WO2012114652A1 - 無線電力供給装置及び無線電力供給方法 - Google Patents

無線電力供給装置及び無線電力供給方法 Download PDF

Info

Publication number
WO2012114652A1
WO2012114652A1 PCT/JP2012/000415 JP2012000415W WO2012114652A1 WO 2012114652 A1 WO2012114652 A1 WO 2012114652A1 JP 2012000415 W JP2012000415 W JP 2012000415W WO 2012114652 A1 WO2012114652 A1 WO 2012114652A1
Authority
WO
WIPO (PCT)
Prior art keywords
support member
thermoelectric conversion
thermoelectric
temperature
output unit
Prior art date
Application number
PCT/JP2012/000415
Other languages
English (en)
French (fr)
Inventor
矢島 正一
修 榎
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US13/983,113 priority Critical patent/US20130306124A1/en
Priority to EP12748908.6A priority patent/EP2680430B1/en
Priority to CN201280007984.5A priority patent/CN103404016B/zh
Publication of WO2012114652A1 publication Critical patent/WO2012114652A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur

Definitions

  • the present invention relates to a wireless power supply apparatus and a wireless power supply method.
  • a power supply method using radio waves is generally used.
  • Examples of such a power supply method include an electromagnetic induction method and a magnetic resonance method (see, for example, JP2009-501510A and JP2011-030317A).
  • the electromagnetic induction method is used as a power supply method in a state where a power supply device and a power reception device are arranged close to each other.
  • the magnetic resonance method uses the LC resonance of the circuit, it is possible to supply power in a state where the power supply device and the power reception device are spaced apart by several times the wavelength. There is an advantage that another device is not easily affected.
  • Such conventional technology is a method of transmitting electric power as radio waves.
  • a system equipped with a power generation device if means for supplying power supplementarily is provided, power supply by radio waves is not essential.
  • a conventional technique has a problem that it is difficult to supply power in an atmosphere or a scene where radio waves cannot be used.
  • a tuning system using a variable capacitor or the like is required for frequency matching.
  • an object of the present invention is to provide a wireless power supply apparatus and a wireless power supply method capable of supplying power wirelessly by means other than radio waves.
  • a wireless power supply apparatus of the present invention includes: (A) a thermoelectric generator that performs thermoelectric generation in response to a change in the temperature of the atmosphere; and (B) a temperature control device that periodically changes the temperature of the atmosphere in which the thermoelectric generator is arranged; It has.
  • a wireless power supply method of the present invention for achieving the above object is a wireless power supply method using a wireless power supply device including a thermoelectric generator and a temperature control device, The temperature of the atmosphere in which the thermoelectric generator is arranged is periodically changed by the temperature controller, thermoelectric generation is performed by the thermoelectric generator in response to the temperature change of the atmosphere, and the obtained electric power is taken out.
  • the temperature control device instead of supplying power by radio waves, the temperature control device periodically changes the temperature of the atmosphere in which the thermoelectric power generation device is arranged.
  • Thermoelectric power is generated by the power generator. That is, indirect power transmission is possible. Therefore, there is no directivity even in environments and scenes where radio waves cannot be used, in spaces where radio waves are difficult to reach, and in electromagnetically shielded spaces.
  • power can be supplied easily and safely based on a simple configuration, and there is no possibility of adversely affecting other electronic devices.
  • thermoelectric power generation is performed based on the atmosphere in which the thermoelectric power generation device is arranged, temperature change in the atmosphere, and fluctuations in temperature, so remote monitoring and remote sensing at remote locations are possible. It is possible to attach the power generation device in advance to a place where physical wiring or connection is difficult. Furthermore, the degree of freedom in the design and layout of the power generation device can be increased.
  • FIG. 1A and 1B are conceptual diagrams of a wireless power supply device and a book management system according to the first embodiment.
  • FIG. 2 is a graph showing the relationship between the temperature change in the atmosphere and the output voltage of the thermoelectric generator, obtained by simulation.
  • FIG. 3 is a graph showing the relationship between the temperature change in the atmosphere and the output current of the thermoelectric generator, obtained by simulation.
  • FIG. 4A is a schematic partial cross-sectional view of the thermoelectric power generator of Example 4, and FIG. 4B shows the temperature (T A ) of the first support member and the second support member.
  • FIG. 5A is a schematic partial cross-sectional view of the thermoelectric generator of Example 5, and FIG. 5B shows the temperature (T A ) of the first support member and the second support member.
  • FIG. 6A is a schematic partial cross-sectional view of the thermoelectric generator of Example 6, and FIG. 6B shows the temperature (T A ) of the first support member and the second support member.
  • thermoelectric power generator 7 is a schematic partial plan view of the thermoelectric power generator according to the seventh embodiment.
  • (A), (B), (C), and (D) of FIG. 8 are respectively arrows AA, arrows BB, arrows CC of the thermoelectric power generator of Example 7 shown in FIG.
  • FIG. 6 is a schematic partial cross-sectional view along an arrow DD.
  • 9A and 9B are schematic partial cross-sectional views of the thermoelectric power generator of Example 8.
  • FIGS. 11A and 11B are schematic partial cross-sectional views of the thermoelectric generator of Example 9.
  • FIGS. 13A and 13B are schematic partial cross-sectional views of the thermoelectric generator of Example 10.
  • 15A and 15B are schematic partial cross-sectional views of the thermoelectric generator of Example 11.
  • FIGS. 17A and 17B are schematic partial cross-sectional views of the thermoelectric generator of Example 12.
  • 19A and 19B are schematic partial cross-sectional views of the thermoelectric generator of Example 13.
  • FIG. 20A, 20B, and 20C are circuit diagrams each showing an example of a rectifier circuit
  • FIG. 20D shows an example of an application example of the thermoelectric generator of the present invention. It is a conceptual diagram.
  • Example 1 wireless power supply apparatus and wireless power supply method of the present invention
  • Example 2 Mode of Example 1 4
  • Example 3 another modification of Example 1 5.
  • Example 4 Thermoelectric generator and thermoelectric generation method according to the first aspect
  • Example 5 Thermoelectric generator and thermoelectric generation method according to the second aspect
  • Example 6 Thermoelectric generator and thermoelectric generation method according to the third aspect
  • Example 7 Modification of Example 6) 9.
  • Example 8 (Thermoelectric power generation method according to aspect 4A) 10.
  • Example 9 (Thermoelectric power generation method according to the fourth aspect and the thermoelectric power generation apparatus according to the fourth aspect) 11.
  • Example 10 (modification of Example 9) 12
  • Example 11 (Thermoelectric power generation method according to aspect 5A) 13.
  • Example 12 (Thermoelectric power generation method according to the fifth aspect and the thermoelectric power generation apparatus according to the fifth aspect) 14
  • Example 13 (Modification of Example 12) 15.
  • Example 14 (electric signal detection method according to aspects 1 to 5B, electric signal detection apparatus of the present invention), others
  • thermoelectric generators In the wireless power supply device of the present invention or the wireless power supply method of the present invention (hereinafter, these may be collectively referred to simply as “the present invention”), A plurality of thermoelectric generators, Each thermoelectric generator may have the same thermal response characteristic. Such a configuration may be referred to as a “first configuration of the present invention” for convenience.
  • the plurality of thermoelectric power generators respond to the periodic change in the ambient temperature by the temperature control device all at once, and the same characteristics are simultaneously obtained from the plurality of thermoelectric power generation devices. It is possible to take out the electric power having
  • thermoelectric generators Each thermoelectric generator has different thermal response characteristics
  • the temperature control device can be configured to periodically change the temperature of the atmosphere sequentially based on a temperature change corresponding to a thermoelectric power generator having different thermal response characteristics depending on the temperature control device.
  • Such a configuration may be referred to as a “second configuration of the present invention” for convenience.
  • a plurality of thermoelectric power generation device groups may be configured from a plurality of thermoelectric power generation devices, and a configuration in which each thermoelectric power generation device group has different thermal response characteristics may be employed.
  • the plurality of thermoelectric generators (or each of the thermoelectric generator groups having the same thermal response characteristics) is subject to periodic changes in the atmospheric temperature by the temperature controller over time.
  • thermoelectric generators it is possible to respond to each separately, and to extract power having different characteristics from the plurality of thermoelectric generators or from a specific thermoelectric generator separately over time.
  • thermoresponse characteristics of each thermoelectric generator is made the same, and a filter is arranged at the output of each thermoelectric generator so that each thermoelectric generator You may vary the thermal response characteristic as the whole electric power generating apparatus.
  • thermoelectric generators Each thermoelectric generator has different thermal response characteristics
  • the temperature control device can be configured to periodically change the temperature of the atmosphere based on the synthesized temperature change corresponding to the thermoelectric power generation device having different thermal response characteristics.
  • Such a configuration may be referred to as a “third configuration of the present invention” for convenience.
  • a plurality of thermoelectric power generation device groups may be configured from a plurality of thermoelectric power generation devices, and a configuration in which each thermoelectric power generation device group has different thermal response characteristics may be employed.
  • the plurality of thermoelectric power generation devices (or each of the thermoelectric power generation device groups having the same thermal response characteristics) are simultaneously subjected to periodic changes in the ambient temperature by the temperature control device.
  • thermoelectric generators it is possible to take out electric power having various characteristics from the plurality of thermoelectric generators or from a specific thermoelectric generator at the same time by responding individually.
  • the thermoresponse characteristics of each thermoelectric generator is made the same, and a filter is arranged at the output of each thermoelectric generator so that each thermoelectric generator You may vary the thermal response characteristic as the whole electric power generating apparatus.
  • thermoelectric generator (A) a first support member, (B) a second support member disposed opposite the first support member; (C) a thermoelectric conversion element disposed between the first support member and the second support member, and (D) a first output unit and a second output unit connected to the thermoelectric conversion element;
  • Thermoelectric conversion element (C-1) a first thermoelectric conversion member disposed between the first support member and the second support member, and (C-2) It is arranged between the first support member and the second support member, is made of a material different from the material constituting the first thermoelectric conversion member, and is electrically connected in series with the first thermoelectric conversion member Second thermoelectric conversion member, Consisting of The first output unit is connected to the end of the first thermoelectric conversion member on the first support member side, A 2nd output part is a thermoelectric power generator connected to the edge part by the side of the 1st support member of the 2nd thermoelectric conversion member.
  • thermoelectric generator The area of the first surface of the first thermoelectric conversion member in contact with the first support member is S 11 , and the area of the second surface of the first thermoelectric conversion member in contact with the second support member is S 12 (where S 11 > S 12 ), the area of the first surface of the second thermoelectric conversion member in contact with the first support member is S 21 , and the area of the second surface of the second thermoelectric conversion member in contact with the second support member is S 22 (where S 21 > S 22 ), when the thermal response time constant of the first support member is ⁇ SM1 and the thermal response time constant of the second support member is ⁇ SM2 , ⁇ SM1 > ⁇ SM2 S 12 ⁇ S 22 It is.
  • thermoelectric generator is referred to as “thermoelectric generator according to the first aspect” for convenience.
  • thermoelectric generator According to the second aspect, the volume of the first thermoelectric conversion member is VL 1 , the volume of the second thermoelectric conversion member is VL 2 , the thermal response time constant of the first support member is ⁇ SM1 , and the thermal response time constant of the second support member is ⁇ SM2.
  • thermoelectric generator according to the second aspect Such a thermoelectric generator is referred to as “thermoelectric generator according to the second aspect” for convenience.
  • thermoelectric generator (A) a first support member, (B) a second support member disposed opposite the first support member; (C) a first thermoelectric conversion element disposed between the first support member and the second support member; (D) a second thermoelectric conversion element disposed between the first support member and the second support member, and (E) a first output unit and a second output unit,
  • the first thermoelectric conversion element includes a first A thermoelectric conversion member in contact with the second support member and a first B thermoelectric conversion member in contact with the first support member, which are arranged in contact with each other.
  • the second thermoelectric conversion element is configured such that the 2A thermoelectric conversion member in contact with the first support member and the 2B thermoelectric conversion member in contact with the second support member are arranged in contact with each other, The first thermoelectric conversion element and the second thermoelectric conversion element are electrically connected in series, The first output unit is connected to the end of the first B thermoelectric conversion member, The second output unit is connected to the end of the second A thermoelectric conversion member, When the thermal response time constant of the first support member is ⁇ SM1 and the thermal response time constant of the second support member is ⁇ SM2 , ⁇ SM1 ⁇ ⁇ SM2 It is.
  • thermoelectric generator is referred to as “thermoelectric generator according to the third aspect” for convenience.
  • thermoelectric generator (A) a first support member, (B) a second support member disposed opposite the first support member; (C) a first thermoelectric conversion element disposed between the first support member and the second support member; (D) a second thermoelectric conversion element disposed between the first support member and the second support member, and (E) a first output unit, a second output unit, a third output unit, and a fourth output unit,
  • the first thermoelectric conversion element is (C-1) a first thermoelectric conversion member disposed between the first support member and the second support member, and (C-2) It is arranged between the first support member and the second support member, is made of a material different from the material constituting the first thermoelectric conversion member, and is electrically connected in series with the first thermoelectric conversion member Second thermoelectric conversion member, Consisting of The second thermoelectric conversion element is (D-1) a third thermoelectric conversion member disposed between the first support member and the second support member
  • thermoelectric generator (A) a first support member, (B) a second support member disposed opposite the first support member; (C) a first thermoelectric conversion element disposed between the first support member and the second support member; (D) a second thermoelectric conversion element disposed between the first support member and the second support member; (E) a third thermoelectric conversion element disposed between the first support member and the second support member; (F) a fourth thermoelectric conversion element disposed between the first support member and the second support member, and (G) a first output unit, a second output unit, a third output unit, and a fourth output unit, With
  • the first thermoelectric conversion element includes a first A thermoelectric conversion member in contact with the second support member and a first B thermoelectric conversion member in contact with the first support member, which are arranged in contact with each other.
  • the second thermoelectric conversion element is configured such that the 2A thermoelectric conversion member in contact with the first support member and the 2B thermoelectric conversion member in contact with the second support member are arranged in contact with each other
  • the third thermoelectric conversion element is configured such that the 3A thermoelectric conversion member in contact with the second support member and the 3B thermoelectric conversion member in contact with the first support member are arranged in contact with each other
  • the fourth thermoelectric conversion element is configured such that the 4A thermoelectric conversion member in contact with the first support member and the 4B thermoelectric conversion member in contact with the second support member are arranged in contact with each other,
  • the first thermoelectric conversion element and the second thermoelectric conversion element are electrically connected in series
  • the third thermoelectric conversion element and the fourth thermoelectric conversion element are electrically connected in series
  • the first output unit is connected to the first thermoelectric conversion element
  • the second output unit is connected to the second thermoelectric conversion element
  • the third output unit is connected to the third thermoelectric conversion element
  • the fourth output unit is connected to the fourth thermoelectric conversion element
  • the wireless power supply method of the present invention including the first configuration to the third configuration of the present invention can be a wireless power supply method using the thermoelectric generator according to the first aspect described above.
  • the wireless power supply method using the thermoelectric power generator according to the second aspect described above can be used, and the wireless power supply method using the thermoelectric power generator according to the third aspect described above.
  • a thermoelectric generator is placed in an atmosphere where the temperature changes. When the temperature of the second support member is higher than the temperature of the first support member, the second support member is generated due to a temperature difference between the first support member and the second support member, and from the second thermoelectric conversion member to the first thermoelectric conversion member.
  • the first output part is taken as the positive electrode and the second output part is taken as the negative electrode (for convenience, “the thermoelectric power generation method according to the first aspect” or “the thermoelectric power generation method according to the second aspect”) Or alternatively, the current flowing from the second thermoelectric conversion element to the first thermoelectric conversion element is taken out to the outside with the first output portion as the positive electrode and the second output portion as the negative electrode ( This is called “thermoelectric power generation method”).
  • the wireless power supply method of the present invention including the first configuration to the third configuration of the present invention is a wireless power supply method using the thermoelectric generator according to the fourth aspect described above.
  • Can A thermoelectric generator is placed in an atmosphere where the temperature changes. When the temperature of the second support member is higher than the temperature of the first support member, the second support member is generated due to a temperature difference between the first support member and the second support member, and from the second thermoelectric conversion member to the first thermoelectric conversion member.
  • thermoelectric power generation apparatus is referred to as a “thermoelectric power generation method according to mode 4A” for convenience.
  • the temperature of the second support member is the first.
  • a current that is generated due to a temperature difference between the first support member and the second support member and flows from the second thermoelectric conversion member to the first thermoelectric conversion member is output to the first output.
  • thermoelectric power generation apparatus When the temperature of the first support member is higher than the temperature of the second support member when the part is taken out as the positive electrode and the second output part as the negative electrode, the temperature difference between the first support member and the second support member instead of taking out the current flowing from the fourth thermoelectric conversion member to the third thermoelectric conversion member with the third output portion as the positive electrode and the fourth output portion as the negative electrode,
  • the second support member is generated due to a temperature difference between the first support member and the second support member, and from the second thermoelectric conversion member to the first thermoelectric conversion member.
  • the first output part is the positive electrode and the second output part is the negative electrode
  • the current flowing from the fourth thermoelectric conversion member to the third thermoelectric conversion member is the third output part positive.
  • the fourth output part is taken out as a negative electrode.
  • Such a thermoelectric power generation apparatus is referred to as a “thermoelectric power generation method according to the mode 4B” for convenience.
  • thermoelectric power generator in the wireless power supply method of the present invention including the first configuration to the third configuration of the present invention, the wireless power supply method using the thermoelectric power generator according to the fifth aspect described above is used.
  • Can A thermoelectric generator is placed in an atmosphere where the temperature changes. When the temperature of the second support member is higher than the temperature of the first support member, it is generated due to the temperature difference between the first support member and the second support member, and from the second thermoelectric conversion element to the first thermoelectric conversion element.
  • thermoelectric power generation apparatus is referred to as “the thermoelectric power generation method according to the aspect 5A” for convenience.
  • the temperature of the second support member is the first.
  • a current that is generated due to a temperature difference between the first support member and the second support member and flows from the second thermoelectric conversion element to the first thermoelectric conversion element is output to the first output.
  • thermoelectric power generation apparatus When the temperature of the first support member is higher than the temperature of the second support member when the part is taken out as the positive electrode and the second output part as the negative electrode, the temperature difference between the first support member and the second support member Instead of taking out the current flowing from the third thermoelectric conversion element to the fourth thermoelectric conversion element with the fourth output portion as the positive electrode and the third output portion as the negative electrode, When the temperature of the second support member is higher than the temperature of the first support member, it is generated due to the temperature difference between the first support member and the second support member, and from the second thermoelectric conversion element to the first thermoelectric conversion element. And the current flowing from the fourth thermoelectric conversion element to the third thermoelectric conversion element, the third output part as the positive electrode, and the first output part as the positive electrode and the second output part as the negative electrode. The fourth output part is taken out as a negative electrode. Note that such a thermoelectric power generation apparatus is referred to as “thermoelectric power generation method according to embodiment 5B” for convenience.
  • thermoelectric generator in the thermoelectric power generation method according to the 4A aspect or the thermoelectric generator according to the fourth aspect may be collectively referred to as “the invention according to the 4A aspect”.
  • the first output unit is connected to the end of the first thermoelectric conversion member on the first support member side
  • the second output unit is connected to the end of the second thermoelectric conversion member on the first support member side
  • the third output unit is connected to the end of the third thermoelectric conversion member on the second support member side
  • a 4th output part can be set as the structure connected to the edge part by the side of the 2nd support member of a 4th thermoelectric conversion member.
  • thermoelectric power generation method In the thermoelectric power generation method according to the 4B aspect or the thermoelectric power generation apparatus according to the 4th aspect (hereinafter, these may be collectively referred to as “the invention according to the 4B aspect”).
  • the first output unit is connected to the end of the first thermoelectric conversion member on the first support member side
  • the second output unit is connected to the end of the second thermoelectric conversion member on the first support member side
  • the third output unit is connected to the end of the third thermoelectric conversion member on the first support member side
  • a 4th output part can be set as the structure connected to the edge part by the side of the 1st support member of a 4th thermoelectric conversion member.
  • thermoelectric generator TE1 thermal response time constant of the first thermoelectric conversion element tau, when the thermal response of the second thermoelectric conversion element
  • the constant is ⁇ TE2
  • the first thermoelectric conversion member has a first surface with an area S 11 and a second surface with an area S 12 (where S 11 > S 12 ),
  • the second thermoelectric conversion member has a first surface area S 21, and the second surface area S 22 (where, S 21> S 22)
  • the third thermoelectric conversion member has a first surface with an area S 31 and a second surface with an area S 32 (where S 31 ⁇ S 32 ).
  • the fourth thermoelectric conversion member has a first surface with an area S 41 and a second surface with an area S 42 (where S 41 ⁇ S 42 ).
  • thermoelectric conversion member and the second thermoelectric conversion member are in contact with the first support member
  • the second surfaces of the first thermoelectric conversion member and the second thermoelectric conversion member are in contact with the second support member
  • the first surfaces of the third thermoelectric conversion member and the fourth thermoelectric conversion member are in contact with the first support member
  • the second surfaces of the third thermoelectric conversion member and the fourth thermoelectric conversion member can be configured to be in contact with the second support member.
  • thermoelectric conversion member As specific shapes of the first thermoelectric conversion member, the second thermoelectric conversion member, the third thermoelectric conversion member, and the fourth thermoelectric conversion member in such a configuration, a truncated pyramid shape, more specifically, a truncated triangular pyramid Examples include a shape, a truncated quadrangular pyramid shape, a truncated hexagonal pyramid shape, and a truncated cone shape.
  • the volume of the first thermoelectric conversion member is VL 1
  • the volume of the second thermoelectric conversion member is VL 2
  • the volume of the third thermoelectric conversion member is VL 3
  • the volume of the fourth thermoelectric conversion member is VL 4 .
  • VL 1 ⁇ VL 3 VL 2 ⁇ VL 4 It can be set as the structure which is.
  • a columnar shape more specifically, a triangular prism shape, a quadrangular prism shape, a hexagonal shape, A columnar shape and a columnar shape can be exemplified.
  • VL 1 ⁇ VL 2 VL 3 ⁇ VL 4 It is more preferable that
  • thermoelectric generator in the thermoelectric generation method according to the 5A aspect or the thermoelectric generator according to the fifth aspect may be collectively referred to as “the invention according to the 5A aspect”.
  • the first output unit is connected to the end of the first B thermoelectric conversion member
  • the second output unit is connected to the end of the second A thermoelectric conversion member
  • the third output unit is connected to the end of the 3A thermoelectric conversion member
  • a 4th output part can be set as the structure connected to the edge part of the 4B thermoelectric conversion member.
  • thermoelectric power generation method in the thermoelectric power generation method according to the 5B aspect or the thermoelectric power generation apparatus according to the 5th aspect (hereinafter, these may be collectively referred to as “the invention according to the 5B aspect”).
  • thermoelectric generator Is a thermoelectric generator, The first output unit is connected to the end of the first B thermoelectric conversion member, The second output unit is connected to the end of the second A thermoelectric conversion member, The third output unit is connected to the end of the 3B thermoelectric conversion member, A 4th output part can be set as the structure connected to the edge part of the 4A thermoelectric conversion member.
  • the thermal response time constant of the first thermoelectric conversion element is ⁇ TE1
  • the thermal response time of the second thermoelectric conversion element is
  • the constant is ⁇ TE2
  • the thermal response time constant of the third thermoelectric conversion element is ⁇ TE3
  • the thermal response time constant of the fourth thermoelectric conversion element is ⁇ TE4
  • ⁇ TE1 ⁇ ⁇ TE3 ⁇ TE2 ⁇ ⁇ TE4 it is preferable that
  • the volume of the first thermoelectric conversion element is VL 1
  • the volume of the second thermoelectric conversion element is VL 2
  • the volume of the third thermoelectric conversion element is VL 3
  • the volume of the fourth thermoelectric conversion element is VL 4 .
  • VL 1 ⁇ VL 3 VL 2 ⁇ VL 4 It can be set as the structure which is.
  • the area of the first A thermoelectric conversion member in contact with the second support member is S 12
  • the area of the second B thermoelectric conversion member in contact with the first support member is S 21
  • the third A thermoelectric contact with the second support member is S 21 .
  • thermoelectric power generation apparatus including the various preferred configurations described above, and the thermoelectric power generation apparatus (hereinafter referred to as the thermoelectric power generation apparatus used in the thermoelectric power generation method according to the first to fifth aspects). These may be collectively referred to simply as “thermoelectric power generation device or the like in the present invention”), and the thermal response time constant ⁇ SM1 of the first support member and the thermal response time constant ⁇ of the second support member SM2 is different. Therefore, when the thermoelectric generator is arranged in an atmosphere in which the temperature changes, a temperature difference can occur between the temperature of the first support member and the temperature of the second support member.
  • thermoelectric power generation occurs in the thermoelectric conversion element, the first thermoelectric conversion element, or the second thermoelectric conversion element.
  • the thermal response time constant ⁇ SM1 of the first support member and the thermal response time constant ⁇ SM2 of the second support member are the same, even when the thermoelectric generator is arranged in the atmosphere where the temperature changes, Since there is no temperature difference between the temperature of the first support member and the temperature of the second support member, thermoelectric power generation does not occur in the thermoelectric conversion element, the first thermoelectric conversion element, or the second thermoelectric conversion element.
  • the number of thermoelectric conversion elements constituting the thermoelectric power generation apparatus is essentially arbitrary, and if the number of thermoelectric conversion elements is determined based on the amount of thermoelectric power generation required for the thermoelectric power generation apparatus. Good.
  • the thermal response time constant ⁇ depends on the density ⁇ , the specific heat c, the heat transfer coefficient h of the material constituting the support member, the thermoelectric conversion element, and the thermoelectric conversion member, the volume VL, and the area S of the support member, the thermoelectric conversion element, and the thermoelectric conversion member. Determined. If a material having a large density, a large specific heat, and a small heat transfer coefficient is used, and the volume is large and the area is small, the value of the thermal response time constant increases.
  • thermoelectric generator in the present invention, a step-like temperature change is given to one end of the thermoelectric generator, and the temperature transient response at that time is monitored by, for example, an infrared thermometer, thereby measuring the thermal response time constant.
  • the thermal response time constant can be measured by attaching a thermocouple having a sufficiently fast thermal time constant to the support member and measuring the temperature transition.
  • the thermal response time constant of the thermoelectric conversion element can be estimated by monitoring the output waveform of the thermoelectric generator after giving the same temperature change, and the temperature difference between the upper and lower ends of the thermoelectric conversion element can be estimated. It can be obtained by measuring the time from the maximum point to the minimum point.
  • T amb T SM + ⁇ SM ⁇ (dT SM / dt) (2)
  • T amb ⁇ T amb ⁇ sin ( ⁇ ⁇ t) + A (3)
  • ⁇ T amb Amplitude of temperature change of ambient temperature T amb ⁇ : Angular velocity, value obtained by dividing 2 ⁇ by reciprocal of temperature change period (TM) A: constant.
  • the thermal responses T 1 and T 2 of the support member having the thermal response time constants ⁇ 1 and ⁇ 2 with respect to the temperature change of the ambient temperature T amb are expressed by the following equations (4-1) and (4- 2).
  • T 1 ⁇ T amb (1 + ⁇ 1 2 ⁇ 2 ) ⁇ 1 ⁇ sin ( ⁇ ⁇ t + k 1 ) + B 1 (4-1)
  • T 2 ⁇ T amb (1 + ⁇ 2 2 ⁇ 2 ) ⁇ 1 ⁇ sin ( ⁇ ⁇ t + k 2 ) + B 2 (4-2)
  • K 1 and k 2 represent phase lags
  • B 1 and B 2 are center temperatures of temperature change.
  • ⁇ T [ ⁇ T amb ⁇ ⁇ ( ⁇ 1 ⁇ 2 )] ⁇ (1 + ⁇ 1 2 ⁇ 2 ) ⁇ 1 ⁇ (1 + ⁇ 2 2 ⁇ 2 ) ⁇ 1 ⁇ sin ( ⁇ ⁇ t + ⁇ ) + C (5)
  • the value of ⁇ T is standardized so that the maximum value is “1”. Note that symbols “A” to “O” in FIG. 22 indicate the following temperature change cycle TM.
  • thermoelectric conversion elements and the second thermoelectric conversion elements are essentially arbitrary, and the first row is the first.
  • the material constituting the thermoelectric conversion member can be a well-known material, for example, a bismuth-tellurium-based material (specifically, for example, Bi 2 Te 3 , Bi 2 Te 2.85 Se 0.15 ), bismuth, tellurium and antimony materials, antimony and tellurium materials (specifically, for example, Sb 2 Te 3 ), thallium and tellurium materials, bismuth and selenium materials (specifically, for example, , Bi 2 Se 3 ), lead / tellurium materials, tin / tellurium materials, germanium / tellurium materials, Pb 1-x Sn x Te compounds, bismuth / antimony materials, zinc / antimony materials (specifically, , for example, Zn 4 Sb 3), the cobalt-antimony-based materials (specifically, for example, CoSb 3), iron-cobalt-antimony-based material, silver-antimony-tellurium (Specifically, for example, AgSb 3), iron-cobalt-antimony-based
  • thermoelectric conversion member may deviate from the stoichiometric composition.
  • bismuth / tellurium-based materials and bismuth / tellurium / antimony-based materials are preferably used in combination. More specifically, for example, the materials of the first thermoelectric conversion member, the third thermoelectric conversion member, the first A thermoelectric conversion member, the second A thermoelectric conversion member, the 3A thermoelectric conversion member, and the fourth A thermoelectric conversion member are bismuth, tellurium, Using antimony-based material, bismuth-tellurium-based material as the material of the second thermoelectric conversion member, the fourth thermoelectric conversion member, the 1B thermoelectric conversion member, the 2B thermoelectric conversion member, the 3B thermoelectric conversion member, and the 4B thermoelectric conversion member The form to be used is preferable.
  • thermoelectric conversion member exhibit behavior as a p-type semiconductor
  • the second thermoelectric conversion member, the fourth thermoelectric conversion member, the 1B thermoelectric conversion member, the 2B thermoelectric conversion member, the 3B thermoelectric conversion member, and the 4B thermoelectric conversion member exhibit behavior as an n-type semiconductor.
  • Both of the materials constituting the first thermoelectric conversion member and the second thermoelectric conversion member may have the Seebeck effect, or only one of the materials may have the Seebeck effect.
  • both the materials constituting the third thermoelectric conversion member and the fourth thermoelectric conversion member may have the Seebeck effect, or only one of the materials may have the Seebeck effect.
  • Combination of 1A thermoelectric conversion member and 1B thermoelectric conversion member, combination of 2A thermoelectric conversion member and 2B thermoelectric conversion member, combination of 3A thermoelectric conversion member and 3B thermoelectric conversion member, 4A thermoelectric conversion member The same applies to the combination of the 4B thermoelectric conversion member.
  • thermoelectric conversion member and thermoelectric conversion element Method for manufacturing thermoelectric conversion member and thermoelectric conversion element, method for cutting thermoelectric conversion member and thermoelectric conversion element into desired shape, method for cutting ingot of material constituting thermoelectric conversion member, material for constituting thermoelectric conversion member Examples thereof include a method of etching, a method of forming using a mold, a method of forming a film by a plating method, a combination of a PVD method, a CVD method and a patterning technique, and a lift-off method.
  • fluorine resin epoxy resin, acrylic resin, polycarbonate resin, polypropylene resin, polystyrene resin, polyethylene resin, thermosetting elastomer, thermoplastic elastomer (silicon rubber, ethylene rubber) , Propylene rubber, chloroprene rubber
  • latent heat storage material represented by normal paraffin, chemical heat storage material, vulcanized rubber (natural rubber), glass, ceramics (for example, Al 2 O 3 , MgO, BeO, AlN, SiC, TiO 2, pottery, porcelain), diamond-like carbon (DLC) or carbon-based materials such as graphite, wood, various metals [e.g., copper (Cu), aluminum (Al), silver (Ag), gold (Au) , Chromium (Cr), iron (Fe), magnesium (Mg) Nickel (Ni), Silicon (Si), Tin (Sn), Tantalum (Ta), Titanium (Ti), Tungsten (W), Antimony (Sb
  • the first support member and the second support member may be appropriately selected and combined with these materials.
  • a fin or a heat sink may be attached to the outer surface of the first support member or the second support member, or the outer surface of the first support member or the second support member is roughened or roughened to improve heat exchange efficiency. Improvements may be made.
  • a latent heat storage material is a material that stores, as thermal energy, latent heat exchanged with the outside during phase change or transition of the material.
  • the above-mentioned normal paraffins for example, n-tetradecane, n-pentadecane, n-hexadecane, n-heptadecane, n-octadecane, n-nonadecane, n-icosane, etc.
