WO2012113954A1 - Nuevo método de clonación y mutagénesis in vitro mediante pcr inversa de clonación - Google Patents
Nuevo método de clonación y mutagénesis in vitro mediante pcr inversa de clonación Download PDFInfo
- Publication number
- WO2012113954A1 WO2012113954A1 PCT/ES2012/070096 ES2012070096W WO2012113954A1 WO 2012113954 A1 WO2012113954 A1 WO 2012113954A1 ES 2012070096 W ES2012070096 W ES 2012070096W WO 2012113954 A1 WO2012113954 A1 WO 2012113954A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vector
- cloning
- sequence
- dna
- sequences
- Prior art date
Links
- 238000010367 cloning Methods 0.000 title claims abstract description 123
- 238000000034 method Methods 0.000 title claims abstract description 121
- 238000002703 mutagenesis Methods 0.000 title claims abstract description 36
- 231100000350 mutagenesis Toxicity 0.000 title claims abstract description 36
- 238000000338 in vitro Methods 0.000 title description 13
- 239000013598 vector Substances 0.000 claims abstract description 211
- 230000035772 mutation Effects 0.000 claims abstract description 43
- 108091034117 Oligonucleotide Proteins 0.000 claims description 61
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 claims description 46
- 125000003729 nucleotide group Chemical group 0.000 claims description 45
- 238000003780 insertion Methods 0.000 claims description 40
- 230000037431 insertion Effects 0.000 claims description 40
- 108090000623 proteins and genes Proteins 0.000 claims description 38
- 239000002773 nucleotide Substances 0.000 claims description 37
- 210000004027 cell Anatomy 0.000 claims description 32
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 claims description 21
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 claims description 21
- 241000588724 Escherichia coli Species 0.000 claims description 19
- 238000013461 design Methods 0.000 claims description 19
- 238000012217 deletion Methods 0.000 claims description 17
- 230000037430 deletion Effects 0.000 claims description 17
- 238000006467 substitution reaction Methods 0.000 claims description 16
- 239000003155 DNA primer Substances 0.000 claims description 11
- 230000010076 replication Effects 0.000 claims description 10
- 108010042407 Endonucleases Proteins 0.000 claims description 7
- 102000004533 Endonucleases Human genes 0.000 claims description 7
- 230000001419 dependent effect Effects 0.000 claims description 6
- 230000011987 methylation Effects 0.000 claims description 6
- 238000007069 methylation reaction Methods 0.000 claims description 6
- 108060002716 Exonuclease Proteins 0.000 claims description 5
- 102000013165 exonuclease Human genes 0.000 claims description 5
- 210000001236 prokaryotic cell Anatomy 0.000 claims description 5
- 102000007260 Deoxyribonuclease I Human genes 0.000 claims description 2
- 108010008532 Deoxyribonuclease I Proteins 0.000 claims description 2
- 108020004414 DNA Proteins 0.000 abstract description 114
- 108091093088 Amplicon Proteins 0.000 abstract description 70
- 239000012634 fragment Substances 0.000 abstract description 60
- 230000000295 complement effect Effects 0.000 abstract description 24
- 238000011065 in-situ storage Methods 0.000 abstract description 2
- 230000002068 genetic effect Effects 0.000 abstract 1
- 230000003321 amplification Effects 0.000 description 52
- 239000013615 primer Substances 0.000 description 47
- 238000003199 nucleic acid amplification method Methods 0.000 description 43
- 239000013612 plasmid Substances 0.000 description 36
- 238000009396 hybridization Methods 0.000 description 33
- 102000053602 DNA Human genes 0.000 description 18
- 108010048367 enhanced green fluorescent protein Proteins 0.000 description 18
- 239000000499 gel Substances 0.000 description 17
- 239000011543 agarose gel Substances 0.000 description 16
- 238000000746 purification Methods 0.000 description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 15
- 239000000872 buffer Substances 0.000 description 15
- 239000003550 marker Substances 0.000 description 13
- 101150027482 SLC16A2 gene Proteins 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 10
- 238000010353 genetic engineering Methods 0.000 description 10
- 108091008146 restriction endonucleases Proteins 0.000 description 10
- 108020004705 Codon Proteins 0.000 description 9
- 101000735354 Homo sapiens Poly(rC)-binding protein 1 Proteins 0.000 description 9
- 108090000364 Ligases Proteins 0.000 description 9
- 102000003960 Ligases Human genes 0.000 description 9
- 102100034960 Poly(rC)-binding protein 1 Human genes 0.000 description 9
- 241000702449 African cassava mosaic virus Species 0.000 description 8
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical group C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 8
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 8
- 229960000723 ampicillin Drugs 0.000 description 8
- 239000012154 double-distilled water Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 230000009466 transformation Effects 0.000 description 8
- 241000894006 Bacteria Species 0.000 description 7
- 108091026890 Coding region Proteins 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 7
- 229960000074 biopharmaceutical Drugs 0.000 description 7
- 239000002299 complementary DNA Substances 0.000 description 7
- 238000005215 recombination Methods 0.000 description 7
- 230000006798 recombination Effects 0.000 description 7
- 238000011160 research Methods 0.000 description 7
- 108091006599 SLC16A2 Proteins 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 6
- 229960005542 ethidium bromide Drugs 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 102000012410 DNA Ligases Human genes 0.000 description 5
- 108010061982 DNA Ligases Proteins 0.000 description 5
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 5
- 108091081024 Start codon Proteins 0.000 description 5
- 239000008049 TAE buffer Substances 0.000 description 5
- 101150117115 V gene Proteins 0.000 description 5
- HGEVZDLYZYVYHD-UHFFFAOYSA-N acetic acid;2-amino-2-(hydroxymethyl)propane-1,3-diol;2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid Chemical compound CC(O)=O.OCC(N)(CO)CO.OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O HGEVZDLYZYVYHD-UHFFFAOYSA-N 0.000 description 5
- 230000003115 biocidal effect Effects 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 5
- 238000006731 degradation reaction Methods 0.000 description 5
- 239000013642 negative control Substances 0.000 description 5
- 230000037452 priming Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 238000012163 sequencing technique Methods 0.000 description 5
- 239000001632 sodium acetate Substances 0.000 description 5
- 235000017281 sodium acetate Nutrition 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 239000006142 Luria-Bertani Agar Substances 0.000 description 4
- 101150036083 Pcbp1 gene Proteins 0.000 description 4
- 238000011529 RT qPCR Methods 0.000 description 4
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical group O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 102000039446 nucleic acids Human genes 0.000 description 4
- 108020004707 nucleic acids Proteins 0.000 description 4
- 150000007523 nucleic acids Chemical class 0.000 description 4
- 102000052339 Monocarboxylate transporter 8 Human genes 0.000 description 3
- 102100027871 Monocarboxylate transporter 8 Human genes 0.000 description 3
- 238000012408 PCR amplification Methods 0.000 description 3
- 101710183280 Topoisomerase Proteins 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- 210000004698 lymphocyte Anatomy 0.000 description 3
- 238000003752 polymerase chain reaction Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- MXHRCPNRJAMMIM-SHYZEUOFSA-N 2'-deoxyuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 MXHRCPNRJAMMIM-SHYZEUOFSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 101000918303 Bos taurus Exostosin-2 Proteins 0.000 description 2
- 101710154606 Hemagglutinin Proteins 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 101710093908 Outer capsid protein VP4 Proteins 0.000 description 2
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 description 2
- 101710176177 Protein A56 Proteins 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000012219 cassette mutagenesis Methods 0.000 description 2
- OFEZSBMBBKLLBJ-BAJZRUMYSA-N cordycepin Chemical group C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)C[C@H]1O OFEZSBMBBKLLBJ-BAJZRUMYSA-N 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000000185 hemagglutinin Substances 0.000 description 2
- 238000002744 homologous recombination Methods 0.000 description 2
- 230000006801 homologous recombination Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 238000002741 site-directed mutagenesis Methods 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 241001515965 unidentified phage Species 0.000 description 2
- 101150033839 4 gene Proteins 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 230000004543 DNA replication Effects 0.000 description 1
- 241000305071 Enterobacterales Species 0.000 description 1
- 241000588921 Enterobacteriaceae Species 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 241000192128 Gammaproteobacteria Species 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 1
- 101100310663 Homo sapiens SP1 gene Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241000192142 Proteobacteria Species 0.000 description 1
- 239000013616 RNA primer Substances 0.000 description 1
- 102000018120 Recombinases Human genes 0.000 description 1
- 108010091086 Recombinases Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 101150081457 Sp1 gene Proteins 0.000 description 1
- 108020005038 Terminator Codon Proteins 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 102000006943 Uracil-DNA Glycosidase Human genes 0.000 description 1
- 108010072685 Uracil-DNA Glycosidase Proteins 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 230000006154 adenylylation Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000007846 asymmetric PCR Methods 0.000 description 1
- 230000010310 bacterial transformation Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000007541 cellular toxicity Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000012761 co-transfection Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 1
- SUYVUBYJARFZHO-UHFFFAOYSA-N dATP Natural products C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-UHFFFAOYSA-N 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- MXHRCPNRJAMMIM-UHFFFAOYSA-N desoxyuridine Natural products C1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 MXHRCPNRJAMMIM-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 101150097231 eg gene Proteins 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000005090 green fluorescent protein Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 229920002704 polyhistidine Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/686—Polymerase chain reaction [PCR]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/102—Mutagenizing nucleic acids
Definitions
- the present invention belongs to the field of Molecular Biology, the
- the present invention relates to a new in vitro method for directed cloning or for directed cloning and simultaneous directed mutagenesis, using a reverse cloning PCR (CiPCR).
- the present invention relates to a kit comprising the instructions for carrying out said methods.
- the cloning of a DNA insert or fragment into a vector consists of attaching the corresponding 5 ' and 3 ' ends of the DNA fragment to the corresponding 3 ' and 5 ' sites of the vector, respectively.
- the generated circular gene construct is a vector that can be introduced into a cell, where it is replicated when the cell is cultured, so that its progeny inherits it, thus allowing to obtain many identical copies or clones of said DNA fragment Content in the new vector.
- the techniques used mostly for the cloning of DNA fragments in a vector are very varied and can be classified, according to the methodology to be used, into five types commonly known as: blunt end ligation methods, restriction methods, TA cloning methods , recombination methods, and LIC methods (method of independent cloning of ligases, from English "ligation independent cloning").
- Blind end ligation methods are based on the use of restriction enzymes whose products have blunt ends. These methods are easy to understand, but experimentally they are slow and tedious, and do not allow cloning in a targeted way easily and efficiently. Among its greatest limitations are that they depend on the presence of the target sequences both in the insert and in the vector, which do not allow the use of PCR amplicons (polymerase chain reaction) directly with deoxyadenosine residues at its 3 ' end, which There is a lack of information about the sequences flanking the targets of certain restriction enzymes and that the efficiency of DNA ligase in joining blunt ends is low.
- Restriction methods are based on the use of restriction enzymes whose products have cohesive or protruding ends (in the DNA double stranded a certain number of residues at the end of the corresponding chain protrudes in the form of a single chain). These methods are easy to understand, allow both directed and non-directed cloning of the insert, and efficient ligation of the insert into the vector.
- restriction cloning requires a thorough prior study of the strategy to follow and the vectors to be used, causing a significant loss of time, increased when the arrangement of the target sequences forces the cloning of the insert into a first vector and the transfer of the insert to a second desired vector or vector.
- TA cloning methods and the like are based on hybridization of the insert with the vector either through deoxyadenosine residues at the 3 'protuberant ends of the insert that hybridize with deoxythymidine residues at the 3' protruding ends of the vector, or through added, or by activation of other special sequences terminal residues.
- These methods employ open commercial vectors in which PCR products are inserted directly, most do not allow targeted cloning, require the purchase of new aliquots and transfer of the cloned sequence to a desired second vector is generally necessary.
- Examples of these vectors are pGEM T and pGEM®-T Easy from Promega, which use as DNA fragments with 3 ' deoxyadenosine residues protruding and ligases for attachment of the insert with the vector, or the pCR®l l-TOPO of Invitrogen, which uses DNA fragments with 3 ' deoxyadenosine residues protuberant and topoisomerases.
- Zero Blunt TOPO PCR Cloning Kit also uses topoisomerases and allows the cloning of fragments of DNA with blunt ends in a non-directed manner, such as using the fragments obtained by PCR by polymerases that do not introduce residues of deoxyadenosine at the 3 ' ends.
- Other vectors such as "Directional TOPO® Cloning allow the cloning of DNA fragments directly in a topoisomerase manner, and for this they require primers with specific sequences added at their ends.
- An alternative to in vitro ligation between the insert and the vector is in vivo ligation.
- An example is that which occurs in bacteria that overexpress the T4 bacteriophage DNA ligase, into which the vector and the insert are introduced in a linear manner so that their linkage occurs within the cell.
- the major problems of this method are the low stability of the linear DNA within the bacteria, which leads to its partial degradation and a decrease in the efficiency of the linkage, or its complete degradation, which leads to failure.
- Recombination methods can employ two strategies: in vitro cloning using recombinases (examples: Gateway® technology from Invitrogen and In-Fusion TM technology and Creator TM PCR Cloning System from Clontech) and in vivo cloning, where the insert and the vector recombines within a cell by homologous recombination, which is very efficient in yeasts and is also recently achieved in Escherichia coli (E. coli) by "RecET cloning" and " ⁇ Red cloning”.
- the LIC methods are based on the creation of cohesive ends, the most common ones containing 12 nucleotide residues, in the insert and in the vector, complementary to each other. These methods allow targeted cloning and are independent of restriction enzymes and ligases. Hybridization of complementary cohesive ends of insert and vector permit its stabilization in forming a circular vector gene construct when inserted type within a cell is covalently bound by intracellular ligases for obtaining the corresponding vector.
- the generation of these cohesive extremes is laborious and the storage of Products that contain them are problematic, since the extremes are susceptible to degradation.
- Different strategies are used for the generation of cohesive ends: T4 DNA polymerase (Aslanidis et al. (Cois.) PCR Methods Appl. 1994 4 (3): 172-7), uracil DNA glycosylase and polymerases that cannot amplify from RNA residues present in mixed DNA-RNA primers.
- DNA cloned in generally double-stranded vectors or in that of the vector itself are of various types, such as restriction methods, also known as “cassette mutagenesis", or “codon cassette-mutagenesis” methods, methods that employ LIC techniques or recombination, or the methods in which the complete vector is amplified by PCR using primers in which the mutations to be introduced are incorporated.
- kits are focused on specific purposes and its application is limited. Examples of these kits are the QuikChange® Site-Directed Mutagenesis Kit or the ExSite TM PCR-Based Site-Directed Mutagenesis Kit, both from Stratagene.
- the overlap and mega-oligonucleotide extension methods only apply to obtaining linear DNA with the desired mutation and, in addition to being laborious, require the cloning of the mutated DNA into the desired vector, a posteriori.
- the method described by Miyazaki and Takenouchi (BioTechniques 2002. 33 (5) 1033-1038) and that described by Hedge and cois. (Current Science. 2003. 85 (1 1) 1523-1525) allow mutagenesis of a sequence already cloned into a vector and employ a first classical PCR (PCRc) and a second reverse PCR (PCRi).
- PCRc classical PCR
- PCRi reverse PCR
- cloning and DNA mutagenesis require extensive knowledge of genetic engineering and molecular biology to design the best strategy to help us decide the methodology to be used.
- the present invention provides a new method of directed cloning, which is based on the use of a PCRc and a reverse cloning PCR (CiPCR).
- the method of the invention is efficient for the directed cloning of large DNA fragments (for example complete genes or gene promoters), either by means of CiPCR for insertion of the sequence to be cloned in the chosen vector or by CiPCR for substitution of the sequence of a DNA fragment already contained in the vector chosen by that of the new fragment to be cloned, or for simultaneous cloning and mutagenesis.
- cloning of the long DNA fragment is carried out by insertion or replacement CiPCR through a non-classical PCRi (PCRi nc ) and simultaneous directed cloning mutations are introduced to through the PCRc of the amplification of the insert, prior to the PCRi nc , through the use of the oligonucleotide primers that they contain the appropriate sequences to introduce the mutations (substitutions, insertions or deletions) at the sites of interest.
- oligonucleotides can be synthesized chemically or by genetic engineering, if their size is larger than that allowed by chemical synthesis.
- the method is easy to understand and design and simpler to use than the methods used to date, so it does not require high knowledge of genetic engineering or molecular biology.
- This method allows directed cloning of a sequence of interest in any double-stranded V vector that contains at least one origin of replication and a selection gene and that is preferably circular, or preferably linear.
- the method allows to clone the sequence of interest contained in a vector, in another vector in a directed manner, and also allows the sequence of interest contained in a genomic DNA sample or in a complementary DNA sample (cDNA) generated from RNA to be cloned messenger or in the product of a PCR, in the chosen vector.
- the method also allows the sequence of interest to be cloned in a linear double stranded DNA containing a series of functional elements, including at least one origin of replication and a sequence of a resistance or selection gene, and generated by genetic engineering. in vitro, as for example by amplification of the sequence of each element individually by PCR, and subsequent union by extension overlapping PCR.
- cloning refers to the process that allows the generation of copies of a DNA fragment, such as the insertion of a nucleotide sequence of interest in a vector or in a DNA linear with the characteristics described above, which can be replicated within a cell.
- hybrid refers to the binding of single DNA strands with complementary sequences.
- complementarity is a property of double stranded nucleic acids. Each chain is complementary to the other so that the pairs of nitrogen bases of both are connected by two or three hydrogen bonds.
- Mutagenesis is the process by which mutations are introduced, that is, changes, in a nucleotide sequence, which can be of the insertion type, substitution or deletion
- the mutagenesis can be random or directed, in which case the desired nucleotides are modified exactly and only.
- vector refers to a gene construct or DNA sequence that contains a series of functional elements, including at least one origin of replication, resistance gene sequences or selection, control sequences, such as, for example, translation control elements (such as start and stop codes) and transcription (for example, promoter-operator regions, transcription factor binding sites or elements regulators).
- the vector may include bacterial plasmids, viral vectors, bacteriophages, cosmids and other vectors well known and documented in the state of the art, as well as linear DNA generated in vitro with the characteristics described above.
- a vector like the one just described, once circularized, is able to replicate under its own control, and to replicate with it the segment of DNA it carries together.
- control sequence refers to nucleotide sequences that are necessary to effect the expression of the coding sequences to which they are linked. The nature of such control sequences differs depending on the host organism; in prokaryotes, said control sequences generally include a promoter, a ribosomal binding site and termination signals; in eukaryotes, generally, said control sequences include promoters, termination signals, enhancers and, sometimes, silencers.
- control sequences is intended to include, at a minimum, all components whose presence is necessary for expression and may also include additional components whose presence is advantageous.
- oil of replication refers to a nucleotide sequence where a replication fork is formed and where DNA replication begins.
- selection gene refers to a gene that encodes a protein that confers a distinctive characteristic to the organism in which it is expressed, as it might survive the presence of an antibiotic, which produces a colored substance in the presence of a specific reagent or that emits light.
- An antibiotic resistance gene codes for a protein that confers to the cell that expresses it, which would normally be sensitive to the antibiotic, the ability to overcome the effect of the antibiotic.
- Said protein is usually an enzyme that hydrolyzes the antibiotic in question, inactivating it, or it can also be a pump that expels it outside the cell.
- the method of the first aspect of the invention does not require any study on specific cut-off targets for restriction enzymes, since they are not required for cloning.
- This method allows to clone in a directed way any DNA fragment, such as sequences of complete genes or promoters. The authors of the present invention have demonstrated that by this method it is possible to clone DNA fragments of at least 2,300 base pairs.
- Fragments of impossible cloning with the classical restriction methodology due to the absence of suitable cut-off points in the DNA to be cloned, can be cloned by using this methodology, which in addition to eliminating the need for vector and insert cuts with Restriction enzymes, as well as intermediate purifications of these products and their ligation, also avoids laborious vector changes that are sometimes necessary in the restriction methodology.
- the CiPCR allows directed cloning by using the oligonucleotide primers designed so that the insert is cloned in the desired orientation, determined by the design of said primers, which is adapted for each fragment of DNA to be cloned and for each vector, including each linear DNA generated in vitro, of destination.
- the products obtained by the method of the first aspect of the invention can be introduced by transformation into any type of E. coli, and do not require the requirements of cloning by homologous recombination RecET or ⁇ Red in E. coli.
- Strains of E. coli for universal use such as DH5a or TG1 are perfectly transformed by the gene constructs generated by CiPCR.
- a first aspect of the invention relates to a method of directed cloning or directed cloning and mutagenesis characterized in that it comprises a first step (a):
- oligonucleotides F (direct) and R (reverse) where: i. the sequences of the 3 ' (C ⁇ ) ends hybridize totally or partially with the sequence to be cloned or cloned and mutated, ii. the sequences of the 5 ' (T) ends hybridize totally or partially with the sequences of a V vector that flank the place where the DNA to be cloned or cloned and mutated is inserted, and
- vector V is a preferably circular or preferably linear double stranded vector, comprising at least one origin of replication and preferably at least one selection gene.
- Ci sequences located at both the 3 'ends of the oligonucleotides F and / or R and hybridizing with the sequence of the insert are designed as primers would be designed to obtain amplicons by qPCR.
- C ⁇ corresponds to the sequence of the region identified as C ⁇ F in the insert "i”
- RC ⁇ corresponds to the sequence of the region identified as C ⁇ R ( Figures 1, 9Aa and 9Ba).
- the T sequences which hybridize with the vector or with linear DNA, are located at the 5 ' ends of F and R and correspond to the regions identified as T F and T R in vector V of Figures 1, 9A and 9B, are designed for the circular CiPCR of Figure 1 starting from the nucleotide residues indicated with two asterisks ** or two ## respectively in the vector V towards the 5 ' ends, so that they are added directly to the 5 ' ends of the C ⁇ F and C ⁇ R sequences by binding to the 3 'sequences of the T, which in practice is to directly copy the 5' - (T F (5' - 3 ') + Cj F (5 ' -3 ' )) - 3 ' for oligonucleotide F, and 5 ' - (T R (5 ' -3 ' ) + C iR (5 ' -3 ' )) - 3 ' for R.
- oligonucleotides F and / or R comprise an insertion mutation M between the sequence C ⁇ and the sequence T, where M comprises at least one nucleotide and not hybrid with the sequence to be cloned or cloned and mutated, nor with the vector V.
- oligonucleotides F and / or R comprise at least one M ' in C ' mutation, where the mutation can be an insert, a substitution or a deletion and not a hybrid with the sequence to be cloned or to clone and mutate, not even with the V vector.
- oligonucleotides F and / or R comprise at least one M " T mutation, where the mutation may be an insert, a substitution or a deletion and not a hybrid with the sequence to be cloned or clone and mutate, not even with the vector V.
- the sequences M, M ' and M " are therefore all to introduce mutations and no hybrid with the sequence to be cloned or cloned and mutated, nor with that of the V vector.
- M mutations can be introduced, which can only be of insertion type, one for each oligonucleotide F or R between the region Ci and the region T.
- M ' mutations can be introduced one or several for each oligonucleotide F or R, which can be insertions, substitutions and / or point deletions or multiple, whose sequences are added in the corresponding sites of the C regions.
- each oligonucleotide F or R which may be insertions, substitutions and / or specific deletions or multiple, whose sequences are added in the corresponding sites of the T regions.
