WO2012114456A1 - 二段吸収式冷凍機及びその製造方法 - Google Patents

二段吸収式冷凍機及びその製造方法 Download PDF

Info

Publication number
WO2012114456A1
WO2012114456A1 PCT/JP2011/053842 JP2011053842W WO2012114456A1 WO 2012114456 A1 WO2012114456 A1 WO 2012114456A1 JP 2011053842 W JP2011053842 W JP 2011053842W WO 2012114456 A1 WO2012114456 A1 WO 2012114456A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
transfer surface
absorber
stage absorption
evaporator
Prior art date
Application number
PCT/JP2011/053842
Other languages
English (en)
French (fr)
Inventor
浩伸 川村
藤居 達郎
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2011/053842 priority Critical patent/WO2012114456A1/ja
Priority to JP2013500752A priority patent/JP5489143B2/ja
Priority to DE112011104937.4T priority patent/DE112011104937T5/de
Publication of WO2012114456A1 publication Critical patent/WO2012114456A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/008Sorption machines, plants or systems, operating continuously, e.g. absorption type with multi-stage operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Definitions

  • the present invention relates to a two-stage absorption refrigerator and a method of manufacturing the same, and is particularly suitable for a two-stage absorption refrigerator having a large difference in pumping temperature from low temperature to high temperature.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-227262
  • the two-stage absorption refrigerator includes a regenerator, a condenser that condenses the vapor refrigerant generated by the regenerator, and a first evaporator that evaporates the liquid refrigerant condensed by the condenser (high temperature (high temperature) And a first absorber (high temperature absorber) for absorbing the refrigerant evaporated in the first evaporator into a solution.
  • a second evaporator (low temperature evaporator) to which the liquid refrigerant in the first evaporator is introduced, and a second absorber (low temperature absorber) for absorbing the refrigerant evaporated in the second evaporator into a solution It comprises, and it is comprised by the same can next to each other in order of these 2nd evaporator, 2nd absorber, 1st evaporator, and 1st absorber.
  • first evaporator and the second absorber are adjacent to each other via a heat transfer surface, and the liquid refrigerant condensed by the condenser is introduced to the first evaporator and then to the second evaporator,
  • the heat absorbed by the second absorber passes directly through the heat transfer surface between the first evaporator and the second absorber on the heat transfer surface of the first evaporator.
  • the temperature difference for heat transport can be small, and the performance of the cycle can be improved.
  • the absorption heat of a 2nd absorber is a 1st evaporation by setting it as the structure which said 1st evaporator and said 2nd absorber adjoined via the heat-transfer surface.
  • the heat transfer surface between the heat exchanger and the second absorber is directly transmitted to the refrigerant flowing on the heat transfer surface of the first evaporator, but the heat transfer surface can ensure a large heat transfer area. In the horizontal direction meandering.
  • the heat transfer surface is formed in a serpentine shape which is meandered in the horizontal direction in order to secure a large heat transfer area, but for that purpose, it is very long, for example, a plate of several tens of meters which is a raw material You need to For this reason, it is necessary to perform a bending process very many times, which is not easy to manufacture and requires an excessive manufacturing facility.
  • a large number of fine uneven portions are often formed in the horizontal direction, and the large number of uneven portions are formed. It is quite difficult to bend the plate as it is many times and it is quite difficult to cause cracks and cracks in the bent portion, and the uneven portion formed on the heat transfer surface is deformed by bending. Variations in performance are also likely to occur.
  • the bellows-like heat transfer surface (heat transfer portion; heat transfer plate) is welded all around at the bottom and both side portions of the box including the absorber and the evaporator, and thereafter
  • the upper surface divided into the high temperature side evaporator (first evaporator) side and the low temperature side absorber (second absorber) side is welded all around each other, but a bellows-like heat transfer surface with several tens of meters
  • the length of the continuous weld is long and welding defects also tend to occur.
  • a low temperature evaporator, a low temperature absorber, a high temperature evaporator, and a high temperature absorber are arranged in order in a can next to each other, and the high temperature evaporator and the low temperature absorber
  • the refrigerants are disposed adjacent to each other via a heat unit, and the heat absorbed by the low temperature absorber flows through the heat transfer unit between the high temperature evaporator and the low temperature absorber, and flows over the heat transfer unit on the high temperature evaporator side.
  • the heat transfer part has a cylindrical heat transfer surface body open at one end and closed at the other end, and a closing plate having a plurality of openings.
  • the heat transfer plate is attached to the closing plate such that the opening of the heat transfer plate is positioned at the opening formed in the closing plate, and the closing plate of the heat transfer portion is the
  • the high temperature is fixed to a can body and inside the cylindrical heat transfer surface of the heat transfer section.
  • One of the generator or the low temperature absorber is disposed, and the other of the high temperature evaporator or the low temperature absorber is disposed outside the cylindrical heat transfer surface, and the high temperature at the top of the heat transfer surface is disposed.
  • a refrigerant distribution device is disposed on the evaporator side, and a solution distribution device is disposed on the low temperature absorber side of the upper portion of the heat transfer surface.
  • Another feature of the present invention is that in the method for manufacturing a two-stage absorption refrigerator in which a high temperature evaporator and a low temperature absorber are disposed adjacent to each other through a heat transfer portion in a can body, one end is open; A cylindrical heat transfer surface body closed at the other end and a closing plate having a plurality of openings are manufactured, and then the opening of the heat transfer surface is positioned at the opening formed in the closing plate, The heat transfer portion is manufactured by welding the heat transfer surface to the closing plate, and the manufactured heat transfer portion is disposed at a predetermined position of the can body, and then the outer periphery of the closing plate of the heat transfer portion is It is characterized by welding around the entire circumference of the can body.
  • the present invention it is possible to increase the heat transfer area of the heat transfer section provided between the high temperature evaporator and the low temperature absorber, and to manufacture the two-stage absorption refrigerator easily and its manufacturing method. You can get it.
  • Example 1 of the two-stage absorption-type refrigerator of this invention is a longitudinal cross-sectional view of the can of an evaporator and an absorber in Example 1 of this invention, and is the II-II arrow directional cross-sectional view of FIG. III-III arrow directional cross-sectional view of FIG. IV-IV arrow sectional drawing of FIG.
  • the figure which expands and shows the part of the spraying apparatus shown in FIG. BRIEF DESCRIPTION OF THE DRAWINGS The perspective view explaining the structure of the heat-transfer part in Example 1 of this invention.
  • FIG. 7 is a perspective view for explaining an example of manufacturing the heat transfer section shown in FIG. 6;
  • FIG. 7 is a perspective view for explaining an example of manufacturing the heat transfer section shown in FIG. 6;
  • FIG. 7 is a perspective view for explaining an example of manufacturing the heat transfer section shown in FIG. 6;
  • FIG. 7 is a perspective view for explaining an example of manufacturing the heat transfer section shown in FIG. 6;
  • FIG. 7 is
  • FIG. 8 is a perspective view for explaining a production example of the heat transfer plate shown in FIG. 7; The figure which looked at the heat-transfer part shown in FIG. 6 from the closing plate side.
  • FIG. 9 is a perspective view for explaining another production example of the heat transfer plate shown in FIG. 8; The perspective view explaining the other manufacture example of a heat transfer part.
  • the perspective view of the state which assembled the heat-transfer surface body shown in FIG. The perspective view explaining the further another manufacture example of a heat-transfer part.
  • the perspective view explaining the further another manufacture example of a heat-transfer part The perspective view explaining the modification of the heat-transfer surface body shown in FIG.
  • the same can be arranged adjacent to a low temperature evaporator (second evaporator), a low temperature absorber (second absorber), a high temperature evaporator (first evaporator), and a high temperature absorber (first absorber) in this order.
  • the high temperature evaporator and the low temperature absorber are disposed adjacent to each other via a heat transfer surface, and the absorbed heat of the low temperature absorber is transferred between the high temperature evaporator and the low temperature absorber.
  • the present invention relates to a two-stage absorption refrigerator configured to be directly transferred to a refrigerant flowing on a heat transfer section of a high temperature evaporator through a heat section.
  • FIG. 1 is a system diagram showing Example 1 in which the present invention is applied to a two-stage absorption refrigerator.
  • the two-stage absorption refrigerator comprises a high temperature evaporator (first evaporator) 11, a low temperature evaporator (second evaporator) 12, a high temperature absorber (first absorber) 21 and a low temperature absorber (second absorber) 22, a regenerator 3, a condenser 4, a low temperature solution heat exchanger 51, a high temperature solution heat exchanger 52, a refrigerant pump 6, solution pumps 71, 72, 73, and the like.
  • the regenerator 3 includes a spraying device 31 and a heat transfer tube 32.
  • Hot water serving as a heat source flows through the heat transfer tube 32, and the spraying device 31 sprays the heat transfer tube 32 toward the outside of the heat transfer tube 32.
  • the flowing solution is heated by the hot water to generate a refrigerant vapor, and the low concentration solution is concentrated and regenerated into a high concentration solution.
  • Hot water of, for example, 60 ° C. is supplied to the regenerator 3, and the hot water is cooled to 55 ° C. by heating the solution flowing outside the heat transfer tube 32.
  • refrigerant vapor generated by heating and concentrating the solution flows into the condenser 4.
  • the regenerator 3 and the condenser 4 are constituted by the same container, and a heat transfer pipe 41 in which cooling water for cooling and condensing the inflowing refrigerant vapor flows is provided in the condenser 4 There is.
  • the cooling water which has flowed out of the heat transfer tube 41 and whose temperature has risen is cooled by a cooling tower (not shown) or the like.
  • the liquid refrigerant generated by condensation in the condenser 4 is led to the first evaporator 11 through a pipe line 94.