  • thermoelectric conversion element By using such a latent heat storage material as a heat storage material for the first support member or the second support member, or a part of the first support member or the second support member, a structure having a larger heat capacity can be reduced in volume. Can be realized. Therefore, it is possible to reduce the size and height of the thermoelectric conversion element in the thermoelectric generator. Further, it is difficult to cause a temperature change and can be used as a constituent material of a thermoelectric conversion element that captures a long-period temperature fluctuation.
  • the heat of fusion of an epoxy resin is 2.2 kJ / kg
  • the heat of fusion of a normal paraffin having a melting point at 25 ° C. is, for example, 85 kJ / kg. Therefore, normal paraffin can store about 40 times as much heat as epoxy resin.
  • the chemical heat storage material uses the heat of chemical reaction of the material, and examples thereof include Ca (OH) 2 / CaO 2 + H 2 and Na 2 S + 5H 2 O.
  • thermoelectric conversion member and the second thermoelectric conversion member, the third thermoelectric conversion member and the fourth thermoelectric conversion member, the first thermoelectric conversion element and the second thermoelectric conversion element, and the third thermoelectric conversion element and the fourth thermoelectric conversion element are electrically connected.
  • the electrode can be essentially any material as long as it has electrical conductivity.
  • a titanium layer, a gold layer, and a nickel layer are laminated from the thermoelectric conversion member or thermoelectric conversion element side.
  • An electrode structure can be illustrated. A configuration in which a part of the electrode also serves as the output unit is preferable from the viewpoint of simplification of the structure and configuration of the thermoelectric generator.
  • an electrode can also be comprised from the extension part of a thermoelectric conversion member or a thermoelectric conversion element.
  • thermoelectric generator may be sealed with an appropriate resin, for example.
  • a heat storage means may be arranged on the first support member or the second support member. The space between the thermoelectric conversion member and the thermoelectric conversion member, or between the thermoelectric conversion element and the thermoelectric conversion element may be left as it is, or may be filled with an insulating material.
  • thermoelectric generator and the like according to the present invention can be applied to any technical field in which thermoelectric power generation is performed in an atmosphere where the temperature changes.
  • a sensor network system can be cited as an example of a technical field or a device suitable for incorporating the thermoelectric generator of the present invention.
  • An electronic device, a sensor, Power can be supplied to electronic components all at once.
  • it is highly useful for assisting the operation as an auxiliary power source for a device having a self-power generation function such as an energy harvesting device.
  • a system can be constructed only by adding a frequency control function of temperature change to a conventional temperature control device. Therefore, new capital investment can be suppressed.
  • the present invention can be applied to, for example, book management using an electronic tag (IC tag, a kind of RFID), and an electronic tag attached to each of a plurality of books is indirectly wirelessly transmitted. Can be activated at once or sequentially.
  • IC tag electronic tag
  • BAN Body Area Network
  • WSN Wireless Sensor Network
  • BAN Body Area Network
  • thermoelectric generator in the present invention includes a television receiver, a recording device, an air conditioning device, an electronic book terminal, a game machine, a remote control device for operation of various devices such as a navigation system; various measuring devices ( For example, measuring devices for monitoring soil conditions, measuring devices for monitoring weather and weather); remote monitoring devices and remote sensing devices in remote locations; portable communication devices; watches; bodies or animals, livestock, pets Measuring device for obtaining biological information such as body temperature, blood pressure, pulse, etc.
  • thermoelectric generator according to the present invention is optimally applied to a place where it is difficult to attach the power generator once installed and a place where physical wiring or connection is difficult.
  • it is possible to detect the presence or absence of abnormality by attaching the thermoelectric power generation device or the like according to the present invention to a machine or a building as an electric signal detection device and applying a periodic temperature change to the machine or the building. .
  • an air conditioner As the temperature control device, an air conditioner, a heating wire, a Peltier element, a compressor, a combustor, or a combination thereof can be exemplified.
  • Example 1 relates to a wireless power supply apparatus and a wireless power supply method of the present invention, and specifically relates to a first configuration of the present invention.
  • wireless power supply means that power is supplied without being based on a wire, and does not mean that power is supplied by radio waves.
  • thermoelectric power generation apparatus 10 that performs thermoelectric power generation in response to a temperature change in the atmosphere
  • thermoelectric power generation apparatus 60 that periodically changes the temperature of the atmosphere in which the thermoelectric generator 10 is disposed
  • the wireless power supply method of the first embodiment is a wireless power supply method using a wireless power supply device including the thermoelectric generator 10 and the temperature control device 60,
  • the temperature control device 60 periodically changes the temperature of the atmosphere in which the thermoelectric power generation device 10 is arranged, performs thermoelectric power generation by the thermoelectric power generation device 10 in response to the temperature change of the atmosphere, and outputs the obtained power to the outside. Take out.
  • thermoelectric generator will be described in detail in Examples 4 to 13.
  • thermoelectric power generation apparatus 10 is provided, and the thermal response characteristic of each thermoelectric power generation apparatus 10 is the same.
  • the plurality of thermoelectric generators 10 can simultaneously respond to periodic changes in the ambient temperature by the temperature control device 60, and can simultaneously extract electric power having the same characteristics from the plurality of thermoelectric generators 10 to the outside.
  • thermoelectric generator 10 is connected to an electronic tag (IC tag, a kind of RFID) 70, and the electronic Book management is performed by the tag 70.
  • the electronic tag 70 attached to each of a plurality of books is indirectly operated at a time based on wireless power transmission.
  • thermoelectric generator the temperature change amplitude ( ⁇ T amb ) is set to 2 ° C., and the period (t 0 ) is used as a parameter to double voltage rectify the output from the thermoelectric generator,
  • ⁇ T amb the temperature change amplitude
  • t 0 the period
  • the time on the horizontal axis means the elapsed time.
  • the temperature control device 60 specifically includes a desired temperature change, for example, a temperature change with a period (t 0 ) of 10 minutes and a temperature change amplitude ( ⁇ T amb ) of 2 ° C. It consists of an air conditioner that can give the atmosphere an amplitude ( ⁇ T amb ) of 2 ° C. with a period (t 0 ) of 100 minutes.
  • the temperature control device 60 includes, for example, a frequency control circuit 61, a temperature adjustment device 62, and an output controller 63.
  • thermoelectric power generation circuit 50 includes a thermoelectric power generation device 10, a rectifier 51, a DC / DC boost converter 52, a charge / discharge control circuit 53, and a secondary battery 54.
  • the electric power obtained by the thermoelectric generator 10 is taken out to the outside (outside the thermoelectric generator 10).
  • thermoelectric generator 10 the voltage from the thermoelectric generator 10 is rectified by the rectifier 51, boosted to a desired voltage by the DC / DC boost converter 52, and the secondary battery 54 is charged via the charge / discharge control circuit 53. Then, the electronic tag 70 is driven by the electric power output from the thermoelectric power generation circuit 50.
  • thermoelectric generators 10 can be stacked in parallel and in series, and voltage boosting and current amplification can be performed as appropriate.
  • information specific to the electronic tag 70 (in other words, information specific to the book to which the electronic tag 70 is attached) is transmitted from the electronic tag 70 via radio waves. It is sent to the book management device 71.
  • the book management apparatus 71 confirms the presence of the book to which the electronic tag 70 is attached based on the information unique to the received electronic tag 70. Such confirmation is performed on all books, for example. If the book management device 71 does not receive information specific to the electronic tag 70 attached to the book from the book that should originally exist even after the predetermined time has elapsed, the book management device 71 assumes that the book has been lost. Issues a warning so that the book administrator can recognize that the book has been lost.
  • the amount of charge in the secondary battery 54 is, for example, a sufficient amount of charge to complete the above operation, and the electronic tag 70 cannot be driven after the above operation is completed. The amount of charge may be used.
  • thermoelectric power generation is performed by a thermoelectric generator.
  • the cycle to the pattern and cycle that the thermoelectric generator on the receiving side can efficiently perform thermoelectric generation, That is, power can be generated with high efficiency by designing various parameters of the thermoelectric power generator so that thermoelectric power can be generated efficiently.
  • the thermoelectric generator receives the kind of energy (that is, heat) necessary for power generation and generates power. Indirect power transmission is thus possible.
  • thermoelectric power generation is performed based on the atmosphere in which the thermoelectric power generation device is arranged, temperature change in the atmosphere, and fluctuations in temperature, so remote monitoring and remote sensing at remote locations are possible. It is possible to attach the power generation device in advance to a place where physical wiring or connection is difficult. Furthermore, the degree of freedom in the design and layout of the power generation device can be increased.
  • Example 2 is a modification of Example 1 and specifically relates to the second configuration of the present invention.
  • a plurality of thermoelectric generators 10 are provided, and the thermal response characteristics of each thermoelectric generator 10 are different.
  • the temperature control apparatus 60 changes the temperature of an atmosphere periodically sequentially based on the temperature change corresponding to the thermoelectric power generation apparatus 10 from which a thermal response characteristic differs by the temperature control apparatus 60.
  • the plurality of thermoelectric generators 10 (or each of the thermoelectric generator groups having the same thermal response characteristics) responds to periodic changes in the ambient temperature by the temperature control device 60 over time and individually individually, Electric power having different characteristics can be taken out from a plurality of thermoelectric generators 10 or from a specific thermoelectric generator 10 separately over time.
  • thermoelectric generator 10 is connected to the electronic tag 70, and book management is performed by the electronic tag 70.
  • the electronic tag 70 attached to each of a plurality of books is operated sequentially based on wireless power transmission.
  • the temperature control device 60 composed of an air conditioner has a desired temperature change in the atmosphere, for example, a temperature change with a period (t 0 ) of 10 seconds and a temperature change amplitude ( ⁇ T amb ) of 2 ° C. (for convenience, giving called "temperature change -1") to the atmosphere and then, the period (t 0) in 600 seconds, the amplitude of the temperature change ([Delta] t amb) temperature change of 2 ° C (for convenience, referred to as a "temperature change -2" ) To the atmosphere.
  • some of the thermoelectric generators are designed so as to generate thermoelectric power at temperature change-1 and not to generate thermoelectric power at temperature change-2.
  • the remaining thermoelectric generators are designed so as to generate thermoelectric power at temperature change-2 and not to generate thermoelectric power at temperature change-1. The same applies to Example 3 described later.
  • thermoelectric generator group-1 a part of the plurality of thermoelectric generators (for convenience, referred to as “thermoelectric generator group-1”) in the temperature change ⁇ 1.
  • thermoelectric generator group-2 no power is generated in the remaining thermoelectric generators (referred to as “thermoelectric generator group-2” for convenience). Therefore, the electronic tag 70 to which the thermoelectric generator group-1 is attached is driven, but the electronic tag 70 to which the thermoelectric generator group-2 is attached is not driven.
  • thermoelectric generator group-2 a current of 7 millivolts and 0.25 microamperes is generated in the thermoelectric generator group-2.
  • no power is generated in the thermoelectric generator group-1. Therefore, the electronic tag 70 to which the thermoelectric generator group-2 is attached is driven, but the electronic tag 70 to which the thermoelectric generator group-1 is attached is not driven. In this way, book management can be performed separately for the book group to which the thermoelectric generator group-1 is attached and the book group to which the thermoelectric generator group-2 is attached.
  • the thermoelectric generators can be stacked in parallel or in series, and boosting and current amplification can be performed as appropriate.
  • Example 3 is also a modification of Example 1 and specifically relates to the third configuration of the present invention.
  • a plurality of thermoelectric generators 10 are provided, and each thermoelectric generator 10 has different thermal response characteristics.
  • the plurality of thermoelectric generators 10 respond to the periodic change in the ambient temperature by the temperature control device 60 at the same time and individually individually. At the same time, electric power having various characteristics can be taken out from the thermoelectric power generator 10.
  • thermoelectric generator 10 is connected to the electronic tag 70, and book management is performed by the electronic tag 70. Specifically, the electronic tag 70 attached to each of a plurality of books is operated sequentially based on wireless power transmission.
  • the temperature control device 60 composed of an air conditioner has a desired temperature change in the atmosphere, for example, a temperature change with a period (t 0 ) of 10 seconds and a temperature change amplitude ( ⁇ T amb ) of 2 ° C. ⁇ 1 is given to the atmosphere, and at the same time, a temperature change ⁇ 2 with an amplitude ( ⁇ T amb ) of 2 ° C. is given to the atmosphere at a period (t 0 ) of 600 seconds. That is, in practice, a temperature change is generated by synthesizing temperature change-1 and temperature change-2.
  • thermoelectric generators 10 can be stacked in parallel and in series, and voltage boosting and current amplification can be performed as appropriate.
  • thermoelectric power generation cannot be performed.
  • thermoelectric power generation cannot be performed.
  • the conventional thermoelectric generator is left in a normal living environment, for example, when the thermoelectric generator is left indoors, it is difficult to perform thermoelectric generation.
  • thermoelectric power generation can always be performed by conventional thermoelectric power generation devices
  • the sensing device requires energy, and this energy is generally supplied from a battery or a commercial power source. For this reason, there is a problem that the battery is replaced or charged, and when connected, the usage is restricted.
  • thermoelectric power generation devices As described above, thermoelectric power generation can be performed even when no heat source is present. .
  • Example 4 relates to the thermoelectric power generation apparatus according to the first aspect and the thermoelectric power generation method according to the first aspect.
  • a schematic partial cross-sectional view of the thermoelectric generator of Example 4 is shown in FIG. 4A.
  • ⁇ T T B ⁇ T A
  • V 1-2 change in voltage
  • thermoelectric conversion elements and thermoelectric conversion members are shown, but the numbers of thermoelectric conversion elements and thermoelectric conversion members are not limited to these. .
  • thermoelectric power generator of Example 4 or Example 5 to be described later is (A) the first support member 11, (B) a second support member 12 disposed to face the first support member 11; (C) a thermoelectric conversion element disposed between the first support member 11 and the second support member 12, and (D) the first output unit 41 and the second output unit 42 connected to the thermoelectric conversion element, It has.
  • thermoelectric conversion element in Example 4 or Example 5 described later is: (C-1) first thermoelectric conversion members 21A, 21B disposed between the first support member 11 and the second support member 12, and (C-2) It is arranged between the first support member 11 and the second support member 12 and is made of a material different from the material constituting the first thermoelectric conversion members 21A and 21B. It consists of 2nd thermoelectric conversion members 22A and 22B electrically connected in series with 21B.
  • thermoelectric conversion members 21A and 21B and the second thermoelectric conversion members 22A and 22B are the second support.
  • the second thermoelectric conversion members 22 ⁇ / b> A and 22 ⁇ / b> B and the first thermoelectric conversion members 21 ⁇ / b> A and 21 ⁇ / b> B are provided on the first support member 11.
  • the wirings 31 are electrically connected in series.
  • the first output unit 41 is connected to the end of the first thermoelectric conversion members 21A and 21B on the first support member side
  • the second output unit 42 is the first of the second thermoelectric conversion members 22A and 22B. It is connected to the end on the support member side.
  • the first support member 11 is made of Al 2 O 3 and the second support member 12 is made of an epoxy resin.
  • the first thermoelectric conversion member or the third thermoelectric conversion member, 1A thermoelectric conversion member, 2A thermoelectric conversion member, 3A thermoelectric conversion member, and 4A thermoelectric conversion member, which will be described later, are p-type conductivity type bismuth tellurium antimony
  • the second thermoelectric conversion member or the later-described fourth thermoelectric conversion member, 1B thermoelectric conversion member, 2B thermoelectric conversion member, 3B thermoelectric conversion member, and 4B thermoelectric conversion member are bismuth Composed of tellurium.
  • the first output unit 41, the second output unit 42, and the wirings 31 and 32 are formed from a multilayer structure of a titanium layer, a gold layer, and a nickel layer from the support member side.
  • a known joining technique may be used for joining the thermoelectric conversion member and the wiring.
  • the Seebeck coefficient of the first thermoelectric conversion member and the first thermoelectric conversion element is SB 1
  • the second thermoelectric conversion member and the Seebeck coefficient of the second thermoelectric conversion element are SB 2
  • the third thermoelectric conversion member, and the third thermoelectric conversion element The Seebeck coefficient is SB 3
  • the fourth thermoelectric conversion member and the fourth thermoelectric conversion element are SB 4 . The same applies to Examples 5 to 13 described later.
  • thermoelectric generator of Example 4 the area of the first surface 21A 1 of the first thermoelectric conversion member 21A that is in contact with the first support member 11 is S 11 , and the first thermoelectric conversion is in contact with the second support member 12.
  • the area of the second surface 21A 2 of the member 21A is S 12 (where S 11 > S 12 )
  • the area of the first surface 22A 1 of the second thermoelectric conversion member 22A in contact with the first support member 11 is S 21 , second.
  • the area of the second surface 22A 2 of the second thermoelectric conversion member 22A in contact with the support member 12 is S 22 (where S 21 > S 22 )
  • the thermal response time constant of the first support member 11 is ⁇ SM1 , and the second support.
  • thermoelectric conversion member 21A and the second thermoelectric conversion member 22A have a truncated cone shape, more specifically, a truncated quadrangular pyramid shape.
  • thermoelectric power generator is arranged in an atmosphere in which the temperature changes. And when the temperature of the 2nd supporting member 12 is higher than the temperature of the 1st supporting member 11, it produces
  • an alternating current flows between the first output unit 41 and the second output unit 42, it may be converted into a direct current using a known half-wave rectifier circuit and further smoothed.
  • the first support member 11 is generated due to the temperature difference between the first support member 11 and the second support member 12, and the first thermoelectric conversion member 21 ⁇ / b> A.
  • 21 ⁇ / b> B to the second thermoelectric conversion members 22 ⁇ / b> A, 22 ⁇ / b> B can be extracted to the outside using the second output portion 42 as a positive electrode and the first output portion 41 as a negative electrode.
  • a known full-wave rectifier circuit is used to convert alternating current into direct current, and smoothing may be performed.
  • thermoelectric generator is arranged in an atmosphere in which the temperature changes (in FIG. 4B, the ambient temperature at the time surrounded by the ellipse “A” is T amb ).
  • T B of the second support member 12 when the temperature T B of the second support member 12 is rapidly becomes the ambient temperature T amb or the temperature in the vicinity thereof.
  • the temperature near the first surface 21A 1 of the first thermoelectric conversion member 21A in contact with the first support member 11 is T 11
  • T 12 the temperature in the vicinity of the first surface 22 A 1 of the second thermoelectric conversion member 22 A in contact with the first support member 11 is T 21
  • the simulation result is shown in FIG. Note that in FIG. 21, the curve indicated by "B” indicates the temperature change of the temperature T B of the second support member 12, a curved line indicated by "A", the temperature of the temperature T A of the first support member 11 Showing change.
  • thermoelectric power generation occurs in the thermoelectric conversion element, the first thermoelectric conversion element, or the second thermoelectric conversion element.
  • Example 5 relates to the thermoelectric power generation apparatus according to the second aspect and the thermoelectric power generation method according to the second aspect.
  • a schematic partial cross-sectional view of the thermoelectric generator of Example 5 is shown in FIG. 5A.
  • the first thermoelectric conversion member 21B and the second thermoelectric conversion member 22B have a columnar shape, more specifically, a quadrangular columnar shape.
  • the volume of the first thermoelectric conversion member 21B is VL 1
  • the volume of the second thermoelectric conversion member 22B is VL 2
  • the thermal response time constant of the first support member 11 is ⁇ SM1
  • the thermal response time constant of the second support member 12 is. Is ⁇ SM2 , ⁇ SM1 > ⁇ SM2 VL 1 ⁇ VL 2 (in the fifth embodiment, specifically, VL 1 ⁇ VL 2 ) It is.
  • the atmosphere in which the temperature changes is T amb .
  • the temperature T B of the second support member 12 quickly becomes the ambient temperature T amb or a temperature in the vicinity thereof.
  • the temperature near the first surface 21B 1 of the first thermoelectric conversion member 21B in contact with the first support member 11 is T 11
  • T 12 the temperature in the vicinity of the first surface 22 B 1 of the second thermoelectric conversion member 22 B in contact with the first support member 11 is T 21
  • the temperature in the vicinity of T 22 is VL 1 ⁇ VL 2
  • T 12> T 22> T 11 > T 21 T 12 -T 11 > T 22 -T 21 Are in a relationship.
  • thermoelectric generator having the structure described in the fifth embodiment, via a voltage doubler rectifier circuit and a booster circuit (manufactured by Seiko Instruments Inc .: ultra-low voltage operation charge pump IC S-882Z18 for starting a step-up DC-DC converter) Power was taken out.
  • the atmosphere where the temperature of the thermoelectric generator changes is ⁇ T amb : about 4.5 ° C
  • the temperature change period TM was 15 minutes, and the atmosphere had an air flow of about 1 m / sec. In such an atmosphere, a maximum voltage of 750 millivolts was obtained from the thermoelectric generator.
  • Example 6 relates to the thermoelectric power generation device according to the third aspect and the thermoelectric power generation method according to the third aspect.
  • a schematic partial cross-sectional view of the thermoelectric generator of Example 6 is shown in FIG. 6A.
  • thermoelectric generator of Example 6 is (A) the first support member 11, (B) a second support member 12 disposed to face the first support member 11; (C) the first thermoelectric conversion element 121C disposed between the first support member 11 and the second support member 12; (D) the second thermoelectric conversion element 122C disposed between the first support member 11 and the second support member 12, and (E) the first output unit 141 and the second output unit 142; It has.
  • the first thermoelectric conversion element 121 ⁇ / b> C includes a first A thermoelectric conversion member 121 ⁇ / b > C A that contacts the second support member 12, and a first B thermoelectric conversion member 121 ⁇ / b > C B that contacts the first support member 11.
  • the second thermoelectric conversion element 122C is configured such that the second A thermoelectric conversion member 122C A in contact with the first support member 11 and the second B thermoelectric conversion member 122C B in contact with the second support member 12 are disposed in contact with each other ( Specifically, they are stacked).
  • the first thermoelectric conversion element 121C and the second thermoelectric conversion element 122C are electrically connected in series.
  • the first output unit 141 is connected to the end of the first B thermoelectric conversion member 121CB, and the second output unit 142 is connected to the end of the second A thermoelectric conversion member 122CA.
  • the first A thermoelectric conversion member 121C A and the second B thermoelectric conversion member 122C B are electrically connected by the wiring 32 provided in the second support member 12, and the second A thermoelectric conversion member 122CA and the first B thermoelectric conversion
  • the member 121 ⁇ / b > CB is electrically connected by the wiring 31 provided on the first support member 11.
  • thermoelectric conversion element 121C and the second thermoelectric conversion element 122C are columnar, more specifically, rectangular columnar.
  • thermoelectric power generation method of Example 6 the thermoelectric power generator is placed in an atmosphere where the temperature changes. And when the temperature of the 2nd support member 12 is higher than the temperature of the 1st support member 11, it produces
  • the current flowing from the first thermoelectric conversion element 121C to the first thermoelectric conversion element 121C is taken out by using the first output unit 141 as a positive electrode and the second output unit 142 as a negative electrode. In this case, since an alternating current flows between the first output unit 141 and the second output unit 142, it may be converted into direct current using a known half-wave rectifier circuit and further smoothed.
  • thermoelectric conversion elements 122C when the temperature of the 1st support member 11 is higher than the temperature of the 2nd support member 12, it produces
  • the current flowing from the first thermoelectric conversion element 122C to the second thermoelectric conversion element 122C can be extracted to the outside using the second output unit 142 as a positive electrode and the first output unit 141 as a negative electrode.
  • a known full-wave rectifier circuit may be used to convert alternating current into direct current, and smoothing may be performed.
  • thermoelectric conversion element 121C The temperature in the vicinity of the second surface 121C 2 of the first thermoelectric conversion element 121C in contact with the second support member 12 and the second surface 122C 2 of the second thermoelectric conversion element 122C is T 2, and the first contact with the first support member 11 when the temperature in the vicinity of the first surface 122C 1 of the first surface 121C 1 and the second thermoelectric conversion element 122C of the thermoelectric conversion element 121C was T 1, T 2 > T 1 Are in a relationship.
  • the seventh embodiment is a modification of the sixth embodiment.
  • the first thermoelectric conversion element 121C and the second thermoelectric conversion element 122C were stacked. That is, the first A thermoelectric conversion member 121C A and the first B thermoelectric conversion member 121C B were stacked, and the second A thermoelectric conversion member 122C A and the second B thermoelectric conversion member 122C B were stacked.
  • the first thermoelectric conversion element 221C and the second thermoelectric conversion element 222C are of the horizontal arrangement type.
  • FIG. 7 shows a schematic partial plan view of the thermoelectric power generator of the seventh embodiment.
  • Schematic partial cross-sectional views along DD and arrows EE are shown in FIGS. 8A, 8B, 8C, 8D, and 8E.
  • FIGS. 8A, 8B, 8C, 8D, and 8E in order to clarify the component of a thermoelectric generator, it
  • the first thermoelectric conversion element 221 ⁇ / b> C includes a first A thermoelectric conversion member 221 ⁇ / b > C A in contact with the second support member 212 and a first B thermoelectric conversion member 221 ⁇ / b > C B in contact with the first support member 211. It is arranged in contact with the direction.
  • the second thermoelectric conversion element 222C includes a first 2A thermoelectric conversion member 222C A in contact with the first support member 211, and the 2B thermoelectric conversion member 222C B in contact with the second support member 212 is disposed in contact with the horizontal direction It consists of More specifically, the first A thermoelectric conversion member 221C A and the first B thermoelectric conversion member 221C B are in contact with each other in the horizontal direction via the joining member 213. Similarly, the first 2A thermoelectric conversion member 222C A and the second 2B thermoelectric conversion member 222C B, via a joint member 213, and the end face and the end face are in contact in the horizontal direction.
  • thermoelectric conversion member 222C A is supported by the first support member 211.
  • thermoelectric conversion element 221C and the second thermoelectric conversion element 222C are electrically connected in series.
  • the first output unit 241 is connected to the end of the first B thermoelectric conversion member 221CB
  • the second output unit 242 is connected to the end of the second A thermoelectric conversion member 222CA.
  • the first A thermoelectric conversion member 221C A and the second B thermoelectric conversion member 222C B are electrically connected by the wiring 232 provided on the second support member 212
  • the member 221 ⁇ / b > CB is electrically connected by the wiring 231 provided on the first support member 12.
  • thermoelectric conversion element 221C and the second thermoelectric conversion element 222C have a rectangular parallelepiped shape (flat plate shape).
  • thermoelectric power generator is arranged in an atmosphere where the temperature changes.
  • the second support member 212 is generated due to the temperature difference between the first support member 211 and the second support member 212, and the second thermoelectric conversion element 222C.
  • the current that flows from the first thermoelectric conversion element 221C to the first thermoelectric conversion element 221C is taken out with the first output portion 241 as the positive electrode and the second output portion 242 as the negative electrode.
  • alternating current flows between the first output unit 241 and the second output unit 242 it may be converted into direct current using a known half-wave rectifier circuit and further smoothed.
  • the first support member 211 When the temperature of the first support member 211 is higher than the temperature of the second support member 212, the first support member 211 is generated due to the temperature difference between the first support member 211 and the second support member 212, and the first thermoelectric conversion element 221C.
  • the current flowing from the first thermoelectric conversion element 222C to the second thermoelectric conversion element 222C can be extracted to the outside using the second output unit 242 as a positive electrode and the first output unit 241 as a negative electrode.
  • a known full-wave rectifier circuit may be used to convert alternating current into direct current, and smoothing may be performed.
  • thermoelectric conversion member 221C A and the 2B thermoelectric conversion member 222C B in contact with the second supporting member 212 and T 2
  • thermoelectric contact with the first support member 211 conversion member 221C B and the 2A thermoelectric conversion when the temperature in the vicinity of the member 222C a was T 1
  • T 2 > T 1 Are in a relationship.
  • Example 8 relates to the thermoelectric power generation method according to the 4A mode.
  • a schematic partial cross-sectional view of a thermoelectric generator suitable for use in thermoelectric generation method of Example 8 shown in (A) and (B) in FIG. 9, the temperature of the first support member and (T A) first 2 temperature of the support member (T B ), change in temperature difference between these temperatures ( ⁇ T T B ⁇ T A ), change in voltage V 1-2 between the first output part and the second output part, and FIG. 10 schematically shows a change in the voltage V 3-4 between the third output unit and the fourth output unit.
  • thermoelectric generators of Example 8 or Examples 9 to 10 described later are: (A) the first support member 11, (B) a second support member 12 disposed to face the first support member 11; (C) a first thermoelectric conversion element disposed between the first support member 11 and the second support member 12; (D) a second thermoelectric conversion element disposed between the first support member 11 and the second support member 12, and (E) a first output unit 41, a second output unit 42, a third output unit 43, and a fourth output unit 44;
  • the first thermoelectric conversion element is (C-1) first thermoelectric conversion members 21D, 21E, 21F disposed between the first support member 11 and the second support member 12, and (C-2)
  • the first thermoelectric conversion member which is disposed between the first support member 11 and the second support member 12 and is made of a material different from the material constituting the first thermoelectric conversion members 21D, 21E and 21F.
  • thermoelectric conversion members 22D, 22E, 22F electrically connected in series with 21D, 21E, 21F, Consisting of
  • the second thermoelectric conversion element is (D-1) Third thermoelectric conversion members 23D, 23E, 23F arranged between the first support member 11 and the second support member 12, and (D-2) The third thermoelectric conversion member, which is disposed between the first support member 11 and the second support member 12 and is made of a material different from the material constituting the third thermoelectric conversion members 23D, 23E, and 23F.
  • Fourth thermoelectric conversion members 24D, 24E, 24F electrically connected in series with 23D, 23E, 23F, Consists of.
  • the first output unit 41 is connected to the first thermoelectric conversion members 21D, 21E, and 21F
  • the second output unit 42 is connected to the second thermoelectric conversion members 22D, 22E, and 22F
  • the third output unit. 43 is connected to the 3rd thermoelectric conversion members 23D, 23E, and 23F
  • the 4th output part 44 is connected to 4th thermoelectric conversion members 24D, 24E, and 24F.
  • thermoelectric conversion members 21D, 21E, and 21F and the second thermoelectric conversion members 22D, 22E, and 22F are the same as the second support member 12.
  • the second thermoelectric conversion members 22D, 22E, and 22F and the first thermoelectric conversion members 21D, 21E, and 21F are connected to the first support member 11 by the wiring 31B provided on the first support member 11. They are electrically connected in series by the provided wiring 31A.
  • thermoelectric conversion members 23D, 23E, 23F and the fourth thermoelectric conversion members 24D, 24E, 24F are electrically connected in series by the wiring 32A provided in the first support member 11, and further The fourth thermoelectric conversion members 24D, 24E, 24F and the third thermoelectric conversion members 23D, 23E, 23F are electrically connected in series by the wiring 32B provided on the second support member 12.
  • the first thermoelectric conversion member 21D has a first surface 21D 1 having an area S 11 and a second surface 21D 2 having an area S 12 (where S 11 > S 12 ).
  • first surface 22D 1 of the area S 21 and, the area S 22 (where, S 21> S 22) has a second surface 22D 2 of the third thermoelectric conversion member 23D has a first surface 23D of the area S 31 1 and the second surface 23D 2 having an area S 32 (where S 31 ⁇ S 32 )
  • the fourth thermoelectric conversion member 24D has a first surface 24D 1 having an area S 41 and an area S 42 ( However, having a second surface 24D 2 of S 41 ⁇ S 42).
  • the first surfaces 21D 1 and 22D 1 of the first thermoelectric conversion member 21D and the second thermoelectric conversion member 22D are in contact with the first support member 11, and the first surfaces of the first thermoelectric conversion member 21D and the second thermoelectric conversion member 22D.
  • the two surfaces 21D 2 and 22D 2 are in contact with the second support member 12, and the first surfaces 23D 1 and 24D 1 of the third thermoelectric conversion member 23D and the fourth thermoelectric conversion member 24D are in contact with the first support member 11.
  • the second surfaces 23D 2 and 24D 2 of the third thermoelectric conversion member 23D and the fourth thermoelectric conversion member 24D are in contact with the second support member 12.
  • the first thermoelectric conversion member 21D, the second thermoelectric conversion member 22D, the third thermoelectric conversion member 23D, and the fourth thermoelectric conversion member 24D have a truncated cone shape, more specifically, a truncated quadrangular pyramid shape.
  • the first to fourth thermoelectric conversion members in the thermoelectric power generation apparatus of Example 9 described later are the same as the first to fourth thermoelectric conversion members in the thermoelectric power generation apparatus of Example 8 described above. It has the composition of.
  • the 1st output part 41 is connected to the edge part by the side of the 1st support member of the 1st thermoelectric conversion member 21D
  • the 2nd output part 42 is the 1st support member side of the 2nd thermoelectric conversion member 22D
  • the third output portion 43 is connected to the second support member side end of the third thermoelectric conversion member 23D
  • the fourth output portion 44 is the fourth thermoelectric conversion member 24D. Is connected to the end of the second support member. That is, the first output unit 41 and the second output unit 42, and the third output unit 43 and the fourth output unit 44 are disposed on different support members.
  • thermoelectric power generation method of Example 8 the thermoelectric power generator is placed in an atmosphere where the temperature changes. And when the temperature of the 2nd support member 12 is higher than the temperature of the 1st support member 11, it produces
  • the current flowing from the first thermoelectric conversion member 21D to the first thermoelectric conversion member 21D is taken out to the outside using the first output unit 41 as a positive electrode and the second output unit 42 as a negative electrode.
  • thermoelectric conversion member 24D When the temperature of the 1st support member 11 is higher than the temperature of the 2nd support member 12, it produces
  • To the third thermoelectric conversion member 23D is taken out to the outside using the third output portion 43 as a positive electrode and the fourth output portion 44 as a negative electrode.
  • an alternating current flows between the first output unit 41 and the second output unit 42, and an alternating current flows between the third output unit 43 and the fourth output unit 44. May be converted to direct current using the above and further smoothed.
  • AC may be converted into DC using the circuit shown in FIG. 20A, and smoothing may be performed.
  • the rectifier circuit shown in FIG. 20A or 20B can be applied to other embodiments.
  • the first output unit 41 is the positive electrode
  • the second output unit 42 is the negative electrode
  • the phase of the voltage extracted to the outside referred to as “phase-1” for convenience
