WO2015196478A1 - 传输数据信号的方法及用户设备 - Google Patents

传输数据信号的方法及用户设备 Download PDF

Info

Publication number
WO2015196478A1
WO2015196478A1 PCT/CN2014/081024 CN2014081024W WO2015196478A1 WO 2015196478 A1 WO2015196478 A1 WO 2015196478A1 CN 2014081024 W CN2014081024 W CN 2014081024W WO 2015196478 A1 WO2015196478 A1 WO 2015196478A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
time adjustment
adjustment amount
subframe
scheduling allocation
Prior art date
Application number
PCT/CN2014/081024
Other languages
English (en)
French (fr)
Inventor
王键
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480001904.4A priority Critical patent/CN104620658B/zh
Priority to EP14870644.3A priority patent/EP2988558B1/en
Priority to KR1020157018665A priority patent/KR101673963B1/ko
Priority to PCT/CN2014/081024 priority patent/WO2015196478A1/zh
Priority to JP2016528321A priority patent/JP6484238B2/ja
Priority to US14/792,362 priority patent/US9603154B2/en
Publication of WO2015196478A1 publication Critical patent/WO2015196478A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/12Flow control between communication endpoints using signalling between network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0025Synchronization between nodes synchronizing potentially movable access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and a user equipment for transmitting a data signal (English name: User Equipment, English abbreviation: UE).
  • UE User Equipment
  • Background Art wireless communication technology has been greatly developed, and existing conventional wireless communication networks include cellular networks. In a cellular network, when two data packets are transmitted between UEs with a long distance, the data packet needs to be transmitted from the transmitting end to the base station, and then transmitted from the base station to the receiving end. The foregoing transmission process requires two air interface resources.
  • the device-to-device (English name: Device to Device, English abbreviation: D2D) can be used for communication, that is, the UE Direct communication between them without the need for base station forwarding.
  • the first type of signals are scheduling allocations (English full name: Scheduling Assignment, English abbreviation: SA) signals
  • the second type of signals are data (English: Data) signals.
  • SA signal is used to indicate the resources used by the data signal and the amount of time adjustment when receiving the data signal.
  • the transmitting end when performing D2D communication between two UEs, the transmitting end first sends an SA signal to the receiving end, and indicates to the receiving end the subframe used by the transmitting end to transmit the data signal and the time adjustment amount; the receiving end sends according to the indication in the SA signal.
  • the subframe used for transmitting the data signal and the time adjustment amount determine the initial timing of the received data signal, and the data signal transmitted by the transmitting end is received from the determined initial time.
  • the present invention provides a method for transmitting a data signal and a user equipment, which can interfere with each other when multiple user equipments transmit data signals in the same subframe, and improve the accuracy of receiving data signals by the user equipment.
  • an embodiment of the present invention provides a method for transmitting a data signal, including:
  • the first user equipment acquires a scheduling assignment signal sent by the second user equipment and the at least one third user equipment;
  • the second user equipment is a user equipment that performs device-to-device communication with the first user equipment;
  • the first user equipment receives the data signal sent by the second user equipment according to the first time adjustment amount and the subframe information included in the scheduling allocation signal sent by the second user equipment.
  • the first user equipment determines the first time adjustment amount according to the time adjustment quantity included in the acquired scheduling allocation signal, including:
  • the first user equipment determines the first time adjustment amount according to a maximum value of time adjustment amounts included in the acquired scheduling allocation signal, where the first time adjustment amount is not less than the maximum value.
  • the first user equipment determines the first time adjustment amount according to the time adjustment quantity included in the acquired scheduling allocation signal, including:
  • the first user equipment reads the subframe information from the scheduling allocation signal sent by the second user equipment, where the subframe information indicates the N subframes used by the second user equipment to send the data signal, where N is not less than An integer of 1;
  • the first user equipment Determining, by the first user equipment, the first time of the subframe i according to a time adjustment amount included in the scheduling allocation signal sent by the second user equipment and a maximum value of the time adjustment amount included in the at least one first scheduling allocation signal
  • the adjustment amount, the first time adjustment amount is not less than the maximum value
  • the first scheduling allocation signal is a scheduling allocation signal sent by the third user equipment
  • the indicated subframe includes the subframe i, and the value of i is one or more of integers from 1 to N.