  • the refrigerant evaporated in the first evaporator 11 is absorbed by the first absorber 21 in a solution.
  • the said 1st evaporator 11 and the 1st absorber 21 are comprised by the same container.
  • a second absorber 22 is provided adjacent to the first evaporator 11.
  • the second absorber 22 absorbs the refrigerant evaporated in the second evaporator 12 constituting the same container as the second absorber into a solution.
  • the concentrated solution generated in the regenerator 3 is led to the first absorber 21 by the solution pump 71 through the pipe line 91, and dispersed from the solution spreading device 23 provided on the upper portion of the first absorber 21. Ru.
  • the solution accumulated in the solution tank 24 in the lower portion inside the first absorber 21 is sent by the solution pump 72 to the second absorber 22 through the pipe line 92 and dispersed from the solution distribution device 25.
  • the dilute solution in the solution tank 26 at the lower portion in the second absorber 22 is sent to the regenerator 3 through the pipe line 93 by the solution pump 73 and regenerated into a concentrated solution.
  • the low-temperature solution heat exchanger 51 exchanges heat between the medium-temperature solution flowing from the first absorber 21 through the pipe line 92 and the rare solution from the second absorber 22, and the medium-temperature solution It recovers sensible heat.
  • the high temperature solution heat exchanger 52 exchanges heat between the high temperature concentrated solution from the regenerator 3 and the rare solution from the low temperature solution heat exchanger 51, and recovers the sensible heat of the high temperature concentrated solution. It is
  • the refrigerant pump 6 disperses the liquid refrigerant accumulated in the lower part of the first evaporator 11 again into the first evaporator 11 through the pipe line 95 and also disperses it in the second evaporator 12. And are sprayed from the respective refrigerant spraying devices 13 and 14.
  • the non-evaporated refrigerant dispersed in the second evaporator 12 is stored in the refrigerant tank 16 and is led to the first evaporator 11 from here via the communication pipe 96, and the liquid refrigerant from the condenser 4,
  • the non-evaporated refrigerant distributed to the first evaporator 11 is again supplied to the respective refrigerant distribution devices 13 and 14 by the refrigerant pump 72.
  • the liquid levels of the refrigerant tanks 15 and 16 in the first evaporator and the second evaporator are higher in the liquid level of the second evaporator 12 by the pressure difference (for example, 1000 Pa).
  • the communication pipe 96 is set so that the sealed refrigerant is sealed so that the pressure difference between the second evaporator 12 and the first evaporator 11 can be maintained.
  • the absorbent is lithium bromide and the refrigerant is water.
  • the first evaporator 11 and the second absorber 22 are partitioned via a heat transfer portion 8 having a heat transfer surface 81.
  • the heat transfer surface 81 is a component of the heat transfer surface 81.
  • the inner side of the heat transfer surface 81 is the first evaporator 11 side, and the outer surface is the second absorber 22 side.
  • the refrigerant liquid sent from the condenser 4 to the first evaporator 11 is stored in a refrigerant tank 15 formed in the lower part of the first evaporator 11.
  • the refrigerant pump 6 sends the refrigerant liquid to the refrigerant distribution device 13 disposed in the upper part of the first evaporator 11, and the first evaporator 11 side of the heat transfer surface 81 forming the boundary with the second absorber 22 ( Spray the refrigerant liquid from the inside).
  • the dispersed refrigerant liquid cools the solution flowing down on the second absorber 22 side (outside) of the heat transfer surface 81 by the latent heat of vaporization when it evaporates on the heat transfer surface 81.
  • a heat transfer pipe 27 through which cooling water flows is disposed in the first absorber 21.
  • the concentrated solution heated and concentrated by the regenerator 3 is sprayed onto the heat transfer tube 27 from the solution spraying device 23 disposed above the first absorber 21.
  • the solution sprayed at this time absorbs the refrigerant vapor evaporated in the first evaporator 11.
  • the pressure of the first evaporator 11 is maintained at a low pressure (e.g., 1800 Pa) by the absorption action of the solution absorbing the refrigerant.
  • a low pressure e.g. 1800 Pa
  • the refrigerant dispersed from the refrigerant distribution device 13 disposed above the first evaporator to the heat transfer surface 81 on the first evaporator side (inner side) can be evaporated continuously.
  • the cooling water flowing in the heat transfer tube 27 disposed in the first absorber cools the solution whose temperature has risen by the absorption heat generated when absorbing the refrigerant vapor.
  • the cooling water obtained by cooling the solution is cooled by the above-described cooling tower or the like.
  • the refrigerant liquid in the refrigerant tank 15 of the first evaporator 11 is also sent by the refrigerant pump 6 to the refrigerant distribution device 14 disposed above the second evaporator 12. Then, the refrigerant is spread on the heat transfer pipe 17 disposed in the second evaporator 12 from the refrigerant distribution device 14, and when it evaporates on the surface of the heat transfer pipe 17, the cold water flowing in the heat transfer pipe 17 due to the latent heat of vaporization or Cool the brine. Thereby, the cold water or brine flowing in the heat transfer tube 17 flows into the heat transfer tube 17 at 12 ° C., for example, and is cooled to 7 ° C., and is used for a cooling application or the like. In this case, the pressure in the second evaporator 12 is maintained at about 800 Pa (the saturation temperature of the refrigerant to be dispersed: 3.8 ° C.).
  • the solution is dispersed from the solution distribution device 25 disposed above the second absorber 22 to the second absorber side (outside) of the heat transfer surface 81 which forms the boundary with the first evaporator 11. Be done.
  • the dispersed solution is cooled by the latent heat of vaporization of the refrigerant flowing on the first evaporator 11 side (inner side) of the heat transfer surface 81.
  • the refrigerant vapor which has evaporated in the second evaporator 12 and flowed into the second absorber 22 is absorbed.
  • the pressure in the second evaporator 12 is maintained at a low pressure, and the refrigerant dispersed in the second evaporator 12 can be evaporated continuously.
  • the dilute solution which absorbs the refrigerant vapor in the second absorber 22 and is reduced in concentration is stored in the solution tank 26, and the stored dilute solution is stored by the solution pump 73 with the low temperature solution heat exchanger 51 and the high temperature.
  • the solution is sent to the regenerator 3 via the solution heat exchanger 52.
  • FIGS. 2 is a longitudinal sectional view of the evaporator and the can of the absorber according to the first embodiment of the present invention, taken along the line II-II in FIG. 3, and FIG. 3 is the cross-section taken along the line III-III in FIG.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 3, showing the heat transfer surface and the portion of the spraying device, and FIG. 5 is an enlarged view of the spraying device shown in FIG.
  • FIG. 2 shows the internal structure of the can 10 in which the evaporator and the absorber used in the two-stage absorption type refrigerator are integrated, and the piping around the can 10 is the same as in FIG. It is omitted in FIG.
  • the first evaporator 11, the first absorber 21, the second evaporator 12 and the second absorber 22 and the like described above are provided in the can 10 in which the evaporator and the absorber are integrated. Is equipped.
  • the heat transfer surface 81 is disposed so as to form a heat transfer surface which meanders in the horizontal direction and extends in the vertical direction. It is divided by the heat transfer section 8.
  • the refrigerant spreading device 13 on the first evaporator side and the solution spreading device 25 on the second absorber side are installed along the heat transfer surface 81 at the top of the heat transfer surface 81.
  • a liquid film of a refrigerant is formed on the side of the heat transfer surface 81 on the first evaporator 11 side, and a liquid film of a solution is formed on the side of the heat transfer surface 81 on the second absorber 22 side.
  • the lower part of the heat transfer surface 81 is closed at the first evaporator 11 side, and the refrigerant which has flowed down the first evaporator side (inner side) of the heat transfer surface 81 and which has not evaporated is the refrigerant tank 15 ( 1 and 2).
  • the solution flowing down on the second absorber 22 side (outside) of the heat transfer surface 81 drops outside the closed lower end of the heat transfer surface 81 and is collected in the lower solution tank 26.
  • a heat transfer pipe 27 is disposed horizontally in the first absorber 21, and cooling water flows in the heat transfer pipe 27.
  • the refrigerant vapor evaporated in the first evaporator 11 flows through the eliminator 18 into the first absorber 21 and is absorbed by the solution dispersed on the heat transfer tube 27 from the solution distribution device 23.
  • the heat of absorption generated when the refrigerant vapor is absorbed is taken away by the cooling water flowing in the heat transfer tube 27.
  • the solution which absorbs the refrigerant vapor and becomes thinner is collected in the solution tank 24.
  • a heat transfer pipe 17 is disposed horizontally in the second evaporator 12, and cold water or brine is flowing inside the heat transfer pipe 17.
  • the refrigerant liquid is sprayed from the spraying device 14 onto the heat transfer pipe 17, and the sprayed refrigerant liquid desorbs heat from the cold water or brine flowing inside the heat transfer pipe 17 and evaporates.
  • the evaporated refrigerant vapor is sent through the eliminator 28 to the second absorber 22.
  • the refrigerant that can not be evaporated on the heat transfer tube 17 is collected in the refrigerant tank 16.
  • the heat transfer portion 8 is configured by installing the heat transfer surface 81 so as to meander in the horizontal direction, the heat transfer portion having a large heat transfer area in a compact volume. 8 can be accommodated, and the overall size of the two-stage absorption refrigerator can be made compact.
  • the surface of the heat transfer surface 81 is an uneven portion in which a plurality of concave portions and convex portions are formed substantially in the horizontal direction. Further, as shown in FIGS. 2 to 4, on both sides of the upper side of the heat transfer surface 81 which is formed in a cylindrical shape which is long in the vertical direction, the refrigerant scattering device 13 and the solution described above along the heat transfer surface 81 The spraying device 25 is installed.
  • FIG. 5 is an enlarged view of a portion of the spray devices 13 and 25 shown in FIG. 4; the refrigerant spray device 25 of the second absorber (low temperature absorber) 22 and the refrigerant of the first evaporator (high temperature evaporator) 11
  • the spraying devices 13 are disposed at the upper portion of the heat transfer surface 81, and the liquid refrigerant or the solution is transferred from the heat transfer surface 81 through the horizontal holes 13a and 25a respectively provided in the spraying devices 13 and 25. It is spread on the heat surface and configured to flow down. By this configuration, it is possible to uniformly disperse with a simple configuration using a liquid head.