  • the third output unit 43 is the positive electrode
  • the fourth output With the unit 44 as a negative electrode, the phase of the voltage extracted to the outside (referred to as “phase-2” for convenience) is approximately 180 degrees off. That is, phase-1 and phase-2 are in an antiphase or almost antiphase relationship.
  • thermoelectric conversion member 22D When the temperature of the first support member 11 is higher than the temperature of the second support member 12, the first support member 11 is generated due to a temperature difference between the first support member 11 and the second support member 12, and the first thermoelectric conversion member 21D 2
  • the current flowing to the thermoelectric conversion member 22D can be taken out by using the second output part 42 as a positive electrode and the first output part 41 as a negative electrode.
  • the current flowing from the third thermoelectric conversion member 23D to the fourth thermoelectric conversion member 24D 3 The output part 43 can be taken out as a negative electrode.
  • a full wave rectifier circuit may be used to convert alternating current into direct current, and smoothing may be performed.
  • Example 9 relates to the thermoelectric power generation device according to the fourth aspect and the thermoelectric power generation method according to the fourth aspect.
  • Typical partial cross-sectional views of the thermoelectric generator of Example 9 are shown in FIGS. 11A and 11B, and the temperature (T A ) of the first support member and the temperature (T B ) of the second support member.
  • a change in temperature difference between these temperatures ( ⁇ T T B ⁇ T A ), a change in voltage V 1-2 between the first output unit and the second output unit, and a third output unit and a fourth output
  • FIG. 12 schematically shows a change in the voltage V 3-4 with respect to the part.
  • the first output unit 41 is connected to the end portion on the first support member side of the first thermoelectric conversion member 21E.
  • the second output portion 42 is connected to the end portion of the second thermoelectric conversion member 22E on the first support member side.
  • the third output portion 43 is connected to the end portion on the first support member side of the third thermoelectric conversion member 23E, and the fourth output portion 44 is on the first support member side of the fourth thermoelectric conversion member 24E. Connected to the end. That is, the 1st output part 41 and the 2nd output part 42, and the 3rd output part 43 and the 4th output part 44 are arranged on the same support member.
  • Example 9 the thermal response time constant of the first support member 11 is ⁇ SM1 , the thermal response time constant of the second support member 12 is ⁇ SM2 , and the thermal response time constant of the first thermoelectric conversion element is ⁇
  • the thermal response time constant of TE1 and the second thermoelectric conversion element is ⁇ TE2
  • thermoelectric power generation device In the thermoelectric power generation method of Example 9, the thermoelectric power generation device is arranged in an atmosphere where the temperature changes. And when the temperature of the 2nd support member 12 is higher than the temperature of the 1st support member 11, it produces
  • alternating current flows between the first output unit 41 and the second output unit 42, and alternating current flows between the third output unit 43 and the fourth output unit 44.
  • FIG. The full wave rectifier circuit shown in C) may be used to convert alternating current into direct current, and smoothing may be performed.
  • the full-wave rectifier circuit shown in FIG. 20C can be applied to other embodiments.
  • the first output unit 41 is a positive electrode
  • the second output unit 42 is a negative electrode
  • the third output unit 43 is a positive electrode
  • the fourth output unit 44 is a negative electrode, which is extracted to the outside.
  • the phase of the applied voltage is shifted by more than 0 degrees and less than 180 degrees.
  • the tenth embodiment is a modification of the ninth embodiment.
  • thermoelectric power generation device of Example 9 the shapes of the first thermoelectric conversion member 21E, the second thermoelectric conversion member 22E, the third thermoelectric conversion member 23E, and the fourth thermoelectric conversion member 24E were truncated quadrangular pyramid shapes.
  • the shape of the first thermoelectric conversion member 21F, the second thermoelectric conversion member 22F, the third thermoelectric conversion member 23F, and the fourth thermoelectric conversion member 24F is a quadrangular prism shape. did.
  • the volume of the first thermoelectric conversion member 21 is VL 1
  • the volume of the second thermoelectric conversion member 22 is VL 2
  • the volume of the third thermoelectric conversion member 23 is VL 3
  • the volume of the fourth thermoelectric conversion member 24 is VL 4.
  • thermoelectric power generation apparatus and thermoelectric power generation method of Example 10 can be the same as the thermoelectric power generation apparatus and thermoelectric power generation method of Example 9, and thus detailed description thereof is omitted.
  • Example 11 relates to the thermoelectric power generation method according to the 5A aspect.
  • a schematic partial cross-sectional view of a thermoelectric generator suitable for use in thermoelectric generation method of Example 11 shown in (A) and (B) in FIG. 15, the temperature of the first support member and (T A) first 2 temperature of the support member (T B ), change in temperature difference between these temperatures ( ⁇ T T B ⁇ T A ), change in voltage V 1-2 between the first output part and the second output part, and FIG. 16 schematically shows changes in the voltage V 3-4 between the third output unit and the fourth output unit.
  • thermoelectric generators in Example 11 or Examples 12 to 13 described later are: (A) the first support member 11, (B) a second support member 12 disposed to face the first support member 11; (C) the first thermoelectric conversion elements 121G, 121H, 121J disposed between the first support member 11 and the second support member 12; (D) second thermoelectric conversion elements 122G, 122H, 122J disposed between the first support member 11 and the second support member 12, (E) Third thermoelectric conversion elements 123G, 123H, 123J disposed between the first support member 11 and the second support member 12; (F) fourth thermoelectric conversion elements 124G, 124H, 124J disposed between the first support member 11 and the second support member 12, and (G) the first output unit 141, the second output unit 142, the third output unit 143, and the fourth output unit 144; With The first thermoelectric conversion element 121G, 121H, 121J is a 1A thermoelectric conversion member 121G A in contact with the second support member 12, 121HG A
  • the first thermoelectric conversion elements 121G, 121H, 121J and the second thermoelectric conversion elements 122G, 122H, 122J are electrically connected in series, and the third thermoelectric conversion elements 123G, 123H, 123J and the fourth thermoelectric conversion are connected.
  • the elements 124G, 124H, and 124J are electrically connected in series.
  • the first output unit 141 is connected to the first thermoelectric conversion elements 121G, 121H, and 121J.
  • the second output unit 142 is connected to the second thermoelectric conversion elements 122G, 122H, and 122J, and the third output unit.
  • thermoelectric conversion elements 123G, 123H, and 123J is connected to the third thermoelectric conversion elements 123G, 123H, and 123J
  • fourth output unit 144 is connected to the fourth thermoelectric conversion elements 124G, 124H, and 124J. That is, the first output unit 141 and the second output unit 142, and the third output unit 143 and the fourth output unit 144 are arranged on different support members.
  • Example 11 the first output unit 141 is connected to the end of the first B thermoelectric conversion member 121GB, and the second output unit 142 is connected to the second A thermoelectric conversion member 122GA. is connected to an end portion, the third output portion 143 is connected to an end portion of the 3A thermoelectric conversion member 123G a, the fourth output portion 144 is connected to the end of the 4B thermoelectric conversion member 124G B Yes.
  • thermoelectric conversion member 121G A and second 2B thermoelectric conversion member 122G B are electrically connected by a wiring 31B provided on the second support member 12, the 2A thermoelectric conversion member 122G A
  • the first 1B thermoelectric conversion member 121G B are electrically connected by a wiring 31A provided on the first support member 11, the second 3A thermoelectric conversion member 123G a and 4B in thermoelectric conversion member 124G B, the are electrically connected by a wiring 32B provided on the second support member 12, and the 4A thermoelectric conversion member 124G a and Part 3B thermoelectric conversion member 123G B, electricity by wires 32A provided on the first support member 11 Connected.
  • thermoelectric conversion element 121G, the second thermoelectric conversion element 122G, the third thermoelectric conversion element 123G, and the fourth thermoelectric conversion element 124G have a columnar shape, more specifically, a quadrangular columnar shape.
  • thermoelectric power generation method of Example 11 the thermoelectric power generator is placed in an atmosphere where the temperature changes. And when the temperature of the 2nd support member 12 is higher than the temperature of the 1st support member 11, it produces
  • the current flowing from the first thermoelectric conversion element 121G to the first thermoelectric conversion element 121G is extracted to the outside using the first output unit 141 as a positive electrode and the second output unit 142 as a negative electrode.
  • thermoelectric conversion element 124G is taken out to the outside using the fourth output portion 144 as a positive electrode and the third output portion 143 as a negative electrode.
  • alternating current flows between the first output unit 141 and the second output unit 142, and alternating current flows between the third output unit 143 and the fourth output unit 144. May be converted to direct current using the above and further smoothed.
  • the first output element 141 is the positive electrode
  • the second output part 142 is the negative electrode
  • the fourth output part 144 is the positive electrode
  • the third output part 143 is the negative electrode
  • the phase of the extracted voltage is approximately 180 degrees out of phase-2. That is, phase-1 and phase-2 are in an antiphase or almost antiphase relationship.
  • thermoelectric conversion element 121G When the temperature of the first support member 11 is higher than the temperature of the second support member 12, the first support member 11 is generated due to the temperature difference between the first support member 11 and the second support member 12, and the first thermoelectric conversion element 121G The current flowing to the two thermoelectric conversion elements 122G can be taken out by using the second output portion 142 as a positive electrode and the first output portion 141 as a negative electrode. Further, when the temperature of the second support member 12 is higher than the temperature of the first support member 11, the current flowing from the fourth thermoelectric conversion element 124G to the third thermoelectric conversion element 123G is supplied to the third output unit 143 as the positive electrode, 4 output part 144 can be taken out as a negative electrode. In this case, a known full-wave rectifier circuit may be used to convert alternating current into direct current, and smoothing may be performed. The above discussion can also be applied to Examples 12 to 13 described later.
  • thermoelectric generator when ⁇ SM1 > ⁇ SM2 , if the thermoelectric generator is arranged in an atmosphere in which the temperature changes (in FIG. 16, the ambient temperature at the time surrounded by the ellipse “A” is T amb ), temperature T B of the support member 12 is rapidly becomes the ambient temperature T amb or the temperature in the vicinity thereof.
  • Example 12 relates to the thermoelectric power generation device according to the fifth aspect and the thermoelectric power generation method according to the fifth aspect.
  • FIG. 18 schematically shows a change in the voltage V 3-4 with respect to the part.
  • the first output unit 141 is connected to the ends of the first B thermoelectric conversion members 121H B and 121J B
  • the second output unit 142 is the second A thermoelectric conversion member.
  • 122H a is connected to the end portion of 122J a
  • the third output portion 143 the 3B thermoelectric conversion member 123H B is connected to the end portion of the 123J B
  • the fourth output portion 144 first 4A thermoelectric conversion member 124H a is connected to the end of 124J a. That is, the first output unit 141 and the second output unit 142, and the third output unit 143 and the fourth output unit 144 are disposed on the same support member.
  • thermoelectric conversion member 121H A, 121J A and the 2B thermoelectric conversion member 122H B, the 122J B are electrically connected by a wiring 31B provided on the second support member 12, the 1B thermoelectric conversion member 121H B, 121J B and the 2A thermoelectric conversion member 122H a, and 122J a, are electrically connected by a wiring 31A provided on the first support member 11, the 3A thermoelectric conversion member 123H a, and 123J a second 4B thermoelectric conversion member 124H B, the 124J B, are electrically connected by a wiring 32B provided on the second support member 12, the 3B thermoelectric conversion member 123H B, 123J B and the 4A thermoelectric conversion member 124H a , 124J A are electrically connected by a wiring 32A provided on the first support member 11.
  • the thermal response time constant of the first support member 11 is ⁇ SM1
  • the thermal response time constant of the second support member 12 is ⁇ SM2
  • the thermal response time constants of the first thermoelectric conversion elements 121H and 121J are ⁇ TE1
  • the thermal response time constant of the thermoelectric conversion elements 122H and 122J is ⁇ TE2
  • the thermal response time constant of the third thermoelectric conversion elements 123H and 123J is ⁇ TE3
  • the thermal response time constant of the fourth thermoelectric conversion elements 124H and 124J is ⁇ TE4 .
  • the volume of the first thermoelectric conversion element 121H is VL 1
  • the volume of the second thermoelectric conversion element 122H is VL 2
  • the volume of the third thermoelectric conversion element 123H is VL 3
  • the first thermoelectric conversion element 121H, the second thermoelectric conversion element 122H, the third thermoelectric conversion element 123H, and the fourth thermoelectric conversion element 124H have a column shape, more specifically, a quadrangular column shape.
  • thermoelectric power generator is arranged in an atmosphere where the temperature changes. And when the temperature of the 2nd support member 12 is higher than the temperature of the 1st support member 11, it produces
  • the current flowing from the first thermoelectric conversion element 121H to the first thermoelectric conversion element 121H is taken out with the first output portion 141 as the positive electrode and the second output portion 142 as the negative electrode.
  • the third output portion 143 is taken out as a positive electrode and the fourth output portion 144 is taken out as a negative electrode.
  • alternating current flows between the first output unit 141 and the second output unit 142, and alternating current flows between the third output unit 143 and the fourth output unit 144.
  • the first output unit 141 is a positive electrode
  • the second output unit 142 is a negative electrode
  • the third output unit 143 is a positive electrode
  • the fourth output unit 144 is a negative electrode, and is extracted to the outside.
  • the phase of the applied voltage is shifted by more than 0 degrees and less than 180 degrees.
  • thermoelectric generator when ⁇ SM1 > ⁇ SM2 , if the thermoelectric generator is arranged in an atmosphere in which the temperature changes (in FIG. 18, the ambient temperature at the time surrounded by the ellipse “A” is T amb ), temperature T B of the support member 12 is rapidly becomes the ambient temperature T amb or the temperature in the vicinity thereof.
  • thermoelectric conversion member 121H A The temperature in the vicinity of the second surface 121H 2 of the first A thermoelectric conversion member 121H A in contact with the second support member 12 and the second surface 122H 2 of the second B thermoelectric conversion member 122H B is T 2 , and the first surface in contact with the first support member 11 1A thermoelectric conversion member 121H first surface 121H 1 and the 2B thermoelectric a converter member 122H T 1 the temperature in the vicinity of the first surface 122H 1 B, of the 3A thermoelectric conversion member 123H a in contact with the second support member 12 the the temperature of the second surface near the 124H 2 of two surfaces 123H 2 and the 4B thermoelectric conversion member 124H B T 4, the first surface 123H 1 and the 4B thermoelectric of the 3A thermoelectric conversion member 123H a in contact with the first support member 11
  • T 2 > T 1 T 4 > T 3 Are in a relationship.
  • Example 13 is a modification of Example 12.
  • 19A and 19B are schematic partial cross-sectional views of the thermoelectric power generator of Example 13.
  • FIG. 1 is a modification of Example 12.
  • thermoelectric power generation device of Example 12 the shapes of the first thermoelectric conversion element 121H, the second thermoelectric conversion element 122H, the third thermoelectric conversion element 123H, and the fourth thermoelectric conversion element 124H were formed in a quadrangular prism shape.
  • thermoelectric generator of Example 13 the shapes of the first thermoelectric conversion element 121J, the second thermoelectric conversion element 122J, the third thermoelectric conversion element 123J, and the fourth thermoelectric conversion element 124J are truncated.
  • the shape was a pyramid.
  • the area of the portion (second surface 121J 2 ) of the first A thermoelectric conversion member 121J A in contact with the second support member 12 is S 12
  • the portion of the second B thermoelectric conversion member 122J B in contact with the second support member 12 The area of (second surface 122J 2 ) is S 22
  • the area of the portion (first surface 121J 11 ) of the first B thermoelectric conversion member 121J B in contact with the first support member 11 is S 11
  • the area of the first support member 11 is in contact with the first support member 11.
  • thermoelectric conversion member 122J a portion (first surface 122J 1) the area of S 21, the second part of the 3A thermoelectric conversion member 123J a in contact with the supporting member 12 (second surface 123J 2) the area of S 32,
  • the area of the portion (second surface 124J 2 ) of the 4B thermoelectric conversion member 124J B in contact with the second support member 12 is S 42
  • the portion of the third B thermoelectric conversion member 123J B first surface 123J in contact with the first support member 11).
  • thermoelectric power generation apparatus and the thermoelectric power generation method of Example 13 can be the same as the thermoelectric power generation apparatus and the thermoelectric power generation method of Example 12, and thus detailed description thereof is omitted.
  • thermoelectric generators described in Examples 4 to 13 can also be applied using the various thermoelectric generators described in Examples 4 to 13 as electrical signal detection devices.
  • the thermoelectric generators described in the fourth to thirteenth embodiments are arranged in an atmosphere where the temperature changes. And by detecting the temperature change of the atmosphere as a specific change, the thermoelectric power generation is generated in the thermoelectric power generation device in response to the temperature change, and the electric signal is detected using the temperature change as a kind of trigger. Can do.
  • a plurality of sensors such as a sensor network system are arranged, not all of the sensors are calibrated one by one based on the detection of such an electric signal, but all at once. It is possible to construct a system that calibrates some sensors or some sensors.
  • the fourteenth embodiment not only the collective power supply and power generation are indirectly performed, but also the device can be calibrated in a batch.
  • application to specifying the position of a specific article, specifically, for example, attaching to a key, a mobile phone, or the like so that these can be easily found becomes possible.
  • the thermal response time constant ⁇ is the density ⁇ , the specific heat c, the heat transfer coefficient h, the volume VL of the support member, the thermoelectric conversion element, and the thermoelectric conversion member. Since it is determined by the area S, in order to obtain desired information (electrical signal), these may be selected appropriately. As a result, for example, an electric signal detection device in which thermoelectric generators having a plurality of thermal response time constants ⁇ are combined can be obtained, a thermal response difference with respect to a temperature change occurs, and a plurality of electric signals are output from the electric signal detection device. As a result, a plurality of pieces of information can be obtained from one electric signal detection device.
  • FIG. 20D A conceptual diagram showing an example of an application example of the thermoelectric generator is shown in FIG. 20D.
  • the sensor is supplied with electric power from the thermoelectric generator, and the sensor control device A / Power is also supplied from the thermoelectric generator to the D converter, transmitter, and timer. Then, by the operation of the timer, the value from the sensor is sent to the A / D converter at predetermined time intervals, and is sent to the outside as data by the transmitting device.
  • the sensor also receives an electrical signal from the thermoelectric generator and calibrates it.
  • the first support member 11 when the temperature of the second support member 12 is higher than the temperature of the first support member 11, the first support member 11.
  • the first output unit 41 is generated as a result of a temperature difference between the first and second support members 12 and flows from the second thermoelectric conversion members 22A and 22B to the first thermoelectric conversion members 21A and 21B as an electrical signal.
  • the positive electrode (positive electrode) and the second output part 42 are taken out as the negative electrode (negative electrode).
  • Example 4 the current flowing from the second thermoelectric conversion members 22A and 22B to the first thermoelectric conversion members 21A and 21B was used as an energy source.
  • Example 14 the current flowing from the second thermoelectric conversion members 22A and 22B to the first thermoelectric conversion members 21A and 21B is used as an electrical signal, that is, as an electrical signal including information. Then, one or more types of electrical signals are obtained from this electrical signal. If necessary, the obtained electrical signal may be passed through a band pass filter, a low pass filter, or a high pass filter. The same applies to the following description.
  • the thermoelectric generator is arranged in an atmosphere where the temperature changes, as in the fifth embodiment.
  • the temperature of the second support member 12 is higher than the temperature of the first support member 11, the temperature is caused by the temperature difference between the first support member 11 and the second support member 12.
  • the first output unit 41 is a positive electrode (positive electrode) and the second output unit 42 is a negative electrode.
  • the electric current is generated from the second thermoelectric conversion members 22A and 22B and flows from the first thermoelectric conversion members 21A and 21B to an electric signal. Take out as (minus pole).
  • the thermoelectric generator is arranged in an atmosphere where the temperature changes, as in the sixth to seventh embodiments.
  • the first support members 11 and 211 and the second support members The first output units 141, 241 are generated as a result of the temperature difference between the support members 12, 212 and flow from the second thermoelectric conversion elements 122C, 222C to the first thermoelectric conversion elements 121C, 221C as electrical signals. Is taken out as a positive electrode and the second output parts 142 and 242 as a negative electrode.
  • thermoelectric generator is arranged in the atmosphere where the temperature changes,
  • the second support member is generated due to a temperature difference between the first support member and the second support member, and from the second thermoelectric conversion member to the first thermoelectric conversion member.
  • the first output part is taken as a positive electrode and the second output part is taken as a negative electrode as an electric signal (electric signal detection method according to the first aspect or the second aspect), or second
  • the current flowing from the thermoelectric conversion element to the first thermoelectric conversion element is taken out as an electrical signal, with the first output unit as the positive electrode and the second output unit as the negative electrode (electric signal detection method according to the third aspect),
  • One or more types of electrical signals are obtained from the electrical signals.
  • thermoelectric generator is arranged in an atmosphere where the temperature changes, as in the eighth embodiment.
  • the temperature of the second support member 12 is higher than the temperature of the first support member 11, the temperature is caused by the temperature difference between the first support member 11 and the second support member 12.
  • the current flowing from the second thermoelectric conversion member 22D to the first thermoelectric conversion member 21D is taken out as an electrical signal, using the first output unit 41 as the positive electrode and the second output unit 42 as the negative electrode.
  • thermoelectric conversion member 24D when the temperature of the 1st support member 11 is higher than the temperature of the 2nd support member 12, it produces
  • the current flowing from the first to the third thermoelectric conversion member 23D is taken out as an electrical signal, using the third output unit 43 as a positive electrode and the fourth output unit 44 as a negative electrode.
  • thermoelectric generator is placed in an atmosphere where the temperature changes.
  • the second support member is generated due to a temperature difference between the first support member and the second support member, and from the second thermoelectric conversion member to the first thermoelectric conversion member.
  • the current flowing out as an electrical signal with the first output part as the positive electrode and the second output part as the negative electrode.
  • the first support member is generated due to a temperature difference between the first support member and the second support member, and from the fourth thermoelectric conversion member to the third thermoelectric conversion member.
  • the electric current is taken out as an electrical signal
  • the third output part is taken out as the positive electrode
  • the fourth output part is taken out as the negative electrode
  • One or more types of electrical signals are obtained from the electrical signals.
  • the thermoelectric generator is arranged in an atmosphere where the temperature changes, as in the ninth to tenth embodiments.
  • the temperatures of the first support member 11 and the second support member 12 are the same.
  • the first output unit 41 is the positive electrode and the second output unit 42 is the negative electrode, with the current generated from the difference and flowing from the second thermoelectric conversion member 22E, 22F to the first thermoelectric conversion member 21E, 21F as an electrical signal.
  • the third output unit 43 as a positive electrode and the fourth output unit 44 as a negative electrode, with the current flowing from the fourth thermoelectric conversion members 24E and 24F to the third thermoelectric conversion members 23E and 23F as an electrical signal. And take it out.
  • the electrical signal detection method when the temperature of the second support member is higher than the temperature of the first support member, it is caused by the temperature difference between the first support member and the second support member. And the current flowing from the second thermoelectric conversion member to the first thermoelectric conversion member is taken out with the first output portion as the positive electrode and the second output portion as the negative electrode, and the temperature of the first support member is the second When the temperature of the support member is higher than the temperature of the support member, the current generated from the temperature difference between the first support member and the second support member and flowing from the fourth thermoelectric conversion member to the third thermoelectric conversion member is supplied to the third output unit.
  • the positive electrode and the fourth output part as the negative electrode When the temperature of the second support member is higher than the temperature of the first support member, the second support member is generated due to a temperature difference between the first support member and the second support member, and from the second thermoelectric conversion member to the first thermoelectric conversion member.
  • the electrical signal As the electrical signal, the first output part as the positive electrode and the second output part as the negative electrode, and the current flowing out from the fourth thermoelectric conversion member to the third thermoelectric conversion member as the electrical signal , Taking the third output part as a positive electrode and the fourth output part as a negative electrode, One or more types of electrical signals are obtained from the electrical signals.
  • thermoelectric generator is arranged in an atmosphere where the temperature changes, as in the eleventh embodiment. Then, substantially in the same manner as in Example 11, when the temperature of the second support member 12 is higher than the temperature of the first support member 11, it is caused by the temperature difference between the first support member 11 and the second support member 12. And the current flowing from the second thermoelectric conversion element 122G to the first thermoelectric conversion element 121G is taken out as an electrical signal, using the first output unit 141 as a positive electrode and the second output unit 142 as a negative electrode.
  • thermoelectric conversion element 123G when the temperature of the first support member 11 is higher than the temperature of the second support member 12, it is generated due to the temperature difference between the first support member 11 and the second support member 12, and the third thermoelectric conversion element 123G.
  • the current flowing from the first to the fourth thermoelectric conversion element 124G is taken out as an electrical signal, with the fourth output 144 as the positive electrode and the third output 143 as the negative.
  • thermoelectric generator is placed in an atmosphere where the temperature changes.
  • the second support member is generated due to a temperature difference between the first support member and the second support member, and from the second thermoelectric conversion element to the first thermoelectric conversion element.
  • the current flowing out as an electrical signal with the first output part as the positive electrode and the second output part as the negative electrode
  • the first support member is generated due to a temperature difference between the first support member and the second support member, and from the third thermoelectric conversion element to the fourth thermoelectric conversion element.
  • the current flowing out as an electric signal, the fourth output part as a positive electrode and the third output part as a negative electrode One or more types of electrical signals are obtained from the electrical signals.
  • the thermoelectric generator is arranged in an atmosphere in which the temperature changes, as in Examples 12 to 13.
  • the first output unit 141 is a positive electrode and the second output unit 142 is a negative electrode.
  • the current generated from the difference and flowing from the second thermoelectric conversion elements 122H and 122J to the first thermoelectric conversion elements 121H and 121J is an electrical signal.
  • the third output unit 143 is used as a positive electrode, and the fourth output unit 144 is used as a negative electrode.
  • the current that flows from the fourth thermoelectric conversion elements 124H and 124J to the third thermoelectric conversion elements 123H and 123J is an electrical signal. And take it out.
  • the electrical signal detection method when the temperature of the second support member is higher than the temperature of the first support member, it is caused by the temperature difference between the first support member and the second support member. And the current flowing from the second thermoelectric conversion element to the first thermoelectric conversion element is taken out with the first output portion as the positive electrode and the second output portion as the negative electrode, and the temperature of the first support member is the second When the temperature of the support member is higher than the temperature of the support member, the current generated from the temperature difference between the first support member and the second support member and flowing from the third thermoelectric conversion element to the fourth thermoelectric conversion element is supplied to the fourth output unit.
  • the positive electrode and the third output part as the negative electrode When the temperature of the second support member is higher than the temperature of the first support member, the second support member is generated due to a temperature difference between the first support member and the second support member, and from the second thermoelectric conversion element to the first thermoelectric conversion element.
  • the electrical signal As the electrical signal, the first output part as the positive electrode, the second output part as the negative electrode, and the current flowing out from the fourth thermoelectric conversion element to the third thermoelectric conversion element as the electric signal , Taking the third output part as the positive electrode and the fourth output part as the negative electrode, One or more types of electrical signals are obtained from the electrical signals.
  • the electric signal detection apparatus described above includes at least two thermoelectric power generation apparatuses according to the first to fifth aspects, and a mode for obtaining the current obtained from each thermoelectric power generation apparatus as an electric signal.
  • the electrical signal detector is (01) At least one thermoelectric power generation device according to the first aspect and at least one thermoelectric power generation device according to the second aspect (02) At least one thermoelectric power generation device according to the first aspect (3) At least one thermoelectric power generation device according to the first aspect and at least one thermoelectric power generation device according to the fourth aspect.
  • thermoelectric power generation apparatus At least one thermoelectric power generation device according to the first aspect and at least one thermoelectric power generator according to the fifth aspect (05) At least the thermoelectric power generator according to the second aspect One, at least one thermoelectric power generator according to the third aspect (06) At least one thermoelectric power generator according to the second aspect and at least one thermoelectric power generator according to the fourth aspect Have Form (07) At least one thermoelectric power generation apparatus according to the second aspect and at least one thermoelectric power generation apparatus according to the fifth aspect (08) At least one thermoelectric power generation apparatus according to the third aspect First, at least one thermoelectric power generation device according to the fourth aspect (09) At least one thermoelectric power generation device according to the third aspect and at least one thermoelectric power generation device according to the fifth aspect (10) There can be mentioned 10 types of forms including at least one thermoelectric generator according to the fourth aspect and at least one thermoelectric generator according to the fifth aspect.
  • thermoelectric generators 10 types of combinations in which three types, for example, three thermoelectric generators are selected from the thermoelectric generators according to the first aspect, the second aspect, the third aspect, the fourth aspect, and the fifth aspect), 4 Kind, for example, four thermoelectric generation
  • one kind or plural kinds of electrical signals are obtained from one kind of electrical signal.
  • one or more types of electrical signals are obtained by one electrical signal detection device.
  • the electrical signal detection device itself also serves as a power generation device. Therefore, the electrical signal detection device can be reduced in size and simplified, and monitoring can be performed at all times. Furthermore, it is possible to reduce the power consumption of the entire system.
  • thermoelectric generator in the examples, various materials used in the examples, sizes, and the like are examples and can be changed as appropriate.
  • the capacitor or the secondary battery functions as a kind of filter.
  • the current value output from the secondary battery can be defined.
  • thermoelectric conversion member For example, a first thermoelectric conversion member, a third thermoelectric conversion member, a first A thermoelectric conversion member, a second A thermoelectric conversion member, a third A thermoelectric conversion member, and a fourth A thermoelectric conversion member are converted into bismuth tellurium antimony having a p-type conductivity type.
  • thermoelectric conversion member instead consist, Mg 2 Si, SrTiO 3, MnSi 2, Si-Ge -based material, ⁇ -FeSi 2, PbTe based materials, ZnSb based material, CoSb based material, Si-based materials, clathrate compounds, NaCo 2 O 4 , Ca 3 Co 4 O 9 , chromel alloy, and the like, a second thermoelectric conversion member, a fourth thermoelectric conversion member, a first B thermoelectric conversion member, a second B thermoelectric conversion member, a third B thermoelectric conversion member, and Instead of forming the 4B thermoelectric conversion member from bismuth tellurium having n-type conductivity, Mg 2 Si, SrTiO 3 , MnSi 2 , Si—Ge based material, ⁇ -FeSi 2 , A PbTe-based material, a ZnSb-based material, a CoSb-based material, a Si-based material, a clathrate compound, constantan, an alu
  • thermoelectric conversion element of Example 13 can be applied to the thermoelectric conversion element of Example 6.
  • configuration and structure of the thermoelectric conversion element described in the seventh embodiment can be applied to the thermoelectric conversion elements described in the eleventh to twelfth embodiments.
  • the third support member is made of an elastic material (for example, silicone rubber) that is stretchable and excellent in heat conduction as the second support member. If attached, the thermal support time constant ⁇ of the second support member, the elastic material and the third support member, and the whole changes as the elastic material expands and contracts. As a result, a change occurs in the extracted electrical signal, so that the movement of the third support member relative to the second support member can be detected.
  • an elastic material for example, silicone rubber
  • the electrical signal detection device of the present invention is attached to a machine or building and a periodic temperature change is given to the machine or building, an electrical signal different from the electrical signal based on the given periodic temperature change is generated. If detected, it can be known that some abnormality has occurred. Such detection can be used as an alternative to, for example, an operation of hitting a machine or a building with a hammer and knowing the abnormality by the generated sound.
  • thermoelectric conversion member 24A, 24B, 24D, 24E , 24F, 124H, 124J ⁇ fourth thermoelectric conversion member, 121G A, 121H A, 121J A, 221C A ⁇ first 1A thermoelectric conversion member, 121G B, 121H B , 121J B, 221C B ⁇ first 1B thermoelectric conversion member, 122G A, 122H A, 122J A, 222C A ⁇ first 2A thermoelectric conversion member, 122G B, 1 2H B, 122J B, 222C B ⁇ first 2B thermoelectric conversion member, 123G A, 123H A, 123J A ⁇ second 3A thermoelectric conversion member, 123G B, 123H B, 123J B ⁇ the 3B thermoelectric conversion member , 124G A, 124H A, 124J A ⁇ first 4A thermoelectric conversion member, 124G B, 124H B, 124J B ⁇ 4B of thermoelectric conversion member,
  • thermoelectric conversion element 123G, 123H, 123J ... 3rd thermoelectric conversion element, 124G, 124H, 124J ... 4th thermoelectric Conversion element, 31, 31A, 31B, 32, 32A, 32B, 231, 232 ... wiring, 41, 141, 241 ... first output , 42, 142, 242 ... second output unit, 43, 143 ... third output unit, 44, 144 ... fourth output unit, 50 ... thermoelectric power generation circuit, 51 ... rectifier, 52 ... DC / DC boost converter, 53 ... Charge / discharge control circuit, 54 ... Secondary battery, 60 ... Temperature control device, 61 ... Frequency control circuit, 62 ... Temperature adjustment device, 64... Output controller, 70... Electronic tag, 71.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electromechanical Clocks (AREA)
  • Transceivers (AREA)