  • an embodiment of the present invention provides a user equipment, including:
  • An acquiring unit configured to acquire a scheduling assignment signal sent by the second user equipment and the at least one third user equipment;
  • the second user equipment is a user equipment that performs device-to-device communication with the first user equipment;
  • a determining unit configured to determine a first time adjustment amount according to a time adjustment amount included in the scheduling allocation signal acquired by the acquiring unit, where the first time adjustment amount is not smaller than a scheduling allocation signal sent by the second user equipment Time adjustment amount;
  • a receiving unit configured to determine the first time adjustment amount according to the determining unit, and the acquiring
  • the subframe information included in the scheduling allocation signal sent by the second user equipment that is acquired by the unit receives the data signal sent by the second user equipment.
  • the determining unit is specifically used to:
  • the first time adjustment amount is not less than the maximum value.
  • the determining unit includes: a reading subunit, configured to read subframe information from a scheduling allocation signal sent by the second user equipment, The subframe information indicates N subframes used by the second user equipment to send a data signal, where N is an integer not less than one;
  • a processing subunit configured to determine the first time of the subframe i according to a time adjustment amount included in the scheduling allocation signal sent by the second user equipment and a maximum value of the time adjustment amount included in the at least one first scheduling allocation signal
  • the adjustment amount, the first time adjustment amount is not less than the maximum value
  • the first scheduling allocation signal is a scheduling allocation signal sent by the third user equipment
  • the indicated subframe includes subframe i, and the value of i is one or more of integers from 1 to N.
  • a user equipment including:
  • the second user equipment is a user equipment that performs device-to-device communication with the first user equipment;
  • a processor configured to determine a first time adjustment amount according to a time adjustment amount included in a scheduling allocation signal acquired by the transceiver, where the first time adjustment amount is not smaller than a scheduling allocation signal sent by the second user equipment Time adjustment amount;
  • the transceiver is further configured to receive, according to the first time adjustment amount determined by the processor, and the subframe information included in the scheduling allocation signal sent by the second user equipment, the data signal sent by the second user equipment. .
  • the processor is specifically configured to: determine, according to a maximum value of a time adjustment amount included in a scheduling allocation signal acquired by the transceiver For a time adjustment amount, the first time adjustment amount is not less than the maximum value.
  • the processor is specifically configured to: read subframe information, the subframe information from a scheduling allocation signal sent by the second user equipment Instructing the second user equipment to send N subframes used by the data signal, where N is an integer not less than 1; Determining, by the time adjustment amount included in the scheduling allocation signal sent by the second user equipment, and the maximum value in the time adjustment amount included in the at least one first scheduling allocation signal, determining the first time adjustment amount of the subframe i, the first time adjustment The quantity is not less than the maximum value, the first scheduling allocation signal is a scheduling allocation signal sent by the third user equipment, and the subframe indicated by the subframe information included in the first scheduling allocation signal includes a subframe i, The value of i is one or more of integers from 1 to N.
  • the first UE when acquiring the SA signal, acquires not only the SA signal sent by the second UE with which the D2D communication is performed, but also the SA signal sent by the at least one third UE, and the data signal sent by the second UE.
  • the time adjustment is not only received according to the time adjustment amount included in the SA signal sent by the second UE, but the first time adjustment amount is determined according to the time adjustment amount included in all the acquired SA signals, so that the first time adjustment amount is not
  • the time adjustment amount included in the SA signal sent by the second UE is received, and the data signal sent by the second UE is received according to the first time adjustment amount, and the time adjustment included by the SA signal sent by the second UE by the first UE is extended.
  • FIG. 1A is an example of a subframe division method
  • FIG. 1B is a diagram showing an example of D2D communication between two UEs
  • 1C is a schematic diagram of a principle of data signal interference between multiple UEs
  • FIG. 2 is a schematic diagram of an embodiment of a method for transmitting a data signal according to the present invention
  • FIG. 3 is a schematic diagram of another embodiment of a method for transmitting a data signal according to the present invention.
  • FIG. 4 is a schematic diagram of another embodiment of a method for transmitting a data signal according to the present invention.
  • FIG. 5 is a schematic diagram of an embodiment of a UE according to the present invention.
  • FIG. 6 is a schematic diagram of another embodiment of a UE according to the present invention. detailed description
  • a sub-frame is generally divided into an SA resource pool and a data resource pool, where, SA The resource pool and the data resource pool alternate, and the number of subframes included in each SA resource pool and data resource pool is not limited.
  • the division of the subframe is performed by the network side (for example, the base station), and the division result is transmitted to each UE.
  • the SA resource pool and the data resource pool respectively include three subframes, but FIG. 1A to FIG. 1C are only examples, and are not used to limit the subframes included in the SA resource pool and the data resource pool.