  • FIG. 6 is a perspective view for explaining the configuration of the assembled state of the heat transfer section 8 in the first embodiment of the present invention
  • FIG. 7 is a perspective view for explaining an example of manufacturing the heat transfer section 8 shown in FIG.
  • FIG. 7 is a perspective view for explaining a production example of the heat transfer surface 81 shown in FIG. 7
  • FIG. 9 is a view of the heat transfer portion 8 shown in FIG.
  • the heat transfer section 8 of the present embodiment is composed of a plurality of cylindrical heat transfer surfaces 81 and a closing plate 82 to which the heat transfer surfaces 81 are attached.
  • the heat transfer surface 81 has an opening 81a with one end open, and the other end closed by a closing member 81b.
  • the side surface in the longitudinal direction is formed with a concavo-convex portion in the horizontal direction so as to extend from the open end side to the back side (close member 81 b side).
  • the closing plate 82 is formed of a metal plate in which a plurality of openings 82a are formed, and the heat transfer surface 81 is set so that the opening 81a of the heat transfer surface 81 matches the portion of the openings 82a.
  • the heat transfer portion 8 is manufactured by joining and fixing the closing plate 82 by butt welding.
  • the opening 82 a formed in the closing plate 82 is formed in a rectangular shape (see FIG. 9) disposed in the opening 81 a of the heat transfer surface 81.
  • the heat transfer unit 8 includes a first absorber (high temperature absorber) 21 side and a second evaporator (low temperature evaporator) 12 side in the can 10 serving as a shell of the absorption refrigerator. And the entire periphery of the outer peripheral portion of the closing plate 82 is welded to the can body 10. That is, the right front side of the heat transfer section 8 is the first absorber (high temperature absorber) 21 side sandwiching the first evaporator (high temperature evaporator) 11, and the left back side is the second absorber The low temperature absorber 22 is interposed between the second evaporator 12 (low temperature evaporator) 12 side.
  • the heat transfer surface 81 is formed of two heat transfer plates 81c and 81d, in which the uneven portion in the horizontal direction is formed and the upper end or the lower end thereof is bent in the horizontal direction, and the closing member 81b.
  • the closing member 81b is formed in a shape that matches the shape of the opening on one end side formed in the assembled state of the two heat transfer plates 81c and 81d on which the uneven portion is formed, and welding is performed. Therefore, the heat transfer plate 81 can be easily manufactured without the need to bend the uneven portion of the heat transfer plate.
  • FIG. 9 is a view of the heat transfer section 8 shown in FIG. 6 as viewed from the closing plate 82 side, and the outside of the heat transfer surface 81 shown by the dotted line on the back side of the closing plate 82 is a second absorber (low temperature absorber) 22. It is on the side.
  • the inner side of the heat transfer surface 81 including the opening 82a is the first evaporator (high temperature evaporator) 11 side.
  • the following effects can be obtained by configuring the cylindrical heat transfer surface 81 to be on the first evaporator 11 side and the outer side on the second absorber 22 side. That is, if the inner side of the cylindrical heat transfer surface 81 is on the second absorber 22 side, there is a possibility that the solution may be accumulated on the bottom of the cylindrical heat transfer surface, which increases the possibility of causing corrosion. The risk of corrosion can be avoided by setting the inner side of the cylindrical heat transfer surface 81 to the first evaporator side as in this embodiment. Since the second absorber 22 side has a low pressure, the density of the refrigerant vapor decreases, and the vapor flow velocity increases accordingly, but by setting the second absorber 22 outside the heat transfer surface 81, the vapor density is small. A sufficient space volume can be easily secured in response to (the flow velocity becoming faster).
  • a large number of cylindrical heat transfer surface bodies 81 are manufactured, and the leak check (leakage inspection) of the welded portion is performed in the state of the heat transfer surface body 81 alone. If a defect in the weld is found, the heat transfer surface 81 can be repaired alone. Therefore, since the length of the portion to be continuously welded can be made extremely short, manufacture is easy and welding for repair can also be easily performed.
  • the heat transfer surface 81 having no welding defect after the leak inspection is butt-welded to the closing plate 82 to produce the heat transfer portion 8, and then the leak check of the butt weld portion of the heat transfer portion 8 is performed. If defects in the weld are found also at this stage, the repair is carried out, but at this stage the heat transfer section 8 is not yet attached to the can 10, so the repair is easy and the length of continuous welding is short.
  • the heat transfer portion 8 assembled and subjected to the leak inspection is incorporated into the can 10 to be the shell of the absorption refrigerator, and the entire periphery of the outer peripheral portion of the closing plate 82 is welded to the can 10 .
  • the length for continuous welding becomes very short as compared with the conventional welding of the bellows-like heat transfer surface to the can, and moreover the outer periphery of the closing plate 82 Since only welding is performed, welding itself can be performed very easily, and welding defects are less likely to occur. Further, the leak check of the welded portion can be easily performed by observing from one side of the can 10, and even if a defect is found, the repair is only the outer peripheral portion of the closing plate 82. Repair is also very easy.
  • the reliability of the welded portion is extremely important.
  • the heat transfer area of the heat transfer portion can be enlarged as in the case of the conventional heat transfer surface formed in a bellows shape, and the high performance two-stage absorption refrigerator is also possible. can get.
  • the heat transfer surface 81 can be adapted to a plurality of capacity absorption refrigerator. It is also easily possible to reduce the manufacturing cost.
  • FIG. 10 is a view showing another manufacturing example of the heat transfer surface 81, in which one plate member in which a plurality of fine concavo-convex portions are formed in the horizontal direction is bent to form a cylindrical shape.
  • the weld for forming the tube is good only at one place of the upper edge.
  • the opening at the other end welds the closing member 81b as shown in FIG.
  • a portion corresponding to the closing member 81b may be integrally formed in advance on the plate material.
  • FIG. 11 shows another manufacturing example of the heat transfer section 8
  • FIG. 12 is a view showing a state in which the heat transfer surface 81 shown in FIG. 11 is assembled.
  • the heat transfer unit 8 manufactured in this manufacturing example is different from the heat transfer unit 8 described above in that the closing member 81b of the heat transfer surface 81 is formed in a rectangular shape.
  • the closing member 81b does not have to be shaped to match the shape of the opening of the heat transfer surface 81 having the uneven portion, and a simple rectangular closing member 81b is shown in FIG.
  • the heat transfer plates 81c and 81d can be manufactured by butt welding, and the heat transfer surface 81 can be more easily manufactured.
  • the other configuration is the same as that of the heat transfer unit 8 shown in FIG.
  • FIG. 13 is a view showing still another example of manufacturing the heat transfer portion 8.
  • the heat transfer surface 81 can be welded by being inserted into the opening 82 a of the closing plate 82, the leak check of the welded portion in the heat transfer portion 8 can be performed by using the anti-heat transfer surface 81. It can be done from the side.
  • the heat transfer portion 8 is incorporated into the can 10 constituting the shell of the absorption refrigerator, and the outer periphery of the closing plate 82 of the heat transfer portion 8 is welded to the can 10, the welded portion of the outer periphery of the closing plate
  • the leak check of the welded portion of the opening 82a can also be performed from the first evaporator (high temperature evaporator) 11 side.
  • the repair can be easily performed from the first evaporator 11 side.
  • the other configuration is the same as that of the heat transfer section 8 shown in FIG.
  • FIG. 14 is a view showing still another example of manufacturing the heat transfer section 8.
  • the closing member 81b of the heat transfer surface 81 is formed in a rectangular shape as in the case shown in FIG. 11 and FIG.
  • the closing member 81b of this example is different in that the lower end thereof is extended to the same height position as the lower end of the closing plate 82.
  • the heat transfer surface 81 can be supported by the can 10 also with the closing member 81b instead of being cantilevered only by the welding portion on the closing plate 82 side, so the strength is improved and the reliability is improved. Can be further enhanced.
  • the other configuration is the same as that of the heat transfer section 8 shown in FIG. 7 and FIG.
  • FIG. 15 shows a modification of the heat transfer surface 81 shown in FIG. 14.
  • the heat transfer is performed by the support 81e provided at the lower portion of the heat transfer surface 81.
  • the face body 81 is supported by the can 10.
  • the heat transfer surface 81 is not cantilevered only by the welding portion on the closing plate 82 side, but can also be supported by the support 81 e on the can 10, so it is similar to the example shown in FIG. You can get the effect.
  • the other configuration is the same as that shown in FIG.
  • FIG. 16 is a view for explaining an example of the case where the second absorber (low temperature absorber) 22 is bled.
  • a corrosion inhibitor is added to the solution to prevent corrosion in the apparatus, and noncondensable gas is generated when an oxide film is formed. If the non-condensed gas is not exhausted to the outside of the apparatus, it gathers in the second absorber 22 which has a low pressure along with the refrigerant vapor of the second evaporator 12 on the low temperature side, which hinders heat exchange. Therefore, a bleed for discharging the non-condensed gas from the second absorber 22 is required.
  • a hole 83 communicating with the second absorber is formed in the closing plate 82 constituting the heat transfer section 8, and the extraction pipe 84 is By connecting the hole 83 from the first evaporator (high temperature evaporator) 11 side, the second absorber 22 can be bled. According to this configuration, the bleed pipe 84 can be routed from the first absorber (high temperature absorber) 21 side, so the bleed pipe 84 can be easily installed.
  • the heat transfer portion 8 provided between the low temperature absorber 22 and the high temperature evaporator 11 constituting the two-stage absorption type refrigerator is formed with the convex and concave portions in the horizontal direction.
  • the two-stage absorption method enables the heat transfer area of the heat transfer section 8 to be increased, and also easy to manufacture, and can be manufactured at low cost, since the heat transfer surface body 81 and the closing plate 82 form a cylindrical shape.
  • the absorption type refrigerator and the manufacturing method thereof can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