Abstract

【課題】電波以外の手段で電力を無線方式にて供給し得る無線電力供給装置及び無線電力供給方法を提供する。 【解決手段】本発明の無線電力供給装置は、(A)雰囲気の温度変化に応答して熱電発電を行う熱電発電装置10、及び、(B)熱電発電装置10が配された雰囲気の温度を周期的に変化させる温度制御装置60を備えている。また、本発明の無線電力供給方法は、熱電発電装置10及び温度制御装置60を備えた無線電力供給装置を用いた無線電力供給方法であって、温度制御装置60によって、熱電発電装置10が配された雰囲気の温度を周期的に変化させ、該雰囲気の温度変化に応答して熱電発電装置10によって熱電発電を行い、得られた電力を外部に取り出す。

Description

無線電力供給装置及び無線電力供給方法
 本発明は、無線電力供給装置及び無線電力供給方法に関する。
 従来、非接触給電システムあるいは無線電力伝送システムにあっては、電波による電力供給方式が一般的である。そして、このような電力供給方式として、電磁誘導方式及び磁気共鳴方式を挙げることができる(例えば、特開2009-501510や特開2011-030317参照)。電磁誘導方式は、電力供給装置と電力受給装置とを近接させて配置した状態での電力供給方式として利用されている。一方、磁気共鳴方式は、回路のLC共振を利用しているため、電力供給装置と電力受給装置とを波長の数倍程度、離して配置した状態での電力供給が可能であるし、電力供給中に別の機器が影響を受け難いといった利点を有する。
特開2009-501510 特開2011-030317
 このような従来の技術は、電力を電波として伝送する手法である。ところで、発電装置を備えたシステムにおいて、補助的に電源を供給する手段を設ければ、電波による電力供給は必須ではない。また、このような従来の技術にあっては、電波を使用できない雰囲気や場面では電力供給が困難になるといった問題もある。更には、LC共振回路を用いる磁気共鳴方式にあっては、周波数マッチングのために可変容量コンデンサ等を用いたチューニングシステムが必要である。
 従って、本発明の目的は、電波以外の手段で電力を無線方式にて供給し得る無線電力供給装置及び無線電力供給方法を提供することにある。
 上記の目的を達成するための本発明の無線電力供給装置は、
 (A)雰囲気の温度変化に応答して熱電発電を行う熱電発電装置、及び、
 (B)熱電発電装置が配された雰囲気の温度を周期的に変化させる温度制御装置、
を備えている。
 上記の目的を達成するための本発明の無線電力供給方法は、熱電発電装置及び温度制御装置を備えた無線電力供給装置を用いた無線電力供給方法であって、
 温度制御装置によって、熱電発電装置が配された雰囲気の温度を周期的に変化させ、該雰囲気の温度変化に応答して熱電発電装置によって熱電発電を行い、得られた電力を外部に取り出す。
 本発明の無線電力供給装置あるいは無線電力供給方法にあっては、電波によって電力を供給する替わりに、温度制御装置によって熱電発電装置が配された雰囲気の温度を周期的に変化させることで、熱電発電装置によって熱電発電を行う。即ち、間接的な電力伝送が可能となる。それ故、使用する場所に制限を受けず、即ち、電波を使用できない雰囲気や場面でも、また、電波が届き難い空間に対しても、また、電磁遮蔽された空間に対しても、指向性無しに、電力を、容易に、しかも、安全に、簡素な構成に基づき、供給することができるし、他の電子機器へ悪影響を与える虞がない。また、熱電発電装置を配した雰囲気や雰囲気における温度変化や温度の揺らぎに基づき熱電発電を行うので、遠隔地におけるリモートモニタリングやリモートセンシング等が可能となるし、一旦設置した後には発電装置の取付けが困難な場所、物理的な配線や結線が困難な場所へ発電装置を予め取り付けておくことができる。更には、発電装置の設計やレイアウトの自由度を高めることができる。
図1の(A)及び(B)は、実施例1の無線電力供給装置及び書籍管理システムの概念図である。 図2は、シミュレーションによって得られた、雰囲気における温度変化と熱電発電装置の出力電圧との関係を示すグラフである。 図3は、シミュレーションによって得られた、雰囲気における温度変化と熱電発電装置の出力電流との関係を示すグラフである。 図4の(A)は、実施例4の熱電発電装置の模式的な一部断面図であり、図4の(B)は、第1支持部材の温度(TA)と第2支持部材の温度(TB)、これらの温度の温度差(ΔT=TB-TA)の変化、及び、第1出力部と第2出力部との間の電圧V1-2の変化を模式的に示す図である。 図5の(A)は、実施例5の熱電発電装置の模式的な一部断面図であり、図5の(B)は、第1支持部材の温度(TA)と第2支持部材の温度(TB)、これらの温度の温度差(ΔT=TB-TA)の変化、及び、第1出力部と第2出力部との間の電圧V1-2の変化を模式的に示す図である。 図6の(A)は、実施例6の熱電発電装置の模式的な一部断面図であり、図6の(B)は、第1支持部材の温度(TA)と第2支持部材の温度(TB)、これらの温度の温度差(ΔT=TB-TA)の変化、及び、第1出力部と第2出力部との間の電圧V1-2の変化を模式的に示す図である。 図7は、実施例7の熱電発電装置の模式的な一部平面図である。 図8の(A)、(B)、(C)及び(D)は、それぞれ、図7に示した実施例7の熱電発電装置の矢印A-A、矢印B-B、矢印C-C、矢印D-Dに沿った模式的な一部断面図である。 図9の(A)及び(B)は、実施例8の熱電発電装置の模式的な一部断面図である。 図10は、実施例8における第1支持部材の温度(TA)と第2支持部材の温度(TB)、これらの温度の温度差(ΔT=TB-TA)の変化、第1出力部と第2出力部との間の電圧V1-2の変化、及び、第3出力部と第4出力部との間の電圧V3-4の変化を模式的に示す図である。 図11の(A)及び(B)は、実施例9の熱電発電装置の模式的な一部断面図である。 図12は、実施例9における第1支持部材の温度(TA)と第2支持部材の温度(TB)、これらの温度の温度差(ΔT=TB-TA)の変化、第1出力部と第2出力部との間の電圧V1-2の変化、及び、第3出力部と第4出力部との間の電圧V3-4の変化を模式的に示す図である。 図13の(A)及び(B)は、実施例10の熱電発電装置の模式的な一部断面図である。 図14は、実施例10における第1支持部材の温度(TA)と第2支持部材の温度(TB)、これらの温度の温度差(ΔT=TB-TA)の変化、第1出力部と第2出力部との間の電圧V1-2の変化、及び、第3出力部と第4出力部との間の電圧V3-4の変化を模式的に示す図である。 図15の(A)及び(B)は、実施例11の熱電発電装置の模式的な一部断面図である。 図16は、実施例11における第1支持部材の温度(TA)と第2支持部材の温度(TB)、これらの温度の温度差(ΔT=TB-TA)の変化、第1出力部と第2出力部との間の電圧V1-2の変化、及び、第3出力部と第4出力部との間の電圧V3-4の変化を模式的に示す図である。 図17の(A)及び(B)は、実施例12の熱電発電装置の模式的な一部断面図である。 図18は、実施例12における第1支持部材の温度(TA)と第2支持部材の温度(TB)、これらの温度の温度差(ΔT=TB-TA)の変化、第1出力部と第2出力部との間の電圧V1-2の変化、及び、第3出力部と第4出力部との間の電圧V3-4の変化を模式的に示す図である。 図19の(A)及び(B)は、実施例13の熱電発電装置の模式的な一部断面図である。 図20の(A)、(B)及び(C)は、それぞれ、整流回路の一例を示す回路図であり、図20の(D)は、本発明の熱電発電装置の応用例の一例を示す概念図である。 図21は、雰囲気の温度変化を正弦波状と仮定したとき、このような温度変化に対応して、第2支持部材の温度TBと第1支持部材の温度TAとの温度差ΔT(=TB-TA)がどのように変化するかをシミュレーションした結果を示すグラフである。 図22は、τ2=0.1、一定とし、ωをパラメータとして種々、変化させたとき、τ1の値によってどのような値のΔTが得られるかをシミュレーションした結果を示すグラフである。
 以下、図面を参照して、実施例に基づき本発明を説明するが、本発明は実施例に限定されるものではなく、実施例における種々の数値や材料は例示である。尚、説明は、以下の順序で行う。
1.本発明の無線電力供給装置及び無線電力供給方法、全般に関する説明
2.実施例1(本発明の無線電力供給装置及び無線電力供給方法)
3.実施例2(実施例1の変形)
4.実施例3(実施例1の別の変形)
5.実施例4(第1の態様に係る熱電発電装置及び熱電発電方法)
6.実施例5(第2の態様に係る熱電発電装置及び熱電発電方法)
7.実施例6(第3の態様に係る熱電発電装置及び熱電発電方法)
8.実施例7(実施例6の変形)
9.実施例8(第4Aの態様に係る熱電発電方法)
10.実施例9(第4Bの態様に係る熱電発電方法及び第4の態様に係る熱電発電装置)
11.実施例10(実施例9の変形)
12.実施例11(第5Aの態様に係る熱電発電方法)
13.実施例12(第5Bの態様に係る熱電発電方法及び第5の態様に係る熱電発電装置)
14.実施例13(実施例12の変形)
15.実施例14(第1の態様~第5Bの態様に係る電気信号検出方法、本発明の電気信号検出装置)、その他
[本発明の無線電力供給装置及び無線電力供給方法、全般に関する説明]
 本発明の無線電力供給装置あるいは本発明の無線電力供給方法(以下、これらを総称して、単に、『本発明』と呼ぶ場合がある)にあっては、
 複数の熱電発電装置を備え、
 各熱電発電装置の熱応答特性は同一である構成とすることができる。尚、このような構成を、便宜上、『本発明の第1の構成』と呼ぶ場合がある。本発明の第1の構成にあっては、複数の熱電発電装置は、温度制御装置による雰囲気温度の周期的変化に一斉に応答し、複数の熱電発電装置から、同時に、一括して、同じ特性を有する電力を外部に取り出すことが可能である。
 あるいは又、本発明にあっては、
 複数の熱電発電装置を備え、
 各熱電発電装置の熱応答特性は異なり、
 温度制御装置は、あるいは、温度制御装置によって、熱応答特性が異なる熱電発電装置に対応した温度変化に基づき、順次、雰囲気の温度を周期的に変化させる構成とすることができる。尚、このような構成を、便宜上、『本発明の第2の構成』と呼ぶ場合がある。複数の熱電発電装置から複数の熱電発電装置群を構成し、各熱電発電装置群の熱応答特性が異なる構成を採用してもよい。本発明の第2の構成にあっては、複数の熱電発電装置は(あるいは、同じ熱応答特性を有する熱電発電装置群のそれぞれは)、温度制御装置による雰囲気温度の周期的変化に、経時的に、しかも、個々別々に応答し、複数の熱電発電装置から、あるいは、特定の熱電発電装置から、経時的に、別々に、異なる特性を有する電力を外部に取り出すことができる。尚、各熱電発電装置、それ自体の熱応答特性を異ならせる代わり、各熱電発電装置、それ自体の熱応答特性を同じとし、各熱電発電装置の出力部にフィルタを配置することで、各熱電発電装置全体としての熱応答特性を異ならせてもよい。
 あるいは又、本発明にあっては、
 複数の熱電発電装置を備え、
 各熱電発電装置の熱応答特性は異なり、
 温度制御装置は、あるいは、温度制御装置によって、熱応答特性が異なる熱電発電装置に対応した合成された温度変化に基づき、雰囲気の温度を周期的に変化させる構成とすることができる。尚、このような構成を、便宜上、『本発明の第3の構成』と呼ぶ場合がある。複数の熱電発電装置から複数の熱電発電装置群を構成し、各熱電発電装置群の熱応答特性が異なる構成を採用してもよい。本発明の第3の構成にあっては、複数の熱電発電装置は(あるいは、同じ熱応答特性を有する熱電発電装置群のそれぞれは)は、温度制御装置による雰囲気温度の周期的変化に、同時に、しかも、個々別々に応答し、複数の熱電発電装置から、あるいは、特定の熱電発電装置から、同時に、種々の特性を有する電力を外部に取り出すことができる。尚、各熱電発電装置、それ自体の熱応答特性を異ならせる代わり、各熱電発電装置、それ自体の熱応答特性を同じとし、各熱電発電装置の出力部にフィルタを配置することで、各熱電発電装置全体としての熱応答特性を異ならせてもよい。
 本発明の第1の構成~第3の構成を含む本発明の無線電力供給装置において、
 熱電発電装置は、
 (A)第1支持部材、
 (B)第1支持部材と対向して配置された第2支持部材、
 (C)第1支持部材と第2支持部材との間に配置された熱電変換素子、並びに、
 (D)熱電変換素子に接続された第1出力部及び第2出力部、
を備えており、
 熱電変換素子は、
 (C-1)第1支持部材と第2支持部材との間に配置された第1熱電変換部材、及び、
 (C-2)第1支持部材と第2支持部材との間に配置され、第1熱電変換部材を構成する材料とは異なる材料から構成され、第1熱電変換部材と電気的に直列に接続された第2熱電変換部材、
から成り、
 第1出力部は、第1熱電変換部材の第1支持部材側の端部に接続されており、
 第2出力部は、第2熱電変換部材の第1支持部材側の端部に接続されている熱電発電装置である。
 そして、第1支持部材と接する第1熱電変換部材の第1面の面積をS11、第2支持部材と接する第1熱電変換部材の第2面の面積をS12(但し、S11>S12)、第1支持部材と接する第2熱電変換部材の第1面の面積をS21、第2支持部材と接する第2熱電変換部材の第2面の面積をS22(但し、S21>S22)、第1支持部材の熱応答時定数をτSM1、第2支持部材の熱応答時定数をτSM2としたとき、
τSM1>τSM2
12 ≠S22
である。尚、このような熱電発電装置を、便宜上、『第1の態様に係る熱電発電装置』と呼ぶ。
 あるいは又、第1熱電変換部材の体積をVL1、第2熱電変換部材の体積をVL2、第1支持部材の熱応答時定数をτSM1、第2支持部材の熱応答時定数をτSM2としたとき、
τSM1>τSM2
VL1≠VL2
である。尚、このような熱電発電装置を、便宜上、『第2の態様に係る熱電発電装置』と呼ぶ。
 あるいは又、本発明の第1の構成~第3の構成を含む本発明の無線電力供給装置において、
 熱電発電装置は、
 (A)第1支持部材、
 (B)第1支持部材と対向して配置された第2支持部材、
 (C)第1支持部材と第2支持部材との間に配置された第1熱電変換素子、
 (D)第1支持部材と第2支持部材との間に配置された第2熱電変換素子、並びに、
 (E)第1出力部及び第2出力部、
を備えており、
 第1熱電変換素子は、第2支持部材と接する第1A熱電変換部材と、第1支持部材と接する第1B熱電変換部材とが、接して配置されて成り、
 第2熱電変換素子は、第1支持部材と接する第2A熱電変換部材と、第2支持部材と接する第2B熱電変換部材とが、接して配置されて成り、
 第1熱電変換素子と第2熱電変換素子とは電気的に直列に接続されており、
 第1出力部は、第1B熱電変換部材の端部に接続されており、
 第2出力部は、第2A熱電変換部材の端部に接続されており、
 第1支持部材の熱応答時定数をτSM1、第2支持部材の熱応答時定数をτSM2としたとき、
τSM1≠τSM2
である。尚、このような熱電発電装置を、便宜上、『第3の態様に係る熱電発電装置』と呼ぶ。
 あるいは又、本発明の第1の構成~第3の構成を含む本発明の無線電力供給装置において、
 熱電発電装置は、
 (A)第1支持部材、
 (B)第1支持部材と対向して配置された第2支持部材、
 (C)第1支持部材と第2支持部材との間に配置された第1熱電変換素子、
 (D)第1支持部材と第2支持部材との間に配置された第2熱電変換素子、並びに、
 (E)第1出力部、第2出力部、第3出力部、及び、第4出力部、
を備えており、
 第1熱電変換素子は、
 (C-1)第1支持部材と第2支持部材との間に配置された第1熱電変換部材、及び、
 (C-2)第1支持部材と第2支持部材との間に配置され、第1熱電変換部材を構成する材料とは異なる材料から構成され、第1熱電変換部材と電気的に直列に接続された第2熱電変換部材、
から成り、
 第2熱電変換素子は、
 (D-1)第1支持部材と第2支持部材との間に配置された第3熱電変換部材、及び、
 (D-2)第1支持部材と第2支持部材との間に配置され、第3熱電変換部材を構成する材料とは異なる材料から構成され、第3熱電変換部材と電気的に直列に接続された第4熱電変換部材、
から成り、
 第1出力部は、第1熱電変換部材に接続されており、
 第2出力部は、第2熱電変換部材に接続されており、
 第3出力部は、第3熱電変換部材に接続されており、
 第4出力部は、第4熱電変換部材に接続されており、
 第1支持部材の熱応答時定数をτSM1、第2支持部材の熱応答時定数をτSM2としたとき、
τSM1≠τSM2
である。尚、このような熱電発電装置を、便宜上、『第4の態様に係る熱電発電装置』と呼ぶ。
 あるいは又、本発明の第1の構成~第3の構成を含む本発明の無線電力供給装置において、
 熱電発電装置は、
 (A)第1支持部材、
 (B)第1支持部材と対向して配置された第2支持部材、
 (C)第1支持部材と第2支持部材との間に配置された第1熱電変換素子、
 (D)第1支持部材と第2支持部材との間に配置された第2熱電変換素子、
 (E)第1支持部材と第2支持部材との間に配置された第3熱電変換素子、
 (F)第1支持部材と第2支持部材との間に配置された第4熱電変換素子、並びに、
 (G)第1出力部、第2出力部、第3出力部、及び、第4出力部、
を備えており、
 第1熱電変換素子は、第2支持部材と接する第1A熱電変換部材と、第1支持部材と接する第1B熱電変換部材とが、接して配置されて成り、
 第2熱電変換素子は、第1支持部材と接する第2A熱電変換部材と、第2支持部材と接する第2B熱電変換部材とが、接して配置されて成り、
 第3熱電変換素子は、第2支持部材と接する第3A熱電変換部材と、第1支持部材と接する第3B熱電変換部材とが、接して配置されて成り、
 第4熱電変換素子は、第1支持部材と接する第4A熱電変換部材と、第2支持部材と接する第4B熱電変換部材とが、接して配置されて成り、
 第1熱電変換素子と第2熱電変換素子とは電気的に直列に接続されており、
 第3熱電変換素子と第4熱電変換素子とは電気的に直列に接続されており、
 第1出力部は、第1熱電変換素子に接続されており、
 第2出力部は、第2熱電変換素子に接続されており、
 第3出力部は、第3熱電変換素子に接続されており、
 第4出力部は、第4熱電変換素子に接続されており、
 第1支持部材の熱応答時定数をτSM1、第2支持部材の熱応答時定数をτSM2としたとき、
τSM1≠τSM2
である。尚、このような熱電発電装置を、便宜上、『第5の態様に係る熱電発電装置』と呼ぶ。
 本発明の第1の構成~第3の構成を含む本発明の無線電力供給方法にあっては、上述した第1の態様に係る熱電発電装置を用いた無線電力供給方法とすることができるし、上述した第2の態様に係る熱電発電装置を用いた無線電力供給方法とすることができるし、上述した第3の態様に係る熱電発電装置を用いた無線電力供給方法とすることができる。そして、これらの無線電力供給方法にあっては、
 温度が変化する雰囲気に熱電発電装置を配し、
 第2支持部材の温度が第1支持部材の温度よりも高いとき、第1支持部材と第2支持部材との温度差に起因して生成し、第2熱電変換部材から第1熱電変換部材へと流れる電流を、第1出力部を正極、第2出力部を負極として、外部に取り出し(便宜上、『第1の態様に係る熱電発電方法』あるいは『第2の態様に係る熱電発電方法』と呼ぶ)、あるいは又、第2熱電変換素子から第1熱電変換素子へと流れる電流を、第1出力部を正極、第2出力部を負極として、外部に取り出す(便宜上、『第3の態様に係る熱電発電方法』と呼ぶ)。
 あるいは又、本発明の第1の構成~第3の構成を含む本発明の無線電力供給方法にあっては、上述した第4の態様に係る熱電発電装置を用いた無線電力供給方法とすることができ、
 温度が変化する雰囲気に熱電発電装置を配し、
 第2支持部材の温度が第1支持部材の温度よりも高いとき、第1支持部材と第2支持部材との温度差に起因して生成し、第2熱電変換部材から第1熱電変換部材へと流れる電流を、第1出力部を正極、第2出力部を負極として、外部に取り出し、
 第1支持部材の温度が第2支持部材の温度よりも高いとき、第1支持部材と第2支持部材との温度差に起因して生成し、第4熱電変換部材から第3熱電変換部材へと流れる電流を、第3出力部を正極、第4出力部を負極として、外部に取り出す。尚、このような熱電発電装置を、便宜上、『第4Aの態様に係る熱電発電方法』と呼ぶ。
 あるいは又、本発明の第1の構成~第3の構成を含む本発明の無線電力供給方法にあっては、上述した第4Aの態様に係る熱電発電方法において、第2支持部材の温度が第1支持部材の温度よりも高いとき、第1支持部材と第2支持部材との温度差に起因して生成し、第2熱電変換部材から第1熱電変換部材へと流れる電流を、第1出力部を正極、第2出力部を負極として、外部に取り出し、第1支持部材の温度が第2支持部材の温度よりも高いとき、第1支持部材と第2支持部材との温度差に起因して生成し、第4熱電変換部材から第3熱電変換部材へと流れる電流を、第3出力部を正極、第4出力部を負極として、外部に取り出す代わりに、
 第2支持部材の温度が第1支持部材の温度よりも高いとき、第1支持部材と第2支持部材との温度差に起因して生成し、第2熱電変換部材から第1熱電変換部材へと流れる電流を、第1出力部を正極、第2出力部を負極として、外部に取り出し、且つ、第4熱電変換部材から第3熱電変換部材へと流れる電流を、第3出力部を正極、第4出力部を負極として、外部に取り出す。尚、このような熱電発電装置を、便宜上、『第4Bの態様に係る熱電発電方法』と呼ぶ。
 あるいは又、本発明の第1の構成~第3の構成を含む本発明の無線電力供給方法にあっては、上述した第5の態様に係る熱電発電装置を用いた無線電力供給方法とすることができ、
 温度が変化する雰囲気に熱電発電装置を配し、
 第2支持部材の温度が第1支持部材の温度よりも高いとき、第1支持部材と第2支持部材との温度差に起因して生成し、第2熱電変換素子から第1熱電変換素子へと流れる電流を、第1出力部を正極、第2出力部を負極として、外部に取り出し、
 第1支持部材の温度が第2支持部材の温度よりも高いとき、第1支持部材と第2支持部材との温度差に起因して生成し、第3熱電変換素子から第4熱電変換素子へと流れる電流を、第4出力部を正極、第3出力部を負極として、外部に取り出す。尚、このような熱電発電装置を、便宜上、『第5Aの態様に係る熱電発電方法』と呼ぶ。
 あるいは又、本発明の第1の構成~第3の構成を含む本発明の無線電力供給方法にあっては、上述した第5Aの態様に係る熱電発電方法において、第2支持部材の温度が第1支持部材の温度よりも高いとき、第1支持部材と第2支持部材との温度差に起因して生成し、第2熱電変換素子から第1熱電変換素子へと流れる電流を、第1出力部を正極、第2出力部を負極として、外部に取り出し、第1支持部材の温度が第2支持部材の温度よりも高いとき、第1支持部材と第2支持部材との温度差に起因して生成し、第3熱電変換素子から第4熱電変換素子へと流れる電流を、第4出力部を正極、第3出力部を負極として、外部に取り出す代わりに、
 第2支持部材の温度が第1支持部材の温度よりも高いとき、第1支持部材と第2支持部材との温度差に起因して生成し、第2熱電変換素子から第1熱電変換素子へと流れる電流を、第1出力部を正極、第2出力部を負極として、外部に取り出し、且つ、第4熱電変換素子から第3熱電変換素子へと流れる電流を、第3出力部を正極、第4出力部を負極として、外部に取り出す。尚、このような熱電発電装置を、便宜上、『第5Bの態様に係る熱電発電方法』と呼ぶ。
 第4Aの態様に係る熱電発電方法における熱電発電装置若しくは第4の態様に係る熱電発電装置(以下、これらを総称して、『第4Aの態様等に係る発明』と呼ぶ場合がある)にあっては、熱電発電装置において、
 第1出力部は、第1熱電変換部材の第1支持部材側の端部に接続されており、
 第2出力部は、第2熱電変換部材の第1支持部材側の端部に接続されており、
 第3出力部は、第3熱電変換部材の第2支持部材側の端部に接続されており、
 第4出力部は、第4熱電変換部材の第2支持部材側の端部に接続されている構成とすることができる。
 第4Bの態様に係る熱電発電方法における熱電発電装置若しくは第4の態様に係る熱電発電装置(以下、これらを総称して、『第4Bの態様等に係る発明』と呼ぶ場合がある)にあっては、熱電発電装置において、
 第1出力部は、第1熱電変換部材の第1支持部材側の端部に接続されており、
 第2出力部は、第2熱電変換部材の第1支持部材側の端部に接続されており、
 第3出力部は、第3熱電変換部材の第1支持部材側の端部に接続されており、
 第4出力部は、第4熱電変換部材の第1支持部材側の端部に接続されている構成とすることができる。
 そして、このような好ましい構成を含む第4Bの態様に係る発明等にあっては、熱電発電装置において、第1熱電変換素子の熱応答時定数をτTE1、第2熱電変換素子の熱応答時定数をτTE2としたとき、τTE1≠τTE2であることが好ましい。そして、この場合、
 第1熱電変換部材は、面積S11の第1面、及び、面積S12(但し、S11>S12)の第2面を有し、
 第2熱電変換部材は、面積S21の第1面、及び、面積S22(但し、S21>S22)の第2面を有し、
 第3熱電変換部材は、面積S31の第1面、及び、面積S32(但し、S31<S32)の第2面を有し、
 第4熱電変換部材は、面積S41の第1面、及び、面積S42(但し、S41<S42)の第2面を有し、
 第1熱電変換部材及び第2熱電変換部材の第1面は第1支持部材と接しており、
 第1熱電変換部材及び第2熱電変換部材の第2面は第2支持部材と接しており、
 第3熱電変換部材及び第4熱電変換部材の第1面は第1支持部材と接しており、
 第3熱電変換部材及び第4熱電変換部材の第2面は第2支持部材と接している構成とすることができる。このような構成における第1熱電変換部材、第2熱電変換部材、第3熱電変換部材及び第4熱電変換部材の具体的な形状として、切頭錐形状、より具体的には、切頭三角錐形状、切頭四角錐形状、切頭六角錐形状、切頭円錐形状を例示することができる。あるいは又、この場合、第1熱電変換部材の体積をVL1、第2熱電変換部材の体積をVL2、第3熱電変換部材の体積をVL3、第4熱電変換部材の体積をVL4としたとき、
VL1≠VL3
VL2≠VL4
である構成とすることができる。このような構成における第1熱電変換部材、第2熱電変換部材、第3熱電変換部材及び第4熱電変換部材の具体的な形状として、柱状、より具体的には、三角柱状、四角柱状、六角柱状、円柱状を例示することができる。尚、
VL1≠VL2
VL3≠VL4
であることがより好ましい。
 第5Aの態様に係る熱電発電方法における熱電発電装置若しくは第5の態様に係る熱電発電装置(以下、これらを総称して、『第5Aの態様等に係る発明』と呼ぶ場合がある)にあっては、熱電発電装置において、
 第1出力部は、第1B熱電変換部材の端部に接続されており、
 第2出力部は、第2A熱電変換部材の端部に接続されており、
 第3出力部は、第3A熱電変換部材の端部に接続されており、
 第4出力部は、第4B熱電変換部材の端部に接続されている構成とすることができる。
 あるいは又、第5Bの態様に係る熱電発電方法若しくは第5の態様に係る熱電発電装置(以下、これらを総称して、『第5Bの態様等に係る発明』と呼ぶ場合がある)にあっては、熱電発電装置において、
 第1出力部は、第1B熱電変換部材の端部に接続されており、
 第2出力部は、第2A熱電変換部材の端部に接続されており、
 第3出力部は、第3B熱電変換部材の端部に接続されており、
 第4出力部は、第4A熱電変換部材の端部に接続されている構成とすることができる。
 そして、このような好ましい構成を含む第5Bの態様等に係る発明にあっては、熱電発電装置において、第1熱電変換素子の熱応答時定数をτTE1、第2熱電変換素子の熱応答時定数をτTE2、第3熱電変換素子の熱応答時定数をτTE3、第4熱電変換素子の熱応答時定数をτTE4としたとき、
τTE1≠τTE3
τTE2≠τTE4
であることが好ましい。そして、この場合、第1熱電変換素子の体積をVL1、第2熱電変換素子の体積をVL2、第3熱電変換素子の体積をVL3、第4熱電変換素子の体積をVL4としたとき、
VL1≠VL3
VL2≠VL4
である構成とすることができる。あるいは又、第2支持部材と接する第1A熱電変換部材の部分の面積をS12、第1支持部材と接する第2B熱電変換部材の部分の面積をS21、第2支持部材と接する第3A熱電変換部材の部分の面積をS32、第1支持部材と接する第4B熱電変換部材の部分の面積をS41としたとき、
12≠S32
21≠S41
である構成とすることができ、更には、
12≠S21
32≠S41
である構成とすることができる。
 以上に説明した種々の好ましい構成を含む、第1の態様~第5の態様に係る熱電発電装置、第1の態様~第5Bの態様に係る熱電発電方法にて使用する熱電発電装置(以下、これらを総称して、単に、『本発明における熱電発電装置等』と呼ぶ場合がある)にあっては、第1支持部材の熱応答時定数τSM1と第2支持部材の熱応答時定数τSM2とが異なっている。従って、温度が変化する雰囲気に熱電発電装置を配したとき、第1支持部材の温度と第2支持部材の温度との間に温度差が生じ得る。その結果、熱電変換素子、第1熱電変換素子あるいは第2熱電変換素子において熱電発電が生じる。云い換えれば、第1支持部材の熱応答時定数τSM1と第2支持部材の熱応答時定数τSM2とが同じである場合、温度が変化する雰囲気に熱電発電装置を配したときでも、第1支持部材の温度と第2支持部材の温度との間に温度差が生じないが故に、熱電変換素子、第1熱電変換素子あるいは第2熱電変換素子において熱電発電が生じることが無い。
 本発明における熱電発電装置等において、熱電発電装置を構成する熱電変換素子の数は、本質的に任意であり、熱電発電装置に要求される熱電発電量に基づき熱電変換素子の数を決定すればよい。
 熱応答時定数τは、支持部材や熱電変換素子、熱電変換部材を構成する材料の密度ρ、比熱c、熱伝達率h、支持部材や熱電変換素子、熱電変換部材の体積VL、面積Sにより決まる。密度が大きく、比熱が大きく、熱伝達率が小さい材料を用い、体積が大きく、面積が小さければ、熱応答時定数の値は大きくなる。ここで、熱応答時定数τは、以下の式(1)で求めることができる。
τ=(ρ・c/h)×(V/S)  (1)
 本発明における熱電発電装置等においては、熱電発電装置の一端にステップ状の温度変化を与え、そのときの温度過渡応答を例えば赤外温度計にてモニタすることで、熱応答時定数を測定することができる。あるいは又、支持部材に十分に熱時定数の早い熱電対を取り付け、温度遷移を計測することで熱応答時定数を測定することができる。また、熱電変換素子の熱応答時定数は、同様の温度変化を与えた後に熱電発電装置の出力波形をモニタすることで熱電変換素子上下端の温度差を推定することができ、この出力電圧が最大となるポイントから最小となるまでの時間を計測することで得ることができる。