  • Quantity The transmitting end sends the SA signal to the receiving end by using the subframe in the SA resource pool, and the transmitting end sends the data signal to the receiving end by using the subframe in the data resource pool.
  • the transmitting end sends a SA signal in one subframe (shown as subframe X in FIG. 1B) in the SA resource pool, and indicates to the receiving end through the SA signal a subframe used by the transmitting end to transmit the data signal (figure 1B shows the subframe y) and the time adjustment amount t.
  • the subframe used by the transmitting end to transmit the data signal should be located in the data resource pool, and the transmitting end sends the data signal in the corresponding subframe in the data resource pool; correspondingly, receiving
  • the terminal receives the SA signal, determines the initial time of the data signal sent by the receiving end according to the subframe used by the transmitting end transmitting the data signal indicated by the SA signal, and the time adjustment amount, and starts receiving the data signal sent by the transmitting end from the determined initial time.
  • the time difference between the initial time ta and the reference time tb of the subframe y is the time adjustment amount t.
  • the transmitting end assumes that UE1 and UE2, UE1 sends SA signal 1 to UE3, and indicates to UE3 that UE1 sends a data signal to use.
  • the subframe and the time adjustment amount t1 the UE2 sends the SA signal 2 to the UE4, and indicates to the UE4 the subframe used by the UE2 to transmit the data signal and the time adjustment amount t2, assuming that the subframe used by the UE1 and the UE2 to transmit the data signal is the same, for example, by using the frequency.
  • the data signal is transmitted in a manner of sub-multiplexing, t2>tl. Then, when the UE3 receives the data signal sent by the UE1 according to the time adjustment amount t1, the time adjustment amount t2 of the UE2 is greater than the time adjustment amount t1 of the UE1.
  • the data signal sent by UE2 cannot fall completely into the receiving window of UE3. As shown in FIG. 1C, the part between t2 and t1 does not fall into the receiving window of UE3, and the data signal sent by UE2 will receive UE1 for UE3.
  • the transmitted data signal generates inter-carrier interference, thereby reducing the accuracy of the UE3 receiving the data signal transmitted by the UE1.
  • the embodiment of the present invention provides a method for transmitting a data signal and a user equipment.
  • the data sent by the UE with a relatively large time adjustment amount can be reduced or even avoided.
  • Receiving of a data signal transmitted by a UE with a relatively small amount of time adjustment The interference problem caused by the transmission of the data signal transmitted by the UE with a relatively small amount of time adjustment and the reception accuracy rate.
  • FIG. 2 it is a flowchart of an embodiment of a method for transmitting a data signal according to the present invention. The embodiment is described from the receiving end (first UE) side of performing D2D communication:
  • Step 201 The first UE acquires a SA signal sent by the second UE and the at least one third UE, where the second UE is a UE that performs D2D communication with the first UE.
  • the first UE is a receiving end
  • the second UE is a sending end
  • the third UE indicates other UEs except the first UE and the second UE.
  • the first UE acquires not only the SA signal sent by the second UE with which the D2D communication is performed, but also the SA signal sent by the at least one third UE other than the first UE and the second UE.
  • the first UE may receive the data signal sent by the second UE, and the third UE may be a UE that performs D2D communication with the first UE, or may not be a UE that performs D2D communication with the first UE. Not limited.
  • the SA signal sent by the third UE is an SA signal that can be received by the first UE.
  • the third UE sends the SA signal by using a broadcast
  • the SA signal sent by the UE may be used by any UE (including the first UE) received.
  • the first UE can obtain all the SA signals that can be obtained in the SA resource pool.
  • Step 202 The first UE determines a first time adjustment amount according to the time adjustment amount included in the acquired SA signal, where the first time adjustment amount is not less than a time adjustment amount included in the SA signal sent by the second UE.
  • Step 203 The first UE receives the data signal sent by the second UE according to the first time adjustment amount and the subframe information included in the SA signal sent by the second UE.
  • step 202 and step 203 are respectively illustrated in the embodiments shown in FIG. 3 and FIG. 4, and are not described here.
  • the subframe information included in the SA signal sent by the second UE is used to indicate N subframes used by the second UE to send the data signal, and N is an integer not less than 1.
  • the subframe information indicates the subframe, and the present invention is not limited thereto, for example, may be identified by a subframe or the like.
  • the first UE when acquiring the SA signal, acquires not only the SA signal sent by the second UE with which the D2D communication is performed, but also the SA signal sent by the at least one third UE, and receives the data signal sent by the second UE.