 二段吸収式冷凍機は、缶体10内に、低温蒸発器、低温吸収器、高温蒸発器、高温吸収器を順に隣り合わせて配置され、高温蒸発器と低温吸収器は伝熱部8を介して配置されている。前記低温吸収器の吸収熱は前記伝熱部を通して、高温蒸発器の伝熱部を流れる冷媒に伝達される。前記伝熱部は、一端が開口し、他端が閉じられた筒状の伝熱面体81と、複数の開口部82aを有する閉止板82とを備え、前記開口部に前記伝熱面体の開口が位置するようにして、前記伝熱面体を前記閉止板に溶接している。この伝熱部の閉止板は前記缶体に固定され、伝熱部の筒状の伝熱面体の内側には、例えば高温蒸発器が配置され、前記伝熱面体の外側には、例えば低温吸収器が配置される。前記伝熱面体上部の高温蒸発器側には冷媒散布装置が、低温吸収器側には溶液散布装置が配置される。

Description

二段吸収式冷凍機及びその製造方法
 本発明は、二段吸収式冷凍機及びその製造方法に係り、特に、低温から高温までの汲み上げ温度差を大にした二段吸収式冷凍機に好適である。
 従来の二段吸収方式の吸収式冷凍機(二段吸収式冷凍機)としては、特開2002-227262号公報(特許文献1)に記載されたものがある。
 上記特許文献1のものには、サイクル性能の高い二段吸収式冷凍機が記載されている。具体的には、前記二段吸収式冷凍機は、再生器と、この再生器で発生した蒸気冷媒を凝縮する凝縮器と、この凝縮器で凝縮した液冷媒を蒸発させる第1蒸発器(高温蒸発器)と、この第1蒸発器で蒸発した冷媒を溶液に吸収させる第1吸収器(高温吸収器)とを備えている。また、前記第1蒸発器内の液冷媒が導かれる第2蒸発器(低温蒸発器)と、この第2蒸発器で蒸発した冷媒を溶液に吸収させる第2吸収器(低温吸収器)とが備えられており、これら第2蒸発器、第2吸収器、第1蒸発器、第1吸収器の順に隣り合わせて同一の缶体で構成されている。更に、前記第1蒸発器と前記第2吸収器とは伝熱面を介して隣り合っており、前記凝縮器で凝縮した液冷媒を第1蒸発器、次いで第2の蒸発器に導くと共に、前記第1蒸発器の前記伝熱面の近傍に液冷媒を散布する液冷媒散布手段を、前記第2吸収器の前記伝熱面の近傍に溶液を散布する溶液散布手段をそれぞれ配設した構成となっている。
 上記のように構成された特許文献1のものでは、第2吸収器の吸収熱が、第1蒸発器と第2吸収器の間の伝熱面を通して、直接第1蒸発器の伝熱面上を流れる冷媒に伝達されるため、熱輸送のための温度差が小さくて済み、サイクルの性能向上を図れるという特徴がある。
特開2002-227262号公報
 上記特許文献1に記載のものでは、前記第1蒸発器と前記第2吸収器とは伝熱面を介して隣り合った構成とすることで、第2吸収器の吸収熱が、第1蒸発器と第2吸収器の間の伝熱面を通して、直接第1蒸発器の伝熱面上を流れる冷媒に伝達するようにしているが、前記伝熱面は、大きな伝熱面積を確保できるように水平方向に蛇行した蛇腹状に構成されている。
 即ち、上記伝熱面は、大きな伝熱面積を確保するために水平方向に蛇行した蛇腹状に構成されているが、そのためには非常に長い、例えば原材料となる数十メートルのプレートを蛇腹状にする必要がある。このため、非常に多くの回数折り曲げ加工する必要があり、製作が容易でない上、製作設備も過大なものが必要となる。また、この特許文献にも記載されているように、伝熱面にはその伝熱効率を上げるため、水平方向に多数の微細な凹凸部を形成することが多く、この多数の凹凸部が形成されているようなプレートを何度も折り曲げ加工することはかなり困難であり、曲げ部での割れやひびの欠陥が生じ易く、伝熱面に形成されている前記凹凸部が曲げ加工により変形して性能のばらつきも発生し易い。
 また、上記特許文献1のものでは、前記蛇腹状の伝熱面(伝熱部;伝熱プレート)を、吸収器や蒸発器を含む箱体の底面と両側面部において、全周溶接し、その後高温側蒸発器(第1蒸発器)側と低温側吸収器(第2吸収器)側に分割した上面をそれぞれ全周溶接するようにしているが、数十メートルもある蛇腹状の伝熱面を連続溶接する必要があり、連続溶接部が長くなって大変である上に、溶接欠陥も生じ易い。更に、溶接部の漏れチェックも必要であるが、この漏れチェックは、蛇腹状の伝熱プレートの底面、側面及び上面の溶接を全て終了させてからになるため、仮に漏れが検出された場合にはその補修も極めて難しい。即ち、溶接欠陥が発見された場合にその欠陥部を、例えば高温吸収器(第1吸収器)側から行う場合、欠陥部が低温蒸発器(第2蒸発器)側だと、プレート間の狭い隙間から奥側の欠陥部を溶接する必要があり、補修がかなり困難となる。従って、従来の二段吸収式冷凍機のものでは、伝熱面積の大きい伝熱面をもつ構造にすると製作が困難になるという課題がある。
 本発明の目的は、高温蒸発器と低温吸収器との間に設けられる伝熱部の伝熱面積を大きくとることが可能で、しかも製作も容易な二段吸収式冷凍機及びその製造方法を得ることにある。
 前述の目的を達成するための本発明は、缶体内に、低温蒸発器、低温吸収器、高温蒸発器、高温吸収器を順に隣り合わせて配置すると共に、前記高温蒸発器と前記低温吸収器は伝熱部を介して隣り合うように配置されて、前記低温吸収器の吸収熱が、高温蒸発器と低温吸収器の間の前記伝熱部を通して、高温蒸発器側の伝熱部上を流れる冷媒に伝達されるように構成された二段吸収式冷凍機において、前記伝熱部は、一端が開口し、他端が閉じられた筒状の伝熱面体と、複数の開口部を有する閉止板とを備え、前記閉止板に形成された開口部に前記伝熱面体の開口が位置するようにして、前記伝熱面体を前記閉止板に取り付けて構成され、この伝熱部の閉止板は前記缶体に固定され、前記伝熱部の前記筒状の伝熱面体の内側には、前記高温蒸発器或いは前記低温吸収器の一方が配置され、前記筒状の伝熱面体の外側には、前記高温蒸発器或いは前記低温吸収器の他方が配置されると共に、前記伝熱面体上部の前記高温蒸発器側には冷媒散布装置が、前記伝熱面体上部の前記低温吸収器側には溶液散布装置が配置されていることを特徴とする。
 本発明の他の特徴は、缶体内に、高温蒸発器と低温吸収器が伝熱部を介して隣り合うように配置されている二段吸収式冷凍機の製造方法において、一端が開口し、他端が閉じられた筒状の伝熱面体と、複数の開口部を有する閉止板を製作し、その後前記閉止板に形成された開口部に前記伝熱面体の開口が位置するようにして、前記伝熱面体を前記閉止板に溶接することで前記伝熱部を製作し、この製作された伝熱部を前記缶体の所定位置に配置した後、前記伝熱部の閉止板外周を前記缶体に全周溶接することを特徴とする。
 本発明によれば、高温蒸発器と低温吸収器との間に設けられる伝熱部の伝熱面積を大きくとることが可能となり、しかも製作も容易な二段吸収式冷凍機及びその製造方法を得ることができる。
本発明の二段吸収式冷凍機の実施例1を示す系統図。 本発明の実施例1における蒸発器と吸収器の缶体の縦断面図で、図3のII-II線矢視断面図。 図2のIII-III線矢視断面図。 図3のIV-IV線矢視断面図。 図4に示す散布装置の部分を拡大して示す図 本発明の実施例1における伝熱部の構成を説明する斜視図。 図6に示した伝熱部の製作例を説明する斜視図。 図7に示した伝熱面体の製作例を説明する斜視図。 図6に示す伝熱部を閉止板側から見た図。 図8に示した伝熱面体の他の製作例を説明する斜視図。 伝熱部の他の製作例を説明する斜視図。 図11に示す伝熱面体を組立てた状態の斜視図。 伝熱部の更に他の製作例を説明する斜視図。 伝熱部の更に他の製作例を説明する斜視図。 図14に示す伝熱面体の変形例を説明する斜視図。 第2吸収器からの抽気を行う場合の例を説明する図。
