WO2012112304A1 - Addition-fragmentation agents - Google Patents
Addition-fragmentation agents Download PDFInfo
- Publication number
- WO2012112304A1 WO2012112304A1 PCT/US2012/023475 US2012023475W WO2012112304A1 WO 2012112304 A1 WO2012112304 A1 WO 2012112304A1 US 2012023475 W US2012023475 W US 2012023475W WO 2012112304 A1 WO2012112304 A1 WO 2012112304A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- addition
- meth
- afm
- acrylate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- ITUHWMRCSGIHOC-UHFFFAOYSA-N CC(C)(CC(C(OCC(COc1ccccc1)OC(C(C)=C)=O)=O)=C)C(OCC(COc1ccccc1)OC(C(C)=C)=O)=O Chemical compound CC(C)(CC(C(OCC(COc1ccccc1)OC(C(C)=C)=O)=O)=C)C(OCC(COc1ccccc1)OC(C(C)=C)=O)=O ITUHWMRCSGIHOC-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/205—Compounds containing groups, e.g. carbamates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/80—Preparations for artificial teeth, for filling teeth or for capping teeth
- A61K6/884—Preparations for artificial teeth, for filling teeth or for capping teeth comprising natural or synthetic resins
- A61K6/887—Compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C271/00—Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
- C07C271/06—Esters of carbamic acids
- C07C271/08—Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
- C07C271/10—Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
- C07C271/16—Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/14—Preparation of carboxylic acid esters from carboxylic acid halides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/24—Preparation of carboxylic acid esters by reacting carboxylic acids or derivatives thereof with a carbon-to-oxygen ether bond, e.g. acetal, tetrahydrofuran
- C07C67/26—Preparation of carboxylic acid esters by reacting carboxylic acids or derivatives thereof with a carbon-to-oxygen ether bond, e.g. acetal, tetrahydrofuran with an oxirane ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/52—Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
- C07C69/593—Dicarboxylic acid esters having only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/10—Esters; Ether-esters
- C08K5/11—Esters; Ether-esters of acyclic polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/10—Esters; Ether-esters
- C08K5/12—Esters; Ether-esters of cyclic polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/04—Homopolymers or copolymers of esters
- C09D133/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C09D133/08—Homopolymers or copolymers of acrylic acid esters
Definitions
- the present disclosure provides novel addition- fragmentation agents for use in low-stress polymerizable compositions.
- Free-radical polymerization is typically accompanied by a reduction in volume as monomers are converted to polymer.
- the volumetric shrinkage produces stress in the cured composition, leading to a microcracks and deformation. Stress transferred to an interface between the cured composition and a substrate can cause failure in adhesion and can affect the durability of the cured composition.
- crosslinking agents of this disclosure provide stress relief by including labile crosslinks that can cleave and reform during the polymerization process.
- Crosslink cleavage may provide a mechanism to allow for network reorganization, relieve polymerization stress, and prevent the development of high stress regions.
- the instant crosslinking agent may further provide stress relief by delaying the gel point, the point at which the polymerizable composition transitions from a viscous material to an elastic solid. The longer the polymerizable mixture remains viscous, the more time available during which material flow can act to alleviate stress during the polymerization process.
- the addition-fragmentation crosslinking agents provide novel stress-reducing crosslinking agents that have application in dental restoratives, thin films, hardcoats, composites, adhesives, and other uses subject to stress reduction.
- the addition-fragmentation process of crosslinking results in a chain-transfer event that provides novel polymers that may be further functionalized.
- R 1 , R 2 and R 3 are each independently Z m -Q-, a (hetero)alkyl group or a (hetero)aryl group with the proviso that at least one of R 1 , R 2 and R 3 is Z m -Q-,
- Q is a linking group have a valence of m +1 ;
- Z is an ethylenically unsaturated polymerizable group
- n 1 to 6, preferably 1 to 2;
- each X 1 is independently -O- or -NR 4 -, where R 4 is H or C 1 -C4 alkyl, and
- n 0 or 1.
- the addition-fragmentation agents of Formula I may be added to polymerizable monomer mixtures to reduce the polymerization-induced stresses.
- the agents further function as addition-fragmentation crosslinking agents, where the crosslinks are labile.
- This disclosure further provides a method of preparing the addition-fragmentation agents of formula I, as further disclosed herein.
- This disclosure further provides a curable composition
- a curable composition comprising the addition- fragmentation agent and one or more free-radically polymerizable monomers, the addition- fragmentation agent providing a reduction in shrinkage and stress of the resultant polymers.
- the addition- fragmentation agents act as chain-transfer agents via an addition- fragmentation process whereby the crosslinks are labile during polymerization and continuously cleave and reform, providing a reduction in polymerization-based stress.
- acryloyl is used in a generic sense and mean not only derivatives of acrylic acid, but also amine, and alcohol derivatives, respectively;
- (meth)acryloyl includes both acryloyl and methacryloyl groups; i.e. is inclusive of both esters and amides.
- curable means that a coatable material can be transformed into a solid, substantially non-flowing material by means of free-radical polymerization, chemical cross linking, radiation crosslinking, or the like.
- alkyl includes straight-chained, branched, and cyclic alkyl groups and includes both unsubstituted and substituted alkyl groups. Unless otherwise indicated, the alkyl groups typically contain from 1 to 20 carbon atoms. Examples of “alkyl” as used herein include, but are not limited to, methyl, ethyl, n-propyl, n-butyl, n-pentyl, isobutyl, t-butyl, isopropyl, n-octyl, n-heptyl, ethylhexyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, and norbornyl, and the like. Unless otherwise noted, alkyl groups may be mono- or polyvalent, i.e monvalent alkyl or polyvalent alkylene.
- heteroalkyl includes both straight-chained, branched, and cyclic alkyl groups with one or more heteroatoms independently selected from S, O, and N with both unsubstituted and substituted alkyl groups. Unless otherwise indicated, the heteroalkyl groups typically contain from 1 to 20 carbon atoms. "Heteroalkyl” is a subset of “hydrocarbyl containing one or more S, N, O, P, or Si atoms" described below.
- heteroalkyl examples include, but are not limited to, methoxy, ethoxy, propoxy, 3,6-dioxaheptyl, 3-(trimethylsilyl)-propyl, 4-dimethylaminobutyl, and the like. Unless otherwise noted, heteroalkyl groups may be mono- or polyvalent, i.e. monovalent heteroalkyl or polyvalent heteroalkylene.
- aryl is an aromatic group containing 6-18 ring atoms and can contain optional fused rings, which may be saturated, unsaturated, or aromatic.
- Examples of an aryl groups include phenyl, naphthyl, biphenyl, phenanthryl, and anthracyl.
- Heteroaryl is aryl containing 1-3 heteroatoms such as nitrogen, oxygen, or sulfur and can contain fused rings.
- Some examples of heteroaryl groups are pyridyl, furanyl, pyrrolyl, thienyl, thiazolyl, oxazolyl, imidazolyl, indolyl, benzofuranyl, and benzthiazolyl.
- aryl and heteroaryl groups may be mono- or polyvalent, i.e. monovalent aryl or polyvalent arylene.
- (hetero)hydrocarbyl is inclusive of hydrocarbyl alkyl and aryl groups, and heterohydrocarbyl heteroalkyl and heteroaryl groups, the later comprising one or more catenary oxygen heteroatoms such as ether or amino groups.
- Heterohydrocarbyl may optionally contain one or more catenary (in-chain) functional groups including ester, amide, urea, urethane, and carbonate functional groups. Unless otherwise indicated, the non-polymeric (hetero)hydrocarbyl groups typically contain from 1 to 60 carbon atoms.
- heterohydrocarbyls as used herein include, but are not limited to, methoxy, ethoxy, propoxy, 4-diphenylaminobutyl, 2-(2'-phenoxyethoxy)ethyl, 3,6- dioxaheptyl, 3,6-dioxahexyl-6-phenyl, in addition to those described for "alkyl”, “heteroalkyl", “aryl”, and “heteroaryl” supra.
- the present disclosure provides addition-fragmentation agents of the Formula I, supra.
- the ethylenically unsaturated moiety, Z, of the monomer may include, but is not limited to the following structures, including (meth)acryloyl, vinyl, styrenic and ethynyl, that are more fully described in reference to the preparation of the compounds below.
- R 4 is H or C 1 -C4 alkyl
- addition-fragation agent follows an addition
- the crosslinking agent of Formula I is shown, where n is 0.
- the crosslinking agent then fragments as shown in step 2 to form the stable a-carbonyl tertiary radical and the ⁇ , ⁇ -unsaturated ester bearing the residue of the free radical species ⁇ .
- This ⁇ , ⁇ -unsaturated ester can undergo radical addition as shown in step 5.
- the radical addition may be initiated by an initiator or a polymer radical.
- the ⁇ -carbonyl tertiary radical can initiate polymerization of monomer as shown in step 3.
- a methacrylate monomer is illustrated.
- a methacrylate terminated radical intermediate is produced.
- the crosslinking agent of Formula 1 as shown in step 4 both addition, and fragmentation, yielding a tertiary radical, occurs.
- the addition-fragmentation crosslinking agents provide multiple potential mechanisms for stress relief.
- a simplified methacrylate polymer is shown crosslinked by the two "Z" groups of the addition fragmentation crosslinking agent.
- the bonds between the ethylenically unsaturated Z groups will form labile crosslinks.
- Fragmentation of the addition-fragmentation crosslinking agent provides a mechanism for crosslink cleavage.
- the cleavage of labile crosslinks may allow the polymeric network to relax or reorganize, especially in high stress regions, providing a potential mechanism for stress relief.
- Attenuated cure rates could serve to delay the transition of a material from a viscous material to an elastic solid, delaying the gel point.
- Post-gel shrinkage is a major component in stress development; therefore, delaying the gel point even slightly may lead to stress relief by allowing additional time for material to flow during the curing process. Therefore, even compounds of Formula I, having a single Z group, may be used to reduce polymerization stress.
- the compounds of Formula I may be prepared from (meth)acrylate dimers and trimers by substitution, displacement or condensation reactions.
- the starting materials may be prepared from (meth)acrylate dimers and trimers by substitution, displacement or condensation reactions.
- (meth)acrylate dimers and trimers may be prepared by free radical addition of a
- (meth)acryloyl monomer in the presence of a free radical initiator and a cobalt (II) complex catalyst using the process of U.S. 4,547,323 (Carlson), incorporated herein by reference.
- the (meth)acryloyl dimers and trimers may be prepared using a cobalt chelate complex using the processes of U.S. 4,886,861 (Janowicz) or U.S.
- reaction mixture can contain a complex mixture of dimers, trimers, higher oligomers and polymers and the desired dimer or trimer can be separated from the mixture by distillation.
- the requisite ethylenically unsaturated "Z" group may be incorporated into the (meth)acryloyl dimer or trimer by means including addition, condensation, substitution and displacement reaction.