  • the time adjustment is not only received according to the time adjustment amount included in the SA signal sent by the second UE, but the first time adjustment amount is determined according to the time adjustment amount included in all the acquired SA signals, so that the first time adjustment amount is not
  • the time adjustment amount included in the SA signal sent by the second UE is received, and the data signal sent by the second UE is received according to the first time adjustment amount, and the time adjustment included by the SA signal sent by the second UE by the first UE is extended. Therefore, if there is a case where the other UE transmits the data signal in the same subframe as the second UE, the interference caused by the data signal transmitted by the UE with a relatively large time adjustment amount to the reception of the data signal sent by the second UE can be reduced or even avoided.
  • 3 is a flowchart of an embodiment of a method for transmitting a data signal according to the present invention.
  • This embodiment shows a process for data signal transmission between a first UE and a second UE that performs D2D communication.
  • D2D communication It is assumed that a direct link has been established between the first UE and the second UE, and D2D communication can be performed.
  • Step 301 The second UE sends an SA signal in one or more subframes of the SA resource pool, where the SA signal includes subframe information and a time adjustment amount, where the subframe information is used to indicate that the second UE sends the data signal. Subframe.
  • Step 302 The first UE acquires a SA signal sent by the second UE and the at least one third UE.
  • the first UE and the second UE may also have other UE pairs that perform D2D communication, and the senders may also be in the same SA resource pool.
  • the SA signal is transmitted by itself, and the SA signal indicates the subframe used for transmitting the data signal by the transmitting end transmitting the SA signal and the time adjustment amount.
  • UE1 and UE2 are UE pairs performing D2D communication
  • UE3 and UE2 are UE pairs performing D2D communication
  • UE4 and UE5 are UE pairs performing D2D communication
  • the UE4 is a transmitting end
  • the UE2 and the UE5 are respectively receiving ends.
  • UE1, UE3, and UE4 may respectively send SA signals in the same or different subframes of the same SA resource pool. For example, if there are 3 subframes in the SA resource pool, UE1 may send SA signal 1 in the first subframe of the SA resource pool.
  • the UE3 may send the SA signal 2 in the second subframe of the SA resource pool, and the UE4 may send the SA signal 3 in the third subframe of the SA resource pool.
  • UE2 acquires both the SA signal 1 sent by UE1 and the SA signal 2 sent by UE3, and the receiving condition allows. In this case, UE2 can also acquire the SA signal 3 sent by UE4.
  • UE3 and UE4 are the third UEs mentioned herein.
  • Step 303 The first UE reads the time adjustment amount from the acquired SA signals.
  • UE2 acquires SA signal 1, SA signal 2, and SA signal 3.
  • UE2 reads the time adjustment amount from SA signal 1, and assumes tl, and reads from SA signal 2.
  • the time adjustment amount is assumed to be t2
  • the read time adjustment amount from the SA signal 3 is assumed to be t3.
  • Step 304 The first UE determines a first time adjustment amount according to a maximum value of the read time adjustment amounts, where the first time adjustment amount is not less than the maximum value.
  • the UE2 determines the first time adjustment amount according to the time adjustment amount t3.
  • the first time adjustment amount may be determined as t3, or may be the first The amount of time adjustment is determined to be any value greater than t3.
  • the first time adjustment amount may be determined as the maximum value t3 plus a preset time amount t0, and the value of the preset time quantity t0 may be based on a non-ideal factor implemented by the UE, for example. Timing deviation, etc.
  • the first time adjustment amount is not less than t3, the value determined by the first time adjustment amount is relatively smaller, and the receiving resource of the first UE can be relatively saved.
  • Step 305 The first UE reads the subframe information from the SA signal sent by the second UE, where the subframe information indicates that the second UE sends the N subframes of the data signal, where N is an integer not less than 1.
  • step 303 and step 304 The order of execution between this step and step 303 and step 304 is not limited.
  • the specific value of the number of subframes N indicated in the subframe information is not limited in the present invention.
  • Step 306 For the subframe i in the N subframes indicated by the subframe information, the first UE determines, according to the reference moment of the subframe i and the first time adjustment amount, that the first UE receives the second UE in the subframe i The actual initial time of the transmitted data signal, starting from the determined actual initial time, receives the data signal transmitted by the second UE in subframe i.
  • the value of i is an integer from 1 to N, that is, in this step, the first UE needs to determine the actual initial time corresponding to each subframe indicated by the subframe information.
  • the subframe information indicates the first to third subframes and the fifth subframe in the data resource pool, and the first subframe, according to the first subframe, the reference timing and the first subframe according to the first subframe.