 また、熱電発電装置が配された雰囲気の雰囲気温度をTamb、支持部材の熱応答時定数をτSMとしたとき、支持部材の温度TSMは、以下の式(2)で求めることができる。
amb=TSM+τSM×(dTSM/dt)  (2)
 ここで、雰囲気温度Tambの温度変化を、以下の式(3)で表される正弦波状と仮定する。
amb=ΔTamb×sin(ω・t)+A  (3)
但し、
ΔTamb:雰囲気温度Tambの温度変化の振幅
ω   :角速度であり、温度変化の周期(TM)の逆数で2πを除した値
A   :定数
である。
 このような雰囲気温度Tambの温度変化に対して、熱応答時定数τ1,τ2を有する支持部材の熱応答T1,T2は、以下の式(4-1)、式(4-2)で表すことができる。
1=ΔTamb(1+τ1 2ω2-1×sin(ω・t+k1)+B1  (4-1)
2=ΔTamb(1+τ2 2ω2-1×sin(ω・t+k2)+B2  (4-2)
但し、
sin(k1)=(τ1・ω)・(1+τ1 2ω2-1
cos(k1)=(1+τ1 2ω2-1
sin(k2)=(τ2・ω)・(1+τ2 2ω2-1
cos(k2)=(1+τ2 2ω2-1
であり、k1,k2は位相遅れを表し、B1,B2は温度変化の中心温度である。
 従って、第1支持部材の温度(TA)と第2支持部材の温度(TB)の温度の温度差(ΔT=TB-TA)は、以下の式(5)で近似することができる。
ΔT=[ΔTamb・ω(τ1-τ2)]×(1+τ1 2ω2-1×(1+τ2 2ω2-1
    ×sin(ω・t+φ)+C  (5)
但し、
sin(φ)=N(M2+N2-1
cos(φ)=M(M2+N2-1
C     =B1-B2
M     =ω(τ1 2-τ2 2
N     =τ2(1+τ1 2ω2)-τ1(1+τ2 2ω2
 τ2=0.1、一定とし、ωをパラメータとして種々、変化させたとき、τ1の値によってどのような値のΔTが得られるかをシミュレーションした結果を図22に示す。尚、ΔTの値は、最大値が「1」となるように、規格化してある。尚、図22中の符号「A」~「O」は、以下の温度変化の周期TMを示す。
Figure JPOXMLDOC01-appb-I000001
 第4Aの態様、第4Bの態様、第5Aの態様、第5Bの態様に係る発明において、第1熱電変換素子及び第2熱電変換素子の配列は、本質的に任意であり、1列を第1熱電変換素子と第2熱電変換素子とが交互に占める配列;1列を複数の第1熱電変換素子から成る群と複数の第2熱電変換素子から成る群とが交互に占める配列;1列を第1熱電変換素子が占め、この列に隣接する列を第2熱電変換素子が占める配列;複数列を第1熱電変換素子が占め、これらの列に隣接する複数列を第2熱電変換素子が占める配列;熱電発電装置を複数の領域に分け、各領域を複数の第1熱電変換素子あるいは複数の第2熱電変換素子が占める配列を例示することができる。
 本発明における熱電発電装置等において、熱電変換部材を構成する材料は、周知の材料とすることができ、例えば、ビスマス・テルル系材料(具体的には、例えば、Bi2Te3、Bi2Te2.85Se0.15)、ビスマス・テルル・アンチモン系材料、アンチモン・テルル系材料(具体的には、例えば、Sb2Te3)、タリウム・テルル系材料、ビスマス・セレン系材料(具体的には、例えば、Bi2Se3)、鉛・テルル系材料、錫・テルル系材料、ゲルマニウム・テルル系材料、Pb1-xSnxTe化合物、ビスマス・アンチモン系材料、亜鉛・アンチモン系材料(具体的には、例えば、Zn4Sb3)、コバルト・アンチモン系材料(具体的には、例えば、CoSb3)、鉄・コバルト・アンチモン系材料、銀・アンチモン・テルル系材料(具体的には、例えば、AgSbTe2)、TAGS(Telluride of Antimony, Germaniumu and Silver)化合物、Si-Ge系材料、シリサイド系材料[Fe-Si系材料(具体的には、例えば、β-FeSi2)、Mn-Si系材料(具体的には、例えば、MnSi2)、Cr-Si系材料(具体的には、例えば、CrSi2)、Mg-Si系材料(具体的には、例えば、Mg2Si)]、スクッテルダイト系材料[MX3化合物(但し、MはCo、Rh、Ir、XはP、As、Sb)、あるいは又、RM’412化合物(但し、RはLa、Ce、Eu、Yb等、M’はFe、Ru、Os)]、ホウ素化合物[具体的には、例えば、MB6(但し、MはCa、Sr、Baのアルカリ土類金属及びY等の希土類金属)]、Si系材料、Ge系材料、クラスレート化合物、ホイスラー化合物、ハーフホイスラー化合物、希土類近藤半導体材料、遷移金属酸化物系材料(具体的には、例えば、NaxCoO2、NaCo24、Ca3Co49)、酸化亜鉛系材料、酸化チタン系材料、酸化コバルト系材料、SrTiO3、有機熱電変換材料(具体的には、例えば、ポリチオフェン、ポリアニリン)、クロメル合金、コンスタンタン、アルメル合金、TGS(Triglycine Sulfate,硫酸三グリシン)、 PbTiO3、Sr0.5Ba0.5Nb26、PZT、BaO-TiO2系化合物、タングステンブロンズ(AxBO3)、15ペロブスカイト系材料、 24系ペロブスカイト系材料、 BiFeO3、 Bi層状ペロブスカイト系材料を挙げることができる。熱電変換部材の材料は、化学量論的組成から外れていてもよい。そして、これらの材料の中でも、ビスマス・テルル系材料及びビスマス・テルル・アンチモン系材料を組み合わせて用いることが好ましい。より具体的には、例えば、第1熱電変換部材、第3熱電変換部材、第1A熱電変換部材、第2A熱電変換部材、第3A熱電変換部材及び第4A熱電変換部材の材料としてビスマス・テルル・アンチモン系材料を用い、第2熱電変換部材、第4熱電変換部材、第1B熱電変換部材、第2B熱電変換部材、第3B熱電変換部材及び第4B熱電変換部材の材料としてビスマス・テルル系材料を用いる形態とすることが好ましい。尚、この場合、第1熱電変換部材、第3熱電変換部材、第1A熱電変換部材、第2A熱電変換部材、第3A熱電変換部材及び第4A熱電変換部材はp型半導体としての挙動を示し、第2熱電変換部材、第4熱電変換部材、第1B熱電変換部材、第2B熱電変換部材、第3B熱電変換部材及び第4B熱電変換部材はn型半導体としての挙動を示す。第1熱電変換部材と第2熱電変換部材を構成する材料の両方がゼーベック効果を有していてもよいし、いずれか一方の材料のみがゼーベック効果を有していてもよい。同様に、第3熱電変換部材と第4熱電変換部材を構成する材料の両方がゼーベック効果を有していてもよいし、いずれか一方の材料のみがゼーベック効果を有していてもよい。第1A熱電変換部材と第1B熱電変換部材との組合せ、第2A熱電変換部材と第2B熱電変換部材との組合せ、第3A熱電変換部材と第3B熱電変換部材との組合せ、第4A熱電変換部材と第4B熱電変換部材との組合せにおいても同様である。
 熱電変換部材や熱電変換素子の製造方法、熱電変換部材や熱電変換素子を所望の形状に賦形する方法として、熱電変換部材を構成する材料のインゴットを切削する方法、熱電変換部材を構成する材料をエッチングする方法、モールドを用いて成形する方法、メッキ法によって成膜する方法、PVD法やCVD法とパターニング技術との組合せ、リフトオフ法を例示することができる。
 第1支持部材及び第2支持部材を構成する材料として、フッ素樹脂、エポキシ樹脂、アクリル樹脂、ポリカーボネイト樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリエチレン樹脂、熱硬化性エラストマー、熱可塑性エラストマー(シリコンゴム、エチレンゴム、プロピレンゴム、クロロプレンゴム)、例えばノルマルパラフィンで代表される潜熱蓄熱材料、化学蓄熱材料、加硫ゴム(天然ゴム)、ガラス、セラミックス(例えば、Al23、MgO、BeO、AlN、SiC、TiO2、陶器、磁器)、ダイアモンド・ライク・カーボン(DLC)やグラファイトといった炭素系材料、木材、各種の金属[例えば、銅(Cu)、アルミニウム(Al)、銀(Ag)、金(Au)、クロム(Cr)、鉄(Fe)、マグネシウム(Mg)、ニッケル(Ni)、シリコン(Si)、錫(Sn)、タンタル(Ta)、チタン(Ti)、タングステン(W)、アンチモン(Sb)、ビスマス(Bi)、テルル(Te)、セレン(Se)]やこれら金属の合金、銅のナノ粒子等を例示することができる。第1支持部材及び第2支持部材は、これらの材料を、適宜、選択して、組み合わせればよい。第1支持部材や第2支持部材の外面に、例えば、フィンやヒートシンクを取り付けてもよいし、第1支持部材や第2支持部材の外面を粗面化したり、凹凸をつけ、熱交換効率の向上を図ってもよい。
 潜熱蓄熱材料とは、材料の相変化、転移の際に外部とやり取りされる潜熱を熱エネルギーとして蓄える材料である。上述したノルマルパラフィン(例えば、n-テトラデカン、n-ペンタデカン、n-ヘキサデカン、n-ヘプタデカン、n-オクタデカン、n-ノナデカン、n-イコサン等)は、室温程度であってもその組成により相変化が生じる。このような潜熱蓄熱材料を、蓄熱材料として、第1支持部材や第2支持部材、あるいは、第1支持部材や第2支持部材の一部に用いることで、より大きな熱容量を有する構造を小さい容積で実現することができる。それ故、熱電発電装置における熱電変換素子の小型化・低背化が可能となる。また、温度変化が生じ難く、長周期の温度変動を捉える熱電変換素子の構成材料としての利用が可能である。例えば、エポキシ樹脂の融解熱が2.2kJ/kgであるのに対して、25゜Cに融点を有するノルマルパラフィンの融解熱は、例えば、85kJ/kgである。従って、ノルマルパラフィンは、エポキシ樹脂の約40倍の熱を蓄積することが可能である。化学蓄熱材料は、材料の化学反応熱を利用したものであり、例えば、Ca(OH)2/CaO2+H2やNa2S+5H2O等を挙げることができる。
 第1熱電変換部材と第2熱電変換部材、第3熱電変換部材と第4熱電変換部材、第1熱電変換素子と第2熱電変換素子、第3熱電変換素子と第4熱電変換素子とを電気的に直列に接続するためには、支持部材に電極を設ければよいが、電極を設けることは必須ではない。係る電極は、導電性を有する材料であれば、本質的に任意の材料を用いることができ、例えば、熱電変換部材や熱電変換素子の側から、チタン層、金層、ニッケル層が積層された電極構造を例示することができる。電極の一部が出力部を兼ねる構成とすることが、熱電発電装置の構造、構成の簡素化といった観点から好ましい。場合によっては、熱電変換部材や熱電変換素子の延在部から電極を構成することもできる。
 熱電発電装置を、例えば、適切な樹脂で封止してもよい。第1支持部材や第2支持部材に蓄熱手段を配してもよい。熱電変換部材と熱電変換部材、熱電変換素子と熱電変換素子との間は、空隙のままとしてもよいし、絶縁材料で充填してもよい。
 本発明における熱電発電装置等は、温度が変化する雰囲気において熱電発電を行う如何なる技術分野へも適用することができる。具体的には、係る技術分野として、あるいは又、本発明の熱電発電装置を組み込むのに適した装置として、例えば、センサネットワークシステムを挙げることができ、センサネットワークシステムを構成する電子機器、センサ、電子部品に一括して給電することができる。特に、エネルギーハーベスティングデバイス等の自己発電機能を有するデバイスへの補助電源として、動作をアシストする上で有用性が高い。また、エネルギー送出側として、従来からの温度制御装置に、温度変化の周波数制御機能を追加するのみでシステムを構築することができる。それ故、新たな設備投資を抑制することができる。更には、センサネットワークシステム等の複数のセンサやデバイスが配置されている場合にあっては、センサやデバイスを1つ1つ校正するのではなく、全てのセンサやデバイスあるいは一部のセンサやデバイスを一括して校正するシステムを構築することができる。即ち、本発明によって、間接的に一括給電、発電を行うだけではなく、一括してセンサやデバイスの校正を行うことが可能となる。また、特定の物品の位置の特定等への応用(例えば、鍵や携帯電話等に取り付けておき、これらを容易に発見できるようにするといった応用、これらの位置情報を間欠動作で伝えるシステムの構築)が可能である。
 より具体的には、本発明を、例えば、電子タグ(ICタグ,RFIDの一種)による書籍管理に適用することができ、複数の書籍のそれぞれに付けられた電子タグを間接的に無線電力伝送に基づき一度に、あるいは、逐次、作動させることができる。また、WSN(Wireless Sensor Network)やBAN(Body Area Network)を構成する電子機器に対して、一括して電力の供給が可能であるし、一度に、あるいは、逐次、作動させることが可能である。更には、例えば、SuicaやFelicaのような電子マネー等を構成するICを含む回路への電力の供給が可能である。
 あるいは又、本発明における熱電発電装置等は、テレビジョン受像機や録画装置、エアーコンディショニング装置、電子書籍端末、ゲーム機器、ナビゲーションシステム等の各種機器の操作のためのリモートコントロール装置;各種計測装置(例えば、土壌の状態をモニタリングするための計測装置、天候や気象をモニタリングするための計測装置);遠隔地におけるリモートモニタリング装置やリモートセンシング装置;携帯通信機器;時計;身体あるいは動物、家畜、ペットの体温、血圧、脈拍等の生体情報を入手するための計測装置やこれらの生体情報に基づく各種情報の検出・抽出装置;2次電池への充電のための電源;自動車の排気熱を利用した発電装置;バッテリレスの無線システム;ワイヤレスセンサネットワークのセンサノード;タイヤ圧モニタリングシステム(TPMS);照明機器の操作のためのリモートコントロール装置及びスイッチ;温度情報を入力信号若しくは入力信号とエネルギー源として入力信号に同期した動作をするシステム;携帯型音楽再生機器若しくは補聴器、携帯型音楽再生機器のノイズキャンセリングシステムに適用することができる。また、一旦設置した後には発電装置の取付けが困難な場所、物理的な配線や結線が困難な場所への本発明における熱電発電装置等の適用は最適である。また、本発明における熱電発電装置等を電気信号検出装置として機械や建築物に取り付け、機械や建築物に周期的な温度変化を与えることで、異常の発生の有無を検出することが可能である。
 温度制御装置として、エアーコンディショナー、電熱線、ペルチェ素子、コンプレッサー、燃焼機等、あるいは、これらの組合せを例示することができる。
 実施例1は、本発明の無線電力供給装置及び無線電力供給方法に関し、具体的には、本発明の第1の構成に関する。ここで、「無線電力供給」とは、有線に基づかずに電力を供給することを意味し、また、電波によって電力を供給することを意味するのではない。
 実施例1の無線電力供給装置は、図1の(A)に概念図を示すように、
 (A)雰囲気の温度変化に応答して熱電発電を行う熱電発電装置10、及び、
 (B)熱電発電装置10が配された雰囲気の温度を周期的に変化させる温度制御装置60、
を備えている。
 また、実施例1の無線電力供給方法は、熱電発電装置10及び温度制御装置60を備えた無線電力供給装置を用いた無線電力供給方法であって、
 温度制御装置60によって、熱電発電装置10が配された雰囲気の温度を周期的に変化させ、この雰囲気の温度変化に応答して熱電発電装置10によって熱電発電を行い、得られた電力を外部に取り出す。
 尚、熱電発電装置については、実施例4~実施例13において詳しく説明する。
 そして、実施例1にあっては、複数の熱電発電装置10を備え、各熱電発電装置10の熱応答特性は同一である。複数の熱電発電装置10は、温度制御装置60による雰囲気温度の周期的変化に一斉に応答し、複数の熱電発電装置10から、一括して、同じ特性を有する電力を外部に取り出すことができる。
 実施例1にあっては、図1の(B)に書籍管理システムの概念図を示すように、熱電発電装置10は、電子タグ(ICタグ,RFIDの一種)70に接続されており、電子タグ70によって書籍管理が行われる。具体的には、複数の書籍のそれぞれに取り付けられた電子タグ70を、間接的に、無線電力伝送に基づき、一度に作動させる。
 後述する実施例6の構造を有する熱電発電装置において、第1支持部材11をアルミニウム板(縦×横×厚さ:10mm×10mm×0.1mm)、第2支持部材12をゴム板(縦×横×厚さ:10mm×10mm×1.0mm)、第1熱電変換素子121Cをビスマス・テルル・アンチモン、第2熱電変換素子122Cをビスマス・テルルから構成し、第1熱電変換素子121C及び第2熱電変換素子122Cの積層体、全体の大きさを縦×横×高さ=0.1mm×0.1mm×1mmとし、第1熱電変換素子121C及び第2熱電変換素子122Cの積層体を625個、直列に接続したとして、熱電発電装置からどの程度の電圧及び電流が得られるかをシミュレーションした。その結果を以下の表1に示す。尚、温度変化の振幅(ΔTamb)を2゜Cとした。
[表1]
周期(t0)   電圧      電流
 0.1秒    100μV    10nA
 0.5秒    0.35mV  150nA
 1.0秒    0.60mV  300nA
10秒      5.0mV   3μA
 更には、上記の熱電発電装置において、温度変化の振幅(ΔTamb)を2゜Cとし、周期(t0)をパラメータとして、熱電発電装置からの出力を倍電圧整流し、熱電発電装置とインピーダンスマッチングの取れた外部負荷においてどの程度の電圧及び電流が得られるかをシミュレーションした。その結果を図2及び図3に示す。尚、図2及び図3において、曲線「A」はt0=1時間の場合を示し、曲線「B」はt0=10分の場合を示し、曲線「C」はt0=1分の場合を示し、曲線「D」はt0=10秒の場合を示し、曲線「E」はt0=1秒の場合を示し、横軸の時間は経過時間を意味する。
 実施例1において、温度制御装置60は、具体的には、所望の温度変化、例えば、周期(t0)10分で、温度変化の振幅(ΔTamb)2゜Cの温度変化、あるいは又、周期(t0)100分で、温度変化の振幅(ΔTamb)2゜Cを雰囲気に与えることができるようなエアーコンディショナーから成る。温度制御装置60は、例えば、周波数制御回路61、温度調整装置62、及び、出力コントローラ63から構成されている。
 より具体的には、例えば、夜間、書籍が保管された室の雰囲気温度を、上述したとおり、エアーコンディショナーから成る温度制御装置60によって変化させる。これによって、各熱電発電装置10において、例えば、4ミリボルト、0.4マイクロアンペア、あるいは又、20ミリボルト、0.25マイクロアンペアの電力が生成される。熱電発電回路50は、熱電発電装置10、整流器51、DC/DC昇圧コンバータ52、充放電制御回路53及び2次電池54から構成されている。熱電発電装置10によって得られた電力は外部(熱電発電装置10の外部)に取り出される。即ち、熱電発電装置10からの電圧は、整流器51において整流され、DC/DC昇圧コンバータ52によって所望の電圧に昇圧され、充放電制御回路53を介して2次電池54が充電される。そして、熱電発電回路50から出力された電力によって電子タグ70が駆動される。尚、熱電発電装置10を並列・直列にスタックし、適宜、昇圧・電流増幅を行うこともできる。
 書籍管理装置71からの要求に応じて、電子タグ70からは、電子タグ70に固有の情報が(云い換えれば、電子タグ70が取り付けられた書籍に固有の情報が)、電波を介して、書籍管理装置71に送出される。書籍管理装置71は、受け取った電子タグ70に固有の情報に基づき、電子タグ70が取り付けられた書籍の存在を確認する。このような確認を、例えば、全ての書籍に対して行う。所定の時間が経過しても、本来存在すべき書籍から、その書籍に取り付けられた電子タグ70に固有の情報を書籍管理装置71が受け取らなかった場合、その書籍は紛失したとして書籍管理装置71は警告を発することで、書籍の管理者はその書籍が紛失したことを認識することができる。尚、2次電池54における充電量は、例えば、以上の動作が完了するのに十分な充電量であって、以上の動作が完了した後においては、電子タグ70を駆動することができない程度の充電量とすればよい。
 実施例1の無線電力供給装置あるいは無線電力供給方法にあっては、電波によって電力を供給する替わりに、熱電発電装置が配された雰囲気の温度を温度制御装置によって周期的に変化させることで、熱電発電装置によって熱電発電を行う。そして、エネルギー送出側のエネルギー波形、即ち、温度制御装置による雰囲気温度の周期的な変化のパターン、周期を、受取り側である熱電発電装置が効率良く熱電発電できるパターン、周期に設定することで、即ち、効率良く熱電発電できるように熱電発電装置の種々のパラメータを設計することで、高効率にて電力を発生させることができる。熱電発電装置は、発電に必要な種類のエネルギー(即ち、熱)を受け取り、発電する。こうして、間接的な電力伝送が可能となる。それ故、使用する場所に制限を受けず、即ち、電波を使用できない雰囲気や場面でも、また、電波が届き難い空間に対しても、また、電磁遮蔽された空間に対しても、指向性無しに、電力を、容易に、しかも、安全に、簡素な装置に基づき、供給することができるし、他の電子機器へ悪影響を与える虞がない。また、熱電発電装置を配した雰囲気や雰囲気における温度変化や温度の揺らぎに基づき熱電発電を行うので、遠隔地におけるリモートモニタリングやリモートセンシング等が可能となるし、一旦設置した後には発電装置の取付けが困難な場所、物理的な配線や結線が困難な場所へ発電装置を予め取り付けておくことができる。更には、発電装置の設計やレイアウトの自由度を高めることができる。
 実施例2は、実施例1の変形であり、具体的には、本発明の第2の構成に関する。実施例2にあっては、複数の熱電発電装置10を備え、各熱電発電装置10の熱応答特性は異なっている。そして、温度制御装置60は、あるいは、温度制御装置60によって、熱応答特性が異なる熱電発電装置10に対応した温度変化に基づき、順次、雰囲気の温度を周期的に変化させる。複数の熱電発電装置10は(あるいは、同じ熱応答特性を有する熱電発電装置群のそれぞれは)、温度制御装置60による雰囲気温度の周期的変化に、経時的に、しかも、個々別々に応答し、複数の熱電発電装置10から、あるいは、特定の熱電発電装置10から、経時的に、別々に、異なる特性を有する電力を外部に取り出すことができる。
 実施例2にあっても、熱電発電装置10は、電子タグ70に接続されており、電子タグ70によって書籍管理が行われる。具体的には、複数の書籍のそれぞれに付けられた電子タグ70を、間接的に、無線電力伝送に基づき、順次作動させる。
 実施例2において、エアーコンディショナーから成る温度制御装置60は、雰囲気に所望の温度変化、例えば、周期(t0)10秒で、温度変化の振幅(ΔTamb)2゜Cの温度変化(便宜上、『温度変化-1』と呼ぶ)を雰囲気に与え、次いで、周期(t0)600秒で、温度変化の振幅(ΔTamb)2゜Cの温度変化(便宜上、『温度変化-2』と呼ぶ)を雰囲気に与える。尚、複数の熱電発電装置において、一部の熱電発電装置は、温度変化-1において熱電発電し、温度変化-2において熱電発電しないように、設計されている。また、複数の熱電発電装置において、残りの熱電発電装置は、温度変化-2において熱電発電し、温度変化-1において熱電発電しないように、設計されている。後述する実施例3においても同様である。
 より具体的には、例えば、夜間、書籍が保管された室の雰囲気温度を、上述したとおり、エアーコンディショナーから成る温度制御装置60によって変化させる。これによって、温度変化-1にあっては、複数の熱電発電装置の一部(便宜上、『熱電発電装置群-1』と呼ぶ)において、9ミリボルト、0.3マイクロアンペアの電流が生成される。この温度変化-1にあっては、複数の熱電発電装置の残り(便宜上、『熱電発電装置群-2』と呼ぶ)において電力の生成は生じない。従って、熱電発電装置群-1が取り付けられた電子タグ70は駆動されるが、熱電発電装置群-2が取り付けられた電子タグ70は駆動されない。一方、温度変化-2にあっては、熱電発電装置群-2において、7ミリボルト、0.25マイクロアンペアの電流が生成される。この温度変化-2にあっては、熱電発電装置群-1において電力の生成は生じない。従って、熱電発電装置群-2が取り付けられた電子タグ70は駆動されるが、熱電発電装置群-1が取り付けられた電子タグ70は駆動されない。こうして、熱電発電装置群-1が取り付けられた書籍群と、熱電発電装置群-2が取り付けられた書籍群において、書籍管理を別々に行うことができる。尚、熱電発電装置を並列・直列にスタックし、適宜、昇圧・電流増幅を行うこともできる。
 実施例3も、実施例1の変形であり、具体的には、本発明の第3の構成に関する。実施例3にあっては、複数の熱電発電装置10を備え、各熱電発電装置10の熱応答特性は異なり、温度制御装置60は、あるいは、温度制御装置60によって、熱応答特性が異なる熱電発電装置10に対応した合成された温度変化に基づき、雰囲気の温度を周期的に変化させる。複数の熱電発電装置10は(あるいは、同じ熱応答特性を有する熱電発電装置群のそれぞれは)は、温度制御装置60による雰囲気温度の周期的変化に、同時に、しかも、個々別々に応答し、複数の熱電発電装置10から、同時に、種々の特性を有する電力を外部に取り出すことができる。
 実施例3にあっても、熱電発電装置10は、電子タグ70に接続されており、電子タグ70によって書籍管理が行われる。具体的には、複数の書籍のそれぞれに付けられた電子タグ70を、間接的に、無線電力伝送に基づき、順次作動させる。
 実施例3にあっては、エアーコンディショナーから成る温度制御装置60は、雰囲気に所望の温度変化、例えば、周期(t0)10秒で、温度変化の振幅(ΔTamb)2゜Cの温度変化-1を雰囲気に与え、同時に、周期(t0)600秒で、温度変化の振幅(ΔTamb)2゜Cの温度変化-2を雰囲気に与える。即ち、実際には、温度変化-1と温度変化-2を合成した温度変化を生じさせる。
 より具体的には、例えば、夜間、書籍が保管された室の雰囲気温度を、上述したとおり、エアーコンディショナーから成る温度制御装置60によって変化させる。これによって、温度変化-1に基づき、熱電発電装置群-1において、8ミリボルト、0.1マイクロアンペアの電流が生成され、熱電発電装置群-1が取り付けられた電子タグ70が駆動される。同時に、温度変化-2に基づき、熱電発電装置群-2において、3ミリボルト、0.1マイクロアンペアの電流が生成され、熱電発電装置群-2が取り付けられた電子タグ70が駆動される。こうして、熱電発電装置群-1が取り付けられた書籍群と、熱電発電装置群-2が取り付けられた書籍群において、書籍管理を別々に行うことができる。尚、熱電発電装置10を並列・直列にスタックし、適宜、昇圧・電流増幅を行うこともできる。
 ところで、従来の熱電発電装置にあっては、受熱部と放熱部との間に温度差が存在することが必須である。従って、例えば、受熱部の熱が熱電変換素子の熱伝導によって放熱部に流入し、受熱部と放熱部との間に温度差が無くなった場合、熱電発電はできなくなる。また、そもそも、発熱源から受熱部に熱が流入しない場合、発電ができない。それ故、従来の熱電発電装置を、例えば通常の生活環境下に放置した場合、即ち、例えば室内に熱電発電装置を放置した場合、熱電発電を行うことは困難である。また、従来の熱電発電装置によって、常時、熱電発電を行うことができる状況は限られており、特に、常温域での常時熱電発電は困難である。また、通常、センシング装置はエネルギーを必要とし、このエネルギーは、一般に、電池や商用電源から給電される。そのため、電池の交換や充電とされるし、結線されている場合、利用に制約を受けるという問題がある。また、体温で発電する発電装置を搭載したものもあるが、センシング装置と発電装置を、別途、設ける必要があり、装置のサイズが大きなものとなり、あるいは又、複雑化してしまう。
 以下に、各種の熱電発電装置及び熱電発電方法を、具体的に説明するが、これらの熱電発電装置にあっては、上述したとおり、特に発熱源が存在しなくとも熱電発電を行うことができる。
 実施例4は、第1の態様に係る熱電発電装置及び第1の態様に係る熱電発電方法に関する。実施例4の熱電発電装置の模式的な一部断面図を図4の(A)に示し、第1支持部材の温度(TA)と第2支持部材の温度(TB)、これらの温度の温度差(ΔT=TB-TA)の変化、及び、第1出力部と第2出力部との間の電圧V1-2の変化を、模式的に図4の(B)に示す。尚、各実施例を説明する図面においては、4個あるいは8個の熱電変換素子、熱電変換部材を図示しているが、熱電変換素子、熱電変換部材の数は、これらに限定するものではない。
 実施例4あるいは後述する実施例5の熱電発電装置は、
 (A)第1支持部材11、
 (B)第1支持部材11と対向して配置された第2支持部材12、
 (C)第1支持部材11と第2支持部材12との間に配置された熱電変換素子、並びに、
 (D)熱電変換素子に接続された第1出力部41及び第2出力部42、
を備えている。
 そして、実施例4あるいは後述する実施例5における熱電変換素子は、
 (C-1)第1支持部材11と第2支持部材12との間に配置された第1熱電変換部材21A,21B、及び、
 (C-2)第1支持部材11と第2支持部材12との間に配置され、第1熱電変換部材21A,21Bを構成する材料とは異なる材料から構成され、第1熱電変換部材21A,21Bと電気的に直列に接続された第2熱電変換部材22A,22B、から成る。
 更には、実施例4あるいは後述する実施例5の熱電発電装置にあっては、より具体的には、第1熱電変換部材21A,21Bと第2熱電変換部材22A,22Bとは、第2支持部材12に設けられた配線32によって電気的に直列に接続されており、更には、第2熱電変換部材22A,22Bと第1熱電変換部材21A,21Bとは、第1支持部材11に設けられた配線31によって電気的に直列に接続されている。また、第1出力部41は、第1熱電変換部材21A,21Bの第1支持部材側の端部に接続されており、第2出力部42は、第2熱電変換部材22A,22Bの第1支持部材側の端部に接続されている。
 ここで、第1支持部材11はAl23から成り、第2支持部材12はエポキシ樹脂から成る。第1熱電変換部材あるいは後述する第3熱電変換部材、第1A熱電変換部材、第2A熱電変換部材、第3A熱電変換部材及び第4A熱電変換部材は、p型導電型を示すビスマス・テルル・アンチモンから成り、第2熱電変換部材あるいは後述する第4熱電変換部材、第1B熱電変換部材、第2B熱電変換部材、第3B熱電変換部材及び第4B熱電変換部材は、n型導電型を示すビスマス・テルルから成る。第1出力部41、第2出力部42、配線31,32は、支持部材側から、チタン層、金層、ニッケル層の多層構造から構成されている。熱電変換部材と配線との接合は、周知の接合技術を用いればよい。また、第1熱電変換部材、第1熱電変換素子のゼーベック係数をSB1、第2熱電変換部材、第2熱電変換素子のゼーベック係数をSB2、第3熱電変換部材、第3熱電変換素子のゼーベック係数をSB3、第4熱電変換部材、第4熱電変換素子のゼーベック係数をSB4とする。後述する実施例5~実施例13においても同様である。