- step (b) the following step (b) is carried out:
- the oligonucleotides F and R that are used as primers in the PCRc of the amplification of the insert of step (b), are designed so that the PCR is initiated through the hybridization of the C sequences of the 3 ' ends with the corresponding region of each of the strands of the DNA that contain the sequence of the insert "i" to be cloned, or cloned and mutated in those cases that contain sequences M, M ' and / or M " to introduce the desired mutations.
- step (b) is a qPCR with high number of cycles, where although in the first cycles amplicons of variable sizes are obtained because there is no end-of-elongation signal, in more advanced cycles it is the primers F and R themselves that end up delimiting the size of the amplicon, since They are used as templates in each new PCR cycle.
- Amplicons A and B containing the insert and, where appropriate, the desired M, M ' and M " mutations, can be used directly in the next step (c), or can be reamplified with custom designed oligonucleotides F v and R v of vector V, so that they contain the sequences T F and T R or a part respectively (see vector V in figure 1), and then between 12 and 18 more nucleotides are added, flanking to TF and TR (see vector V in figure 1) towards the 5 ' end of the corresponding vector V chain.
- These new amplicons A ' and B ' used in the CiPCR instead of the A and B allow to increase the efficiency of the CiPCR in those cases in which require.
- a DNA polymerase with 3' - 5 'exonuclease is employed in the PCR step (b).
- a DNA polymerase that does not introduce residues at the 3 ' end. It is preferable not to use polymerases that have low or no 3 ' -5 ' exonuclease activity, since they introduce a fundamentally deoxyadenosine residue protruding at the 3 ' end not guided by the mold, so that extra uncoded residue would prevent priming of the CiPCR of step (c), and therefore its operation, which could lead to a failure in the cloning of the insert.
- step (b) the following step (c) is carried out:
- step (b) Clone the amplified sequence in step (b) into vector V by a CiPCR.
- Products are obtained that are complementary linear double-stranded amplicons, such as the E and G shown in Figure 4A, both in the sequences from the amplification of the two chains of vector V and in the sequences of amplicons A and B containing the insert to be cloned or cloned and mutated, and in any case with long cohesive ends of up to several thousand nucleotide residues ( Figure 6), also complementary each.
- classical PCR and PCRi PCRc and PCRic
- double-stranded amplicons of blunt ends are obtained.
- the size of the double-stranded EG amplicons is exactly delimited from the first cycle by the two signals derived from the sequences contained in each of the A and B chains through hybridization with the vector used as a template, the Te and the T, of which the first indicates the beginning and the second the termination of the elongation by the polymerase (figures 2 and 3), a fact that does not occur in either the PCRc or the PCRic.
- CiPCR E and G products cannot act as molds.
- the special design of oligonucleotides F and R for obtaining double-stranded amplicons A and B unlike classical double-stranded PCR and PCRi, does not allow amplicons E and G to be copied in subsequent cycles, so their amplification it takes place in each cycle in an arithmetic and non-geometric way as in the PCRc and PCRic.
- the polymerase cannot catalyze the polymerization reaction since from the 5 ' end (the only available in A) cannot elongar.
- V gene constructs undermines the performance of polymerase in the production of possible mixed amplicons A + V + B of blunt ends (figure 6) since we have not experimentally observed them at least significantly (figure 8) .
- This stability of the EG gene constructs in the form of a circular vector is probably initiated by a first hybridization between the two EG chains so that once joined they form a single molecular entity, promoting rapid total intramolecular hybridization between the other two complementary free ends of themselves, or it can happen even simultaneously.
- this process can be optimized in favor of greater cloning efficiency by looking for experimental conditions that allow intramolecular hybridization to be more favorable than elongation by polymerase.
- the method of the first aspect of the invention allows, in addition to the directed cloning of genes and other DNA fragments, the introduction of up to two simultaneous M inserts to the cloning between the ends of the insert "i" and the vector V, and / or one or multiple simultaneous mutations M ' and / or M " at the ends of the insert or in the areas of vector V flanking the insertion site in vector V, which may be substitutions, and / or deletions and / or insertions.
- the gene constructs resulting from step (c) are mostly as gene constructs V shown in Figures 5 and 7, so the method of the first aspect of the invention avoids the use of ligases in vitro prior to introduction of the new V gene construct into the cells since, when using double-stranded vectors and double-stranded amplicons containing the desired inserts and mutations, double-stranded amplicons with long cohesive and complementary ends are also generated during CiPCR that hybridize with each other forming a construct Stable circular genetics V which, once introduced into the cell, is not degraded and can be ligated and replicated in vivo. So both the restriction methodology and the ligation of blunt ends with ligases show disadvantages to this method and, in particular, of blunt end ligation, by its low efficiency in ligation reaction in prior to introduction of the gene construct vitro within the cell .
- the method of the first aspect of the invention uses preferably double-stranded, preferably methylated, double-stranded V vectors, but open double-stranded vectors and linear double-stranded DNA products generated by genetic engineering could also preferably be used as described above and as examples 4 and 5 show. of this description. Therefore, the use of the method of the first aspect of the invention is not restricted to any particular V vector, its linear or circular state, or the presence of deoxyuridine residues, or the limitations of the restriction targets of the multiple cloning site or recombination sites, such as TA cloning methods, SCIs, restriction or recombination methods and also extends to other linear double stranded DNA with the characteristics described above and not from the opening of circular vectors .
- the method of the first aspect of the invention allows simultaneous elimination of cloning of the target sequences from restriction cloning, recombination, and / or other undesirable sequences, such as coding regions of a cloned gene.
- the sequence of a promoter all located between the sites of insertion of the new DNA to be cloned (which in the figures is identified from the site marked with the two asterisks ** to the one marked with ##), and which by therefore it is not of interest that they remain in the V vector. If linear vectors are used these sequences can be deleted in the PCRic or PCRc for amplification.
- the method of the first aspect of the invention is different from those described to date, since it allows both directed cloning, and simultaneous directed cloning and mutagenesis of the sequence to be directly cloned by using a CiPCR.
- Targeted cloning and simultaneous directed cloning and mutagenesis are achieved thanks to the design of the two oligonucleotide primers F and R, as described above, which allow either directly or as part of a larger DNA molecule, such as double-stranded amplicons A and B or A ' and B ' , achieve the following four objectives: First objective: the sequential priming of two PCRs: a PCRc and a CiPCR.
- T sequences which are located at the 5 ' ends of F and R ( Figures 1, 9A and 9B), and also at the 5 ' ends of amplicons A and B ( Figures 2 and 10A), generate during PCRc from step b) the corresponding Te sequences located at the 3 ' ends of A and B ( Figures 2 and 10A).
- Both the T and Te sequences of the same A or B chain of the double stranded amplicon generated in the PCRc hybridize with the complementary sequences in the corresponding vector V chain ( Figures 3 and 10C), but it is the Te sequences of A and B that act as primers to carry out the elongation in the CiPCR, as if it were a PCRi, but not classical, or in the double overlapping PCR, but not classical, in the case of the primers of Figures 9A and 9B in the linear CiPCR.
- Second objective the delimitation of the exact size of the CiPCR amplicon from the first cycle.
- the size of the amplicon is delimited from the first cycle. It is achieved by hybridizing the T sequences of the 5 ' ends of each of the amplicons A and B with the corresponding complementary sequences of each of the chains C and D of the vector V ( Figures 3, 10B and 10C).
- the polymerase elongates from the 3 ' end (from the Te sequences) until the template is no longer available in the C or D region where it is hybridized with the corresponding T sequences. Therefore T is a signal of termination, which together with the initiation signal Te, delimit the exact size of the amplicon from the first cycle.
- amplicons A and B can hydrate respectively with amplicons G and E obtained in the CiPCR ( Figures 3, 10C, 4A and 4B), they cannot act as new molds, since after hybridization of G and E with A and B respectively, only the 3 ' regions of amplicons E and G ( Figure 4B) are available for amplification, and from the 5 ' ends of A and B the polymerase cannot elongate. Therefore it can only take place the amplification from the original template.
- Coli favors its intracellularly catalyzed bonding for the formation of the phosphodiester bond between the phosphate at position 5 of the nucleotide residue of the 5 'end and the hydroxyl at position 3 of the nucleotide residue of the 3 ' end to covalently join each of the two pairs of nucleotide residues at the ends of each chain E and G, leading by both to obtain the desired double-stranded circular vector EG (V). Moreover, this collateral PCR can be avoided or minimized under appropriate conditions.
- Third objective the oriented and directed insertion of the fragment to be cloned directly into the selected vector V, both by direct insertion of its sequence (CiPCR for insertion of the sequence to be cloned) and by replacement of a sequence of a previously cloned DNA fragment in vector V selected by the sequence of the new DNA fragment to be cloned (CiPCR substitution).
- oligonucleotides F and R Each of the oligonucleotides contains the two corresponding C and T sequences that determine the orientation of the insert, as well as the insertion site of the insert contained in amplicons A and B in vector V.
- the T sequences of the oligonucleotides, and therefore their complementary Te in amplicons A and B define the exact place of insertion.
- the onset of the areas that flank the insertion site in chains C and D of vector V and that hybridize with the sequences T and Te of amplicons A and B respectively are indicated with ** and with ## in Figure 1 and match the exact insertion point.
- mutations M ' and M " can be substitutions, insertions or deletions.
- insertions it is the nucleotides of the flanking sequences to the insertion that hybridize with the sequence of the insert or of the V vector.
- deletions the corresponding nucleotides and the sequence of the oligonucleotide F or R hybrid with the sequences located at the deletions are eliminated. sides of the sequence to be deleted in the insert "i" or the vector V.
- substitutions the oligonucleotide sequence differs from the sequence with which it hybridizes in those nucleotides that are to be modified.
- M, M ' and M " insert type mutations can add from one to multiple nucleotides to the corresponding regions of V between the sequences of the ends of the insert and of the vector V or in the sequences from the ends of the insert and of the vector V ( Figures 1 and 7), including whole labels or markers, such as, but not limited to, hemagglutinin (HA), polyhistidines, any label or marker known to a person skilled in the art, as well as, for example, but not limited to , an initiation codon, a stop codon, or a Kozak sequence, as demonstrated by the examples herein.
- HA hemagglutinin
- polyhistidines any label or marker known to a person skilled in the art
- Deletion mutations remove one or more nucleotides, or labels, or integer markers comprised in the Ci and / or T sequences from insert "i" and vector V, and substitution mutations exchange one or more nucleotides comprised of sequences Ci and / or T from insert "i" and vector V.
- the mutations M, M ' and M " are similarly named in both oligonucleotides F and R, but there may be two different M sequences, one from each oligonucleotide, and multiple and different M ' and M sequences " from each of The two oligonucleotides.
- the corresponding double-stranded circular gene constructs V will be obtained according to the sequences M, M ' and M " that are to be introduced and / or mutated.
- the products that can be obtained will vary in each case depending on the sequences M, M ' and M " .
- a scheme is shown in Figure 7 with possible products that can be obtained; for clarity, only one of the chains of the double stranded V gene construct is shown.
- the number of total nucleotides of the sequences M, M ' and M " is not limited in the CiPCR, but in the previous stages.
- the restrictions come mainly from the limitations inherent to the chemical synthesis of the oligonucleotides, since they do not usually exceed 135 residues, so the maximum number of residues to be inserted or replaced by M, M ' and M " is delimited by the difference between the total number of nucleotides of the C ⁇ and T sequences and that of chemically synthesized oligonucleotides. Note that if M ' and M " are deletions, they do not add nucleotides to oligonucleotides F and R.
- PCR is a technique that was initially used to obtain sequences of linear DNA fragments of which only a partial sequence was known. After circularization, they can be amplified by PCR with the oligonucleotides designed outwards (inverted) from the known partial sequence, so that amplicons are obtained containing at their ends the known sequences. These amplicons are now sequenced to elucidate the rest of the sequence under study. Therefore, it differs from the PCRc in that it requires the previous circularization of the mold to be amplified, in that the two primers hybridize in the same area of the mold or in adjacent or nearby areas, and in that the orientation of said primers is the opposite of that of a PCRc.
- double-stranded double-stranded amplicons are obtained but which, unlike those of the CiPCR, can act as templates in the next cycle.
- Two linear double-stranded DNA fragments of blunt ends are used in the linear CiPCR, one can contain the sequence of the insert and the other the elements that characterize a vector (origin of replication, selection element, other possible regulatory elements, etc.).
- These amplicons are obtained from two PCRc, which can be two conventional PCRc (when amplifying linear DNAs in both cases), or a conventional PCRc and a PCRic (when the insert of a linear DNA and the fragment is amplified for example of double-stranded DNA containing the elements of the vector, of a circular vector). Neither of these two options excludes other methods for obtaining any of the two fragments, such as DNA shuffling or overlap extension PCRc (OE-PCR) or the use of megacebators.
- OE-PCR overlap extension PCRc
- primers To carry out the amplification of the two double-stranded DNA fragments, 4 primers are required, 2 for each PCRc, of which at least 2 will be CiPCR primers.
- the two intended for amplification of one of the fragments, or one of the first fragment and another of the second fragment can be chosen as primers of CiPCR, so that they are positioned at opposite ends of the junctions between the insert and the vector.
- the other two are simple primers of a conventional PCR, with the proviso that their sequences coincide with the T sequences of the CiPCR primers or with their complementary sequence.
- Figure 9 illustrates the design of general primers to carry out a linear CiPCR cloning showing the two simplest and most common examples with which we can find: (1) use of two double-stranded DNA fragments, one from a qPCR for amplification of the insert, and the other a PCRic for amplification of the elements that will be characterized as a vector ( Figure 9A), and whose mechanism, while taking into account the elongation always elapses through ends 3 ' , is shown in Figure 10; and (2) use of two double stranded DNA fragments from two PCRc (Figure 9 B), whose mechanism would be similar and is no longer shown.
- PCRd to obtain the double-stranded DNA fragment that contains the insert to be cloned: It is a conventional PCRc ( Figure 10A), in which the oligonucleotide primers F1 and R1 that were selected as CiPCR oligonucleotides are used. If desired, it is also possible to add new sequences to insert epitopes or other sequences of interest between the two sequences Ci and T, or in the middle of the Ci and T, and in this case they can be insertions, deletions or substitutions. In either case, the use of a high fidelity polymerase that does not introduce deoxyadenosines (adenine deoxyribonucleotide or dATP) at the 3 ' ends is required.
- deoxyadenosines adenine deoxyribonucleotide or dATP
- PCRic2 for obtaining the double stranded DNA fragment with the elements of a vector and to which the PCRd fragment is to be attached:
- it is a conventional PCRic ( Figure 10 B), in which the oligonucleotide primers F2 and R2 designed as described above.
- CiPCR which in this case consists of a double extension PCR by non-classical overlap (dOE-PCRnc):
- This PCR allows the union of the fragments of the PCRd and PCRic2 or PCRc2 by an initial hybridization similar to that which occurs in an EO -PCRc, which in this case is double and nonclassical, since no primers are used, and leads to circularization of the two fragments linked by hybridization as polymerase the going elongating ( Figure 10C, top).
- This hybridization acts as a bait for the polymerase that elongates through the two free 3 ' ends until it reaches the other end which, as it is hybridized, signals the termination of the elongation.
- a circular double stranded DNA is formed, which although it has a cut between the two nucleotides not covalently attached at the ends of each chain, they are kept stabilized in a circular fashion by means of total hybridization as shown in Figure 10 C.
- these amplicons have the same characteristics as those obtained by CiPCR with circular vectors.
- CiPCR EO-PCRnc linear compared to CiPCR by PCRI Circular nc because the two fragments both elongate in each cycle OE-PCRnc versus elongation single of the chains in the PCRi nc , thus doubling their efficiency.
- the circular CiPCR only the fragment containing the insert is consumed, so the circular vector is used in an amount comparable to a classic PCR template, which should subsequently be destroyed.
- the linear CiPCR during the dOE-PCRnc the two fragments are consumed, the one that contains the insert and the one that contains the characteristic elements of the vector, so it is necessary to use quantities according to each cloning and in equimolecular relations.
- the destruction of the fragment equivalent to the vector is not necessary, except for the use of unpurified products from the PCRc and PCRic in which case a treatment with Dpnl can be done. before or after the OE-PCRnc.
- CiPCR is a cloning method by means of a "reverse cloning PCR” either a PCRi nc or an OE-PCRnc, where the product obtained is double-chain amplicons, which cannot be copied into subsequent cycles of the CiPCR, which have long cohesive ends that allow them to be circulated to a stable V type vector gene construct and therefore simultaneous and direct cloning of the insert.
- the method of the first aspect of the invention is characterized in that after step (c) the next stage is carried out
- step (c) Digest the product of step (c) with a methylation-dependent endonuclease DNA.
- the methylation-dependent endonuclease DNA is Dpnl.
- digest refers to the enzymatic action of an endonuclease, which breaks the bonds between the nucleotides that form the DNA strands, destroying them.
- a methylation-dependent endonuclease is one that only cuts DNA when it recognizes its target and also that target has a methylated nucleotide.
- the Dpnl enzyme is capable of selectively removing template V (chains C and D) from the reaction of step (c) and not the newly synthesized DNA molecules at that stage, since the molecules newly synthesized by PCR are not methylated, while the V vector molecules that have acted as a template, from the extraction and purification of vector V from a cell culture with methylase enzymes, are.
- stage (d) can be dispensed with and would proceed directly with the stage (e) described below, except if the products obtained from circular molds are not purified, in which case Dpnl treatment can be done before or after the OE-PCRnc. Linear DNAs are degraded and only the V constructs generated in the CiPCR remain.
- the method of the first aspect of the invention is characterized in that after step (d) the following stage is carried out
- step (d) Introducing the products of step (d) in a cell.
- the cell in which the products of step (d) are introduced can be both prokaryotic and eukaryotic.
- the cell is a prokaryotic cell.
- the prokaryotic cell is E. coli.
- the E. coli bacterium belongs to Prokaryota Super Kingdom, Bacteria Kingdom, Phylum Proteobacteria, Gammaproteobacteria Class, Enterobacterial Order, Enterobacteriaceae Family and Escherichia Genus.
- step (d) By introducing the products of step (d) into a cell, the hybrid molecules V of the E and G chains such as those shown in Figures 5 and 7 will be ligated by ligase enzymes of the cell so that they leave to form circular V gene constructs linked through covalent bonds. Since the new gene construct V is also a vector, because it has at least one origin of replication, this vector V can be replicated inside the cell.
- the method of the first aspect of the invention is characterized in that after step (e) the following stage (f) is carried out:
- the method of the first aspect of the invention is characterized in that after step (f) the following stage (9) is carried out:
- Any technique known and described to date for the purification of DNA from a vector from a culture can be used to extract vector V from cultured cells.
- the method of the first aspect of the invention is characterized in that after step (g) the following stage (h) is carried out:
- the verification that cloning has been effective can be carried out by any of the methods known and described to date in the state of the art, such as, for example, but not limited to sequencing, PCR or enzyme digestion. of specific restriction.
- the initial check is performed by direct colony PCR and amplicon analysis.
- the extraction and purification of the V vector or vectors are made and then the direct sequencing thereof.
- a second aspect of the present invention relates to a kit comprising the instructions for carrying out the method for directed cloning or for directed cloning and mutagenesis of the first aspect of the invention.
- Said instructions allow anyone to design oligonucleotides F and R to carry out the targeted cloning or targeted cloning and mutagenesis, starting from a sequence of interest and a vector V in which said sequence is to be cloned.
- the kit further comprises a V vector.
- the kit further comprises two oligonucleotide primers for re-amplification of the product obtained from step (b) according to the method of the first aspect of the invention, one direct and one reverse, whose sequences hybridize with the sequence of the V vector.
- the kit further comprises a DNA polymerase.
- the DNA polymerase has 3' - 5 'exonuclease.
- the DNA polymerase is high fidelity copying.
- Step (c) includes the CiPCR for cloning the insert, and if there is an extra 3 ' residue not guided by the template in amplicons A and / or B, or A ' and / or B ' , and if the complementary residue of Deoxythymidine is not present at the corresponding site of the vector sequence (adjacent to the T sequence towards the 5 ' end), there will be no hybridization of the terminal deoxyadenosine residue with the template vector, leading to the failure of the CiPCR.
- the CiPCR for obtaining double-stranded amplicons E and G is carried out with a polymerase that introduces deoxyadenosine residues at the 3 ' ends, in addition to the limitation of these polymerases in the amplification of DNA fragments that exceed 3000 base pairs, as is the case when it is required to copy the sequence of a vector, introduction of this residue not included in the mold may also introduce harmful alterations in the new vector V is generated, carrying cloning from insertion to failure due to incorrect circularization or lack of stability due to the presence of the two holes corresponding to the absence of the two deoxythymidine residues.
- the kit further comprises the DNA endonuclease Dpnl. In a preferred embodiment of the second aspect of the invention, the kit further comprises cells suitable for the introduction of a vector into them.
- a third aspect of the present invention relates to the use of the kit of the second aspect of the invention for directed cloning or for directed cloning and mutagenesis.
- Fig. 1 Scheme of the molecules involved in the different stages of the cloning method by circular CiPCR of the invention.
- M is the sequence to introduce inserts that do not affect the sequence of the vector or that of the insert.
- M ' and / or M " mutations can be added in C ⁇ and / or in T, to mutate sites in the insert and / or in the vector, respectively.
- steps (b) and ( c) a DNA containing the sequence of the insert "i" and the double-strand circular vector V (whose two strands are called C and D), respectively, is used, the arrows on the insert "i” and on the chains C and Vector D does not indicate hybridization with its complementary sequence, but they are locating the sequence to be copied directly to include in the corresponding oligonucleotide.
- the overall sequence of oligonucleotide F is designed by directly copying the sequence designated as C ⁇ F of the strand (5 ' -3 ' ) of double-stranded DNA "i", followed from its 5 ' end of the TF sequence directly copied from strand D (5 ' - 3 ' ) of vector V.
- oligonucleotide R the same procedure is followed
- Fig. 2 Elongation scheme in the PCRc of step (b).
- a DNA containing the sequence of the insert "i" is used as a template, and oligonucleotides F and R are used whose mutated C ⁇ sequences, or if necessary C ⁇ , act as primers.
- oligonucleotides F and R show here the region of the initial hybridization for the PCRc priming. F hybrid with chain 3 ' -5 ' and R with chain 5 ' -3 ' of mold "i".
- step (c) the double-chain circular vector V is used as a mold, whose two strands are called C and D.
- step (c) the double-chain circular vector V is used as a mold, whose two strands are called C and D.
- elongation takes place from the 3 ' ends , that is, of the Te sequences of A and B, respectively.
- the polymerase elongates from the 3 '(Te) ends of the A and B chains until it meets the 5 ' (T) ends of A or B hybridized with their complementary region in the respective molds (elongation termination signal), indicated With the negative stop symbol.
- the E and G chains are generated.
- Fig. 4 Scheme of the CiPCR products.
- A. The new E and G chains synthesized in the linear stage (c) with their different regions and the C and D chains of the VB vector are shown. It is shown that the E and G chains cannot serve as molds in the step (c) .
- the primer sequences of the 3 ' ends of A and B can hybridize with G and E, respectively, however, since it does not have a mold, the 3' Te end of the primer cannot be elongated, so E and G cannot they can act as new molds in the CiPCR and the only mold available is the original C and D chains of the V vector.
- Fig. 5 Scheme of the products of step (d).
- the digestion of the products of step (c) with a methylation-dependent endonuclease leads to the destruction of chains C and D of vector V, but not to that of chains E and G, which after denaturation and subsequent cooling are capable of hybridizing giving rise to the vector V shown in the scheme of this figure. All regions are identified and the only opening of each chain is identified by the negative stop symbol.
- Fig. 6 Scheme of the molecules that could be generated from the second cycle in step (c).