 本発明は、低温蒸発器(第2蒸発器)、低温吸収器(第2吸収器)、高温蒸発器(第1蒸発器)、高温吸収器(第1吸収器)の順に隣り合わせて同一の缶体で構成され、前記高温蒸発器と前記低温吸収器は伝熱面を介して隣り合うように配置されて、前記低温吸収器の吸収熱が、高温蒸発器と低温吸収器の間の前記伝熱部を通して、直接高温蒸発器の伝熱部上を流れる冷媒に伝達されるように構成された二段吸収式冷凍機に関する。以下、本発明の具体的実施例を、図面を用いて説明する。なお、各図において、同一符号を付した部分は同一或いは相当する部分を示している。
 図1は、本発明を二段吸収式冷凍機に適用した実施例1を示す系統図である。二段吸収式冷凍機は、高温蒸発器(第1蒸発器)11、低温蒸発器(第2蒸発器)12、高温吸収器(第1吸収器)21、低温吸収器(第2吸収器)22、再生器3、凝縮器4、低温溶液熱交換器51、高温溶液熱交換器52、冷媒ポンプ6、溶液ポンプ71,72,73などを備えている。
 前記再生器3は、散布装置31と伝熱管32で構成され、前記伝熱管32内を加熱源となる温水が流れ、前記散布装置31から前記伝熱管32に向かって散布され伝熱管32外を流下する溶液を、前記温水により加熱して冷媒蒸気を発生させ、濃度の薄い溶液を濃度の濃い溶液に濃縮して再生するものである。
 前記再生器3には例えば60℃の温水が供給され、伝熱管32外を流れる溶液を加熱することで、前記温水は55℃まで冷却される。一方、溶液を加熱濃縮することで発生する冷媒蒸気は、凝縮器4に流入する。前記再生器3と凝縮器4とは、同一の容器で構成され、また前記凝縮器4内には、流入した冷媒蒸気を冷却して凝縮させるための冷却水が流れる伝熱管41が設けられている。前記伝熱管41から流出し温度が上昇した冷却水は冷却塔(図示せず)などで冷却される。
 前記凝縮器4で凝縮して発生した液冷媒は、配管路94を介して前記第1蒸発器11に導かれる。この第1蒸発器11で蒸発した冷媒は、前記第1吸収器21で溶液に吸収される。また、前記第1蒸発器11と第1吸収器21とは同一の容器で構成されている。
 前記第1蒸発器11に隣合って第2吸収器22が設けられている。この第2吸収器22では、該第2吸収器と同一容器を構成する第2蒸発器12で蒸発した冷媒を溶液に吸収する。 
 前記再生器3で発生した濃溶液は、前記溶液ポンプ71により配管路91を介して前記第1吸収器21へ導かれ、第1吸収器21の上部に設けられた溶液散布装置23から散布される。また、第1吸収器21内下部の溶液タンク24に溜まった溶液は溶液ポンプ72により配管路92を介して前記第2吸収器22に送られ、溶液散布装置25から散布される。この第2吸収器22内下部の溶液タンク26の稀溶液は、溶液ポンプ73により配管路93を介して前記再生器3に送られ、濃溶液に再生される。
 前記低温溶液熱交換器51は、前記第1吸収器21から配管路92を流れる中温の溶液と、前記第2吸収器22からの稀溶液とを熱交換させるものであり、前記中温の溶液の顕熱を回収するものである。また、前記高温溶液熱交換器52は、前記再生器3からの高温の濃溶液と低温溶液熱交換器51からの稀溶液とを熱交換させるものであり、高温の濃溶液の顕熱を回収するものである。
 前記冷媒ポンプ6は、前記第1蒸発器11の下部に溜まった液冷媒を配管路95を介して第1蒸発器11内に再び散布すると共に、前記第2蒸発器12内にも散布するためのものであり、それぞれの冷媒散布装置13,14から散布される。前記第2蒸発器12に散布された未蒸発の冷媒は冷媒タンク16に溜められ、ここから連通管96を介して前記第1蒸発器11に導かれて、凝縮器4からの液冷媒、及び前記第1蒸発器11に散布された未蒸発の冷媒と共に、再度冷媒ポンプ72によりそれぞれの冷媒散布装置13,14に供給される。
 前記第1蒸発器と第2蒸発器内の冷媒タンク15,16の液面は、それらの差圧(例えば1000Pa)分だけ第2蒸発器12の液面の方が高くなる。前記連通管96は液シールされるように封入冷媒量が設定されているので、第2蒸発器12側と第1蒸発器11側の圧力差を保つことができる。 
 なお、この実施例において、吸収剤は臭化リチウムであり、冷媒は水である。
 前記第1蒸発器11と第2吸収器22とは、伝熱面体81を有する伝熱部8を介して区画されている。そして、双方が、この伝熱面体81を構成要素とし、この伝熱面体81の内側が前記第1蒸発器11側となり、外側が前記第2吸収器22側となっている。
 前記凝縮器4から第1蒸発器11に送られてきた冷媒液は、第1蒸発器11の下部に形成された冷媒タンク15に溜められる。冷媒ポンプ6は、この冷媒液を第1蒸発器11の上部に配置した前記冷媒散布装置13に送り、第2吸収器22との境界をなす前記伝熱面体81の第1蒸発器11側(内側)から冷媒液を散布する。散布された冷媒液は、伝熱面体81上で蒸発するときに蒸発潜熱により、伝熱面体81の第2吸収器22側(外側)を流下する溶液を冷却する。
 前記第1吸収器21には内部を冷却水が流れる伝熱管27が配置されている。再生器3で加熱濃縮された濃溶液は、第1吸収器21の上部に配置された前記溶液散布装置23から伝熱管27上に散布される。このとき散布される溶液が、第1蒸発器11で蒸発した冷媒蒸気を吸収する。
 溶液が冷媒を吸収する吸収作用により、第1蒸発器11の圧力は低圧(例えば1800Pa)に保たれる。その結果、第1蒸発器の上部に配置された前記冷媒散布装置13から第1蒸発器側(内側)の伝熱面体81に散布された冷媒を、継続的に蒸発できる。また、第1吸収器内に配置された伝熱管27内を流れる冷却水は、冷媒蒸気を吸収する時に発生する吸収熱で温度上昇した溶液を冷却する。溶液を冷却した前記冷却水は、凝縮器4内の前記伝熱管41を通過後、前述した冷却塔などで冷却される。
 第1蒸発器11の冷媒タンク15の冷媒液は、冷媒ポンプ6により第2蒸発器12の上部に配置した前記冷媒散布装置14にも送られる。そして、この冷媒散布装置14から、第2蒸発器12内に配置された伝熱管17上に散布され、該伝熱管17の表面で蒸発するときに蒸発潜熱により伝熱管17の内部を流れる冷水或いはブラインを冷却する。これにより、前記伝熱管17内を流れる前記冷水或いはブラインは、例えば12℃で伝熱管17内に流入して7℃まで冷却され、冷房用途などに利用される。なお、この場合、第2蒸発器12内の圧力は約800Pa(散布される冷媒の飽和温度3.8℃)に保持される。
 一方、第2吸収器22の上部に配置された前記溶液散布装置25から、溶液は、前記第1蒸発器11との境界をなす前記伝熱面体81の第2吸収器側(外側)に散布される。散布された溶液は、伝熱面体81の第1 蒸発器11側(内側)を流れる冷媒の蒸発潜熱により冷却される。そして、前記第2蒸発器12で蒸発し、第2吸収器22に流入した冷媒蒸気を吸収する。この吸収作用により、第2蒸発器12内の圧力は低圧に保たれ、第2蒸発器12内に散布される冷媒を継続的に蒸発可能にしている。
 第2吸収器22内で冷媒蒸気を吸収して濃度が薄くなった稀溶液は、溶液タンク26に溜められ、溶液ポンプ73により、この溜まった稀溶液は前記低温溶液熱交換器51と前記高温溶液熱交換器52を経由して前記再生器3に送られる。