 そして、実施例4の熱電発電装置にあっては、第1支持部材11と接する第1熱電変換部材21Aの第1面21A1の面積をS11、第2支持部材12と接する第1熱電変換部材21Aの第2面21A2の面積をS12(但し、S11>S12)、第1支持部材11と接する第2熱電変換部材22Aの第1面22A1の面積をS21、第2支持部材12と接する第2熱電変換部材22Aの第2面22A2の面積をS22(但し、S21>S22)とし、第1支持部材11の熱応答時定数をτSM1、第2支持部材12の熱応答時定数をτSM2としたとき、τSM1>τSM2
である。実施例4にあっては、更には、
12 ≠S22
である。尚、第1熱電変換部材21A及び第2熱電変換部材22Aは、切頭錐形状、より具体的には、切頭四角錐形状を有する。
 実施例4あるいは後述する実施例5の熱電発電方法にあっては、熱電発電装置を温度が変化する雰囲気に配する。そして、第2支持部材12の温度が第1支持部材11の温度よりも高いとき、第1支持部材11と第2支持部材12との温度差に起因して生成し、第2熱電変換部材22A,22Bから第1熱電変換部材21A,21Bへと流れる電流を、第1出力部41を正極(プラス極)、第2出力部42を負極(マイナス極)として、外部に取り出す。この場合、第1出力部41と第2出力部42との間には交流が流れるので、周知の半波整流回路を用いて直流に変換し、更に、平滑化を行えばよい。尚、第1支持部材11の温度が第2支持部材12の温度よりも高いとき、第1支持部材11と第2支持部材12との温度差に起因して生成し、第1熱電変換部材21A,21Bから第2熱電変換部材22A,22Bへと流れる電流を、第2出力部42を正極、第1出力部41を負極として、外部に取り出すことができる。そして、この場合には、周知の全波整流回路を用いて交流を直流に変換し、更に、平滑化を行えばよい。
 ここで、τSM1>τSM2であるが故に、温度が変化する雰囲気(図4の(B)において、楕円「A」で囲った時刻における雰囲気温度をTambとする)に熱電発電装置を配したとき、第2支持部材12の温度TBは、速やかに雰囲気温度Tambあるいはその近傍の温度となる。一方、τSM1>τSM2であるが故に、第1支持部材11の温度TAは、第2支持部材12の温度変化に遅れて変化する。従って、第1支持部材11の温度TA(<Tamb)と第2支持部材12の温度TB(=Tamb)との間には、温度差ΔT(=TB-TA)が生じる。第1支持部材11と接する第1熱電変換部材21Aの第1面21A1の近傍の温度をT11、第2支持部材12と接する第1熱電変換部材21Aの第2面21A2の近傍の温度をT12、第1支持部材11と接する第2熱電変換部材22Aの第1面22A1の近傍の温度をT21、第2支持部材12と接する第2熱電変換部材22Aの第2面22A2の近傍の温度をT22としたとき、概ね、
12=T22>T11=T21
の関係にある。そして、1つの熱電変換素子による起電力EMFは、
EMF=T12×SB1-T21×SB2
で求めることができる。
 雰囲気の温度変化を正弦波状と仮定し、温度変化における最高温度と最低温度の差ΔTambを2゜Cと仮定し、温度変化の周期(TM=2π/ω)を10分と仮定した。そして、このような温度変化に対応して、第2支持部材12の温度TBと第1支持部材11の温度TAとの温度差ΔT(=TB-TA)がどのように変化するかをシミュレーションした結果を、図21に示す。尚、図21において、「B」にて示す曲線は、第2支持部材12の温度TBの温度変化を示し、「A」にて示す曲線は、第1支持部材11の温度TAの温度変化を示す。
 以上のとおり、実施例4、あるいは、後述する実施例5~実施例13の熱電発電装置にあっては、第1支持部材の熱応答時定数τSM1と第2支持部材の熱応答時定数τSM2とが異なっているので、温度が変化する雰囲気に熱電発電装置を配したとき、第1支持部材の温度と第2支持部材の温度との間に温度差が生じ得る。その結果、熱電変換素子、第1熱電変換素子あるいは第2熱電変換素子において熱電発電が生じる。
 実施例5は、第2の態様に係る熱電発電装置及び第2の態様に係る熱電発電方法に関する。実施例5の熱電発電装置の模式的な一部断面図を図5の(A)に示し、第1支持部材の温度(TA)と第2支持部材の温度(TB)、これらの温度の温度差(ΔT=TB-TA)の変化、及び、第1出力部と第2出力部との間の電圧V1-2の変化を、模式的に図5の(B)に示す。
 実施例5にあっては、実施例4と異なり、第1熱電変換部材21B及び第2熱電変換部材22Bは、柱状、より具体的には、四角柱状を有する。そして、第1熱電変換部材21Bの体積をVL1、第2熱電変換部材22Bの体積をVL2、第1支持部材11の熱応答時定数をτSM1、第2支持部材12の熱応答時定数をτSM2としたとき、
τSM1>τSM2
VL1≠VL2(但し、実施例5にあっては、具体的には、VL1<VL2
である。
 ここで、τSM1>τSM2であるが故に、実施例4と同様に、温度が変化する雰囲気(図5の(B)において、楕円「A」で囲った時刻における雰囲気温度をTambとする)に熱電発電装置を配したとき、第2支持部材12の温度TBは、速やかに雰囲気温度Tambあるいはその近傍の温度となる。一方、τSM1>τSM2であるが故に、第1支持部材11の温度TAは、第2支持部材12の温度変化に遅れて変化する。従って、第1支持部材11の温度TA(<Tamb)と第2支持部材12の温度TB(=Tamb)との間には、温度差ΔT(=TB-TA)が生じる。第1支持部材11と接する第1熱電変換部材21Bの第1面21B1の近傍の温度をT11、第2支持部材12と接する第1熱電変換部材21Bの第2面21B2の近傍の温度をT12、第1支持部材11と接する第2熱電変換部材22Bの第1面22B1の近傍の温度をT21、第2支持部材12と接する第2熱電変換部材22Bの第2面22B2の近傍の温度をT22としたとき、VL1<VL2とすれば、
12>T22>T11>T21
12-T11>T22-T21
の関係にある。そして、1つの熱電変換素子による起電力EMFは、
EMF=(T12-T11)×SB1+(T21-T22)×SB2
で求めることができる。
 実施例5において説明した構造を有する熱電発電装置を用い、倍電圧整流回路、昇圧回路(セイコーインスツル株式会社製:昇圧DC-DCコンバータ起動用超低電圧動作チャージポンプIC S-882Z18)を介して電力を取り出した。熱電発電装置の置かれた温度が変化する雰囲気は、
ΔTamb      :約4.5゜C
温度変化の周期TM:15分
であり、風速約1m/秒の空気の流れがある雰囲気とした。このような雰囲気において、熱電発電装置から最大750ミリボルトの電圧が得られた。
 実施例6は、第3の態様に係る熱電発電装置及び第3の態様に係る熱電発電方法に関する。実施例6の熱電発電装置の模式的な一部断面図を図6の(A)に示し、第1支持部材の温度(TA)と第2支持部材の温度(TB)、これらの温度の温度差(ΔT=TB-TA)の変化、及び、第1出力部と第2出力部との間の電圧V1-2の変化を、模式的に図6の(B)に示す。
 実施例6の熱電発電装置は、
 (A)第1支持部材11、
 (B)第1支持部材11と対向して配置された第2支持部材12、
 (C)第1支持部材11と第2支持部材12との間に配置された第1熱電変換素子121C、
 (D)第1支持部材11と第2支持部材12との間に配置された第2熱電変換素子122C、並びに、
 (E)第1出力部141及び第2出力部142、
を備えている。
 そして、実施例6の熱電発電装置において、第1熱電変換素子121Cは、第2支持部材12と接する第1A熱電変換部材121CAと、第1支持部材11と接する第1B熱電変換部材121CBとが、接して配置されて成る(具体的には、積層されて成る)。また、第2熱電変換素子122Cは、第1支持部材11と接する第2A熱電変換部材122CAと、第2支持部材12と接する第2B熱電変換部材122CBとが、接して配置されて成る(具体的には、積層されて成る)。更には、第1熱電変換素子121Cと第2熱電変換素子122Cとは電気的に直列に接続されている。また、第1出力部141は、第1B熱電変換部材121CBの端部に接続されており、第2出力部142は、第2A熱電変換部材122CAの端部に接続されている。第1A熱電変換部材121CAと第2B熱電変換部材122CBとは、第2支持部材12に設けられた配線32によって電気的に接続されており、第2A熱電変換部材122CAと第1B熱電変換部材121CBとは、第1支持部材11に設けられた配線31によって電気的に接続されている。
 更には、第1支持部材11の熱応答時定数をτSM1、第2支持部材12の熱応答時定数をτSM2としたとき、
τSM1≠τSM2
である。第1熱電変換素子121C及び第2熱電変換素子122Cは、柱状、より具体的には、四角柱状である。
 実施例6の熱電発電方法にあっては、熱電発電装置を温度が変化する雰囲気に配する。そして、第2支持部材12の温度が第1支持部材11の温度よりも高いとき、第1支持部材11と第2支持部材12との温度差に起因して生成し、第2熱電変換素子122Cから第1熱電変換素子121Cへと流れる電流を、第1出力部141を正極、第2出力部142を負極として、外部に取り出す。この場合、第1出力部141と第2出力部142との間には交流が流れるので、周知の半波整流回路を用いて直流に変換し、更に、平滑化を行えばよい。尚、第1支持部材11の温度が第2支持部材12の温度よりも高いとき、第1支持部材11と第2支持部材12との温度差に起因して生成し、第1熱電変換素子121Cから第2熱電変換素子122Cへと流れる電流を、第2出力部142を正極、第1出力部141を負極として、外部に取り出すことができる。この場合には、周知の全波整流回路を用いて交流を直流に変換し、更に、平滑化を行えばよい。
 ここで、τSM1>τSM2としたとき、温度が変化する雰囲気(図6の(B)において、楕円「A」で囲った時刻における雰囲気温度をTambとする)に熱電発電装置を配すれば、第2支持部材12の温度TBは、速やかに雰囲気温度Tambあるいはその近傍の温度となる。一方、τSM1>τSM2であるが故に、第1支持部材11の温度TAは、第2支持部材12の温度変化に遅れて変化する。従って、第1支持部材11の温度TA(<Tamb)と第2支持部材12の温度TB(=Tamb)との間には、温度差ΔT(=TB-TA)が生じる。第2支持部材12と接する第1熱電変換素子121Cの第2面121C2及び第2熱電変換素子122Cの第2面122C2の近傍の温度をT2とし、第1支持部材11と接する第1熱電変換素子121Cの第1面121C1及び第2熱電変換素子122Cの第1面122C1の近傍の温度をT1としたとき、
2>T1
の関係にある。そして、1組の熱電変換素子121C,122Cによる起電力EMFは、
EMF=T2×SB1-T1×SB2
で求めることができる。
 実施例7は、実施例6の変形である。実施例6においては、第1熱電変換素子121C及び第2熱電変換素子122Cを積層型とした。即ち、第1A熱電変換部材121CAと第1B熱電変換部材121CBとを積層し、第2A熱電変換部材122CAとと第2B熱電変換部材122CBとを積層した。一方、実施例7においては、第1熱電変換素子221C及び第2熱電変換素子222Cを水平配置型とする。実施例7の熱電発電装置の模式的な一部平面図を図7に示し、図7に示した実施例7の熱電発電装置の矢印A-A、矢印B-B、矢印C-C、矢印D-D、矢印E-Eに沿った模式的な一部断面図を、図8の(A)、(B)、(C)、(D)及び(E)に示す。尚、図7においては、熱電発電装置の構成要素を明確化するために、斜線を付した。
 実施例7にあっては、第1熱電変換素子221Cは、第2支持部材212と接する第1A熱電変換部材221CAと、第1支持部材211と接する第1B熱電変換部材221CBとが、水平方向に接して配置されて成る。また、第2熱電変換素子222Cは、第1支持部材211と接する第2A熱電変換部材222CAと、第2支持部材212と接する第2B熱電変換部材222CBとが、水平方向に接して配置されて成る。より具体的には、第1A熱電変換部材221CAと第1B熱電変換部材221CBとは、接合部材213を介して、端面と端面とが水平方向において接している。同様に、第2A熱電変換部材222CAと第2B熱電変換部材222CBとは、接合部材213を介して、端面と端面とが水平方向において接している。更には、第1A熱電変換部材221CAの端部及び第2B熱電変換部材222CBの端部に下方には、第2支持部材212が配置されており、第1A熱電変換部材221CA及び第2B熱電変換部材222CBは、第2支持部材212によって支持されている。同様に、第1B熱電変換部材221CBの端部及び第2A熱電変換部材222CAの端部に下方には、第1支持部材211が配置されており、第1B熱電変換部材221CB及び第2A熱電変換部材222CAは、第1支持部材211によって支持されている。
 更には、第1熱電変換素子221Cと第2熱電変換素子222Cとは電気的に直列に接続されている。また、第1出力部241は、第1B熱電変換部材221CBの端部に接続されており、第2出力部242は、第2A熱電変換部材222CAの端部に接続されている。第1A熱電変換部材221CAと第2B熱電変換部材222CBとは、第2支持部材212に設けられた配線232によって電気的に接続されており、第2A熱電変換部材222CAと第1B熱電変換部材221CBとは、第1支持部材12に設けられた配線231によって電気的に接続されている。
 そして,実施例6と同様に、第1支持部材211の熱応答時定数をτSM1、第2支持部材212の熱応答時定数をτSM2としたとき、
τSM1≠τSM2
である。第1熱電変換素子221C及び第2熱電変換素子222Cは、直方体(平板状)である。
 実施例7の熱電発電方法にあっては、熱電発電装置を温度が変化する雰囲気に配する。そして、第2支持部材212の温度が第1支持部材211の温度よりも高いとき、第1支持部材211と第2支持部材212との温度差に起因して生成し、第2熱電変換素子222Cから第1熱電変換素子221Cへと流れる電流を、第1出力部241を正極、第2出力部242を負極として、外部に取り出す。この場合、第1出力部241と第2出力部242との間には交流が流れるので、周知の半波整流回路を用いて直流に変換し、更に、平滑化を行えばよい。尚、第1支持部材211の温度が第2支持部材212の温度よりも高いとき、第1支持部材211と第2支持部材212との温度差に起因して生成し、第1熱電変換素子221Cから第2熱電変換素子222Cへと流れる電流を、第2出力部242を正極、第1出力部241を負極として、外部に取り出すことができる。この場合には、周知の全波整流回路を用いて交流を直流に変換し、更に、平滑化を行えばよい。
 ここで、τSM1>τSM2としたとき、温度が変化する雰囲気(図6の(B)において、楕円「A」で囲った時刻における雰囲気温度をTambとする)に熱電発電装置を配すれば、第2支持部材212の温度TBは、速やかに雰囲気温度Tambあるいはその近傍の温度となる。一方、τSM1>τSM2であるが故に、第1支持部材211の温度TAは、第2支持部材212の温度変化に遅れて変化する。従って、第1支持部材211の温度TA(<Tamb)と第2支持部材212の温度TB(=Tamb)との間には、温度差ΔT(=TB-TA)が生じる。第2支持部材212と接する第1A熱電変換部材221CA及び第2B熱電変換部材222CBの近傍の温度をT2とし、第1支持部材211と接する第1B熱電変換部材221CB及び第2A熱電変換部材222CAの近傍の温度をT1としたとき、
2>T1
の関係にある。そして、1組の熱電変換素子221C,222Cによる起電力EMFは、
EMF=T2×SB1-T1×SB2
で求めることができる。
 場合によっては、接合部材213の熱応答時定数をτSM3としたとき、
τSM3≠τSM1
τSM3≠τSM2
τSM1=τSM2
を満足する構成としてもよい。
 実施例8は、第4Aの態様に係る熱電発電方法に関する。実施例8の熱電発電方法での使用に適した熱電発電装置の模式的な一部断面図を図9の(A)及び(B)に示し、第1支持部材の温度(TA)と第2支持部材の温度(TB)、これらの温度の温度差(ΔT=TB-TA)の変化、第1出力部と第2出力部との間の電圧V1-2の変化、及び、第3出力部と第4出力部との間の電圧V3-4の変化を、模式的に図10に示す。
 実施例8あるいは後述する実施例9~実施例10の熱電発電装置は、
 (A)第1支持部材11、
 (B)第1支持部材11と対向して配置された第2支持部材12、
 (C)第1支持部材11と第2支持部材12との間に配置された第1熱電変換素子、
 (D)第1支持部材11と第2支持部材12との間に配置された第2熱電変換素子、並びに、
 (E)第1出力部41、第2出力部42、第3出力部43、及び、第4出力部44、を備えており、
 第1熱電変換素子は、
 (C-1)第1支持部材11と第2支持部材12との間に配置された第1熱電変換部材21D,21E,21F、及び、
 (C-2)第1支持部材11と第2支持部材12との間に配置され、第1熱電変換部材21D,21E,21Fを構成する材料とは異なる材料から構成され、第1熱電変換部材21D,21E,21Fと電気的に直列に接続された第2熱電変換部材22D,22E,22F、
から成り、
 第2熱電変換素子は、
 (D-1)第1支持部材11と第2支持部材12との間に配置された第3熱電変換部材23D,23E,23F、及び、
 (D-2)第1支持部材11と第2支持部材12との間に配置され、第3熱電変換部材23D,23E,23Fを構成する材料とは異なる材料から構成され、第3熱電変換部材23D,23E,23Fと電気的に直列に接続された第4熱電変換部材24D,24E,24F、
から成る。
 そして、第1出力部41は第1熱電変換部材21D,21E,21Fに接続されており、第2出力部42は第2熱電変換部材22D,22E,22Fに接続されており、第3出力部43は第3熱電変換部材23D,23E,23Fに接続されており、第4出力部44は第4熱電変換部材24D,24E,24Fに接続されている。
 より具体的には、実施例8あるいは後述する実施例9~実施例10において、第1熱電変換部材21D,21E,21Fと第2熱電変換部材22D,22E,22Fとは、第2支持部材12に設けられた配線31Bによって電気的に直列に接続されており、更には、第2熱電変換部材22D,22E,22Fと第1熱電変換部材21D,21E,21Fとは、第1支持部材11に設けられた配線31Aによって電気的に直列に接続されている。また、第3熱電変換部材23D,23E,23Fと第4熱電変換部材24D,24E,24Fとは、第1支持部材11に設けられた配線32Aによって電気的に直列に接続されており、更には、第4熱電変換部材24D,24E,24Fと第3熱電変換部材23D,23E,23Fとは、第2支持部材12に設けられた配線32Bによって電気的に直列に接続されている。
 第1熱電変換部材21Dは、面積S11の第1面21D1、及び、面積S12(但し、S11>S12)の第2面21D2を有し、第2熱電変換部材22Dは、面積S21の第1面22D1、及び、面積S22(但し、S21>S22)の第2面22D2を有し、第3熱電変換部材23Dは、面積S31の第1面23D1、及び、面積S32(但し、S31<S32)の第2面23D2を有し、第4熱電変換部材24Dは、面積S41の第1面24D1、及び、面積S42(但し、S41<S42)の第2面24D2を有する。そして、第1熱電変換部材21D及び第2熱電変換部材22Dの第1面21D1,22D1は第1支持部材11と接しており、第1熱電変換部材21D及び第2熱電変換部材22Dの第2面21D2,22D2は第2支持部材12と接しており、第3熱電変換部材23D及び第4熱電変換部材24Dの第1面23D1,24D1は第1支持部材11と接しており、第3熱電変換部材23D及び第4熱電変換部材24Dの第2面23D2,24D2は第2支持部材12と接している。第1熱電変換部材21D、第2熱電変換部材22D、第3熱電変換部材23D及び第4熱電変換部材24Dは、切頭錐形状、より具体的には、切頭四角錐形状を有する。尚、後述する実施例9の熱電発電装置における第1熱電変換部材~第4熱電変換部材も、以上に説明した実施例8の熱電発電装置における第1熱電変換部材~第4熱電変換部材と同様の構成を有する。
 更には、第1支持部材11の熱応答時定数をτSM1、第2支持部材12の熱応答時定数をτSM2としたとき、
τSM1≠τSM2
である。また、第1熱電変換素子の熱応答時定数をτTE1、第2熱電変換素子の熱応答時定数をτTE2としたとき、
τTE1≠τTE2
である。
 ここで、第1出力部41は、第1熱電変換部材21Dの第1支持部材側の端部に接続されており、第2出力部42は、第2熱電変換部材22Dの第1支持部材側の端部に接続されており、第3出力部43は、第3熱電変換部材23Dの第2支持部材側の端部に接続されており、第4出力部44は、第4熱電変換部材24Dの第2支持部材側の端部に接続されている。即ち、第1出力部41及び第2出力部42と、第3出力部43及び第4出力部44とは、異なる支持部材に配置されている。
 実施例8の熱電発電方法にあっては、熱電発電装置を温度が変化する雰囲気に配する。そして、第2支持部材12の温度が第1支持部材11の温度よりも高いとき、第1支持部材11と第2支持部材12との温度差に起因して生成し、第2熱電変換部材22Dから第1熱電変換部材21Dへと流れる電流を、第1出力部41を正極、第2出力部42を負極として、外部に取り出す。一方、第1支持部材11の温度が第2支持部材12の温度よりも高いとき、第1支持部材11と第2支持部材12との温度差に起因して生成し、第4熱電変換部材24Dから第3熱電変換部材23Dへと流れる電流を、第3出力部43を正極、第4出力部44を負極として、外部に取り出す。この場合、第1出力部41と第2出力部42との間には交流が流れ、第3出力部43と第4出力部44との間には交流が流れるので、周知の半波整流回路を用いて直流に変換し、更に、平滑化を行えばよい。ここで、図20の(A)に示す回路を用いて交流を直流に変換し、更に、平滑化を行えばよい。あるいは又、図20の(B)に示す回路を用いて交流を直流に変換し、更に、平滑化を行い、2次電池(例えば、薄膜バッテリから成る)に蓄電すればよい。図20の(A)あるいは(B)に示す整流回路は、他の実施例にも適用することができる。尚、第1出力部41を正極、第2出力部42を負極として、外部に取り出される電圧の位相(便宜上、『位相-1』と呼ぶ)と、第3出力部43を正極、第4出力部44を負極として、外部に取り出される電圧の位相(便宜上、『位相-2』と呼ぶ)とは、概ね、180度ずれている。即ち、位相-1と位相-2とは、逆位相、あるいは概ね逆位相の関係にある。
 第1支持部材11の温度が第2支持部材12の温度よりも高いとき、第1支持部材11と第2支持部材12との温度差に起因して生成し、第1熱電変換部材21Dから第2熱電変換部材22Dへと流れる電流を、第2出力部42を正極、第1出力部41を負極として、外部に取り出すことができる。また、第2支持部材12の温度が第1支持部材11の温度よりも高いとき、第3熱電変換部材23Dから第4熱電変換部材24Dへと流れる電流を、第4出力部44を正極、第3出力部43を負極として、外部に取り出すことができる。この場合には、全波整流回路を用いて交流を直流に変換し、更に、平滑化を行えばよい。以上の議論は、後述する実施例9~実施例10にも適用することができる。
 実施例9は、第4の態様に係る熱電発電装置、及び、第4Bの態様に係る熱電発電方法に関する。実施例9の熱電発電装置の模式的な一部断面図を図11の(A)及び(B)に示し、第1支持部材の温度(TA)と第2支持部材の温度(TB)、これらの温度の温度差(ΔT=TB-TA)の変化、第1出力部と第2出力部との間の電圧V1-2の変化、及び、第3出力部と第4出力部との間の電圧V3-4の変化を、模式的に図12に示す。
 実施例9の熱電発電装置にあっては、実施例8の熱電発電装置と同様に、第1出力部41は、第1熱電変換部材21Eの第1支持部材側の端部に接続されており、第2出力部42は、第2熱電変換部材22Eの第1支持部材側の端部に接続されている。しかしながら、第3出力部43は、第3熱電変換部材23Eの第1支持部材側の端部に接続されており、第4出力部44は、第4熱電変換部材24Eの第1支持部材側の端部に接続されている。即ち、第1出力部41及び第2出力部42と、第3出力部43及び第4出力部44とは、同じ支持部材に配置されている。
 そして、実施例9にあっては、第1支持部材11の熱応答時定数をτSM1、第2支持部材12の熱応答時定数をτSM2、第1熱電変換素子の熱応答時定数をτTE1、第2熱電変換素子の熱応答時定数をτTE2としたとき、
τSM1≠τSM2
τTE1≠τTE2
である。
 実施例9の熱電発電方法にあっては、熱電発電装置を温度が変化する雰囲気に配する。そして、第2支持部材12の温度が第1支持部材11の温度よりも高いとき、第1支持部材11と第2支持部材12との温度差に起因して生成し、第2熱電変換部材22Eから第1熱電変換部材21Eへと流れる電流を、第1出力部41を正極、第2出力部42を負極として、外部に取り出し、且つ、第4熱電変換部材24Eから第3熱電変換部材23Eへと流れる電流を、第3出力部43を正極、第4出力部44を負極として、外部に取り出す。この場合、第1出力部41と第2出力部42との間には交流が流れ、第3出力部43と第4出力部44との間には交流が流れるので、例えば、図20の(C)に示す全波整流回路を用いて交流を直流に変換し、更に、平滑化を行えばよい。図20の(C)に示す全波整流回路は、他の実施例にも適用することができる。尚、第1出力部41を正極、第2出力部42を負極として、外部に取り出される電圧の位相-1と、第3出力部43を正極、第4出力部44を負極として、外部に取り出される電圧の位相-2とは、0度を超え、180度未満、ずれている。
 実施例10は、実施例9の変形である。実施例10の熱電発電装置の模式的な一部断面図を図13の(A)及び(B)に示し、第1支持部材の温度(TA)と第2支持部材の温度(TB)、これらの温度の温度差(ΔT=TB-TA)の変化、第1出力部と第2出力部との間の電圧V1-2の変化、及び、第3出力部と第4出力部との間の電圧V3-4の変化を、模式的に図14に示す。
 実施例9の熱電発電装置にあっては、第1熱電変換部材21E、第2熱電変換部材22E、第3熱電変換部材23E及び第4熱電変換部材24Eの形状を切頭四角錐形状とした。これに対して、実施例10の熱電発電装置にあっては、第1熱電変換部材21F、第2熱電変換部材22F、第3熱電変換部材23F及び第4熱電変換部材24Fの形状を四角柱状とした。更には、第1熱電変換部材21の体積をVL1、第2熱電変換部材22の体積をVL2、第3熱電変換部材23の体積をVL3、第4熱電変換部材24の体積をVL4としたとき、
VL1≠VL3
VL2≠VL4
であるし、
VL1≠VL2
VL3≠VL4
である。以上の点を除き、実施例10の熱電発電装置、熱電発電方法は、実施例9の熱電発電装置、熱電発電方法と同様とすることができるので、詳細な説明は省略する。
 実施例11は、第5Aの態様に係る熱電発電方法に関する。実施例11の熱電発電方法での使用に適した熱電発電装置の模式的な一部断面図を図15の(A)及び(B)に示し、第1支持部材の温度(TA)と第2支持部材の温度(TB)、これらの温度の温度差(ΔT=TB-TA)の変化、第1出力部と第2出力部との間の電圧V1-2の変化、及び、第3出力部と第4出力部との間の電圧V3-4の変化を、模式的に図16に示す。
 実施例11あるいは後述する実施例12~実施例13における熱電発電装置は、
 (A)第1支持部材11、
 (B)第1支持部材11と対向して配置された第2支持部材12、
 (C)第1支持部材11と第2支持部材12との間に配置された第1熱電変換素子121G,121H,121J、
 (D)第1支持部材11と第2支持部材12との間に配置された第2熱電変換素子122G,122H,122J、
 (E)第1支持部材11と第2支持部材12との間に配置された第3熱電変換素子123G,123H,123J、
 (F)第1支持部材11と第2支持部材12との間に配置された第4熱電変換素子124G,124H,124J、並びに、
 (G)第1出力部141、第2出力部142、第3出力部143、及び、第4出力部144、
を備えており、
 第1熱電変換素子121G,121H,121Jは、第2支持部材12と接する第1A熱電変換部材121GA、121HGA,121JAと、第1支持部材11と接する第1B熱電変換部材121GB,121HB,121JBとが、接して配置されて成り(具体的には積層されて成り)、
 第2熱電変換素子122G,122H,122Jは、第1支持部材11と接する第2A熱電変換部材122GA,122HA,122JAと、第2支持部材12と接する第2B熱電変換部材122GB,122HB,122JBとが、接して配置されて成り(具体的には積層されて成り)、
 第3熱電変換素子123G,123H,123Jは、第2支持部材12と接する第3A熱電変換部材123GA,123HA,123JAと、第1支持部材11と接する第3B熱電変換部材123GB,123HB,123JBとが、接して配置されて成り(具体的には積層されて成り)、
 第4熱電変換素子124G,124H,124Jは、第1支持部材11と接する第4A熱電変換部材124GA,124HA,124JAと、第2支持部材12と接する第4B熱電変換部材124GB,124HB,124JBとが、接して配置されて成る(具体的には積層されて成る)。
 そして、第1熱電変換素子121G,121H,121Jと第2熱電変換素子122G,122H,122Jとは電気的に直列に接続されており、第3熱電変換素子123G,123H,123Jと第4熱電変換素子124G,124H,124Jとは電気的に直列に接続されている。また、第1出力部141は第1熱電変換素子121G,121H,121Jに接続されており、第2出力部142は第2熱電変換素子122G,122H,122Jに接続されており、第3出力部143は第3熱電変換素子123G,123H,123Jに接続されており、第4出力部144は第4熱電変換素子124G,124H,124Jに接続されている。即ち、第1出力部141及び第2出力部142と、第3出力部143及び第4出力部144とは、異なる支持部材に配置されている。