- they hybridize E and G they can initiate the interaction in two ways, through the ends 5 ' or through the ends 3 ' , represented in Figure 6A and in Figure 6B, respectively.
- the second hybridization of the complementary cohesive linear ends would lead to the formation of the vector V shown in Figure 5. This can also occur by simultaneous hybridization of the two sequences.
- the amplicons could also be obtained mixed linear A + V + B with blunt ends, which once introduced into E. coli, would be degraded as linear DNA.
- Fig. 7 Scheme of the products of a cloning CiPCR by means of simultaneous PCRinc and mutagenesis.
- one strand of the double stranded vector V obtained it is shown and right steps of PCR or CiPCR and its relationship to the region that is amplified in each step are as follows: prior qPCR allows amplification of the insert "i” and introduction of the sequences M, M ' and M " at the ends thereof for directed mutagenesis (MD) with oligonucleotides F and R; the CiPCR incorporates the insert and all these sequences M, M ' and M " into the new vector V simultaneously amplifying said vector from the mold vector V.
- prior qPCR allows amplification of the insert "i" and introduction of the sequences M, M ' and M " at the ends thereof for directed mutagenesis (MD) with oligonucleotides F and R
- MD directed mutagenesis
- the CiPCR incorporates the insert and all these sequences M, M ' and M " into the
- Fig. 8 Products obtained in the PCR, CiPCR and bacterial cultures in the process of cloning SP1 by CiPCR by means of PCRi nc. 3 agarose gels are shown in sections A, B and C, in which lanes 1, 5 and 7 correspond to the GeneCraft DNA molecular weight marker (1kb DNA Ladder), whose bands and sizes are shown in detail in section D. The band of 1,000 base pairs is indicated with an arrow in each of the lanes 1, 5 and 7 of the corresponding agarose gel.
- A. Lane 2 Products obtained in the PCRc for the amplification of SP1.
- B. Lane 4 Products obtained in the SP1 CiPCR after treatment with Dpnl.
- Lane 6 Plasmid pcDNA3-SLC16A2-EGFP used as vector V template in the CiPCR.
- Lane 8 Plasmid pcDNA3-SP1 extracted and purified from bacterial cultures of E. coli transformed with the CiPCR products of SP1 cloning after treatment with Dpnl.
- CiPCR oligonucleotides for amplification of the insert by PCRd and subsequently binding it to a DNA fragment that is equivalent to a vector and that was amplified by a PCRic2 (the sequences indicated in the following order are copied directly: F1: 5 ' -T F ( 5 ' -3 ' ) + C ⁇ F (5 ' -3 ' ) - 3 ' ; and R1: 5 ' -T R (5 ' - 3 ' ) + C ⁇ R (5 ' -3 ' ) - 3 ' ).
- Oligonucleotides of CiPCR for amplification of the insert by FRDP and then attach it to a DNA fragment equivalent to vector and was amplified by PCRc2 (copied directly the sequences indicated in the following order: F1: 5 '-T F (3 ' -5 ' ) + C iF (5 ' -3 ' ) - 3 ' ; and R1: 5 ' -T R (3 ' -5 ' ) + C iR (5 ' -3 ' ) - 3 ' ).
- Fig. 10 Stages to follow in the linear CiPCR and proposed mechanism using a dOE-PCRnc.
- Stage 1. A. PCRc of amplification of the insert.
- B PCRic amplification of the linear double stranded DNA fragment with vector elements.
- Stage 2. C. Mechanism with the signals of initiation and stop of the elongation by the polymerase during the dOE-PCRnc that leads to a double-stranded DNA stabilized in a circular form.
- Stage 3. D. Standard transformation stage of E. coli with the dOE-PCRnc products, in which the gene construct is repaired by intracellular ligases becoming the vector cloned with the desired insert.
- FIG. 11 Cloning of exon 4 of the SLC16A2 gene in pGEM-T Easy by linear CiPCR.
- A 1% agarose gel showing the products of the PCRd and PCRic2 amplification of exon 4 of the SLC16A2 gene and of the pGEM-T Easy vector: 1 left-negative control of PCRic2; 2-product of the PCRic2; 3-molecular weight markers of 1 Kb DNA (DNA Ladder 250-10,000 bp; GC-015-003, GeneCraft); 4-PCRd products; and 5-negative control of PCRd.
- B 1% agarose gel showing the products of the PCRd and PCRic2 amplification of exon 4 of the SLC16A2 gene and of the pGEM-T Easy vector: 1 left-negative control of PCRic2; 2-product of the PCRic2; 3-molecular weight markers of 1 Kb DNA (DNA Ladder 250-10,000 bp; GC-015-003, GeneCraft); 4-PCRd products;
- Electropherograms obtained by sequencing directly from the plasmid shown in G showing the beginning and end of the insert sequence (Exon 4 gene SLC16A2, corresponding arrows), and the beginning and end of the flanking areas of the linear vector pGEM-T Easy used in the dOE -PCRnc (corresponding arrows).
- EXAMPLE 1 EGFP cloning and simultaneous insertion of the stop codon into the pcDNA3-SLC16A2 vector by circular insertion CiPCR.
- MCT8 (monocarboxylate transporter 8) was labeled with the modified green fluorescent protein, by cloning its gene into the eukaryotic expression vector pcDNA3 (Invitrogen) containing the sequence of the SLC16A2 gene (pcDNA3-SLC16A2) by insertion CiPCR using as mold the plasmid pcDNA3-SLC16A2. PCR amplification of EGFP and simultaneous insertion of the stop codon "taa”.
- the EGFP coding region was amplified using the commercial plasmid vector plRES2-EGFP (Clontech) as a template by PCRc. This was performed in a volume of 50 ⁇ by mixing 16 ⁇ of 5x buffer (Takara), 0.2 mM of dNTPs, 0.2 ⁇ of oligonucleotide (F) 5 ' -ccaaccctgaggaaccaatc-acaaccafggfgagcaa-3 ' (SEQ ID NO: 1 ), 0.2 ⁇ of the R 5 ' -caatggcaagaaaggca-tta-cycgycagc ⁇ cg ⁇ cca ⁇ gc-3 ' (SEQ ID NO: 2), in which the sequences highlighted in italics were the C ⁇ sequences to hybridize with the insert, and the tta triplet underlined was the M sequence for the introduction of the stop codon to mark the termination of EGFP (the sequences highlighted in bold correspond to the T
- the amplification program carried out in a PTC-200 thermal cycler was 1 cycle at 98 ° C for 40 seconds, 35 cycles consisting of the three stages: 98 ° C for 10 seconds, 62 ° C for 40 seconds, and 72 ° C for 2 minutes, and finally 1 cycle at 72 ° C for 10 minutes.
- the products were purified using the High Puré PCR Product Purification kit (Roche) and then precipitated with sodium acetate / ethanol and dissolved in 10 ⁇ of sterile double-distilled water to obtain the 766 base pair amplicon containing EGFP.
- This reaction was carried out in a final volume of 25 ⁇ by mixing 4 ⁇ of 5x buffer (Takara), 0.2 mM dNTPs, 200 ng of pcDNA3-SLC16A2, 500 ng of the 766 base pair amplicon, 0.5 U Takara polymerase (PrimeSTAR TM HS DNA Polymerase), and sterile double-distilled water.
- the amplification was carried out in a PTC-200 thermocycler with the following program: 1 cycle at 95 ° C for 5 minutes, 7 compound cycles starting at 95 ° C for 1 minute, at 59 ° C for 3 minutes, at 72 ° C for 8 minutes, at 98 ° C for 30 seconds, at 59 ° C for 2 minutes, at 72 ° C for 8 minutes, followed by 12 compound cycles at 98 ° C for 20 seconds, at 85 ° C for 1 minute, and 72 ° C for 8 minutes and 1 final cycle at 72 ° C for 15 minutes.
- the mixture was treated with 4 U of Dpnl (Fermentas) at 37 ° C for 6 hours in a total volume of 26 ⁇ .
- the plasmid was extracted from a mini-preparation of one of the positive clones and purified with the GeneElute Plasmid Miniprep kit (Sigma). The sequence was verified by sequencing using the Dye Terminator v3.1 Cycle Sequencing Kit and analysis with an ABI 3730x1 apparatus (Applied Biosystems). The efficiency of cloning was calculated taking into account the number of colonies obtained and the amount of plasmid used as a template in the CiPCR, said efficiency being 2x10 4 colonies g of plasmid.
- the plasmid sequence used as a pcDNA3-SLC16A2 template is SEQ ID NO: 5.
- SEQ ID NO: 5 the zones between nucleotides 2,564 and 2,583 and between nucleotides 2,587 and 2,603 are the corresponding hybridization sequences with the amplicon of EGFP
- the plasmid sequence obtained pcDNA3-SLC16A2-EGFP is SEQ ID NO: 6.
- EXAMPLE 2 Cloning of PCBP1 and simultaneous addition of the Kozak sequence and the initiation codon in a bioequivalent variant of the pcDNA3 vector, by means of circular replacement CiPCR.
- PCBP1 gene was cloned into the pcDNA3 (Invitrogen) expression vector by CiPCR, using the bioequivalent variant pcDNA3-SLC16A2-EGFP as a template.
- PCBP1 was amplified using as a template a plasmid-PCBP1 of which only the sequence of the insert and that of the flanking regions were known. It was fused to labels at the N-terminal end, so an M insert containing the Kozak sequence and the initiation codon had to be included in the direct oligonucleotide F.
- the oligonucleotides F 5 -cactatagggagacccaagct-cqcc- a ⁇ .Q-qatqccqqtqtqactq-3 ' (SEQ ID NO: 7) and R 5 ' - agctcctcgcccttgctcaccat- ctagctgcaccccatg-3 ' (SEQ ID NO: 8) give rise to an amplicon .122 base pairs.
- the bold sequence corresponds to the hybridization zone T with pcDNA3 in the CiPCR
- the underlined corresponds to the M sequence where introduced the Kozak sequence of PCBP1 and the initiation ATG
- the italic highlighting corresponds to the hybridization sequence C ⁇ with the sequence of the PCBP1 gene for amplification. This was performed in a final volume of 50 ⁇ containing 10 ⁇ of PrimeSTAR 5X buffer, 0.2 mM dNTPs, 0.2 ⁇ of each of the primers, 50 ng of plasmid-PCBP1, 1, 25 U of PrimeSTAR HS DNA polymerase (Takara) and sterile double-distilled water.
- the amplification program used included 1 cycle at 94 ° C for 30 seconds; 40 compound cycles starting at 98 ° C for 10 seconds, at 60 ° C for 30 seconds, and 72 ° C for 75 seconds, and 1 final cycle at 72 ° C for 10 minutes.
- the PCR products were analyzed in 1% agarose gels in TAE buffer containing ethidium bromide and visualized with UV light comparing them with the Genecraft 1 Kb Ladder molecular weight marker. After cutting the corresponding band with a scalpel blade, the products contained therein were purified following the protocol of the PCR product purification kit (Roche), eluted in sterile double-distilled water and stored at -20 ° C until Its use.
- the CiPCR was performed in a final volume of 25 ⁇ containing 5 ⁇ of 5X PrimeSTAR buffer, 0.2 mM dNTPs, 250 ng of the amplicon with the PCBP1 sequence, of 1,112 base pairs, 100 ng of plasmid pcDNA3- MCT8-EGFP and 1.25 U of PrimeSTAR HS DNA polymerase (Takara).
- the plasmid sequence used as a pcDNA3-SLC16A2-EGFP template to clone the PCBP1 gene is SEQ ID NO: 6.
- SEQ ID NO: 6 the regions between nucleotides 873 and 893 and between nucleotides 2,584 and 2,606 are the zones of the vector with which the insert for the CiPCR of PCBP1 will hybridize.
- the nucleotides between positions 890 and 2,583 correspond to the sequence of the SLC16A2 gene, which is to be replaced by the PCBP1 gene.
- the nucleotides between positions 2,607 and 3,300 correspond to the EGFP coding zone.
- thermocycler PTC200 The amplification program in the thermocycler PTC200 (MJ Research) consisted of 1 cycle at 95 ° C for 5 minutes, 5 cycles compounds starting at 95 ° C for 1 minute, at 72 ° C for 30 seconds, at 56 ° C for 30 seconds, and at 72 ° C for 8.5 minutes, followed by 1 cycle at 98 ° C for 30 seconds, at 72 ° C for 20 seconds, at 56 ° C for 20 seconds and at 72 ° C for 8.5 minutes, at continuation 10 compound cycles starting at 98 ° C for 20 seconds, at 81 ° C for 15 seconds, and 72 ° C for 8.5 minutes; and a final cycle at 72 ° C for 15 minutes.
- the products were precipitated with sodium acetate / ethanol and E. coli TG1 cells were transformed.
- the plasmid pcDNA3-PCBP1 was obtained, with an efficiency of 180 g plasmid colonies, calculated from the amount of the plasmid used as a template.
- the sequence of plasmid pcDNA3-PCBP1 is SEQ ID NO: 9.
- SEQ ID NO: 9 the regions between nucleotides 873 and 893 and between nucleotides 1,969 and 1,991 are the sequences where the Te sequences of the insert hybridized.
- the region between nucleotides 894 and 900 was introduced into the primer to provide the original Kozak sequence of PCBP1 and the ATG or initiation codon and corresponds to a sequence of the M region of oligonucleotide F.
- the TAG codon between nucleotides 1966 and 1968 in the area of the reverse primer, is the stop codon that was introduced to prevent expression of PCBP1 (whose coding sequence is between nucleotides 898 and 1,965) fused with EGFP (whose coding sequence is between nucleotides 1 .992 and 2,685).
- EXAMPLE 3 Cloning of SP1 in a bioequivalent variant of the vector pcDNA3, by means of circular CiPCR substitution.
- FIG. 8 illustrates this example.
- the SP1 gene was cloned into the pcDNA3 expression vector (Invitrogen Cat. V790-20) by CiPCR, using the bioequivalent variant pcDNA3-SLC16A2-EGFP as a template
- the coding region of SP1 comprises 2,358 base pairs (including the ATG start codon and the TGA stop codon).
- the fragment was amplified from a cDNA obtained by retrotranscription with the M-MLV retrotranscriptase (Invitrogen) from mRNA from blood lymphocytes extracted by Trizol (Invitrogen) with the primers F 5 ' - cactatagggagacccaagc- ccaccatgagcgaccaagatcactccat-3 ' (SEQ ID NO : 10), and R 5 ' - agctcctcgcccttgctcaccat-fcagaagccaffgccacf-3 ' (SEQ ID NO: 1 1) where the hybrid italic sequence with the SP1 cDNA, according to the sequence of the transcript SP1 -201 ENST00000327443 from the Ensembl database.
- the nucleotides highlighted in bold were the T sequences added to the oligonucleotide primers for subsequent cloning into pcDNA3.
- the PCR was performed in a total volume of 50 ⁇ containing 10 ⁇ of PrimeSTAR 5X buffer, 0.2 mM dNTPs, 0.2 ⁇ of each primer, 1 ⁇ of solution containing the cDNA equivalent to the 50 ng retrotranscription of mRNA of the lymphocytes, and 1.25 U of PrimeSTAR HS DNA polymerase (Takara), in the PTC-200 thermocycler the fragment was amplified using the following program: 1 cycle at 94 ° C for 30 seconds; 40 compound cycles starting at 98 ° C for 10 seconds, at 59 ° C for 30 seconds, and 72 ° C for 2.5 minutes, and 1 final extension cycle at 72 ° C for 10 minutes, obtaining an amplicon of 2,406 pairs of bases.
- PCR products were electrophoresed in 1% agarose gels, stained with ethidium bromide (0.5 ⁇ / ml in APR) and visualized with UV light.
- Genecraft 1 Kb was used as molecular weight marker.
- the products of the expected molecular weight band were cut with a scalpel blade and purified following the protocol of the PCR product purification kit from Roche agarose gels.
- the products were eluted in sterile double-distilled water and after adenylation they were cloned into the pCRIl TOPO vector (Invitrogen) following the supplier's instructions.
- the SP1 coding region of 2,358 base pairs was amplified from the plasmid pcRIl TOPO-SP1 with the same oligonucleotides F (SEQ ID NO: 10) and R (SEQ ID NO: 1 1) with which it was cloned.
- the CiPCR was performed in a final volume of 25 ⁇ containing 5 ⁇ of PrimeSTAR 5X buffer, 0.3 ⁇ dNTPs each, 250 ng of the SP1 amplicon, 100 ng of plasmid pcDNA3-SLC16A2-EGFP and 1, 25 U of PrimeSTAR HS DNA polymerase (Takara Cat. No.
- CiPCR products were treated with Dpnl for 6 hours at 37 ° C, precipitated and transformed into E. coli TG-1. After colony growth and analysis, the expected pcDNA3-SP1 plasmid was obtained, with an efficiency of 40 g plasmid colonies, calculated from the amount of plasmid used as a template in the CiPCR.
- sequence of plasmid pcDNA3-SP1 is SEQ ID NO: 12.
- EXAMPLE 4 Cloning of Exon 4 of the SLC16A2 gene into a fragment of cDNA containing the origin of replication f1 (phage 1) and the ampicillin resistance gene by linear CiPCR.
- FRDP Exon 4 SLC16A2 gene was amplified DNA from lymphocytes from human blood, with the oligonucleotide primers for CiPCR F1: 5 '- TAATACGACTCACTATAGGG-cfcagaagfccagaafccag-3' (SEQ ID NO: 13) and R1: 5 '- gctatttaggtgacactatag -agaafffgaffgacfffccc-3 ' (SEQ ID NO: 14) resulting in an amplicon of 500 base pairs (bp) ( Figure 11 gels A, C and B).
- the sequence highlighted in italics corresponds to the hybridization zone with exon 4 of the SLC16A2 gene for amplification and the one highlighted in bold corresponds to the hybridization zone with the cDNA to which it is to be bound, which contains the vector elements.
- the PCRd, of insert amplification was performed in a final volume of 50 ⁇ containing 10 ⁇ of PrimeSTAR 5X buffer, 0.2 mM of each dNTP from the dNTP mix, 0.2 ⁇ of each of the primers, 50 ng of DNA, 1.25 U of PrimeSTAR HS polymerase ( R010A, Takara) and water grade molecular biology.
- the amplification program in the PTC-200 Peltier Thermal Cycler thermal cycler consisted of a single cycle at 98 ° C for 40 s; 40 multi-stage cycles at 94 ° C for 10 s, 57 ° C for 30 s, and 72 ° C for 45 s; and 1 single cycle at 72 ° C for 10 min.
- the PCRc products were analyzed in 1% agarose gels in TAE buffer containing ethidium bromide (0.5 g / ml), visualized with UV light comparing them with the DNA molecular weight marker (1 Kb Ladder 250- 10,000 bp; GC-015-003, Genecraft) ( Figure 11 gel A (well 4)).
- the fragment was purified from an agarose gel ( Figure 1 1 gel B) using the PCR product purification kit (High Puré PCR Product Purification kit; 11732676001, Roche), its size was identified with the help of the molecular weight marker of DNA (50-2,500 bp; 50631, Lonza Biologics), and the pure products were quantified on an agarose gel ( Figure 11, gel C) and stored at -20 ° C until use.
- SEQ ID NO: 15 is the sequence of the 500 bp double stranded DNA fragment obtained in the PCRd (the region of exon 4 of the SLC16A2 gene corresponds to nucleotides from position 216 to position 359 of SEQ ID NO: 15).
- the sequences of positions 21 to 40 and 460 to 479 of SEQ ID NO: 15 correspond to the Ci / Cic part of the CiPCR primers that hybridized with the template DNA to amplify the insert in the PCRd.
- the sequences of the ends correspond to the T / Tc part of the CiPCR primers that will hybridize with the linear fragment of the pGEM-T Easy vector where The insert will be cloned.
- the PCRic2 vector amplification was performed with F2 oligonucleotides: 5 '- ctatagtgtcacctaaatagc-3' (SEQ ID NO: 16) and R2: 5'-ccctatagtgagtcgtatta-3 '(SEQ ID NO: 17) in a final volume of 50 ⁇ containing 10 ⁇ of PrimeSTAR 5X buffer, 0.2 mM of each dNTP from the dNTP mix, 0.2 ⁇ of each of the primers, 50 ng of the plasmid pGEM-T Easy (Promega, www.promega.com) , 1, 25 U of PrimeSTAR HS polymerase (R010A, Takara) and water grade molecular biology.
- the amplification program in the PTC-200 Peltier Thermal Cycler thermal cycler consisted of a single cycle at 98 ° C for 40 s .; 40 multi-stage cycles at 94 ° C for 10 s, at 57 ° C for 30 s, and 72 ° C for 3 min; and 1 single cycle at 72 ° C for 15 min.
- the PCRic products which give rise to an amplicon of 2,878 bp, were analyzed in 1% agarose gels in TAE buffer containing ethidium bromide (0.5 g / ml), visualized with UV light compared to the marker.
- the amplification program in the PTC-200 thermal cycler consisted of 1 initial cycle at 98 ° C for 40 s; followed by 24 multi-stage three-stage cycles, at 94 ° C for 10 s, at 57 ° C for 30 s.
- Two of the positive clones were then grown in 5 ml of LB liquid medium with ampicillin (100 ⁇ g ml) at 37 ° C and 200 rpm for 16 h. and then two plasmids were extracted using a plasmid purification kit (GenElute TM Plasmid Miniprep Kit; PLN 350, Sigma-Aldrich) one of which is shown on gel G of Figure 1 1.
- GenElute TM Plasmid Miniprep Kit PLN 350, Sigma-Aldrich
- the presence of the insert in the two plasmids was checked by PCR and one of them was sequenced to confirm that the insertion site and sequence of exon 4 and flanking areas were correct. Efficiency: 1, 5 x 10 March colonies / ⁇ .
- sequence: pGEM-T Easy-Exon4-SLC ⁇ 6 / A2 is SEQ ID NO: 18.
- EXAMPLE 5 Cloning of EGFP in pcDNA3 (ACMV) -pSLC16A2 -SLC16A2 and introduction of two insertions, one insertion of 6 nucleotides and another of the TA sequence of the stop codon, simultaneous by linear CiPCR.
- PCRcl EGFP was amplified from plasmid plRES-2-EGFP with the oligonucleotide primers of CiPCR and mutagenesis
- F1 5 -ccaaccctqaqqaaccaatc-acaacc- atggtgagcaa-3 ' (SEQ ID NO: 19) and R1: 5 ' - caatggcaagaagggtacgcgtacgcgtacgcgtacgtacgcgtacgcgcatc -3 ' (SEQ ID NO: 20) resulting in a 763 bp amplicon ( Figure 12, gel A and sequence SEQ ID NO: 21).
- sequences highlighted in italics correspond to the hybridization zones with EGFP for amplification, those highlighted in bold correspond to the hybridization zones with the vector pcDNA3 (ACMV) -pSLC16A2-SLC- / 6A2 to perform the dOE-PCR nc , and the underlined ones correspond to a two amino acid spacer that we wanted to introduce between MCT8 (encoded by SLC16A2) and EGFP and part of the stop codon.
- ACMV vector pcDNA3
- the PCRd ( Figure 12, gel A) of the amplification of the insert was performed in a final volume of 50 ⁇ containing 10 ⁇ of 5X PrimeSTAR buffer, 0.2 mM of each dNTP of the dNTP mix, 0.2 ⁇ of each one of the primers, 50 ng of plasmid plRES-2-EGFP, 1, 25 U polymerase (PrimeSTAR HS DNA Polymerase; R010A, Takara) and water grade molecular biology.
