三菱造船株式会社 船舶
KR20200123603A (ko) 2019-04-22 2020-10-30 이동원 히트펌프 및 그 제어방법
JP2020199913A (ja) * 2019-06-11 2020-12-17 三井E&S造船株式会社 船舶
JP2021160400A (ja) * 2020-03-30 2021-10-11 川崎重工業株式会社 液化ガス貯留船
KR20210132962A (ko) 2020-04-28 2021-11-05 이동원 가변용량 압축기를 구비한 히트펌프
KR20210141002A (ko) 2020-05-14 2021-11-23 이동원 가변용량 압축기를 구비한 히트펌프 및 그 제어방법
CN112498585A (zh) * 2020-10-30 2021-03-16 沪东中华造船(集团)有限公司 一种b型lng燃料舱气液组合穹顶与船体的弹性密封连接方法
CN114852258B (zh) * 2022-06-15 2023-09-12 江南造船(集团)有限责任公司 一种液罐气室与货舱结构之间的密封装置及船舶
CN117184329B (zh) * 2023-09-26 2024-05-14 江苏扬子三井造船有限公司 一种液罐气室密封安装结构及其安装方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138295U (ja) * 1984-08-13 1986-03-10 三菱重工業株式会社 深冷船のタンク取り付け構造
JPS6212593U (ja) * 1985-07-09 1987-01-26
JPH07215274A (ja) * 1994-02-04 1995-08-15 Ishikawajima Harima Heavy Ind Co Ltd 液体水素輸送タンカーのドーム構造体
JPH0899689A (ja) * 1994-09-29 1996-04-16 Mitsubishi Heavy Ind Ltd 貨物タンクの内面断熱構造

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES439283A1 (es) * 1975-07-10 1977-03-01 Sener Tenica Ind Y Naval S A Perfeccionamientos en barreras secundarias parciales para tanques de revolucion autorresistentes a bordo de buques.
FR2785034B1 (fr) * 1998-10-23 2000-12-22 Gaz Transport & Technigaz Procede pour eliminer l'evaporation d'un gaz liquefie stocke dans une cuve etanche et isotherme, et dispositif pour sa mise en oeuvre
JP4051365B2 (ja) * 2004-08-23 2008-02-20 岩谷瓦斯株式会社 液化ガスタンクの内槽支持装置
KR100943456B1 (ko) * 2008-02-29 2010-02-22 삼성중공업 주식회사 입열량 감소를 위한 액화 천연가스 화물창 앵커구조

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138295U (ja) * 1984-08-13 1986-03-10 三菱重工業株式会社 深冷船のタンク取り付け構造
JPS6212593U (ja) * 1985-07-09 1987-01-26
JPH07215274A (ja) * 1994-02-04 1995-08-15 Ishikawajima Harima Heavy Ind Co Ltd 液体水素輸送タンカーのドーム構造体
JPH0899689A (ja) * 1994-09-29 1996-04-16 Mitsubishi Heavy Ind Ltd 貨物タンクの内面断熱構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2682337A4 *

Also Published As

Publication number Publication date
EP2682337A1 (en) 2014-01-08
JP5670225B2 (ja) 2015-02-18
CN103384627B (zh) 2016-03-16
EP2682337B1 (en) 2016-09-14
JP2012183864A (ja) 2012-09-27
CN103384627A (zh) 2013-11-06
KR20140144749A (ko) 2014-12-19
RU2535357C1 (ru) 2014-12-10
KR101837032B1 (ko) 2018-03-09
KR20130084665A (ko) 2013-07-25
EP2682337A4 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
JP5670225B2 (ja) タンクドームフランジ部の構造
JP4451439B2 (ja) 液化天然ガスの貯蔵タンクを形成するための構造体
KR101399843B1 (ko) 화물창 방열 시스템
KR101444342B1 (ko) 액화천연가스 저장탱크의 펌프타워 베이스서포트 구조체
US9335003B2 (en) Cargo tank for extremely low temperature substance carrier
KR101069643B1 (ko) 액화천연가스 화물창의 보강구조
KR101086766B1 (ko) 액화천연가스 화물창의 단열구조
EP2862793B1 (en) Reinforcing member fixing device for primary barrier of liquefied natural gas storage tank
KR20150013972A (ko) 베이스플레이트 및 이를 포함하는 화물창
KR101422522B1 (ko) 베이스서포트 구조체와 저장탱크 단열방벽 간의 연결구조체
KR101031242B1 (ko) 액화천연가스 화물창의 멤브레인 보강구조
KR20120013226A (ko) 액화 천연가스 저장탱크
KR101444313B1 (ko) 액화천연가스 저장탱크의 펌프타워 베이스서포트 구조체
KR101523906B1 (ko) 베이스서포트와 화물창 단열방벽 간의 연결구조체
KR101422520B1 (ko) 액화천연가스 저장탱크용 단열구조체
JP2013238285A (ja) 液体貯蔵タンク
KR102426137B1 (ko) 액화 화물 저장 탱크용 단열 패널
KR101571425B1 (ko) 화물창용 베이스서포트
KR101955632B1 (ko) 액화 가스 저장 탱크
KR101588661B1 (ko) 화물창 및 이에 사용되는 방벽 보강부재
KR101814445B1 (ko) 액화가스 화물창용 패널고정장치 및 이를 갖춘 액화가스 화물창
KR101644341B1 (ko) 화물창에 사용되는 방벽 보강부재 및 이를 이용하는 화물창
KR101588658B1 (ko) 베이스서포트와 화물창 단열방벽 간의 연결구조체
KR101523904B1 (ko) 베이스서포트 및 이와 화물창 단열방벽 간의 연결구조체
JPH11236998A (ja) 地上式低温貯槽

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280010488.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752472

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137010498

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012752472

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013144386

Country of ref document: RU

Kind code of ref document: A