- one or more of the acyl groups of the (meth)acryloyl dimer or trimer is provided with the Z-Q-X 1 - group of
- X 2 comprises an electrophilic or nucleophilic functional group
- X 3 is X 2 , X l -R 2 or X l -R 3 , and
- n 0 or 1 ;
- A is a functional group that is co-reactive with functional group X 2
- R 4 is hydrogen, a Ci to C 4 alkyl group
- R 5 is a single bond or a di- or trivalent (hetero)hydrocarbyl linking group that joins the ethylenically unsaturated group to reactive functional group A
- x is 1 or 2.
- R 5 is a single bond or a di- or trivalent linking group that joins an ethylenically unsaturated group to co- reactive functional group A and preferably contains up to 34, preferably up to 18, more preferably up to 10, carbon and, optionally, oxygen and nitrogen atoms, optional catenary ester, amide, urea, urethane and carbonate groups.
- R 5 is not a single bond, is may be selected from -0-.
- each R 4 is hydrogen, a Ci to C 4 alkyl group, or aryl group
- each R 6 is an alkylene group having 1 to 6 carbon atoms, a 5- or 6-membered cycloalkylene group having 5 to 10 carbon atoms, or a divalent aromatic group having 6 to 16 carbon atoms
- A is a reactive functional group capable of reacting with a co-reactive functional group for the incorporation of a free-radically polymerizable functional "Z" group.
- Q may be defined as -R 5 -A*-X 2 *-, where A*-X 2 *- is the bond formed between A and X 2 , as described supra. Therefore Q may be defined as single bond or a divalent linking
- Q a single bond or a divalent linking group that joins an ethylenically unsaturated group to co- reactive functional group A and preferably contains up to 34, preferably up to 18, more preferably up to 10, carbon and, optionally, oxygen and nitrogen atoms, optional catenary ester, amide, urea, urethane and carbonate groups.
- Q may be selected from -0-.
- each R 4 is hydrogen, a Ci to C 4 alkyl group, or aryl group
- each R 6 is an alkylene group having 1 to 6 carbon atoms, a 5- or 6-membered cycloalkylene group having 5 to 10 carbon atoms, or a divalent arylene group having 6 to 16 carbon atoms.
- H 2 C C(CH 3 )C(0)-0-CH 2 CH 2 -N(H)-C(0)-0-CH(CH 2 OPh)-CH 2 -0-.
- H 2 C C(H)C(0)-0- (CH 2 ) 4 -0-CH 2 -CH(OH)-CH 2 -0-
- CH 3 -(CH 2 ) 7 -CH(0-(0)C-N(H)-CH 2 CH 2 -0- (0)C(CH 3 )C CH 2 )-CH 2 -0-
- H 2 C C(H)C
- R ⁇ X 1 - groups and R 2 -X 2 groups are the same.
- methylaziridine may result in a mixture of acrylate and acrylamide products.
- Useful reactive (and co-reactive) functional groups include hydroxyl, secondary amino, oxazolinyl, oxazolonyl, acetylacetonate, carboxyl, isocyanato, epoxy, aziridinyl, acyl halide, and cyclic anhydride groups.
- the co-reactive functional group preferably comprises a secondary amino or hydroxyl group.
- the reactive functional group comprises a hydroxyl group
- the co-reactive functional group preferably comprises a carboxyl, ester, acyl halide, isocyanato, epoxy, anhydride, azlactonyl or oxazolinyl group.
- the pendent reactive functional group comprises a carboxyl group
- the co-reactive functional group preferably comprises a hydroxyl, amino, epoxy, isocyanate, or oxazolinyl group.
- the reaction is between a nucleophilic and electrophilic functional groups.
- Representative examples of useful compounds of Formula III having co-reactive functional groups include hydroxyalkyl (meth)acrylates such as 2-hydroxyethyl
- (meth)acrylate 3-hydroxypropyl (meth)acrylate, 2, 3-dihydroxypropyl (meth)acrylate, 4- hydroxybutyl (meth)acrylate and 2-(2-hydroxyethoxy)ethyl (meth)acrylate; aminoalkyl (meth)acrylates such as 3-aminopropyl (meth)acrylate and 4-aminostyrene; oxazolinyl compounds such as 2-ethenyl-l,3-oxazolin-5-one, 2-vinyl-4,4-dimethyl-l,3-oxazolin-5- one, 2-isopropenyl-4,4-dimethyl- 1 ,3-oxazolin-5-one and 2-propenyl-4,4-dimethyl- 1 ,3- oxazolin-5-one; carboxy-substituted compounds such as (meth)acrylic acid and 4- carboxybenzyl (meth)acrylate; isocyanato-substitute
- Representative hydroxyl group-substituted functional compounds of Formula III include the hydroxyalkyl acrylates and hydroxyalkyl acrylamides such as 2-hydroxyethyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3- chloro-2-hydroxypropylmethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylamide, 4- hydroxycyclohexyl (meth)acrylate, 3-acryloyloxyphenol, 2-(4-(meth)acryloyloxyphenyl)-
- Representative amino group-substituted functional compounds of Formula III include 2-methyl aminoethyl (meth)acrylate, 3-aminopropyl (meth)acrylate, 4- aminocyclohexyl (meth)acrylate, N-(3-aminophenyl) (meth)acrylamide, N- (meth)acryloylethylenediamine, and 4-aminophenyl-4-acrylamidophenylsulfone .
- Representative azlactone group-substituted functional compounds of Formula III include: 2-ethenyl-l,3-oxazolin-5-one; 2-ethenyl-4-methyl-l,3-oxazolin-5- one; 2- isopropenyl-l,3-oxazolin-5-one; 2-isopropenyl-4-methyl-l,3- oxazolin-5-one; 2-ethenyl- 4,4-dimethyl-l,3-oxazolin-5-one; 2-isopropenyl- 4,4-dimethyl-l,3-oxazolin-5-one; 2- ethenyl-4-methyl-4-ethyl- 1 ,3-oxazolin- 5-one; 2-isopropenyl-3-oxa-l -aza[4.5]spirodec- 1 - ene-4-one; 2-ethenyl-5,6- dihydro-4H-l,3-oxazin
- Representative oxazolinyl group-substituted functional compounds of Formula III include 2-vinyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-(5-hexenyl)-2- oxazoline, 2- acryloxy-2-oxazoline, 2-(4-acryloxyphenyl)-2-oxazoline, and 2-methacryloxy-2- oxazoline.
- Representative acetoacetyl group-substituted functional compounds of Formula III include 2-(acetoacetoxy)ethyl acrylate.
- Representative carboxyl group-substituted functional compounds of Formula III include (meth)acrylic acid, 3-(meth)acryloyloxy-propionic acid, 4- (meth)acryloyloxy- butyric acid, 2-(meth)acryloyloxy-benzoic acid, 3- (meth)acryloyloxy-5 -methyl benzoic acid, 4-(meth)acryloyloxymethyl-benzoic acid, phthalic acid mono-[2-(meth)acryloyloxy- ethyl] ester, 2-butynoic acid, and 4-pentynoic acid.
- Representative isocyanate group-substituted functional compounds of Formula III include 2-isocyanatoethyl (meth)acrylate, 3-isocyanatopropyl (meth)acrylate, 4- isocyanatocyclohexyl (meth)acrylate, 4-isocyanatostyrene, 2- methyl-2-propenoyl isocyanate, 4-(2-(meth)acryloyloxyethoxycarbonylamino) phenylisocyanate, allyl 2- isocyanatoethylether, and 3-isocyanato-l-propene.
- Representative epoxy group-substituted functional compounds of Formula III include glycidyl (meth)acrylate, thioglycidyl (meth)acrylate, 3-(2,3- epoxypropoxy)phenyl (meth)acrylate, 2-[4-(2,3-epoxypropoxy)phenyl]-2-(4- (meth)acryloyloxy-phenyl)propane, 4-(2,3-epoxypropoxy)cyclohexyl (meth)acrylate, 2,3-epoxycyclohexyl (meth)acrylate, and 3 ,4-epoxycyclohexyl (meth)acrylate.
- Representative aziridinyl group-substituted functional compounds of Formula III include N-(meth)acryloylaziridine, 2-(l-aziridinyl)ethyl (meth)acrylate, 4-(l- aziridinyl)butyl acrylate, 2-[2-(l-aziridinyl)ethoxy]ethyl (meth)acrylate, 2-[2-(l- aziridinyl)ethoxycarbonylamino]ethyl (meth)acrylate, 12-[2-(2,2,3,3-tetramethyl-l- aziridinyl)ethoxycarbonylamino] dodecyl (meth)acrylate, and l-(2-propenyl)aziridine.
- acyl halide group-substituted functional compounds of Formula III include (meth)acryloyl chloride, a-chloro(meth)acryloyl chloride,
- Representative anhydride group-substituted functional monomers include maleic anhydride, (meth)acrylic anhydride, itaconic anhydride, 3- (meth)acryloyloxyphthalic anhydride, and 2-(meth)acryloxycyclohexanedicarboxylic acid anhydride.
- Preferred ethylenically unsaturated compounds having a reactive functional group include hydroxyalkyl acrylates such as 2-hydroxyethyl (meth)acrylate and 2-(2-hydroxyethoxy)ethyl (meth)acrylate; aminoalkyl (meth)acrylates such as 3-aminopropyl (meth)acrylate and 4-aminostyrene; oxazolinyl compounds such as 2-ethenyl-l,3-oxazolin-5-one and 2-propenyl-4,4-dimethyl-l,3-oxazolin-5-one; carboxy- substituted compounds such as (meth)acrylic acid and 4-carboxybenzyl (meth)acrylate; isocyanato-substituted compounds such as isocyanatoethyl (meth)acrylate and 4- isocyanatocyclohexyl (meth)acrylate; epoxy-substituted compounds such as glycidyl (
- the compounds of Formula II may be provided with nucleophilic or electrophilic functional groups, in addition to simple ester or amides.
- X 2 group of Formula II which comprises an electrophilic or nucleophilic functional groups
- X 2 may be selected from -OH, -CI, -Br, -NR 4 H, -R 6 -NCO, -R 6 -SH, -R 6 - OH, -R 6 -NR 4 H, R 6 -Si(OR 4 ) 3 , R 6 -halide, R 6 -aziridine, R 6 -epoxy, R 6 -N 3 , R 6 -anhydride, R 6 - succinate, R 6 -NR 4 H, and other electrophilic or nucleophilic functional groups.
- each R 6 is an alkylene group having 1 to 6 carbon atoms, a 5- or 6-membered cycloalkylene group having 5 to 10 carbon atoms, or a divalent aromatic group having 6 to 16 carbon atoms.
- R 6 may be substituted with one or more in-chain functional groups, including ether, amine, thioether, ester, amide, urea, and urethane functional groups, for example R 6 -NH-CO-0-R 6' -NCO, where R 6 is defined as R 6 .