 次に、図1に示す本実施例の二段吸収式冷凍機の詳細構造を、図2~図9を用いて説明する。図2は、本発明の実施例1における蒸発器と吸収器の缶体の縦断面図で、図3のII-II線矢視断面図、図3は図2のIII-III線矢視断面図、図4は図3のIV-IV線矢視断面図で、伝熱面及び散布装置の部分の図、図5は図4に示す散布装置の部分を拡大して示す図である。
 図2は二段吸収式冷凍機に用いられる蒸発器と吸収器を一体にした缶体10内部の構造を示しており、缶体10周りの配管等は図1と同様であり、図2~図4では省略している。
 これら図2~図4において、蒸発器と吸収器を一体にした缶体10内には、前述した第1蒸発器11、第1吸収器21、第2蒸発器12よび第2吸収器22とを備えている。第1蒸発器11と第2吸収器22との間は、図3に示すように、水平方向に蛇行し、鉛直方向に延びた伝熱面を形成するように、前記伝熱面体81を配置した伝熱部8で仕切られている。前記伝熱面体81の上部には伝熱面体81に沿って、第1蒸発器側の冷媒散布装置13及び第2吸収器側の溶液散布装置25が設置されている。伝熱面体81の第1蒸発器11側には冷媒の液膜が、伝熱面体81の第2吸収器22側には溶液の液膜がそれぞれ形成されている。
 第2蒸発器12側からの冷媒蒸気を、第2吸収器22の溶液の液膜(伝熱面体の外側を流下)が吸収する際に、吸収熱を発生する。この吸収熱は、伝熱面体81を介して、第1蒸発器11側(伝熱面体の内側)の冷媒液膜に伝えられ、伝熱面体81を流下する液冷媒を蒸発させる。前記冷媒散布装置13及び溶液散布装置25は、図3,図4に示すように、前記伝熱面体81と狭い隙間を保つように設けられている。
 伝熱面体81の下部は第1蒸発器11側で閉じられており、伝熱面体81の第1蒸発器側(内側)を流下した冷媒であって蒸発しなかったものは、冷媒タンク15(図1,図2参照)に集められる。また、伝熱面体81の第2吸収器22側(外側)を流下した溶液は、伝熱面体81の閉じられた下端の外側を滴下して、下部の溶液タンク26に集められる。
 第1吸収器21内には水平に伝熱管27が配置されており、この伝熱管27の内部を冷却水が流れている。第1蒸発器11で蒸発した冷媒蒸気は、エリミネータ18を通って第1吸収器21に流入し、溶液散布装置23から伝熱管27上に散布された溶液に吸収される。この冷媒蒸気を吸収する際に発生する吸収熱は、伝熱管27内を流れる冷却水に奪い去られる。冷媒蒸気を吸収して濃度の薄くなった溶液は、溶液タンク24に集められる。
 第2蒸発器12内には、水平に伝熱管17が配置されており、この伝熱管17の内部を冷水またはブラインが流れている。散布装置14からこの伝熱管17上に冷媒液が散布され、散布された冷媒液は伝熱管17の内部を流れる冷水またはブラインから熱を奪って蒸発する。蒸発した冷媒蒸気は、エリミネータ28を通って第2吸収器22に送られる。前記伝熱管17上で蒸発しきれなかった冷媒は、冷媒タンク16に集められる。
 このように本実施例においては、伝熱面体81を水平方向に蛇行するように設置して伝熱部8を構成しているので、コンパクトな容積内に、大きな伝熱面積を有する伝熱部8を収容でき、二段吸収式冷凍機全体の大きさをコンパクトにすることができる。
 また、図4に示すように、伝熱面体81の表面は、ほぼ水平方向に複数の凹部と凸部が形成された凹凸部となっている。また、図2~図4に示すように、上下方向に長い筒状に構成された前記伝熱面体81の上方の両側には、伝熱面体81に沿って、前述した冷媒散布装置13と溶液散布装置25が設置されている。
 図5は図4に示す散布装置13,25の部分を拡大して示す図で、第2吸収器(低温吸収器)22の冷媒散布装置25及び第1蒸発器(高温蒸発器)11の冷媒散布装置13は、それぞれ前記伝熱面体81の上部に配置されており、各散布装置13,25にそれぞれ設けられた横穴13a,25aから、液冷媒または溶液が、伝熱面体81のそれぞれの伝熱面へ散布され、流下するように構成されている。このように構成することにより、液ヘッドを利用した簡単な構成で均一に散布することが可能となる。
 次に、図6~図9により、水平方向に蛇行するように構成されている上記伝熱部8の製作例を説明する。図6は本発明の実施例1における伝熱部8を組み立てた状態の構成を説明する斜視図、図7は図6に示した伝熱部8の製作例を説明する斜視図、図8は図7に示した伝熱面体81の製作例を説明する斜視図、図9は図6に示す伝熱部8を閉止板82側から見た図である。
 図6に示すように、本実施例の上記伝熱部8は、筒状に構成された複数の伝熱面体81と、この伝熱面体81を取り付ける閉止板82から構成されている。前記伝熱面体81は、図7に示すように、一端側が開口した開口81aとなっており、他端側は閉止部材81bで閉じられた構成となっている。また、その長手方向側面は、前記開口端側から奥側(閉止部材81b側)に延びるように、水平方向の凹凸部が形成されている。更に、前記閉止板82は複数の開口部82aが形成された金属板で構成されており、前記開口部82aの部分に前記伝熱面体81の開口81aが一致するように、伝熱面体81を閉止板82に突合せ溶接により接合固定することで伝熱部8が製作される。 
 図7に示す例では、前記閉止板82に形成された開口部82aは、前記伝熱面体81の開口81a内に配置される矩形形状(図9参照)に構成されている。
 図6に示すように、前記伝熱部8は吸収式冷凍機のシェルとなる缶体10内の第1吸収器(高温吸収器)21側と、第2蒸発器(低温蒸発器)12側との間に配置され、閉止板82の外周部の全周が前記缶体10に溶接される。即ち、前記伝熱部8の右手前側が、第1蒸発器(高温蒸発器)11を挟んで第1吸収器(高温吸収器)21側となっており、左奥側が、第2吸収器(低温吸収器)22を挟んで第2蒸発器(低温蒸発器)12側となっている。
 前記伝熱面体81の製作例を図8により説明する。伝熱面体81は、水平方向の凹凸部が形成されると共にその上端または下端が水平方向に折り曲げられた2枚の伝熱プレート81c,81dと、前記閉止部材81bから構成されており、これらの部材を溶接などで接合することにより、図7に示すように、一端側が開口し、他端側が閉じられた筒状に組立てられて構成されている。この製作例では、前記閉止部材81bは、前記凹凸部が形成された2枚の伝熱プレート81c,81dを組み立てた状態で形成される一端側の開口部の形状に合う形状に構成されて溶接されるから、前記伝熱プレートの凹凸部を折り曲げる必要がなく、伝熱面体81を容易に製作できる。
 図9は図6に示す伝熱部8を閉止板82側から見た図で、閉止板82の奥側に点線で示す前記伝熱面体81の外側が第2吸収器(低温吸収器)22側となっている。一方、開口部82aを含む前記伝熱面体81の内側が第1蒸発器(高温蒸発器)11側となっている。
 このように、筒状の伝熱面体81の内側を第1蒸発器11側、外側を第2吸収器22側となるように構成することにより、次の効果がある。即ち、筒状の伝熱面体81の内側を第2吸収器22側とすると、筒状の伝熱面体の底面に溶液が溜まる可能性があり、このため腐食を引起す可能性が高くなるが、本実施例のように筒状の伝熱面体81の内側を第1蒸発器側にすることで腐食の危険性を回避することができる。第2吸収器22側は低圧となるため、冷媒蒸気の密度が小さくなり、その分蒸気流速が速くなるが、第2吸収器22を伝熱面体81の外側とすることにより、蒸気密度が小さく(流速が速く)なることに対応させて十分な空間容積を容易に確保可能となる。