 具体的には、実施例11にあっては、第1出力部141は、第1B熱電変換部材121GBの端部に接続されており、第2出力部142は第2A熱電変換部材122GAの端部に接続されており、第3出力部143は第3A熱電変換部材123GAの端部に接続されており、第4出力部144は第4B熱電変換部材124GBの端部に接続されている。具体的には、第1A熱電変換部材121GAと第2B熱電変換部材122GBとは、第2支持部材12に設けられた配線31Bによって電気的に接続されており、第2A熱電変換部材122GAと第1B熱電変換部材121GBとは、第1支持部材11に設けられた配線31Aによって電気的に接続されており、第3A熱電変換部材123GAと第4B熱電変換部材124GBとは、第2支持部材12に設けられた配線32Bによって電気的に接続されており、第4A熱電変換部材124GAと第3B熱電変換部材123GBとは、第1支持部材11に設けられた配線32Aによって電気的に接続されている。
 更には、実施例11にあっては、第1支持部材11の熱応答時定数をτSM1、第2支持部材12の熱応答時定数をτSM2としたとき、
τSM1≠τSM2
である。第1熱電変換素子121G、第2熱電変換素子122G、第3熱電変換素子123G及び第4熱電変換素子124Gは、柱状、より具体的には、四角柱状を有する。
 実施例11の熱電発電方法にあっては、熱電発電装置を温度が変化する雰囲気に配する。そして、第2支持部材12の温度が第1支持部材11の温度よりも高いとき、第1支持部材11と第2支持部材12との温度差に起因して生成し、第2熱電変換素子122Gから第1熱電変換素子121Gへと流れる電流を、第1出力部141を正極、第2出力部142を負極として、外部に取り出す。一方、第1支持部材11の温度が第2支持部材12の温度よりも高いとき、第1支持部材11と第2支持部材12との温度差に起因して生成し、第3熱電変換素子123Gから第4熱電変換素子124Gへと流れる電流を、第4出力部144を正極、第3出力部143を負極として、外部に取り出す。この場合、第1出力部141と第2出力部142との間には交流が流れ、第3出力部143と第4出力部144との間には交流が流れるので、周知の半波整流回路を用いて直流に変換し、更に、平滑化を行えばよい。尚、第1出力部子141を正極、第2出力部142を負極として、外部に取り出される電圧の位相-1と、第4出力部144を正極、第3出力部143を負極として、外部に取り出される電圧の位相-2とは、概ね、180度ずれている。即ち、位相-1と位相-2とは、逆位相、あるいは概ね逆位相の関係にある。
 第1支持部材11の温度が第2支持部材12の温度よりも高いとき、第1支持部材11と第2支持部材12との温度差に起因して生成し、第1熱電変換素子121Gから第2熱電変換素子122Gへと流れる電流を、第2出力部142を正極、第1出力部141を負極として、外部に取り出すことができる。また、第2支持部材12の温度が第1支持部材11の温度よりも高いとき、第4熱電変換素子124Gから第3熱電変換素子123Gへと流れる電流を、第3出力部143を正極、第4出力部144を負極として、外部に取り出すことができる。この場合、周知の全波整流回路を用いて交流を直流に変換し、更に、平滑化を行えばよい。尚、以上の議論は、後述する実施例12~実施例13にも適用することができる。
 ここで、τSM1>τSM2としたとき、温度が変化する雰囲気(図16において、楕円「A」で囲った時刻における雰囲気温度をTambとする)に熱電発電装置を配すれば、第2支持部材12の温度TBは、速やかに雰囲気温度Tambあるいはその近傍の温度となる。一方、τSM1>τSM2であるが故に、第1支持部材11の温度TAは、第2支持部材12の温度変化に遅れて変化する。従って、第1支持部材11の温度TA(<Tamb)と第2支持部材12の温度TB(=Tamb)との間には、温度差ΔT(=TB-TA)が生じる。第2支持部材12と接する第1A熱電変換部材121GAの第2面121G2及び第2B熱電変換部材122GBの第2面122G2の近傍の温度をT2、第1支持部材11と接する第1B熱電変換部材121GBの第1面121G1及び第2A熱電変換部材122GAの第1面122G1の近傍の温度をT1、第2支持部材12と接する第3A熱電変換部材123GAの第2面123G2及び第4B熱電変換部材124GBの第2面124G2の近傍の温度をT4、第1支持部材11と接する第3B熱電変換部材123GBの第1面123G1及び第4A熱電変換部材124GAの第1面124G1の近傍の温度をT3としたとき、
2>T1
4>T3
の関係にある。そして、1組の第1熱電変換素子及び第2熱電変換素子による起電力EMF1、1組の第3熱電変換素子及び第4熱電変換素子による起電力EMF2は、
EMF1=T2×SB1-T1×SB2
EMF2=T4×SB3-T3×SB4
で求めることができる。
 実施例12は、第5の態様に係る熱電発電装置、及び、第5Bの態様に係る熱電発電方法に関する。実施例12の熱電発電装置の模式的な一部断面図を図17の(A)及び(B)に示し、第1支持部材の温度(TA)と第2支持部材の温度(TB)、これらの温度の温度差(ΔT=TB-TA)の変化、第1出力部と第2出力部との間の電圧V1-2の変化、及び、第3出力部と第4出力部との間の電圧V3-4の変化を、模式的に図18に示す。
 実施例12あるいは後述する実施例13にあっては、第1出力部141は第1B熱電変換部材121HB,121JBの端部に接続されており、第2出力部142は第2A熱電変換部材122HA,122JAの端部に接続されており、第3出力部143は第3B熱電変換部材123HB,123JBの端部に接続されており、第4出力部144は第4A熱電変換部材124HA,124JAの端部に接続されている。即ち、第1出力部141及び第2出力部142と、第3出力部143及び第4出力部144とは、同じ支持部材に配置されている。第1A熱電変換部材121HA,121JAと第2B熱電変換部材122HB,122JBとは、第2支持部材12に設けられた配線31Bによって電気的に接続されており、第1B熱電変換部材121HB,121JBと第2A熱電変換部材122HA,122JAとは、第1支持部材11に設けられた配線31Aによって電気的に接続されており、第3A熱電変換部材123HA,123JAと第4B熱電変換部材124HB,124JBとは、第2支持部材12に設けられた配線32Bによって電気的に接続されており、第3B熱電変換部材123HB,123JBと第4A熱電変換部材124HA,124JAとは、第1支持部材11に設けられた配線32Aによって電気的に接続されている。
 更には、第1支持部材11の熱応答時定数をτSM1、第2支持部材12の熱応答時定数をτSM2、第1熱電変換素子121H,121Jの熱応答時定数をτTE1、第2熱電変換素子122H,122Jの熱応答時定数をτTE2、第3熱電変換素子123H,123Jの熱応答時定数をτTE3、第4熱電変換素子124H,124Jの熱応答時定数をτTE4としたとき、
τTE1≠τTE3
τTE2≠τTE4
である。また、実施例12にあっては、第1熱電変換素子121Hの体積をVL1、第2熱電変換素子122Hの体積をVL2、第3熱電変換素子123Hの体積をVL3、第4熱電変換素子124Hの体積をVL4としたとき、
VL1=VL2≠VL3=VL4(但し、実施例12にあっては、具体的には、VL1=VL2<VL3=VL4
である。第1熱電変換素子121H、第2熱電変換素子122H、第3熱電変換素子123H及び第4熱電変換素子124Hは、柱状、より具体的には、四角柱状を有する。
 実施例12の熱電発電方法にあっては、熱電発電装置を温度が変化する雰囲気に配する。そして、第2支持部材12の温度が第1支持部材11の温度よりも高いとき、第1支持部材11と第2支持部材12との温度差に起因して生成し、第2熱電変換素子122Hから第1熱電変換素子121Hへと流れる電流を、第1出力部141を正極、第2出力部142を負極として、外部に取り出し、且つ、第4熱電変換素子124Hから第3熱電変換素子123Hへと流れる電流を、第3出力部143を正極、第4出力部144を負極として、外部に取り出す。この場合、第1出力部141と第2出力部142との間には交流が流れ、第3出力部143と第4出力部144との間には交流が流れるので、周知の半波整流回路を用いて直流に変換し、更に、平滑化を行えばよい。尚、第1出力部141を正極、第2出力部142を負極として、外部に取り出される電圧の位相-1と、第3出力部143を正極、第4出力部144を負極として、外部に取り出される電圧の位相-2とは、0度を超え、180度未満、ずれている。
 ここで、τSM1>τSM2としたとき、温度が変化する雰囲気(図18において、楕円「A」で囲った時刻における雰囲気温度をTambとする)に熱電発電装置を配すれば、第2支持部材12の温度TBは、速やかに雰囲気温度Tambあるいはその近傍の温度となる。一方
、τSM1>τSM2であるが故に、第1支持部材11の温度TAは、第2支持部材12の温度変化に遅れて変化する。従って、第1支持部材11の温度TA(<Tamb)と第2支持部材12の温度TB(=Tamb)との間には、温度差ΔT(=TB-TA)が生じる。第2支持部材12と接する第1A熱電変換部材121HAの第2面121H2及び第2B熱電変換部材122HBの第2面122H2の近傍の温度をT2、第1支持部材11と接する第1A熱電変換部材121HAの第1面121H1及び第2B熱電変換部材122HBの第1面122H1の近傍の温度をT1、第2支持部材12と接する第3A熱電変換部材123HAの第2面123H2及び第4B熱電変換部材124HBの第2面124H2の近傍の温度をT4、第1支持部材11と接する第3A熱電変換部材123HAの第1面123H1及び第4B熱電変換部材124HBの第1面124H1の近傍の温度をT3としたとき、
2>T1
4>T3
の関係にある。そして、1組の第1熱電変換素子及び第2熱電変換素子による起電力EMF1、1組の第3熱電変換素子及び第4熱電変換素子による起電力EMF2は、
EMF1=T2×SB1-T1×SB2
EMF2=T4×SB3-T3×SB4
で求めることができる。
 実施例13は、実施例12の変形である。実施例13の熱電発電装置の模式的な一部断面図を図19の(A)及び(B)に示す。
 実施例12の熱電発電装置にあっては、第1熱電変換素子121H、第2熱電変換素子122H、第3熱電変換素子123H及び第4熱電変換素子124Hの形状を四角柱状とした。これに対して、実施例13の熱電発電装置にあっては、第1熱電変換素子121J、第2熱電変換素子122J、第3熱電変換素子123J及び第4熱電変換素子124Jの形状を切頭四角錐形状とした。具体的には、第2支持部材12と接する第1A熱電変換部材121JAの部分(第2面121J2)の面積をS12、第2支持部材12と接する第2B熱電変換部材122JBの部分(第2面122J2)の面積をS22、第1支持部材11と接する第1B熱電変換部材121JBの部分(第1面121J11)の面積をS11、第1支持部材11と接する第2A熱電変換部材122JAの部分(第1面122J1)の面積をS21、第2支持部材12と接する第3A熱電変換部材123JAの部分(第2面123J2)の面積をS32、第2支持部材12と接する第4B熱電変換部材124JBの部分(第2面124J2)の面積をS42、第1支持部材11と接する第3B熱電変換部材123JBの部分(第1面123J1)の面積をS31、第1支持部材11と接する第4A熱電変換部材124JAの部分(第1面124J1)の面積をS41としたとき、
12≠S32
21≠S41
であり、更には、
12≠S21
31≠S42
である。以上の点を除き、実施例13の熱電発電装置、熱電発電方法は、実施例12の熱電発電装置、熱電発電方法と同様とすることができるので、詳細な説明は省略する。
 実施例4~実施例13において説明した各種の熱電発電装置を電気信号検出装置として用い、実施例1~実施例3を適用することもできる。具体的には、実施例4~実施例13において説明した熱電発電装置を、温度が変化する雰囲気に配する。そして、雰囲気の温度変化を特定の変化とすることで、その温度変化に対応して熱電発電装置において熱電発電を生じさせることで、その温度変化を一種のトリガーとした電気信号の検出を行うことができる。そして、例えば、センサネットワークシステム等の複数のセンサが配置されている場合にあっては、このような電気信号の検出に基づき、1つ1つ、センサを校正するのではなく、一括して全てのセンサあるいは一部のセンサを校正するシステムを構築することができる。即ち、実施例14にあっては、間接的に一括給電、発電を行うだけではなく、一括してデバイスの校正を行うことができる。また、特定の物品の位置の特定等への応用、具体的には、例えば、鍵や携帯電話等に取り付けておき、これらを容易に発見できるようにするといった応用が、可能となる。
 熱応答時定数τは、前述したとおり、支持部材や熱電変換素子、熱電変換部材を構成する材料の密度ρ、比熱c、熱伝達率h、支持部材や熱電変換素子、熱電変換部材の体積VL、面積Sにより決まるので、所望とする情報(電気信号)を得るためには、これらを適切に選択すればよい。これによって、例えば、複数の熱応答時定数τを有する熱電発電装置が組み合わされた電気信号検出装置を得ることができ、温度変化に対する熱応答差が生じ、電気信号検出装置からは複数の電気信号を得ることができる結果、1つの電気信号検出装置から複数の情報を得ることが可能となる。
 熱電発電装置の応用例の一例を示す概念図を、図20の(D)に示すが、この応用例では、センサに熱電発電装置から電力が供給されると共に、センサ制御装置を構成するA/Dコンバータ、送信装置、タイマーにも熱電発電装置から電力が供給される。そして、タイマーの作動によって、所定の時間間隔で、センサからの値がA/Dコンバータに送られ、データとして送信装置によって外部に送出される。また、センサは、熱電発電装置からの電気信号を受け取り、校正を行う。
 第1の態様に係る電気信号検出方法にあっては、実質的に実施例4と同様に、第2支持部材12の温度が第1支持部材11の温度よりも高いとき、第1支持部材11と第2支持部材12との温度差に起因して生成し、第2熱電変換部材22A,22Bから第1熱電変換部材21A,21Bへと流れる電流を、電気信号として、第1出力部41を正極(プラス極)、第2出力部42を負極(マイナス極)として、外部に取り出す。ここで、実施例4にあっては、第2熱電変換部材22A,22Bから第1熱電変換部材21A,21Bへと流れる電流をエネルギー源として用いた。一方、実施例14にあっては、第2熱電変換部材22A,22Bから第1熱電変換部材21A,21Bへと流れる電流を、電気信号として、即ち、情報を含む電気信号として用いる。そして、この電気信号から、一種類あるいは複数種の電気信号を得る。必要に応じて、得られた電気信号を、バンドパスフィルターやローパスフィルター、ハイパスフィルターを通してもよい。以下の説明においても同様とすることができる。
 あるいは又、第2の態様に係る電気信号検出方法にあっては、実施例5と同様に、温度が変化する雰囲気に熱電発電装置を配す。そして、実質的に実施例5と同様に、第2支持部材12の温度が第1支持部材11の温度よりも高いとき、第1支持部材11と第2支持部材12との温度差に起因して生成し、第2熱電変換部材22A,22Bから第1熱電変換部材21A,21Bへと流れる電流を、電気信号として、第1出力部41を正極(プラス極)、第2出力部42を負極(マイナス極)として、外部に取り出す。
 あるいは又、第3の態様に係る電気信号検出方法にあっては、実施例6~実施例7と同様に、温度が変化する雰囲気に熱電発電装置を配す。そして、実質的に実施例6~実施例7と同様に、第2支持部材12,212の温度が第1支持部材11,211の温度よりも高いとき、第1支持部材11,211と第2支持部材12,212との温度差に起因して生成し、第2熱電変換素子122C,222Cから第1熱電変換素子121C,221Cへと流れる電流を、電気信号として、第1出力部141,241を正極、第2出力部142,242を負極として、外部に取り出す。
 以上のとおり、温度が変化する雰囲気に熱電発電装置を配し、
 第2支持部材の温度が第1支持部材の温度よりも高いとき、第1支持部材と第2支持部材との温度差に起因して生成し、第2熱電変換部材から第1熱電変換部材へと流れる電流を、電気信号として、第1出力部を正極、第2出力部を負極として、外部に取り出し(第1の態様あるいは第2の態様に係る電気信号検出方法)、あるいは又、第2熱電変換素子から第1熱電変換素子へと流れる電流を、電気信号として、第1出力部を正極、第2出力部を負極として、外部に取り出し(第3の態様に係る電気信号検出方法)、該電気信号から、一種類あるいは複数種の電気信号を得る。
 あるいは又、第4Aの態様に係る電気信号検出方法にあっては、実施例8と同様に、温度が変化する雰囲気に熱電発電装置を配す。そして、実質的に実施例8と同様に、第2支持部材12の温度が第1支持部材11の温度よりも高いとき、第1支持部材11と第2支持部材12との温度差に起因して生成し、第2熱電変換部材22Dから第1熱電変換部材21Dへと流れる電流を、電気信号として、第1出力部41を正極、第2出力部42を負極として、外部に取り出す。一方、第1支持部材11の温度が第2支持部材12の温度よりも高いとき、第1支持部材11と第2支持部材12との温度差に起因して生成し、第4熱電変換部材24Dから第3熱電変換部材23Dへと流れる電流を、電気信号として、第3出力部43を正極、第4出力部44を負極として、外部に取り出す。
 即ち、第4Aの態様に係る電気信号検出方法にあっては、
 温度が変化する雰囲気に熱電発電装置を配し、
 第2支持部材の温度が第1支持部材の温度よりも高いとき、第1支持部材と第2支持部材との温度差に起因して生成し、第2熱電変換部材から第1熱電変換部材へと流れる電流を、電気信号として、第1出力部を正極、第2出力部を負極として、外部に取り出し、
 第1支持部材の温度が第2支持部材の温度よりも高いとき、第1支持部材と第2支持部材との温度差に起因して生成し、第4熱電変換部材から第3熱電変換部材へと流れる電流を、電気信号として、第3出力部を正極、第4出力部を負極として、外部に取り出し、
 該電気信号から、一種類あるいは複数種の電気信号を得る。
 あるいは又、第4Bの態様に係る電気信号検出方法にあっては、実施例9~実施例10と同様に、温度が変化する雰囲気に熱電発電装置を配す。そして、実質的に実施例9~実施例10と同様に、第2支持部材12の温度が第1支持部材11の温度よりも高いとき、第1支持部材11と第2支持部材12との温度差に起因して生成し、第2熱電変換部材22E,22Fから第1熱電変換部材21E,21Fへと流れる電流を、電気信号として、第1出力部41を正極、第2出力部42を負極として、外部に取り出し、且つ、第4熱電変換部材24E,24Fから第3熱電変換部材23E,23Fへと流れる電流を、電気信号として、第3出力部43を正極、第4出力部44を負極として、外部に取り出す。
 即ち、第4Bの態様に係る電気信号検出方法にあっては、第2支持部材の温度が第1支持部材の温度よりも高いとき、第1支持部材と第2支持部材との温度差に起因して生成し、第2熱電変換部材から第1熱電変換部材へと流れる電流を、第1出力部を正極、第2出力部を負極として、外部に取り出し、第1支持部材の温度が第2支持部材の温度よりも高いとき、第1支持部材と第2支持部材との温度差に起因して生成し、第4熱電変換部材から第3熱電変換部材へと流れる電流を、第3出力部を正極、第4出力部を負極として、外部に取り出す代わりに、
 第2支持部材の温度が第1支持部材の温度よりも高いとき、第1支持部材と第2支持部材との温度差に起因して生成し、第2熱電変換部材から第1熱電変換部材へと流れる電流を、電気信号として、第1出力部を正極、第2出力部を負極として、外部に取り出し、且つ、第4熱電変換部材から第3熱電変換部材へと流れる電流を、電気信号として、第3出力部を正極、第4出力部を負極として、外部に取り出し、
 該電気信号から、一種類あるいは複数種の電気信号を得る。
 あるいは又、第5Aの態様に係る電気信号検出方法にあっては、実施例11と同様に、温度が変化する雰囲気に熱電発電装置を配す。そして、実質的に実施例11と同様に、第2支持部材12の温度が第1支持部材11の温度よりも高いとき、第1支持部材11と第2支持部材12との温度差に起因して生成し、第2熱電変換素子122Gから第1熱電変換素子121Gへと流れる電流を、電気信号として、第1出力部141を正極、第2出力部142を負極として、外部に取り出す。一方、第1支持部材11の温度が第2支持部材12の温度よりも高いとき、第1支持部材11と第2支持部材12との温度差に起因して生成し、第3熱電変換素子123Gから第4熱電変換素子124Gへと流れる電流を、電気信号として、第4出力部144を正極、第3出力部143を負極として、外部に取り出す。
 即ち、第5Aの態様に係る電気信号検出方法にあっては、
 温度が変化する雰囲気に熱電発電装置を配し、
 第2支持部材の温度が第1支持部材の温度よりも高いとき、第1支持部材と第2支持部材との温度差に起因して生成し、第2熱電変換素子から第1熱電変換素子へと流れる電流を、電気信号として、第1出力部を正極、第2出力部を負極として、外部に取り出し、
 第1支持部材の温度が第2支持部材の温度よりも高いとき、第1支持部材と第2支持部材との温度差に起因して生成し、第3熱電変換素子から第4熱電変換素子へと流れる電流を、電気信号として、第4出力部を正極、第3出力部を負極として、外部に取り出し、
 該電気信号から、一種類あるいは複数種の電気信号を得る。
 あるいは又、第5Bの態様に係る電気信号検出方法にあっては、実施例12~実施例13と同様に、温度が変化する雰囲気に熱電発電装置を配す。そして、実質的に実施例12~実施例13と同様に、第2支持部材12の温度が第1支持部材11の温度よりも高いとき、第1支持部材11と第2支持部材12との温度差に起因して生成し、第2熱電変換素子122H,122Jから第1熱電変換素子121H,121Jへと流れる電流を、電気信号として、第1出力部141を正極、第2出力部142を負極として、外部に取り出し、且つ、第4熱電変換素子124H,124Jから第3熱電変換素子123H,123Jへと流れる電流を、電気信号として、第3出力部143を正極、第4出力部144を負極として、外部に取り出す。
 即ち、第5Bの態様に係る電気信号検出方法にあっては、第2支持部材の温度が第1支持部材の温度よりも高いとき、第1支持部材と第2支持部材との温度差に起因して生成し、第2熱電変換素子から第1熱電変換素子へと流れる電流を、第1出力部を正極、第2出力部を負極として、外部に取り出し、第1支持部材の温度が第2支持部材の温度よりも高いとき、第1支持部材と第2支持部材との温度差に起因して生成し、第3熱電変換素子から第4熱電変換素子へと流れる電流を、第4出力部を正極、第3出力部を負極として、外部に取り出す代わりに、
 第2支持部材の温度が第1支持部材の温度よりも高いとき、第1支持部材と第2支持部材との温度差に起因して生成し、第2熱電変換素子から第1熱電変換素子へと流れる電流を、電気信号として、第1出力部を正極、第2出力部を負極として、外部に取り出し、且つ、第4熱電変換素子から第3熱電変換素子へと流れる電流を、電気信号として、第3出力部を正極、第4出力部を負極として、外部に取り出し、
 該電気信号から、一種類あるいは複数種の電気信号を得る。
 以上に説明した電気信号検出装置にあっては、第1の態様~第5の態様に係る熱電発電装置を少なくとも2つ備えており、各熱電発電装置から得られる電流を電気信号として得る形態とすることもできる。具体的には、電気信号検出装置は、
(01)第1の態様に係る熱電発電装置を少なくとも1つ、第2の態様に係る熱電発電装置を少なくとも1つ備えている形態
(02)第1の態様に係る熱電発電装置を少なくとも1つ、第3の態様に係る熱電発電装置を少なくとも1つ備えている形態
(03)第1の態様に係る熱電発電装置を少なくとも1つ、第4の態様に係る熱電発電装置を少なくとも1つ備えている形態
(04)第1の態様に係る熱電発電装置を少なくとも1つ、第5の態様に係る熱電発電装置を少なくとも1つ備えている形態
(05)第2の態様に係る熱電発電装置を少なくとも1つ、第3の態様に係る熱電発電装置を少なくとも1つ備えている形態
(06)第2の態様に係る熱電発電装置を少なくとも1つ、第4の態様に係る熱電発電装置を少なくとも1つ備えている形態
(07)第2の態様に係る熱電発電装置を少なくとも1つ、第5の態様に係る熱電発電装置を少なくとも1つ備えている形態
(08)第3の態様に係る熱電発電装置を少なくとも1つ、第4の態様に係る熱電発電装置を少なくとも1つ備えている形態
(09)第3の態様に係る熱電発電装置を少なくとも1つ、第5の態様に係る熱電発電装置を少なくとも1つ備えている形態
(10)第4の態様に係る熱電発電装置を少なくとも1つ、第5の態様に係る熱電発電装置を少なくとも1つ備えている形態
の10通りの形態を挙げることができるし、(第1の態様,第2の態様,第3の態様,第4の態様,第5の態様)に係る熱電発電装置から、3種類、例えば、3つの熱電発電装置を選ぶ10通りの組合せ、4種類、例えば、4つの熱電発電装置を選ぶ5通りの組合せ、5種類、例えば、5つの熱電発電装置を選ぶ1通りの組合せを挙げることができる。
 このように、第1の態様~第5の態様に係る電気信号検出方法にあっては、1種類の電気信号から、一種類あるいは複数種の電気信号を得る。また、本発明の電気信号検出装置にあっては、1つの電気信号検出装置にて、一種類あるいは複数種の電気信号を得る。また、電気信号検出装置、それ自体が、発電装置を兼ねている。従って、電気信号検出装置の小型化、簡素化を図ることができるし、常時、モニタリング行うことが可能である。更には、システム全体の省電力化を図ることができる。
 以上、本発明を好ましい実施例に基づき説明したが、本発明はこれらの実施例に限定されるものではない。実施例における熱電発電装置の構造、構成、実施例において用いた各種材料、大きさ等は例示であり、適宜、変更することができる。実施例1~実施例3において、熱電発電回路50の出力部に、リーク電流の値が規定されたコンデンサや2次電池を接続すれば、コンデンサや2次電池が一種のフィルタとして機能し、コンデンサや2次電池から出力される電流値を規定することができる。
 例えば、第1熱電変換部材、第3熱電変換部材、第1A熱電変換部材、第2A熱電変換部材、第3A熱電変換部材及び第4A熱電変換部材を、p型導電型を示すビスマス・テルル・アンチモンから構成する代わりに、Mg2Si、SrTiO3、MnSi2、Si-Ge系材料、β-FeSi2、PbTe系材料、ZnSb系材料、CoSb系材料、Si系材料、クラスレート化合物、NaCo24、Ca3Co49、クロメル合金等から構成することができるし、第2熱電変換部材、第4熱電変換部材、第1B熱電変換部材、第2B熱電変換部材、第3B熱電変換部材及び第4B熱電変換部材を、n型導電型を示すビスマス・テルルから構成する代わりに、Mg2Si、SrTiO3、MnSi2、Si-Ge系材料、β-FeSi2、PbTe系材料、ZnSb系材料、CoSb系材料、Si系材料、クラスレート化合物、コンスタンタン、アルメル合金等から構成することができる。また、実施例13に示した第1熱電変換素子あるいは第2熱電変換素子の構造を、実施例6の熱電変換素子に適用することができる。また、実施例7にて説明した熱電変換素子の構成、構造を、実施例11~実施例12にて説明した熱電変換素子に適用することができる。
 例えば、第1の態様~第5の態様に係る熱電発電装置において、第2支持部材に、伸縮自在であって熱伝導に優れた弾性材料(例えば、シリコーンゴム)を用いて第3支持部材を取り付ければ、弾性材料の伸縮によって、第2支持部材、弾性材料及び第3支持部材、全体の熱応答時定数τが変化する。その結果、取り出される電気信号に変化が生じるので、第2支持部材に対する第3支持部材の動きを検出することができる。具体的には、例えば、第1支持部材、第2支持部材等を腕部材の或る部位に取り付けておき、第3支持部材を腕部材の別の部位に取り付けておけば、腕部材の或る部位と腕部材の別の部位との位置関係の変化(例えば、腕部材を曲げた状態、伸ばした状態)を検出することができる。また、本発明の電気信号検出装置を機械や建築物に取り付け、機械や建築物に周期的な温度変化を与えたとき、与えられた周期的な温度変化に基づく電気信号とは異なる電気信号が検出されたならば、何らかの異常が発生したことを知ることができる。このような検出は、例えば、ハンマーで機械や建築物を叩き、発生した音によって異常を知る操作の代替となり得る。
10・・・熱電発電装置、11,211・・・第1支持部材、12,212・・・第2支持部材、213・・・接合部材、21A,21B,21D,21E,21F,121H,121J・・・第1熱電変換部材、22A,22B,22D,22E,22F,122H,122J・・・第2熱電変換部材、23A,23B,23D,23E,23F,123H,123J・・・第3熱電変換部材、24A,24B,24D,24E,24F,124H,124J・・・第4熱電変換部材、121GA,121HA,121JA,221CA・・・第1A熱電変換部材、121GB,121HB,121JB,221CB・・・第1B熱電変換部材、122GA,122HA,122JA,222CA・・・第2A熱電変換部材、122GB,122HB,122JB,222CB・・・第2B熱電変換部材、123GA,123HA,123JA・・・第3A熱電変換部材、123GB,123HB,123JB・・・第3B熱電変換部材、124GA,124HA,124JA・・・第4A熱電変換部材、124GB,124HB,124JB・・・第4B熱電変換部材、121C,121G,121G,121H,121J,221C・・・第1熱電変換素子、122C,122G,122G,122H,122J,222C・・・第2熱電変換素子、123G,123H,123J・・・第3熱電変換素子、124G,124H,124J・・・第4熱電変換素子、31,31A,31B,32,32A,32B,231,232・・・配線、41,141,241・・・第1出力部、42,142,242・・・第2出力部、43,143・・・第3出力部、44,144・・・第4出力部、50・・・熱電発電回路、51・・整流器、52・・・DC/DC昇圧コンバータ、53・・・充放電制御回路、54・・・2次電池、60・・・温度制御装置、61・・・周波数制御回路、62・・・温度調整装置、64・・・出力コントローラ、70・・・電子タグ、71・・・書籍管理装置