- the amplification program in the PTC-200 Peltier Thermal Cycler thermal cycler consisted of a single cycle at 98 ° C for 40 s; 40 multi-stage cycles at 94 ° C for 10 s, at 62 ° C for 30 s, and 72 ° C for 1 min; and 1 single cycle at 72 ° C for 10 min.
- PCRd products were analyzed in 1% agarose gels in TAE buffer containing ethidium bromide (0.5 g / ml), visualized with UV light comparing them with the DNA molecular weight marker (50-2,500 bp; 50631, Lonza Biologics) ( Figure 12, gel A), and stored at -20 ° C until use.
- SEQ ID NO: 21 is the 763 bp amplicon containing the EGFP coding region.
- the sequences of positions 27 to 37 and 724 to 746 of SEQ ID NO: 21 correspond to the Ci part of the CiPCR primers that hybridize with the template DNA in the PCRd.
- the sequences of the ends correspond to the T part of the CiPCR primers that will hybridize with the vector pcDNA3 (ACMV) -pSLC16A2-SLC '/ 6 / A2 where the insert is to be cloned, and the sequence from position 21 to 26 of SEQ ID NO: 21 corresponds to the simultaneous insertion of a spacer sequence between EGFP and SLC16A2.
- PCRic2 Amplification of the vector was performed with F2 oligonucleotides: 5 '- atgcctttcttgccattgtgtgc-3' (SEQ ID NO: 22) and R2: 5'-gattggttcctcagggttgg-3 '(SEQ ID NO: 23), which give rise to an amplicon of 8,309 bp, in a final volume of 50 ⁇ containing 10 ⁇ of PrimeSTAR 5X buffer, 0.2 mM of each dNTP of the dNTP mix, 0.2 ⁇ of each of the primers, 50 ng of the pcDNA3 (ACMV) -pSLC16A2-SLC ⁇ 6 / A2, 1, 25 U polymerase (PrimeSTAR HS DNA Polymerase; R010A, Takara) and water grade molecular biology.
- F2 oligonucleotides 5 '- atgcctttcttgccattgtgtg
- the amplification program in the PTC-200 Peltier Thermal Cycler thermal cycler consisted of a single cycle at 98 ° C for 40 s; 40 multi-stage cycles at 94 ° C for 10 s, at 63 ° C for 30 s, and 72 ° C for 8 min; and 1 single cycle at 72 ° C for 15 min.
- PCRic2 products were analyzed in 1% agarose gels in TAE buffer containing ethidium bromide (0.5 g / ml), visualized with UV light compared to the marker. of molecular weight of DNA (DNA Markers 1 -10 Kb; 50,471, Lonza Biologics) ( Figure 12 gel B). After treatment with 2 units of Dpnl for 6 h. at 37 ° C, the products were stored at -20 ° C until use.
- the CiPCR via dOE-PCR nc was carried out in a final volume of 25 ⁇ containing 5 ⁇ of 5X PrimeSTAR buffer, 0.2 mM of each dNTP of the mixture of dNTPs, 250 ng of the 763 bp amplicon without purification, 250 ng of the 8,309 bp amplicon of the vector pcDNA3 (ACMV) -pSLC16A2-SLC '/ 6 / A2 without purification, and 1, 25 U of the polymerase (PrimeSTAR HS DNA Polymerase; R010A, Takara).
- the amplification program in the PTC-200 thermal cycler consisted of 1 initial cycle at 98 ° C for 40 s; followed by 24 three-stage multi-stage cycles, at 94 ° C for 10 s, at 63 ° C for 30 s and 72 ° C for 8 min; and finally, 1 final elongation cycle at 72 ° C for 15 min.
- the products were precipitated with sodium acetate / ethanol, then they were resuspended in 5 ⁇ of molecular biology grade water with which the E cells were transformed by thermal shock Chemically competent TG-1 coli suspended in 45 ⁇ of the corresponding buffer.
- sequence of pcDNA3-ACMV + Pr1743SLC16A2-SLC16A2-EGFP is SEQ ID NO: 24.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
La presente invención se refiere a un nuevo método de clonación dirigida o de clonación y mutagénesis dirigidas y simultáneas que comprende una primera PCR clásica con unos cebadores cuya secuencia híbrida en parte con el inserto y en parte con el vector deseado y puede contener mutaciones, y una segunda PCR inversa de clonación que usa directamente los amplicones generados en la PCR clásica generando nuevos amplicones bicatenarios de largos extremos cohesivos complementarios que circularizan in situ en forma de construcciones génicas estables tipo vector, que ya contienen el fragmento de ADN clonado en el vector deseado directamente. La presente invención se refiere también a un kit que comprende las instrucciones para llevar a cabo dicho método y al uso del kit para la clonación dirigida o la clonación y mutagénesis dirigidas y simultáneas.
Description
NUEVO MÉTODO DE CLONACIÓN Y MUTAGÉNESIS IN VITRO MEDIANTE PCR INVERSA DE CLONACIÓN
La presente invención pertenece al campo de la Biología Molecular, la
Ingeniería Genética y la Biotecnología. La presente invención se refiere a un nuevo método in vitro para la clonación dirigida o para la clonación dirigida y la mutagénesis dirigida simultánea, usando una PCR inversa de clonación (CiPCR). Además, la presente invención se refiere a un kit que comprende las instrucciones para llevar a cabo dichos métodos.
ESTADO DE LA TÉCNICA
La clonación de un inserto o fragmento de ADN en un vector consiste en unir los correspondientes extremos 5' y 3' del fragmento de ADN a los correspondientes sitios 3' y 5' del vector, respectivamente. La construcción génica circular generada es un vector que puede ser introducido en una célula, donde se replica cuando la célula es cultivada, de forma que su progenie lo hereda, permitiendo de esta manera la obtención de muchas copias idénticas o clones de dicho fragmento de ADN contenido en el nuevo vector.
Las técnicas usadas mayoritariamente para la clonación de fragmentos de ADN en un vector son muy variadas y se pueden clasificar, según la metodología a usar, en cinco tipos comúnmente conocidos como: métodos de ligamiento de extremos romos, métodos de restricción, métodos de clonación T-A, métodos de recombinación, y métodos LIC (método de clonación independiente de ligasas, del inglés "ligation independent cloning").
Los métodos de ligamiento de extremos romos se basan en el uso de enzimas de restricción cuyos productos tienen extremos romos. Estos métodos son fáciles de entender, pero experimentalmente son lentos y tediosos, y no permiten la clonación de forma dirigida de manera fácil y eficiente. Entre sus mayores limitaciones están que dependen de la presencia de las secuencias diana tanto en el inserto como en el vector, que no permiten usar directamente amplicones de PCR (reacción en cadena de la polimerasa) con residuos de desoxiadenosina en su extremo 3', que falta información acerca de las secuencias flanqueantes a las dianas de determinadas enzimas de restricción y que la eficiencia de la ligasa de ADN a la hora de unir extremos romos es baja.
Los métodos de restricción se basan en el uso de enzimas de restricción cuyos productos tienen extremos cohesivos o protuberantes (en el ADN
bicatenario un cierto número de residuos del extremo de la cadena correspondiente sobresale en forma de cadena sencilla). Estos métodos son fáciles de entender, permiten la clonación tanto dirigida como no dirigida del inserto, y una ligación eficiente del inserto al vector. Sin embargo, presentan importantes limitaciones, como la necesidad de que tanto el vector como el inserto presenten las secuencias diana en los sitios adecuados, la falta de información acerca de las secuencias flanqueantes a las dianas de determinadas enzimas de restricción, el hecho de que cuando se usa una única enzima de restricción solamente se puede clonar de forma no dirigida, o que la clonación del inserto de forma dirigida requiere el uso de dos enzimas de restricción diferentes. Esto último conlleva un mayor número de pasos experimentales, y sobre todo puede suponer un inconveniente debido a la incompatibilidad de las dianas presentes en el vector deseado y en el inserto. Generalmente, la clonación por restricción requiere un estudio previo exhaustivo de la estrategia a seguir y de los vectores a utilizar, ocasionando una notable pérdida de tiempo, acrecentada cuando la disposición de las secuencias diana obliga a la clonación del inserto en un primer vector y a la transferencia del inserto a un segundo vector o vector deseado.
Los métodos de clonación T-A y similares se basan en la hibridación del inserto con el vector bien a través de residuos de desoxiadenosinas en los extremos 3' protuberantes del inserto que hibridan con residuos de desoxitimidinas en los extremos 3' protuberantes del vector, o a través de secuencias especiales añadidas, o mediante activaciones de otros residuos terminales. Estos métodos emplean vectores comerciales abiertos en los que se insertan productos de PCR directamente, la mayoría no permite la clonación dirigida, requieren la compra de nuevas alícuotas y generalmente es necesaria la transferencia de la secuencia clonada a un segundo vector deseado. Ejemplos de estos vectores son pGEM T y pGEM®-T Easy de Promega, que usan como insertos fragmentos de ADN con residuos de desoxiadenosina 3' protuberantes y ligasas para la unión del inserto con el vector, o el pCR®l l-TOPO de Invitrogen, que emplea fragmentos de ADN con residuos de desoxiadenosina 3' protuberantes y topoisomerasas. Igualmente, "Zero Blunt TOPO PCR Cloning Kit" también usa topoisomerasas y permite la clonación de fragmentos de ADN con extremos romos de forma no dirigida, como por ejemplo usando los fragmentos obtenidos por PCR mediante polimerasas que no introducen residuos de
desoxiadenosina en los extremos 3'. Otros vectores como el "Directional TOPO® Cloning permiten la clonación de fragmentos de ADN directamente de forma dirigida con topoisomerasas, y para ello requieren cebadores con secuencias específicas añadidas en sus extremos.
Una alternativa al ligamiento in vitro entre el inserto y el vector, es el ligamiento in vivo. Un ejemplo es el que ocurre en bacterias que sobreexpresen la ligasa de ADN del bacteriófago T4, en las que se introduce el vector y el inserto en forma lineal para que se produzca su ligamiento dentro de la célula. Los mayores problemas de este método son la baja estabilidad de los ADN lineales dentro de las bacterias, lo que lleva a su degradación parcial y a una disminución de la eficiencia del ligamiento, o a su degradación completa, lo que lleva al fracaso.
Los métodos de recombinación pueden emplear dos estrategias: la clonación in vitro mediante recombinasas (ejemplos: la tecnología Gateway® de Invitrogen y la tecnología In-Fusion™ y Creator™ PCR Cloning System de Clontech) y la clonación in vivo, donde el inserto y el vector recombinan dentro de una célula por recombinación homologa, que es muy eficiente en levaduras y recientemente también se consigue en Escherichia coli (E. coli) mediante "clonación RecET" y "clonación λ Red". Estos métodos permiten clonaciones dirigidas y evitan el empleo de enzimas de restricción y de ligasas, pero son complicados de entender y diseñar, y en ocasiones requieren el diseño y construcción de vectores de destino no comerciales; o requieren cepas especiales de bacterias, o la cotransfección con otro vector para introducir los elementos necesarios para que tenga lugar la recombinación. Además, puede haber baja eficiencia, inestabilidad de los vectores y toxicidad celular.
Los métodos LIC se basan en la creación de extremos cohesivos, los más comunes contienen 12 residuos nucleotídicos, en el inserto y en el vector, complementarios entre sí. Estos métodos permiten la clonación dirigida y son independientes de enzimas de restricción y de ligasas. La hibridación de los extremos cohesivos complementarios del inserto y del vector permiten su estabilización en forma circular formando una construcción génica tipo vector que al introducirla dentro de una célula es unida covalentemente por ligasas intracelulares para la obtención del vector correspondiente. Sin embargo, la generación de estos extremos cohesivos es laboriosa y el almacenamiento de los
productos que los contienen es problemático, ya que los extremos son susceptibles de degradación. Para la generación de los extremos cohesivos se emplean distintas estrategias: la T4 ADN polimerasa (Aslanidis y colaboradores (cois.) PCR Methods Appl. 1994 4(3):172-7), la uracil ADN glicosilasa y polimerasas que no pueden amplificar desde residuos de ARN presentes en cebadores mixtos ADN-ARN.
En el mercado hay vectores comerciales como por ejemplo "Affinity® LIC", de Stratagene o el vector "Genscript pDream 2.1 ", pero son muy escasos. Si se requiere su preparación en el laboratorio, esta es generalmente más complicada que la preparación de los insertos.
Por otra parte, existen varias metodologías para la introducción de mutaciones dirigidas o aleatorias en la secuencia de un fragmento de ADN lineal o clonado en un vector, o en la secuencia del propio vector.
Los métodos más estudiados y usados para la mutagénesis dirigida en ADN lineal son los de "overlap extensión" o extensión por solapamiento (Higuchi y cois. Nucleic Acids Res. 1988 16, 7351-7367) y sus modificaciones, y los del "megaprimer" o megaoligonucleótido (Kammann y cois. Nucleic Acids Res. 1989 1 1 ; 17(13), 5404). Ambos son laboriosos, requieren entre 3 y 4 cebadores, varias PCRs y la clonación de novo del inserto mutado en el vector deseado.
Los métodos para introducir mutaciones directamente en la secuencia del
ADN clonado en vectores generalmente bicatenarios o en la del propio vector son de varios tipos, como por ejemplo los métodos de restricción, también conocidos como "cassette mutagénesis" , o los métodos de "codon cassette-mutagenesis" , los métodos que emplean técnicas LIC o de recombinación, o los métodos en los que se amplifica por PCR el vector completo usando cebadores en los que se incorporan las mutaciones a introducir.
Otros métodos, usados generalmente en vectores monocatenarios, son el "sticky-feet-directed mutagénesis" , o la mutagénesis dirigida por recombinación, o los que usan estos vectores monocatenarios como pasos intermedios y hacen mutagénesis basada en PCR o PCR y ligasas para, a continuación, clonar todo el inserto mutado en el vector deseado.
La mayoría de estas técnicas requieren elevados conocimientos y experiencia en ingeniería genética y biología molecular. Solamente algunas de ellas pueden llevarse a cabo con kits comerciales, pero, en general, estos kits
comerciales están enfocados a fines concretos y su aplicación es limitada. Ejemplos de estos kits son el QuikChange® Site-Directed Mutagenesis Kit o el ExSite™ PCR-Based Site-Directed Mutagenesis Kit, ambos de Stratagene.
Todos estos métodos que actúan directamente sobre un ADN ya clonado en un vector monocatenario o bicatenario, basados en amplificación de todo el vector por PCR y seguidos de la selección de la construcción génica mutada bien por destrucción del molde original de ADN conteniendo residuos metilados con Dpnl in vitro, o bien por destrucción del molde original de ADN conteniendo residuos con desoxiuridina en cepas con uracil ADN glicosilasas in vivo, o bien por otros procedimientos, son técnicas únicamente de mutagénesis, que no permiten la clonación de la secuencia de interés en un vector distinto de aquel en el que ya están.
Por otra parte los métodos de extensión por solapamiento y megaoligonucleótido solamente se aplican a la obtención de ADN lineal con la mutación deseada y, además de ser laboriosos, requieren la clonación del ADN mutado en el vector deseado, a posteriori. El método descrito por Miyazaki y Takenouchi (BioTechniques 2002. 33 (5) 1033-1038) y el descrito por Hedge y cois. (Current Science. 2003. 85 (1 1 ) 1523-1525) permiten la mutagénesis de una secuencia ya clonada en un vector y emplean una primera PCR clásica (PCRc) y una segunda PCR inversa (PCRi). El método descrito por Clackson y Winter (Nucleic Acid Res. 1989. 17; 10163-10170) y también por Tessier y Thomas (Methods Mol Biol. 1996. 57; 229-37) permite la clonación o la mutagénesis de un fragmento largo de una secuencia de interés por PCRi, para ello Clackson y Winter generan los oligonucleótidos mutados de doble cadena por PCR y Tessier y Thomas los generan de cadena sencilla mediante una PCR asimétrica, sin embargo sus métodos se limitan al uso de vectores monocatenarios en ambos casos que requieren ligamiento con ligasas de ADN. Además los han aplicado mayoritariamente a mutagénesis de fragmentos de ADN y escasamente a clonación, y en ninguno de los casos a clonación y mutagénesis simultáneas en vectores bicatenarios. El método descrito por Erster y Liscovitch para vectores bicatenarios (Capítulo 12, In vitro mutagenesis protocols, 2010, 3a edición, ed. Jef Braman, Humana Press, 157-174), permite introducir mutaciones por PCRi mediante el uso de oligonucleótidos que cada uno lleva aproximadamente la correspondiente mitad de la secuencia a mutar en sus extremos 5'. Generan así
amplicones bicatenarios de una construcción génica que contienen la secuencia con las mutaciones de interés repartida entre los dos extremos romos que, al ligarlos con una ligasa de ADN, circularizan para obtener el vector con la mutación completa incorporada.
En general, la clonación y la mutagénesis de ADN exigen amplios conocimientos de ingeniería genética y de biología molecular para diseñar la mejor estrategia que nos ayude a decidir la metodología a emplear. Además, debido a las limitaciones que presentan cualquiera de las metodologías descritas, puede ocurrir que no sea posible la clonación de una secuencia de interés, o que ésta sea posible pero de manera laboriosa, complicada y larga.
Para la clonación de fragmentos de ADN en vectores bicatenarios de uso cotidiano en cualquier laboratorio, y de manera especial para aquellos profesionales que no tienen conocimientos ni experiencia en biología molecular ni en ingeniería genética, es conveniente el desarrollo de un nuevo método de clonación dirigida, o de clonación y mutagénesis dirigidas simultáneas, donde las mutaciones pueden ser de deleción, sustitución o inserción, que sea sencillo, fácil y rápido, así como de un nuevo producto que permita llevar a cabo la clonación o la clonación y mutagénesis dirigidas simultáneas por el nuevo método, y de unas instrucciones para el diseño de la clonación o la clonación y mutagénesis dirigidas simultáneas, igualmente sencillas, fáciles y rápidas de entender y de usar.
DESCRIPCIÓN DE LA INVENCIÓN
En un primer aspecto, la presente invención proporciona un nuevo método de clonación dirigida, que se basa en el uso de una PCRc y una PCR inversa de clonación (CiPCR). El método de la invención es eficiente para la clonación dirigida de grandes fragmentos de ADN (por ejemplo genes completos o promotores de genes), bien mediante CiPCR de inserción de la secuencia a clonar en el vector elegido o mediante CiPCR de sustitución de la secuencia de un fragmento de ADN ya contenido en el vector elegido por la del nuevo fragmento a clonar, o para su clonación y mutagénesis dirigidas simultáneas.
En el caso de la clonación y mutagénesis dirigidas simultáneas, la clonación del fragmento largo de ADN se lleva a cabo por CiPCR de inserción o sustitución a través de una PCRi no clásica (PCRinc) y las mutaciones dirigidas simultáneas a la clonación se introducen a través de la PCRc de amplificación del inserto, previa a la PCRinc, mediante el uso de los oligonucleótidos cebadores que
contienen las secuencias apropiadas para introducir las mutaciones (sustituciones, inserciones o deleciones) en los sitios de interés. Estos oligonucleótidos pueden sintetizarse químicamente o por ingeniería genética, si su tamaño es mayor que el que permite la síntesis química.
El método es fácil de entender y de diseñar y más sencillo de usar que los métodos que se emplean hasta la fecha, por lo que no requiere poseer elevados conocimientos de ingeniería genética ni de biología molecular.
Este método permite la clonación dirigida de una secuencia de interés en cualquier vector bicatenario V que contenga al menos un origen de replicación y un gen de selección y que sea preferiblemente circular, o preferiblemente lineal. El método permite clonar de forma dirigida la secuencia de interés contenida en un vector, en otro vector, y también permite clonar la secuencia de interés contenida en una muestra de ADN genómico o en una muestra de ADN complementario (ADNc) generado a partir de ARN mensajero o en el producto de una PCR, en el vector elegido. El método también permite clonar de forma dirigida la secuencia de interés en un ADN bicatenario lineal que contenga una serie de elementos funcionales, que incluyan al menos un origen de replicación y una secuencia de un gen de resistencia o de selección, y generado por ingeniería genética in vitro, como por ejemplo mediante amplificación de la secuencia de cada elemento de forma individual por PCR, y posterior unión por PCR de extensión por solapamiento.
El término "clonación", tal y como se emplea en la presente descripción, se refiere al proceso que permite la generación de copias de un fragmento de ADN, como puede ser la inserción de una secuencia nucleotídica de interés en un vector o en un ADN lineal con las características que se han descrito anteriormente, que pueda ser replicado dentro de una célula.
El término "híbrida", tal y como se emplea en la presente descripción, se refiere a la unión de cadenas de ADN sencillo con secuencias complementarias. En Biología Molecular, la complementariedad es una propiedad de los ácidos nucleicos de doble cadena. Cada cadena es complementaria a la otra de forma que los pares de bases nitrogenadas de ambas están conectados por dos o tres puentes de hidrógeno.
La mutagénesis es el proceso por el cual se introducen mutaciones, es decir, cambios, en una secuencia nucleotídica, que pueden ser de tipo inserción,
sustitución o deleción. La mutagénesis puede ser al azar o dirigida, en cuyo caso se modifican exacta y únicamente los nucleótidos deseados.
El término "vector", tal y como se emplea en la presente descripción, se refiere a una construcción génica o secuencia de ADN que contiene una serie de elementos funcionales, que incluyen al menos un origen de replicación, secuencias de genes de resistencia o de selección, secuencias de control, tales como, por ejemplo, elementos de control de la traducción (como códigos de iniciación y de parada) y de la transcripción (por ejemplo, regiones de promotor- operador, sitios de unión de factores de transcripción o elementos reguladores). El vector puede incluir plásmidos bacterianos, vectores virales, bacteriófagos, cósmidos y otros vectores bien conocidos y documentados en el estado de la técnica, así como los ADN lineales generados in vitro con las características descritas anteriormente. Un vector como el que se acaba de describir, una vez circularizado, es capaz de replicarse bajo su propio control, y de replicar con él el segmento de ADN que lleva unido.
El término "secuencia de control" se refiere a secuencias de nucleótidos que son necesarias para efectuar la expresión de las secuencias codificadoras a las que están ligadas. La naturaleza de dichas secuencias de control difiere dependiendo del organismo huésped; en procariotas, dichas secuencias de control generalmente incluyen un promotor, un sitio de unión ribosomal y señales de terminación; en eucariotas, generalmente, dichas secuencias de control incluyen promotores, señales de terminación, intensificadores y, en ocasiones, silenciadores. Se pretende que el término "secuencias de control" incluya, como mínimo, todos los componentes cuya presencia es necesaria para la expresión y también puede incluir componentes adicionales cuya presencia sea ventajosa.
El término "origen de replicación", tal y como se emplea en la presente descripción, se refiere a una secuencia de nucleótidos donde se forma una horquilla de replicación y donde se inicia la replicación del ADN.
El término "gen de selección", tal y como se emplea en la presente descripción, se refiere a un gen que codifica para una proteína que confiere una característica distintiva al organismo en el que se expresa, como puede ser que sobreviva a la presencia de un antibiótico, que produzca una sustancia coloreada en presencia de un reactivo determinado o que emita luz. Un gen de resistencia a antibiótico codifica para una proteína que confiere a la célula que la expresa, que
normalmente sería sensible al antibiótico, la capacidad de superar el efecto del antibiótico. Dicha proteína suele ser un enzima que hidroliza el antibiótico en cuestión, inactivándolo, o puede ser también una bomba que lo expulsa al exterior de la célula.