- R 4 is H or Ci-C 4 alkyl
- the present disclosure further provides a polymerizable composition
- a polymerizable composition comprising the addition- fragmentation agent of Formula I, and at least one polymerizable monomer, such as (meth)acryloyl monomers, including acrylate esters, amides, and acids to produce (meth)acrylate homo- and copolymers.
- the addition- fragmentation agent of Formula I is used in amounts of 0.1 to 10 parts by weight, preferably 0.1 to 5 parts by weight, based on 100 parts by weight of total monomer.
- the (meth)acrylate ester monomer useful in preparing the (meth)acrylate polymer is a monomeric (meth)acrylic ester of a non-tertiary alcohol, which alcohol contains from 1 to 14 carbon atoms and preferably an average of from 4 to 12 carbon atoms.
- Examples of monomers suitable for use as the (meth)acrylate ester monomer include the esters of either acrylic acid or methacrylic acid with non-tertiary alcohols such as ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 1-pentanol, 2-pentanol, 3- pentanol, 2 -methyl- 1-butanol, 3 -methyl- 1-butanol, 1-hexanol, 2-hexanol, 2-methyl-l- pentanol, 3-methyl-l-pentanol, 2-ethyl-l-butanol, 3,5,5-trimethyl-l-hexanol, 3-heptanol,
- non-tertiary alcohols such as ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 1-pentanol, 2-pentanol, 3- pentanol, 2 -methyl- 1-butano
- the preferred (meth)acrylate ester monomer is the ester of
- the preferred (meth)acrylate ester monomer is the ester of (meth)acrylic acid with an alcohol derived from a renewable source, such as 2-octanol, citronellol, dihydrocitronellol.
- the (meth)acrylic acid ester monomer prefferably includes a high T g monomer, have a T g of at least 25°C, and preferably at least 50°C.
- Suitable monomers useful in the present invention include, but are not limited to, t-butyl acrylate, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n- butyl methacrylate, isobutyl methacrylate, s-butyl methacrylate, t-butyl methacrylate, stearyl methacrylate, phenyl methacrylate, cyclohexyl methacrylate, isobornyl acrylate, isobornyl methacrylate, benzyl methacrylate, 3,3,5 trimethylcyclohexyl acrylate, cyclohexyl acrylate, N-octyl acrylamide, and propyl methacrylate or combinations.
- the (meth)acrylate ester monomer is present in an amount of up to 100 parts by weight, preferably 85 to 99.5 parts by weight based on 100 parts total monomer content used to prepare the polymer.
- (meth)acrylate ester monomer is present in an amount of 90 to 95 parts by weight based on 100 parts total monomer content.
- the copolymer may include up to 30 parts by weight, preferably up to 20 parts by weight of the (meth)acrylate ester monomer component.
- the polymer may further comprise an acid functional monomer, where the acid functional group may be an acid per se, such as a carboxylic acid, or a portion may be salt thereof, such as an alkali metal carboxylate.
- acid functional monomers include, but are not limited to, those selected from ethylenically unsaturated carboxylic acids, ethylenically unsaturated sulfonic acids, ethylenically unsaturated phosphonic acids, and mixtures thereof.
- Such compounds include those selected from acrylic acid, methacrylic acid, itaconic acid, fumaric acid, crotonic acid, citraconic acid, maleic acid, oleic acid, ⁇ -carboxyethyl (meth)acrylate, 2-sulfoethyl methacrylate, styrene sulfonic acid,
- acid functional monomers of the acid functional copolymer are generally selected from ethylenically unsaturated carboxylic acids, i.e. (meth)acrylic acids.
- acidic monomers include the ethylenically unsaturated sulfonic acids and ethylenically unsaturated phosphonic acids.
- the acid functional monomer is generally used in amounts of 0.5 to 15 parts by weight, preferably 1 to 15 parts by weight, most preferably 5 to 10 parts by weight, based on 100 parts by weight total monomer.
- the polymer may further comprise a polar monomer.
- the polar monomers useful in preparing the copolymer are both somewhat oil soluble and water soluble, resulting in a distribution of the polar monomer between the aqueous and oil phases in an emulsion polymerization.
- the term "polar monomers" are exclusive of acid functional monomers.
- Suitable polar monomers include but are not limited to 2-hydroxyethyl (meth)acrylate; N-vinylpyrrolidone; N-vinylcaprolactam; acrylamide; mono- or di-N-alkyl substituted acrylamide; t-butyl acrylamide; dimethylaminoethyl acrylamide; N-octyl acrylamide; poly(alkoxyalkyl) (meth)acrylates including 2-(2- ethoxyethoxy)ethyl (meth)acrylate, 2-ethoxyethyl (meth)acrylate, 2-methoxyethoxyethyl (meth)acrylate, 2-methoxyethyl methacrylate, polyethylene glycol mono(meth)acrylates; alkyl vinyl ethers, including vinyl methyl ether; and mixtures thereof.
- Preferred polar monomers include those selected from the group consisting of 2-hydroxyethyl
- the polar monomer may be present in amounts of 0 to 10 parts by weight, preferably 0.5 to 5 parts by weight, based on 100 parts by weight total monomer.
- the polymer may further comprise a vinyl monomer.
- vinyl monomers useful in the (meth)acrylate polymer include vinyl esters (e.g., vinyl acetate and vinyl propionate), styrene, substituted styrene (e.g., a-methyl styrene), vinyl halide, and mixtures thereof.
- vinyl monomers are exclusive of acid functional monomers, acrylate ester monomers and polar monomers.
- Such vinyl monomers are generally used at 0 to 5 parts by weight, preferably 1 to 5 parts by weight, based on 100 parts by weight total monomer.
- (meth)acrylate may be incorporated into the blend of polymerizable monomers.
- Multifunctional acrylates are particularly useful for emulsion or syrup polymerization.
- useful multifunctional (meth)acrylates include, but are not limited to, di(meth)acrylates, tri(meth)acrylates, and tetra(meth)acrylates, such as 1,6-hexanediol di(meth)acrylate, poly(ethylene glycol) di(meth)acrylates, polybutadiene di(meth)acrylate, polyurethane di(meth)acrylates, and propoxylated glycerin tri(meth)acrylate, and mixtures thereof.
- the amount and identity of multifunctional (meth)acrylate is tailored depending upon application of the adhesive composition. Typically, the multifunctional
- (meth)acrylate is present in amounts less than 5 parts based on total dry weight of adhesive composition. More specifically, the crosslinker may be present in amounts from 0.01 to 5 parts, preferably 0.05 to 1 parts, based on 100 parts total monomers of the adhesive composition.
- the copolymer may comprise:
- composition may be polymerized with either a thermal initiator or
- any conventional free radical initiator may be used to generate the initial radical.
- suitable thermal initiators include peroxides such as benzoyl peroxide, dibenzoyl peroxide, dilauryl peroxide, cyclohexane peroxide, methyl ethyl ketone peroxide, hydroperoxides, e.g., tert-butyl hydroperoxide and cumene
- thermal initiators include initiators available from DuPont Specialty Chemical (Wilmington, Del.) under the VAZO trade designation including VAZOTM 67 (2,2 * -azo-bis(2-methybutyronitrile)) VAZOTM 64 (2,2 * - azo-bis(isobutyronitrile)) and VAZO 52 (2,2'-azo-bis(2,2-dimethyvaleronitrile)), and LucidolTM 70 from Elf Atochem North America, Philadelphia, Pa.
- Useful photoinitiators include benzoin ethers such as benzoin methyl ether and benzoin isopropyl ether; substituted acetophenones such as 2, 2-dimethoxyacetophenone, available as IrgacureTM 651 photoinitiator (Ciba Specialty Chemicals), 2,2 dimethoxy-2- phenyl-l-phenylethanone, available as EsacureTMKB-l photoinitiator (Sartomer Co.; West Chester, PA), and dimethoxyhydroxyacetophenone; substituted a-ketols such as 2- methyl-2-hydroxy propiophenone; aromatic sulfonyl chlorides such as 2-naphthalene- sulfonyl chloride; and photoactive oximes such as 1 -phenyl- l,2-propanedione-2-(0- ethoxy-carbonyl)oxime. Particularly preferred among these are the substituted
- the initiator is used in an amount effective to facilitate free radical addition to the addition-fragmentation crosslinking agent and the amount will vary depending upon, e.g., the type of initiator, and the molecular weight of the polymer and the degree of functionalization desired.
- the initiators can be used in amounts from about 0.001 part by weight to about 5 parts by weight based on 100 parts total monomer.
- the curable composition may also include other additives.
- suitable additives include tackifiers (e.g., rosin esters, terpenes, phenols, and aliphatic, aromatic, or mixtures of aliphatic and aromatic synthetic hydrocarbon resins), surfactants, plasticizers (other than physical blowing agents), nucleating agents (e.g., talc, silica, or Ti0 2 ), pigments, dyes, reinforcing agents, solid fillers, stabilizers (e.g., UV stabilizers), and combinations thereof.
- the additives may be added in amounts sufficient to obtain the desired properties for the cured composition being produced. The desired properties are largely dictated by the intended application of the resultant polymeric article article.
- Adjuvants may optionally be added to the compositions such as colorants, abrasive granules, anti-oxidant stabilizers, thermal degradation stabilizers, light stabilizers, conductive particles, tackifiers, flow agents, bodying agents, flatting agents, inert fillers, binders, blowing agents, fungicides, bactericides, surfactants, plasticizers, rubber tougheners and other additives known to those skilled in the art. They also can be substantially unreactive, such as fillers, both inorganic and organic. These adjuvants, if present, are added in an amount effective for their intended purpose. In some embodiments, a toughening agent may be used.
- the toughening agents which are useful in the present invention are polymeric compounds having both a rubbery phase and a thermoplastic phase such as: graft polymers having a polymerized, diene, rubbery core and a polyacrylate, polymethacrylate shell; graft polymers having a rubbery, polyacrylate core with a polyacrylate or polymethacrylate shell; and elastomeric particles polymerized in situ in the epoxide from free radical polymerizable monomers and a copolymerizable polymeric stabilizer.
- useful toughening agents of the first type include graft copolymers having a polymerized, diene, rubbery backbone or core to which is grafted a shell of an acrylic acid ester or methacrylic acid ester, monovinyl aromatic hydrocarbon, or a mixture thereof, such as disclosed in U.S. 3,496,250 (Czerwinski), incorporated herein by reference.
- Preferable rubbery backbones comprise polymerized butadiene or a
- Preferable shells comprising polymerized methacrylic acid esters are lower alkyl (Ci -C 4 ) substituted methacrylates.
- Preferable monovinyl aromatic hydrocarbons are styrene, alphamethylstyrene, vinyltoluene, vinylxylene, ethylvinylbenzene, isopropylstyrene, chlorostyrene, dichlorostyrene, and ethylchlorostyrene. It is important that the graft copolymer contain no functional groups that would poison the catalyst.