 以上述べた本実施例によれば、まず筒状の伝熱面体81を多数製作し、その溶接部の漏れチェック(漏れ検査)は伝熱面体81単独の状態で行う。仮に溶接部の欠陥が見つかれば、その伝熱面体81単体で補修をすることができる。従って、連続溶接する部分の長さを非常に短くすることができるから製作が容易である上に、補修のための溶接も簡単に行うことができる。
 次に、漏れ検査実施後の溶接欠陥のない伝熱面体81を閉止板82に突合せ溶接して伝熱部8を製作した後、この伝熱部8の突合せ溶接部の漏れチェックを行う。この段階でも溶接部の欠陥が見つかれば、その補修を行うが、この段階では伝熱部8をまだ缶体10に取り付けてはいないので、その補修は容易であり、連続溶接する長さも短い。
 最後に、組み立てられて漏れ検査実施後の伝熱部8を、吸収式冷凍機のシェルとなる缶体10に組み込んで、閉止板82の外周部の全周を、前記缶体10に溶接する。ここでは閉止板82の外周を溶接するだけで良いので、従来の蛇腹状の伝熱面を缶体に溶接する場合に比べ、連続溶接する長さは非常短くなり、しかも閉止板82の外周の溶接だけであるから、溶接自体も非常に簡単に行うことができ、溶接欠陥も発生し難い。また、当該溶接部の漏れチェックも缶体10の一方側から観察して容易に行うことができる上、仮に欠陥が発見されても、その補修は閉止板82の外周部のみであるから、その補修も極めて容易である。
 吸収式冷凍機では溶接部の信頼性が極めて重要であるが、本実施例によれば、溶接欠陥のない信頼性の高い吸収式冷凍機を容易に製作することが可能になる。しかも本実施例によれば、前記伝熱部の伝熱面積も、従来の蛇腹状に形成した伝熱面としたものと同様に大きくすることができ、性能の高い二段吸収式冷凍機も得られる。
 更に、前記伝熱面体81を共用化し、吸収式冷凍機の容量に応じて前記伝熱面体の設置個数を増やすようにすることで、複数の容量の吸収式冷凍機に対応させることができ、製造コスト低減を図ることも容易に可能になる。
 次に、本実施例の変形例を図10~図16により説明する。 
 図10は、伝熱面体81の他の製作例を示す図で、水平方向に複数の微細な凹凸部が形成された1つの板材を折り曲げて筒状に形成するもので、このようにすれば、筒状にするための溶接部が上端縁の一箇所のみで良くなる。なお、筒状に構成された部材の一端側の開口81aを残し、他端側の開口部は、図8に示したような閉止部材81bを溶接するか、凹凸部が形成された前記1つの板材に、予め閉止部材81bに相当する部分を一体に形成しておくようにしても良い。
 図11は伝熱部8の他の製作例を示し、図12は図11に示す伝熱面体81を組み立てた状態を示す図である。この製作例で製作された伝熱部8が、前述した伝熱部8と異なる点は、伝熱面体81の閉止部材81bを矩形状に構成している点である。このように、閉止部材81bについては、凹凸部を有する伝熱面体81の開口部の形状と一致させる形状にする必要はなく、単純な矩形形状にした閉止部材81bを、図12に示すように、伝熱プレート81c,81dに突合せ溶接することでも製作は可能であり、伝熱面体81の製作をより容易に行うことができる。他の構成については、上記図7などに示した伝熱部8と同様である。
 図13は、伝熱部8の更に他の製作例を示す図で、この例では、閉止板82に形成された複数の開口部82aを、伝熱面体81の開口81aの形状と一致する形状にしたものである。このように構成することにより、伝熱面体81を閉止板82の前記開口部82aに差し込むようにして溶接することができるから、伝熱部8における溶接部の漏れチェックを、反伝熱面体81側から行うことができる。このため、伝熱部8を、吸収式冷凍機のシェルを構成する前記缶体10に組み込み、伝熱部8の閉止板82外周を前記缶体10に溶接後、閉止板外周の溶接部の漏れチェックと一緒に、前記開口部82aの溶接部の漏れチェックも、第1蒸発器(高温蒸発器)11側から行うことが可能となる。また、溶接部からの漏れが発見された場合でも、その補修を第1蒸発器11側から容易に行うことができる。他の構成については上記図7などに示した伝熱部8と同様である。
 図14は、伝熱部8の更に他の製作例を示す図で、この例では、上記図11、図12に示したものと同様に、伝熱面体81の閉止部材81bを矩形状に構成したものであるが、本例の前記閉止部材81bは、その下端が閉止板82の下端と同じ高さ位置まで延長した構成としている点が異なっている。このように構成することにより、伝熱面体81を、閉止板82側の溶接部のみで片持ち支持するのではなく、閉止部材81bでも缶体10に支持できるから、強度を向上して信頼性を更に高めることができる。他の構成については上記図7や図11などに示した伝熱部8と同様である。
 図15は図14に示す伝熱面体81の変形例を示すもので、この例では、閉止部材81bの下端を延長する代わりに、伝熱面体81の下部に設けた支持体81eにより、伝熱面体81を缶体10に支持するようにしたものである。このようにしても、伝熱面体81を、閉止板82側の溶接部のみで片持ち支持するのではなく、支持体81eでも缶体10に支持できるから、図14に示した例と同様の効果を得ることができる。他の構成については上記図14などに示したものと同様である。
 図16は、第2吸収器(低温吸収器)22からの抽気を行う場合の例を説明する図である。吸収式冷凍機では、装置内の腐食を防止するために溶液に腐食抑制剤が添加され、酸化皮膜を生成する際に不凝縮ガスが発生する。不凝縮ガスを装置外に排気しないと低温側では第2蒸発器12の冷媒蒸気に随伴して低圧となる第2吸収器22内に集まり熱交換の妨げとなってしまう。そのため、第2吸収器22から不凝縮ガスを排出するための抽気が必要となる。第2吸収器22からの抽気を行う場合、この例では、伝熱部8を構成する前記閉止板82に、前記第2吸収器に連通する穴83を形成し、抽気用配管84を、前記第1蒸発器(高温蒸発器)11側から前記穴83に接続することで、第2吸収器22からの抽気を行えるようにしたものである。このようにすれば、抽気用配管84の取回しを第1吸収器(高温吸収器)21側からできるので、抽気用配管84の設置作業を容易に行うことができる。
 以上述べたように、本実施例によれば、二段吸収式冷凍機を構成する低温吸収器22と高温蒸発器11の間に設けられる伝熱部8を、水平方向の凸凹部が形成された筒状の伝熱面体81と閉止板82とで構成しているので、伝熱部8の伝熱面積を大きくとることが可能となり、しかも製作も容易で低コストで製造できる二段吸収方式の吸収式冷凍機及びその製造方法を得ることができる。
10:缶体、
11:第1蒸発器(高温蒸発器)、12: 第2蒸発器(低温蒸発器)、
13,14:冷媒散布装置、13a:横穴、15,16:冷媒タンク、17:伝熱管、
18,28:エリミネータ、
21:第1吸収器(高温吸収器)、22: 第2蒸発器(低温吸収器)、
23,25:溶液散布装置、25a:横穴、24,26:溶液タンク、27:伝熱管、
3: 再生器、31:散布装置、32:伝熱管、
4:凝縮器、41:伝熱管、
51:低温溶液熱交換器、52:高温溶液熱交換器、
6:冷媒ポンプ、
71、72、73:溶液ポンプ、
8:伝熱部、81:伝熱面体、81a:開口、81b:閉止部材、
81c,81d:伝熱プレート、81e:支持体、
82:閉止板、82a:開口部、83:穴、84:抽気用配管、
91~95:配管路、96:連通管。