Además, el método del primer aspecto de la invención no requiere estudio alguno sobre dianas de corte específicas para enzimas de restricción, ya que no se requieren para la clonación. Este método permite clonar de forma dirigida cualquier fragmento de ADN, como por ejemplo secuencias de genes completos o de promotores. Los autores de la presente invención han demostrado que por este método es posible clonar fragmentos de ADN de hasta al menos 2.300 pares de bases.
Fragmentos de imposible clonación con la metodología clásica de restricción, por la ausencia de puntos de corte adecuados en el ADN a clonar, se pueden clonar mediante el uso de esta metodología, que además de eliminar la necesidad de los cortes del vector y del inserto con enzimas de restricción, así como las purificaciones intermedias de estos productos y su ligamiento, evita también los laboriosos cambios de vector que en ocasiones son necesarios en la metodología de restricción.
En el método del primer aspecto de la invención, la CiPCR permite la clonación dirigida mediante el uso de los oligonucleótidos cebadores diseñados de manera que el inserto se clona en la orientación deseada, determinada por el diseño de dichos cebadores, que se adapta para cada fragmento de ADN a clonar y para cada vector, incluyendo cada ADN lineal generado in vitro, de destino.
Los productos obtenidos por el método del primer aspecto de la invención pueden introducirse por transformación en cualquier tipo de E. coli, y no requieren las exigencias de la clonación por recombinación homologa RecET o λ Red en E. coli. Cepas de E. coli de uso universal como las DH5a o las TG1 son transformadas perfectamente por las construcciones génicas generadas por CiPCR.
Por tanto, un primer aspecto de la invención se refiere a un método de clonación dirigida o de clonación y mutagénesis dirigidas caracterizado porque comprende una primera etapa (a):
a. diseñar una pareja de oligonucleótidos F (directo) y R (reverso) donde:
i. las secuencias de los extremos 3' (C¡) hibridan total o parcialmente con la secuencia a clonar o a clonar y mutar, ii. las secuencias de los extremos 5' (T) hibridan total o parcialmente con las secuencias de un vector V que flanquean el lugar donde se va a insertar el ADN a clonar o a clonar y mutar, y
iii. el vector V es un vector bicatenario preferentemente circular, o preferentemente lineal, que comprende al menos un origen de replicación y preferentemente al menos un gen de selección.
Las secuencias Ci, localizadas por tanto en los extremos 3' de los oligonucleótidos F y/o R y que hibridan con la secuencia del inserto, se diseñan como se diseñarían unos cebadores para obtener los amplicones por PCRc . En el oligonuclelótido F, C¡ corresponde con la secuencia de la región identificada como C¡F en el inserto "i", y en el oligonucleótido R C¡ corresponde con la secuencia de la región identificada como C¡R (figuras 1 , 9Aa y 9Ba).
Las secuencias T, que hibridan con el vector o con el ADN lineal, se localizan en los extremos 5' de F y de R y corresponden a las regiones identificadas como TF y TR en el vector V de las figuras 1 , 9A y 9B, se diseñan para la CiPCR circular de la figura 1 partiendo de los residuos nucleotídicos señalados con dos asteriscos ** o dos ## respectivamente en el vector V hacia los extremos 5', de manera que se añaden directamente a los extremos 5' de las secuencias C¡F y C¡R mediante unión a los extremos 3' de las secuencias T, que en la práctica consiste en copiar directamente las secuencias 5'-(TF(5'-3') + C¡F (5'-3'))-3' para el oligonucleótido F, y 5'-(TR(5'-3') + CiR (5'-3'))-3' para el R. Para la CiPCR lineal mostrada en la figura 9A sería 5'-TF (5'-3') + CiF (5'-3')-3' para el F1 y 5'-TR (5'-3') + CiR (5'-3')-3' para el R1 ; y en la figura 9B 5'-TF (3'-5') + CiF (5'-3')-3' para el F1 y 5'-TR(3'-5') + CiR (5'-3')-3' para el R1. Para CiPCR lineal se diseñan también los oligonucleótidos cebadores para amplificación del vector copiando 5'- TRc -3' para F2 y 5'-TFc -3' para R2 en el ejemplo de la figura 9A; y 5'- TF -3' para F2 y 5'-TR -3' para R2 en el ejemplo de la figura 9B.
En una realización preferida del primer aspecto de la invención, los oligonucleótidos F y/o R comprenden una mutación M de tipo inserción entre la
secuencia C¡ y la secuencia T, donde M comprende al menos un nucleótido y no híbrida con la secuencia a clonar o a clonar y mutar, ni con el vector V.
En una realización preferida del primer aspecto de la invención, los oligonucleótidos F y/o R comprenden al menos una mutación M' en C¡, donde la mutación puede ser una inserción, una sustitución o una deleción y no híbrida con la secuencia a clonar o a clonar y mutar, ni con el vector V.
En una realización preferida del primer aspecto de la invención, los oligonucleótidos F y/o R comprenden al menos una mutación M" en T, donde la mutación puede ser una inserción, una sustitución o una deleción y no híbrida con la secuencia a clonar o a clonar y mutar, ni con el vector V.
Las secuencias M, M' y M" son por lo tanto todas para introducir mutaciones y ninguna híbrida con la secuencia a clonar o a clonar y mutar, ni con la del vector V. Como máximo se pueden introducir dos mutaciones M, que pueden ser únicamente de tipo inserción, una por cada oligonucleótido F o R entre la región Ci y la región T. Sin embargo, mutaciones M' se pueden introducir una o varias por cada oligonucleótido F o R, que pueden ser inserciones, sustituciones y/o deleciones puntuales o múltiples, cuyas secuencias se añaden en los correspondientes sitios de las regiones C¡. En cuanto a las mutaciones M" también se pueden introducir una o varias por cada oligonucleótido F o R, que pueden ser inserciones, sustituciones y/o deleciones puntuales o múltiples, cuyas secuencias se añaden en los correspondientes sitios de las regiones T.
En una realización preferida del primer aspecto de la invención, después de la etapa (a) se lleva a cabo la siguiente etapa (b):
b. Amplificar mediante PCR la secuencia a clonar o a clonar y mutar empleando los oligonucleótidos F y R diseñados en la etapa (a).
Los oligonucleótidos F y R que se emplean como cebadores en la PCRc de amplificación del inserto de la etapa (b), están diseñados de forma que se inicia la PCR a través de la hibridación de las secuencias C¡ de los extremos 3' con la región correspondiente de cada una de las hebras del ADN que contienen la secuencia del inserto "i" a clonar, o a clonar y mutar en aquellos casos que contengan secuencias M, M' y/o M" para introducir las mutaciones deseadas.
Finalizada la etapa (b), se obtiene el amplicón bicatenario, cuyas cadenas individuales, que denominamos A y B, son complementarias entre sí y tienen extremos romos. Dado que la etapa (b) consiste en una PCRc con un elevado
número de ciclos, donde aunque en los primeros ciclos se obtienen amplicones de tamaños variables debido a que no hay señal de fin de la elongación, en ciclos más avanzados son los propios cebadores F y R los que acaban delimitando el tamaño del amplicón, ya que se usan como moldes en cada nuevo ciclo de la PCR.
Los amplicones A y B, conteniendo el inserto y en su caso las mutaciones M, M' y M" deseadas, pueden usarse directamente en la siguiente etapa (c), o se pueden reamplificar con unos oligonucleótidos Fv y Rv diseñados a medida del vector V, de manera que contengan las secuencias TF y TR o una parte respectivamente (ver vector V en figura 1 ), y a continuación se le añaden entre 12 y 18 nucleótidos más, los flanqueantes a TF y a TR (ver vector V en figura 1 ) hacia el extremo 5' de la correspondiente cadena del vector V. Estos nuevos amplicones A' y B' usados en la CiPCR en lugar de los A y B permiten aumentar la eficiencia de la CiPCR en aquellos casos en los que se requiera.
En una realización preferida del primer aspecto de la invención, en la PCR de la etapa (b) se emplea una ADN polimerasa con actividad 3'-5' exonucleasa.
Para la obtención de A y B, o de A' y B' se usa preferiblemente una ADN polimerasa que no introduce residuos en el extremo 3'. Es preferible no utilizar polimerasas que poseen baja o nula actividad 3'-5' exonucleasa, puesto que introducen un residuo fundamentalmente de desoxiadenosina protuberante en el extremo 3' no guiado por el molde, por lo que ese residuo extra no codificado impediría el cebado de la CiPCR de la etapa (c), y por lo tanto su funcionamiento, lo que podría llevar a un fracaso en la clonación del inserto.
En una realización preferida del primer aspecto de la invención, después de la etapa (b) se lleva a cabo la siguiente etapa (c):
c. Clonar la secuencia amplificada en la etapa (b) en el vector V mediante una CiPCR.
La CiPCR se caracteriza porque:
1 . Se obtienen productos que son amplicones bicatenarios lineales complementarios, como los E y G que se muestran en la figura 4A, tanto en las secuencias provenientes de la amplificación de las dos cadenas del vector V como en las secuencias de los amplicones A y B que contienen el inserto a clonar o a clonar y mutar, y en cualquiera de los casos con largos extremos cohesivos de hasta varios miles de residuos nucleotídicos (figura 6), complementarios también
entre sí. En la PCR e PCRi clásicas (PCRc y PCRic) se obtienen amplicones bicatenarios de extremos romos.
2. El tamaño de los amplicones bicatenarios E-G está exactamente delimitado desde el primer ciclo mediante las dos señales derivadas de las secuencias contenidas en cada una de las cadena A y B a través de la hibridación con el vector usado como molde, las Te y las T, de las cuales la primera señala el inicio y la segunda la terminación de la elongación por la polimerasa (figuras 2 y 3), hecho que no ocurre ni en la PCRc ni en la PCRic.
3. Los productos E y G, por sus características de complementariedad total (figura 6), se estabilizan en forma circular in situ mediante hibridación de sus largos extremos cohesivos complementarios formando construcciones génicas estables tipo vector V (figuras 5 y 7). Estas construcciones génicas estables V pueden llegar a contener varios miles de residuos nucleotídicos, y aunque permanezcan en ellas dos cortes por la ausencia de los dos enlaces covalentes entre cada uno de sus dos pares de residuos terminales, dado que al hibridar, el corte de cada cadena no se localiza enfrente del de la otra cadena sino que son distantes espacialmente, la energía liberada por los múltiples enlaces de hidrógeno que se forman durante la hibridación de los largos extremos cohesivos contribuye, juntamente con otros factores como el efecto hidrofóbico, a su estabilización y, por lo tanto, la transformación bacteriana es posible sin necesidad de una ligación previa in vitro.
4. Los productos de CiPCR E y G no puedan actuar como moldes. El especial diseño de los oligonucleótidos F y R para la obtención de los amplicones bicatenarios A y B, a diferencia de las PCR e PCRi bicatenarias clásicas, no permite que los amplicones E y G puedan ser copiados en ciclos posteriores, por lo que su amplificación transcurre en cada ciclo de manera aritmética y no geométrica como en la PCRc y PCRic. Mediante el cebado de E y G con las secuencias Te de los amplicones A y B, como se muestra en la figura 4B entre los amplicones A y G, la polimerasa no puede catalizar la reacción de polimerización puesto que desde el extremo 5' (el único disponible en A ) no puede elongar. Tan solo las cadenas C y D del vector V pueden servir de molde (figura 3), y aunque este mecanismo lleva a la obtención de un menor número de copias que en una PCRc (amplificación aritmética en CiPCR frente a geométrica en PCRc), tiene dos grandes ventajas:
La primera: los amplicones que se obtienen son directamente construcciones génicas bicatenarias vectoriales estables ya clonadas, y
La segunda: minimiza la perpetuación de posibles mutaciones generadas durante la amplificación por la polimerasa, puesto que siempre amplifica del molde original.
5. La estabilidad de las construcciones génicas V desfavorece la actuación de la polimerasa en la producción de posibles amplicones mixtos A+V+B de extremos romos (figura 6) puesto que no los hemos observado experimentalmente al menos de manera significativa (figura 8). Esta estabilidad de las construcciones génicas E-G en forma de vector circular probablemente se inicia por una primera hibridación entre las dos cadenas E-G de manera que una vez unidas forman una sola entidad molecular, promoviendo la hibridación intramolecular total rápida entre los otros dos extremos complementarios libres de ellas mismas, o puede transcurrir incluso de forma simultánea. Además, este proceso se puede optimizar a favor de una mayor eficiencia en la clonación buscando las condiciones experimentales que permitan que la hibridación intramolecular sea más favorable que la elongación por la polimerasa.
El método del primer aspecto de la invención permite, además de la clonación dirigida de genes y otros fragmentos de ADN, la introducción de hasta dos inserciones M simultáneas a la clonación entre los extremos del inserto "i" y del vector V, y/o una o múltiples mutaciones simultáneas M' y/o M"en los extremos del inserto o en las zonas del vector V flanqueantes al lugar de inserción del inserto en el vector V, que pueden ser sustituciones, y/o deleciones y/o inserciones.
Por lo tanto, las construcciones génicas resultantes de la etapa (c) son mayoritariamente como las construcciones génicas V mostrada en las figuras 5 y 7, por lo que el método del primer aspecto de la invención evita el uso de ligasas in vitro previo a la introducción de la nueva construcción génica V dentro de las células puesto que, al usar vectores bicatenarios y amplicones bicatenarios conteniendo los insertos y las mutaciones deseadas, durante la CiPCR se generan también amplicones bicatenarios con largos extremos cohesivos y complementarios que hibridan entre sí formando una construcción génica circular estable V que, una vez introducida dentro de la célula, no es degradada y puede ser ligada y replicada in vivo. Por lo que tanto la metodología de restricción como
la de ligamiento de extremos romos con ligasas muestran desventajas con respecto a este método y, en especial, la de ligamiento de extremos romos, por su baja eficiencia en la reacción de ligamiento in vitro previa a la introducción de la construcción génica dentro de la célula.
El método del primer aspecto de la invención usa vectores V bicatenarios preferiblemente circulares, preferiblemente metilados, pero también podrían usarse preferiblemente los vectores bicatenarios abiertos y los productos de ADN bicatenario lineales generados por ingeniería genética como se describió anteriormente y como muestran los ejemplos 4 y 5 de la presente descripción. Por lo tanto, el uso del método del primer aspecto de la invención no está restringido a ningún vector V concreto, ni a su estado lineal o circular, ni a la presencia de residuos con desoxiuridina, ni a las limitaciones de las dianas de restricción del sitio de clonación múltiple o a los sitios de recombinación, como los métodos de clonación T-A, los LIC, los de restricción o los de recombinación y se amplía además a otros ADN bicatenarios lineales con las características descritas anteriormente y no provenientes de la apertura de vectores circulares.
El método del primer aspecto de la invención permite eliminar, de manera simultánea a la clonación, las secuencias diana de los sitios de clonación por restricción, recombinación, y/o de otras secuencias no deseables, como pueden ser las regiones codificadoras de un gen clonado previamente, o la secuencia de un promotor, todas ellas localizadas entre los sitios de inserción del nuevo ADN a clonar (que en las figuras se identifica desde el sitio marcado con los dos asteriscos ** hasta el marcado con ##), y que por lo tanto no interesa que permanezcan en el vector V. Si se usan vectores lineales estas secuencias se pueden eliminar en la PCRic o PCRc para su amplificación.
El método del primer aspecto de la invención es diferente a los descritos hasta la fecha, ya que permite tanto la clonación dirigida, como la clonación y mutagénesis dirigidas simultáneas de la secuencia a clonar directamente mediante el uso de una CiPCR.
La clonación dirigida y la clonación y mutagénesis dirigidas simultáneas se consiguen gracias al diseño de los dos oligonucleótidos cebadores F y R, como se ha descrito anteriormente, que permiten, bien directamente o bien formando parte de una molécula de ADN de mayor tamaño, como los amplicones bicatenarios A y B o A' y B', alcanzar los siguientes cuatro objetivos:
Primer objetivo: el cebado secuencial de dos PCRs: una PCRc y una CiPCR.
Se consigue mediante la introducción de las secuencias C¡ en cada uno de los extremos 3' de los oligonucleótidos F y R (figuras 1 , 9A y 9B), que son las que hibridan con el inserto y actúan de cebadores en la PCRc de amplificación del inserto "i" a clonar (figuras 1 , 2 y 10A) para obtener los amplicones bicatenarios A y B que se describen en la etapa (b).
Las secuencias T, que se localizan en los extremos 5' de F y de R (figuras 1 , 9A y 9B), y también en los extremos 5' de los amplicones A y B (figuras 2 y 10A), generan durante la PCRc de la etapa b) las correspondientes secuencias Te localizadas en los extremos 3' de A y B (figuras 2 y 10A). Tanto las secuencias T como Te de la misma cadena A o B del amplicón bicatenario generado en la PCRc hibridan con las secuencias complementarias en la correspondiente cadena del vector V (figuras 3 y 10C), pero son las secuencias Te de A y B las que actúan de cebadores para llevar a cabo la elongación en la CiPCR, como si se tratara de una PCRi, pero no clásica, o en la PCR de doble solapamiento, pero no clásica, en el caso de los cebadores de las figuras 9A y 9B en la CiPCR lineal.
Segundo objetivo: la delimitación del tamaño exacto del amplicón de la CiPCR desde el primer ciclo.
A diferencia de la PCRic en la CiPCR se delimita el tamaño del amplicón desde el primer ciclo. Se consigue mediante la hibridación de las secuencias T de los extremos 5' de cada uno de los amplicones A y B con las secuencias complementarias correspondientes de cada una de las cadenas C y D del vector V (figuras 3, 10B y 10C). En la CiPCR, la polimerasa elonga desde el extremo 3' (desde las secuencias Te) hasta que el molde deja de estar disponible en la región de C o D donde está hibridado con las correspondientes secuencias T. Por lo tanto T es una señal de terminación, que juntamente con la señal Te de iniciación, delimitan el tamaño exacto del amplicón desde el primer ciclo. Como consecuencia, aunque los amplicones A y B pueden hidridar respectivamente con los amplicones G y E que se obtienen en la CiPCR (figuras 3, 10C, 4A y 4B), estos no pueden actuar como nuevos moldes, puesto que tras la hibridación de G y E con A y B respectivamente, solamente quedan disponibles las regiones 3' de los amplicones E y G (figura 4B) para ser amplificadas, y desde los extremos 5' de A y de B la polimerasa no puede elongar. Por lo tanto solamente puede tener lugar la amplificación desde el molde original.
El resultado final es que en la CiPCR se obtienen fragmentos de ADN bicatenarios con largos extremos cohesivos complementarios entre sí, que al hibridar, bien secuencialmente a través de hidridaciones parciales iniciales como las que se muestran en la figura 6, o simultáneamente como se muestra en la figura 5, llevan a una circularización de las dos cadenas E y G, obteniéndose la construcción génica V de la figura 5. Esta construcción génica V es más estable que la que se forma en la clonación tipo LIC, debido a que con el método de la invención se forman largos extremos protuberantes con un único corte por cadena, mientras que en la clonación tipo LIC se forman vectores más inestables con extremos protuberantes más cortos y con dos cortes por cada cadena.
Ante la hibridación que se muestra en la figura 6B, dependiendo de las características intrínsecas de cada secuencia involucrada y de las condiciones experimentales de la CiPCR, sería teóricamente posible la elongación por la polimerasa a partir de los correspondientes extremos 3' de E y de G para obtenerse los productos lineales no deseados con extremos romos A+B+V. Además, puesto que estos productos pueden funcionar como nuevos moldes podría darse una PCRc simultánea con la CiPCR, de la que sería de esperar una amplificación geométrica, y puesto que tras digestión con Dpnl, en nuestros ensayos no hemos observado, al menos de forma relevante, la producción de fragmentos del tamaño correspondiente a A+B+V, como se muestra a modo de ejemplo en la figura 8 para la clonación del gen humano SP1 que codifica para la proteína "Specicity Protein 1 ", este mecanismo parece desfavorecido. Aún en caso que se obtuviesen, estos productos no suponen un problema puesto que, al no ser necesario el uso de una ligasa de ADN, tras degradación de los vectores molde originales V con Dpnl, la transformación de E. coli con la mezcla de los restantes productos de la CiPCR favorece la degradación de los amplicones A+B+V de ADN de extremos romos que permanecen en forma lineal frente a la protección que le confiere la circularización de E y G para formar las construcciones génicas V altamente estables, mostradas en la figura 5, lo que, tras transformación de E. Coli, favorece su ligamiento catalizado intracelularmente para la formación del enlace fosfodiester entre el fosfato en la posición 5 del residuo nucleotídico del extremo 5' y el hidroxilo en la posición 3 del residuo nucleotídico del extremo 3' para unir covalentemente cada uno de los dos pares de residuos nucleotídicos de los extremos de cada cadena E y G, llevando por
tanto a la obtención del vector circular bicatenario E-G deseado (V). Es más, esta PCR colateral se puede evitar o minimizar en condiciones apropiadas.
Tercer objetivo: la inserción orientada y dirigida del fragmento a clonar directamente en el vector V seleccionado, tanto por inserción directa de su secuencia (CiPCR de inserción de la secuencia a clonar) como por sustitución de una secuencia de un fragmento de ADN ya clonado previamente en el vector V seleccionado por la secuencia del nuevo fragmento de ADN a clonar (CiPCR de sustitución).
Este objetivo también se consigue gracias al diseño de los oligonucleótidos F y R. Cada uno de los oligonucleótidos contiene las dos secuencias C¡ y T correspondientes que determinan la orientación del inserto, así como el lugar de inserción del inserto contenido en los amplicones A y B en el vector V. Las secuencias T de los oligonucleótidos, y por tanto sus complementarias Te en los amplicones A y B definen el lugar exacto de inserción. El inicio de las zonas que flanquean el lugar de inserción en las cadenas C y D del vector V y que hibridan con las secuencias T y Te de los amplicones A y B respectivamente se indican con ** y con ## en la figura 1 y coinciden con el punto exacto de inserción.
Si los sitios ** y ** son contiguos el nuevo ADN se inserta en esa posición exactamente y no tiene lugar la eliminación de nucleótidos en el vector V. Si los sitios ** y ## son distantes, en el proceso de clonación se elimina en el vector V la secuencia del vector V comprendida entre ambos sitios simultáneamente a la inserción del ADN a clonar.
Cuarto objetivo: la introducción opcional de mutaciones en las regiones de los extremos del inserto o del vector de forma simultánea a la clonación del inserto. Se consigue mediante:
Introducción de una o de las dos únicas inserciones M posibles (una por cada oligonucleótido) en los oligonucleótidos F y/o R entre las secuencias del inserto "i" y del vector V, o sea entre la secuencia C¡ y la T (figura 1 ), y son los nucleótidos de las secuencias C¡ y T flanqueantes a la inserción los que hibridan con la secuencia del inserto "i" o del vector V, y/o introducción de una o de las múltiples mutaciones M' y M" posibles en las secuencias de los extremos del inserto y en las secuencias flanqueantes al lugar de inserción en el vector V respectivamente, que en los oligonucleótidos F y/o R corresponden a las secuencias C¡ y T, respectivamente. Estas mutaciones M' y M" pueden ser
sustituciones, inserciones o deleciones. En las inserciones son los nucleótidos de las secuencias flanqueantes a la inserción los que hibridan con la secuencia del inserto o del vector V. En las deleciones, se eliminan los nucleótidos correspondientes y la secuencia del oligonucleótido F o R híbrida con las secuencias localizadas a los lados de la secuencia que se quiere delecionar en el inserto "i" o el vector V. En el caso de las sustituciones, la secuencia del oligonucleótido difiere de la secuencia con la que híbrida en aquellos nucleótidos que se quieren modificar.
