WO2012111647A1 - 層状化合物-金属粒子複合体及びその製造方法、並びにこれを用いたサスペンション、薄膜及びフレキシブル太陽電池 - Google Patents

層状化合物-金属粒子複合体及びその製造方法、並びにこれを用いたサスペンション、薄膜及びフレキシブル太陽電池 Download PDF

Info

Publication number
WO2012111647A1
WO2012111647A1 PCT/JP2012/053341 JP2012053341W WO2012111647A1 WO 2012111647 A1 WO2012111647 A1 WO 2012111647A1 JP 2012053341 W JP2012053341 W JP 2012053341W WO 2012111647 A1 WO2012111647 A1 WO 2012111647A1
Authority
WO
WIPO (PCT)
Prior art keywords
layered compound
particle composite
metal particle
metal
solvent
Prior art date
Application number
PCT/JP2012/053341
Other languages
English (en)
French (fr)
Inventor
山田 淳
小川 雅司
栗原 隆
伊東 謙吾
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Priority to CN201280018173.5A priority Critical patent/CN103502148B/zh
Priority to DK12747853T priority patent/DK2676931T3/da
Priority to EP12747853.5A priority patent/EP2676931B1/en
Priority to US13/985,193 priority patent/US9035169B2/en
Priority to KR1020137023921A priority patent/KR101934376B1/ko
Publication of WO2012111647A1 publication Critical patent/WO2012111647A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/36Silicates having base-exchange properties but not having molecular sieve properties
    • C01B33/38Layered base-exchange silicates, e.g. clays, micas or alkali metal silicates of kenyaite or magadiite type
    • C01B33/44Products obtained from layered base-exchange silicates by ion-exchange with organic compounds such as ammonium, phosphonium or sulfonium compounds or by intercalation of organic compounds, e.g. organoclay material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/42Clays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • C09C3/041Grinding
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Definitions

  • the present invention relates to a layered compound-metal particle composite, a method for producing the same, and a layered compound-metal particle composite suspension, a layered compound-metal particle composite thin film, and a flexible solar cell using the same.
  • Patent Document 1 discloses that a complex obtained by aggregating noble metal nanoparticles in a fluid matrix typified by smectite and stabilizing the aggregated state is obtained by Raman spectroscopy using SERS (surface enhanced Raman scattering). The technique used as a SERS substrate to be used is disclosed. By stabilizing the aggregation state of the noble metal nanoparticles in the fluid matrix, detection with good reproducibility becomes possible.
  • a noble metal particle is generated in a dispersion in which plate-like fine particles such as smectite are dispersed in an aqueous solution or a high-polarity solvent.
  • JP 2006-184247 A JP 11-61209 A Japanese Patent Laid-Open No. 10-182142
  • montmorillonite group minerals which are typical examples of clay-based layered compounds, have a layered structure composed of repeated three-layer structures with a regular octahedron as the basic skeleton, and exchange alkali metal ions between the layers. It has as a cation.
  • montmorillonite group minerals are generally hydrophilic at the surface and between layers, so they have excellent affinity with highly polar substances typified by polar solvents such as water and dimethylformamide, while low in toluene and ketone solvents. Lack of affinity with low-polarity substances typified by polar solvents.
  • a layered compound-metal particle composite having an affinity for a high polarity substance can be obtained, but a layered compound-metal particle composite having an affinity for a low polarity substance can be obtained. It is difficult to get a body. Therefore, the layered compound-metal particle composite is dispersed in a low-polarity organic solvent with excellent volatility to form a paste, and this is coated on a substrate to produce a desired device. It cannot be applied to a film forming method. In particular, when a multilayer structure is produced by printing or applying the paste, there are problems in terms of work efficiency and economy.
  • the layered compound-metal particle composite obtained by the methods described in Patent Documents 2 and 3 has no affinity with a low-polarity substance, the layered compound-metal particle composite is combined with an organic substance to form a device. This is a problem and its use is limited.
  • a layered compound-metal particle composite is dispersed in a bulk hetero layer of an organic solar cell and the photoelectric conversion rate is improved by the plasmonic function of the metal nanoparticles, the organic semiconductor constituting the bulk hetero layer Without an affinity for the layered compound-metal particle composite, it is difficult to bring the metal nanoparticles close to the bulk heterojunction, and the effect of improving the photoelectric conversion efficiency cannot be obtained sufficiently.
  • the present invention has been made in view of the above circumstances, and is a layered compound-metal particle composite having excellent affinity with a low-polarity substance, a method for producing the same, and a coating liquid, a coating film using the same, and
  • An object is to provide an electronic device, a photoelectric conversion device, and a performance control method thereof.
  • Patent Documents 2 and 3 initially applied the technique of Patent Documents 2 and 3 for producing a layered compound-metal particle composite in a homogeneous phase of an aqueous solution or a solution using a highly polar solvent to intercalate organic ions.
  • Attempts were made to combine the organically modified layered compound and the metal colloid made lipophilic by a homogeneous phase consisting of a non-aqueous solvent. That is, in order to combine a hydrophilic metal colloid with a hydrophobic organically modified layered compound in a homogeneous phase, a relatively polar solvent that is compatible with water is mixed with the aqueous metal colloid solution.
  • the organically modified layered compound was added to this mixed liquid.
  • contrary to expectation it was found that despite the coexistence of the metal colloid and the organically modified layered compound in the above mixed solvent, no complexation occurred and each of them maintained a stable state independently. .
  • an organically modified layered compound oleophilic by intercalation of organic ions is converted into an aqueous metal colloid solution, a poor solvent for the metal colloid, and an organically modified layered compound. It was revealed that a layered compound-metal particle composite excellent in affinity with a low-polarity substance can be obtained by adding a non-aqueous solvent excellent in swelling property.
  • a non-aqueous solvent having a polarity that is not compatible with water is used, the aqueous phase in which the metal colloid is dispersed and the organic phase in which the organically modified layered compound is dispersed (non-aqueous solvent) are in a phase-separated state.
  • the organically modified layered compound is modified to be hydrophobic by intercalation of organic ions and has an excessive charge derived from organic ions on the surface or between layers.
  • the metal colloid contained in the aqueous metal colloid solution is usually surface-modified with citric acid or the like in order to increase its affinity with water, and the surface of the metal colloid is inherently hydrophobic depending on the location. Or hydrophilicity due to the hydrophilic group of the surface modifier. For this reason, it is considered that a hydrophobic interaction or electrostatic interaction acts between the metal colloid and the organically modified layered compound, and a complex of the metal colloid and the organically modified layered compound is formed.
  • the method for producing a layered compound-metal particle composite according to the present invention is based on the above findings by the present inventors, and is a method for producing a composite of a layered compound and metal particles. Intercalating organic ions between layers to form an organically modified layered compound, a metal colloid aqueous solution in which the metal particles are dispersed in water as a metal colloid in the organically modified layered compound, and a poor solvent for the metal colloid And a step of adding a non-aqueous solvent excellent in swelling property of the organically modified layered compound.
  • this method for producing a layered compound-metal particle composite by using a non-aqueous solvent that is a poor solvent for metal colloids and that is excellent in the swellability of the organically modified layered compound, organic ions can be intercalated. Compounding of the oleophilic organically modified layered compound and the metal colloid in the aqueous metal colloid solution can be advanced. As a result, a layered compound-metal particle composite having excellent affinity with a low-polar substance can be obtained.
  • the non-aqueous solvent preferably has a difference in SP (solubility parameter) value from the metal colloid of 9 MPa 1/2 or more, and is 13 Pa 1/2 or more. More preferably, it is more preferably 21 MPa 1/2 or more.
  • SP solubility parameter
  • the layered compound-metal particle composite in addition to the nonaqueous solvent and the metal colloid aqueous solution, the layered compound-metal particle composite has excellent affinity for both the water that is the solvent of the metal colloid aqueous solution and the nonaqueous solvent. It is preferable to add an amphiphilic solvent to the organically modified layered compound. By using an amphiphilic solvent, the contact frequency between a metal colloid having a high affinity with water and an organically modified layered compound having a high affinity with a non-aqueous solvent is increased. The formation of the complex can be promoted.
  • the non-aqueous solvent preferably has a dielectric constant lower than that of the amphiphilic solvent.
  • the metal particle may contain at least one of Au, Ag, Cu, Al, and Pt.
  • the organic ion may be an organic cation or anion having an arbitrary structure, and is at least one of a quaternary ammonium salt, a phosphonium salt, a fluorescent cationic dye or an oxonium salt that is hardly soluble or insoluble in water. There may be.
  • the layered compound is not particularly limited as long as it is a layered compound having exchangeable ions between layers.
  • a layered clay compound belonging to the montmorillonite mineral group or the mica group can be preferably used.
  • the layered compound-metal particle composite according to the present invention is obtained by the production method described above. Since the layered compound-metal particle composite obtained by the above-described production method is excellent in affinity with a low-polarity substance, it is dispersed in a low-polarity solvent excellent in volatility to form a paste, thereby performing operations such as printing and coating. It can be incorporated into a desired device by using a film forming method having excellent efficiency and economy. In addition, since it has excellent affinity with a low-polarity substance, devices having various functions can be obtained by combining this layered compound-metal particle composite with an organic substance.
  • a layered compound-metal particle composite suspension according to the present invention includes the above-mentioned layered compound-metal particle composite and an organic solvent as a dispersion medium for the layered compound-metal particle composite.
  • the layered compound-metal particle composite having excellent affinity with a low-polarity substance is dispersed in an organic solvent, so that a suspension in which the composite is stably dispersed can be obtained.
  • the organic solvent as the dispersion medium may be a “non-aqueous solvent” used in forming the layered compound-metal particle composite.
  • the layered compound-metal particle composite suspension further includes at least one of an organic dye, a hole transport material, a p-type semiconductor material, an electron transport material, an n-type semiconductor material, and a crosslinkable material. Also good.
  • an organic dye, a hole transport material, a p-type semiconductor material, an electron transport material, and an n-type semiconductor material in the suspension it is possible to form a functional film having various functions.
  • the strength of the formed functional film can be improved by including a crosslinkable substance in the suspension.
  • the layered compound-metal particle composite thin film according to the present invention is characterized by being coated with the above-mentioned layered compound-metal particle composite suspension.
  • the layered compound-metal particle composite multilayer functional film according to the present invention comprises a laminate comprising a plurality of layered compound-metal particle composite thin films, and the plurality of layered compound-metal particle composite thin films have different properties from each other. It is characterized by having. Thus, various functions can be expressed by laminating a plurality of layered compound-metal particle composite thin films having different characteristics.
  • the layered compound-metal particle composite multilayer functional film is disposed on an insulating layer composed of a layered compound-metal particle composite thin film having a surface resistance of 100 k ⁇ / ⁇ or more, and on the front side and the back side of the insulating layer, respectively.
  • a pair of dielectric layers composed of a layered compound-metal particle composite thin film having a resistance of 1 k ⁇ / ⁇ or more and less than 100 k ⁇ / ⁇ and a layered compound-metal particle composite thin film disposed on the outermost layer and having a surface resistance of 10 ⁇ / ⁇ or less And a collector electrode layer.
  • the dielectric layer laminated on both sides of the insulating layer functions as a polarizable electrode, and the outermost collecting electrode layer functions as a collecting electrode, thereby realizing a capacitor function as the entire multilayer functional film.
  • an electrolytic solution containing an electrolyte it can also be used as an electric double layer type capacitor (a large capacity capacitor).
  • a dye for photoelectric conversion may be added to one of the collector electrode layers and a layer adjacent thereto. In that case, it can be used as a novel light-induced electric double layer capacitor.
  • the layered compound-metal particle composite multilayer functional film can be used for a device utilizing a photoelectric conversion phenomenon such as a solar cell or a water photolysis device.
  • the electron acceptor photoreduced by the dye is used as the insulating layer (insulating layer provided between the polarizable electrodes). Or you may add to the said insulating layer and the said dielectric layer.
  • the insulating layer has a symmetrical layer structure separated by the insulating layer, and includes spectral sensitivity or light in one of the collector electrode layers and a layer adjacent thereto, and in the other of the collector electrode layers and a layer adjacent thereto.
  • Two types of dyes for photoelectric conversion each having a maximum absorption wavelength of 20 nm or more, may be added.
  • the layered compound-metal particle composite multilayer functional film laminated on one side of the insulating layer contains Pt as the metal particle, and the layered compound-metal particle laminated on the other side of the insulating layer
  • the composite multilayer functional film may contain at least one of Au, Ag, Cu, and Al as the metal particles.
  • Pt having the reduction potential of water is arranged on the (photo) reduction side, and plasmonic metal species (Au, Ag, Cu, Al) having a work function different from that of Pt are arranged on the (photo) oxidation side. By doing so, the photolysis of water can be performed reliably.
  • a flexible solar cell according to the present invention includes, as one electrode, a dielectric layer or a solid electrolyte layer composed of the above-described layered compound-metal particle composite multilayer functional film in which metal particles are less than 50 wt%, and the other electrode is a carbon fiber. It may be an electrode. That is, in order to make one electrode which has the plasmon enhancement effect of a metal particle function as a light-incidence side electrode, the other does not necessarily require light transmittance. For this reason, the electrode raw material which improved characteristics, such as low cost property, flexibility, and electroconductivity, can be positively introduced.
  • a carbon fiber electrode contributes to the realization of a flexible laminate, and in addition to being inexpensive, the current due to the electrode surface area due to the fiber structure being overwhelmingly wider than that of a flat plate. There is an advantage of easy flow. Furthermore, since the carbon fiber electrode is a light-absorbing black body, it is advantageous in that heat (infrared rays) can be used effectively. Of course, any electrode such as an Al foil may be used instead of the carbon fiber electrode. Further, in the two-photon absorption type photooxidation / reduction mechanism shown in the photodecomposition device of water, since both electrodes need to use the plasmon enhancement effect of the metal particles, the present invention has two kinds of light transmission properties.
  • An electrode composed of the above-mentioned layered compound-metal particle composite can also be used in a configuration in which a dielectric layer or a solid electrolyte is sandwiched. At this time, the electrodes and the electrode layer or the solid electrolyte material can be made flexible as a device by appropriately selecting the thickness.
  • the composite according to the present invention a high-concentration dispersion paste thereof, a thin film formed from this paste, and a laminate structure of two or more layers are composed of metal particles and an inorganic substance or inorganic-organic hybrid compound adsorbed by the metal particles. It is characterized by being able to maintain a dispersed state in a non-aqueous solvent.
  • the conductivity, plasmon resonance, or optical absorption characteristics are preferably controlled according to the amount of metal particles blended and the degree of aggregation.
  • an organically modified layered compound that is oleophilic by intercalation of organic ions by using a non-aqueous solvent that is a poor solvent for metal colloids and that is excellent in swelling property of the organically modified layered compound and
  • the complexing with the metal colloid in the metal colloid aqueous solution can be advanced.
  • a layered compound-metal particle composite having excellent affinity with a low-polar substance can be obtained.
  • FIG. 4 is a graph showing a measurement result of a transmission absorption spectrum of a gold nanocolloid aqueous solution in Example 1.
  • FIG. It is a photograph which shows a mode that the gold colloid in Example 1 transfers to the organic phase from the aqueous phase.
  • 2 is a graph showing the FTIR measurement results of reddish purple residue in Example 1.
  • FIG. 6 is a photograph showing a TEM observation result of gold nanoparticles in Example 2.
  • FIG. 10 is a graph showing the measurement results of the absorption spectrum of the organic phase in Example 3. It is a graph which shows the measurement result of the absorption spectrum of the film produced in Example 4. 6 is a graph showing the FT-IR measurement results of the colored powder obtained in Example 6.
  • FIG. 10 is a diagram showing a configuration of an electric double layer type capacitor fabricated in Example 11.
  • 14 is a view showing a configuration of a five-layered optical capacitor fabricated in Example 13.
  • FIG. It is a figure which shows the structure of the film-form solar cell produced in Example 14.
  • FIG. It is a figure which shows the structure of the photolysis device of the water produced in Example 15.
  • FIG. 6 is a diagram showing a configuration of a reaction cell used in Example 15.
  • Example 16 is a diagram showing a configuration of an experimental apparatus for Raman scattering observation in Example 16.
  • 18 is a graph showing a Raman scattering observation result in Example 16.
  • 6 is a table showing the relationship between the compounding conditions and the compounding phenomenon for Examples and Comparative Examples involving the production of a layered compound-metal particle composite.
  • FIG. 1 is a view for explaining a method for producing a layered compound-metal particle composite of this embodiment.
  • the layered compound before the lipophilic formation of the organically modified layered compound 1 is not particularly limited as long as it is a layered compound having an exchangeable ion between layers.
  • a layered clay compound belonging to the montmorillonite mineral group or the mica group is preferably used. it can.
  • the montmorillonite mineral group is a clay mineral represented by the following general formula (X, Y) 2 to 3 Z 4 O 10 (OH) 2 .mH 2 O.
  • montmorillonite magnesia montmorillonite, iron montmorillonite, iron magnesia montmorillonite, beidellite, aluminian beiderite, nontronite, aluminian nontronite, saponite, aluminian saponite
  • natural products such as hectorite and soconite.
  • synthetic products in which the OH group in the above formula is substituted with a halogen such as fluorine are also commercially available. Can be used.
  • the organic ion used to make the organically modified layered compound 1 lipophilic can be an organic cation or organic anion having any structure, and is hardly soluble or insoluble in quaternary ammonium salts, phosphonium salts, fluorescent cations. It may be an onium salt such as a dye or an oxonium salt. More specifically, a quaternary ammonium salt having a bulky cation having 4 or more carbon atoms of four alkyl groups, a phosphonium salt having a bulky cation such as an alkylphosphonium ion, an arylphosphonium ion, or the like. An oxonium salt having a bulky cation as a counter ion of a chlorate anion can be preferably used.
  • the metal colloid aqueous solution 2 is a dispersion system in which metal colloid (metal particles or metal particles having at least a part of the surface covered with a dispersant such as citric acid) is dispersed in water as a dispersion medium.
  • metal seed species of a metal particle, a particle size, and a shape so that a desired function may be expressed.
  • the particle size may be selected from a range of several nm to several hundred nm, and the particle shape such as a spherical shape or a rod shape may be selected.
  • the non-aqueous solvent is a poor solvent for the metal colloid in the metal colloid phase solution 2 and a solvent excellent in the swelling property of the organically modified layered compound 1 is used.
  • a solvent having a sufficiently large SP (solubility parameter) value difference from the metal colloid is used as the non-aqueous solvent.
  • the difference between the SP values of the metal colloid and the nonaqueous solvent is preferably 9 MPa 1/2 or more, more preferably 13 MPa 1/2 or more, 21 MPa 1/2 or more is more preferable.
  • a non-aqueous solvent having a sufficiently low solubility in the metal colloid the complexation of the organically modified layered compound 1 and the metal colloid can be more reliably advanced.
  • a layered compound-metal particle composite of this embodiment by using a non-aqueous solvent that is a poor solvent for the metal colloid and excellent in swelling property of the organically modified layered compound 1, Compounding of the organically modified layered compound 1 oleophilicized by intercalation and the metal colloid in the metal colloid aqueous solution 2 can proceed. As a result, a layered compound-metal particle composite 3 having excellent affinity with a low-polar substance can be obtained.
  • the layered compound-metal particle composite 3 exhibits a highly stable dispersion stability in a non-aqueous solvent, it can be provided in the form of a suspension (including paste) using the non-aqueous solvent as a dispersion medium.
  • Various functional materials can be formed using the layered compound-metal particle composite 3 or its suspension.
  • it can be used as a sensitizing thin film for plasmonics-based solar cells, CCD sensors, LPR sensors, etc. as well as highly durable color materials, and it can be used not only for electronic elements such as capacitors or electrode materials, but also for photosynthesis-like increases.
  • a practical power storage element and water photolysis device that can be used for photooxidation and reduction are constructed.
  • the mixed solvent of the metal colloid aqueous solution 2 and the non-aqueous solvent is phase-separated into an aqueous phase and an organic phase, and the complex moves to the organic phase. Or there is a tendency for either the formation of a condensed layer of the composite between the aqueous phase and the organic phase.
  • the complex can be concentrated by adding a metal colloid aqueous solution again and transferring the metal colloid to the organic phase.
  • the extraction operation may be repeated as many times as necessary.
  • the precipitated / precipitated complex can be dispersed in an organic solvent to obtain a suspension (paste, diluent, etc.) having an arbitrary complex concentration.
  • FIG. 2 is a view for explaining the method for producing the layered compound-metal particle composite of this embodiment.
  • This embodiment is the same as the first embodiment except that an amphiphilic solvent different from the nonaqueous solvent is further added. Therefore, the description common to the first embodiment is omitted here, and the description is centered on the content different from the first embodiment.
  • the metal colloid aqueous solution 2 and the non-aqueous solvent but also an amphiphilic solvent is added to the organically modified layered compound 1.
  • the amphiphilic solvent in this way, the contact frequency between the metal colloid having a high affinity with water and the organic modified layered compound 1 having a high affinity with the non-aqueous solvent is increased, so that the metal colloid and the organic colloid are increased. Complexation with the modified layered compound 1 can be promoted.
  • the amphiphilic solvent a solvent having excellent affinity for both the water and the non-aqueous solvent which are the solvent of the metal colloid aqueous solution 2 is used. Specifically, a solvent having a dielectric constant smaller than that of water and larger than that of a non-aqueous solvent can be preferably used. For example, when acetone, ethyl acetate, toluene or the like is used as the nonaqueous solvent, methanol or ethanol may be used as the amphiphilic solvent.
  • Example 1 A layered compound-metal particle composite was produced by the method according to the above-described embodiment in the following procedure.
  • an aqueous gold nanocolloid solution was prepared as follows. 6 ml of HAuCl 4 .4H 2 O (1 wt%) was dissolved in 594 ml of ultrapure water and heated to reflux. After boiling, 4.92 ml of 1 wt% trisodium citrate aqueous solution was added and the reflux was continued. The solution turned from pale yellow to red. After 1 hour, the reflux was stopped, and after natural cooling, it was stored at room temperature, protected from light.
  • the transmission absorption spectrum of the gold nanocolloid aqueous solution thus obtained was measured, the results shown in FIG. 3 were obtained.
  • the diameter of the gold nanoparticle was estimated to be about 55 to 60 nm.
  • 0.15 ml of a 1 wt% ethanol solution of lipophilic synthetic smectite SPN manufactured by Corp Chemical Co., Ltd. was collected in a 100 ml screw tube bottle, and 10 ml of ethyl acetate was added thereto and dispersed by ultrasonic irradiation. .
  • the organic phase (10 ml) has a smaller amount of solvent than the aqueous phase (50 ml)
  • most of the gold was observed by stirring after the addition of the aqueous gold nanocolloid solution in the presence of ethyl acetate. It was confirmed that the colloid transferred from the aqueous phase to the organic phase.
  • the organic phase was separated from the finally obtained liquid (the bottle on the right side of FIG. 4), and the solvent was distilled off to recover a reddish purple residue. When the FTIR of this reddish purple residue was measured, the results shown in FIG. 5 were obtained.
  • Example 1 Except for using hydrophilic smectite SWN manufactured by Co-op Chemical Co., Ltd., which has not been oleophilicized as smectite, an ethanol solution of hydrophilic smectite is mixed with an aqueous solution of ethyl acetate and gold nanocolloid under the same conditions as in Example 1. Added in order. However, the gold colloid remained in the aqueous phase as it was, and no transition to the organic phase was observed. From this, it was found that the transition from the aqueous phase to the organic phase of the colloidal gold confirmed in Example 1 was caused by the lipophilic treatment of the smectite interlayer or surface.
  • Example 2 A gold nanocolloid solution was prepared in the same manner as in Example 1 except that it was changed to 2.4 ⁇ 10 ⁇ 4 M (0.56 wt%) HAuCl 4 .4H 2 O.
  • the plasmon absorption was 520 nm, and therefore the diameter of the gold nanoparticle was estimated to be about 20 nm.
  • the particle diameter was 20 ⁇ 2 nm as shown in FIG.
  • Using this gold nanocolloid solution a liquid separated into an aqueous phase and an organic phase was obtained in the same procedure as in Example 1. At this time, as in Example 1, the migration of the gold nanoparticles from the aqueous phase to the organic phase was confirmed, and the final color of the organic phase was magenta.
  • Example 3 A liquid separated into an aqueous phase and an organic phase was obtained in the same manner as in Example 2 except that the order in which the gold colloid aqueous solution and ethyl acetate were added to the ethanol solution of 1 wt% smectite SPN was changed. Specifically, 0.15 ml of an ethanol solution of 1 wt% smectite SPN was collected in a 100 ml screw tube bottle, and 50 ml of an aqueous colloidal gold solution was first added to obtain a slightly turbid heterogeneous dispersion. Thereafter, 10 ml of ethyl acetate was added and stirred vigorously for 30 seconds, and allowed to stand for 10 minutes.
  • Example 4 The lipophilic synthetic smectite SAN manufactured by Co-op Chemical Co., Ltd. was dissolved in 10 ml of toluene to prepare a toluene solution having a smectite concentration of 0.05 wt%, and a uniform fine particle dispersion was obtained by ultrasonic irradiation. 50 ml of the same gold colloid aqueous solution as in Example 2 was added to this dispersion, and the same extraction operation as in Example 2 was performed to obtain a red organic phase.
  • an aqueous silver colloid solution was prepared as follows. 54 mg of AgNO 3 was dissolved in 300 mL of water to give a colorless liquid, which was refluxed and boiled under degassing. Thereafter, 6 mL of 10 wt% trisodium citrate aqueous solution deaerated for 15 minutes was added. After a few minutes, the solution turned yellow and after 15-20 minutes the color of the solution changed to yellowish gray.
  • Example 2 An experiment was performed under the same conditions as in Example 5 except that hydrophilic smectite SWN manufactured by Co-op Chemical Co., Ltd., which was not oleophilicized as smectite, was used, but no change was observed in the aqueous silver colloid solution. Therefore, a stable dispersion state was maintained. From this, it was found that the precipitation of the greenish brown precipitate in Example 5 was caused by the lipophilic treatment of smectite.
  • Example 6 When 5 ml of a 1 wt% toluene solution of lipophilic synthetic smectite SAN manufactured by Corp Chemical Co., Ltd. was added to 50 ml of an aqueous colloidal silver solution prepared by the method shown in Example 5, the mixture was allowed to stir vigorously and left as it was. It separated into an aqueous phase, and the upper organic phase was colored green. Thereafter, the organic phase was recovered, the solvent was distilled off under reduced pressure, and a large amount of methanol was added, resulting in the formation of a dark green precipitate. The precipitate was collected by filtration and dried at 60 ° C. to obtain a powder.
  • Example 7 A 10 -4 mol / l ethanol solution of 7-N, N-dimethylamino-4-methylcoumarin (abbreviation: Coumarin 311 Aldrich Laser Grade), a coumarin-based cationic dye, was prepared, and montmorillonite (trade name: Kunipia) was added to this solution. F, manufactured by Kunimine Mining Co., Ltd.) was added, and the resulting colored precipitate was collected. After drying this colored precipitate, it was prepared so as to have a solid content of 10 wt% in acetone, and finely dispersed for 1 hour in a sand mill using 0.3 ⁇ zirconia particles as a pulverizer.
  • Example 5 When the silver nanocolloid aqueous solution prepared in Example 5 was added dropwise to the obtained dispersion, a greenish gray precipitate immediately formed. This colored precipitate was recovered and subjected to a roll mill treatment overnight as a mixed solution having the following weight composition. A beige paste was obtained.
  • this cloudy layer was overlaid on the antireflection film of a Hamamatsu Photonics Si photodiode (S2386-18K), heated and pressed at 60 ° C. for 3 minutes, the substrate film was peeled off, and a laminate layer was formed on the photodiode. Formed. The photocurrent was measured for the laminated photodiode and the ratio of the unlaminated Si photodiode to the photocurrent (photocurrent enhancement ratio) was determined. The photocurrent was 1.5 because the laminate layer was transferred. Doubled.
  • Example 8 Except for using lipophilic synthetic mica (trade name: Somasif MPE, manufactured by Corp Chemical Co.) in place of the lipophilic synthetic smectite STN, an experiment was conducted in exactly the same manner as in Example 5, and the Ag-synthetic mica complex was used. Of ⁇ -butyrolactone was obtained. On the other hand, an aqueous solution of PEDOT: PSS was applied by spin coating on a transparent electrode surface on a glass substrate with ITO, and dried to form a p-type conductive polymer (hole transport layer). On this p-type conductive polymer, a previously prepared ⁇ -butyrolactone dispersion solution of Ag-synthetic mica complex was spin-coated.
  • lipophilic synthetic mica trade name: Somasif MPE, manufactured by Corp Chemical Co.
  • Example 9 The Ag-lipophilic smectite composite prepared in Example 6 was added to a mixed solution of PCBM and P3HT (solvent: chlorobenzene) at a ratio of 10 wt% with respect to the solid content, and ball mill dispersion was performed.
  • an aqueous solution of PEDOT: PSS was applied by spin coating on a transparent electrode surface on a glass substrate with ITO, and dried to form a p-type conductive polymer (hole transport layer).
  • the dispersion liquid of Ag-lipophilic smectite complex, PCBM and P3HT prepared in advance was spin-coated to form a photoelectric conversion layer.
  • an aluminum electrode was formed on the surface layer by vacuum deposition to obtain an organic solar cell sample.
  • IPCE of this organic solar cell sample was measured and the IPCE with and without the Ag-smectite composite nanoparticle layer was compared, it was found that the IPCE increased 1.5 times by providing the composite particle layer.
  • Example 10 A dispersion containing 1 wt% of lipophilic synthetic smectite SAN (trade name) manufactured by Corp Chemical Co. in 3 ml of a 0.1 g / l toluene solution of polymethyl methacrylate (abbreviation: PMMA, manufactured by Aldrich: number average molecular weight 44700) in advance. 4 ⁇ l was added and irradiated with ultrasound to obtain a uniform fine particle dispersion. Next, a colloidal solution in which 10 mg of trisodium citrate was added to 50 ml of the aqueous colloidal gold solution shown in Example 2 was added to this dispersion, followed by extraction. Concentrated.
  • PMMA polymethyl methacrylate
  • Example 3 Except for the absence of oleophilic smectite SAN, the same operation as in Example 10 was performed, but in contrast to Example 10, the metal colloid did not assemble at the water-organic phase interface at all. The organic phase remained colorless with a red color characteristic of the colloid. From this, it was found that the aggregation of metal colloids shown in Example 10 at the interface was caused by the addition of a small amount of lipophilic clay to the organic phase.
  • Example 11 A capacitor separator (thickness of about 50 ⁇ m) of Nippon Kogyo Paper Industries Co., Ltd. was impregnated with ⁇ -butyrolactone containing 0.3 M of tetraethylammonium chloride, and Au having a thickness of about 0.4 ⁇ m produced in Example 10 from both sides thereof.
  • An electric double layer type capacitor was constructed by pressure bonding in such a manner that the conductive surface of the collector electrode film was in contact with the impregnated liquid.
  • FIG. 10 shows a schematic configuration thereof. As shown in FIG. 10, the electric double layer capacitor 10 has a configuration in which a separator 18 is sandwiched by a collector electrode film 16 composed of a PMMA resin 12 and an Au collector electrode 14.
  • Example 12 20 ml of the silver nanocolloid aqueous solution shown in Example 5 is put into a 50 ml screw tube bottle, and 5 ⁇ l of a dispersion containing 1 wt% of lipophilic synthetic smectite SAN (trade name) manufactured by Coop Chemical Co. is added to 3 ml of toluene solution to disperse the fine particles.
  • a dispersion containing 1 wt% of lipophilic synthetic smectite SAN (trade name) manufactured by Coop Chemical Co. is added to 3 ml of toluene solution to disperse the fine particles.
  • an interface giving off golden luster was formed between the aqueous phase and the organic phase.
  • the colorless and transparent organic phase and the aqueous phase above and below the interface were collected with a dropper and discarded, and the metallic gloss film was transferred to a glass plate and dried at 100 ° C.
  • Example 13 A cellulose-based Millipore filter with a thickness of 90 ⁇ m was impregnated with a 35 wt% ethanol solution of lipophilic synthetic smectite SPN (trade name) manufactured by Coop Chemical Co., Ltd. and dried at room temperature for 2 hours to support the lipophilic clay. An insulating layer was formed. Next, an ethanol solution containing 70 wt% of BN composite resin (Boron International Co., Ltd .: High Boron BN-2), which is known as an antistatic resin, is prepared, and a photo-redox compound (ZnP (6) V) having the following structure is prepared.
  • Example 5 was added so as to be 0.02 mmol with respect to the resin content, and the dispersion of the Ag-smectite complex prepared in Example 5 was added so that the composite in the component became 10 wt% with respect to the resin content.
  • the mixed liquid was applied as a photodielectric layer on one side of the previous insulating layer so as to have a dry thickness of 10 ⁇ m.
  • a mixed layer of BN composite resin (High Boron BN-2) and Ag-Smectite composite containing no photo-redox compound at the same thickness was provided as a dielectric layer.
  • the tester was applied to both interfaces of the photodielectric layer / dielectric layer, the resistance in the thickness direction was 20 k ⁇ .
  • the optical capacitor 20 has a collector electrode film 16, a photodielectric layer 22, an insulating layer 24, a dielectric layer 26, and a collector electrode film 16 laminated in order from the light incident surface side.
  • a photocurrent of about 1 ⁇ A / cm 2 was instantaneously observed, and a voltage of about 0.2 V was generated between both electrodes. Electricity was generated. Even when the light irradiation was stopped, the potential was maintained for 24 hours or more, and became zero potential only by connecting an external circuit.
  • Example 14 A thick paste is prepared by kneading the Ag-smectite complex shown in Example 6 into a methyl ethyl ketone solution containing 70% by weight of BN-4, which is a solid BN composite resin, using a roll mill so that the solid content is 30% by weight. Obtained. Using a film made of a nanomembrane with a 0.1 micron thick solid electrolyte membrane on an Al foil, the paste was applied on the side of the solid electrolyte and then heated at 100 ° C. for 1 hour to impregnate the paste. And then cooled to room temperature. Furthermore, the transparent electrode film shown in Example 12 was laminated on the side opposite to Al and thermocompression bonded at 150 ° C.
  • FIG. 12 is a diagram showing the configuration of the film-like solar cell produced in Example 14.
  • the solar cell 30 includes, in order from the light incident side, an Ag collector electrode (transparent electrode film of Example 12) 32, a solid electrolyte film 34 impregnated with a paste containing the composite of Example 6, In this structure, Al foils 36 are laminated.
  • this film-like solar cell was irradiated with Xe light from the transparent electrode side with a light intensity of 0.3 W / cm 2 , a cathodic photocurrent of about several mA / cm 2 was obtained.
  • Example 15 A uniform slurry solution was prepared by mixing 10 wt% of hydrophilic clay SWN manufactured by Coop Chemical Co., Ltd., 3 wt% of a cross-linking agent (High Boron B-1) manufactured by Boron International and 2 wt% of polyvinyl alcohol.
  • a capacitor separator (thickness of about 50 ⁇ m) of Nippon Kogyo Paper Industry Co., Ltd. was immersed in this slurry solution for 15 minutes at room temperature, then pulled up and dried with hot air.
  • This paper-based ion exchanger was re-immersed in 50 mM methyl viologen solution for 1 hour, pulled up, washed with a large amount of water and dried, and the bipyridinium skeleton was fixed in clay (solid electrolyte) by ion exchange. .
  • the collector electrode film of Example 12 was immersed in a THF solution containing 5 mM of the following dye for 24 hours to allow the dye to be adsorbed and then pulled up, and the excess dye was washed with a large amount of ethanol to remove the previous porous paper-clay-viologen. Thermocompression bonding was performed at 150 ° C. on one side of the composite paper.
  • the photolysis device 40 shown in the figure includes an Ag collector electrode (anode) 32 on which a dye (Dye1) is adsorbed, a solid electrolyte 42 on which methylviologen is immobilized, and a photooxidation-reduction compound ZnP (6) V (Dye2).
  • a Pt electrode (cathode) 44 is laminated.
  • This photolysis device was sandwiched between the centers of reaction cells whose structures (half) are shown in FIG. 14, and water tanks on both sides were filled with distilled water.
  • Xe light was irradiated from both sides of the central composite film, bubbles began to be generated at the interface between the film and water immediately after the start of irradiation, and the amount of bubbles generated increased with time.
  • the generated gas was collected in a collection bottle and analyzed by gas chromatography, it was found that oxygen was generated on the Au electrode side and hydrogen was generated on the Pt electrode side.
  • Example 16 A small amount of Au and Ag clay composite paste prepared in Examples 1 and 5 on a cover glass was spotted, dried at 130 ° C. for 15 minutes, and then loaded with Rhodamine 6G (manufactured by Kodak Co., Ltd.) around the spot in the configuration shown in FIG. : Laser grade) non-aqueous solution was filled, and (He—Ne) laser light was irradiated from the top through the glass to observe Raman scattering on the surface. The observation results are summarized in FIG.
  • FIG. 17 is a table showing the relationship between the compounding conditions and the compounding phenomenon for Examples and Comparative Examples involving the production of layered compound-metal particle composites.
  • an organically modified layered compound made oleophilic by intercalation of organic ions is used, is a poor solvent for metal colloids, and is also an organically modified layered layer.
  • a nonaqueous solvent excellent in the swelling property of the compound was added together with the aqueous metal colloid solution.
  • the composite of the organically modified layered compound and the metal colloid progressed, and a layered compound-metal particle composite was obtained.
  • the difference in SP value between the metal colloid and the non-aqueous solvent was 21 MPa 1/2 or more. A method for calculating the SP value difference will be described later.
  • Comparative Examples 1 to 3 using a layered compound that was not made lipophilic (or not using the layered compound itself) the compounding of the layered compound and the metal colloid did not proceed.
  • Example 1 to 4, 10 and 12 where ethyl acetate or toluene having a very small polarity was used as the non-aqueous solvent, the mixed solvent of the aqueous metal colloid solution and the non-aqueous solvent (and the amphiphilic solvent) was the aqueous phase.
  • the organic phase was separated into the organic phase and the composite was transferred to the organic phase, or a condensed layer of the composite was formed between the aqueous phase and the organic phase.
  • the solubility at the laboratory temperature (16 ° C.) was estimated to be 500 g / L from the solubility in water of the dihydrate of trisodium citrate, a dispersant, in water of 720 g / L (25 ° C.). Then, it was confirmed that 500 g of trisodium citrate dihydrate was completely dissolved in 1 L of water.
  • the SP value of trisodium citrate was estimated from the known SP values of water, ethanol, and methanol as follows. Water, ethanol, SP value of methanol, respectively, 47.9MPa 1/2, 26.0MPa 1/2, was used 29.7MPa 1/2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochemistry (AREA)
  • Computer Hardware Design (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Colloid Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Powder Metallurgy (AREA)
  • Photovoltaic Devices (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

層状化合物の層間に有機イオンをインターカレーションして形成した有機変性層状化合物1に、金属粒子が金属コロイドとして水中に分散した金属コロイド水溶液2と、前記金属コロイドに対する貧溶媒であり、つ、有機変性層状化合物1の膨潤性に優れた非水溶媒とを添加する。これにより、層状化合物-金属粒子複合体3が得られる。

Description

層状化合物-金属粒子複合体及びその製造方法、並びにこれを用いたサスペンション、薄膜及びフレキシブル太陽電池
 本発明は、層状化合物-金属粒子複合体及びその製造方法、並びにこれを用いた層状化合物-金属粒子複合体サスペンション、層状化合物-金属粒子複合体薄膜及びフレキシブル太陽電池に関する。
 従来から、金属微粒子と粘土系層間化合物との複合体を、センサーに利用する試みがなされている。
 例えば、特許文献1には、スメクタイトに代表される流動性マトリックス中にて貴金属ナノ粒子を凝集させて凝集状態を安定化した複合体を、SERS(表面増強ラマン散乱)を利用したラマン分光法で用いるSERS基質として用いる技術が開示されている。流動性マトリックス中にて貴金属ナノ粒子の凝集状態を安定化することで、再現性の良い検出が可能となる。
 この種の複合体の製造方法として、スメクタイト等の板状微粒子を水溶液又は高極性溶媒に分散させた分散液中で貴金属粒子を生成させることで、貴金属微粒子と板状微粒子との複合ゾル(複合体)を得る技術が知られている(特許文献2及び3参照)。
特開2006-184247号公報 特開平11-61209号公報 特開平10-182142号公報
 ところで、粘土系層状化合物の代表例であるモンモリロナイト群鉱物(スメクタイト等)は、正八面体を基本骨格とする3層構造の繰り返しにより構成される層状構造を有し、層間にアルカリ金属イオンを交換性陽イオンとして有している。また、モンモリロナイト群鉱物は、その表面及び層間が概して親水的であるため、水やジメチルホルムアミド等の極性溶媒に代表される高極性物質との親和性に優れる一方、トルエンやケトン系溶剤等の低極性溶媒に代表される低極性物質との親和性に欠ける。
 このため、特許文献2及び3記載の方法では、高極性物質と親和性のある層状化合物-金属粒子複合体を得ることはできても、低極性物質と親和性のある層状化合物-金属粒子複合体を得ることは難しい。
 よって、層状化合物-金属粒子複合体を揮発性に優れた低極性の有機溶媒に分散させてペースト状とし、これを基材上に塗布して所望のデバイスを製造するといった、生産性に優れた成膜方法に適用することができない。特に、上記ペーストの印刷や塗布により多層構造体を製造する場合、作業効率や経済性の点で問題がある。
 また、特許文献2及び3記載の方法で得られた層状化合物-金属粒子複合体は、低極性物質との親和性がないことから、該層状化合物-金属粒子複合体を有機物と組み合わせてデバイス化する際に問題となり、その用途は限定される。
 例えば、有機太陽電池のバルクヘテロ層中に層状化合物-金属粒子複合体を分散させて、金属ナノ粒子のプラズモニックな機能により光電変換率を向上させる場合、バルクへテロ層を構成する有機半導体との層状化合物-金属粒子複合体との親和性がないと、金属ナノ粒子をバルクヘテロジャンクションに近づけることが難しく、光電変換効率の改善効果が十分に得られない。よって、特許文献2及び3の方法で得られた層状化合物-金属粒子複合体を、光電変換効率の改善のために、有機太陽電池のバルクヘテロ層に導入することは難しい。
 また、同様な理由から、特許文献2及び3の方法で得られた層状化合物-金属粒子複合体を、イオン液体等の非水溶媒を用いる電気2重層型キャパシタの電極材料に適用することは難しい。
 本発明は、上述の事情に鑑みてなされたものであり、低極性物質との親和性に優れる層状化合物-金属粒子複合体及びその製造方法、並びにこれを用いた塗工液、塗工膜及び電子デバイスならびに光電変換デバイスとその性能制御方法を提供することを目的とする。
 本発明者らは、当初、水溶液又は高極性溶媒を用いた溶液の均一相中で層状化合物-金属粒子複合体を製造する特許文献2及び3の手法を応用して、有機イオンのインターカレーションにより親油化した有機変性層状化合物と金属コロイドとを非水溶媒からなる均一相中で複合化させようと試みた。すなわち、親水性である金属コロイドと疎水性である有機変性層状化合物とを均一相中で接触させて複合化するために、極性が比較的大きく水と相溶する溶媒を金属コロイド水溶液と混合し、この混合液体に有機変性層状化合物を添加した。ところが、予想に反して、金属コロイドと有機変性層状化合物とが上記混合溶媒中で共存しているにもかかわらず、複合化が起こらず、それぞれが単独で安定した状態を維持することが分かった。
 そこで、本発明者らが鋭意検討した結果、有機イオンのインターカレーションにより親油化した有機変性層状化合物に、金属コロイド水溶液と、その金属コロイドに対する貧溶媒であり、且つ、有機変性層状化合物の膨潤性に優れた非水溶媒とを添加すると、低極性物質との親和性に優れる層状化合物-金属粒子複合体が得られることが明らかになった。特に、水に相溶しない程度に極性が低い非水溶媒を用いる場合、金属コロイドが分散した水相と有機変性層状化合物が分散した有機相(非水溶媒)とが相分離した状態になるが、驚くべきことに、金属コロイドと有機変性層状化合物との複合化が水相と有機相との界面において進行し、その複合体が有機相中に移行することが分かった。
 この現象は、次のような理由で起こると推察される。有機変性層状化合物は、有機イオンのインターカレーションによって、疎水性に改質されるとともに、表面又は層間に有機イオン由来の過剰のチャージを帯びている。一方、金属コロイド水溶液に含まれる金属コロイドは、水との親和性を高めるためにクエン酸等によって表面修飾されているのが通常であり、その表面は、場所によって、金属粒子の本来の疎水性を示したり、表面修飾剤の親水基に起因して親水性を示したりする。このため、金属コロイドと有機変性層状化合物との間に、疎水性相互作用あるいは静電相互作用が働き、金属コロイドと有機変性層状化合物との複合体が形成されると考えられる。
 本発明に係る層状化合物-金属粒子複合体の製造方法は、本発明者らによる上記知見に基づくものであり、層状化合物と金属粒子との複合体を製造する方法であって、前記層状化合物の層間に有機イオンをインターカレーションして、有機変性層状化合物を形成するステップと、前記有機変性層状化合物に、前記金属粒子が金属コロイドとして水中に分散した金属コロイド水溶液と、前記金属コロイドに対する貧溶媒であり、且つ、前記有機変性層状化合物の膨潤性に優れた非水溶媒とを添加するステップとを備えることを特徴とする。
 この層状化合物-金属粒子複合体の製造方法によれば、金属コロイドに対する貧溶媒であり、且つ、有機変性層状化合物の膨潤性に優れた非水溶媒を用いることで、有機イオンのインターカレーションにより親油化した有機変性層状化合物と、金属コロイド水溶液中の金属コロイドとの複合化を進行させることができる。これにより、低極性物質との親和性に優れる層状化合物-金属粒子複合体が得られる。
 上記層状化合物-金属粒子複合体の製造方法において、前記非水溶媒は、前記金属コロイドとのSP(溶解度パラメータ)値の差が9MPa1/2以上であることが好ましく、13Pa1/2以上であることがより好ましく、21MPa1/2以上であることがさらに好ましい。
 このように、金属コロイドに対する溶解度が十分に小さい非水溶媒を用いることで、有機変性層状化合物と金属コロイドとの複合化をより確実に進行させることができる。
 上記層状化合物-金属粒子複合体の製造方法において、前記非水溶媒及び前記金属コロイド水溶液に加えて、前記金属コロイド水溶液の溶媒である水と前記非水溶媒との両方に対して親和性に優れる両親媒性溶媒を前記有機変性層状化合物に添加することが好ましい。
 両親媒性溶媒を用いることで、水との親和性が高い金属コロイドと、非水溶媒との親和性が高い有機変性層状化合物との接触頻度を増大させて、金属コロイドと有機変性層状化合物との複合体の形成を促進できる。
 この場合、前記非水溶媒は、前記両親媒性溶媒よりも誘電率が低いことが好ましい。
 これにより、有機変性層状化合物と金属コロイドとの複合化をより確実に進行させることができる。
 上記層状化合物-金属粒子複合体の製造方法において、前記金属粒子は、Au、Ag、Cu、Al及びPtの少なくとも一つを含んでいてもよい。
 また前記有機イオンは、任意の構造の有機カチオン又は有機アニオンを用いることができ、水に難溶性又は不溶性の第4級アンモニウム塩、ホスホニウム塩、蛍光性のカチオン染料又はオキソニウム塩の少なくとも一つであってもよい。
 また、前記層状化合物は、交換性イオンを層間に有する層状の化合物であれば特に限定されないが、例えば、モンモリロナイト鉱物群あるいは雲母群に属する層状粘土化合物を好適に使用できる。
 本発明に係る層状化合物-金属粒子複合体は、上述の製造方法により得られることを特徴とする。
 上述の製造方法により得られる層状化合物-金属粒子複合体は、低極性物質との親和性に優れるから、揮発性に優れる低極性溶媒に分散してペースト化することで、印刷や塗布等の作業効率及び経済性に優れる成膜方法を利用して、所望のデバイスに組み込むことができる。また、低極性物質との親和性に優れるため、この層状化合物-金属粒子複合体を有機物と組み合わせて、様々な機能を有するデバイスを得ることができる。
 本発明に係る層状化合物-金属粒子複合体サスペンションは、上述の層状化合物-金属粒子複合体と、前記層状化合物-金属粒子複合体の分散媒としての有機溶媒とを含むことを特徴とする。
 この層状化合物-金属粒子複合体サスペンションでは、上述のように低極性物質との親和性に優れる層状化合物-金属粒子複合体を有機溶媒に分散させるため、複合体が安定に分散したサスペンションが得られる。
 なお、分散媒としての有機溶媒は、上記層状化合物-金属粒子複合体を形成する際に用いた「非水溶媒」であってもよい。
 上記層状化合物-金属粒子複合体サスペンションにおいて、有機色素、ホール輸送性物質、p型半導性物質、電子輸送性物質、n型半導性物質及び架橋性物質の少なくとも一つをさらに含んでいてもよい。
 有機色素、ホール輸送性物質、p型半導性物質、電子輸送性物質、n型半導性物質をサスペンションに含有させることで、種々の機能を有する機能膜の形成が可能になる。また、架橋性物質をサスペンションに含有させることで、形成した機能膜の強度を向上させることができる。
 また、本発明に係る層状化合物-金属粒子複合体薄膜は、上述の層状化合物-金属粒子複合体サスペンションを塗布してなることを特徴とする。
 また、本発明に係る層状化合物-金属粒子複合体多層機能膜は、層状化合物-金属粒子複合体薄膜を複数含む積層体からなり、複数の層状化合物-金属粒子複合体薄膜は、互いに異なる特性を有することを特徴とする。
 このように、異なる特性を有する複数の層状化合物-金属粒子複合体薄膜を積層することで、様々な機能を発現させることができる。
 上記層状化合物-金属粒子複合体多層機能膜は、表面抵抗が100kΩ/□以上の層状化合物-金属粒子複合体薄膜からなる絶縁層と、前記絶縁層の表面側及び裏面側にそれぞれ配置され、表面抵抗が1kΩ/□以上100kΩ/□未満の層状化合物-金属粒子複合体薄膜からなる一対の誘電層と、最表層に配置され、表面抵抗が10Ω/□以下の層状化合物-金属粒子複合体薄膜からなる集電極層とを含んでいてもよい。
 これにより、絶縁層の両側に積層された誘電層が分極性電極として働き、最表層の集電極層が集電極として働くので、多層機能膜全体としてコンデンサ機能が実現される。さらに、電解質を含む電解液を組み合わせると、電気2重層型のキャパシタ(大容量のコンデンサ)として用いることもできる。
 前記集電極層の一方及びこれに隣接する層に光電変換用の色素が添加されていてもよい。その場合には新規な光誘起性の電気2重層型キャパシタとして利用できる。
 これにより、層状化合物-金属粒子複合体多層機能膜を、例えば太陽電池や水の光分解デバイス等の光電変換現象を利用したデバイスに利用できる。なお、層状化合物-金属粒子複合体多層機能膜を水の光分解デバイスに利用する場合、前記色素により光還元される電子受容体を前記絶縁層(分極性電極の間に設けられた絶縁層)もしくは前記絶縁層及び前記誘電層に添加してもよい。
 また、前記絶縁層に隔てられた対称の層構成を有し、前記集電極層の一方及びこれに隣接する層と、前記集電極層の他方及びこれに隣接する層とに、分光感度又は光吸収波長の極大が20nm以上異なる2種類の光電変換用の色素をそれぞれ添加してもよい。
 このように分光感度又は光吸収波長の極大が異なる色素を用いることで、光合成類似の2光子吸収による光酸化還元反応過程を進行させて、水の光分解機能を実現できる。
 この場合、前記絶縁層の一方の側に積層される層状化合物-金属粒子複合体多層機能膜は、前記金属粒子としてPtを含み、前記絶縁層の他方の側に積層される層状化合物-金属粒子複合体多層機能膜は、前記金属粒子としてAu、Ag、Cu及びAlの少なくとも一つを含んでいてもよい。
 このように、(光)還元側には水の還元ポテンシャルを有するPtを配置し、(光)酸化側にはPtと仕事関数の異なるプラズモニック金属種(Au、Ag、Cu、Al)を配置することで、水の光分解を確実に行うことができる。
 本発明に係るフレキシブル太陽電池は、金属粒子が50wt%未満である上述の層状化合物-金属粒子複合体多層機能膜からなる誘電層又は固体電解質層を一方の電極として備え、他方の電極は炭素繊維電極であってもよい。すなわち、金属粒子のプラズモン増強効果を有する一方の電極を光入射側電極として機能させるため、他方は必ずしも光透過性を必要条件としない。このため、低コスト性、フレキシブル性、導電性などの特性を従来以上に向上させた電極素材を積極的に導入することができる。その代表例として炭素繊維電極を挙げれば、これは、フレキシブルな積層体の実現に貢献するとともに、安価であることに加えて、繊維構造による電極表面積が平板に比べて圧倒的に広いことによる電流の流れ易さという利点がある。さらに、炭素繊維電極は、光吸収性の黒体であるから、熱(赤外線)を有効利用しうる点でも有利である。なお、当然ながら、炭素繊維電極に替えて、Al箔等の任意の電極を用いることも可能である。
 また、水の光分解デバイスで示した2光子吸収型の光酸化還元機構においては、両電極共に金属粒子のプラズモン増強効果を利用する必要があるため、2種類の光透過性を具備した本発明に係る上記層状化合物-金属粒子複合体からなる電極を誘電層もしくは固体電解質を挟む構成で用いることもできる。この際、両電極および電層もしくは固体電解質の素材は厚さを適正に選ぶことにより、デバイスとしてのフレキシブル性を持たせることもできる。
 本発明に係る複合体、及びその高濃度分散体ペースト及びこのペーストから成膜される薄膜並びに2層以上の積層構造物は、金属粒子と、該金属粒子が吸着する無機物又は無機-有機ハイブリッド化合物とからなり、非水溶媒中で分散状態を維持しうることを特徴とする。
 なお、金属粒子の配合量、凝集の度合いに応じてその導電性、プラズモン共鳴性または光学吸収特性が制御されることが好ましい。
 本発明によれば、金属コロイドに対する貧溶媒であり、且つ、有機変性層状化合物の膨潤性に優れた非水溶媒を用いることで、有機イオンのインターカレーションにより親油化した有機変性層状化合物と、金属コロイド水溶液中の金属コロイドとの複合化を進行させることができる。これにより、低極性物質との親和性に優れる層状化合物-金属粒子複合体が得られる。
第1実施形態に係る層状化合物-金属粒子複合体の製造方法を説明するための図である。 第2実施形態に係る層状化合物-金属粒子複合体の製造方法を説明するための図である。 実施例1における金ナノコロイド水溶液の透過吸収スペクトルの測定結果を示すグラフである。 実施例1における金コロイドの水相から有機相に移行する様子を示す写真である。 実施例1における赤紫残渣のFTIRの測定結果を示すグラフである。 実施例2における金ナノ粒子のTEM観察結果を示す写真である。 実施例3における有機相の吸収スペクトルの測定結果を示すグラフである。 実施例4で作製したフィルムの吸収スペクトルの測定結果を示すグラフである。 実施例6で得られた着色粉末のFT-IRの測定結果を示すグラフである。 実施例11で作製した電気2重層型キャパシタの構成を示す図である。 実施例13で作製した5層構造の光キャパシタの構成を示す図である。 実施例14で作製したフィルム状太陽電池の構成を示す図である。 実施例15で作製した水の光分解デバイスの構成を示す図である。 実施例15で使用した反応セルの構成を示す図である。 実施例16におけるラマン散乱観測用の実験装置の構成を示す図である。 実施例16におけるラマン散乱観測結果を示すグラフである。 層状化合物-金属粒子複合体の作製を伴う実施例及び比較例について、複合化条件と複合化現象との関係を示す表である。
[第1実施形態]
 まず、第1実施形態に係る層状化合物-金属粒子複合体の製造方法について説明する。図1は、本実施形態の層状化合物-金属粒子複合体の製造方法を説明するための図である。
 本実施形態では、図1に示すように、層間への有機イオンのインターカレーションにより親油化された有機変性層状化合物1に、金属コロイド水溶液2及び非水溶媒を添加することで、低極性物質との親和性に優れる層状化合物-金属粒子複合体3を形成する。
 有機変性層状化合物1の親油化前の層状化合物は、交換性イオンを層間に有する層状の化合物であれば特に限定されないが、例えば、モンモリロナイト鉱物群あるいは雲母群に属する層状粘土化合物を好適に使用できる。モンモリロナイト鉱物群は、次の一般式(X,Y)2~310(OH)・mHO・(W1/3)で表される粘土鉱物である(ただし、X=Al,Fe(III),Mn(III)又はCn(III)であり、Y=Mg,Fe(II),Mn(II),Ni,Zn又はLiであり、Z=Si又はAlであり、W=K,Na又はCaであり、HOは層間水であり、mは整数である)。ここで、X及びYの組合わせと置換数の違いにより、モンモリロナイト、マグネシアンモンモリロナイト、鉄モンモリロナイト、鉄マグネシアンモンモリロナイト、バイデライト、アルミニアンバイデライト、ノントロナイト、アルミニアンノントロナイト、サポナイト、アルミニアンサポナイト、ヘクトライト、ソーコナイト等の多くの種類が天然物として存在するが、これら天然物の他に上記式中のOH基がフッ素等のハロゲンで置換された合成品等も市販されており、いずれも使用することができる。
 有機変性層状化合物1の親油化に用いる有機イオンは、任意の構造の有機カチオン又は有機アニオンを用いることができ、水に難溶性又は不溶性の第4級アンモニウム塩、ホスホニウム塩、蛍光性のカチオン染料又はオキソニウム塩等のオニウム塩であってもよい。より具体的には、4つのアルキル基の炭素数が4以上のバルキーな陽イオンを有する第4級アンモニウム塩や、アルキルホスホニウムイオン,アリールホスホニウムイオン等のバルキーな陽イオンを有するホスホニウム塩や、過塩素酸塩陰イオンの対イオンとしてのバルキーな陽イオンを有するオキソニウム塩を好適に用いることができる。
 金属コロイド水溶液2は、金属コロイド(金属粒子又は表面の少なくとも一部がクエン酸等の分散剤で覆われた金属粒子)が分散媒としての水中に分散した分散系である。金属粒子の金属種や粒径や形状は、所望の機能が発現するように適宜選択すればよい。例えば、Au、Ag、Cu、Al、Pt等の金属種を用い、数nm~数百nmの範囲から粒径を選択し、球形状やロッド形状等の粒子形状を選択してもよい。
 非水溶媒は、金属コロイド相溶液2中の金属コロイドに対する貧溶媒であり、且つ、有機変性層状化合物1の膨潤性に優れた溶媒を用いる。具体的には、金属コロイドとのSP(溶解パラメータ)値の差が十分に大きい溶媒を非水溶媒として用いる。
 金属コロイドと非水溶媒とのSP値の差は、9MPa1/2以上が好ましく、13MPa1/2以上がより好ましく、21MPa1/2以上がさらに好ましい。このように、金属コロイドに対する溶解度が十分に小さい非水溶媒を用いることで、有機変性層状化合物1と金属コロイドとの複合化をより確実に進行させることができる。
 本実施形態の層状化合物-金属粒子複合体の製造方法によれば、金属コロイドに対する貧溶媒であり、且つ、有機変性層状化合物1の膨潤性に優れた非水溶媒を用いることで、有機イオンのインターカレーションにより親油化した有機変性層状化合物1と、金属コロイド水溶液2中の金属コロイドとの複合化を進行させることができる。これにより、低極性物質との親和性に優れる層状化合物-金属粒子複合体3が得られる。
 層状化合物-金属粒子複合体3は、非水溶媒中で高度に安定な分散安定性を示すから、非水溶媒を分散媒とするサスペンション(ペーストも含む)の形態にて提供可能である。また、層状化合物-金属粒子複合体3又はそのサスペンションを用いて種々の機能材を形成することができる。例えば、高度な耐久性を備えた色材はもとより、プラズモニクスに基づく太陽電池やCCDセンサ、LPRセンサ等の増感薄膜として用いたり、キャパシタ等のエレクトロニクス素子もしくは電極材料のみならず、光合成類似の増感剤や電子伝達機能と組み合わせられるとその光酸化還元作用の応用が見込まれる実用的な蓄電素子や水の光分解デバイスが構築される。
 なお、極性が非常に小さい酢酸エチル又はトルエンを非水溶媒として用いる場合、金属コロイド水溶液2と非水溶媒との混合溶媒が水相と有機相とに相分離し、複合体が有機相に移行するか、あるいは、水相と有機相との間に複合体の凝縮層が形成されるかのいずれかの現象が起きる傾向がある。一方、酢酸エチルやトルエンに比べて極性が大きいアセトンやエタノールを非水溶媒として用いる場合、金属コロイド水溶液と非水溶媒との混合溶媒の相分離はみられず、複合体が沈殿するという現象が起きる傾向がある。
 前者の場合には、複合体が分散した有機相を水相から分離するか、水相と有機相との間の複合体の凝縮層を取り出して有機溶媒に分散させることで、任意の複合体濃度のサスペンション(ペースト、希釈液等)を得ることができる。なお、有機相に複合体を抽出しても、一回の抽出操作では十分な複合体濃度のサスペンションが得られないことがある。この場合、複合体が抽出された有機相を水相から分離した後、再度、金属コロイド水溶液を添加して有機相に金属コロイドを移行させることで複合体を濃縮することができる。なお、抽出操作は、必要に応じて何度でも繰り返してもよい。
 一方、後者の場合には、沈殿・析出した複合体を有機溶媒に分散させて、任意の複合体濃度のサスペンション(ペースト、希釈液等)を得ることができる。
[第2実施形態]
 次に、第2実施形態に係る層状化合物-金属粒子複合体の製造方法について説明する。図2は、本実施形態の層状化合物-金属粒子複合体の製造方法を説明するための図である。本実施形態は、非水溶媒とは別の両親媒性溶媒をさらに添加する点を除けば、第1実施形態と同様である。そこで、ここでは第1実施形態と共通する内容については説明を省略し、第1実施形態と異なる内容を中心に説明する。
 図2に示すように、本実施形態では、金属コロイド水溶液2及び非水溶媒だけでなく、両親媒性溶媒を有機変性層状化合物1に添加する。
 このように両親媒性溶媒を用いることで、水との親和性が高い金属コロイドと、非水溶媒との親和性が高い有機変性層状化合物1との接触頻度を増大させて、金属コロイドと有機変性層状化合物1との複合化を促進できる。
 両親媒性溶媒は、金属コロイド水溶液2の溶媒である水と非水溶媒との両方に対して親和性に優れる溶媒を用いる。具体的には、誘電率が水よりも小さく、非水溶媒よりも大きい溶媒を好適に用いることができる。例えば、非水溶媒としてアセトン、酢酸エチル、トルエン等を用いる場合、両親媒性溶媒としてメタノールやエタノールを用いてもよい。
 以上、本発明の実施形態について詳細に説明したが、本発明はこれに限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはいうまでもない。
[実施例1]
 以下に示す手順で、上述の実施形態に係る方法で層状化合物-金属粒子複合体を作製した。
 最初に、参考文献(G. Frens et al., Nat. Phys. Sci., (1973))に従って、次のように金ナノコロイド水溶液を調製した。6mlのHAuCl・4HO(1wt%)を594mlの超純水に溶かして加熱還流し、沸騰後、1wt%のクエン酸3ナトリウム水溶液を4.92ml加えて還流を続けた。溶液は薄黄色から赤色に変化した。1時間後還流を止め、自然冷却後、常温で遮光し保存した。このようにして得た金ナノコロイド水溶液の透過吸収スペクトルを測定したところ、図3に示す結果が得られた。透過吸収スペクトルの測定結果によればプラズモン吸収が534nmであったことから、金ナノ粒子の直径は55~60nm程度の大きさであると推定された。
 次に、親油化したコープケミカル株式会社製親油化合成スメクタイトSPNの1wt%エタノール溶液を100mlスクリュー管瓶に0.15ml採取し、これに酢酸エチル10mlを加えて超音波照射により分散させた。この分散液に上記金ナノコロイド水溶液50mlを加えたところ、50mlの水を主体とする水相と、10mlの酢酸エチルを主体とする有機相とに分離した液体が得られた(図4の左側の瓶)。このとき、水相が赤色であったのに対し有機相が透明であった。この液体を30秒間激しく攪拌し、10分間静置したところ、有機相が赤色に着色し水相が透明になった(図4の右側の瓶)。各相の色の変化から、有機相(10ml)のほうが水相(50ml)よりも溶媒量が少ないにもかかわらず、酢酸エチル存在下での金ナノコロイド水溶液添加後の攪拌によって、殆どの金コロイドが水相から有機相に移行することが確認された。
 最終的に得られた液体(図4の右側の瓶)から有機相を分離し、その溶媒を留去したところ赤紫の残渣が回収された。この赤紫残渣のFTIRを測定したところ、図5に示す結果が得られた。赤紫残渣のFTIR測定結果によれば3320cm-1付近にスメクタイト由来の-OH伸縮運動の吸収が認められた。よって、上記赤紫残渣は、金ナノ粒子とスメクタイトとの複合体であることが確認された。
[比較例1]
 スメクタイトとして親油化処理をしていないコープケミカル株式会社製親水性スメクタイトSWNを用いた以外は、実施例1と同一の条件で、親水性スメクタイトのエタノール溶液に、酢酸エチル、金ナノコロイド水溶液を順に加えた。ところが、金コロイドはそのまま水相に止まり、有機相への移行は認められなかった。このことから、実施例1において確認された金コロイドの水相から有機相への移行は、スメクタイトの層間あるいは表面の親油化処理によりもたらされたことが判明した。
[実施例2]
 2.4×10-4M(0.56wt%)のHAuCl・4HOに替えた以外は、実施例1と同様の手法で、金ナノコロイド溶液を調製した。この金ナノコロイド溶液の透過吸収スペクトルを測定したところ、プラズモン吸収が520nmであったので、金ナノ粒子の直径は約20nmであると推定された。実際に、金ナノ粒子のTEM観察を行ったところ、図6に示すように、その粒子径は20±2nmであった。
 この金ナノコロイド溶液を用いて、実施例1と同様の手順で、水相と有機相とに分離した液体を得た。このとき、実施例1と同様に、金ナノ粒子の水相から有機相への移行が確認され、最終的な有機相の色は赤紫であった。
[実施例3]
 1wt%スメクタイトSPNのエタノール溶液に金コロイド水溶液と酢酸エチルを添加する順番を変更した以外は、実施例2と同様にして、水相と有機相とに分離した液体を得た。
 具体的には、1wt%スメクタイトSPNのエタノール溶液0.15mlを100mlスクリュー管瓶に採取し、先に金コロイド水溶液50mlを加えて、やや濁った不均一な分散液を得た。この後、酢酸エチル10mlを加えて30秒間激しく攪拌し、10分静置した。これにより、金ナノ粒子の水相から有機相への移行が確認され、最終的な有機相の色は青紫であった。この有機相の吸収スペクトルを測定したところ、図7に示すように、近赤外領域まで吸収のブロード化が起こっており、金コロイドの凝集が起こっていることが判明した。
[実施例4]
 親油化したコープケミカル株式会社製親油化合成スメクタイトSANをトルエン10mlに溶解させて、スメクタイト濃度が0.05wt%のトルエン溶液を調製し、超音波照射により均一な微粒子分散液を得た。この分散液に実施例2と同一の金コロイド水溶液50mlを加えて、実施例2と同様な抽出操作を施して赤色の有機相を得た。殆ど色のない水相を捨て、新たに50mlの金コロイド水溶液を加え抽出するという操作を7回繰り返し、有機相の金コロイドを濃縮せしめ、さらにホットプレート上で100℃以上に3時間保ち、有機相中から水分を除いて粘性の高い赤色ペーストを得た。このペーストにポリメチルメタクリレート(PMMA、アルドリッチ社製、数平均分子量=44700)の0.1g/L溶液3mlを加えてロールミルで1昼夜混練して塗料とし、ドクターブレードを用いて基材フィルムに塗布し、100℃のオーブンに1時間放置して溶媒を除いて基材フィルムから剥離したところ、厚みが約0.4μmで青く色づいた10cm角程度の透明なフィルムを得た。このフィルムの吸収スペクトルを測定したところ、図8に示すように、溶液中とは異なり700nm付近にプラズモンバンドが確認された。プラズモンバンドの半値幅が大きいことから、粒子間の凝集が進み、粒子径に分布が生じたことが分かる。このことは、光劣化が懸念される色素によらずに光増感波長域拡大作用を得られることを意味し、色素を用いずに、高度の耐久(耐候)性を指向する場合であっても、広い波長域において光増感作用を得ることができる点で有利である。
 上記透明のフィルムをガラス板上に移し、4端子による表面抵抗を測定したところ50Ω/□の値であり、いわゆる分極性(誘電性)電極として使用できることが判明した。
[実施例5]
 参考文献(P. C. Lee et al., J. Phys. Chem.B (1982))に従って、次のように銀コロイド水溶液を調製した。54mgのAgNOを300mLの水に溶解させて無色の液体を得て、これを脱気下で還流し沸騰させた。この後、15分間脱気した10wt%のクエン酸3ナトリウム水溶液6mLを添加した。数分後に溶液が黄色に変化し、15~20分後に溶液の色は黄色がかった灰色に変化した。その後、還流を続けたが溶液の色は変化しなかったので、クエン酸3ナトリウム添加から約1時間経過後、還流を停止し、一晩放置した後、遮光下、室温で保存した。このようにして得られた銀コロイド水溶液の透過吸収スペクトルを測定したところ、プラズモン吸収が410nm付近に認められた。また、銀ナノ粒子のTEM観察結果から、銀ナノ粒子の直径は50nm程度であることが分かった。
 親油化されたコープケミカル株式会社製親油化合成スメクタイトSTNの1wt%アセトン溶液2.5mlに上記銀コロイド水溶液30mを加えたところ、直ちに緑褐色の沈殿が析出した。沈殿物を濾取して回収し、メタノールで洗浄して室温で乾燥させた後、これをγブチロラクトンに超音波分散した。この分散液は、見かけ緑色で透明化し、2ヶ月放置しても沈殿が生じなかった。
[比較例2]
 スメクタイトとして親油化処理をしていないコープケミカル株式会社製親水性スメクタイトSWNを用いた以外は、実施例5と同一の条件で実験を行ったが、銀コロイド水溶液には何の変化も認められず、安定な分散状態が保たれた。このことから、実施例5における緑褐色の沈殿物の析出はスメクタイトの親油化処理によってもたらされたことが判明した。
[実施例6]
 実施例5に示した方法で調製した銀コロイド水溶液50mlにコープケミカル株式会社製親油化合成スメクタイトSANの1wt%トルエン溶液5mlを加えて激しく攪拌して放置したところ、上層の有機相と下層の水相とに分離し、上層の有機相は緑色に着色した。この後、有機相を回収し、減圧下で溶媒を留去し、多量のメタノールを加えたところ、濃緑色の沈殿が生じた。沈殿物を濾取して60℃で乾燥させて粉末を得た。この着色粉末のFT-IRを測定し、スメクタイトSAN単体のFT-IRと比較したところ、図9に示すように、どちらもほぼ同じ波数にピークを有していた。このことから、上記着色粉末が親油化スメクタイトと銀コロイド粒子との複合体であることが判明した。
[実施例7]
 クマリン系のカチオン染料である7-N,N-dimethylamino-4-methylcoumarin(略号:Coumarin 311 Aldrich社 Laser grade)の10-4mol/lエタノール溶液を調製し、この溶液にモンモリロナイト(商品名:クニピアF、クニミネ鉱業社製)の水分散液を加え、生じた着色沈殿物を回収した。この着色沈殿物を乾燥させた後でアセトン中に固形分が10wt%になるように調製し、0.3φのジルコニア粒子を粉砕材として用いるサンドミルにて1時間微粒子分散させた。得られた分散液に実施例5にて調整した銀ナノコロイド水溶液を滴下したところ、直ちに緑灰色の沈殿が生じたのでこの着色沈殿物を回収し下記重量組成の混合液として一昼夜ロールミル処理を行い、ベージュ色のペーストを得た。
  <ペースト組成物>
    銀ナノコロイドークマリン染料修飾モンモリロナイト複合体  125 重量部
    アゾビスイソブチロ二トリル                 3 重量部
    ポリビニルブチラール樹脂(積水化学工業)         25 重量部
    酢酸エチル                       100 重量部
 このペーストを厚さ100μmのPET(ポリエチレンテレフタレート)フィルムの上にドクターブレードを用いて塗布し、100℃で5分加熱乾燥し、厚さ1μmの淡黄緑色白濁層を基材フィルム上に形成してラミネートフィルムを得た。この薄層の基材フィルム込みの全光線透過率は47%であった。次にこの白濁層を浜松ホトニクス株式会社製Siフォトダイオード(S2386-18K)の反射防止膜上に重ね、60℃で3分間加熱押圧した後に基材フィルムを剥離し、フォトダイオード上にラミネート層を形成した。このラミネート済みのフォトダイオードについて光電流を測定し、ラミネートしなかったSiフォトダイオードの光電流に対する比(光電流増強比)を求めたところ、ラミネート層が転写されたことで光電流は1.5倍になった。
[実施例8]
 親油化合成スメクタイトSTNに替えて親油化合成雲母(商品名:ソマシフMPE、コープケミカル社製)を用いた以外は、実施例5と全く同じ方法で実験を行い、Ag-合成雲母複合体のγブチロラクトン分散溶液を得た。一方、ITO付き硝子基板上の透明電極面上に、PEDOT:PSSの水溶液をスピンコートにより塗布して、乾燥することでp型導電性高分子(ホール輸送層)を成膜した。このp型導電性高分子の上に、先に調製しておいたAg-合成雲母複合体のγブチロラクトン分散溶液をスピンコートした。さらにその上にPCBM及びP3HTの混合溶液(溶媒:クロロベンゼン)をスピンコートで塗布して、光電変換層を形成し、最後に、真空蒸着により表層にアルミニウム電極を形成して、有機太陽電池サンプルを得た。なお、このサンプルにおける透明電極の表面に対するAg-雲母複合ナノ粒子の被覆率を算出したところ、60%であった。また、このサンプルにおいて、複合ナノ粒子の平均粒径dは約55nmであり、金属ナノ粒子の存在しない場所におけるホール輸送層の膜厚tは40nmであった。
 上記有機太陽電池サンプルのIPCEを測定し、Ag-雲母複合ナノ粒子層の有無によるIPCEを比較したところ、複合粒子層を設けたことでIPCEが2.1倍に増大することが判明した。
[実施例9]
 PCBM及びP3HTの混合溶液(溶媒:クロロベンゼン)に、固形分に対して10wt%の比率で実施例6にて作製したAg-親油化スメクタイト複合体を添加してボールミル分散を行った。一方、ITO付き硝子基板上の透明電極面上に、PEDOT:PSSの水溶液をスピンコートにより塗布して、乾燥することでp型導電性高分子(ホール輸送層)を成膜した。このp型導電性高分子の上に、先に調製しておいたAg-親油化スメクタイト複合体、PCBM及びP3HTの分散液をスピンコートして、光電変換層を形成した。最後に、真空蒸着により表層にアルミニウム電極を形成して、有機太陽電池サンプルとした。
 この有機太陽電池サンプルのIPCEを測定し、Ag-スメクタイト複合ナノ粒子層の有無によるIPCEを比較したところ、複合粒子層を設けたことでIPCEが1.5倍に増大することが判明した。
[実施例10]
 予めポリメチルメタクリレート(略号:PMMA、アルドリッチ社製:数平均分子量 44700)の0.1g/lトルエン溶液3mlに、コープケミカル社製親油化合成スメクタイトSAN(商品名)を1wt%含む分散液を4μl加えて超音波を照射し均一な微粒子分散混合液を得た。次にこの分散液に実施例2で示した金コロイド水溶液50mlにクエン酸3ナトリウム塩10mgを添加したコロイド溶液を加えて抽出したところ、水相-有機相の界面に赤褐色色に見える金属コロイドが濃縮された。さらに室温で一夜放置して上層のトルエンを乾燥したところ、金色の光沢ある皮膜がスクリュー管壁から分離して水相に浮いていた。次にスクリュー管をホットプレート上で95℃に1時間保ったところ、厚みが0.3μm程度で青く色づきつつもハーフミラー的な金属光沢を示す3cm径程度の透明な自立性(触れても崩れたり変形することがなく、膜としての取り扱いが可能な状態)のフィルムを得た。そのフィルムを注意しながら取り扱いつつガラス板上に移し、水相側面を4端子による表面抵抗を測定したところ4Ω/□の値を示し、いわゆる集電極としての使用が可能であることが判明した。空気側の面は対照的に数MΩ/□以上の値を示し電導性に異方性があることが判明した。
[比較例3]
 親油化スメクタイトSANを含まない以外は実施例10とまったく同じ操作を施したところ、実施例10とは対照的に金属コロイドはその水―有機相の界面にはまったく集合せず、水相はコロイド特有の赤色を呈したままで有機相は無色のままであった。このことから、実施例10に示す金属コロイドの界面への集合が親油化したクレイの有機相への微量の添加によりもたらされたことが判明した。
[実施例11]
 ニッポン高度紙工業社のキャパシタ用セパレータ(厚さ50μm程度)にテトラエチルアンモニウムクロリド0.3Mを含むγブチロラクトンを含浸させて、その両側から実施例10にて作製した厚さ0.4ミクロン程度のAu集電極フィルムの電導性の面が含浸した液体を覆うように接触させた状態で圧着して電気2重層型キャパシタを構成した。図10にその概略構成を示す。図10に示すように、電気2重層型キャパシタ10は、PMMA樹脂12とAu集電極14とからなる集電極フィルム16でセパレータ18を挟んだ構成を有する。
 この電気2重層型キャパシタの両集電極にリード線を接触させて末端のPt板で導通を取りつつ充放電器を用いて両電極間に2.5Vの電位差(DC)を室温で5分間印加したところ、その放電曲線より数F/cm3の容量を示したことから、この素子が電気2重層型キャパシタとして動作することが判明した。
[実施例12]
 50mlのスクリュー管瓶に実施例5で示した銀ナノコロイド水溶液20mlを入れ、トルエン溶液3mlにコープケミカル社製親油化合成スメクタイトSAN(商品名)を1wt%含む分散液を5μl加えて微粒子分散した溶液を加え、激しく振とうして静置したところ、水相-有機相間に黄金の光沢を放つ界面が形成された。界面上下の無色透明の有機相と水相をスポイトで回収して捨て、金属光沢膜を硝子プレートに写し取って100℃で1時間乾燥したところ銀色の皮膜が形成された。この操作を5回繰り返して表面抵抗をテスタで測定したところ、10Ω/cmを示し、集電極に用いられることが分かった。
 そこで、スケールを50倍にアップして1リットルの銀コロイド水溶液から同様な操作にて界面の金属皮膜を容積で約0.5ml回収して水-メタノール(1/7vol比)混合溶媒5mlに1時間超音波分散して緑色のペーストを得た。このペーストをワイヤーバーを用いて硝子基板上に湿潤時の厚みが5μm程度になるように塗布して100℃の熱風で乾燥したところ、緑灰色に見える透明感ある光沢皮膜が得られた。その皮膜の表面抵抗は5Ω/cm程度であった。
[実施例13]
 厚さ90μmのセルロース基材のミリポアフィルタにコープケミカル社製親油化合成スメクタイトSPN(商品名)の35wt%エタノール溶液を含浸させて室温で2時間乾燥して親油化クレイを担時させて絶縁層とした。次に帯電防止剤樹脂として知られるBN複合化樹脂(ボロンインターナショナル社製:ハイボロンBN-2)を70wt%含むエタノール溶液を調製し、下記構造の光酸化還元性の化合物(ZnP(6)V)を樹脂分に対して0.02mmolになるように添加し、さらに実施例5にて調製したAg-スメクタイト複合体の分散液をその成分中の複合体が樹脂分に対して10wt%になるように混合した液を光誘電層として先の絶縁層層の片側面に乾燥厚10μmになるように塗布した。反対側の面には光酸化還元性化合物をまったく含まないBN複合化樹脂(ハイボロンBN-2)とAg-スメクタイト複合体の混合層を同じ厚みで設け誘電層とした。テスタをこの光誘電層/誘電層の両界面に当てると厚み方向の抵抗は20kΩを示した。この誘電層の両側面上に実施例10に製法を示した青色に着色したフィルム(Au集電極フィルム)を積層し、図11に概略構成を示す5層構造の光キャパシタを構成した。同図に示すように、光キャパシタ20は、光入射面側から順に集電極フィルム16、光誘電層22、絶縁層24、誘電層26、集電極フィルム16が積層されている。そして、回折格子を用いてXe光から取り出した430nmの単色光を光入射面側から照射したところ、瞬間的に1μA/cm程度の光電流が観測され両電極間に約0.2Vの起電力が生じた。光照射を止めても電位は24時間以上保持され、外部回路を繋ぐことによって始めて0電位となった。
  <光酸化還元性の化合物ZnP(6)Vの構造>
Figure JPOXMLDOC01-appb-C000001
[実施例14]
 実施例6で示したAg-スメクタイト複合体を固体状のBN複合樹脂であるBN-4を70wt%で含むメチルエチルケトン溶液中に固形分の30wt%になるようにロールミルを用いて練り合わせて濃厚ペーストを得た。ナノメンブレン社の0.1ミクロン厚の固体電解質膜をAl箔上に形成したフィルムを用い、その固体電解質側面上に上記ペーストを塗布した後に100℃で1時間加熱することで、ペーストを含浸させてから室温に冷却した。さらにAlと反対側面に実施例12に示した透明電極膜を張り合わせて150℃で熱圧着させて可撓性に富み、厚みが数μm程度のフィルム状太陽電池を得た。なお、両電極間の室温での抵抗値は1MΩ程度であった。
 図12は、本実施例14で作製したフィルム状太陽電池の構成を示す図である。同図に示すように、太陽電池30は、光入射側から順に、Ag集電極(実施例12の透明電極膜)32、実施例6の複合体を含むペーストを含浸させた固体電解質膜34、Al箔36が積層された構造である。
 このフィルム状太陽電池に対し、透明電極側からXe光を0.3W/cmの光強度で全光線照射すると数mA/cm程度のカソーディックな光電流が得られた。
[実施例15]
 コープケミカル社の親水性クレイSWNを10wt%、及びボロンインタナショナル社製架橋剤(ハイボロンB―1)を3wt%とポリビニルアルコール2wt%とを混合して均一なスラリー溶液を調製した。このスラリー溶液に、ニッポン高度紙工業社のキャパシタ用セパレータ(厚み50μm程度)を15分間室温で浸漬した後に引き上げ、熱風で乾燥した。この紙ベースのイオン交換体を50mMのメチルビオローゲンの溶液中に1時間再浸漬して引き上げ、多量の水で洗浄した後に乾燥し、ビピリジニウム骨格をイオン交換にてクレイ(固体電解質)中に固定した。次に、実施例12の集電極フィルムを下記色素5mM含むTHF溶液に一昼夜浸漬して色素を吸着させてから引き上げ、多量のエタノールで余剰の色素を洗浄して先の多孔質紙-クレイ-ビオローゲン複合紙の片側に150℃で熱圧着させた。次に田中貴金属社製のPtコロイド溶液(溶媒はトルエン)に実施例13で示した化合物(Zn(v)6)を5mM含むエタノール溶液を加えた後に先の集電極付き複合膜の反対側面に筆で薄く塗布して乾燥し、図13に示す構成のサンプルを得た。同図に示す光分解デバイス40は、色素(Dye1)を吸着させたAg集電極(アノード)32、メチルビオローゲンを固定した固体電解質42、光酸化還元性化合物ZnP(6)V(Dye2)を含むPt電極(カソード)44が積層された構成を有する。
 この光分解デバイスを、図14に構造(半分)を示す反応セルの中央に挟んで両側の水槽に蒸留水を満たした。そして、中央の複合膜の両側からXe光を照射したところ、照射開始直後から膜と水との界面で気泡が発生し始め、経時と共に泡の発生量が増加した。発生した気体を捕集瓶に集めガスクロマトグラフィーにて分析したところ、Au電極側で酸素が、Pt電極側で水素が発生したことが判明した。
  <Ag集電極フィルムに吸着させた色素の構造>
Figure JPOXMLDOC01-appb-C000002
[実施例16]
 カバーグラス上に実施例1及び5でそれぞれ作製したAu及びAgの粘土複合体ペーストを微量スポッティングした後に130℃で15分間乾燥した後に図15に示す構成でスポットの周囲にローダミン6G(コダック社製:レーザグレード)の非水溶液を満たし、上部からガラス越しに(He-Ne)レーザ光を照射してその表面でのラマン散乱を観測した。
 その観測結果を図16にまとめて示すが、ローダミン色素単独の時に比べて金属―粘土複合体の表面ではそのラマン散乱が有機溶媒中で著しく増強されることが明らかとなり、金属ナノ粒子表面における電場増強効果を利用した表面増強ラマン分光法(SERS)への適用が可能であることが判明した。
[実施例のまとめ]
 次に、上記実施例について、層状化合物-金属粒子複合体の複合化条件と複合化が起こる様子との関係を整理する。図17は、層状化合物-金属粒子複合体の作製を伴う実施例及び比較例について、複合化条件と複合化現象との関係を示す表である。
 図17に示すように、実施例1~8、10及び12では、有機イオンのインターカレーションによって親油化された有機変性層状化合物を用い、金属コロイドに対する貧溶媒であり、且つ、有機変性層状化合物の膨潤性に優れた非水溶媒を金属コロイド水溶液とともに添加した。これにより、有機変性層状化合物と金属コロイドとの複合化が進行し、層状化合物-金属粒子複合体が得られた。なお、実施例1~8、10及び12では、いずれも、金属コロイドと非水溶媒とのSP値の差は21MPa1/2以上であった。SP値の差の算出方法については、後述する。
 一方、親油化していない層状化合物を用いた(あるいは、層状化合物自体を用いなかった)比較例1~3では、層状化合物と金属コロイドとの複合化が進行しなかった。
 また、極性が非常に小さい酢酸エチル又はトルエンを非水溶媒として用いた実施例1~4、10及び12では、金属コロイド水溶液と非水溶媒(及び両親媒性溶媒)との混合溶媒が水相と有機相とに相分離し、複合体が有機相に移行するか、あるいは、水相と有機相との間に複合体の凝縮層が形成されるかのいずれかの現象が確認された。一方、酢酸エチルやトルエンに比べて極性が大きいアセトンやエタノールを非水溶媒として用いた実施例5~8では、金属コロイド水溶液と非水溶媒との混合溶媒の相分離はみられず、複合体が沈殿するという現象が確認された。
 すなわち、添加される非水溶媒によって、複合体の大部分を安定分散する有機相と複合体をほとんど含まない水相とに相分離する現象が起こる場合(実施例1~4、10及び12)と、全ての溶媒が均一の相溶した状態で複合体が析出し沈殿する場合(実施例5~8)とに分かれる。なお、前者の場合、有機相を構成する非水溶媒に複合体が安定分散したサスペンションが直接得られるため、その後のプロセス(有機溶媒に複合体を分散させた後、塗布により機能膜を形成する)が簡素化されるため、効率的である。
 なお、非水溶媒に加えて、両親媒性溶媒としてエタノールを添加した実施例1~3では、金属コロイドと親油化層状化合物との複合化が促進された。このように、非水溶媒だけでなく両親媒性溶媒を添加する場合、以下のように複合化が進行するものと考えられる。
 比較的水と相溶しやすい両親媒性溶媒と金属コロイド水溶液とが混合されると、水および両親媒性溶媒の混合溶媒が有機変性層状化合物の層間を膨潤又は表面に吸着し、金属粒子はバルクの混合溶媒中だけでなく有機変性層状化合物の層間又は表面に存在すると考えられる。そして、この混合溶媒に非水溶媒がさらに添加されると、疎水性である有機変性層状化合物の層間又は表面から水が排除され、バルクの混合溶媒は水相と有機相とに分離し、層状化合物-金属粒子複合体はこれとの親和性が高い有機相に移行するものと考えられる。
[SP値の差の算出方法]
 ここで、図17における「SP値の差」の算出方法について説明する。非水溶媒のSP値(MPa1/2)は、酢酸エチルが18.6、トルエンが18.2、アセトンが20.3を用いた。一方、金属コロイド水溶液の金属コロイドのSP値は、次のような仮定の下、以下のような手順で基準溶媒(水、エタノール、メタノール)への溶解度から算出した。
仮定1:金属コロイドのSP値は、表面修飾剤(分散剤)であるクエン酸3ナトリウムのSP値と同一である。
仮定2:SP値は加成性がある。
 分散剤であるクエン酸3ナトリウム塩の2水和物の水への溶解度720g/L(25℃)から、実験室温度(16℃)の溶解度を500g/Lと見積もった。そして、クエン酸3ナトリウム塩の2水和物500gが水1Lに対して全て溶解することを確認した。
 水とエタノールを混合して、混合比(水:エタノール)を9:1としたもの(混合溶媒1)と、混合比(水:エタノール)を8:2としたもの(混合溶媒2)を準備した。そして、この混合溶媒1及び2にクエン酸3ナトリウム塩の2水和物を500g/Lの濃度で溶解させた。その結果、混合溶媒1ではクエン酸3ナトリウム塩の2水和物がほぼ全て溶解し、ごく一部のみ沈殿がみられたのに対し、混合溶媒2では大部分が沈殿した。
 同様に、水とメタノールを混合して、混合比(水:メタノール)を9:1としたもの(混合溶媒3)と、混合比(水:メタノール)を8:2としたもの(混合溶媒4)を準備した。そして、この混合溶媒3及び4にクエン酸3ナトリウム塩の2水和物を500g/Lの濃度で溶解させた。その結果、混合溶媒3ではクエン酸3ナトリウム塩の2水和物が全て溶解したのに対し、混合溶媒4ではごく一部が沈殿した。
 この結果に基づき、クエン酸3ナトリウムのSP値を、既知である水、エタノール、メタノールのSP値から次のように推定した。水、エタノール、メタノールのSP値は、それぞれ、47.9MPa1/2、26.0MPa1/2、29.7MPa1/2を用いた。
(クエン酸3ナトリウムのSP値)=0.9×(水のSP値)+0.1×(エタノールのSP値)=45.7
(クエン酸3ナトリウムのSP値)=0.8×(水のSP値)+0.2×(メタノールのSP値)=44.3
 そして、クエン酸3ナトリウムのSP値、すなわち金属コロイドのSP値として、エタノール法で推定したSP値(=45.7)とメタノール法で推定したSP値(=44.3)との平均値45.0MPa1/2を得た。
1      有機変性層状化合物
2      金属コロイド水溶液
3      層状化合物-金属粒子複合体
10     電気2重層型キャパシタ
12     PMMA樹脂
14     Au集電極
16     集電極フィルム
18     セパレータ
20     光キャパシタ
22     光誘電層
24     絶縁層
26     誘電層
30     太陽電池
32     Ag集電極
34     固体電解質膜
36     Al箔
40     光分解デバイス
42     固体電解質
44     Pt電極

Claims (20)

  1.  層状化合物と金属粒子との複合体を製造する方法であって、
     前記層状化合物の層間に有機イオンをインターカレーションして、有機変性層状化合物を形成するステップと、
     前記有機変性層状化合物に、前記金属粒子が金属コロイドとして水中に分散した金属コロイド水溶液と、前記金属コロイドに対する貧溶媒であり、且つ、前記有機変性層状化合物の膨潤性に優れた非水溶媒とを添加するステップとを備えることを特徴とする層状化合物-金属粒子複合体の製造方法。
  2.  前記非水溶媒は、前記金属コロイドとのSP値の差が9MPa1/2以上であることを特徴とする請求項1に記載の層状化合物-金属粒子複合体の製造方法。
  3.  前記非水溶媒及び前記金属コロイド水溶液に加えて、前記金属コロイド水溶液の溶媒である水と前記非水溶媒との両方に対して親和性に優れる両親媒性溶媒を前記有機変性層状化合物に添加することを特徴とする請求項1又は2に記載の層状化合物-金属粒子複合体の製造方法。
  4.  前記非水溶媒は、前記両親媒性溶媒よりも誘電率が低いことを特徴とする請求項3に記載の層状化合物-金属粒子複合体の製造方法。
  5.  前記金属粒子は、Au、Ag、Cu、Al及びPtの少なくとも一つを含むことを特徴とする請求項1乃至4のいずれか一項に記載の層状化合物-金属粒子複合体の製造方法。
  6.  前記有機イオンは、水に難溶性又は不溶性の第4級アンモニウム塩、ホスホニウム塩、蛍光性のカチオン染料又はオキソニウム塩の少なくとも一つであることを特徴とする請求項1乃至5のいずれか一項に記載の層状化合物-金属粒子複合体の製造方法。
  7.  前記層状化合物は、モンモリロナイト鉱物群あるいは雲母群に属する層状粘土化合物であることを特徴とする請求項1乃至6のいずれか一項に記載の層状化合物-金属粒子複合体の製造方法。
  8.  請求項1乃至7のいずれか一項に記載の方法により得られる層状化合物-金属粒子複合体。
  9.  請求項8に記載の層状化合物-金属粒子複合体と、
     前記層状化合物-金属粒子複合体の分散媒としての有機溶媒とを含むことを特徴とする層状化合物-金属粒子複合体サスペンション。
  10.  有機色素、ホール輸送性物質、p型半導性物質、電子輸送性物質、n型半導性物質及び架橋性物質の少なくとも一つをさらに含むことを特徴とする請求項9に記載の層状化合物-金属粒子複合体サスペンション。
  11.  請求項9又は10に記載の層状化合物-金属粒子複合体サスペンションを塗布してなることを特徴とする層状化合物-金属粒子複合体薄膜。
  12.  請求項11に記載の層状化合物-金属粒子複合体薄膜を複数含む積層体からなり、
     複数の層状化合物-金属粒子複合体薄膜は、互いに異なる特性を有することを特徴とする層状化合物-金属粒子複合体多層機能膜。
  13.  表面抵抗が100kΩ/□以上の層状化合物-金属粒子複合体薄膜からなる絶縁層と、
     前記絶縁層の表面側及び裏面側にそれぞれ配置され、表面抵抗が1kΩ/□以上100kΩ/□未満の層状化合物-金属粒子複合体薄膜からなる一対の誘電層と、
     最表層に配置され、表面抵抗が10Ω/□以下の層状化合物-金属粒子複合体薄膜からなる集電極層とを含むことを特徴とする請求項12に記載の層状化合物-金属粒子複合体多層機能膜。
  14.  前記集電極層の一方及びこれに隣接する層に光電変換用の色素が添加されていることを特徴とする請求項13に記載の層状化合物-金属粒子複合体多層機能膜。
  15.  前記色素により光還元される電子受容体を前記絶縁層もしくは前記絶縁層及び前記誘電層に添加したことを特徴とする請求項14に記載の層状化合物-金属粒子複合体多層機能膜。
  16.  前記絶縁層に隔てられた対称の層構成を有し、
     前記集電極層の一方及びこれに隣接する層と、前記集電極層の他方及びこれに隣接する層とに、分光感度又は光吸収波長の極大が20nm以上異なる2種類の光電変換用の色素をそれぞれ添加してなることを特徴とする請求項13に記載の層状化合物-金属粒子複合体多層機能膜。
  17.  前記絶縁層の一方の側に積層される層状化合物-金属粒子複合体多層機能膜は、前記金属粒子としてPtを含み、
     前記絶縁層の他方の側に積層される層状化合物-金属粒子複合体多層機能膜は、前記金属粒子としてAu、Ag、Cu及びAlの少なくとも一つを含むことを特徴とする請求項16に記載の層状化合物-金属粒子複合体多層機能膜。
  18.  金属粒子が50wt%未満である、請求項12に記載の層状化合物-金属粒子複合体多層機能膜からなる誘電層又は固体電解質層を一方の電極として備え、
     他方の電極が炭素繊維電極であることを特徴とするフレキシブル太陽電池。
  19.  金属粒子と、該金属粒子が吸着する無機物又は無機-有機ハイブリッド化合物とからなり、非水溶媒中で分散状態を維持しうる複合体、及びその高濃度分散体ペースト及びこのペーストから成膜される薄膜並びに2層以上の積層構造物。
  20.  金属粒子の配合量、凝集の度合いに応じてその導電性、プラズモン共鳴性または光学吸収特性が制御されることを特徴とする請求項19に記載の複合体、及びその高濃度分散体ペースト及びこのペーストから成膜される薄膜並びに2層以上の積層構造物。
PCT/JP2012/053341 2011-02-14 2012-02-14 層状化合物-金属粒子複合体及びその製造方法、並びにこれを用いたサスペンション、薄膜及びフレキシブル太陽電池 WO2012111647A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280018173.5A CN103502148B (zh) 2011-02-14 2012-02-14 层状化合物—金属粒子复合体及其制备方法、以及使用了该复合体的悬浮液、薄膜及柔性太阳能电池
DK12747853T DK2676931T3 (da) 2011-02-14 2012-02-14 Lagdelt forbindelse-metalpartikelkomposit og fremgangsmåde til fremstilling deraf samt suspension, film og fleksibel solcelle med anvendelse heraf
EP12747853.5A EP2676931B1 (en) 2011-02-14 2012-02-14 Layered compound-metal particle composite and production method therefor, and suspension, film and flexible solar cell using same
US13/985,193 US9035169B2 (en) 2011-02-14 2012-02-14 Layered compound-metal particle composite and production method therefor, and suspension, film and flexible solar cell using same
KR1020137023921A KR101934376B1 (ko) 2011-02-14 2012-02-14 층상 화합물-금속 입자 복합체 및 그 제조 방법, 및 이를 이용한 서스펜션, 박막 및 플렉서블 태양전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011029216A JP5820592B2 (ja) 2011-02-14 2011-02-14 層状化合物−金属粒子複合体及びその製造方法、並びにこれを用いたサスペンション、薄膜及びフレキシブル太陽電池
JP2011-029216 2011-02-14

Publications (1)

Publication Number Publication Date
WO2012111647A1 true WO2012111647A1 (ja) 2012-08-23

Family

ID=46672566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053341 WO2012111647A1 (ja) 2011-02-14 2012-02-14 層状化合物-金属粒子複合体及びその製造方法、並びにこれを用いたサスペンション、薄膜及びフレキシブル太陽電池

Country Status (7)

Country Link
US (1) US9035169B2 (ja)
EP (1) EP2676931B1 (ja)
JP (1) JP5820592B2 (ja)
KR (1) KR101934376B1 (ja)
CN (1) CN103502148B (ja)
DK (1) DK2676931T3 (ja)
WO (1) WO2012111647A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017156104A (ja) * 2016-02-29 2017-09-07 西松建設株式会社 光増強素子とその製造方法ならびに分光分析用キットおよび分光分析方法
US11276509B2 (en) * 2012-11-29 2022-03-15 Ito Research Institute Co., Ltd Structure containing metal microparticles

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014223608A (ja) * 2013-04-17 2014-12-04 積水化学工業株式会社 マイクロカプセルの製造方法及びマイクロカプセル
WO2016035109A1 (ja) * 2014-09-05 2016-03-10 西松建設株式会社 銀ナノ粒子を含む複合体ならびに該複合体を利用した抗菌剤、光電変換素子、光感応性ポインティングデバイスおよび薄膜太陽電池
JP6080233B2 (ja) * 2015-07-17 2017-02-15 西松建設株式会社 機能性光透過材およびその製造方法
KR102047907B1 (ko) * 2019-08-29 2019-11-22 권오현 금속유기복합체를 이용한 미세먼지 저감장치
CN110586956A (zh) * 2019-09-29 2019-12-20 同济大学 一种原位合成蒙脱土/金纳米棒复合材料的方法
JP2021124441A (ja) * 2020-02-07 2021-08-30 株式会社伊都研究所 センサシステム及び標的物質の検出方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241880A (ja) * 1986-04-11 1987-10-22 松下電工株式会社 無機層状多孔体の製法
JPH10182142A (ja) 1996-10-23 1998-07-07 Osaki Kogyo Kk 金属微粒子/固体担体組成物、その用途及び製造方法
JPH1133088A (ja) * 1997-07-14 1999-02-09 Sumitomo Osaka Cement Co Ltd 汚れ分解機能を有する防黴材およびその製造方法
JPH1161209A (ja) 1997-08-15 1999-03-05 Kdk Corp 貴金属微粒子の分散体及びその製造方法、並びに分散体を利用した構造体デバイス及びその製造方法
JP2003062462A (ja) * 2001-08-27 2003-03-04 National Institute Of Advanced Industrial & Technology 粘土層間包接光触媒およびその製造方法
JP2005255419A (ja) * 2004-03-09 2005-09-22 Kuraray Co Ltd パラジウム−バイメタルカチオン交換モンモリロナイトおよびその用途
JP2006184247A (ja) 2004-12-28 2006-07-13 Takao Fukuoka Sers基質収容体

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3040705B2 (ja) * 1995-12-20 2000-05-15 株式会社麗光 光拡散シート用樹脂微粒子および光拡散シート
US5853886A (en) * 1996-06-17 1998-12-29 Claytec, Inc. Hybrid nanocomposites comprising layered inorganic material and methods of preparation
US6117541A (en) * 1997-07-02 2000-09-12 Tetra Laval Holdings & Finance, Sa Polyolefin material integrated with nanophase particles
EP1607411A4 (en) * 2003-03-25 2006-03-15 Sekisui Plastics POLYMERIC PARTICLE WITH SILICA COATING, CORRESPONDING MANUFACTURING METHOD AND USE THEREOF
CN1750176A (zh) 2004-09-17 2006-03-22 中国科学院成都有机化学有限公司 一种含碳纳米管导电粉体的制备方法
KR100784902B1 (ko) * 2004-12-30 2007-12-11 주식회사 동부하이텍 플라스틱 전도성 미립자의 제조방법
WO2007040609A1 (en) * 2005-09-16 2007-04-12 Pactiv Corporation Polymer films with treated fillers and products and methods of using same
JP4156012B2 (ja) * 2006-08-14 2008-09-24 横浜ゴム株式会社 色素増感太陽電池及びその電解質

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241880A (ja) * 1986-04-11 1987-10-22 松下電工株式会社 無機層状多孔体の製法
JPH10182142A (ja) 1996-10-23 1998-07-07 Osaki Kogyo Kk 金属微粒子/固体担体組成物、その用途及び製造方法
JPH1133088A (ja) * 1997-07-14 1999-02-09 Sumitomo Osaka Cement Co Ltd 汚れ分解機能を有する防黴材およびその製造方法
JPH1161209A (ja) 1997-08-15 1999-03-05 Kdk Corp 貴金属微粒子の分散体及びその製造方法、並びに分散体を利用した構造体デバイス及びその製造方法
JP2003062462A (ja) * 2001-08-27 2003-03-04 National Institute Of Advanced Industrial & Technology 粘土層間包接光触媒およびその製造方法
JP2005255419A (ja) * 2004-03-09 2005-09-22 Kuraray Co Ltd パラジウム−バイメタルカチオン交換モンモリロナイトおよびその用途
JP2006184247A (ja) 2004-12-28 2006-07-13 Takao Fukuoka Sers基質収容体

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
G. FRENS ET AL., NAT. PHYS. SCI., 1973
P.C. LEE ET AL., J. PHYS. CHEM. B, 1982
RYUJI MATSUMOTO: "Yuki Yozai Bunsanka Kin Nano Ryushi - Nendo Fukugotai no Sakusei to Kogaku Tokusei", CSJ: THE CHEMICAL SOCIETY OF JAPAN KOEN YOKOSHU, vol. 91, 11 March 2011 (2011-03-11), pages 934, XP008169681 *
See also references of EP2676931A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11276509B2 (en) * 2012-11-29 2022-03-15 Ito Research Institute Co., Ltd Structure containing metal microparticles
JP2017156104A (ja) * 2016-02-29 2017-09-07 西松建設株式会社 光増強素子とその製造方法ならびに分光分析用キットおよび分光分析方法

Also Published As

Publication number Publication date
EP2676931B1 (en) 2019-09-18
JP5820592B2 (ja) 2015-11-24
DK2676931T3 (da) 2019-12-02
EP2676931A1 (en) 2013-12-25
US20140076384A1 (en) 2014-03-20
US9035169B2 (en) 2015-05-19
CN103502148A (zh) 2014-01-08
CN103502148B (zh) 2015-07-22
EP2676931A4 (en) 2017-08-16
JP2012166145A (ja) 2012-09-06
KR101934376B1 (ko) 2019-01-02
KR20140045921A (ko) 2014-04-17

Similar Documents

Publication Publication Date Title
JP5820592B2 (ja) 層状化合物−金属粒子複合体及びその製造方法、並びにこれを用いたサスペンション、薄膜及びフレキシブル太陽電池
Nandi et al. Metal/metal oxide decorated graphene synthesis and application as supercapacitor: a review
Luoshan et al. Surface plasmon resonance enhanced multi-shell-modified upconversion NaYF4: Yb3+, Er3+@ SiO2@ Au@ TiO2 crystallites for dye-sensitized solar cells
Kang et al. Wrinkled silica/titania nanoparticles with tunable interwrinkle distances for efficient utilization of photons in dye-sensitized solar cells
Cakar et al. Investigation of vegetable tannins and their iron complex dyes for dye sensitized solar cell applications
Li et al. Chemical sintering of graded TiO2 film at low-temperature for flexible dye-sensitized solar cells
Singh et al. ZnO based quantum dot sensitized solar cell using CdS quantum dots
Hwang et al. Efficiency enhancement in dye-sensitized solar cells using the shape/size-dependent plasmonic nanocomposite photoanodes incorporating silver nanoplates
Al-Attafi et al. Aggregated mesoporous nanoparticles for high surface area light scattering layer TiO2 photoanodes in Dye-sensitized Solar Cells
Sahu et al. Microwave‐assisted hydrothermal synthesis of Cu‐doped TiO2 nanoparticles for efficient dye‐sensitized solar cell with improved open‐circuit voltage
CN101669249A (zh) 光电池及用于该光电池的多孔质半导体膜形成用涂料
Habibi et al. Novel sulfur-doped niobium pentoxide nanoparticles: fabrication, characterization, visible light sensitization and redox charge transfer study
JP2017162815A (ja) 金属微粒子含有構造体
EP2904620A1 (en) Plasmon-enhanced dye-sensitized solar cells
Ghartavol et al. On the assessment of incorporation of CNT–TiO 2 core–shell structures into nanoparticle TiO 2 photoanodes in dye-sensitized solar cells
Zhang et al. Cooperation of multifunction composite structures and fluorescein for photovoltaic performance-enhanced ZnO-based dye-sensitized solar cells
Mojaddami et al. Efficient dye-sensitized solar cells based on TiO2 nanoparticles and skein-like nanotubes: effect of arrangement modes of the layers and TiCl4 treatment
Wang et al. Highly dispersed redox-active polyoxometalates’ periodic deposition on multi-walled carbon nanotubes for boosting electrocatalytic triiodide reduction in dye-sensitized solar cells
Shi et al. Enhancing charge transport performance of perovskite solar cells by using reduced graphene oxide-cysteine/nanogold hybrid material in the active layer
Wang et al. Enhanced electron transport through two-dimensional Ti3C2 in dye-sensitized solar cells
Chen et al. Improving the efficiency of dye-sensitized solar cell via tuning the Au plasmons inlaid TiO 2 nanotube array photoanode
Thankappan et al. Highly efficient betanin dye based ZnO and ZnO/Au Schottky barrier solar cell
Vajda et al. Fabrication of copper oxide-based dye-sensitized solar cell with high short-circuit current density (J SC) using flexible and binder-free porous photoelectrode
Thulasi et al. Design and fabrication of high performance photoanode of Fe2 (MoO4) 3/RGO hybrid composites for triiodide reduction in dye-sensitized solar cells
Saleh et al. Preparation and characterization of CuI/PVA–PEDOT: PSS core–shell for photovoltaic application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12747853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137023921

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012747853

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13985193

Country of ref document: US