Claims (14)

  1.  缶体内に、低温蒸発器、低温吸収器、高温蒸発器、高温吸収器を順に隣り合わせて配置すると共に、前記高温蒸発器と前記低温吸収器は伝熱部を介して隣り合うように配置されて、前記低温吸収器の吸収熱が、高温蒸発器と低温吸収器の間の前記伝熱部を通して、高温蒸発器側の伝熱部上を流れる冷媒に伝達されるように構成された二段吸収式冷凍機において、
     前記伝熱部は、一端が開口し、他端が閉じられた筒状の伝熱面体と、複数の開口部を有する閉止板とを備え、前記閉止板に形成された開口部に前記伝熱面体の開口が位置するようにして、前記伝熱面体を前記閉止板に取り付けて構成され、この伝熱部の閉止板は前記缶体に固定され、
     前記伝熱部の前記筒状の伝熱面体の内側には、前記高温蒸発器或いは前記低温吸収器の一方が配置され、前記筒状の伝熱面体の外側には、前記高温蒸発器或いは前記低温吸収器の他方が配置されると共に、
     前記伝熱面体上部の前記高温蒸発器側には冷媒散布装置が、前記伝熱面体上部の前記低温吸収器側には溶液散布装置が配置されている
     ことを特徴とする二段吸収式冷凍機。
  2.  請求項1に記載の二段吸収式冷凍機において、前記筒状の伝熱面体の内側には、前記高温蒸発器が配置され、前記筒状の伝熱面体の外側には、前記低温吸収器が配置されていることを特徴とする二段吸収式冷凍機。
  3.  請求項1に記載の二段吸収式冷凍機において、前記伝熱面体は上下方向に長い筒状に構成され、この伝熱面体が複数個水平方向に配置されるように前記閉止板に取り付けることで、水平方向に蛇行し、垂直方向に延びた伝熱面に構成されていることを特徴とする二段吸収式冷凍機。
  4.  請求項1に記載の二段吸収式冷凍機において、前記筒状の伝熱面体は水平方向の凹凸部を形成した伝熱面を有することを特徴とする二段吸収式冷凍機。
  5.  請求項4に記載の二段吸収式冷凍機において、前記閉止板に形成された開口部は前記伝熱面体の開口内に配置される矩形形状に構成されていることを特徴とする二段吸収式冷凍機。
  6.  請求項4に記載の二段吸収式冷凍機において、前記閉止板に形成された開口部は前記伝熱面体の開口の形状と一致した形状に構成されていることを特徴とする二段吸収式冷凍機。
  7.  請求項1に記載の二段吸収式冷凍機において、一端が開口し、他端が閉じられた筒状の前記伝熱面体は、水平方向の凹凸部を形成した伝熱面を有する伝熱プレートと、前記閉じられた他端を塞ぐ閉止部材を備えることを特徴とする二段吸収式冷凍機。
  8.  請求項7に記載の二段吸収式冷凍機において、前記閉止部材は、矩形形状に構成されて前記伝熱プレートに突合せ溶接されていることを特徴とする二段吸収式冷凍機。
  9.  請求項8に記載の二段吸収式冷凍機において、前記閉止部材の下端が前記閉止板の下端と同じ高さ位置まで延長して構成されていることを特徴とする二段吸収式冷凍機。
  10.  請求項1に記載の二段吸収式冷凍機において、前記伝熱面体を支持するための支持体を前記伝熱面体の下部に設けたことを特徴とする二段吸収式冷凍機。
  11.  請求項1に記載の二段吸収式冷凍機において、前記冷媒散布装置及び前記溶液散布装置は、前記伝熱面体の伝熱面に沿うように隙間を介して設置され、前記各散布装置の側部には前記冷媒または溶液を散布するための横穴を設け、この横穴から前記伝熱面に冷媒または溶液を散布させ伝熱面に沿って流下させる構成としたことを特徴とする二段吸収式冷凍機。
  12.  缶体内に、高温蒸発器と低温吸収器が伝熱部を介して隣り合うように配置されている二段吸収式冷凍機の製造方法において、
     一端が開口し、他端が閉じられた筒状の伝熱面体と、複数の開口部を有する閉止板を製作し、その後前記閉止板に形成された開口部に前記伝熱面体の開口が位置するようにして、前記伝熱面体を前記閉止板に溶接することで前記伝熱部を製作し、
     この製作された伝熱部を前記缶体の所定位置に配置した後、前記伝熱部の閉止板外周を前記缶体に全周溶接することを特徴とする二段吸収式冷凍機の製造方法。
  13.  請求項12に記載の二段吸収式冷凍機の製造方法において、前記伝熱面体は複数の伝熱プレートと閉止部材を溶接することで一端が開口し、他端が閉じられた筒状の伝熱面体を製作し、当該製作された伝熱面体の溶接部の漏れ検査を実施した後、この漏れ検査実施後の伝熱面体を前記閉止板に溶接して前記伝熱部を製作することを特徴とする二段吸収式冷凍機の製造方法。
  14.  請求項13に記載の二段吸収式冷凍機の製造方法において、前記伝熱部を製作後、当該伝熱部の溶接部の漏れ検査を実施し、この漏れ検査実施後の伝熱部を前記缶体に溶接することを特徴とする二段吸収式冷凍機の製造方法。
PCT/JP2011/053842 2011-02-22 2011-02-22 二段吸収式冷凍機及びその製造方法 WO2012114456A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2011/053842 WO2012114456A1 (ja) 2011-02-22 2011-02-22 二段吸収式冷凍機及びその製造方法
JP2013500752A JP5489143B2 (ja) 2011-02-22 2011-02-22 二段吸収式冷凍機及びその製造方法
DE112011104937.4T DE112011104937T5 (de) 2011-02-22 2011-02-22 Zweistufige Absorptions-Kältemaschine und Herstellungsverfahren dafür

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/053842 WO2012114456A1 (ja) 2011-02-22 2011-02-22 二段吸収式冷凍機及びその製造方法

Publications (1)

Publication Number Publication Date
WO2012114456A1 true WO2012114456A1 (ja) 2012-08-30

Family

ID=46720276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053842 WO2012114456A1 (ja) 2011-02-22 2011-02-22 二段吸収式冷凍機及びその製造方法

Country Status (3)

Country Link
JP (1) JP5489143B2 (ja)
DE (1) DE112011104937T5 (ja)
WO (1) WO2012114456A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9677791B2 (en) 2011-08-11 2017-06-13 Major Bravo Limited Absorption refrigeration machine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04268171A (ja) * 1991-02-21 1992-09-24 Hitachi Zosen Corp 吸収式熱源装置
JPH05113263A (ja) * 1991-10-23 1993-05-07 Osaka Gas Co Ltd 二重効用吸収式冷凍機
JPH0743033A (ja) * 1993-07-28 1995-02-10 Osaka Gas Co Ltd 二重効用吸収式冷凍機
JPH07139844A (ja) * 1993-11-12 1995-06-02 Hitachi Ltd 吸収冷凍機
JPH08617Y2 (ja) * 1990-07-05 1996-01-10 忠男 戸塚 熱交換器
JP2000227262A (ja) * 1999-02-03 2000-08-15 Hitachi Ltd 吸収冷凍機及びその製造方法
JP2001133071A (ja) * 1999-11-02 2001-05-18 Tokyo Gas Co Ltd 吸収冷温水機
JP2008095976A (ja) * 2006-10-06 2008-04-24 Hitachi Appliances Inc 2段吸収冷凍機

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08617Y2 (ja) * 1990-07-05 1996-01-10 忠男 戸塚 熱交換器
JPH04268171A (ja) * 1991-02-21 1992-09-24 Hitachi Zosen Corp 吸収式熱源装置
JPH05113263A (ja) * 1991-10-23 1993-05-07 Osaka Gas Co Ltd 二重効用吸収式冷凍機
JPH0743033A (ja) * 1993-07-28 1995-02-10 Osaka Gas Co Ltd 二重効用吸収式冷凍機
JPH07139844A (ja) * 1993-11-12 1995-06-02 Hitachi Ltd 吸収冷凍機
JP2000227262A (ja) * 1999-02-03 2000-08-15 Hitachi Ltd 吸収冷凍機及びその製造方法
JP2001133071A (ja) * 1999-11-02 2001-05-18 Tokyo Gas Co Ltd 吸収冷温水機
JP2008095976A (ja) * 2006-10-06 2008-04-24 Hitachi Appliances Inc 2段吸収冷凍機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9677791B2 (en) 2011-08-11 2017-06-13 Major Bravo Limited Absorption refrigeration machine

Also Published As

Publication number Publication date
JP5489143B2 (ja) 2014-05-14
DE112011104937T5 (de) 2014-01-09
JPWO2012114456A1 (ja) 2014-07-07

Similar Documents

Publication Publication Date Title
CN108036658B (zh) 用于降膜式换热器的换热管及换热器和空调热泵机组
JP2012057900A (ja) シェルアンドプレート式熱交換器
WO2012114456A1 (ja) 二段吸収式冷凍機及びその製造方法
JP4609316B2 (ja) 冷蔵庫
KR101059396B1 (ko) 냉동장치의 액열기
KR101682229B1 (ko) 폐기열 회수 열교환기
KR20150007131A (ko) 흡수식 칠러
JP4903743B2 (ja) 吸収式冷凍機
JP2009105156A (ja) 均熱処理装置
JP5055071B2 (ja) 吸収式冷凍機
CN219640766U (zh) 一种用于冻土区的重力热管结构
JP2007085592A (ja) 再生凝縮装置
JP7080001B2 (ja) 吸収式冷凍機
KR101163065B1 (ko) 흡수식 냉난방장치
KR20120054345A (ko) 열교환기 및 그 제조방법
JP4188256B2 (ja) 吸収式冷凍機の精留装置
CN107014077A (zh) 一种热泵热水机
JP4065741B2 (ja) 吸収冷温水機
JP3604805B2 (ja) 吸収式冷凍装置
JP2001082824A (ja) 吸収式冷凍機
JP3913112B2 (ja) 吸収冷凍機の冷凍ユニット
JP3617724B2 (ja) 吸収式冷凍装置
JP4720558B2 (ja) 吸収冷凍機用発生器
CN103743155A (zh) 吸收式冷暖设备
JP3348144B2 (ja) 吸収式冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859596

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013500752

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112011104937

Country of ref document: DE

Ref document number: 1120111049374

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11859596

Country of ref document: EP

Kind code of ref document: A1