- acrylate core-shell graft copolymers wherein the core or backbone is a polyacrylate polymer having a glass transition temperature below about 0° C, such as polybutyl acrylate or polyisooctyl acrylate to which is grafted a polymethacrylate polymer (shell) having a glass transition above about 25 0 C, such as polymethylmethacrylate.
- the third class of toughening agents useful in the invention comprises elastomeric particles that have a glass transition temperature (T g ) below about 25 0 C. before mixing with the other components of the composition. These elastomeric particles are
- the free radical polymerizable monomers are ethylenically unsaturated monomers or diisocyanates combined with coreactive difunctional hydrogen compounds such as diols, diamines, and alkanolamines.
- Useful toughening agents include core/shell polymers such as methacrylate- butadiene-styrene (MBS) copolymer wherein the core is crosslinked styrene/butadiene rubber and the shell is polymethylacrylate (for example, ACRYLOID KM653 and KM680, available from Rohm and Haas, Philadelphia, PA), those having a core comprising polybutadiene and a shell comprising poly(methyl methacrylate) (for example, KANE ACE M511, M521, Bl 1A, B22, B31, and M901 available from Kaneka
- those having a polysiloxane core and a polyacrylate shell for example, CLEARSTRENGTH S-2001 available from ATOFINA and GENIOPERL P22 available from Wacker-Chemie GmbH, Wacker Silicones, Kunststoff, Germany
- those having a polyacrylate core and a poly(methyl methacrylate) shell for example, PARALOID EXL2330 available from Rohm and Haas and STAPHYLOID AC3355 and AC3395 available from Takeda Chemical Company, Osaka, Japan
- those having an MBS core and a poly(methyl methacrylate) shell for example, PARALOID EXL2691A, EXL2691, and EXL2655 available from Rohm and Haas
- Preferred modifiers include the above-listed ACRYLOID and PARALOID modifiers; and the like; and mixtures thereof.
- the toughening agent is useful in an amount equal to about 1-35%, preferably about 3-25%, based on the weight of the curable composition.
- the toughening agents of the instant invention add strength to the composition after curing without reacting with the component of the curable composition or interfering with curing.
- the partially cured, stagable adhesive composition may be disposed between two substrates (or adherends), and subsequently heated to fully cure the adhesive and effect a structural or semistructual bond between the substrates. Therefore the present disclosure provides structural and semi-structural adhesives.
- “Semi-structural adhesives” are those cured adhesives that have an overlap shear strength of at least about 0.5 MPa, more preferably at least about 1.0 MPa, and most preferably at least about 1.5
- Structural adhesives are those cured adhesives that have an overlap shear strength of at least about 3.5 MPa, more preferably at least about 5 MPa, and most preferably at least about 7 MPa.
- the crosslinkable composition may include filler.
- the total amount of filler is at most 50 wt-%, preferably at most 30 wt-%, and more preferably at most 10 wt-% filler.
- Fillers may be selected from one or more of a wide variety of materials, as known in the art, and include organic and inorganic filler. Inorganic filler particles include silica, submicron silica, zirconia, submicron zirconia, and non-vitreous microparticles of the type described in U.S. Pat. No. 4,503,169 (Randklev).
- Filler components include nanosized silica particles, nanosized metal oxide particles, and combinations thereof. Nanofillers are also described in U.S. Pat. Nos.
- the addition fragmentation agents are also useful in preparing dental
- compositions Comprising Ethylenically Unsaturated Addition-Fragmentation Agent
- U.S. S.N. 61/443218 filed 15 February 2011, incorporated by reference in its' entirety.
- 2-Isocyantoethyl methacrylate, l,2-epoxy-3-phenoxypropane, and 1 ,2-epoxydecane were obtained from TCI America (Portland, OR, USA).
- Acryloyl chloride, triethyl amine, and triphenyl antimony were obtained from Sigma Aldrich (St. Louis, MO, USA).
- 4-hydroxybutyl acrylate glycidylether was obtained from Nippon Kasei Chemical (Tokyo, Japan).
- Glycidyl acrylate was obtained from Polysciences Inc. (Warringotn, PA, USA).
- Methyl methacrylate oligomer mixture was obtained according to the procedure detailed in Example 1 of US Patent 4,547,323 (Carlson, G. M.). Instrumentation. Proton nuclear magnetic resonance (1H NMR) spectra and carbon nuclear magnetic resonance (13C NMR) spectra were recorded on a 400 MHz spectrometer.
- the white solid was dried by pulling air through the solid for approximately 4 hours. The white solid was then dissolved in approximately 1750 mL of dichloromethane. Only a very small amount (less than a gram) of solid remained insoluble. The solution was allowed to stand for 24 hours. The dichloromethane solution was then vacuum filtered to remove the undissolved white solid. The filtered dichloromethane solution was concentrated in vacuo to provide a white solid. The solid was further dried under high vacuum to provide diacid 1 (55.95 g, 325.0 mmol, 87%) as a white powder.
- reaction was sampled, and 1H NMR analysis was consistent with the desired product as a mixture of isomers and indicated consumption of glycidyl methacrylate.
- the reaction was cooled to room temperature to provide AFM-1 as a clear, very pale yellow viscous material.
- a two-neck, 500 mL round-bottomed flask equipped with a magnetic stir bar was charged with AFM-1 (20.00 g, 43.81 mmol) and dichloromethane (160 mL).
- the necks on the reaction flask were sealed with plastic caps and a 16 gauge needle was added to each cap to vent the reaction to air.
- the reaction was cooled to 0 °C with stirring.
- Triethylamine (30.5 mL, 22.1 g, 219 mmol) and 4-(dimethylamino)pyridine (1.609 g, 13.17 mmol) were added.
- Methacryloyl chloride (17.0 ml, 18.4 g, 176 mmol) was added to the reaction mixture dropwise over a period of 40 minutes.
- the pale yellow, heterogeneous reaction was allowed to slowly warm to room temperature. After 24 hours, the pale yellow reaction solution was concentrated in vacuo. Ethyl acetate (400 mL) was added to the residue and the mixture was transferred to a 1 L separatory funnel. The reaction flask was washed with aqueous hydrochloric acid (IN, 200 mL) and the aqueous hydrochloric acid solution was added to the separatory funnel. The solutions were mixed well and the aqueous layer was removed.
- aqueous hydrochloric acid IN, 200 mL
- the organic solution was further washed twice with 200 mL aqueous hydrochloric acid (IN), once with 200 mL of deionized water, three times with 200 mL of aqueous sodium hydroxide (IN), and once with 200 mL of a saturated aqueous solution of sodium chloride.
- the organic solution was dried over sodium sulfate for 30 minutes and then filtered.
- 2,6-di-t-butyl-4-methylphenol (0.011 g) was added, and the solution was concentrated in vacuo (bath temperature less than 20 °C) to a viscous solution.
- the concentrated solution was transferred to an amber bottle using a small amount of dichloromethane to ensure quantitative transfer. Air was bubbled through the viscous material to remove solvent.
- a three-neck, 250 mL round-bottomed flask was equipped with a magnetic stir bar.
- Diol 2 (6.86 g, 14.52 mmol) was dissolved in dichloromethane (25 mL) and added to the reaction flask. Five additional 5mL portions of dichloromethane were used to ensure quantitative transfer of diol 2 and these rinses were added to the reaction flask.
- the reaction flask was equipped with a pressure-equalizing addition funnel capped with a plastic cap. The other two necks on the reaction flask were also sealed with plastic caps, and a 16 gauge needle was added to each to vent the reaction to air. The reaction was cooled to 0 °C with stirring.
- Triethylamine (10.0 mL, 7.26 g, 71.8 mmol) and 4- (dimethylamino)pyridine (0.532 g, 4.36 mmol) were added.
- a 37.3 wt.% solution of methacryloyl chloride in toluene (16.28 g solution, 6.07 g methacryloyl chloride, 58.1 mmol) was added to the addition funnel.
- the toluene solution of methacryloyl chloride was added to the reaction mixture dropwise over a period of 30 minutes. The reaction became pale yellow. After 18 hours, the pale yellow reaction solution was transferred to a 500 mL separatory funnel using dichloromethane (200 mL).
- a 500 mL round-bottomed flask equipped with a magnetic stir bar was charged with AFM-1 (31.40 g, 68.79 mmol) and dichloromethane (210 mL). With stirring, 2- isocyanatoethyl methacrylate (19.4 mL, 21.3 g, 137 mmol) was added. Dibutyltin dilaurate (3 drops from a glass pipette) was added to the clear and homogeneous solution. The reaction was sealed with a plastic cap and two 16 gauge needles were added to vent to air. After 48 hours, the reaction mixture was concentrated in vacuo to a clear viscous liquid.
- a three-neck, 100 mL round-bottomed flask equipped with a magnetic stir bar was charged with AFM-6 (5.00 g, 8.731 mmol) and dichloromethane (40 mL).
- the necks on the reaction flask were sealed with plastic caps and a 16 gauge needle was added to two of the caps to vent the reaction to air.
- the reaction was cooled to 0 °C with stirring.
- Triethylamine 6.1 mL, 4.43 g, 43.8 mmol
- 4-(dimethylamino)pyridine (0.320 g, 2.62 mmol) were added.
- the organic solution was further washed twice with 100 mL of aqueous hydrochloric acid (IN), once with 100 mL of deionized water, three times with 100 mL of aqueous sodium hydroxide (IN), and once with 100 mL of a saturated aqueous solution of sodium chloride.
- the organic solution was dried over sodium sulfate for 30 minutes and then filtered.
- 2,6-di-t-butyl-4-methylphenol (0.003 g) was added, and the solution was concentrated in vacuo (bath temperature less than 20 °C) to a viscous solution.
- the concentrated solution was transferred to an amber bottle using a small amount of dichloromethane to ensure quantitative transfer. Air was bubbled through the viscous material to remove solvent.
- a glass vial equipped with a magnetic stir bar was charged with 1 ,2-epoxydecane (4.53 g, 29.0 mmol) and triphenyl antimony (0.102 g, 0.29 mmol).
- the reaction vial was sealed with a plastic cap. With stirring, the mixture was heated to 100 °C in an oil bath. Diacid 1 (2.50 g, 14.5 mmol) was added to the reaction in small portions over a period of 1 hour. After 1 day, triphenyl phosphine (0.0259 g, 0.098 mmol) was added. The reaction was kept stirring at 100 °C for an additional 18 hours. It was then sampled and IH NMR analysis was consistent with the desired product as a mixture of isomers. The reaction was cooled to room temperature to provide diol 3 as a viscous, light yellow oil.
- a glass vial equipped with a magnetic stir bar was charged with diol 3 (1.00 g, 2.063 mmol) and 2-isocyanatoethyl methacrylate (0.644 g, 4.15 mmol).
- Dibutyltin dilaurate (6 drops from a glass pipette) was added to the homogeneous solution.
- the reaction was kept open to air and, with stirring, the mixture was heated to 50 °C in an oil bath. After 18 hours, the reaction was sampled and IH NMR analysis was consistent with the desired product as a mixture of isomers.