Claims (20)

  1.  (A)雰囲気の温度変化に応答して熱電発電を行う熱電発電装置、及び、
     (B)熱電発電装置が配された雰囲気の温度を周期的に変化させる温度制御装置、
    を備えた無線電力供給装置。
  2.  複数の熱電発電装置を備え、
     各熱電発電装置の熱応答特性は同一である請求項1に記載の無線電力供給装置。
  3.  複数の熱電発電装置を備え、
     各熱電発電装置の熱応答特性は異なり、
     温度制御装置は、熱応答特性が異なる熱電発電装置に対応した温度変化に基づき、順次、雰囲気の温度を周期的に変化させる請求項1に記載の無線電力供給装置。
  4.  複数の熱電発電装置を備え、
     各熱電発電装置の熱応答特性は異なり、
     温度制御装置は、熱応答特性が異なる熱電発電装置に対応した合成された温度変化に基づき、雰囲気の温度を周期的に変化させる請求項1に記載の無線電力供給装置。
  5.  熱電発電装置は、
     (A)第1支持部材、
     (B)第1支持部材と対向して配置された第2支持部材、
     (C)第1支持部材と第2支持部材との間に配置された熱電変換素子、並びに、
     (D)熱電変換素子に接続された第1出力部及び第2出力部、
    を備えており、
     熱電変換素子は、
     (C-1)第1支持部材と第2支持部材との間に配置された第1熱電変換部材、及び、
     (C-2)第1支持部材と第2支持部材との間に配置され、第1熱電変換部材を構成する材料とは異なる材料から構成され、第1熱電変換部材と電気的に直列に接続された第2熱電変換部材、
    から成り、
     第1出力部は、第1熱電変換部材の第1支持部材側の端部に接続されており、
     第2出力部は、第2熱電変換部材の第1支持部材側の端部に接続されており、
     第1支持部材と接する第1熱電変換部材の第1面の面積をS11、第2支持部材と接する第1熱電変換部材の第2面の面積をS12(但し、S11>S12)、第1支持部材と接する第2熱電変換部材の第1面の面積をS21、第2支持部材と接する第2熱電変換部材の第2面の面積をS22(但し、S21>S22)、第1支持部材の熱応答時定数をτSM1、第2支持部材の熱応答時定数をτSM2としたとき、
    τSM1>τSM2
    12 ≠S22
    である請求項1乃至請求項4のいずれか1項に記載の無線電力供給装置。
  6.  熱電発電装置は、
     (A)第1支持部材、
     (B)第1支持部材と対向して配置された第2支持部材、
     (C)第1支持部材と第2支持部材との間に配置された熱電変換素子、並びに、
     (D)熱電変換素子に接続された第1出力部及び第2出力部、
    を備えており、
     熱電変換素子は、
     (C-1)第1支持部材と第2支持部材との間に配置された第1熱電変換部材、及び、
     (C-2)第1支持部材と第2支持部材との間に配置され、第1熱電変換部材を構成する材料とは異なる材料から構成され、第1熱電変換部材と電気的に直列に接続された第2熱電変換部材、
    から成り、
     第1出力部は、第1熱電変換部材の第1支持部材側の端部に接続されており、
     第2出力部は、第2熱電変換部材の第1支持部材側の端部に接続されており、
     第1熱電変換部材の体積をVL1、第2熱電変換部材の体積をVL2、第1支持部材の熱応答時定数をτSM1、第2支持部材の熱応答時定数をτSM2としたとき、
    τSM1>τSM2
    VL1≠VL2
    である請求項1乃至請求項4のいずれか1項に記載の無線電力供給装置。
  7.  熱電発電装置は、
     (A)第1支持部材、
     (B)第1支持部材と対向して配置された第2支持部材、
     (C)第1支持部材と第2支持部材との間に配置された第1熱電変換素子、
     (D)第1支持部材と第2支持部材との間に配置された第2熱電変換素子、並びに、
     (E)第1出力部及び第2出力部、
    を備えており、
     第1熱電変換素子は、第2支持部材と接する第1A熱電変換部材と、第1支持部材と接する第1B熱電変換部材とが、接して配置されて成り、
     第2熱電変換素子は、第1支持部材と接する第2A熱電変換部材と、第2支持部材と接する第2B熱電変換部材とが、接して配置されて成り、
     第1熱電変換素子と第2熱電変換素子とは電気的に直列に接続されており、
     第1出力部は、第1B熱電変換部材の端部に接続されており、
     第2出力部は、第2A熱電変換部材の端部に接続されており、
     第1支持部材の熱応答時定数をτSM1、第2支持部材の熱応答時定数をτSM2としたとき、
    τSM1≠τSM2
    である請求項1乃至請求項4のいずれか1項に記載の無線電力供給装置。
  8.  熱電発電装置は、
     (A)第1支持部材、
     (B)第1支持部材と対向して配置された第2支持部材、
     (C)第1支持部材と第2支持部材との間に配置された第1熱電変換素子、
     (D)第1支持部材と第2支持部材との間に配置された第2熱電変換素子、並びに、
     (E)第1出力部、第2出力部、第3出力部、及び、第4出力部、
    を備えており、
     第1熱電変換素子は、
     (C-1)第1支持部材と第2支持部材との間に配置された第1熱電変換部材、及び、
     (C-2)第1支持部材と第2支持部材との間に配置され、第1熱電変換部材を構成する材料とは異なる材料から構成され、第1熱電変換部材と電気的に直列に接続された第2熱電変換部材、
    から成り、
     第2熱電変換素子は、
     (D-1)第1支持部材と第2支持部材との間に配置された第3熱電変換部材、及び、
     (D-2)第1支持部材と第2支持部材との間に配置され、第3熱電変換部材を構成する材料とは異なる材料から構成され、第3熱電変換部材と電気的に直列に接続された第4熱電変換部材、
    から成り、
     第1出力部は、第1熱電変換部材に接続されており、
     第2出力部は、第2熱電変換部材に接続されており、
     第3出力部は、第3熱電変換部材に接続されており、
     第4出力部は、第4熱電変換部材に接続されており、
     第1支持部材の熱応答時定数をτSM1、第2支持部材の熱応答時定数をτSM2としたとき、
    τSM1≠τSM2
    である請求項1乃至請求項4のいずれか1項に記載の無線電力供給装置。
  9.  熱電発電装置は、
     (A)第1支持部材、
     (B)第1支持部材と対向して配置された第2支持部材、
     (C)第1支持部材と第2支持部材との間に配置された第1熱電変換素子、
     (D)第1支持部材と第2支持部材との間に配置された第2熱電変換素子、
     (E)第1支持部材と第2支持部材との間に配置された第3熱電変換素子、
     (F)第1支持部材と第2支持部材との間に配置された第4熱電変換素子、並びに、
     (G)第1出力部、第2出力部、第3出力部、及び、第4出力部、
    を備えており、
     第1熱電変換素子は、第2支持部材と接する第1A熱電変換部材と、第1支持部材と接する第1B熱電変換部材とが、接して配置されて成り、
     第2熱電変換素子は、第1支持部材と接する第2A熱電変換部材と、第2支持部材と接する第2B熱電変換部材とが、接して配置されて成り、
     第3熱電変換素子は、第2支持部材と接する第3A熱電変換部材と、第1支持部材と接する第3B熱電変換部材とが、接して配置されて成り、
     第4熱電変換素子は、第1支持部材と接する第4A熱電変換部材と、第2支持部材と接する第4B熱電変換部材とが、接して配置されて成り、
     第1熱電変換素子と第2熱電変換素子とは電気的に直列に接続されており、
     第3熱電変換素子と第4熱電変換素子とは電気的に直列に接続されており、
     第1出力部は、第1熱電変換素子に接続されており、
     第2出力部は、第2熱電変換素子に接続されており、
     第3出力部は、第3熱電変換素子に接続されており、
     第4出力部は、第4熱電変換素子に接続されており、
     第1支持部材の熱応答時定数をτSM1、第2支持部材の熱応答時定数をτSM2としたとき、
    τSM1≠τSM2
    である請求項1乃至請求項4のいずれか1項に記載の無線電力供給装置。
  10.  熱電発電装置及び温度制御装置を備えた無線電力供給装置を用いた無線電力供給方法であって、
     温度制御装置によって、熱電発電装置が配された雰囲気の温度を周期的に変化させ、該雰囲気の温度変化に応答して熱電発電装置によって熱電発電を行い、得られた電力を外部に取り出す無線電力供給方法。
  11.  複数の熱電発電装置を備え、
     各熱電発電装置の熱応答特性は同一である請求項10に記載の無線電力供給方法。
  12.  複数の熱電発電装置を備え、
     各熱電発電装置の熱応答特性は異なり、
     温度制御装置によって、熱応答特性が異なる熱電発電装置に対応した温度変化に基づき、順次、雰囲気の温度を周期的に変化させる請求項10に記載の無線電力供給方法。
  13.  複数の熱電発電装置を備え、
     各熱電発電装置の熱応答特性は異なり、
     温度制御装置によって、熱応答特性が異なる熱電発電装置に対応した合成された温度変化に基づき、雰囲気の温度を周期的に変化させる請求項10に記載の無線電力供給方法。
  14.  熱電発電装置は、
     (A)第1支持部材、
     (B)第1支持部材と対向して配置された第2支持部材、
     (C)第1支持部材と第2支持部材との間に配置された熱電変換素子、並びに、
     (D)熱電変換素子に接続された第1出力部及び第2出力部、
    を備えており、
     熱電変換素子は、
     (C-1)第1支持部材と第2支持部材との間に配置された第1熱電変換部材、及び、
     (C-2)第1支持部材と第2支持部材との間に配置され、第1熱電変換部材を構成する材料とは異なる材料から構成され、第1熱電変換部材と電気的に直列に接続された第2熱電変換部材、
    から成り、
     第1出力部は、第1熱電変換部材の第1支持部材側の端部に接続されており、
     第2出力部は、第2熱電変換部材の第1支持部材側の端部に接続されており、
     第1支持部材と接する第1熱電変換部材の第1面の面積をS11、第2支持部材と接する第1熱電変換部材の第2面の面積をS12(但し、S11>S12)、第1支持部材と接する第2熱電変換部材の第1面の面積をS21、第2支持部材と接する第2熱電変換部材の第2面の面積をS22(但し、S21>S22)、第1支持部材の熱応答時定数をτSM1、第2支持部材の熱応答時定数をτSM2としたとき、
    τSM1>τSM2
    12 ≠S22
    であり、
     温度が変化する雰囲気に熱電発電装置を配し、
     第2支持部材の温度が第1支持部材の温度よりも高いとき、第1支持部材と第2支持部材との温度差に起因して生成し、第2熱電変換部材から第1熱電変換部材へと流れる電流を、第1出力部を正極、第2出力部を負極として、外部に取り出す請求項10乃至請求項13のいずれか1項に記載の無線電力供給方法。
  15.  熱電発電装置は、
     (A)第1支持部材、
     (B)第1支持部材と対向して配置された第2支持部材、
     (C)第1支持部材と第2支持部材との間に配置された熱電変換素子、並びに、
     (D)熱電変換素子に接続された第1出力部及び第2出力部、
    を備えており、
     熱電変換素子は、
     (C-1)第1支持部材と第2支持部材との間に配置された第1熱電変換部材、及び、
     (C-2)第1支持部材と第2支持部材との間に配置され、第1熱電変換部材を構成する材料とは異なる材料から構成され、第1熱電変換部材と電気的に直列に接続された第2熱電変換部材、
    から成り、
     第1出力部は、第1熱電変換部材の第1支持部材側の端部に接続されており、
     第2出力部は、第2熱電変換部材の第1支持部材側の端部に接続されており、
     第1熱電変換部材の体積をVL1、第2熱電変換部材の体積をVL2、第1支持部材の熱応答時定数をτSM1、第2支持部材の熱応答時定数をτSM2としたとき、
    τSM1>τSM2
    VL1≠VL2
    であり、
     温度が変化する雰囲気に熱電発電装置を配し、
     第2支持部材の温度が第1支持部材の温度よりも高いとき、第1支持部材と第2支持部材との温度差に起因して生成し、第2熱電変換部材から第1熱電変換部材へと流れる電流を、第1出力部を正極、第2出力部を負極として、外部に取り出す請求項10乃至請求項13のいずれか1項に記載の無線電力供給方法。
  16.  熱電発電装置は、
     (A)第1支持部材、
     (B)第1支持部材と対向して配置された第2支持部材、
     (C)第1支持部材と第2支持部材との間に配置された第1熱電変換素子、
     (D)第1支持部材と第2支持部材との間に配置された第2熱電変換素子、並びに、
     (E)第1出力部及び第2出力部、
    を備えており、
     第1熱電変換素子は、第2支持部材と接する第1A熱電変換部材と、第1支持部材と接する第1B熱電変換部材とが、接して配置されて成り、
     第2熱電変換素子は、第1支持部材と接する第2A熱電変換部材と、第2支持部材と接する第2B熱電変換部材とが、接して配置されて成り、
     第1熱電変換素子と第2熱電変換素子とは電気的に直列に接続されており、
     第1出力部は、第1B熱電変換部材の端部に接続されており、
     第2出力部は、第2A熱電変換部材の端部に接続されており、
     第1支持部材の熱応答時定数をτSM1、第2支持部材の熱応答時定数をτSM2としたとき、
    τSM1≠τSM2
    であり、
     温度が変化する雰囲気に熱電発電装置を配し、
     第2支持部材の温度が第1支持部材の温度よりも高いとき、第1支持部材と第2支持部材との温度差に起因して生成し、第2熱電変換素子から第1熱電変換素子へと流れる電流を、第1出力部を正極、第2出力部を負極として、外部に取り出す請求項10乃至請求項13のいずれか1項に記載の無線電力供給方法。
  17.  熱電発電装置は、
     (A)第1支持部材、
     (B)第1支持部材と対向して配置された第2支持部材、
     (C)第1支持部材と第2支持部材との間に配置された第1熱電変換素子、
     (D)第1支持部材と第2支持部材との間に配置された第2熱電変換素子、並びに、
     (E)第1出力部、第2出力部、第3出力部、及び、第4出力部、
    を備えており、
     第1熱電変換素子は、
     (C-1)第1支持部材と第2支持部材との間に配置された第1熱電変換部材、及び、
     (C-2)第1支持部材と第2支持部材との間に配置され、第1熱電変換部材を構成する材料とは異なる材料から構成され、第1熱電変換部材と電気的に直列に接続された第2熱電変換部材、
    から成り、
     第2熱電変換素子は、
     (D-1)第1支持部材と第2支持部材との間に配置された第3熱電変換部材、及び、
     (D-2)第1支持部材と第2支持部材との間に配置され、第3熱電変換部材を構成する材料とは異なる材料から構成され、第3熱電変換部材と電気的に直列に接続された第4熱電変換部材、
    から成り、
     第1出力部は、第1熱電変換部材に接続されており、
     第2出力部は、第2熱電変換部材に接続されており、
     第3出力部は、第3熱電変換部材に接続されており、
     第4出力部は、第4熱電変換部材に接続されており、
     第1支持部材の熱応答時定数をτSM1、第2支持部材の熱応答時定数をτSM2としたとき、
    τSM1≠τSM2
    であり、
     温度が変化する雰囲気に熱電発電装置を配し、
     第2支持部材の温度が第1支持部材の温度よりも高いとき、第1支持部材と第2支持部材との温度差に起因して生成し、第2熱電変換部材から第1熱電変換部材へと流れる電流を、第1出力部を正極、第2出力部を負極として、外部に取り出し、
     第1支持部材の温度が第2支持部材の温度よりも高いとき、第1支持部材と第2支持部材との温度差に起因して生成し、第4熱電変換部材から第3熱電変換部材へと流れる電流を、第3出力部を正極、第4出力部を負極として、外部に取り出す請求項10乃至請求項13のいずれか1項に記載の無線電力供給方法。
  18.  請求項16に記載の無線電力供給方法において、第2支持部材の温度が第1支持部材の温度よりも高いとき、第1支持部材と第2支持部材との温度差に起因して生成し、第2熱電変換部材から第1熱電変換部材へと流れる電流を、第1出力部を正極、第2出力部を負極として、外部に取り出し、第1支持部材の温度が第2支持部材の温度よりも高いとき、第1支持部材と第2支持部材との温度差に起因して生成し、第4熱電変換部材から第3熱電変換部材へと流れる電流を、第3出力部を正極、第4出力部を負極として、外部に取り出す代わりに、
     第2支持部材の温度が第1支持部材の温度よりも高いとき、第1支持部材と第2支持部材との温度差に起因して生成し、第2熱電変換部材から第1熱電変換部材へと流れる電流を、第1出力部を正極、第2出力部を負極として、外部に取り出し、且つ、第4熱電変換部材から第3熱電変換部材へと流れる電流を、第3出力部を正極、第4出力部を負極として、外部に取り出す請求項10乃至請求項13のいずれか1項に記載の無線電力供給方法。
  19.  熱電発電装置は、
     (A)第1支持部材、
     (B)第1支持部材と対向して配置された第2支持部材、
     (C)第1支持部材と第2支持部材との間に配置された第1熱電変換素子、
     (D)第1支持部材と第2支持部材との間に配置された第2熱電変換素子、
     (E)第1支持部材と第2支持部材との間に配置された第3熱電変換素子、
     (F)第1支持部材と第2支持部材との間に配置された第4熱電変換素子、並びに、
     (G)第1出力部、第2出力部、第3出力部、及び、第4出力部、
    を備えており、
     第1熱電変換素子は、第2支持部材と接する第1A熱電変換部材と、第1支持部材と接する第1B熱電変換部材とが、接して配置されて成り、
     第2熱電変換素子は、第1支持部材と接する第2A熱電変換部材と、第2支持部材と接する第2B熱電変換部材とが、接して配置されて成り、
     第3熱電変換素子は、第2支持部材と接する第3A熱電変換部材と、第1支持部材と接する第3B熱電変換部材とが、接して配置されて成り、
     第4熱電変換素子は、第1支持部材と接する第4A熱電変換部材と、第2支持部材と接する第4B熱電変換部材とが、接して配置されて成り、
     第1熱電変換素子と第2熱電変換素子とは電気的に直列に接続されており、
     第3熱電変換素子と第4熱電変換素子とは電気的に直列に接続されており、
     第1出力部は、第1熱電変換素子に接続されており、
     第2出力部は、第2熱電変換素子に接続されており、
     第3出力部は、第3熱電変換素子に接続されており、
     第4出力部は、第4熱電変換素子に接続されており、
     第1支持部材の熱応答時定数をτSM1、第2支持部材の熱応答時定数をτSM2としたとき、
    τSM1≠τSM2
    であり、
     温度が変化する雰囲気に熱電発電装置を配し、
     第2支持部材の温度が第1支持部材の温度よりも高いとき、第1支持部材と第2支持部材との温度差に起因して生成し、第2熱電変換素子から第1熱電変換素子へと流れる電流を、第1出力部を正極、第2出力部を負極として、外部に取り出し、
     第1支持部材の温度が第2支持部材の温度よりも高いとき、第1支持部材と第2支持部材との温度差に起因して生成し、第3熱電変換素子から第4熱電変換素子へと流れる電流を、第4出力部を正極、第3出力部を負極として、外部に取り出す請求項10乃至請求項13のいずれか1項に記載の無線電力供給方法。
  20.  請求項18に記載の無線電力供給方法において、第2支持部材の温度が第1支持部材の温度よりも高いとき、第1支持部材と第2支持部材との温度差に起因して生成し、第2熱電変換素子から第1熱電変換素子へと流れる電流を、第1出力部を正極、第2出力部を負極として、外部に取り出し、第1支持部材の温度が第2支持部材の温度よりも高いとき、第1支持部材と第2支持部材との温度差に起因して生成し、第3熱電変換素子から第4熱電変換素子へと流れる電流を、第4出力部を正極、第3出力部を負極として、外部に取り出す代わりに、
     第2支持部材の温度が第1支持部材の温度よりも高いとき、第1支持部材と第2支持部材との温度差に起因して生成し、第2熱電変換素子から第1熱電変換素子へと流れる電流を、第1出力部を正極、第2出力部を負極として、外部に取り出し、且つ、第4熱電変換素子から第3熱電変換素子へと流れる電流を、第3出力部を正極、第4出力部を負極として、外部に取り出す請求項10乃至請求項13のいずれか1項に記載の無線電力供給方法。
PCT/JP2012/000415 2011-02-21 2012-01-24 無線電力供給装置及び無線電力供給方法 WO2012114652A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/983,113 US20130306124A1 (en) 2011-02-21 2012-01-24 Wireless power supply device and wireless power supply method
EP12748908.6A EP2680430B1 (en) 2011-02-21 2012-01-24 Wireless power supply device and wireless power supply method
CN201280007984.5A CN103404016B (zh) 2011-02-21 2012-01-24 无线电力供给装置和无线电力供给方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-034572 2011-02-21
JP2011034572A JP5640800B2 (ja) 2011-02-21 2011-02-21 無線電力供給装置及び無線電力供給方法

Publications (1)

Publication Number Publication Date
WO2012114652A1 true WO2012114652A1 (ja) 2012-08-30

Family

ID=46720448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000415 WO2012114652A1 (ja) 2011-02-21 2012-01-24 無線電力供給装置及び無線電力供給方法

Country Status (6)

Country Link
US (1) US20130306124A1 (ja)
EP (1) EP2680430B1 (ja)
JP (1) JP5640800B2 (ja)
CN (1) CN103404016B (ja)
TW (1) TWI463783B (ja)
WO (1) WO2012114652A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105190921A (zh) * 2013-03-21 2015-12-23 国立大学法人长冈技术科学大学 热电转换元件

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101425095B1 (ko) 2010-06-10 2014-08-01 에스티에스반도체통신 주식회사 무선 신호 전달, 무선 전원 구동, 및 방열 기능들을 가지는 기판
DE102011086799A1 (de) * 2011-11-22 2013-05-23 Robert Bosch Gmbh System mit einem Handwerkzeugkoffer und einem Handwerkzeugakku
JP6286845B2 (ja) * 2013-03-22 2018-03-07 富士通株式会社 熱電素子搭載モジュール及びその製造方法
JP6112217B2 (ja) * 2013-10-11 2017-04-12 株式会社村田製作所 積層型熱電変換素子
KR102281065B1 (ko) * 2014-01-23 2021-07-23 엘지이노텍 주식회사 열전모듈 및 이를 포함하는 냉각장치
JP6176165B2 (ja) * 2014-03-25 2017-08-09 富士ゼロックス株式会社 端末装置、判定システムおよびプログラム
JP6152987B2 (ja) * 2014-05-22 2017-06-28 パナソニックIpマネジメント株式会社 熱電変換モジュール
JP2016099876A (ja) * 2014-11-25 2016-05-30 日本精工株式会社 Rfタグ
JP6507985B2 (ja) * 2015-10-13 2019-05-08 富士通株式会社 熱電変換素子及びその製造方法
JP7362062B2 (ja) 2018-09-10 2023-10-17 株式会社Kelk 熱電変換素子の製造方法及び熱電変換素子
JP7360360B2 (ja) 2020-06-05 2023-10-12 株式会社東芝 発電素子
US20230127599A1 (en) * 2021-10-25 2023-04-27 University Of Cincinnati Thermoelectric Air Conditioning System with Integrated Solid Desiccant-Based Dehumidification for Separate Sensible and Latent Cooling

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302783A (ja) * 2004-04-06 2005-10-27 Toshiba Corp 熱電変換モジュール及びその形状評価装置及び形状評価方法
JP2006332443A (ja) * 2005-05-27 2006-12-07 Kyocera Corp 熱電変換モジュール及び、これを用いた発電装置及び冷却装置
JP2007526740A (ja) * 2004-03-02 2007-09-13 ローズマウント インコーポレイテッド 改良された発電を備えたプロセス装置
JP2008108900A (ja) * 2006-10-25 2008-05-08 Toshiba Corp 熱電変換モジュールおよび熱電変換装置
JP2009501510A (ja) 2005-07-12 2009-01-15 マサチューセッツ インスティテュート オブ テクノロジー 無線非放射型エネルギー転送
JP2011030317A (ja) 2009-07-23 2011-02-10 Sony Corp 非接触給電システム、非接触中継装置、非接触受電装置および非接触給電方法
WO2011019077A1 (ja) * 2009-08-13 2011-02-17 独立行政法人産業技術総合研究所 熱電発電デバイス

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5228923A (en) * 1991-12-13 1993-07-20 Implemed, Inc. Cylindrical thermoelectric cells
EP1458035A3 (en) * 1995-10-17 2005-07-27 Canon Kabushiki Kaisha Solar cell module having a surface side covering material with a specific nonwoven glass fiber member
US20060107986A1 (en) * 2004-01-29 2006-05-25 Abramov Vladimir S Peltier cooling systems with high aspect ratio
US7629531B2 (en) * 2003-05-19 2009-12-08 Digital Angel Corporation Low power thermoelectric generator
US20100245090A1 (en) * 2004-05-19 2010-09-30 Bed-Check Corporation Patient thermal monitoring system
CN101611503B (zh) * 2007-01-10 2012-12-26 阿美里根公司 热电装置
JP2008292318A (ja) * 2007-05-24 2008-12-04 Kobe Steel Ltd 温度センサシステム
US9105809B2 (en) * 2007-07-23 2015-08-11 Gentherm Incorporated Segmented thermoelectric device
JP2009077551A (ja) * 2007-09-21 2009-04-09 Toshiba Plant Systems & Services Corp 温度差発電システム
JP4404127B2 (ja) * 2007-09-28 2010-01-27 ヤマハ株式会社 熱電モジュール用基板およびこの基板を用いた熱電モジュール
US20090205695A1 (en) * 2008-02-15 2009-08-20 Tempronics, Inc. Energy Conversion Device
WO2009152218A1 (en) * 2008-06-10 2009-12-17 Watts Phillip C Integrated energy system for whole home or building
US9214618B2 (en) * 2008-09-18 2015-12-15 University Of Florida Research Foundation, Inc. Miniature thermoelectric power generator
US7937952B2 (en) * 2008-10-16 2011-05-10 Emcore Corporation Thermoelectric cooler with multiple temperature zones
AT507533B1 (de) * 2008-11-14 2010-08-15 Herbert Karl Fuchs Vorrichtung zur umwandlung von wärmeenergie in elektrische energie
EP2375191A1 (en) * 2008-12-11 2011-10-12 Lamos Inc. Thermo-electric structure
US20120048321A1 (en) * 2008-12-11 2012-03-01 Lamos Inc. Split thermo-electric cycles for simultaneous cooling, heating, and temperature control
US20100229911A1 (en) * 2008-12-19 2010-09-16 Hi-Z Technology Inc. High temperature, high efficiency thermoelectric module
DE102009016154A1 (de) * 2009-04-03 2010-10-14 Hekatron Vertriebs Gmbh Thermogeneratoranordnung, thermischer Schalter und Verfahren zum Betreiben einer elektrischen Vorrichtung
TW201043783A (en) * 2009-06-12 2010-12-16 Chung Hsin Elec & Mach Mfg Thermoelectric generator device for absorbing heat
JP5742174B2 (ja) * 2009-12-09 2015-07-01 ソニー株式会社 熱電発電装置、熱電発電方法及び電気信号検出方法
CN101795011B (zh) * 2010-01-25 2012-09-05 武汉理工大学 基于发动机废热热电发电的弱混合动力系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007526740A (ja) * 2004-03-02 2007-09-13 ローズマウント インコーポレイテッド 改良された発電を備えたプロセス装置
JP2005302783A (ja) * 2004-04-06 2005-10-27 Toshiba Corp 熱電変換モジュール及びその形状評価装置及び形状評価方法
JP2006332443A (ja) * 2005-05-27 2006-12-07 Kyocera Corp 熱電変換モジュール及び、これを用いた発電装置及び冷却装置
JP2009501510A (ja) 2005-07-12 2009-01-15 マサチューセッツ インスティテュート オブ テクノロジー 無線非放射型エネルギー転送
JP2008108900A (ja) * 2006-10-25 2008-05-08 Toshiba Corp 熱電変換モジュールおよび熱電変換装置
JP2011030317A (ja) 2009-07-23 2011-02-10 Sony Corp 非接触給電システム、非接触中継装置、非接触受電装置および非接触給電方法
WO2011019077A1 (ja) * 2009-08-13 2011-02-17 独立行政法人産業技術総合研究所 熱電発電デバイス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2680430A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105190921A (zh) * 2013-03-21 2015-12-23 国立大学法人长冈技术科学大学 热电转换元件
US20160284963A1 (en) * 2013-03-21 2016-09-29 National University Corporation Nagaoka University Of Technology Thermoelectric conversion element
US9780283B2 (en) * 2013-03-21 2017-10-03 National University Corporation Nagaoka University Of Technology Thermoelectric conversion element
CN105190921B (zh) * 2013-03-21 2018-04-17 国立大学法人长冈技术科学大学 热电转换元件

Also Published As

Publication number Publication date
JP5640800B2 (ja) 2014-12-17
JP2012175781A (ja) 2012-09-10
EP2680430B1 (en) 2020-04-22
CN103404016B (zh) 2016-10-19
CN103404016A (zh) 2013-11-20
EP2680430A4 (en) 2014-11-05
TW201310885A (zh) 2013-03-01
TWI463783B (zh) 2014-12-01
EP2680430A1 (en) 2014-01-01
US20130306124A1 (en) 2013-11-21

Similar Documents

Publication Publication Date Title
JP5640800B2 (ja) 無線電力供給装置及び無線電力供給方法
JP5742174B2 (ja) 熱電発電装置、熱電発電方法及び電気信号検出方法
Yan et al. Review of micro thermoelectric generator
Zabek et al. Solid state generators and energy harvesters for waste heat recovery and thermal energy harvesting
Selvan et al. Methodological reviews and analyses on the emerging research trends and progresses of thermoelectric generators
CA2549826C (en) Thermoelectric devices and applications for the same
Bhatnagar et al. Energy harvesting for assistive and mobile applications
US20110150036A1 (en) Flexible thermoelectric generator, wireless sensor node including the same and method of manufacturing the same
CN1890821B (zh) 热电电源
US20050139250A1 (en) Thermoelectric devices and applications for the same
JP2012500610A (ja) 電磁エネルギー獲得ための統合コレクタ表面を有するエネルギーデバイスおよびその方法
KR101152222B1 (ko) 플렉서블 열전소자, 이를 포함하는 무선 센서 노드 및 그 제조 방법
Leonov et al. Micromachined polycrystalline Si thermopiles in a T-shirt
Stokes et al. Nanostructured thermoelectric material and device technology for energy harvesting applications
JP2009186223A (ja) 赤外線センサ
JP2008182878A (ja) 蓄電装置、電子機器、及び蓄電装置の作製方法
KR20090067900A (ko) 열기전력 발생기와 안테나가 융합된 외부온도 감지용알에프아이디 태그의 제조방법
Ugwuogo On-demand energy harvesting techniques-a system level perspective
Kyaw Empowering Wearable Devices: Harnessing Ambient Energy for Sustainable Operation in IoT Systems
Stokes et al. Thin-film superlattice thermoelectric materials and device technologies for energy harvesting applications
Raheem WIRELESS CHARGE OF WEARABLE DEVICE USING HUMAN WARMTH A MINOR PROJECT REPORT
Malović Obnovljivi izvori energije u bežičnim senzorskim mrežama
Malović Renewable energy sources in wireless sensor networks
Fujita Energy harvesters for human-monitoring applications
KR20170119172A (ko) 열전 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12748908

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012748908

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13983113

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE