WO2012109888A1 - 一种实时业务带宽分配方法及基站 - Google Patents

一种实时业务带宽分配方法及基站 Download PDF

Info

Publication number
WO2012109888A1
WO2012109888A1 PCT/CN2011/078836 CN2011078836W WO2012109888A1 WO 2012109888 A1 WO2012109888 A1 WO 2012109888A1 CN 2011078836 W CN2011078836 W CN 2011078836W WO 2012109888 A1 WO2012109888 A1 WO 2012109888A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
data
period
frame number
uploading
Prior art date
Application number
PCT/CN2011/078836
Other languages
English (en)
French (fr)
Inventor
陈钧
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201180001801.4A priority Critical patent/CN102356608B/zh
Priority to PCT/CN2011/078836 priority patent/WO2012109888A1/zh
Publication of WO2012109888A1 publication Critical patent/WO2012109888A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to the field of network communication technologies, and in particular, to a real-time service bandwidth allocation method and a base station. Background technique
  • the terminal needs to periodically report data such as meter reading and power distribution to a higher-level device such as a base station. Since the monitoring center and other devices in the network also need to perform real-time control on other related devices in the network according to the data reported by the terminal, in these scenarios, the uplink data transmission has real-time requirements.
  • each time a terminal needs to upload data it needs to first send a request for requesting an uplink bandwidth to the base station, and wait for the base station and other devices to allocate corresponding uplink bandwidth before uploading the data.
  • the response from the time the request is made to the receipt of the base station takes a while, and therefore, the real-time requirements for the uploaded data cannot be met.
  • the present invention provides a real-time service bandwidth allocation method and a base station, so as to solve the problem that the real-time service bandwidth allocation method in the prior art cannot meet the real-time requirement of the terminal period upload data.
  • the specific plan is as follows:
  • a real-time service bandwidth allocation method includes:
  • the period for acquiring the data uploaded by the terminal includes:
  • the determining a point in time at which the terminal subsequently uploads data includes:
  • the manner in which the terminal calculates the number of frames in the periodic interval is:
  • the manner in which the terminal calculates the number of the periodic interval frames further includes:
  • the number of periodic interval frames of the terminal uploading data is recalculated.
  • the period for acquiring the data uploaded by the terminal includes:
  • the determining a point in time at which the terminal subsequently uploads data includes:
  • the determining a frame number of the subsequent uploading data of the terminal includes:
  • the determining a starting frame number of the terminal uploading data includes:
  • the frame number of the data frame in which the request for the uplink bandwidth is requested by the terminal in the polling mode is the same as the number of the periodic interval frame in which the terminal uploads the data, and the request for the next application for the uplink bandwidth is obtained.
  • the uplink bandwidth is allocated to the terminal continuously for each frame; the preset data frame number is greater than Determining the difference between the frame number of the data frame in which the terminal requests the next uplink bandwidth request and the starting frame number of the terminal uploading data; Obtain a starting frame number of the terminal upload data.
  • the method further includes:
  • the determining whether the number of the periodic interval frames of the terminal uploading data changes comprises: determining whether the terminal continuously requests to apply for a bandwidth by using a contention request method; if yes, the terminal is considered to upload data.
  • the number of periodic interval frames changes.
  • the period for acquiring the data uploaded by the terminal includes:
  • the manner in which the monitoring center calculates the period in which the terminal uploads data is:
  • the manner in which the monitoring center calculates the period in which the terminal uploads data further includes:
  • the period for uploading the data by the terminal is recalculated.
  • the method further includes:
  • the terminal In the initial stage of the terminal accessing the network, the terminal is allocated a bandwidth by polling the terminal, so that the terminal uploads data.
  • the allocating bandwidth to the terminal includes:
  • the terminal allocates bandwidth for each frame continuously.
  • the allocating bandwidth to the terminal includes:
  • the terminal allocates bandwidth to the terminal at a point in time when the terminal subsequently uploads data, or a preset number of frames after the time point at which the terminal subsequently uploads data.
  • a base station comprising:
  • a period obtaining module configured to acquire a period for uploading data by the terminal
  • a subsequent time point determining module configured to determine, according to a period in which the terminal uploads data and a time point at which the terminal uploads data has occurred, a time point at which the terminal subsequently uploads data
  • a bandwidth allocation module configured to allocate a bandwidth to the terminal in a time zone including a time point at which the terminal subsequently uploads data; the length of the time interval is smaller than a period in which the terminal uploads data.
  • the period obtaining module includes:
  • a period interval frame number obtaining unit configured to receive a period interval frame number of the terminal uploading data calculated and reported by the terminal, where the number of the periodic interval frames is a time interval between two time points of the terminal adjacent to uploading data Number of frames;
  • the subsequent time point determining module includes:
  • the first frame number determining unit is configured to determine a frame number of the subsequent uploading data of the terminal.
  • the period obtaining module includes:
  • a bandwidth request frame number obtaining unit configured to obtain, by means of polling the terminal, a frame number of a data frame in which the request for requesting uplink bandwidth is requested by the terminal twice;
  • a period interval frame number calculation unit configured to calculate a difference between frame numbers of data frames in which the request for the uplink bandwidth is requested by the terminal twice, and obtain a period interval frame number of the terminal uploading data
  • the subsequent time point determining module includes:
  • the second frame number determining unit is configured to determine a frame number of the subsequent uploading data of the terminal.
  • the second frame number determining unit includes:
  • a start frame number determining subunit configured to determine a starting frame number of the terminal uploading data according to the number of periodic interval frames of the terminal uploading data and the frame number of the known terminal requesting the uplink bandwidth request;
  • a subsequent frame number determining subunit configured to determine a frame number of the subsequent uploading data of the terminal according to the number of periodic interval frames of the terminal uploading data and the starting frame number of the terminal uploading data.
  • the period obtaining module includes:
  • the absolute time period receiving unit is configured to receive a period of the terminal uploading data calculated by the monitoring center according to the time stamp of the terminal uploading data.
  • the method further includes:
  • the polling module is configured to allocate an uplink bandwidth to the terminal in a manner of polling the terminal in the initial stage of the terminal accessing the network, so that the terminal uploads data.
  • the real-time service bandwidth allocation method disclosed in the embodiment of the present invention can also satisfy the terminal, especially when the number of terminals is large (for example, a thousand terminals per cell) and the data uploading period is long (for example, several minutes to several hours). Real-time requirements for periodic upload data. DRAWINGS
  • FIG. 1 is a flowchart of a real-time service bandwidth allocation method according to an embodiment of the present invention
  • FIG. 2 is a sequence diagram of a real-time service bandwidth allocation method according to another embodiment of the present invention.
  • FIG. 3 is a sequence diagram of a real-time service bandwidth allocation method according to another embodiment of the present invention.
  • FIG. 4 is a sequence diagram of a real-time service bandwidth allocation method according to another embodiment of the present invention.
  • FIG. 5 is a structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a real-time service bandwidth allocation method according to an embodiment of the present invention.
  • the executive body of this embodiment may be a base station. The method includes the steps of:
  • S102 Determine, according to a period in which the terminal uploads data and a time point at which the terminal uploads data, the time point at which the terminal subsequently uploads data;
  • S103 Allocating a bandwidth to the terminal in a time interval including a time point of the subsequent uploading of the data by the terminal; the length of the time interval is smaller than a period in which the terminal uploads data.
  • the manner or manner of obtaining the period for uploading data by the terminal may be multiple. For example, the period in which the terminal uploads data is received by the terminal, and the period in which the terminal uploads the data sent by the monitoring center is obtained, and the period in which the terminal uploads data is obtained by the base station itself according to the data reported by the terminal.
  • the period in which the terminal uploads data can be expressed in absolute time or in relative time.
  • the absolute time can be a 24-hour time, for example:
  • the data upload period is 5 minutes.
  • the relative time can be expressed by the number of periodic interval frames in which the terminal uploads data.
  • the reason why the period interval frame number of the terminal uploading data can be used to indicate the period in which the terminal uploads data is because: In practical applications, the base station and the terminal have synchronized clock signals.
  • the frame number of the data frame where the terminal uploads data is changed according to a certain time interval (for example, one frame number per 50 ms).
  • the terminal can count the frame number of the data frame sent by itself according to its own clock signal. For example, after starting the timer, after 50ms, the frame number of the transmitted data frame is recorded as 1; after 50ms, the frame number of the transmitted data frame is recorded as 2. If there is no data to be sent by the terminal within a certain period of time, the terminal will continue to count the frame number but will not send data.
  • the terminal can include the frame number in the information of the data frame and send it to the base station. Since the base station and the terminal have the same clock signal, the base station can also know at a certain point in time whether the frame number of the data that the terminal needs to transmit or is transmitting should be.
  • the period in which the terminal uploads data if a terminal uploads data in the first frame and also uploads data in the 60001 frame, the period in which the terminal uploads data can be expressed as 60000 frames in the number of frames. Because the time interval between two adjacent data frames is a fixed value, taking 50ms/frame as an example, 60000 frames means that the period is 300000ms (that is, 5 minutes).
  • step S102 according to the period in which the terminal uploads data and the time of the known upload data. Point, it is convenient to determine the point in time at which the terminal subsequently uploads data.
  • the time point of the subsequent uploading of the data by the terminal may be determined as follows: Assume that the period of uploading the data by the terminal is 5 minutes, and a known uploading data is used. The time point is 16:12:16, then the next time the terminal uploads data, it can be determined that it is 16:17:16. The time point at which the terminal subsequently uploads data can also be determined in the above manner.
  • the corresponding time point of the uploaded data may also be represented by the frame number of the terminal uploading data. It should be noted that, if the amount of data uploaded by the terminal is large and needs to occupy multiple data frames, the frame number of the first data frame where the data is transmitted by the terminal may be used as the time point for the terminal to upload data.
  • the time point at which the terminal subsequently uploads the data may be determined in the following manner: For example, a terminal uploads data. The number of periodic interval frames is 60000 frames. It is known that the time point of uploading data is the first frame, then it can be determined that the time point of the next upload of data by the terminal is the 60001 frame. The time point at which the terminal subsequently uploads data can also be determined in the above manner.
  • step S103 the specific implementation manner of allocating bandwidth for the terminal in the time interval including the time point of the subsequent uploading of the data by the terminal may be:
  • the implementation manner may be as follows: Assume that the time point of the next uploading of the data by the terminal is 16:31:36, then the terminal can be before 16:31:36 50ms, the terminal is allocated bandwidth for each frame continuously until the terminal uploads data by using the bandwidth. Of course, it is also possible to allocate bandwidth for the terminal at the time when the terminal uploads data next time; or allocate a bandwidth for the terminal in a certain data frame after the time point when the terminal uploads data next time, as long as the system can be satisfied. The real-time requirements for uploading data to the terminal can be.
  • the implementation manner may be as follows: It is the 60001 frame, then the terminal can allocate bandwidth to the terminal for each frame in 5 frames (59996th frame) before the 60001 frame until the terminal uploads data by using the bandwidth. Of course, it is also possible to use the frame at the time when the terminal uploads data next time.
  • the terminal allocates bandwidth; it may also allocate bandwidth to the terminal after a data frame after the time point when the terminal uploads data next time.
  • the terminal allocates bandwidth for each terminal continuously, which can be maximized. Guarantee the real-time performance of data upload.
  • the second frame after the time point of the subsequent uploading of the data at the time point when the terminal subsequently uploads the data is allocated to the terminal. In this manner, only one data frame time is used for the bandwidth resource, which can save Bandwidth resources.
  • the real-time service bandwidth allocation method disclosed in the embodiment obtains the period of uploading data by the terminal, and combines the known time point of the terminal to upload data, determines the time point of the subsequent uploading of the data by the terminal, and uploads the data subsequently in the terminal.
  • the bandwidth is allocated to the terminal within a valid time period before the time point, so that the terminal does not have to send a request for requesting uplink bandwidth to a device such as a base station.
  • the terminal After the terminal generates the uploaded data, it can directly use the base station to actively upload data for the bandwidth allocated by the base station, so that the real-time requirement for the uplink data can be met.
  • the real-time service bandwidth allocation method disclosed in the embodiment of the present invention can also meet the real-time requirement of the terminal uploading data.
  • Embodiment 2
  • FIG. 2 it is a timing diagram of a real-time service bandwidth allocation method according to another embodiment of the present invention.
  • the period of data uploading is calculated by the terminal.
  • the method includes the following steps: S201: A base station polls a terminal (polling);
  • the base station When the terminal just enters the network, the base station does not know the period during which the terminal uploads data. In order to enable the terminal to upload data to the base station at the initial stage of network access, the terminal can be polled by the terminal in the prior art in the initial stage of network access, so that the terminal can be notified when the terminal does not determine the data upload period.
  • S202 The terminal sends a BR header instruction.
  • the base station receives the BR (Bandwidth Request) header command sent by the terminal.
  • BR Bandwidth Request
  • each time the terminal wants to upload data it needs to first report the bandwidth request of the BR not equal to 0 to the base station through the BR header, and the base station allocates the uplink bandwidth to the terminal.
  • S204 The terminal uploads data.
  • Steps S201 to S204 are basically the same as the real-time service bandwidth allocation method in the prior art.
  • the purpose of performing steps S201 to S204 is mainly to enable the terminal to periodically upload data when the terminal upload data period is not determined.
  • steps S201 to S204 may not be performed, and the terminal may directly calculate the data upload period according to the sensing data generated by the sensor.
  • the following steps are performed.
  • S205 The terminal calculates the number of periodic interval frames for data uploading, and obtains a data packet size.
  • the terminal calculates the number of periodic interval frames for data uploading.
  • the specific process can be:
  • the terminal is connected to the sensor, or the sensor is placed in the terminal. After the sensor senses the data of the device such as the meter, it sends it to the terminal, and the terminal uploads the data to the base station. Therefore, when the terminal uploads data to the terminal itself, the terminal can acquire the time point in the form of the frame number itself.
  • step S205 the purpose of obtaining the data packet size is to allocate an appropriate bandwidth to the terminal according to the actual size of the data uploaded by the terminal, thereby avoiding waste of bandwidth resources caused by excessive bandwidth allocation to the terminal.
  • the terminal reports the number of periodic interval frames and the data packet size of the data uploading to the base station.
  • the MAC layer connection is established with the base station. Therefore, the number of periodic interval frames and the data packet size calculated by the terminal may be The independent MAC layer message is reported to the base station.
  • information such as the number of periodic interval frames and the size of the data packet may be included in other messages sent by the terminal to the base station, and sent to the base station. For example, the MAC header/subheader of the Protocol Data Unit (PDU) can be reported to the base station, thereby saving bandwidth resources.
  • PDU Protocol Data Unit
  • the base station uses the starting frame number of the last time the known terminal uploads the data, and adds the number of the periodic interval frames to obtain the starting frame number of the next uploading data of the terminal; Because the terminal periodically uploads data, the starting frame number of the data uploaded by the terminal for the next time, and the number of periodic interval frames, can be used to obtain the starting frame number of the next data upload by the terminal.
  • step 207 in addition to using the starting frame number of the last time the known terminal uploads the data, and adding the number of periodic interval frames, the starting frame number of the next uploading data of the terminal is obtained; and the data can also be uploaded by other known terminals.
  • the frame number combined with the number of periodic interval frames, calculates the starting frame number of the next upload of the data by the terminal. For example, the starting frame number of the data uploaded by the terminal in the previous two cycles, plus the number of two consecutive interval frames, can also obtain the starting frame number of the next uploading data of the terminal.
  • step S207 the step of "determining the time point of subsequent uploading of data by the terminal according to the period in which the terminal uploads data and the known time point of uploading data by the terminal” may also be performed by the terminal. This can reduce the burden on the base station. Since the process of performing this step with the base station is basically the same when the terminal performs this step, it will not be described here.
  • the base station allocates a bandwidth that matches the data packet size of the terminal upload data for each terminal in a time interval before the calculated starting frame number of the next upload data of the terminal;
  • the calculated bandwidth of the terminal may be allocated for each terminal at a time point of two data frames before the start frame number of the next uploading data of the terminal, until the terminal uploads data by using the bandwidth.
  • S209 The terminal uploads data to the base station.
  • steps S207-S209 may be performed periodically.
  • S210 The terminal reports the number of periodic interval frames and the data packet size of the updated data upload to the base station. After updating the information such as the number of periodic interval frames and the data packet size, the base station and the terminal may continue to periodically perform steps S207-S209.
  • the terminal may recalculate the number of periodic interval frames for data uploading, and start.
  • the frame number and packet size are reported to the base station.
  • the terminal may determine whether the time point at which the base station allocates the bandwidth for the terminal meets the delay requirement of the data upload; when the determination result is no, recalculate the period interval frame number and the start frame number of the terminal upload data.
  • FIG. 3 it is a timing diagram of a real-time service bandwidth allocation method according to another embodiment of the present invention.
  • the period of data uploading is calculated by the base station.
  • the method includes the following steps: S301: A base station polls a terminal (polling);
  • S302 The terminal sends a BR header instruction.
  • S303 The base station allocates an uplink bandwidth to the terminal.
  • S304 The terminal uploads data.
  • the purpose of performing steps S301 to S304 is to enable the base station to receive the data transmitted by the terminal, and then obtain time information from the uploaded data, and obtain information such as the number of periodic intervals of the terminal uploading data.
  • the base station calculates the number of periodic interval frames for the terminal to apply for the uploading bandwidth according to the data uploaded by the terminal.
  • the base station allocates bandwidth to the terminal by using the polling manner, the terminal cannot upload the data after the data needs to be uploaded, and the application needs to be uploaded.
  • Bandwidth request After receiving the bandwidth request from the terminal, the base station can only obtain the frame number of the data frame where the terminal requests to upload the bandwidth. Therefore, in step S305, the base station needs to calculate the number of periodic interval frames for which the terminal applies for the upload bandwidth.
  • the base station may calculate the number of the periodic interval frames that the terminal applies for the upload bandwidth in the following manner: Obtain the frame number of the data frame in which the request for the uplink bandwidth is requested by the terminal twice; The difference between the frame numbers of the data frames in which the request for the uplink bandwidth is located is the number of periodic interval frames for which the terminal applies for the upload bandwidth.
  • the interval between the two is a fixed value, and when the terminal generates the time for uploading the data, it can be considered that the terminal needs to upload data. Therefore, it can be considered that the number of periodic interval frames in which the terminal applies for uploading bandwidth is also the number of periodic interval frames in which the terminal uploads data.
  • S306 The frame number of the data frame in which the request for the uplink bandwidth is requested by the terminal is added, and the frame number of the periodic interval is added, and the frame number of the data frame where the request for the next uplink bandwidth is requested by the terminal is obtained;
  • the uplink bandwidth is allocated to the terminal continuously for each frame; Because the terminal generates data, it will apply for uploading bandwidth. Therefore, the time when the terminal applies for uploading bandwidth is later than the time when the terminal actually generates data (that is, there is data to be uploaded).
  • the base station may perform a period of time before the calculated time when the terminal applies for uploading the bandwidth (for example, one polling period or several data frames in advance), consecutive frames. Both allocate uplink bandwidth to the terminal.
  • the terminal When the terminal generates new data and needs to upload, it can immediately upload data by using the bandwidth allocated by the base station. Then, the base station can obtain the time point at which the terminal actually uploads the data, that is, the time point at which the bandwidth is more accurately allocated.
  • S308 The terminal uses the bandwidth allocated by the base station continuously for each frame to upload data to the base station;
  • the base station obtains a frame number of the first data frame of the terminal uploading data, and calculates a starting frame number of the next time the terminal uploads the data.
  • the base station After the base station obtains the frame number of the first data frame in which the terminal actually uploads data, and uses the frame number plus the number of periodic interval frames of the data transmitted by the terminal, the starting frame number of the next uploading data of the terminal can be obtained.
  • S310 The data frame of the starting frame number of the next time the base station uploads data, allocates bandwidth to the terminal.
  • S311 The terminal uses the bandwidth allocated by the base station to upload data to the base station.
  • the base station After obtaining the starting frame number of the data uploaded by the terminal, the base station only needs to allocate the uplink bandwidth to the terminal corresponding to the data frame of the starting frame number of the terminal, that is, the base station periodically performs step S309, and the terminal correspondingly
  • the step S310 is executed to upload data.
  • the method disclosed in this embodiment may further enable the base station to determine whether the period of the data uploaded by the terminal changes; if yes, recalculate the number of periodic interval frames of the terminal uploading data, and determine The starting frame number of the terminal uploading data.
  • the base station may poll the terminal with a relatively short period (for example, Is) for a long period of time (for example, 30 minutes) to obtain a time point at which the terminal actually uploads data, and then determine the terminal to upload data. Whether the cycle has changed.
  • the terminal may apply for the bandwidth by means of a contention request. If the base station receives the request for bandwidth request through the contention request method multiple times within a certain period of time (for example, several times of the data uploading period), the base station may also consider that the period of the terminal uploading data changes, and then recalculate the terminal uploading data. cycle.
  • the base station calculates the period during which the terminal uploads data, so it can be applied to those that do not have There is a terminal that calculates the function of uploading data cycles.
  • FIG. 4 it is a timing diagram of a real-time service bandwidth allocation method according to another embodiment of the present invention.
  • the period of data uploading is calculated by the monitoring center in the network.
  • the method includes the steps of:
  • S401 The base station polls the terminal (polling);
  • S402 The terminal sends a BR header instruction.
  • S403 The base station allocates an uplink bandwidth to the terminal.
  • S404 The terminal uploads data.
  • the purpose of performing steps S301 to S304 is to enable the base station to receive data transmitted by the terminal. After receiving the data uploaded by the terminal, the base station will eventually upload the data to the monitoring center on the network.
  • the monitoring center can obtain time information from the uploaded data and obtain information such as the period in which the terminal uploads data.
  • S405 The base station uploads the data uploaded by the terminal to the monitoring center through the network management system;
  • the base station uploads the data uploaded by the terminal to the monitoring center through the network management system.
  • the base station can also directly upload the data uploaded by the terminal to the monitoring center.
  • the monitoring center calculates a data uploading period according to the timestamp included in the uploaded data. Because the data uploaded by the terminal generally has a timestamp, the timestamp is usually expressed in absolute time, so the monitoring center can be based on the timestamp. It is convenient to calculate the period and time point of the terminal uploading data. Specifically, the process of calculating the data uploading period by the monitoring center may be as follows:
  • the time point at which the terminal uploads data next time is obtained.
  • the monitoring center calculates the time point at which the terminal uploads the data next time, and sends the data to the base station. For example, the monitoring center may use the time point at which the terminal uploads data last time, plus the period in which the terminal uploads data, to obtain the time point at which the terminal uploads data next time.
  • S408 The base station allocates a bandwidth to the terminal in a second frame after the time point when the terminal uploads the data next time.
  • S409 The terminal uses the bandwidth allocated by the base station to upload data to the base station;
  • the monitoring center updates information such as a data uploading period and a time point, and sends the information to the base station.
  • the monitoring center finds that the information such as the data uploading period, the time point, and the packet size changes, or the delay and jitter of the data upload cannot meet the requirements of the monitoring service, the period and time point of the data uploading may be recalculated, and the notification is notified.
  • Base station The base station can actively allocate the uplink bandwidth to the terminal at the recalculated time point by using the method disclosed in this embodiment.
  • the time point of each subsequent upload of the terminal may be easily determined. That is, when the time at which the terminal uploads data is added, and the period in which the terminal uploads the data, the time point at which the next terminal uploads data is obtained.
  • the above calculation process may be performed by a base station or by a monitoring center, and should not be construed as limiting the present invention.
  • the invention also discloses a base station. Referring to FIG. 5, it is a structural diagram of a base station according to an embodiment of the present invention. As shown in FIG. 5, the base station includes:
  • a period obtaining module 501 configured to acquire a period for uploading data by the terminal
  • the subsequent time point determining module 502 is configured to determine, according to a period in which the terminal uploads data and a time point at which the terminal uploads data, the time point at which the terminal subsequently uploads data;
  • the bandwidth allocation module 503 is configured to allocate a bandwidth to the terminal in a time interval including a time point when the terminal subsequently uploads data; the length of the time interval is smaller than a period in which the terminal uploads data.
  • the period obtaining module 501 may include:
  • a period interval frame number obtaining unit configured to receive a period interval frame number of the terminal uploading data calculated and reported by the terminal; the period interval frame number is between the time points of the terminal adjacent to uploading data twice The number of frames that are separated;
  • the subsequent time point determining module 502 may include:
  • the first frame number determining unit is configured to determine a frame number of the subsequent uploading data of the terminal.
  • the period obtaining module 501 may further include:
  • a bandwidth request frame number obtaining unit configured to obtain, by means of polling the terminal, a frame number of a data frame in which the request for requesting uplink bandwidth is requested by the terminal twice;
  • the period interval frame number calculation unit is configured to calculate a difference between the frame numbers of the data frames in which the terminal requests the uplink bandwidth request twice, and obtain the number of periodic interval frames of the terminal upload data.
  • the subsequent time point determining module 502 may include:
  • the second frame number determining unit is configured to determine a frame number of the subsequent uploading data of the terminal.
  • the second frame number determining unit may further include:
  • a start frame number determining subunit configured to determine a starting frame number of the terminal uploading data according to the number of periodic interval frames of the terminal uploading data and the frame number of the known terminal requesting the uplink bandwidth request;
  • a subsequent frame number determining subunit configured to determine a frame number of the subsequent uploading data of the terminal according to the number of periodic interval frames of the terminal uploading data and the starting frame number of the terminal uploading data.
  • the period obtaining module 501 may include:
  • the absolute time period receiving unit is configured to receive a period of the terminal uploading data calculated by the monitoring center according to the time stamp of the terminal uploading data.
  • the base station disclosed by the present invention may further include:
  • the polling module is configured to allocate an uplink bandwidth to the terminal in a manner of polling the terminal in the initial stage of the terminal accessing the network, so that the terminal uploads data.
  • the steps of a method or algorithm described in connection with the embodiments disclosed herein can be implemented directly in hardware, a software module executed by a processor, or a combination of both.
  • the software module can be placed in random access memory (RAM), memory, read only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, removable disk, CD-ROM, or technical field. Any other form of storage medium known.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种实时业务带宽分配方法,包括:获取终端上传数据的周期;根据所述终端上传数据的周期以及已发生的终端上传数据的时间点,确定所述终端后续上传数据的时间点;在包含所述终端后续上传数据的时间点在内的时间区间内,为所述终端分配带宽;所述时间区间的长度小于所述终端上传数据的周期。本发明还公开了一种基站。采用本发明所公开的方法或基站,能够满足终端周期上传数据的实时性要求。尤其是在终端数目很多(例如每小区上千个终端),数据上传周期很长(例如几分钟到几小时)的情况下,本发明实施例所公开的实时业务带宽分配方法,也能够满足终端周期上传数据的实时性要求。

Description

一种实时业务带宽分配方法及基站 技术领域
本发明涉及网络通信技术领域,尤其涉及一种实时业务带宽分配方法及基 站。 背景技术
在智能电网等应用场景中, 终端需要向基站等上级设备周期性上报抄表、 配电等数据。 由于网络中的监控中心等设备还需要根据终端上报的数据,对网 络中的其他相关设备进行实时控制, 因此在这些场景中,对上行数据的传输具 有实时性要求。
现有技术中,每次终端需要上传数据时,都需要首先向基站发出申请上行 带宽的请求,等待基站等设备为其分配了相应的上行带宽后,才可以上传数据。 但是, 从发出请求到收到基站的响应需要经历一段时间, 因此, 无法满足对上 传数据的实时性要求。 发明内容
有鉴于此, 本发明提供一种实时业务带宽分配方法及基站, 以解决现有技 术中的实时业务带宽分配方法无法满足终端周期上传数据的实时性要求的问 题。 其具体方案如下:
一种实时业务带宽分配方法, 包括:
获取终端上传数据的周期;
根据所述终端上传数据的周期以及已发生的终端上传数据的时间点,确定 所述终端后续上传数据的时间点;
在包含所述终端后续上传数据的时间点在内的时间区间内,为所述终端分 配带宽; 所述时间区间的长度 d、于所述终端上传数据的周期。
优选的, 所述获取终端上传数据的周期, 包括:
接收终端计算并上报的所述终端上传数据的周期间隔帧数;所述周期间隔 帧数为所述终端相邻两次上传数据的时间点之间所间隔的帧数; 所述确定所述终端后续上传数据的时间点, 包括:
确定所述终端后续上传数据的帧号。
优选的, 终端计算所述周期间隔帧数的方式为:
获取传感器在相邻的两个周期生成感应数据时的首个数据帧的帧号; 将所述传感器在相邻的两个周期生成感应数据时的首个数据帧的帧号相 减, 得到终端上传数据的周期间隔帧数。
优选的, 终端计算所述周期间隔帧数的方式还包括:
当基站为所述终端分配带宽的时间点不满足数据上传的时延需求时,重新 计算所述终端上传数据的周期间隔帧数。
优选的, 所述获取终端上传数据的周期, 包括:
通过对所述终端进行轮询的方式,获取所述终端相邻两次申请上行带宽的 请求所在的数据帧的帧号;
计算所述终端相邻两次申请上行带宽的请求所在的数据帧的帧号之差,得 到所述终端上传数据的周期间隔帧数;
所述确定所述终端后续上传数据的时间点, 包括:
确定所述终端后续上传数据的帧号。
优选的, 所述确定所述终端后续上传数据的帧号, 包括:
根据所述终端上传数据的周期间隔帧数以及已知的终端申请上行带宽请 求的帧号, 确定终端上传数据的起始帧号;
根据所述终端上传数据的周期间隔帧数以及所述终端上传数据的起始帧 号, 确定终端后续上传数据的帧号。
优选的, 所述确定终端上传数据的起始帧号, 包括:
用所述终端在轮询方式下最近一次申请上行带宽的请求所在的数据帧的 帧号,加上所述终端上传数据的周期间隔帧数,得到所述终端下一次申请上行 带宽的请求所在的数据帧的帧号;
在所述终端下一次申请上行带宽的请求所在的首个数据帧的帧号之前的 预设数据帧数内,连续每帧为所述终端分配上行带宽;所述预设数据帧数大于, 所述终端下一次申请上行带宽的请求所在的数据帧的帧号,与所述终端上传数 据的起始帧号之差; 获取所述终端上传数据的起始帧号。
优选的, 还包括:
判断所述终端上传数据的周期间隔帧数是否发生变化;
如果是, 则重新计算所述终端上传数据的周期间隔帧数,确定所述终端后 续上传数据的帧号。
优选的,所述判断所述终端上传数据的周期间隔帧数是否发生变化,包括: 判断是否连续接收到所述终端通过竟争请求方式申请带宽的请求; 如果是, 则认为所述终端上传数据的周期间隔帧数发生变化。
优选的, 所述获取终端上传数据的周期, 包括:
接收监控中心根据所述终端上传数据的时间戳计算出的终端上传数据的 周期。
优选的, 监控中心计算所述终端上传数据的周期的方式为:
获取终端上报的数据的时间戳信息,得到所述终端相邻两个周期上传数据 的时间点;
将所述终端相邻两个周期上传数据的时间点相减,得到所述终端上传数据 的周期。
优选的, 监控中心计算所述终端上传数据的周期的方式还包括:
当终端上传数据的周期发生改变, 或者,数据上传的时延或抖动不能满足 监控业务要求时, 重新计算所述终端上传数据的周期。
优选的, 还包括:
在所述终端入网初期,通过对所述终端进行轮询的方式为所述终端分配上 行带宽, 以便所述终端上传数据。
优选的, 所述为所述终端分配带宽, 包括:
在所述终端后续上传数据的时间点之前至所述终端后续上传数据的时间 点之间的时间区间内, 连续每帧为所述终端分配带宽。
优选的, 所述为所述终端分配带宽, 包括:
在所述终端后续上传数据的时间点,或者在所述终端后续上传数据的时间 点之后的预设帧数, 为所述终端分配带宽。 一种基站, 包括:
周期获取模块, 用于获取终端上传数据的周期;
后续时间点确定模块,用于根据所述终端上传数据的周期以及已发生的终 端上传数据的时间点, 确定所述终端后续上传数据的时间点;
带宽分配模块,用于在包含所述终端后续上传数据的时间点在内的时间区 间内, 为所述终端分配带宽; 所述时间区间的长度小于所述终端上传数据的周 期。
优选的, 所述周期获取模块, 包括:
周期间隔帧数获取单元,用于接收终端计算并上报的所述终端上传数据的 周期间隔帧数;所述周期间隔帧数为所述终端相邻两次上传数据的时间点之间 所间隔的帧数;
所述后续时间点确定模块, 包括:
第一帧号确定单元, 用于确定所述终端后续上传数据的帧号。
优选的, 所述周期获取模块, 包括:
带宽请求帧号获取单元, 用于通过对所述终端进行轮询的方式, 获取所述 终端相邻两次申请上行带宽的请求所在的数据帧的帧号;
周期间隔帧数计算单元,用于计算所述终端相邻两次申请上行带宽的请求 所在的数据帧的帧号之差, 得到所述终端上传数据的周期间隔帧数;
所述后续时间点确定模块, 包括:
第二帧号确定单元, 用于确定所述终端后续上传数据的帧号。
优选的, 所述第二帧号确定单元包括:
起始帧号确定子单元,用于根据所述终端上传数据的周期间隔帧数以及已 知的终端申请上行带宽请求的帧号, 确定终端上传数据的起始帧号;
后续帧号确定子单元,用于根据所述终端上传数据的周期间隔帧数以及所 述终端上传数据的起始帧号, 确定终端后续上传数据的帧号。
优选的, 所述周期获取模块, 包括:
绝对时间周期接收单元,用于接收监控中心根据所述终端上传数据的时间 戳计算出的终端上传数据的周期。
优选的, 还包括: 轮询模块, 用于在所述终端入网初期,通过对所述终端进行轮询的方式为 所述终端分配上行带宽, 以便所述终端上传数据。 从上述的技术方案可以看出,本发明实施例所公开的实时业务带宽分配方 法及基站, 由于在终端需要周期性上传数据的时间点, 主动为终端分配上行带 宽; 使得终端不必在每次需要上传数据时申请上行带宽, 并等待基站等设备分 配带宽。终端在需要周期性上传数据的时间点, 能够直接利用基站等设备所分 配的上行带宽, 上传数据。 因此, 本发明实施例所公开的实时业务带宽分配方 法, 能够满足终端周期上传数据的实时性要求。 尤其是在终端数目很多 (例如 每小区上千个终端), 数据上传周期很长(例如几分钟到几小时) 的情况下, 本发明实施例所公开的实时业务带宽分配方法,也能够满足终端周期上传数据 的实时性要求。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作筒单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲,在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例所述实时业务带宽分配方法流程图;
图 2为本发明另一实施例所述实时业务带宽分配方法时序图;
图 3为本发明另一实施例所述实时业务带宽分配方法时序图;
图 4为本发明另一实施例所述实时业务带宽分配方法时序图;
图 5为本发明实施例所公开的基站结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。 实施例一
参见图 1 , 为本发明实施例所述实时业务带宽分配方法流程图。 本实施例 的执行主体可以是基站。 该方法包括步骤:
S101 : 获取终端上传数据的周期;
S102: 根据所述终端上传数据的周期以及已发生的终端上传数据的时间 点, 确定所述终端后续上传数据的时间点;
S103: 在包含所述终端后续上传数据的时间点在内的时间区间内, 为所述 终端分配带宽; 所述时间区间的长度小于所述终端上传数据的周期。
步骤 S101中, 获取终端上传数据的周期的方式或途径, 可以有多种。 例 如, 可以获取终端上报的终端自身上传数据的周期,也可以获取监控中心下发 的终端上传数据的周期,还可以由基站自身根据终端上报的数据获取终端上传 数据的周期。
终端上传数据的周期可以用绝对时间表示, 也可以用相对时间表示。
具体的, 绝对时间可以是 24小时制的时间, 例如: 数据上传的周期为 5 分钟。 相对时间可以是用终端上传数据的周期间隔帧数表示。
之所以可以用终端上传数据的周期间隔帧数表示终端上传数据的周期,是 因为: 实际应用中, 基站和终端具有同步的时钟信号。 终端上传数据所在数据 帧的帧号是按照一定时间间隔 (例如每 50ms帧号加一) 变化的。 终端根据自 身的时钟信号,可以对自身发送的数据帧的帧号进行计数。例如:开始计时后, 经过 50ms, 发送的数据帧的帧号记为 1 ; 再经过 50ms, 发送的数据帧的帧号 记为 2。 如果在一段时间内, 终端没有数据需要发送, 那么, 终端对帧号会继 续计数, 但不发送数据。 当有数据需要发送时, 终端就可以将帧号包含在该数 据帧的信息中, 向基站发送。 由于基站与终端具有相同的时钟信号, 所以在某 一时间点基站也能够知道, 终端需要发送或正在发送的数据的帧号应该是多 少。对于终端上传数据的周期,如果一个终端在第 1帧上传了数据,在第 60001 帧也上传了数据, 那么该终端上传数据的周期就可以用帧数表示为 60000帧。 因为相邻两个数据帧之间的时间间隔为固定值, 以 50ms/帧为例, 60000帧就 表示周期为 300000ms (即 5分钟)。
步骤 S102中, 根据所述终端上传数据的周期以及已知的上传数据的时间 点, 可以很方便地确定所述终端后续上传数据的时间点。
对于用绝对时间表示的终端上传数据的周期以及已知的上传数据的时间 点, 可以这样确定终端后续上传数据的时间点: 假设终端上传数据的周期为 5 分钟, 某次已知的上传数据的时间点为 16:12:16, 那么该终端下一次上传数据 的时间点就可以确定是 16:17:16。终端后续上传数据的时间点也都可以按照上 述方式确定下来。
如果用相对时间表示的终端上传数据的周期(例如周期间隔帧数), 相应 的, 已知的上传数据的时间点也可以用终端上传数据的帧号表示。 需要说明的 是, 如果终端上传的数据量较大, 需要占用多个数据帧, 那么可以采用终端上 传数据所在的首个数据帧的帧号作为终端上传数据的时间点。
如果用周期间隔帧数表示终端上传数据的周期,用终端上传数据的帧号表 示上传数据的时间点, 那么终端后续上传数据的时间点, 就可以采用下述方式 确定: 例如, 某终端上传数据的周期间隔帧数为 60000帧, 已知某次上传数据 的时间点为第 1 帧, 那么就可以确定该终端下一次上传数据的时间点为第 60001帧。 终端后续上传数据的时间点也都可以按照上述方式确定下来。
终端后续上传数据的时间点确定下来之后, 步骤 S103中, 在包含所述终 端后续上传数据的时间点在内的时间区间内,为所述终端分配带宽的具体实现 方式就可以是:
对于用绝对时间表示的数据上传周期以及终端后续上传数据的时间点,其 实现方式可以是: 假设终端下一次上传数据的时间点是 16:31 :36, 那么终端可 以在 16:31:36之前 50ms, 连续每帧为该终端分配带宽, 直到终端利用该带宽 上传数据为止。 当然, 也可以在该终端下一次上传数据的时间点, 为该终端分 配带宽; 还可以在该终端下一次上传数据的时间点之后的某一数据帧, 为该终 端分配带宽, 只要能够满足系统对终端上传数据的实时性要求即可。
对于用相对时间 (例如周期间隔帧数和终端上传数据所在数据帧的帧号 ) 表示的数据上传周期以及终端后续上传数据的时间点, 其实现方式可以是: 假 设终端下一次上传数据的时间点是第 60001帧,那么终端可以在第 60001帧之 前 5帧 (第 59996帧), 连续每帧为该终端分配带宽, 直到终端利用该带宽上 传数据为止。 当然, 也可以在该终端下一次上传数据的时间点的那一帧, 为该 终端分配带宽; 还可以在该终端下一次上传数据的时间点之后的某一数据帧, 为该终端分配带宽。
需要说明的是,在所述终端后续上传数据的时间点之前至所述终端后续上 传数据的时间点之间的时间区间内,连续每帧为所述终端分配带宽,这种方式, 可以最大限度保证数据上传的实时性。在所述终端后续上传数据的时间点的那 端后续上传数据的时间点之后第二帧), 为所述终端分配带宽, 这种方式, 对 带宽资源只需利用一个数据帧的时间, 可以节省带宽资源。
可以看出, 本实施例所公开的实时业务带宽分配方法,通过获取终端上传 数据的周期, 并结合已知的终端上传数据的时间点,确定终端后续上传数据的 时间点,在终端后续上传数据的时间点之前的带宽有效时间段内为所述终端分 配带宽,使得终端不必向基站等设备发送申请上行带宽的请求。终端产生上传 数据后, 可以直接利用基站主动为其分配的带宽上传数据,从而能够满足对上 传数据的实时性要求。 尤其是在终端数目很多 (超大量), 数据上传周期很长 的情况下, 本发明实施例所公开的实时业务带宽分配方法,也能够满足终端周 期上传数据的实时性要求。 实施例二
参见图 2, 为本发明另一实施例所公开的实时业务带宽分配方法时序图。 本实施例中, 由终端计算数据上传的周期。 如图 2所示, 该方法包括步骤: S201 : 基站对终端进行轮询 (polling );
终端刚入网时,基站还不知道终端上传数据的周期。 为了使终端在入网初 期,也能够将数据上传给基站,可以在终端入网初期,采用现有技术中的方式, 对刚入网的终端进行轮询, 以便在没有确定终端上传数据周期时,令终端能够 周期性上传数据;
S202: 终端发送 BR header指令;
基站接收终端发送的 BR ( Bandwidth Request ) header指令。 因为轮询方 式下, 每次终端要上传数据时, 都需要先通过 BR header向基站上报 BR不等 于 0的带宽请求, 基站才会为终端分配上行带宽。 S203: 基站为终端分配上行带宽;
S204: 终端上传数据;
步骤 S201至 S204, 与现有技术中的实时业务带宽分配方法基本相同。 本 实施例中,执行步骤 S201至 S204的目的主要是:在没有确定终端上传数据周 期时, 令终端能够周期性上传数据。 实际应用中, 也可以不执行步骤 S201至 S204, 终端根据传感器产生的感应数据, 就可以直接计算出数据上传周期。
当可以确定终端上传数据的周期(例如周期间隔帧数)等时间信息后, 执 行下述步骤。
S205: 终端计算数据上传的周期间隔帧数、 获取数据包大小;
终端计算数据上传的周期间隔帧数, 具体过程可以是:
分别获取传感器在相邻的两个周期生成感应数据时的首个数据帧的帧号; 将所述传感器在相邻的两个周期生成感应数据时的首个数据帧的帧号相减,得 到终端上传数据的周期间隔帧数。
因为实际应用中, 终端是与传感器相连, 或者, 传感器设置在终端内。 传 感器感应到电表等设备的数据后,发送给终端,终端再将这些数据上传至基站。 所以, 终端在传感器产生数据上传给终端自身时, 可以获取终端自身内部以帧 号形式表现的时间点。
此外, 步骤 S205中, 获取数据包大小的目的是, 根据终端上传数据的实 际大小, 为终端分配合适的带宽,从而避免为终端分配带宽过大导致的带宽资 源浪费。
S206: 终端向基站上报数据上传的周期间隔帧数、 数据包大小; 因为终端入网后, 都会与基站建立 MAC层连接, 所以, 终端计算出的数 据上传的周期间隔帧数、 和数据包大小可以通过独立的 MAC层消息上报给基 站。 为了节省带宽资源, 还可以将周期间隔帧数、 和数据包大小等信息, 包含 在终端向基站发送的其它消息中, 易并发送给基站。 例如, 或者可以通过协议 数据单元( Protocol Data Unit, PDU ) 的 MAC头 /子头上报给基站, 从而节省 带宽资源。
S207:基站用已知的终端最近一次上传数据的起始帧号,加上周期间隔帧 数, 得到终端下一次上传数据的起始帧号; 因为终端是周期性上传数据的, 所以, 用已知的终端最近一次上传数据的 起始帧号, 加上周期间隔帧数, 就可以得到终端下一次上传数据的起始帧号。
步骤 207中, 除了用已知的终端最近一次上传数据的起始帧号,加上周期 间隔帧数,得到终端下一次上传数据的起始帧号; 还可以用其它已知的终端上 传数据的帧号,结合周期间隔帧数,计算得到终端下一次上传数据的起始帧号。 例如, 用终端往前数两个周期上传数据的起始帧号, 加上两个周期间隔帧数, 也可以得到终端下一次上传数据的起始帧号。
需要说明的是, 步骤 S207中 "根据所述终端上传数据的周期以及已知的 终端上传数据的时间点, 确定所述终端后续上传数据的时间点" 的步骤, 也可 以由终端执行。 这样可以减轻基站的负担。 由于终端执行此步骤时, 与基站执 行此步骤时的过程, 基本相同, 此处就不再赘述。
S208: 基站在计算出的终端下一次上传数据的起始帧号之前的时间区间 内, 连续每帧为终端分配与终端上传数据的数据包大小相匹配的带宽;
例如,可以在计算出的终端下一次上传数据的起始帧号之前 2个数据帧的 时间点, 连续每帧为该终端分配带宽, 直到终端利用此带宽上传数据为止。
S209: 终端向基站上传数据;
如果终端上传数据的周期没有发生变动, 那么在接下来的过程中, 周期性 执行步骤 S207-S209即可。
如果终端上传数据的周期发生变动, 则执行步骤
S210: 终端向基站上报更新后的数据上传的周期间隔帧数、 数据包大小; 更新数据上传的周期间隔帧数、数据包大小等信息后,基站和终端可以继 续周期性执行步骤 S207-S209。
需要说明的是, 实际应用中, 当终端发现基站为其分配带宽的时间点和带 宽大小不能满足数据上传的时延和带宽需求时,终端也可以重新计算数据上传 的周期间隔帧数、 起始帧号和数据包大小, 并上报给基站。 具体的, 终端可以 判断基站为所述终端分配带宽的时间点是否满足数据上传的时延需求;当判断 结果为否时, 重新计算所述终端上传数据的周期间隔帧数和起始帧号。
本实施例中,将计算终端上传数据的周期的过程交由终端自身执行, 可以 减轻基站的数据处理压力。 实施例三
参见图 3, 为本发明另一实施例所公开的实时业务带宽分配方法时序图。 本实施例中, 由基站计算数据上传的周期。 如图 3所示, 该方法包括步骤: S301 : 基站对终端进行轮询 (polling );
S302: 终端发送 BR header指令;
S303: 基站为终端分配上行带宽;
S304: 终端上传数据;
本实施例中,执行步骤 S301至 S304的目的是:令基站能够接收到终端上 传的数据, 进而从上传数据中获取时间信息,得到终端上传数据的周期间隔帧 数等信息。
当可以确定终端申请上传带宽的周期等信息后, 执行下述步骤。
S305:基站根据终端上传的数据,计算终端申请上传带宽的周期间隔帧数; 因为基站采用轮询的方式为终端分配带宽时, 终端产生需要上传的数据 后, 不能立即上传, 还需要发送申请上传带宽的请求。 基站接收到终端申请上 行带宽的请求后, 只能够获得终端申请上传带宽的请求所在的数据帧的帧号。 所以, 步骤 S305中, 基站需要计算终端申请上传带宽的周期间隔帧数。
具体的, 基站可以采用下述方式计算终端申请上传带宽的周期间隔帧数: 获取所述终端相邻两次申请上行带宽的请求所在的数据帧的帧号; 计算所述终端相邻两次申请上行带宽的请求所在的数据帧的帧号之差,得 到所述终端申请上传带宽的周期间隔帧数。
需要说明的是, 因为终端产生需要上传的数据, 与终端发送申请上行带宽 请求, 两者之间间隔的时间是一固定值, 并且, 终端产生上传数据的时间, 就 可以认为是终端需要上传数据的时间, 所以, 可以认为, 终端申请上传带宽的 周期间隔帧数也是终端上传数据的周期间隔帧数。
S306:用终端最近一次申请上行带宽的请求所在的数据帧的帧号加上周期 间隔帧数, 得到终端下一次申请上行带宽的请求所在的数据帧的帧号;
S307:在终端下一次申请上行带宽的请求所在的数据帧的帧号之前的预设 数据帧数内, 连续每帧为终端分配上行带宽; 因为终端产生数据后, 才会申请上传带宽。 因此终端申请上传带宽的时间 点要晚于实际上终端产生数据 (即有数据需要上传)的时间点。 为了使基站给 终端分配带宽的时间点更为准确,基站可以在计算出的终端申请上传带宽的时 间点之前的一段时间 (例如一个轮询周期或者提前几个数据帧的时间), 连续 每帧都为终端分配上行带宽。 当终端产生新的数据, 需要上传时, 可以利用基 站分配的带宽立即上传数据。 然后,基站就可以得到实际上终端上传数据的时 间点, 即得到更加准确的分配带宽的时间点。
S308: 终端利用基站连续每帧分配的带宽, 向基站上传数据;
S309:基站得到终端上传数据的首个数据帧的帧号,据此计算终端下一次 上传数据的起始帧号;
基站得到终端实际上传数据的首个数据帧的帧号后,用该帧号加上终端上 传数据的周期间隔帧数, 就可以得到终端下一次上传数据的起始帧号。
S310: 基站在终端下一次上传数据的起始帧号的那一数据帧, 为终端分配 带宽;
S311 : 终端利用基站主动分配的带宽, 向基站上传数据。
在得到终端上传数据的起始帧号后,基站只需要在终端上传数据的起始帧 号对应的那一数据帧, 为终端分配上行带宽即可, 即基站周期性地执行步骤 S309, 终端相应地执行步骤 S310上传数据即可。
实际应用中, 终端上传数据的周期间隔帧数可能会发生变化。 为了及时了 解这种变化, 本实施例中所公开的方法,还可以令基站判断所述终端上传数据 的周期是否发生变化;如果是,则重新计算所述终端上传数据的周期间隔帧数, 确定所述终端上传数据的起始帧号。 具体的, 例如, 基站可以每隔一段较长时 间 (比如 30分钟), 用比较短的周期(例如 Is )对终端进行轮询, 以获得终 端实际上传数据的时间点, 进而判断终端上传数据的周期是否发生变化。
本实施例中, 终端在无法及时获得上行带宽时, 可以通过竟争请求的方式 申请带宽。 如果基站在一段时间内 (例如几倍的数据上传周期)多次收到终端 通过竟争请求方式申请带宽的请求,则也可以认为终端上传数据的周期发生了 变化, 进而重新计算终端上传数据的周期。
本实施例中, 由基站计算终端上传数据的周期, 所以能够适用于那些不具 有计算上传数据周期功能的终端。 实施例四
参见图 4, 为本发明另一实施例所公开的实时业务带宽分配方法时序图。 本实施例中, 由网络中的监控中心计算数据上传的周期。 如图 4所示, 该方法 包括步骤:
S401 : 基站对终端进行轮询 (polling );
S402: 终端发送 BR header指令;
S403: 基站为终端分配上行带宽;
S404: 终端上传数据;
本实施例中,执行步骤 S301至 S304的目的是:令基站能够接收到终端上 传的数据。基站接收到终端上传的数据后, 最终会将这些数据上传至网络中的 监控中心。监控中心就可以从上传数据中获取时间信息,得到终端上传数据的 周期等信息。
S405: 基站将终端上传的数据通过网管系统上传至监控中心;
通常, 基站向监控中心上传的数据都需要经过网管系统, 所以, 本实施例 中, 基站将终端上传的数据通过网管系统上传至监控中心。 当然, 基站也可以 将终端上传的数据直接上传至监控中心。
S406: 监控中心根据上传的数据中包含的时间戳计算数据上传的周期; 因为终端上传的数据一般都带有时间戳,时间戳通常是以绝对时间的形式 表示的,所以监控中心可以根据时间戳方便地计算出终端上传数据的周期和时 间点。 具体的, 监控中心计算数据上传周期的过程可以采用下述方式:
获取终端上报的数据的时间戳信息,得到所述终端相邻两个周期上传数据 的时间点;
将所述终端相邻两个周期上传数据的时间点相减,得到所述终端上传数据 的周期。
用所述终端最近一次上传数据的时间点, 加上所述终端上传数据的周期, 得到所述终端下一次上传数据的时间点。
S407: 监控中心计算终端下一次上传数据的时间点, 并下发至基站; 例如,监控中心可以用所述终端最近一次上传数据的时间点,加上所述终 端上传数据的周期, 得到所述终端下一次上传数据的时间点。
S408:基站在终端下一次上传数据的时间点之后的第二帧, 为终端分配带 宽;
当然,也可以在终端下一次上传数据的时间点之后的第一帧, 为终端分配 带宽, 只要能够满足系统对终端上传数据的实时性要求即可。
S409: 终端利用基站主动分配的带宽向基站上传数据;
S410: 监控中心更新数据上传周期、 时间点等信息, 并发送至基站。 当监控中心发现数据上传周期、 时间点、 数据包大小等信息发生变化时, 或者数据上传的时延和抖动不能满足监控业务的要求时,可以重新计算数据上 传的周期、 时间点, 并通知到基站。 基站可以采用本实施例所公开的方法, 在 重新计算出的时间点主动为终端分配上行带宽。
需要说明的是, 本发明实施例中, 一旦确定了终端上传数据的周期, 和即 将到来的终端上传数据的时间点之后,就可以艮容易确定出后续每次终端上传 数据的时间点。 即用某次终端上传数据的时间点, 加上终端上传数据的周期, 即可得到下一次终端上传数据的时间点。 上述计算过程, 可以由基站执行, 也 可以由监控中心执行, 此处不应理解为对本发明的限定。 本发明同时公开了一种基站。 参见图 5 , 为本发明实施例所公开的基站结 构图。 如图 5所示, 该基站包括:
周期获取模块 501 , 用于获取终端上传数据的周期;
后续时间点确定模块 502, 用于根据所述终端上传数据的周期以及已发生 的终端上传数据的时间点, 确定所述终端后续上传数据的时间点;
带宽分配模块 503 , 用于在包含所述终端后续上传数据的时间点在内的时 间区间内, 为所述终端分配带宽; 所述时间区间的长度小于所述终端上传数据 的周期。
实际应用中, 所述周期获取模块 501 , 可以包括:
周期间隔帧数获取单元,用于接收终端计算并上报的所述终端上传数据的 周期间隔帧数;所述周期间隔帧数为所述终端相邻两次上传数据的时间点之间 所间隔的帧数;
所述后续时间点确定模块 502, 可以包括:
第一帧号确定单元, 用于确定所述终端后续上传数据的帧号。
周期获取模块 501 , 还可以包括:
带宽请求帧号获取单元, 用于通过对所述终端进行轮询的方式, 获取所述 终端相邻两次申请上行带宽的请求所在的数据帧的帧号;
周期间隔帧数计算单元,用于计算所述终端相邻两次申请上行带宽的请求 所在的数据帧的帧号之差, 得到所述终端上传数据的周期间隔帧数。
对应于由带宽请求帧号获取单元和周期间隔帧数计算单元构成的周期获 取模块 501 , 所述后续时间点确定模块 502, 可以包括:
第二帧号确定单元, 用于确定所述终端后续上传数据的帧号。
实际应用中, 所述第二帧号确定单元, 还可以包括:
起始帧号确定子单元,用于根据所述终端上传数据的周期间隔帧数以及已 知的终端申请上行带宽请求的帧号, 确定终端上传数据的起始帧号;
后续帧号确定子单元,用于根据所述终端上传数据的周期间隔帧数以及所 述终端上传数据的起始帧号, 确定终端后续上传数据的帧号。
或者, 所述周期获取模块 501 , 可以包括:
绝对时间周期接收单元,用于接收监控中心根据所述终端上传数据的时间 戳计算出的终端上传数据的周期。
实际应用中, 本发明所公开的基站还可以包括:
轮询模块, 用于在所述终端入网初期, 通过对所述终端进行轮询的方式为 所述终端分配上行带宽, 以便所述终端上传数据。 本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是 与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于 实施例公开的装置而言, 由于其与实施例公开的方法相对应, 所以描述的比较 筒单, 相关之处参见方法部分说明即可。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例 的单元及算法步骤,能够以电子硬件或者电子硬件与计算机软件相结合的方式 来实现。 为了清楚地说明部分硬件和软件的可互换性,在上述说明中已经按照 功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软硬件结 合的方式来执行,取决于技术方案的特定应用和设计约束条件。 专业技术人员 应认为超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处 理器执行的软件模块, 或者二者的结合来实施。软件模块可以置于随机存储器 ( RAM )、内存、只读存储器( ROM )、电可编程 ROM、电可擦除可编程 ROM, 寄存器、 硬盘、 可移动磁盘、 CD-ROM, 或技术领域内所公知的任意其它形式 的存储介质中。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本 发明。 对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见 的, 本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下, 在 其它实施例中实现。 因此, 本发明将不会被限制于本文所示的这些实施例, 而 是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims

权 利 要 求
1、 一种实时业务带宽分配方法, 其特征在于, 包括:
获取终端上传数据的周期;
根据所述终端上传数据的周期以及已发生的终端上传数据的时间点,确定 所述终端后续上传数据的时间点;
在包含所述终端后续上传数据的时间点在内的时间区间内,为所述终端分 配带宽; 所述时间区间的长度 d、于所述终端上传数据的周期。
2、 根据权利要求 1所述的方法, 其特征在于, 所述获取终端上传数据的 周期, 包括:
接收终端计算并上报的所述终端上传数据的周期间隔帧数;所述周期间隔 所述确定所述终端后续上传数据的时间点, 包括:
确定所述终端后续上传数据的帧号。
3、 根据权利要求 2所述的方法, 其特征在于, 终端计算所述周期间隔帧 数的方式为:
获取传感器在相邻的两个周期生成感应数据时的首个数据帧的帧号; 将所述传感器在相邻的两个周期生成感应数据时的首个数据帧的帧号相 减, 得到终端上传数据的周期间隔帧数。
4、 根据权利要求 3所述的方法, 其特征在于, 终端计算所述周期间隔帧 数的方式还包括:
当基站为所述终端分配带宽的时间点不满足数据上传的时延需求时,重新 计算所述终端上传数据的周期间隔帧数。
5、 根据权利要求 1所述的方法, 其特征在于, 所述获取终端上传数据的 周期, 包括:
通过对所述终端进行轮询的方式,获取所述终端相邻两次申请上行带宽的 请求所在的数据帧的帧号;
计算所述终端相邻两次申请上行带宽的请求所在的数据帧的帧号之差,得 到所述终端上传数据的周期间隔帧数;
所述确定所述终端后续上传数据的时间点, 包括: 确定所述终端后续上传数据的帧号。
6、 根据权利要求 5所述的方法, 其特征在于, 所述确定所述终端后续上 传数据的帧号, 包括:
根据所述终端上传数据的周期间隔帧数以及已知的终端申请上行带宽请 求的帧号, 确定终端上传数据的起始帧号;
根据所述终端上传数据的周期间隔帧数以及所述终端上传数据的起始帧 号, 确定终端后续上传数据的帧号。
7、 根据权利要求 6所述的方法, 其特征在于, 所述确定终端上传数据的 起始帧号, 包括:
用所述终端在轮询方式下最近一次申请上行带宽的请求所在的数据帧的 帧号,加上所述终端上传数据的周期间隔帧数,得到所述终端下一次申请上行 带宽的请求所在的数据帧的帧号;
在所述终端下一次申请上行带宽的请求所在的首个数据帧的帧号之前的 预设数据帧数内,连续每帧为所述终端分配上行带宽;所述预设数据帧数大于, 所述终端下一次申请上行带宽的请求所在的数据帧的帧号,与所述终端上传数 据的起始帧号之差;
获取所述终端上传数据的起始帧号。
8、 根据权利要求 5所述的方法, 其特征在于, 还包括:
判断所述终端上传数据的周期间隔帧数是否发生变化;
如果是, 则重新计算所述终端上传数据的周期间隔帧数,确定所述终端后 续上传数据的帧号。
9、 根据权利要求 8所述的方法, 其特征在于, 所述判断所述终端上传数 据的周期间隔帧数是否发生变化, 包括:
判断是否连续接收到所述终端通过竟争请求方式申请带宽的请求; 如果是, 则认为所述终端上传数据的周期间隔帧数发生变化。
10、 根据权利要求 1所述的方法, 其特征在于, 所述获取终端上传数据的 周期, 包括:
接收监控中心根据所述终端上传数据的时间戳计算出的终端上传数据的 周期。
11、 根据权利要求 10所述的方法, 其特征在于, 监控中心计算所述终端 上传数据的周期的方式为:
获取终端上报的数据的时间戳信息,得到所述终端相邻两个周期上传数据 的时间点;
将所述终端相邻两个周期上传数据的时间点相减,得到所述终端上传数据 的周期。
12、 根据权利要求 11所述的方法, 其特征在于, 监控中心计算所述终端 上传数据的周期的方式还包括:
当终端上传数据的周期发生改变, 或者,数据上传的时延或抖动不能满足 监控业务要求时, 重新计算所述终端上传数据的周期。
13、 根据权利要求 1至 12任一项所述的方法, 其特征在于, 还包括: 在所述终端入网初期,通过对所述终端进行轮询的方式为所述终端分配上 行带宽, 以便所述终端上传数据。
14、 根据权利要求 1至 12任一项所述的方法, 其特征在于, 所述为所述 终端分配带宽, 包括:
在所述终端后续上传数据的时间点之前至所述终端后续上传数据的时间 点之间的时间区间内, 连续每帧为所述终端分配带宽。
15、 根据权利要求 1至 12任一项所述的方法, 其特征在于, 所述为所述 终端分配带宽, 包括:
在所述终端后续上传数据的时间点,或者在所述终端后续上传数据的时间 点之后的预设帧数, 为所述终端分配带宽。
16、 一种基站, 其特征在于, 包括:
周期获取模块, 用于获取终端上传数据的周期;
后续时间点确定模块,用于根据所述终端上传数据的周期以及已发生的终 端上传数据的时间点, 确定所述终端后续上传数据的时间点;
带宽分配模块,用于在包含所述终端后续上传数据的时间点在内的时间区 间内, 为所述终端分配带宽; 所述时间区间的长度小于所述终端上传数据的周 期。
17、 根据权利要求 16所述的基站, 其特征在于, 所述周期获取模块, 包 括:
周期间隔帧数获取单元,用于接收终端计算并上报的所述终端上传数据的 周期间隔帧数;所述周期间隔帧数为所述终端相邻两次上传数据的时间点之间 所间隔的帧数;
所述后续时间点确定模块, 包括:
第一帧号确定单元, 用于确定所述终端后续上传数据的帧号。
18、 根据权利要求 16所述的基站, 其特征在于, 所述周期获取模块, 包 括:
带宽请求帧号获取单元, 用于通过对所述终端进行轮询的方式, 获取所述 终端相邻两次申请上行带宽的请求所在的数据帧的帧号;
周期间隔帧数计算单元,用于计算所述终端相邻两次申请上行带宽的请求 所在的数据帧的帧号之差, 得到所述终端上传数据的周期间隔帧数;
所述后续时间点确定模块, 包括:
第二帧号确定单元, 用于确定所述终端后续上传数据的帧号。
19、 根据权利要求 18所述的基站, 其特征在于, 所述第二帧号确定单元 包括:
起始帧号确定子单元,用于根据所述终端上传数据的周期间隔帧数以及已 知的终端申请上行带宽请求的帧号, 确定终端上传数据的起始帧号;
后续帧号确定子单元,用于根据所述终端上传数据的周期间隔帧数以及所 述终端上传数据的起始帧号, 确定终端后续上传数据的帧号。
20、 根据权利要求 16所述的基站, 其特征在于, 所述周期获取模块, 包 括:
绝对时间周期接收单元,用于接收监控中心根据所述终端上传数据的时间 戳计算出的终端上传数据的周期。
21、 根据权利要求 16至 20任一项所述的基站, 其特征在于, 还包括: 轮询模块, 用于在所述终端入网初期, 通过对所述终端进行轮询的方式为 所述终端分配上行带宽, 以便所述终端上传数据。
PCT/CN2011/078836 2011-08-24 2011-08-24 一种实时业务带宽分配方法及基站 WO2012109888A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180001801.4A CN102356608B (zh) 2011-08-24 2011-08-24 一种实时业务带宽分配方法及基站
PCT/CN2011/078836 WO2012109888A1 (zh) 2011-08-24 2011-08-24 一种实时业务带宽分配方法及基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/078836 WO2012109888A1 (zh) 2011-08-24 2011-08-24 一种实时业务带宽分配方法及基站

Publications (1)

Publication Number Publication Date
WO2012109888A1 true WO2012109888A1 (zh) 2012-08-23

Family

ID=45579288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078836 WO2012109888A1 (zh) 2011-08-24 2011-08-24 一种实时业务带宽分配方法及基站

Country Status (2)

Country Link
CN (1) CN102356608B (zh)
WO (1) WO2012109888A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103517336B (zh) * 2012-06-15 2018-03-30 厦门雅迅网络股份有限公司 一种控制移动终端上行数据的系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101719876A (zh) * 2009-12-18 2010-06-02 中控科技集团有限公司 网络通信调度方法及系统
CN101777999A (zh) * 2010-01-12 2010-07-14 华为技术有限公司 网元历史性能数据的上传方法、系统及服务器
CN101925107A (zh) * 2009-06-15 2010-12-22 华为技术有限公司 实现资源调度的方法、设备和系统
WO2011097406A1 (en) * 2010-02-03 2011-08-11 Qualcomm Incorporated Protocol for signalling during an access period information for selecting antenna beams

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101925107A (zh) * 2009-06-15 2010-12-22 华为技术有限公司 实现资源调度的方法、设备和系统
CN101719876A (zh) * 2009-12-18 2010-06-02 中控科技集团有限公司 网络通信调度方法及系统
CN101777999A (zh) * 2010-01-12 2010-07-14 华为技术有限公司 网元历史性能数据的上传方法、系统及服务器
WO2011097406A1 (en) * 2010-02-03 2011-08-11 Qualcomm Incorporated Protocol for signalling during an access period information for selecting antenna beams

Also Published As

Publication number Publication date
CN102356608B (zh) 2014-07-09
CN102356608A (zh) 2012-02-15

Similar Documents

Publication Publication Date Title
JP5955987B2 (ja) WiFiネットワークの差別化関連付けサービス提供のためのシステム及び方法
EP3716713B1 (en) Communication methods, communication device, and network device
EP2515597B1 (en) Method for wireless resource scheduling, network element of access network and terminal thereof
KR20110047241A (ko) 무선 네트워크에서 스케줄링 요청을 트리거 또는 리포트하는 방법 및 장치
JP6438132B2 (ja) データ送信方法、リソース測定方法、装置、及びデバイス
JP6389262B2 (ja) アップリンクofdma伝送のためのシステムおよび方法
WO2015196685A1 (zh) 时钟同步方法及装置
WO2012116624A1 (zh) 一种传输数据的方法及设备
JPWO2009113623A1 (ja) 無線通信方法、無線通信システム、基地局、及び端末局
WO2015196478A1 (zh) 传输数据信号的方法及用户设备
WO2014090006A1 (zh) 信息处理方法、接入点及站点
CN117220810A (zh) 基于powerlink协议的异步数据传输方法及系统
WO2012109888A1 (zh) 一种实时业务带宽分配方法及基站
JP5839999B2 (ja) 通信端末装置
JP6603389B2 (ja) リソース測定方法、データ送信装置、及びプログラム
CN114339980A (zh) 下行数据的同步方法、装置、单元、设备及存储介质
WO2017173804A1 (zh) 接入资源调整方法及装置
CN109548146B (zh) 通讯方法及装置
CN108495328B (zh) 一种增强无线局域网络在WiFi干扰下传输可靠性的方法
EP3087763A1 (en) System and method for indicating a periodic resource allocation
GB2526839A (en) Method of contending for access to a communication channel and associated communication device
CN113163505B (zh) 一种自组网通信方法、装置、电子设备以及介质
EP4290908A1 (en) Radio resource scheduling method and device
US9094232B2 (en) Allocation adjustment in network domains
WO2023212893A1 (zh) 无线通信的方法及装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001801.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11858957

Country of ref document: EP

Kind code of ref document: A1