- the reaction was cooled to room temperature, and AFM-8 was obtained as a very viscous, light yellow oil.
- an adhesive-coated sheet was prepared by knife coating the composition thus prepared to a thickness of about 2 mil (about 50 micrometers) onto the primed side of a clear polyester film, HOSTAPHAN 3 SAB (Mitsubishi Polyester Film, Inc.; Greer, SC, USA). The coating was then covered with a clear silicone coated film, SILPHAN S 36 M74A (Siliconature USA, LLC; Chicago, IL, USA). This sandwich construction was then irradiated with UVA light (650 mJ/cm 2 ) to cure the coating to an adhesive.
- the adhesive coated sheets were cut into tape strips, conditioned at 23°C / 50% Relative Humidity for 24 hours, and then tested for 180 degree peel adhesion on glass. Peel adhesion testing was carried out according to ASTM D 3330/D 3330M-04, except that glass, rather than stainless steel, was used as the substrate, and the tape strips tested were 1 ⁇ 2" (12.7 mm) in width, rather than 1" (25.4 mm). Each test sample was prepared by removing the silicone liner from a 12.7 mm wide conditioned tape and adhering the adhesive coated side of the coated polyester film to a glass plate, rolling over the tape four times with a 2- kilogram roller.
- the tape was then peeled from the glass at 180 degrees peel angle, using a tensile force tester at a platen speed of 12 inches/min (305 mm/min). Three identically-prepared specimens were tested for each Example. The averaged values for the three replicates are reported in Table 2, in both Newtons per decimeter (N/dm) and ounces per inch (oz/in).
- BisGMA (2,2-bis[4-(2-hydroxy-3-methacryloyloxypropoxy)phenyl]propane (Sigma Aldrich, St. Louis, MO)
- TEGDMA triethyleneglycol dimethacrylate, Sartomer Co., Inc., Exton, PA
- UDMA Diurethane dimethacrylate, CAS No. 41137-60-4, commercially available as Rohamere 6661-0, Rohm Tech, Inc., Maiden, MA
- BisEMA6 ethoxylated bisphenol A methacrylate as further described in U.S. Patent No. 6,030,606, available from Sartomer as "CD541"
- DPIHFP diphenyl iodonium hexafluorophosphate, Alpha Aesar, Ward Hill, MA
- BZT refers to 2-(2-hydroxy-5-methacryloxyethylphenyl)-2H-benzotriazole, Ciba, Inc., Tarrytown, NY
- TCD alcohol refers to tricyclodecane dimethanol (tricyclo[5.2.1.02,6]decane dimethanol, CAS: 26160-83-8) available from Celanese
- Tris-(2-hydroxyethyl)isocyanurate (TCI America, Portland, OR)
- Zr/Si filler surface treated, one hundred parts zirconia silica filler of average particle size 0.6-0.9 micrometers was mixed with deionized water at a solution temperature of between 20-30°C, and the pH is adjusted to 3-3.3 with trifluoroacetic acid (0.278 parts).
- A- 174 silane (SILQUEST A- 174, gamma.-methacryloxypropyltrimethoxysilane, Crompton Corporation, Naugatuck, CT) was added to the slurry in an amount 7 parts and the blend is mixed over 2 hours. At the end of 2 hours, the pH is neutralized with calcium hydroxide. The filler is dried, crushed and screened through a 74 or 100 micron screen.)
- Phthalic acid anhydride (57.0 g, 0.385 mol, CAS # 85-33-9, Alfa Aesar, lot G30T004), 4- (dimethylamino)pyridine (DMAP, 4.9g, 0.04 mol, CAS # 1122-58-3, Alfa Aesar, lot L125009), 2-hydoxyethylmethacrylate (HEMA, 50.9 g, 0.391 mol, and butylated hydroxytoluene (BHT, 0.140 g) were charged into a 2-liter 3-neck reaction flask equipped with a mechanical stirrer, a thermocouple connected to a temperature controller, a dry air stream running through a T-shape connection into the reactor then to an oil bubbler, and a heating mantle.
- DMAP dimethylamino)pyridine
- HEMA 2-hydoxyethylmethacrylate
- BHT butylated hydroxytoluene
- a solution made from dicyclohexyl carbodiimide (DCC, 81g, 0.393 mol) in 120 ml acetone was placed into a 500 ml dropping funnel which was placed in-between the reaction flask and the dry air in-let.
- the DCC solution was added slowly to the continuously stirred reaction mixture in a rate where the reaction mixture temperature would not exceed 10°C.
- the reaction was stirred in the ice bath for 2 hours in at room temperature overnight. On day 2, the solid formed was removed by vacuum filtration and the residue was concentrated in a rotary evaporator at 40-45°C bath. The residue was dissolved in 300 ml solution of ethylacetate: hexanes, 2: 1 by volume.
- the obtained solution was extracted with 200 ml of 1.0 N. HC1, 200 ml of 10% aqueous, 200 ml H 2 0, and 200 ml brine.
- the organic layer was concentrated in a rotary evaporator with 40°C bath. Further drying was done under a vacuum pump at 50°C for 3 hours with air bleeding into the product during the whole time to give an almost colorless hazy viscous liquid.
- Refractive index was measured and found to be 1.5386.
- NMR NMR Refractive index
- the calculated molecular weight of the linking group was determined to be 220 g/mole.
- TCD alcohol and GMA as the corresponding epoxy functional reagent/s are mixed while stirring with e.g. cyclohexane.
- 1.5 wt.-% of TEA and 1.5 wt.-% of GAA (with respect to the mass of the sum of all reactants, to form in situ TEAA)
- 1000 ppm of HQ, 200 ppm of BHT, and 200 ppm of HQME are added while stirring.
- the mixture is heated while stirring a temperature of about 70°C until completion of the addition reaction (measured via 1H-NMR: no signals of residual epoxy groups were detected).
- 3 to 5 wt.-% of MSA is slowly added while stirring and stirring is continued for about 60 min at about 70°C.
- TCD alcohol is diluted in anhydrous THF, then BF 3 *THF is added while stirring.
- Gaseous EO is added while stirring so that the temperature of the reaction mixture does not exceed about 30-40°C.
- 13 wt.-% of water (with respect to the sum of the amounts of the reactive educts) are added, after about 30 min while stirring 13 wt.-% of basic alumina is added, too.
- 13 wt.-% of a solution of sodium methanolate in methanol (30% in methanol) is added. Then the suspension is stirred at room temperature for about 12 h. After filtration the solvent is stripped off in vacuum.
- TCD alcohol is diluted in anhydrous THF, then BF 3 *THF is added while stirring.
- Gaseous EO is added while stirring so that the temperature of the reaction mixture does not exceed about 30-40°C.
- 13 wt.-% of water (with respect to the sum of the amounts of the reactive educts) are added, after about 30 min while stirring 13 wt.-% of basic alumina is added, too.
- 13 wt.-% of a solution of sodium methanolate in methanol (30% in methanol) is added. Then the suspension is stirred at room temperature for about 12 h. After filtration the solvent is stripped off in vacuum.
- a slot was machined into a rectangular 15 x 8 x 8 mm aluminum block, as shown in Figure 1.
- the slot was 8 mm long, 2.5 mm deep, and 2 mm across, and was located 2 mm from an edge, thus forming a 2 mm wide aluminum cusp adjacent to a 2 mm wide cavity containing dental compositions being tested.
- a linear variable displacement transducer (Model GT 1000, used with an E309 analog amplifier, both from RDP Electronics, United Kingdom) was positioned as shown to measure the displacement of the cusp tip as the dental composition photocured at room temperature.
- the slot in the aluminum block was sandblasted using Rocatec Plus Special Surface Coating Blasting Material (3M ESPE), treated with RelyX Ceramic Primer (3M ESPE), and finally treated with a dental adhesive, Adper Easy Bond (3M ESPE).
- Rocatec Plus Special Surface Coating Blasting Material (3M ESPE)
- RelyX Ceramic Primer (3M ESPE)
- Adper Easy Bond (3M ESPE)
- the slot was fully packed with the mixtures shown in the tables, which equalled approximately 100 mg of material.
- the material was irradiated for 1 minute with a dental curing lamp (Elipar S-10, 3M ESPE) positioned almost in contact ( ⁇ 1 mm) with the material in the slot, then the displacement of the cusp in microns was recorded 9 minutes after the lamp was extinguished.
- a dental curing lamp Elipar S-10, 3M ESPE
- the Watts Shrinkage (Watts) Test Method measures shrinkage of a test sample in terms of volumetric change after curing.
- the sample preparation (90-mg uncured composite test sample) and test procedure were carried out as described in the following reference: Determination of Polymerization Shrinkage Kinetics in Visible-Light-Cured Materials: Methods Development, Dental Materials, October 1991, pages 281-286. The results are reported as negative % shrinkage.
- Diametral tensile strength of a test sample was measured according to the following procedure.
- An uncured composite sample was injected into a 4-mm (inside diameter) glass tube; the tube was capped with silicone rubber plugs. The tube was compressed axially at approximately 2.88 kg/cm 2 pressure for 5 minutes.
- the sample was then light cured for 80 seconds by exposure to a XL 1500 dental curing light (3M Company, St. Paul, MN), followed by irradiation for 90 seconds in a Kulzer UniXS curing box (Heraeus Kulzer GmbH, Germany).
- the sample was cut with a diamond saw to form disks about 2mm thick, which were stored in distilled water at 37°C for about 24 hours prior to testing.
- Barcol Hardness of a test sample was determined according to the following procedure. An uncured composite sample was cured in a 2.5-mm or 4-mm thick TEFLON mold sandwiched between a sheet of polyester (PET) film and a glass slide for 20 seconds and cured with an ELIPAR Freelight 2 dental curing light (3M Company). After irradiation, the PET film was removed and the hardness of the sample at both the top and the bottom of the mold was measured using a Barber-Coleman Impressor (a hand-held portable hardness tester; Model GYZJ 934-1; Barber-Coleman Company, Industrial Instruments Division, Lovas Park, Ind.) equipped with an indenter. Top and bottom Barcol Hardness values were measured at 5 minutes after light exposure.
- ELIPAR Freelight 2 dental curing light 3M Company
- the depth of cure was determined by filling a 10 millimeter stainless steel mold cavity with the composite, covering the top and bottom of the mold with sheets of polyester film, pressing the sheets to provide a leveled composition surface, placing the filled mold on a white background surface, irradiating the dental composition for 20 seconds using a dental curing light (3M Dental Products Curing Light 2500or 3M ESPE Elipar FreeLight2, 3M ESPE Dental Products), separating the polyester films from each side of the mold, gently removing (by scraping) materials from the bottom of the sample (i.e., the side that was not irradiated with the dental curing light), and measuring the thickness of the remaining material in the mold.
- the reported depths are the actual cured thickness in millimeters divided by 2.
- a paste sample was extruded into a 2 mm X 2 mm X 25 mm quartz glass mold forming a test bar.
- the material was then cured through the mold using 2 standard dental cure lights (3M ESPE XL2500 or 3M ESPE XL3000).
- the samples were cured by placing one light in the center of the sample bar, curing for 20 sec, then simultaneously curing the ends of the bar for 20 sec, flipping and repeating.
- Compressive strength of a test sample was measured according to the following
- Measurements were carried out on an Instron tester (Instron 4505, Instron Corp., Canton, MA) with a 10 kilonewton (kN) load cell at a crosshead speed of 1 mm/minute according to ISO Specification 7489 (or American Dental Association (ADA) Specification No. 27). Cured samples were prepared and measured with the results reported in MPa as the average of multiple measurements.
- Instron tester Instron 4505, Instron Corp., Canton, MA
- kN kilonewton
- ISO Specification 7489 or American Dental Association (ADA) Specification No. 27
- test results show the improved properties of Examples 101-120, comprising addition fragmentation materials, in comparison to CE1-CE5 that lack the inclusion of an addition fragmentation material.
- concentration of addition fragmentation materials increased the compositions exhibits reduced stress and reduced Watts Shrinkage while maintaining sufficient Diametral tensile strength, Barcol hardness and depth of cure.
- compositions were also prepared wherein an addition-fragmentation monomer was added to a conventional dental composition.
- Compositions CE6 and 121 also contained 0.108 of DFIHFP and 0.03 of BHT.
- Addition-fragmentation monomers such as those synthesized above were incorporated into structural adhesive 3M Scotch- WeldTM Acrylic Adhesive Resin DP807, a two-part, high performance, toughened methylmethacrylate-base adhesive, available from 3M Company, Maplewood, MN, USA.
- the performance of DP807-based structural adhesives containing AFM-1 (from Preparatory Example 1 above) as an additive at different loadings (0.25 wt.%, 0.5 wt.%, 1.0 wt.%, and 2.5 wt.%) will be discussed in some detail. Following the discussion of the DP807/ AFM-1 structural adhesives, testing results for DP807 with AFM-2, AFM-3, AFM-4, AFM-5, and AFM-6 are provided.
- AFM-1 was added to each part or "side" of the two-part DP807 adhesive in the weight percent indicated. The sides were then independently mixed and then charged back into the respective sides of a two part adhesive dispenser.
- the control adhesive, sample A did not contain the addition-fragmentation monomers.
- Sample B contained 0.25 wt.% of AFM-1 in the adhesive.
- Sample C contained 0.5 wt.% of AFM-1.
- Sample D contained 1.0 wt.% of AFM-1.
- sample E contained 2.5 wt.% of AFM- 1 in the structural adhesive formulation.
- AFM-1 Table 3 Structural Adhesive Containing AFM-1 in DP807 (weight percents)
- abrasive pad known by the trade designation Scotch-Brite Heavy Duty Scour Pad, available from 3M Company, St. Paul, MN, USA
- Scotch-Brite Heavy Duty Scour Pad available from 3M Company, St. Paul, MN, USA
- HDPE high density polyethylene
- the "wet out time” is reported as the last time when the glass coverslip is successfully bonded to the HDPE coupon.
- the adhesive wets out around the edges of the coverslip.
- the "wet out time” is 10 min if the bond is formed at 10 min but not 15 min.
- the experimental structural adhesives were also evaluated in an aluminum-shim deformation test (Shim Curl Measurement) that was used to measure polymerization stress.
- the testing procedure and apparatus were developed in house.
- a laser profilometer obtained from B&H Machine Co., Inc., Roberts, WI, USA was used to measure the profile of the adhesive-coated shims.
- the profilometer was equipped with a Keyence LK-011 laser displacement sensor head and a Keyence LK-3101 controller (Keyence Corporation of America, Elmwood Park, NJ, USA).
- a custom sample holder was fabricated from a machined parallel-surfaced block of metal with a milled groove about 3 3/8" (8.85 cm) long that was 3/8" (0.953 cm) wide and 5/32" (0.397 cm) deep.
- the sample holder was designed so that the samples could be reproducibly placed in the same spot relative to the laser.
- the sample holder was attached to the same optical table as the laser scanner, using four screws.
- the laser scanned the sample lengthwise from left to right. It then moved slightly over and scanned back to the left. Three down and back scans were performed and the scans were averaged to provide an average profile for the sample.
- the data was then imported into a Microsoft Excel computer spreadsheet program for analysis. Typically for each sample, four shims were coated and measured. Each shim was scanned six times (three down and back scans). After the raw data was imported into Microsoft Excel, the six scans were averaged into an average scan, or profile. The averaged profile data was then vertically adjusted so that the lowest point was set to zero.
- the height above the sample holder of each curled shim was then determined at the 2.125" (5.40 cm) width point. This involves finding the two points at which the two sides of the curled shim are approximately 2.125" apart. The height in micrometers at these points (height at 2.125" width) was used as a measure of shim curl.
- the shims were coated with structural adhesive sample at 30 mils (0.762 mm) thickness as described in more detail below, hung vertically for 15 minutes, then laid flat on a piece of Clearsil® T10 release liner (obtained from CP Films, Inc. of Martinsville, VA, USA) and allowed to cure overnight.
- Sample E which contained 2.5 wt.% of AFM-1 in DP807, produced a relatively flat shim with a shim height of only 552 ⁇ at 2.125" width, a 63% reduction compared to the control formulation.
- Similar results were obtained for DP807 containing AFM-2, AFM-3, and AFM-6. (Note: For AFM-l-containing samples, shim curl was measured 3 days after the shims were coated. For all other AFMs, the shim curl was measured approximately 18-24 hours after the shims were coated.)
- Clip two shims side by side into a small binder clip.
- the weight percents of the AFM-2 have been adjusted according to molecular weight, in order provide the same mole percent as used for AFM-1 in example 122 above.
- Example 125 Addition-Fragmentation Monomer AFM-4 in Low-Stress Structural Adhesives Table 15. Structural Adhesive Containing AFM-4 in DP807 (weight percents)
- R 1 , R 2 and R 3 are each independently Z m -Q-, a (hetero)alkyl group or a (hetero)aryl with the proviso that at least one of R 1 , R 2 and R 3 is Z m -Q-,
- Q is a linking group have a valence of m +1 ;
- Z is an ethylenically unsaturated polymerizable group
- n 1 to 6;
- each X 1 is independently -O- or -NR 4 -, where R 4 is H or C1-C4 alkyl, and n is 0 or 1.
- Z comprises a vinyl, vinyloxy, (meth)acryloxy, (meth)acrylamido, styrenic and acetylenic functional groups.
- R 4 is H or C1-C4 alkyl
- each R 4 is hydrogen, a Ci to C 4 alkyl group, or aryl group
- each R 6 is an alkylene group having 1 to 6 carbon atoms, a 5- or 6-membered cycloalkylene group having 5 to 10 carbon atoms, or a divalent arylene group having 6 to 16 carbon atoms, with the proviso that Q-Z does not contain peroxidic linkages.
- a polymerizable composition comprising the addition-fragation agent any of the previous embodiments, at least one free-radically polymerizable monomer, and an initiator.
- composition of embodiment 12 comprising:
- X 2 comprises an electrophilic or nucleophilic functional group
- X 3 is X 2 , X l -R 2 or X l -R 3 , and
- n 0 or 1 ;
- A is a functional group that is co-reactive with functional group X 2 , R 4 is hydrogen, a Ci to C 4 alkyl group, or aryl group; R 5 is a single bond or a divalent (hetero)hydrocarbyl linking group that joins the ethylenically unsaturated group to reactive functional group A.
- R 5 is selected from a single bond or a divalent linking group that joins an ethylenically unsaturated group to co- reactive functional group A. 19. The method of embodiment 17 wherein R is is selected from -0-.
- R 6 is an alkylene group having 1 to 6 carbon atoms, a 5- or 6-membered cycloalkylene group having 5 to 10 carbon atoms, or a divalent arylene group having 6 to 16 carbon atoms.
- the co- reactive functional group A comprises a secondary amino or hydroxyl group
- the co- reactive functional group comprises a carboxyl, ester, acyl halide, isocyanato, epoxy, anhydride, azlactonyl or oxazolinyl group;
- the reactive functional group X 2 comprises a carboxyl group
- the co-reactive functional group A comprises a hydroxyl, amino, epoxy, isocyanate, or oxazolinyl group.
- a method of bonding two substrate together comprising the steps of coating the polymerizable composition of any of embodiments 1-16 to a surface of one or both substrates, contacting the coated surfaces optionally with pressure, and curing the polymerizable compositions.
- a method of bonding two substrate together comprising the steps of coating the polymerizable composition of any of embodiments 1-16 to a surface of one or both substrates, wherein he coating of polymerizable composition is at least partially cured, contacting the coated surfaces optionally with pressure, and further curing the polymerizable compositions if necessary.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Plastic & Reconstructive Surgery (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Polymerisation Methods In General (AREA)
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP19154784.3A EP3502092B1 (en) | 2011-02-15 | 2012-02-01 | Addition-fragmentation agents |
| EP12703667.1A EP2675783B1 (en) | 2011-02-15 | 2012-02-01 | Addition-fragmentation agents |
| JP2013553464A JP5925218B2 (ja) | 2011-02-15 | 2012-02-01 | 付加開裂剤 |
| KR1020137024266A KR101940161B1 (ko) | 2011-02-15 | 2012-02-01 | 부가-단편화제 |
| CN201280006055.2A CN103328437B (zh) | 2011-02-15 | 2012-02-01 | 加成-断裂剂 |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201161442980P | 2011-02-15 | 2011-02-15 | |
| US61/442,980 | 2011-02-15 | ||
| US13/169,306 | 2011-06-27 | ||
| US13/169,306 US20120208965A1 (en) | 2011-02-15 | 2011-06-27 | Addition-fragmentation agents |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2012112304A1 true WO2012112304A1 (en) | 2012-08-23 |
Family
ID=46637380
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2012/023475 Ceased WO2012112304A1 (en) | 2011-02-15 | 2012-02-01 | Addition-fragmentation agents |
Country Status (6)
| Country | Link |
|---|---|
| US (2) | US20120208965A1 (enExample) |
| EP (2) | EP2675783B1 (enExample) |
| JP (1) | JP5925218B2 (enExample) |
| KR (1) | KR101940161B1 (enExample) |
| CN (1) | CN103328437B (enExample) |
| WO (1) | WO2012112304A1 (enExample) |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2013028401A1 (en) * | 2011-08-23 | 2013-02-28 | 3M Innovative Properties Company | Addition-fragmentation agents |
| US9056043B2 (en) | 2011-02-15 | 2015-06-16 | 3M Innovative Properties Company | Dental compositions comprising ethylenically unsaturated addition-fragmentation agent |
| KR20150096479A (ko) * | 2012-12-17 | 2015-08-24 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | 부가-단편화 올리고머 |
| JP2015537082A (ja) * | 2012-11-12 | 2015-12-24 | スリーエム イノベイティブ プロパティズ カンパニー | 付加開裂剤 |
| WO2016069290A1 (en) | 2014-10-31 | 2016-05-06 | 3M Innovative Properties Company | Dental materials and methods |
| KR20160062175A (ko) * | 2013-10-16 | 2016-06-01 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | 알릴 다이설파이드-함유 부가-단편화 올리고머 |
| US9433563B2 (en) | 2011-06-29 | 2016-09-06 | Bradley D. Craig | Dental compositions comprising a fatty mono(meth)acrylate |
| WO2017136374A1 (en) | 2016-02-05 | 2017-08-10 | 3M Innovative Properties Company | Dental compositions comprising nanoparticles providing a refractive index differential between polymerizable resin and filler |
| US10350297B2 (en) | 2014-10-31 | 2019-07-16 | 3M Innovative Properties Company | Dental materials and methods |
| US10479848B2 (en) * | 2015-02-20 | 2019-11-19 | 3M Innovative Properties Company | Addition-fragmentation oligomers |
| WO2022096973A1 (en) | 2020-11-05 | 2022-05-12 | 3M Innovative Properties Company | Imide addition-fragmentation agents |
| WO2023105315A1 (en) | 2021-12-06 | 2023-06-15 | 3M Innovative Properties Company | Dental compositions |
| WO2023105327A1 (en) | 2021-12-06 | 2023-06-15 | 3M Innovative Properties Company | Adhesives comprising cyclic imide addition-fragmentation and adhesion agents |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10370322B2 (en) | 2011-02-15 | 2019-08-06 | 3M Innovative Properties Company | Addition-fragmentation agents |
| US20120208965A1 (en) | 2011-02-15 | 2012-08-16 | 3M Innovative Properties Company | Addition-fragmentation agents |
| US9758597B2 (en) * | 2011-08-05 | 2017-09-12 | The Regents Of The University Of Colorado, A Body Corporate | Reducing polymerization-induced shrinkage stress by reversible addition-fragmentation chain transfer |
| WO2013028397A2 (en) | 2011-08-23 | 2013-02-28 | 3M Innovative Properties Company | Dental compositions comprising addition-fragmentation agents |
| KR20140142340A (ko) | 2012-04-03 | 2014-12-11 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | 광염기 발생제를 포함하는 가교결합성 조성물 |
| JP6351608B2 (ja) | 2012-11-12 | 2018-07-04 | スリーエム イノベイティブ プロパティズ カンパニー | 付加開裂剤を含む歯科用組成物 |
| WO2014116461A1 (en) | 2013-01-24 | 2014-07-31 | 3M Innovative Properties Company | Photoinitiated oligomerization of methacrylate esters |
| JP6300899B2 (ja) * | 2013-03-20 | 2018-03-28 | スリーエム イノベイティブ プロパティズ カンパニー | 高屈折率の付加−開裂剤 |
| EP2986269A1 (en) | 2013-04-15 | 2016-02-24 | 3M Innovative Properties Company | Dental composition containing high refractive index monomers |
| CN105555855B (zh) | 2013-09-20 | 2018-08-14 | 3M创新有限公司 | 包含三硫代碳酸酯的加成-断裂剂 |
| WO2015126657A1 (en) | 2014-02-18 | 2015-08-27 | 3M Innovative Properties Company | Addition-fragmentation oligomers having high refractive index groups |
| EP4501303A3 (en) | 2017-12-21 | 2025-04-30 | Solventum Intellectual Properties Company | Inorganic dental fillers including a silane treated surface |
| WO2020119908A1 (en) * | 2018-12-13 | 2020-06-18 | Henkel IP & Holding GmbH | (meth)acrylate-functionalized waxes and curable compositions made therewith |
| CN111848529A (zh) * | 2020-07-05 | 2020-10-30 | 李太杰 | 一种具有阻燃性的链转移剂及其制备方法 |
Citations (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3496250A (en) | 1967-02-21 | 1970-02-17 | Borg Warner | Blends of epoxy resins and acrylonitrile butadiene-styrene graft copolymers |
| US4503169A (en) | 1984-04-19 | 1985-03-05 | Minnesota Mining And Manufacturing Company | Radiopaque, low visual opacity dental composites containing non-vitreous microparticles |
| US4547323A (en) | 1984-03-21 | 1985-10-15 | Scm Corporation | Synthesis of 2,2-dimethyl-4-methyleneglutaric acid and derivatives |
| US4886861A (en) | 1985-04-23 | 1989-12-12 | E. I. Dupont De Nemours And Company | Molecular weight control in free radical polymerizations |
| US5324879A (en) | 1985-12-03 | 1994-06-28 | Commonwealth Scientific And Industrial Research Organisation | Oligomerization process |
| US6030606A (en) | 1998-06-22 | 2000-02-29 | 3M Innovative Properties Company | Dental restoratives comprising Bis-EMA6 |
| US6184339B1 (en) * | 1996-11-14 | 2001-02-06 | The United States Of America As Represented By The Secretary Of The Commerce | High strength polymeric networks derived from (meth) acrylate resins with organofluorine content and process for preparing same |
| US6316519B1 (en) * | 1997-02-19 | 2001-11-13 | E. I. Du Pont De Nemours And Company | Molecular weight controlled polymers by photopolymerization |
| US6730156B1 (en) | 1999-10-28 | 2004-05-04 | 3M Innovative Properties Company | Clustered particle dental fillers |
| US20050008967A1 (en) * | 2003-03-05 | 2005-01-13 | Fuji Photo Film Co., Ltd. | Polymerizable composition and compound therefor |
| US20060009574A1 (en) * | 2001-01-26 | 2006-01-12 | Aert Huub V | Method of emulsion polymerization |
| US7090722B2 (en) | 2004-05-17 | 2006-08-15 | 3M Innovative Properties Company | Acid-reactive dental fillers, compositions, and methods |
| US7090721B2 (en) | 2004-05-17 | 2006-08-15 | 3M Innovative Properties Company | Use of nanoparticles to adjust refractive index of dental compositions |
| US7156911B2 (en) | 2004-05-17 | 2007-01-02 | 3M Innovative Properties Company | Dental compositions containing nanofillers and related methods |
| US7649029B2 (en) | 2004-05-17 | 2010-01-19 | 3M Innovative Properties Company | Dental compositions containing nanozirconia fillers |
Family Cites Families (29)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3660143A (en) * | 1970-12-21 | 1972-05-02 | Ford Motor Co | Acrylic rubber-urethane-acrylate paint and painting process |
| US3910992A (en) * | 1972-09-28 | 1975-10-07 | Goodrich Co B F | Liquid vinylidene-terminated polymers |
| US4119640A (en) * | 1975-07-10 | 1978-10-10 | Union Carbide Corporation | Polymerizable epoxide-modified compositions |
| JPS5374049A (en) * | 1976-11-04 | 1978-07-01 | Toray Industries | Soft contact lens material |
| US4260701A (en) * | 1980-05-12 | 1981-04-07 | Lee Pharmaceuticals | Formulation for self-curing artificial fingernails containing methoxyethyl methacrylate |
| US4608423A (en) * | 1985-06-20 | 1986-08-26 | Scm Corporation | Linear addition polyester copolymers |
| US4621131A (en) * | 1986-02-06 | 1986-11-04 | Scm Corporation | Polyesters derived from 2,2-dimethyl-4-methyleneglutaric acid and coatings prepared therefrom |
| US4877838A (en) * | 1988-01-25 | 1989-10-31 | The Glidden Company | High solids coatings with reactive epoxy ester diluent |
| EP0458296B1 (en) * | 1990-05-24 | 1996-03-06 | Nippon Paint Co., Ltd. | Modified epoxy resins having acetylenically unsaturated functions |
| US5264530A (en) * | 1992-05-01 | 1993-11-23 | E. I. Du Pont De Nemours And Company | Process of polymerization in an aqueous system |
| IL111484A (en) * | 1993-11-03 | 2001-06-14 | Commw Scient Ind Res Org | Polymerization process using pendant chain transfer means to regulate the molecular weight, the polymers thus obtained and a number of new pesticide compounds |
| US5767211A (en) * | 1996-05-02 | 1998-06-16 | E. I. Du Pont De Nemours And Company | Synthesis of multi-functional hyperbranched polymers by polymerization of di-or tri-vinyl monomers in the presence of a chain transfer catalyst |
| JPH101523A (ja) * | 1996-06-14 | 1998-01-06 | Japan Synthetic Rubber Co Ltd | 放射線硬化性樹脂組成物 |
| US20020072580A1 (en) * | 2000-01-26 | 2002-06-13 | Aert Huub Van | Method of emulsion polymerization |
| EP1217010B1 (en) * | 2000-12-20 | 2004-08-18 | Agfa-Gevaert | Method of emulsion polymerization |
| DE10048258B4 (de) * | 2000-09-29 | 2004-08-19 | Byk-Chemie Gmbh | Verlaufmittel für Oberflächenbeschichtungen |
| WO2003029355A1 (en) * | 2001-09-27 | 2003-04-10 | Sekisui Chemical Co., Ltd. | Curable compositions, sealing material, and adhesive |
| CA2414719C (en) * | 2001-12-21 | 2009-07-21 | Dainippon Ink And Chemicals, Inc. | Curable resin compositions and process for preparing oligomers containing acrylate groups and substituted methacrylate groups |
| US7943680B2 (en) * | 2005-02-10 | 2011-05-17 | The Regents Of The University Of Colorado | Stress relaxation in crosslinked polymers |
| JP2009540058A (ja) | 2006-06-09 | 2009-11-19 | デンツプライ インターナショナル インコーポレーテッド | 光重合性、光開裂性樹脂及び低収縮、低応力複合組成物 |
| JP5260505B2 (ja) | 2006-06-09 | 2013-08-14 | デンツプライ インターナショナル インコーポレーテッド | 低応力流動性歯科用組成物 |
| ATE470681T1 (de) * | 2006-07-12 | 2010-06-15 | Novartis Ag | Aktinisch vernetzbare copolymere zur herstellung von kontaktlinsen |
| JP5287249B2 (ja) * | 2006-10-20 | 2013-09-11 | 日本ゼオン株式会社 | 重合性組成物、架橋性樹脂、およびそれの製法、並びに用途 |
| US20100021869A1 (en) * | 2006-12-28 | 2010-01-28 | Abuelyaman Ahmed S | (meth)acryloyl-containing materials, compositions, and methods |
| CA2712236C (en) | 2008-01-15 | 2017-01-10 | Dentsply International Inc. | Functional resin composition for regulated polymerization stress |
| EP2552380B1 (en) | 2010-03-31 | 2019-04-24 | 3M Innovative Properties Company | Polymerizable isocyanurate monomers and dental compositions |
| CN103370041B (zh) * | 2011-02-15 | 2016-06-15 | 3M创新有限公司 | 包含烯键式不饱和加成-断裂剂的牙科用组合物 |
| US20120208965A1 (en) | 2011-02-15 | 2012-08-16 | 3M Innovative Properties Company | Addition-fragmentation agents |
| JP6087355B2 (ja) * | 2011-08-23 | 2017-03-01 | スリーエム イノベイティブ プロパティズ カンパニー | 付加開裂剤 |
-
2011
- 2011-06-27 US US13/169,306 patent/US20120208965A1/en not_active Abandoned
-
2012
- 2012-02-01 KR KR1020137024266A patent/KR101940161B1/ko active Active
- 2012-02-01 EP EP12703667.1A patent/EP2675783B1/en active Active
- 2012-02-01 JP JP2013553464A patent/JP5925218B2/ja active Active
- 2012-02-01 WO PCT/US2012/023475 patent/WO2012112304A1/en not_active Ceased
- 2012-02-01 CN CN201280006055.2A patent/CN103328437B/zh active Active
- 2012-02-01 EP EP19154784.3A patent/EP3502092B1/en active Active
-
2015
- 2015-03-31 US US14/674,666 patent/US9403966B2/en active Active
Patent Citations (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3496250A (en) | 1967-02-21 | 1970-02-17 | Borg Warner | Blends of epoxy resins and acrylonitrile butadiene-styrene graft copolymers |
| US4547323A (en) | 1984-03-21 | 1985-10-15 | Scm Corporation | Synthesis of 2,2-dimethyl-4-methyleneglutaric acid and derivatives |
| US4503169A (en) | 1984-04-19 | 1985-03-05 | Minnesota Mining And Manufacturing Company | Radiopaque, low visual opacity dental composites containing non-vitreous microparticles |
| US4886861A (en) | 1985-04-23 | 1989-12-12 | E. I. Dupont De Nemours And Company | Molecular weight control in free radical polymerizations |
| US5324879A (en) | 1985-12-03 | 1994-06-28 | Commonwealth Scientific And Industrial Research Organisation | Oligomerization process |
| US6184339B1 (en) * | 1996-11-14 | 2001-02-06 | The United States Of America As Represented By The Secretary Of The Commerce | High strength polymeric networks derived from (meth) acrylate resins with organofluorine content and process for preparing same |
| US6316519B1 (en) * | 1997-02-19 | 2001-11-13 | E. I. Du Pont De Nemours And Company | Molecular weight controlled polymers by photopolymerization |
| US6030606A (en) | 1998-06-22 | 2000-02-29 | 3M Innovative Properties Company | Dental restoratives comprising Bis-EMA6 |
| US6730156B1 (en) | 1999-10-28 | 2004-05-04 | 3M Innovative Properties Company | Clustered particle dental fillers |
| US20060009574A1 (en) * | 2001-01-26 | 2006-01-12 | Aert Huub V | Method of emulsion polymerization |
| US20050008967A1 (en) * | 2003-03-05 | 2005-01-13 | Fuji Photo Film Co., Ltd. | Polymerizable composition and compound therefor |
| US7090722B2 (en) | 2004-05-17 | 2006-08-15 | 3M Innovative Properties Company | Acid-reactive dental fillers, compositions, and methods |
| US7090721B2 (en) | 2004-05-17 | 2006-08-15 | 3M Innovative Properties Company | Use of nanoparticles to adjust refractive index of dental compositions |
| US7156911B2 (en) | 2004-05-17 | 2007-01-02 | 3M Innovative Properties Company | Dental compositions containing nanofillers and related methods |
| US7649029B2 (en) | 2004-05-17 | 2010-01-19 | 3M Innovative Properties Company | Dental compositions containing nanozirconia fillers |
Non-Patent Citations (5)
| Title |
|---|
| DETERMINATION OF POLYMERIZATION SHRINKAGE KINETICS IN VISIBLE-LIGHT-CURED MATERIALS: METHODS DEVELOPMENT, DENTAL MATERIALS, October 1991 (1991-10-01), pages 281 - 286 |
| HUTSON, L.; KRSTINA, J.; MOAD, G.; MORROW, G. R.; POSTMA, A.; RIZZARDO, E.; THANG, S. H., MACROMOLECULES, vol. 37, 2004, pages 4441 - 4452 |
| K. J. ABBEY ET AL: "Synthesis and copolymerization behavior of methacrylate dimers", JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY, vol. 31, no. 13, 1 December 1993 (1993-12-01), pages 3417 - 3424, XP055020968, ISSN: 0887-624X, DOI: 10.1002/pola.1993.080311330 * |
| LILLIAN HUTSON ET AL: "Chain Transfer Activity of [omega]-Unsaturated Methacrylic Oligomers in Polymerizations of Methacrylic Monomers", MACROMOLECULES, vol. 37, no. 12, 1 June 2004 (2004-06-01), pages 4441 - 4452, XP055020970, ISSN: 0024-9297, DOI: 10.1021/ma049813o * |
| MOAD, C. L.; MOAD, G.; RIZZARDO, E.; THANG, S. H., MACRORNOLECULES, vol. 29, 1996, pages 7717 - 7726 |
Cited By (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9320685B2 (en) | 2011-02-15 | 2016-04-26 | 3M Innovative Properties Company | Dental compositions comprising ethylenically unsaturated addition-fragmentation agent |
| US9056043B2 (en) | 2011-02-15 | 2015-06-16 | 3M Innovative Properties Company | Dental compositions comprising ethylenically unsaturated addition-fragmentation agent |
| US9433563B2 (en) | 2011-06-29 | 2016-09-06 | Bradley D. Craig | Dental compositions comprising a fatty mono(meth)acrylate |
| US10022306B2 (en) | 2011-06-29 | 2018-07-17 | 3M Innovative Properties Company | Dental compositions comprising a fatty mono(meth)acrylate |
| WO2013028401A1 (en) * | 2011-08-23 | 2013-02-28 | 3M Innovative Properties Company | Addition-fragmentation agents |
| US8980969B2 (en) | 2011-08-23 | 2015-03-17 | 3M Innovative Properties Company | Addition-fragmentation agents |
| JP2015537082A (ja) * | 2012-11-12 | 2015-12-24 | スリーエム イノベイティブ プロパティズ カンパニー | 付加開裂剤 |
| KR20150096479A (ko) * | 2012-12-17 | 2015-08-24 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | 부가-단편화 올리고머 |
| JP2016513071A (ja) * | 2012-12-17 | 2016-05-12 | スリーエム イノベイティブ プロパティズ カンパニー | 付加開裂オリゴマー |
| KR102008353B1 (ko) | 2012-12-17 | 2019-08-07 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | 부가-단편화 올리고머 |
| KR20160062175A (ko) * | 2013-10-16 | 2016-06-01 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | 알릴 다이설파이드-함유 부가-단편화 올리고머 |
| KR101712414B1 (ko) * | 2013-10-16 | 2017-03-06 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | 알릴 다이설파이드-함유 부가-단편화 올리고머 |
| US9758478B2 (en) | 2013-10-16 | 2017-09-12 | 3M Innovative Properties Company | Allyl disulfide-containing addition-fragmentation oligomers |
| WO2016069290A1 (en) | 2014-10-31 | 2016-05-06 | 3M Innovative Properties Company | Dental materials and methods |
| US10350297B2 (en) | 2014-10-31 | 2019-07-16 | 3M Innovative Properties Company | Dental materials and methods |
| US10479848B2 (en) * | 2015-02-20 | 2019-11-19 | 3M Innovative Properties Company | Addition-fragmentation oligomers |
| WO2017136374A1 (en) | 2016-02-05 | 2017-08-10 | 3M Innovative Properties Company | Dental compositions comprising nanoparticles providing a refractive index differential between polymerizable resin and filler |
| US11246808B2 (en) | 2016-02-05 | 2022-02-15 | 3M Innovative Properties Company | Dental compositions comprising nanoparticles providing a refractive index differential between polymerizable resin and filler |
| US11844849B2 (en) | 2016-02-05 | 2023-12-19 | 3M Innovative Properties Company | Dental compositions comprising nanoparticles providing a refractive index differential between polymerizable resin and filler |
| WO2022096973A1 (en) | 2020-11-05 | 2022-05-12 | 3M Innovative Properties Company | Imide addition-fragmentation agents |
| US12404419B2 (en) | 2020-11-05 | 2025-09-02 | 3M Innovative Properties Company | Imide addition-fragmentation agents |
| WO2023105315A1 (en) | 2021-12-06 | 2023-06-15 | 3M Innovative Properties Company | Dental compositions |
| WO2023105327A1 (en) | 2021-12-06 | 2023-06-15 | 3M Innovative Properties Company | Adhesives comprising cyclic imide addition-fragmentation and adhesion agents |
| US12329833B2 (en) | 2021-12-06 | 2025-06-17 | Solventum Intellectual Properties Company | Dental compositions |
| US12398301B2 (en) | 2021-12-06 | 2025-08-26 | 3M Innovative Properties Company | Adhesives comprising cyclic imide addition-fragmentation and adhesion agents |
Also Published As
| Publication number | Publication date |
|---|---|
| EP2675783B1 (en) | 2020-04-22 |
| US20120208965A1 (en) | 2012-08-16 |
| CN103328437B (zh) | 2016-05-04 |
| KR101940161B1 (ko) | 2019-01-18 |
| EP3502092B1 (en) | 2022-10-19 |
| US20150203658A1 (en) | 2015-07-23 |
| JP5925218B2 (ja) | 2016-05-25 |
| KR20140010396A (ko) | 2014-01-24 |
| US9403966B2 (en) | 2016-08-02 |
| CN103328437A (zh) | 2013-09-25 |
| EP2675783A1 (en) | 2013-12-25 |
| JP2014513154A (ja) | 2014-05-29 |
| EP3502092A1 (en) | 2019-06-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2675783B1 (en) | Addition-fragmentation agents | |
| EP2917250B1 (en) | Addition-fragmentation agents | |
| EP2748206B1 (en) | Addition-fragmentation agents | |
| JP6381542B2 (ja) | 液体光学接着剤組成物 | |
| EP2571908B1 (en) | Polymerizable ionic liquid compositions | |
| AU2009302212B2 (en) | Carbamate-methacrylate monomers and their use in dental applications | |
| JP4482739B2 (ja) | 反応性アクリル系重合体およびその製造方法、硬化性アクリル系重合体、硬化性組成物、硬化体およびこれらの用途 | |
| US10370322B2 (en) | Addition-fragmentation agents | |
| JP4018252B2 (ja) | 新規なウレタンジアクリレート | |
| US6281310B1 (en) | Methacrylated or acrylated cyanoacetates and the adhesives and polymers thereof | |
| TW202419489A (zh) | 接著劑、硬化物及構件 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 201280006055.2 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12703667 Country of ref document: EP Kind code of ref document: A1 |
|
| DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2012703667 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2013553464 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 20137024266 Country of ref document: KR Kind code of ref document: A |