Las mutaciones M, M' y M" de tipo inserción pueden añadir desde uno hasta múltiples nucleótidos a las correspondientes regiones de V entre las secuencias de los extremos del inserto y del vector V o en las secuencias provenientes de los extremos del inserto y del vector V (figuras 1 y 7), incluso etiquetas o marcadores enteros, como por ejemplo, pero sin limitarse, hemaglutinina (HA), polihistidinas, cualquier etiqueta o marcador conocido por un experto en la materia, como también, por ejemplo, pero sin limitarse, un codón de iniciación, un codón de parada, o una secuencia Kozak, como demuestran los ejemplos de la presente memoria. Las mutaciones de deleción eliminan uno o varios nucleótidos, o etiquetas, o marcadores enteros comprendidos en las secuencias Ci y/o T provenientes del inserto "i" y del vector V, y las mutaciones de sustitución intercambian uno o varios nucleótidos comprendidos en las secuencias Ci y/o T provenientes del inserto "i" y del vector V.
Las mutaciones M, M' y M" se denominan de igual forma en ambos oligonucleótidos F y R, pero puede haber dos secuencias M diferentes, una proveniente de cada oligonucleótido, y múltiples y diferentes secuencias M' y M" provenientes de cada uno de los dos oligonucleótidos.
Según las secuencias M, M' y M" que se desee introducir y/o mutar se obtendrán las construcciones génicas circulares bicatenarias V correspondientes. Los productos que se pueden obtener van a variar en cada caso dependiendo de las secuencias M, M' y M". A modo de ejemplo se muestra un esquema en la figura 7 con posibles productos que se pueden obtener; para mayor claridad se muestra solamente una de las cadenas de la construcción génica bicatenaria V.
El número de nucleótidos totales de las secuencias M, M' y M" no está limitado en la CiPCR, sino en las etapas previas. Las restricciones provienen fundamentalmente de las limitaciones inherentes a la síntesis química de los
oligonucleótidos, puesto que no suelen superar los 135 residuos, por lo que el número máximo de residuos a insertar o sustituir aportados por M, M' y M" está delimitado por la diferencia entre el número total de nucleótidos de las secuencias C¡ y T y el de los oligonucleótidos sintetizados químicamente. Hay que tener en cuenta que si M' y M" son deleciones, no añaden nucleótidos a los oligonucleótidos F y R.
Esto tampoco supone un problema para el método puesto que cuando se deseen introducir múltiples mutaciones M, M' y M" no abarcables con los oligonucleótidos cebadores sintetizados químicamente para llevar a cabo la obtención del inserto, se puede recurrir a su obtención mediante ingeniería genética. Para ello se puede recurrir a otros métodos de PCR que sirvan para introducir mutaciones en ADN lineal, como pero sin limitarse al del megaoligonucleótido o al de extensión por solapamiento y sus variantes, y generar así los amplicones A y B para ser usados en la correspondiente CiPCR.
Como alternativa y para evitar estos métodos de ingeniería genética, que son laboriosos, se recomienda el uso de varias CiPCR secuenciales usando oligonucleótidos sintetizados químicamente, tanto para deleciones como para clonaciones de múltiples fragmentos de ADN, y aprovechando las mutagénesis simultáneas que sean posibles a través de M, M' y M", para minimizar el número de CiPCRs en la consecución de los objetivos que se planteen.
La ¡PCR es una técnica que se usó inicialmente para la obtención de secuencias de fragmentos de ADN lineal de los que solamente se conocía una secuencia parcial. Tras su circularización se pueden amplificar mediante PCR con los oligonucleótidos diseñados hacía el exterior (invertidos) a partir de la secuencia parcial conocida, de manera que se obtienen amplicones conteniendo en sus extremos las secuencias conocidas. Estos amplicones son ahora secuenciados para elucidar el resto de la secuencia objeto de estudio. Por lo tanto se diferencia de la PCRc en que requiere la circularización previa del molde a amplificar, en que los dos cebadores hibridan en la misma zona del molde o en zonas adyacentes o próximas, y en que la orientación de dichos cebadores es la opuesta a la de una PCRc. Como producto de la reacción de PCRi se obtienen amplicones de doble cadena de extremos romos pero que, a diferencia de los de la CiPCR, pueden actuar como moldes en el siguiente ciclo.
En la CiPCR lineal se usan dos fragmentos de ADN bicatenario lineales de extremos romos, uno puede contener la secuencia del inserto y el otro los elementos que caracterizan a un vector (origen de replicación, elemento de selección, otros posibles elementos reguladores, etc). Estos amplicones se obtienen a partir de dos PCRc, que pueden ser dos PCRc convencionales (cuando se amplifica de ADNs lineales en ambos casos), o una PCRc convencional y una PCRic (cuando se amplifica por ejemplo el inserto de un ADN lineal y el fragmento de ADN bicatenario conteniendo los elementos del vector, de un vector circular). Ninguna de estas dos opciones excluye otros métodos para la obtención de alguno de los dos fragmentos, como el barajado de ADN o la PCRc de extensión por solapamiento (OE-PCR) o el uso de megacebadores.
Diseño de cebadores: Para llevar a cabo la amplificación de los dos fragmentos de ADN bicatenario se requieren 4 cebadores, 2 por cada PCRc, de los que al menos 2 serán cebadores de CiPCR. De entre los 4 se pueden elegir como cebadores de CiPCR los dos destinados a la amplificación de uno de los fragmentos, o uno del primer fragmento y otro del segundo fragmento, de manera que se posicionen en los extremos opuestos de las uniones entre el inserto y el vector. Los otros dos son cebadores sencillos de una PCR convencional, con la salvedad de que sus secuencias coinciden con las secuencias T de los cebadores de CiPCR o con su secuencia complementaria. En la Figura 9 se ilustra el diseño de cebadores generales para llevar a cabo una clonación por CiPCR lineal mostrando los dos ejemplos más sencillos y comunes con los que nos podemos encontrar: (1 ) uso de dos fragmentos de ADN bicatenario, uno proveniente de una PCRc para la amplificación del inserto, y el otro de una PCRic para la amplificación de los elementos que lo van a caracterizar como un vector (Figura 9 A), y cuyo mecanismo, teniendo en cuenta siempre que la elongación trascurre siempre a través de extremos 3', se muestra en la Figura 10; y (2) uso de dos fragmentos de ADN bicatenario provenientes de dos PCRc (Figura 9 B), cuyo mecanismo sería similar y ya no se muestra. Aunque hay otras opciones para la elección de los dos cebadores de CiPCR de entre los 4 posibles, en la práctica todos llevarían al mismo resultado, por lo que será cada experimentador el que decida cuáles usar, y para ello se tendrá en cuenta si las PCRc son convencionales, o alguna es inversa, y las características de cada cebador.
Para el diseño de los cebadores para los dos ejemplos mencionados, una vez elegidas las secuencias individuales Ci y T, nosotros recomendamos seguir el orden que se muestra en la Figura 9 y consiste en copiar directamente las secuencias Ci y T de los moldes, teniendo en cuenta en el primer caso (figura 9A) que el molde para la PCR¡C2 es circular y que F2 y R2 amplifican hacia el exterior, serían como sigue:
F1 : 5'-TF (5'-3') + CiF (5'-3') - 3'
R1 : 5'-TR (5'-3') + CiR (5'-3') - 3'
F2: 5'- TRc -3'
R2: 5'-TFc -3'
Si el molde v fuese lineal, como el del segundo ejemplo (figura 9B), consistiría en un diseño para dos PCRc, y los cebadores serían copiados directamente como se indica a continuación:
F1 : 5'-TF (3'-5') + CiF (5'-3') - 3'
R1 : 5'-TR(3'-5') + CiR (5'-3') - 3'
F2: 5'- TF -3'
R2: 5'-TR -3'
Etapa 1 :
PCRd para la obtención del fragmento de ADN bicatenario que contiene el inserto a clonar: Es una PCRc convencional (Figura 10A), en la que se utilizan los oligonucleótidos cebadores F1 y R1 que se seleccionaron como oligonucleótidos de CiPCR. Si se desea también es posible añadir nuevas secuencias para insertar epítopos u otras secuencias de interés entre las dos secuencias Ci y T, o en medio de las Ci y T, y en este caso pueden ser inserciones, deleciones o sustituciones. En cualquiera de los casos se requiere el uso de una polimerasa de alta fidelidad que no introduzca desoxiadenosinas (desoxirribonucleótido de adenina o dATP) en los extremos 3'.
PCRic2 para la obtención del fragmento de ADN bicatenario con los elementos de un vector y al que se va a unir el fragmento de PCRd : En este ejemplo es una PCRic convencional (Figura 10 B), en la que se utilizan los oligonucleótidos cebadores F2 y R2 diseñados como se describió anteriormente.
Se requiere igualmente el uso de una polimerasa de alta fidelidad que no introduzca desoxiadenosinas en los extremos 3'.
Etapa 2:
CiPCR, que en este caso consiste en una PCR de doble extensión por solapamiento no clásica (dOE-PCRnc): Esta PCR permite la unión de los fragmentos de las PCRd y PCRic2 o PCRc2 mediante una hibridación inicial similar a la que ocurre en una OE-PCRc, que en este caso es doble y no clásica, puesto que no se usan cebadores, y lleva a la circularización de los dos fragmentos unidos por hibridación a medida que la polimerasa los va elongando (Figura 10 C, parte superior). Esta hibridación actúa de cebo para la polimerasa que elonga a través de los dos extremos 3' libres hasta llegar al otro extremo que, como está hibridado, le señala la terminación de la elongación. Se forma un ADN bicatenario circular, que aunque tiene un corte entre los dos nucleótidos no unidos covalentemente en los extremos de cada cadena, éstas se mantienen estabilizadas en forma circular por medio de la hibridación total como se muestra en la Figura 10 C.
Si se desnaturalizan, estos amplicones tienen las mismas características que los que se obtienen por CiPCR con vectores circulares.
Sin embargo, hay algunas diferencias con respecto a ésta. Las más notables son:
- Se obtiene doble cantidad de los productos en la CiPCR por OE-PCRnc lineal en comparación con la CiPCR por PCRinc circular, porque se elongan los dos fragmentos a la vez en cada ciclo de la OE-PCRnc frente a la elongación de una sola de las cadenas en la PCRinc, duplicando por tanto su eficiencia.
-En la CiPCR circular solamente se consume el fragmento que contiene el inserto, por lo que el vector circular se usa en una cantidad comparable a un molde clásico de PCR, que posteriormente conviene destruir. En la CiPCR lineal durante la dOE-PCRnc se consumen los dos fragmentos, el que contiene el inserto y el que contiene los elementos característicos del vector, por lo que hay que usar cantidades de acuerdo a cada clonación y en relaciones equimoleculares. Además, por el hecho de ser lineal en la CiPCR lineal la etapa de destrucción del fragmento equivalente al vector no es necesaria, a excepción del uso de los productos sin purificar provenientes de las PCRc y PCRic en cuyo caso se puede hacer un tratamiento con Dpnl antes o después de la OE-PCRnc.
En la presente memoria, CiPCR es un método de clonación mediante una "PCR inversa de clonación" bien una PCRinc o una OE-PCRnc, donde el producto obtenido son amplicones de doble cadena, que no pueden ser copiados en los
ciclos siguientes de la CiPCR, que tienen largos extremos cohesivos que son los que permiten su circularización a una construcción génica estable V tipo vector y por tanto la clonación simultánea y directa del inserto.
En una realización preferida, el método del primer aspecto de la invención, se caracteriza porque después de la etapa (c) se lleva a cabo la siguiente etapa
(d) :
d. Digerir el producto de la etapa (c) con una ADN endonucleasa dependiente de metilación.
Preferiblemente, la ADN endonucleasa dependiente de metilación es Dpnl. El término "digerir", tal y como se emplea en la presente descripción, se refiere a la acción enzimática de una endonucleasa, que rompe los enlaces entre los nucleótidos que forman las cadenas de ADN, destruyéndolas. Una endonucleasa dependiente de metilación es aquella que sólo corta el ADN cuando reconoce su diana y además dicha diana presenta un nucleótido metilado. Como se ilustra en la figura 5, el enzima Dpnl es capaz de eliminar selectivamente el molde V (cadenas C y D) de la reacción de la etapa (c) y no las moléculas de ADN recién sintetizadas en dicha etapa, ya que las moléculas recién sintetizadas mediante PCR no están metiladas, mientras que las moléculas de vector V que han actuado como molde, provenientes de la extracción y purificación del vector V de un cultivo de una célula con enzimas metilasas, sí lo están.
Cuando el vector V de la etapa (a) no es circular, sino un ADN lineal bien generado in vitro con las características descritas anteriormente o proveniente de un vector abierto, se puede prescindir de la etapa (d) y se procedería directamente con a etapa (e) que se describe a continuación, excepto si no se purifican los productos obtenidos de moldes circulares, en cuyo caso se puede hacer el tratamiento con Dpnl antes o después de la OE-PCRnc. Los ADN lineales son degradados y solamente permanecen las construcciones V generadas en la CiPCR.
En una realización preferida, el método del primer aspecto de la invención se caracteriza porque después de la etapa (d) se lleva a cabo la siguiente etapa
(e) :
e. Introducir los productos de la etapa (d) en una célula.
La célula en la que se introducen los productos de la etapa (d) puede ser tanto procariota como eucariota. Preferiblemente, la célula es una célula procariota. Preferiblemente, la célula procariota es E. coli.
La bacteria E. coli pertenece al Superreino Prokaryota, Reino Bacteria, Phylum Proteobacteria, Clase Gammaproteobacteria, Orden Enterobacteriales, Familia Enterobacteriaceae y Género Escherichia.
Existe una variedad de técnicas que se pueden utilizar para introducir un ADN en células procarióticas o eucarióticas (células hospedadoras). Técnicas adecuadas de transformación o transfección están bien descritas en el estado de la técnica. Por ejemplo, pero sin limitarse, para la introducción de los productos obtenidos en la etapa (d) en una célula de E. coli puede emplearse el método de choque térmico, el método del cloruro cálcico, el método de Hanahan o la electroporación en bacterias previamente tratadas para ser competentes para la transformación.
Al introducir los productos de la etapa (d) en una célula, las moléculas híbridas V de las cadenas E y G como las que se muestras en las figuras 5 y 7 van a ser ligadas por enzimas ligasas de la célula de manera que se van a formar construcciones génicas V circulares unidas a través de enlaces covalentes. Dado que la nueva construcción génica V es también un vector, porque cuenta con al menos un origen de replicación, este vector V puede replicarse en el interior celular.
En una realización preferida, el método del primer aspecto de la invención se caracteriza porque después de la etapa (e) se lleva a cabo la siguiente etapa (f):
f. cultivar la célula de la etapa (e).
Cuando se cultivan las células que llevan el vector circular V formado por las cadenas E y G ligadas mediante enlaces covalentes, este vector V va a replicarse en el interior de las células y a transmitirse de unas a otras cuando se dividan las células durante el crecimiento del cultivo. De esta forma, se multiplica exponencialmente el número de moléculas de vector V con el inserto clonado o bien con el inserto clonado y mutado, o moléculas de vector V con una parte amplificada del vector V mutada y el inserto clonado, o el inserto clonado y mutado.
En una realización preferida, el método del primer aspecto de la invención se caracteriza porque después de la etapa (f) se lleva a cabo la siguiente etapa (9):
g. extraer el vector V del cultivo de la etapa (f).
Para la extracción del vector V de las células cultivadas puede emplearse cualquier técnica conocida y descrita hasta la fecha para la purificación del ADN de un vector a partir de un cultivo.
En una realización preferida, el método del primer aspecto de la invención se caracteriza porque después de la etapa (g) se lleva a cabo la siguiente etapa (h):
h. comprobar la clonación o la clonación y mutación en el vector V extraído en la etapa (g).
La comprobación de que la clonación ha sido eficaz puede llevarse a cabo por cualquiera de los métodos conocidos y descritos hasta la fecha en el estado de la técnica, como son por ejemplo, pero sin limitarse, la secuenciación, la PCR o la digestión con enzimas de restricción específicos. Preferiblemente, la comprobación inicial se realiza por PCR directa de colonia y análisis del amplicón. Para la corroboración de clones positivos se hace la extracción y purificación del o de los vectores V y a continuación la secuenciación directa de los mismos.
Un segundo aspecto de la presente invención se refiere a un kit que comprende las instrucciones para llevar a cabo el método para la clonación dirigida o para la clonación y mutagénesis dirigidas del primer aspecto de la invención.
Dichas instrucciones permiten que cualquiera pueda diseñar los oligonucleótidos F y R para llevar a cabo la clonación dirigida o la clonación y mutagénesis dirigidas deseadas, partiendo de una secuencia de interés y de un vector V en el que se quiere clonar dicha secuencia.
En una realización preferida del segundo aspecto de la invención, el kit además comprende un vector V. En una realización preferida del segundo aspecto de la invención, el kit además comprende dos oligonucleótidos cebadores de reamplificación del producto obtenido de la etapa (b) según el método del primer aspecto de la invención, uno directo y otro reverso, cuyas secuencias hibridan con la secuencia del vector V.
En una realización preferida del segundo aspecto de la invención, el kit además comprende una ADN polimerasa. Preferiblemente, la ADN polimerasa tiene actividad 3'-5' exonucleasa. Preferiblemente, la ADN polimerasa es de alta fidelidad de copia.
La introducción de residuos de desoxiadenosina en los extremos 3' no guiada por el molde, en los amplicones bicatenarios A y B, o A' y B', por el uso de una polimerasa que introduzca este tipo de residuos terminales extra, podría llevar al fracaso de la etapa (c). La etapa (c) incluye la CiPCR de clonación del inserto, y si hay un residuo 3' extra no guiado por el molde en los amplicones A y/o B, o A' y/o B', y si el residuo complementario de desoxitimidina no está presente en el sitio correspondiente de la secuencia del vector (el contiguo a la secuencia T hacia el extremo 5'), no habrá hibridación del residuo de desoxiadenosina terminal con el vector molde, llevando al fracaso de la CiPCR. De manera similar, si la CiPCR para la obtención de los amplicones bicatenarios E y G se lleva a cabo con una polimerasa que introduce residuos de desoxiadenosina en los extremos 3', además de la limitación de estas polimerasas en la amplificación de fragmentos de ADN que superen los 3.000 pares de bases, como es el caso cuando se requiere copiar la secuencia de un vector, la introducción de este residuo no contemplado en el molde puede, además de introducir alteraciones perjudiciales en el nuevo vector V que se genera, llevar la clonación del inserto al fracaso por una incorrecta circularización o por una falta de estabilidad por la presencia de los dos huecos correspondientes a la ausencia de los dos residuos de desoxitimidinas.
En una realización preferida del segundo aspecto de la invención, el kit además comprende la ADN endonucleasa Dpnl. En una realización preferida del segundo aspecto de la invención, el kit además comprende células apropiadas para la introducción de un vector en ellas.
Un tercer aspecto de la presente invención se refiere al uso del kit del segundo aspecto de la invención para la clonación dirigida o para la clonación y mutagénesis dirigidas.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en
parte de la práctica de la invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención.
DESCRIPCIÓN DE LAS FIGURAS
Fig. 1. Esquema de las moléculas implicadas en las distintas etapas del método de clonación mediante CiPCR circular de la invención. Oligonucleótidos cebadores F y R diseñados en la etapa (a), que contienen en su extremo 3' una secuencia C¡ que híbrida con la secuencia a clonar o a clonar y mutar, es decir, C¡ es la secuencia de hibridación con el inserto (S-h-i), y una secuencia T que híbrida con el vector V circular, es decir, T es una secuencia de hibridación con el vector (S-h-V). M es la secuencia para introducir inserciones que no afectan a la secuencia del vector ni a la del inserto. Simultáneamente, se pueden añadir mutaciones M' y/o M" en C¡ y/o en T, para mutar sitios en el inserto y/o en el vector, respectivamente. Como moldes (Mo) de las etapas (b) y (c) se emplea un ADN que contenga la secuencia del inserto "i" y el vector circular de doble cadena V (cuyas dos hebras se denominan C y D), respectivamente. Las flechas en el inserto "i" y en las cadenas C y D del vector V no indican hibridación con su secuencia complementaria, sino que están localizando la secuencia a copiar directamente para incluir en el oligonucleótido correspondiente. La secuencia global del oligonucleótido F se diseña copiando directamente la secuencia señalada como C¡F de la hebra (5'-3') del ADN bicatenario "i", seguida desde su extremo 5' de la secuencia TF directamente copiada de la hebra D (5'- 3') del vector V. Para el oligonucleótido R se procede de la misma manera pero copiando las secuencias C¡R y TR de las hebras complementarias.
Fig. 2. Esquema de elongación en la PCRc de la etapa (b). En la PCR de la etapa (b) se emplea como molde un ADN que contiene la secuencia del inserto "i", y se emplean los oligonucleótidos F y R cuyas secuencias C¡, o en su caso C¡ mutadas, actúan de cebadores. Como producto de la PCR de la etapa (b) se obtiene un ADN lineal de doble cadena y extremos romos, constituido por las cadenas complementarias A y B del esquema. Los oligonucleótidos F y R muestran aquí la región de la hibridación inicial para el cebado de la PCRc. F híbrida con la cadena 3'-5' y R con la cadena 5'-3' del molde "i".
Fig. 3. Esquema de la elongación en la CiPCR mediante PCRinc de la etapa (c). En la etapa (c) se emplea como molde el vector circular de doble cadena V,
cuyas dos hebras se denominan C y D. Tras la hibridación de los extremos 3' (Te) y 5' (T) de las cadenas A y B con las cadenas C y D, la elongación tiene lugar a partir de los extremos 3', o sea, de las secuencias Te de A y de B, respectivamente. La polimerasa elonga desde los extremos 3' (Te) de las cadenas A y B hasta encontrarse con los extremos 5' (T) de A o B hibridados con su región complementaria en los moldes respectivos (señal de terminación de la elongación), señalada con el símbolo de parada negativo. Como resultado se generan las cadenas E y G.
Fig. 4. Esquema de los productos de la CiPCR. A. Se muestran las nuevas cadenas E y G sintetizadas en la etapa (c) lineales con sus distintas regiones y las cadenas C y D del vector V. B. Se muestra que las cadenas E y G no pueden servir de moldes en la etapa (c). Las secuencias cebadoras de los extremos 3' de A y B pueden hibridan con G y E, respectivamente, sin embargo, puesto que no dispone de molde, el extremo 3' Te del cebador no se puede elongar, por lo que E y G no pueden actuar como nuevos moldes en la CiPCR y el único molde disponible son las cadenas C y D originales del vector V.
Fig. 5. Esquema de los productos de la etapa (d). La digestión de los productos de la etapa (c) con una endonucleasa dependiente de metilación conduce a la destrucción de las cadenas C y D del vector V, pero no a la de las cadenas E y G, que tras la desnaturalización y posterior enfriamiento son capaces de hibridar dando lugar al vector V mostrado en el esquema de esta figura. Todas las regiones están identificadas y la única abertura de cada cadena se identifica con el símbolo de parada negativo.
Fig. 6. Esquema de las moléculas que se podrían generar a partir del segundo ciclo en la etapa (c). Cuando hibridan E y G, pueden iniciar la interacción de dos maneras, a través de los extremos 5' o a través de los extremos 3', representados en la figura 6A y en la figura 6B, respectivamente. En ambos casos, la segunda hibridación de los extremos lineales cohesivos complementarios llevaría a la formación del vector V mostrado en la figura 5. Esto también puede darse por hibridación simultánea de las dos secuencias. En el caso de la molécula hibridada inicialmente a través de los extremos 3', si no se produjese la hibridación de los extremos 5' antes de que la polimerasa empezase a elongar los extremos 3' de E y G, se podrían obtener también los amplicones
lineales mixtos A+V+B con extremos romos, que una vez introducidos en E. coli, serían degradados por ser ADN lineal.
Fig. 7. Esquema de los productos de una CiPCR de clonación mediante PCRinc y mutagénesis dirigida simultáneas. Por simplicidad se muestra una de las cadenas del vector bicatenario V obtenido y a la derecha se indican los pasos de PCR o CiPCR y su relación con la región que se amplifica en cada paso: la PCRc previa permite la amplificación del inserto "i" y la introducción de las secuencias M, M' y M" en los extremos de éste para las mutagénesis dirigidas (MD) con los oligonucleótidos F y R; la CiPCR incorpora el inserto y todas estas secuencias M, M' y M" al nuevo vector V simultáneamente a la amplificación de dicho vector desde el vector molde V.
Fig. 8. Productos obtenidos en la PCR, CiPCR y cultivos bacterianos en el proceso de clonación de SP1 por CiPCR mediante PCRinc Se muestran 3 geles de agarosa en los apartados A, B y C, en los que los carriles 1 , 5 y 7 corresponden al marcador de peso molecular de ADN de GeneCraft (1kb DNA Ladder), cuyas bandas y tamaños se muestran en detalle en el apartado D. La banda de 1 .000 pares de bases es la señalada con una flecha en cada uno de los carriles 1 , 5 y 7 del correspondiente gel de agarosa. A. Carril 2: Productos obtenidos en la PCRc para la amplificación de SP1 . Carril 3 Control negativo de la PCR de amplificación de SP1. B. Carril 4: Productos obtenidos en la CiPCR de SP1 después de tratamiento con Dpnl. Carril 6: Plásmido pcDNA3-SLC16A2- EGFP usado como vector V molde en la CiPCR. C. Carril 8: Plásmido pcDNA3- SP1 extraído y purificado de cultivos bacterianos de E. coli transformadas con los productos de la CiPCR de clonación de SP1 después del tratamiento con Dpnl. Fig. 9. Diseño de cebadores para CiPCR lineal. A. Para una PCRc y una PCRic. a. Oligonucleótidos de CiPCR para la amplificación del inserto por PCRd y posteriormente unirlo a un fragmento de ADN que equivale a un vector y que fue amplificado mediante una PCRic2 (se copian directamente las secuencias indicadas en el siguiente orden: F1 : 5'-TF (5'-3') + C¡F (5'-3') - 3'; y R1 : 5'-TR (5'- 3') + C¡R (5'-3') - 3'). b. Oligonucleótidos de amplificación del fragmento de ADN equivalente a un vector para su obtención mediante amplificación por PCRic2: F2: 5'- TRc -3'; y R2: 5'-TFc -3'. c. Moldes para la PCRd y la PCRic2 indicando las secuencias a tener en cuenta para el diseño de los cebadores (los cebadores van a hibridar con la hebra complementaria). B. Para dos PCRc. a. Oligonucleótidos
de CiPCR para la amplificación del inserto por PCRd y posteriormente unirlo a un fragmento de ADN que equivale a un vector y que fue amplificado mediante una PCRc2 (se copian directamente las secuencias indicadas en el siguiente orden: F1 : 5'-TF (3'-5') + CiF (5'-3') - 3'; y R1 : 5'-TR (3'-5') + CiR (5'-3') - 3'). b. Oligonucleótidos de amplificación del fragmento de ADN equivalente a un vector para su obtención mediante amplificación por PCRc2: F2: 5'- TF -3'; y R2: 5'-TR - 3'. c. Moldes para la PCRd y la PCRc2 indicando las secuencias a tener en cuenta para el diseño de los cebadores (los cebadores van a hibridar con la hebra complementaria).
Fig. 10. Etapas a seguir en la CiPCR lineal y mecanismo propuesto mediante una dOE-PCRnc. Etapa 1. A. PCRc de amplificación del inserto. B. PCRic de amplificación del fragmento de ADN bicatenario lineal con elementos de vector. Etapa 2. C. Mecanismo con las señales de iniciación y parada de la elongación por la polimerasa durante la dOE-PCRnc que lleva a un ADN bicatenario estabilizado en forma circular. Etapa 3. D. Etapa de transformación estándar de E. coli con los productos de la dOE-PCRnc, en las que la construcción génica es reparada por las ligasas intracelulares convirtiéndose en el vector clonado con el inserto deseado.
Fig.11. Clonación del exón 4 del gen SLC16A2 en pGEM-T Easy por CiPCR lineal. A. Gel de agarosa al 1 % mostrando los productos de las PCRd y PCRic2 de amplificación del exón 4 del gen SLC16A2 y del vector pGEM-T Easy: 1 izquierda-control negativo de PCRic2; 2-producto de la PCRic2; 3-marcadores de peso molecular de ADN 1 Kb (DNA Ladder 250-10.000 pb; GC-015-003, GeneCraft); 4-productos de la PCRd ; y 5-control negativo de PCRd . B. Purificación por gel de agarosa del amplicón del exón 4 del gen SLC16A2 correspondiente a la alícuota que se muestra en el pocilio 4 del gel A- derecha; marcador de peso molecular de ADN (DNA Marker 50-2.500 bp; 50631 , Lonza Biologics)- izquierda. C. Cuantificación de los dos eluidos del amplicón del exón 4 del gen SLC16A2 después de purificados-derecha; marcador de peso molecular de ADN (DNA Marker 50-2.500 bp; 50631 , Lonza Biologics)-izquierda. D. Gel mostrando los productos de la dOE-PCRnc del inserto del exón 4 del gen SLC16A2 y el vector pGEM-T Easy: productos de la dOE-PCRnc - izquierda; marcadores de peso molecular de ADN (1 Kb DNA Ladder 250-10.000 pb; GC- 015-003, GeneCraft) - derecha. E. Placa de LB-agar con ampicilina conteniendo
las colonias que crecieron de la transformación de los productos de la dOE- PCRnc mostrados en D. F. Presencia del inserto en 13 de 21 de las colonias testadas en E. G. Plásmido extraído de uno de los 13 clones positivos analizados en F. H e I. Electroferogramas obtenidos por secuenciación directamente del plásmido mostrado en G donde se muestran el comienzo y fin de la secuencia del inserto (Exón 4 gen SLC16A2, flechas correspondientes), y el comienzo y fin de las zonas flanqueantes del vector lineal pGEM-T Easy usado en la dOE-PCRnc (flechas correspondientes).
Fig. 12. Clonación del EGFP en pcDNA3(ACMV)-pSLC16A2-SLCf 6A2 por CiPCR lineal. A. Gel de agarosa al 1 % de los productos de la PCRd de amplificación del EGFP: productos de la PCRd de EGFP - izquierda; control negativo - centro; marcadores de peso molecular de ADN (DNA Markers 50-2.500 bp; 50631 , Lonza Biologics) - derecha. B. Gel de agarosa al 1 % de los productos de la PCRic2 de amplificación del vector pcDNA3(ACMV)-pSLC16A2-SLC'/6/A2: marcadores de peso molecular de ADN (DNA Markers 1 -10 Kb; 50471 , Lonza Biologics) - izquierda; productos de la PCRic2 - centro; control negativo - derecha. C. Gel mostrando los productos de la dOE-PCRnc entre EGFP y el vector pcDNA3(ACMV)-pSLC16A2-SLC16A2: marcadores de peso molecular de ADN (1 Kb DNA Ladder 250-10.000 pb; GC-015-003, GeneCraft) - izquierda; productos de la dOE-PCRnc - derecha. D. Placa de LB-agar con ampicilina conteniendo las colonias que crecieron de la transformación de E. coli con los productos de la dOE-PCRnc mostrados en C. E. Presencia del inserto en 1 de 10 de las colonias testadas en D. F. Plásmido extraído del clon positivo de E.
EJEMPLOS
A continuación se ilustrará la invención mediante unos ensayos realizados por los inventores, que ponen de manifiesto la especificidad y efectividad de los métodos CiPCR de clonación dirigida o de clonación y mutagénesis dirigidas. EJEMPLO 1 : Clonación de EGFP e inserción simultánea del codón de parada en el vector pcDNA3-SLC16A2 mediante CiPCR circular de inserción.
Se marcó el MCT8 (transportador 8 de monocarboxilatos) con la proteína verde fluorescente modificada, mediante clonación de su gen en el vector de expresión en eucariotas pcDNA3 (Invitrogen) conteniendo la secuencia del gen SLC16A2 (pcDNA3-SLC16A2) mediante CiPCR de inserción usando como molde el plásmido pcDNA3-SLC16A2.
PCR de amplificación de EGFP e inserción simultánea del codón de parada "taa".
La región codificadora de EGFP se amplificó usando como molde el vector plasmídico comercial plRES2-EGFP (Clontech) mediante PCRc. Ésta se realizó en un volumen de 50 μΙ mezclando 16 μΙ de buffer 5x (Takara), 0,2 mM de dNTPs, 0,2 μΜ del oligonucleótido (F) 5'-ccaaccctgaggaaccaatc-acaaccafggfgagcaa-3' (SEQ ID NO: 1 ), 0,2 μΜ del R 5'-caatggcaagaaaggca-tta-cíígíacagcícgíccaígc-3' (SEQ ID NO: 2), en los que las secuencias resaltadas en cursiva fueron las secuencias C¡ a hibridar con el inserto, y el triplete tta subrayado fue la secuencia M para la introducción del codón de parada para marcar la finalización de EGFP (la secuencias resaltadas en negrita corresponden a las regiones T de hibridación con el vector en la CiPCR posterior), 100 ng de plRES2-EGFP y 0,5 U de polimerasa Takara (PrimeSTAR™HS DNA Polymerase). El programa de amplificación llevado a cabo en un termociclador PTC-200 (MJ Research) fue 1 ciclo a 98° C durante 40 segundos, 35 ciclos compuestos por las tres etapas: 98°C durante 10 segundos, 62°C durante 40 segundos, y 72°C durante 2 minutos, y finalmente 1 ciclo a 72 °C durante 10 minutos. Los productos se purificaron usando el High Puré PCR Product Purification kit (Roche) y a continuación se precipitaron con acetato sódico/etanol y se disolvieron en 10 μΙ de agua bidestilada estéril para obtener el amplicón de 766 pares de bases conteniendo EGFP.
Esta reacción se llevó a cabo en un volumen final de 25 μΙ mezclando 4 μΙ de tampón 5x (Takara), 0,2 mM dNTPs, 200 ng de pcDNA3-SLC16A2, 500 ng del amplicón de 766 pares de bases, 0,5 U de polimerasa Takara (PrimeSTAR™HS DNA Polymerase), y agua bidestilada estéril. La amplificación se llevó a cabo en un termociclador PTC-200 con el siguiente programa: 1 ciclo a 95° C durante 5 minutos, 7 ciclos compuestos empezando a 95°C durante 1 minuto, a 59°C durante 3 minutos, a 72°C durante 8 minutos, a 98°C durante 30 segundos, a 59°C durante 2 minutos, a 72°C durante 8 minutos, seguido de 12 ciclos compuestos a 98°C durante 20 segundos, a 85°C durante 1 minuto, y 72°C durante 8 minutos y 1 ciclo final a 72 °C durante 15 minutos. La mezcla se trató con 4 U de Dpnl (Fermentas) a 37° C durante 6 horas en un volumen total de 26 μΙ. Después de la inactivación del enzima a 65°C durante 15 minutos, 5 μΙ de los
productos se utilizaron para transformar 50 μΙ de células E. coli TG1 . Se sembraron e incubaron en placas de LB-agar con 100 μ9/ιτιΙ de ampicilina, las colonias se analizaron para corroborar la presencia del un amplicón de 795 bp con los oligonucleótidos directo 5'-ctgccgggctcccccaaccctgaggaac-3' (SEQ ID NO: 3) y reverso 5'-ggccctctagagcacacaatggcaag-3' (SEQ ID NO: 4) (los clones negativos amplifican un fragmento de 69 pares de bases). Se extrajo el plásmido de una minipreparación de uno de los clones positivos y se purificó con el GeneElute Plasmid Miniprep kit (Sigma). La secuencia se verificó mediante secuenciación usando el Dye Terminator v3.1 Cycle Sequencing Kit y análisis con un ABI 3730x1 apparatus (Applied Biosystems). Se calculó la eficiencia de la clonación teniendo en cuenta el número de colonias obtenidas y la cantidad de plásmido usado como molde en la CiPCR, siendo dicha eficiencia de 2x104 colonias^g de plásmido.
La secuencia del plásmido usado como molde pcDNA3-SLC16A2 es SEQ ID NO: 5. En SEQ ID NO: 5, las zonas entre los nucleótidos 2.564 y 2.583 y entre los nucleótidos 2.587 y 2.603, son las correspondientes secuencias de hibridación con el amplicón de EGFP.
La secuencia del plásmido obtenido pcDNA3-SLC16A2-EGFP es SEQ ID NO: 6. EJEMPLO 2: Clonación de PCBP1 y adición simultánea de la secuencia Kozak y del codón de iniciación en una variante bioequivalente del vector pcDNA3, mediante CiPCR circular de sustitución.
Se clonó el gen PCBP1 en el vector de expresión pcDNA3 (Invitrogen) mediante CiPCR, usando como molde la variante bioequivalente pcDNA3- SLC16A2-EGFP.
PCR de amplificación de PCBP1
PCBP1 se amplificó empleando como molde un plásmido-PCBP1 del que solamente se conocía la secuencia del inserto y la de las regiones flanqueantes. Estaba fusionado a etiquetas en el extremo N-terminal, por lo que hubo que incluir en el oligonucleótido directo F una inserción M conteniendo la secuencia Kozak y el codón de iniciación. Los oligonucleótidos F 5 -cactatagggagacccaagct-cqcc- a\.Q-qatqccqqtqtqactq-3 ' (SEQ ID NO: 7) y R 5'- agctcctcgcccttgctcaccat- ctagctgcaccccatg-3' (SEQ ID NO: 8) dan lugar a un amplicón de 1 .122 pares de bases. La secuencia en negrita corresponde a la zona T de hibridación con el pcDNA3 en la CiPCR, la subrayada corresponde a la secuencia M en donde se
introdujo la secuencia Kozak de PCBP1 y el ATG de iniciación, y la resaltada en cursiva corresponde a la secuencia de hibridación C¡ con la secuencia del gen PCBP1 para su amplificación. Ésta se realizó en un volumen final de 50 μΙ que contenía 10 μΙ de tampón PrimeSTAR 5X, dNTPs 0,2 mM, 0,2 μΜ de cada uno de los cebadores, 50 ng de plásmido-PCBP1 , 1 ,25 U de PrimeSTAR HS DNA polimerasa (Takara) y agua bidestilada estéril. El programa de amplificación utilizado incluyó 1 ciclo a 94 °C durante 30 segundos; 40 ciclos compuestos empezando a 98 °C durante 10 segundos, a 60 °C durante 30 segundos, y a 72 °C durante 75 segundos, y 1 ciclo final a 72 °C durante 10 minutos. Los productos de PCR se analizaron en geles de agarosa al 1 % en tampón TAE conteniendo bromuro de etidio y se visualizaron con luz UV comparándolos con el marcador de peso molecular 1 Kb Ladder de Genecraft. Tras el corte de la banda correspondiente con una hoja de bisturí, los productos contenidos en ella se purificaron siguiendo el protocolo del kit de purificación de productos de PCR (Roche), se eluyeron en agua bidestilada estéril y se almacenaron a -20 °C hasta su utilización.
CiPCR de PCBP1 en pcDNA3 mediante PCRin
La CiPCR se realizó en un volumen final de 25 μΙ que contenía 5 μΙ de tampón PrimeSTAR 5X, dNTPs 0,2 mM, 250 ng del amplicón con la secuencia de PCBP1 , de 1 .122 pares de bases, 100 ng de plásmido pcDNA3-MCT8-EGFP y 1 ,25 U de PrimeSTAR HS DNA polimerasa (Takara).
La secuencia del plásmido usado como molde pcDNA3-SLC16A2-EGFP para clonar el gen PCBP1 es SEQ ID NO: 6. En SEQ ID NO: 6, las regiones entre los nucleótidos 873 y 893 y entre los nucleótidos 2.584 y 2.606 son las zonas del vector con las que va a hibridar el inserto para la CiPCR de PCBP1 . Los nucleótidos entre las posiciones 890 y 2.583 corresponden a la secuencia del gen SLC16A2, que se va a sustituir por el gen PCBP1 . Los nucleótidos entre las posiciones 2.607 y 3.300 corresponden a la zona codificadora de EGFP.
El programa de amplificación en el termociclador PTC200 (MJ Research) consistió en 1 ciclo a 95 °C durante 5 minutos, 5 ciclos compuestos empezando a 95 °C durante 1 minuto, a 72 °C durante 30 segundos, a 56 °C durante 30 segundos, y a 72 °C durante 8,5 minutos, seguido de 1 ciclo a 98 °C durante 30 segundos, a 72 °C durante 20 segundos, a 56 °C durante 20 segundos y a 72 °C durante 8,5 minutos, a continuación 10 ciclos compuestos empezando a 98 °C
durante 20 segundos, a 81 °C durante 15 segundos, y a 72 °C durante 8,5 minutos; y un ciclo final a 72 °C durante 15 minutos. Tras tratamiento con Dpnl durante 6 horas a 37 °C, los productos se precipitaron con acetato sódico / etanol y se transformaron células E. coli TG1 . Siguiendo el protocolo habitual se obtuvo el plásmido pcDNA3-PCBP1 , con una eficiencia de 180 colonias^g de plásmido, calculada a partir de la cantidad del plásmido usado como molde.
La secuencia del plásmido pcDNA3-PCBP1 es SEQ ID NO: 9. En SEQ ID NO: 9, las regiones entre los nucleótidos 873 y 893 y entre los nucleótidos 1.969 y 1 .991 son las secuencias donde hibridaron las secuencias Te del inserto. Las regiones entre los nucleótidos 901 y 916 y entre los nucleótidos 1 .953 y 1 .968 son las secuencias C¡ de hibridación de los cebadores con el molde (plásmido- PCBP1 ) para obtener el amplicón a insertar. La región entre los nucleótidos 894 y 900 fue introducida en el cebador para aportar la secuencia Kozak original de PCBP1 y el ATG o codón de iniciación y corresponde a una secuencia de la región M del oligonucleótido F. El codón TAG entre los nucleótidos 1966 y 1968, en la zona del cebador inverso, es el codón de parada que se introdujo para evitar la expresión de PCBP1 (cuya secuencia codificadora se encuentra entre los nucleótidos 898 y 1 .965) fusionado con EGFP (cuya secuencia codificadora se encuentra entre los nucleótidos 1 .992 y 2.685).
EJEMPLO 3: Clonación de SP1 en una variante bioequivalente del vector pcDNA3, mediante CiPCR circular de sustitución.
La figura 8 ilustra este ejemplo.
Se clonó el gen SP1 en el vector de expresión pcDNA3 (Invitrogen Cat. V790-20) mediante CiPCR, usando como molde la variante bioequivalente pcDNA3-SLC16A2-EGFP
PCR de amplificación de SP1
La región codificadora de SP1 comprende 2.358 pares de bases (incluyendo el codón de iniciación ATG y el de parada TGA). El fragmento se amplificó de un ADNc obtenido por retrotranscripción con la retrotranscriptasa M- MLV (Invitrogen) a partir de ARNm de linfocitos de sangre extraído mediante Trizol (Invitrogen) con los cebadores F 5'- cactatagggagacccaagc- ccaccatgagcgaccaagatcactccat-3' (SEQ ID NO: 10), y R 5'- agctcctcgcccttgctcaccat-fcagaagccaffgccacf-3' (SEQ ID NO: 1 1 ) donde la secuencia en cursiva híbrido con el cDNA de SP1 , según la secuencia del
tránscrito SP1 -201 ENST00000327443 de la base de datos Ensembl. Los nucleótidos resaltados en negrita fueron las secuencias T añadidas a los oligonucleótidos cebadores para su posterior clonación en pcDNA3. La PCR se realizó en un volumen total de 50 μΙ que contenía 10 μΙ de tampón PrimeSTAR 5X, dNTPs 0,2 mM, 0,2 μΜ de cada cebador, 1 μΙ de disolución conteniendo el ADNc equivalente a la retrotranscripcion de 50 ng del ARNm de los linfocitos, y 1 ,25 U de PrimeSTAR HS DNA polimerasa (Takara), en el termociclador PTC-200 se amplificó el fragmento usando el programa siguiente: 1 ciclo a 94°C durante 30 segundos; 40 ciclos compuestos empezando a 98°C durante 10 segundos, a 59°C durante 30 segundos, y a 72°C durante 2,5 minutos, y 1 ciclo final de extensión a 72°C durante 10 minutos, obteniéndose un amplicón de 2.406 pares de bases. En todas las reacciones se usó como diluyente agua bidestilada estéril. Los productos de PCR se sometieron a electroforesis en geles de agarosa del 1 %, se tiñeron con bromuro de etidio (0,5 μΙ/ml en TAE) y se visualizaron con luz UV. Como marcador de peso molecular se utilizó Genecraft 1 Kb. Los productos de la banda de peso molecular esperado se cortaron con una hoja de bisturí y se purificaron siguiendo el protocolo del kit de purificación de productos de PCR desde geles de agarosa de Roche.
Clonación del amplicón de 2.406 pares de bases conteniendo SP1 en pCRIl TOPO (Invitroqen)
Los productos se eluyeron en agua bidestilada estéril y tras adenilación se clonaron en el vector pCRIl TOPO (Invitrogen) siguiendo las instrucciones del proveedor.
Amplificación de SP1 usando el pCRIl TOPO-SP1 como molde
La región codificadora de SP1 de 2.358 pares de bases se amplificó del plásmido pcRIl TOPO-SP1 con los mismos oligonucleótidos F (SEQ ID NO: 10) y R (SEQ ID NO: 1 1 ) con los que se clonó. Una mezcla de reacción de 50 μΙ, conteniendo 10 μΙ de tampón PrimeSTAR 5X, 0,2 mM de dNTPs, 0,2 μΜ de cada oligonucleótido, 50 ng de pcR II TOPO-SP1 , 1 U de polimerasa PrimeSTAR HS DNA (Takara) y agua bidestilada estéril, se cargó en el termociclador (PTC-200 MJ Research) con el siguiente programa: 1 ciclo a 94 °C durante 30 segundos; 40 ciclos compuestos, empezando a 98°C durante 10 segundos, a 59 °C durante 30 segundos, y a 72°C durante 2,5 minutos, y 1 ciclo a 72 °C durante 10 minutos. Los productos se analizaron en un gel de agarosa al 1 %, y se purificaron del gel
usando el High Puré PCR Product Purification kit (Roche), a continuación se precipitaron en acetato sódico/etanol y se disolvieron en 10 μΙ de agua bidestilada estéril.
CiPCR de SP1 en pcDNA3 mediante PCR
La CiPCR se realizó en un volumen final de 25 μΙ que contenía 5 μΙ de tampón PrimeSTAR 5X, dNTPs 0,3 μΜ de cada uno, 250 ng del amplicón de SP1 , 100 ng de plásmido pcDNA3-SLC16A2-EGFP y 1 ,25 U de PrimeSTAR HS DNA polimerasa (Takara N° Cat. R010Q), en el termociclador PTC-200 con el siguiente programa de amplificación: 1 ciclo a 95°C durante 5 minutos, 5 ciclos compuestos empezando a 95°C durante 1 minuto, a 71 °C durante 30 segundos, a 60°C durante 30 segundos, a 56°C durante 30 segundos, y a 72°C durante 8,5 minutos, un nuevo ciclo compuesto a 98°C durante 30 segundos, a 71 °C durante 20 segundos, a 60°C durante 20 segundos, a 56°C durante 20 segundos y a 72°C durante 8,5 minutos, seguido por 10 ciclos compuestos, a 98°C durante 20 segundos, a 78°C durante 30 segundos, y a 72°C durante 8,5 minutos; y 1 ciclo final a 72°C durante 15 minutos.
Los productos de la CiPCR se trataron con Dpnl durante 6 horas a 37°C, se precipitaron y se transformaron en E. coli TG-1. Tras crecimiento de colonias y análisis se obtuvo el plásmido pcDNA3-SP1 esperado, con una eficiencia de 40 colonias^g plásmido, calculado a partir de la cantidad de plásmido usado como molde en la CiPCR.
La secuencia del plásmido pcDNA3-SP1 es SEQ ID NO: 12.
EJEMPLO 4: Clonación del Exón 4 del gen SLC16A2 en un fragmento de ADNbc conteniendo el origen de replicacion f1 (del fago 1) y el gen de resistencia a ampicilina por CiPCR lineal.
PCRd : El exón 4 del gen SLC16A2 se amplificó de ADN procedente de linfocitos de sangre humana, con los oligonucleótidos cebadores de CiPCR F1 : 5'- taatacgactcactataggg-cfcagaagfccagaafccag-3' (SEQ ID NO: 13) y R1 : 5'- gctatttaggtgacactatag-agaafffgaffgacfffccc-3' (SEQ ID NO: 14) que dan lugar a un amplicón de 500 pares de bases (pb) (Figura 11 geles A, C y B). La secuencia resaltada en cursiva corresponde a la zona de hibridación con el exón 4 del gen SLC16A2 para su amplificación y la resaltada en negrita corresponde a la zona de hibridación con el ADNbc al que se va a unir, que contiene los elementos del vector. La PCRd , de amplificación del inserto, se realizó en un volumen final de
50 μΙ que contenía 10 μΙ de tampón PrimeSTAR 5X, 0,2 mM de cada dNTP de la mezcla de dNTPs, 0,2 μΜ de cada uno de los cebadores, 50 ng de ADN, 1 ,25 U de la polimerasa PrimeSTAR HS (R010A, Takara) y agua grado biología molecular. El programa de amplificación en el termociclador PTC-200 Peltier Thermal Cycler (MJ Research) consistió en 1 ciclo simple a 98 °C durante 40 s; 40 ciclos multietapa a 94 °C durante 10 s, a 57 °C durante 30 s, y a 72 °C durante 45 s; y 1 ciclo simple a 72 °C durante 10 min. Los productos de la PCRc se analizaron en geles de agarosa al 1 % en tampón TAE conteniendo bromuro de etidio (0,5 g/ml), se visualizaron con luz UV comparándolos con el marcador de peso molecular de ADN (1 Kb Ladder 250-10.000 pb; GC-015-003, Genecraft) (Figura 11 gel A (pocilio 4)). El fragmento se purificó de un gel de agarosa (Figura 1 1 gel B) usando el kit de purificación de productos de PCR (High Puré PCR Product Purification kit; 11732676001 , Roche), su tamaño se identificó con la ayuda del marcador de peso molecular de ADN (50-2.500 bp; 50631 , Lonza Biologics), y los productos puros se cuantificaron en un gel de agarosa (Figura 11 , gel C) y se almacenaron a -20 °C hasta su utilización.
SEQ ID NO: 15 es la secuencia del fragmento de ADN bicatenario de 500 pb obtenido en la PCRd (la región del exón 4 del gen SLC16A2 corresponde a los nucleótidos desde la posición 216 hasta la posición 359 de SEQ ID NO: 15). Las secuencias de las posiciones 21 a 40 y 460 a 479 de SEQ ID NO: 15 corresponden a la parte Ci/Cic de los cebadores de CiPCR que hibridó con el ADN molde para amplificar el inserto en la PCRd . Las secuencias de los extremos (de las posiciones 1 a 20 y 480 a 500 de SEQ ID NO: 15) corresponden a la parte T/Tc de los cebadores de CiPCR que va a hibridar con el fragmento lineal del vector pGEM-T Easy donde se va a clonar el inserto.
La PCRic2 de amplificación del vector se realizó con los oligonucleótidos F2: 5'- ctatagtgtcacctaaatagc-3'(SEQ ID NO: 16) y R2: 5'-ccctatagtgagtcgtatta-3, ' (SEQ ID NO: 17) en un volumen final de 50 μΙ que contenía 10 μΙ de tampón PrimeSTAR 5X, 0.2 mM de cada dNTP de la mezcla de dNTPs, 0,2 μΜ de cada uno de los cebadores, 50 ng del plásmido pGEM-T Easy (Promega, www.promega.com), 1 ,25 U de la polimerasa PrimeSTAR HS (R010A, Takara) y agua grado biología molecular. El programa de amplificación en el termociclador PTC-200 Peltier Thermal Cycler (MJ Research) consistió en 1 ciclo simple a 98 °C durante 40 s.; 40 ciclos multietapa a 94 °C durante 10 s, a 57 °C durante 30 s, y a
72 °C durante 3 min; y 1 ciclo simple a 72 °C durante 15 min. Los productos de la PCRic, que dan lugar a un amplicón de 2.878 pb, se analizaron en geles de agarosa al 1 % en tampón TAE conteniendo bromuro de etidio (0,5 g/ml), se visualizaron con luz UV comparándolos con el marcador de peso molecular de ADN (1 Kb DNA Ladder 250-10.000 pb; GC-015-003, Genecraft) (Figura 1 1 , gel A - pocilio 2). Tras tratamiento con 2 unidades de Dpnl durante 6 h a 37 °C, los productos se almacenaron a -20 °C hasta su utilización.
se llevó a cabo en un volumen final de 25 μΙ que contenía 5 μΙ de tampón PrimeSTAR 5X, 0,2 mM de cada dNTP de la mezcla de dNTPs, 250 ng del amplicón de 500 pb puro, 250 ng del amplicón del vector pGEM-T Easy de 2.878 pb sin purificar, y 1 ,25 U de la polimerasa de ADN (PrimeSTAR HS DNA Polymerase; R010A, Takara). El programa de amplificación en el termociclador PTC-200 consistió en 1 ciclo inicial a 98 °C durante 40 s; seguido de 24 ciclos multietapa de tres etapas, a 94 °C durante 10 s, a 57 °C durante 30 s. y a 72 °C durante 3 min; y por último, 1 ciclo final de elongación a 72 °C durante 15 min. Tras su análisis (Figura 1 1 D), se precipitaron los productos con acetato sódico / etanol, se resuspendieron en 5 μΙ de agua grado biología molecular y se usaron para transformar por choque térmico las células E. coli TG- 1 químicamente competentes suspendidas en 45 μΙ del tampón correspondiente. Tras sembrado en placas de LB-agar ampicilina (100 μg ml) e incubación a 37 °C durante aproximadamente 24 h. (Figura 1 1 , placa E), se procedió al análisis y selección de clones positivos por PCR convencional (Figura 1 1 , gel F). A continuación dos de los clones positivos se crecieron en 5 mi de medio líquido LB con ampicilina (100 μg ml) a 37 °C y 200 r.p.m. durante 16 h. y seguidamente se extrajeron sendos plásmidos usando un kit de purificación de plásmidos (GenElute™ Plasmid Miniprep Kit; PLN 350, Sigma-Aldrich) uno de los cuales se muestra en el gel G de la Figura 1 1 . Se comprobó la presencia del inserto en los dos plásmidos por PCR y uno de ellos se secuenció para corroborar que el sitio de inserción y la secuencia del exón 4 y zonas flanqueantes eran correctas. Eficiencia: 1 ,5 x 103 colonias/μΙ.
La secuencia: pGEM-T Easy-Exón4-SLCÍ6/A2 es SEQ ID NO: 18.
EJEMPLO 5: Clonación de EGFP en pcDNA3(ACMV)-pSLC16A2 -SLC16A2 e introducción de dos inserciones, una inserción de 6 nucleótidos y otra de la secuencia TA del codón de parada, simultáneas por CiPCR lineal.
PCRcl : EGFP se amplificó del plásmido plRES-2-EGFP con los oligonucleótidos cebadores de CiPCR y mutagénesis F1 : 5 -ccaaccctqaqqaaccaatc-acaacc- atggtgagcaa-3' (SEQ ID NO: 19) y R1 : 5'- caatggcaagaaaggcat-ta- cttgtacagctcgtccatgc-3' (SEQ ID NO: 20) que dan lugar a un amplicón de 763 pb (Figura 12, gel A y secuencia SEQ ID NO: 21 ). Las secuencias resaltadas en cursiva corresponden a las zonas de hibridación con EGFP para su amplificación, las resaltadas en negrita corresponden a las zonas de hibridación con el vector pcDNA3(ACMV)-pSLC16A2-SLC-/ 6A2 para realizar la dOE-PCRnc, y las subrayadas corresponden a un espaciador de dos aminoácidos que quisimos introducir entre MCT8 (codificado por SLC16A2) y EGFP y a parte del codón de parada. La PCRd (Figura 12, gel A) de amplificación del inserto se realizó en un volumen final de 50 μΙ que contenía 10 μΙ de tampón PrimeSTAR 5X, 0,2 mM de cada dNTP de la mezcla de dNTPs, 0,2 μΜ de cada uno de los cebadores, 50 ng del plásmido plRES-2-EGFP, 1 ,25 U de polimerasa (PrimeSTAR HS DNA Polymerase; R010A, Takara) y agua grado biología molecular. El programa de amplificación en el termociclador PTC-200 Peltier Thermal Cycler (MJ Research) consistió en 1 ciclo simple a 98 °C durante 40 s; 40 ciclos multietapa a 94 °C durante 10 s, a 62 °C durante 30 s, y a 72 °C durante 1 min; y 1 ciclo simple a 72 °C durante 10 min. Los productos de la PCRd se analizaron en geles de agarosa al 1 % en tampón TAE conteniendo bromuro de etidio (0,5 g/ml), se visualizaron con luz UV comparándolos con el marcador de peso molecular de ADN (50-2.500 bp; 50631 , Lonza Biologics) (Figura 12, gel A), y se almacenaron a -20 °C hasta su utilización.
La SEQ ID NO: 21 es el amplicón de 763 pb conteniendo la región codificadora de EGFP. Las secuencias de las posiciones 27 a 37 y 724 a 746 de SEQ ID NO: 21 corresponden a la parte Ci de los cebadores de CiPCR que híbrido con el ADN molde en la PCRd . Las secuencias de los extremos (posiciones 1 a 20 y 747 a 763 de SEQ ID NO: 21 ) corresponden a la parte T de los cebadores de CiPCR que va a hibridar con el vector pcDNA3(ACMV)-pSLC16A2-SLC'/6/A2 donde se va a clonar el inserto, y la secuencia desde la posición 21 a la 26 de SEQ ID NO: 21 corresponde a la inserción simultánea de una secuencia espaciadora entre EGFP y SLC16A2.
PCRic2: La amplificación del vector se realizó con los oligonucleótidos F2: 5'- atgcctttcttgccattgtgtgc-3' (SEQ ID NO: 22) y R2: 5'-gattggttcctcagggttgg-3' (SEQ
ID NO: 23), que dan lugar a un amplicón de 8.309 pb, en un volumen final de 50 μΙ que contenía 10 μΙ de tampón PrimeSTAR 5X, 0,2 mM de cada dNTP de la mezcla de dNTPs, 0,2 μΜ de cada uno de los cebadores, 50 ng del pcDNA3(ACMV)-pSLC16A2-SLCí6/A2, 1 ,25 U de polimerasa (PrimeSTAR HS DNA Polymerase; R010A, Takara) y agua grado biología molecular. El programa de amplificación en el termociclador PTC-200 Peltier Thermal Cycler (MJ Research) consistió en 1 ciclo simple a 98 °C durante 40 s; 40 ciclos multietapa a 94 °C durante 10 s, a 63 °C durante 30 s, y a 72 °C durante 8 min; y 1 ciclo simple a 72 °C durante 15 min Los productos de la PCRic2 se analizaron en geles de agarosa al 1 % en tampón TAE conteniendo bromuro de etidio (0,5 g/ml), se visualizaron con luz UV comparándolos con el marcador de peso molecular de ADN (DNA Markers 1 -10 Kb; 50.471 , Lonza Biologics) (Figura 12 gel B). Tras tratamiento con 2 unidades de Dpnl durante 6 h. a 37 °C, los productos se almacenaron a -20 °C hasta su utilización.
La CiPCR mediante dOE-PCRnc se llevó a cabo en un volumen final de 25 μΙ que contenía 5 μΙ de tampón PrimeSTAR 5X, 0,2 mM de cada dNTP de la mezcla de dNTPs, 250 ng del amplicón de 763 pb sin purificar, 250 ng del amplicón de 8.309 pb del vector pcDNA3(ACMV)-pSLC16A2-SLC'/6/A2 sin purificar, y 1 ,25 U de la polimerasa (PrimeSTAR HS DNA Polymerase; R010A, Takara). El programa de amplificación en el termociclador PTC-200 consistió en 1 ciclo inicial a 98 °C durante 40 s; seguido de 24 ciclos multietapa de tres etapas, a 94 °C durante 10 s, a 63 °C durante 30 s y a 72 °C durante 8 min; y por último, 1 ciclo final de elongación a 72 °C durante 15 min. Tras análisis de la reacción (Figura 12, gel C), se procedió a la precipitación de los productos con acetato sódico / etanol, a continuación se resuspendieron en 5 μΙ de agua grado biología molecular con los que se transformaron por choque térmico las células E. coli TG-1 químicamente competentes suspendidas en 45 μΙ del tampón correspondiente. Tras sembrado en placas de LB-agar ampicilina (100 μg ml) e incubación a 37 °C durante aproximadamente 24 h (Figura 12, placa D), se procedió al análisis y selección de clones positivos por PCR (Figura 12 gel E). A continuación el clon positivo se creció en 5 mi de medio líquido LB con ampicilina (100 μg ml) a 37 °C y 200 r.p.m. durante 16 h y seguidamente se extrajo el plásmido usando un kit de purificación de plásmidos (GenElute™ Plasmid Miniprep Kit; PLN 350, Sigma-Aldrich) y se
comprobó de nuevo la presencia del inserto en el plásmido puro por PCR. Eficiencia: 100 colonias/μΙ.
La secuencia de pcDNA3-ACMV+Pr1743SLC16A2-SLC16A2-EGFP es SEQ ID NO: 24.
Claims
REIVINDICACIONES
Un método de clonación dirigida o de clonación y mutagénesis dirigidas caracterizado porque comprende una primera etapa (a):
a. diseñar una pareja de oligonucleótidos F (directo) y R (reverso) donde:
i. las secuencias de los extremos 3' (C¡) hibridan total o parcialmente con la secuencia a clonar o a clonar y mutar, ii. las secuencias de los extremos 5' (T) hibridan total o parcialmente con las secuencias de un vector V que flanquean el lugar donde se va a insertar el ADN a clonar o a clonar y mutar, y
iii. el vector V es un vector bicatenario preferentemente circular, o preferentemente lineal, que comprende al menos un origen de replicación y preferentemente al menos un gen de selección.
El método según la reivindicación 1 caracterizado porque los oligonucleótidos F y/o R comprenden una mutación M de tipo inserción entre la secuencia C¡ y la secuencia T, donde M comprende al menos un nucleótido y no híbrida con la secuencia a clonar o a clonar y mutar, ni con el vector V.
El método según cualquiera de las reivindicaciones 1 o 2, caracterizado porque los oligonucleótidos F y/o R comprenden al menos una mutación M' en C¡, donde la mutación puede ser una inserción, una sustitución o una deleción y no híbrida con la secuencia a clonar o a clonar y mutar, ni con el vector V.
El método según cualquiera de las reivindicaciones 1 a 3, caracterizado porque los oligonucleótidos F y/o R comprenden al menos una mutación M" en T, donde la mutación puede ser una inserción, una sustitución o una deleción y no híbrida con la secuencia a clonar o a clonar y mutar, ni con el vector V.
El método según cualquiera de las reivindicaciones 1 a 4, caracterizado porque después de la etapa (a) se lleva a cabo la siguiente etapa (b):
b. Amplificar mediante PCR la secuencia a clonar o a clonar y mutar empleando los oligonucleótidos F y R diseñados en la etapa (a).
6. El método según la reivindicación 5, caracterizado porque en la PCR se emplea una ADN polimerasa con actividad 3'-5' exonucleasa.
7. El método según la reivindicación 6, caracterizado porque después de la etapa (b) se lleva a cabo la siguiente etapa (c):
c. Clonar la secuencia amplificada en la etapa (b) en el vector V mediante una PCR inversa de clonación (CiPCR).
8. El método según la reivindicación 7, caracterizado porque después de la etapa (c) se lleva a cabo la siguiente etapa (d):
d. Digerir el producto de la etapa (c) con una ADN endonucleasa dependiente de metilación.
9. El método según la reivindicación 8, caracterizado porque la ADN endonucleasa dependiente de metilación es Dpnl.
10. El método según la reivindicación 9, caracterizado porque después de la etapa (d) se lleva a cabo la siguiente etapa (e):
e. Introducir los productos de la etapa (d) en una célula.
1 1 . El método según la reivindicación 10, caracterizado porque la célula es una célula procariota.
12. El método según la reivindicación 1 1 , caracterizado porque la célula procariota es Escherichia coli.
13. El método según cualquiera de las reivindicaciones 10 a 12, caracterizado porque después de la etapa (e) se lleva a cabo la siguiente etapa (f):
f. cultivar la célula de la etapa (e).
14. El método según la reivindicación 13, caracterizado porque después de la etapa (f) se lleva a cabo la siguiente etapa (g):
g. extraer el vector V del cultivo de la etapa (f).
15. El método según la reivindicación 14, caracterizado porque después de la etapa (g) se lleva a cabo la siguiente etapa (h):
h. comprobar la clonación o la clonación y mutación en el vector V extraído en la etapa (g).
16. Un kit que comprende dos oligonucleótidos cebadores de reamplificación del producto obtenido de la etapa (b) según el método descrito en la
reivindicación 6, uno directo y otro reverso, cuyas secuencias hibridan con la secuencia del vector V.
17. El kit según la reivindicación 16 que además comprende un vector V.
18. cualquiera de las reivindicaciones 16 o 17, El kit según cualquiera de las reivindicaciones 16 o 17, que además comprende una ADN polimerasa.
19. El kit según la reivindicación 18, donde la ADN polimerasa tiene actividad 3'-5' exonucleasa.
20. El kit según cualquiera de las reivindicaciones 16 a 19, que además comprende la ADN endonucleasa Dpnl.
21 . El kit según cualquiera de las reivindicaciones 16 a 20, que además comprende células apropiadas para la introducción de un vector.
22. Uso del kit según cualquiera de las reivindicaciones 16 a 21 para la clonación dirigida o para la clonación y mutagénesis dirigidas.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ESP201130222 | 2011-02-21 | ||
ES201130222A ES2387167B2 (es) | 2011-02-21 | 2011-02-21 | Nuevo método de clonación y mutagénesis in vitro mediante pcr inversa de clonación. |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012113954A1 true WO2012113954A1 (es) | 2012-08-30 |
Family
ID=46720133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2012/070096 WO2012113954A1 (es) | 2011-02-21 | 2012-02-21 | Nuevo método de clonación y mutagénesis in vitro mediante pcr inversa de clonación |
Country Status (2)
Country | Link |
---|---|
ES (1) | ES2387167B2 (es) |
WO (1) | WO2012113954A1 (es) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5514568A (en) * | 1991-04-26 | 1996-05-07 | Eli Lilly And Company | Enzymatic inverse polymerase chain reaction |
US20040248131A1 (en) * | 2001-10-02 | 2004-12-09 | Thomas Rudel | Methods for dna mutagenesis and dna cloning |
-
2011
- 2011-02-21 ES ES201130222A patent/ES2387167B2/es active Active
-
2012
- 2012-02-21 WO PCT/ES2012/070096 patent/WO2012113954A1/es active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5514568A (en) * | 1991-04-26 | 1996-05-07 | Eli Lilly And Company | Enzymatic inverse polymerase chain reaction |
US20040248131A1 (en) * | 2001-10-02 | 2004-12-09 | Thomas Rudel | Methods for dna mutagenesis and dna cloning |
Non-Patent Citations (1)
Title |
---|
HEGDE K.V. ET AL.: "Site-directed in vitro mutagenesis: An improved protocol.", CURRENT SCIENCE., vol. 85, no. 11, 10 December 2003 (2003-12-10), pages 1523 - 1525 * |
Also Published As
Publication number | Publication date |
---|---|
ES2387167A1 (es) | 2012-09-17 |
ES2387167B2 (es) | 2013-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2749629T3 (es) | Producción de ADN lineal cerrado | |
US11555187B2 (en) | RNA-directed DNA cleavage by the Cas9-crRNA complex | |
ES2256118T3 (es) | Amplificacion de secuencias lartgas de acido nucleico con pcr. | |
JP6594955B2 (ja) | シントン形成 | |
US20220195415A1 (en) | Nucleic Acid Constructs and Methods for Their Manufacture | |
WO2021119563A1 (en) | Novel enzymes | |
JP6165789B2 (ja) | 核酸分子のインビトロでの連結および組み合わせアセンブリのための方法 | |
ES2384296T3 (es) | Plásmidos vectores de clonación de ADN y procedimientos para su uso | |
ES2364920T3 (es) | Proceso de clonación limpia. | |
ES2954507T3 (es) | Método de producción de ADN y kit de unión de fragmentos de ADN | |
US7727744B2 (en) | Methods for obtaining directionally truncated polypeptides | |
JP2002500861A (ja) | 組換え部位を有する核酸を使用する組換えクローニング | |
Aida et al. | Prime editing primarily induces undesired outcomes in mice | |
US20150259733A1 (en) | Methods and Compositions for Amplification and Sequencing of Difficult DNA Templates | |
US20210054384A1 (en) | Methods and systems of pcr-based recombinant adeno-associated virus manufacture | |
WO2012113954A1 (es) | Nuevo método de clonación y mutagénesis in vitro mediante pcr inversa de clonación | |
ES2235013T3 (es) | Construccion dirigida de orientacion de plasmidos. | |
WO2022164319A1 (en) | Crispr-associated base-editing of the complementary strand | |
WO2005003389A2 (en) | In vitro amplification of dna | |
US8206909B2 (en) | Unrestricted mutagenesis and cloning methods | |
ES2280891T3 (es) | Metodo para obtener polinucleotidos circulares mutados y/o quimericos. | |
KR101417989B1 (ko) | 이중가닥 dna 말단의 단일가닥 길이 조절 방법 | |
ES2387295B1 (es) | MÉTODO DE AMPLIFICACIÓN DE ADN BASADO EN LOS ORÍGENES DE REPLICACIÓN DEL BACTERIÓFAGO Phi29 Y SECUENCIAS NUCLEOTÍDICAS ASOCIADAS. | |
CA3154370A1 (en) | Modified double-stranded donor templates | |
US20040248131A1 (en) | Methods for dna mutagenesis and dna cloning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12750203 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12750203 Country of ref document: EP Kind code of ref document: A1 |