  • a time adjustment quantity determines an actual initial time, and receives a data signal sent by the second UE in the first subframe from the determined actual initial time; and for the second subframe, the first UE according to the reference time of the second subframe
  • the first time adjustment quantity determines an actual initial time, and starts receiving the data signal sent by the second UE in the second subframe from the determined actual initial time; and so on, respectively determining on the third subframe and at the fifth Receive data signals on sub-frames The initial time, thereby achieving accurate reception of the data signal on each sub-frame.
  • the time information such as the reference time of each subframe is sent by the network side (for example, the base station) to the time information of the reference time of each subframe in synchronization with each UE before the execution of this step, so that the base station and each UE are each
  • the time information such as the reference time of the subframe remains the same.
  • the first UE reads the time adjustment amount from the acquired SA signals, and determines the first time adjustment amount according to the maximum value of the read time adjustment amounts, so that the first time adjustment amount is not less than The maximum value, so that if there are other UEs transmitting the data signal in the same subframe as the second UE, it is possible to reduce or even avoid the reception of the data signal sent by the UE transmitted by the UE with a relatively large amount of time adjustment.
  • the interference problem caused by the transmission of the data signal sent by the second UE and the accuracy of the first UE receiving the data signal sent by the second UE. 4 is a flowchart of another embodiment of a method for transmitting a data signal according to the present invention.
  • This embodiment shows a process for data signal transmission between a first UE and a second UE that performs D2D communication.
  • a direct link has been established between the first UE and the second UE, and D2D communication can be performed.
  • Steps 401 to 402 are the same as steps 301 to 302, and are not described here.
  • Step 403 The first UE reads the subframe information from the SA signal sent by the second UE, where the subframe information indicates that the second UE sends the N subframes of the data signal, where N is an integer not less than 1.
  • Step 404 For the subframe i in the N subframes indicated by the subframe information, the first UE includes a time adjustment amount included in the SA signal sent by the second UE and a time adjustment amount included in the at least one first SA signal.
  • the maximum value of the first time adjustment amount of the subframe i is determined, the first time adjustment amount is not less than the maximum value, the first SA signal is an SA signal sent by the third UE, and the first SA signal includes The subframe indicated by the subframe information includes subframe i.
  • N is equal to 3 (including subframe 1, subframe 2, and subframe 3), assuming that the first SA signal contains subframe information.
  • the indicated subframe includes subframe 1 and subframe 2, and the first UE determines the subframe according to the time adjustment amount included in the SA signal sent by the second UE and the maximum value of the time adjustment amount included in the at least one first SA signal.
  • the first time adjustment amount of i at this time, the value of i is 1 and 2.
  • the first UE determines the first subframe i according to the time adjustment amount included in the SA signal sent by the second UE and the maximum value of the time adjustment amount included in the at least one first SA signal.
  • the amount of time adjustment can include: The first UE selects at least one first SA signal from the acquired SA signals sent by the at least one third UE, where the first SA signal is an SA signal including the subframe i indicated by the subframe information indicating the subframe i; The first UE reads the time adjustment amount from the SA signal sent by the second UE and the selected first SA signal, and determines the first time adjustment amount of the subframe i according to the maximum value of the read time adjustment amount, The first time adjustment amount is not less than the maximum value.
  • the subframe information read in step 403 includes the subframe X and the subframe (x+1) in the data resource pool; for the subframe x, if the SA signal sent by the at least one third UE acquired by the first UE is the SA Signal 1 SA signal 5, wherein the subframe information of the SA signals 1 ⁇ 3 includes a subframe x, and for the first SA signal, one or more first SA signals may be selected from the SA signals 1 ⁇ 3, the selected
  • the specific number of the present invention is not limited, but in theory, the more the first SA signal selected from the SA signals 1 ⁇ 3, the better the effect of reducing the interference problem in the embodiment of the present invention is relatively better; similarly, for the subframe (x+l), if the SA signal sent by the at least one third UE acquired by the first UE is the SA signal 1 SA signal 5, where the subframe information of the SA signals 2 ⁇ 5 includes the subframe (x+1), For the first SA signal, one or more first SA signals may be selected from
  • the implementation of the reading time adjustment amount and the determining the first time adjustment amount in this step may refer to step 303 and step 304, except that only the SA signal sent from the second UE and the selected first SA signal are read in this step.
  • the time adjustment amount is taken, and the first time adjustment amount determined in this step has a correspondence relationship with the subframe indicated by the subframe information.
  • Step 405 The first UE determines, according to the reference time of the subframe i and the first time adjustment amount of the subframe i, that the first UE receives the actual initial moment of the data signal sent by the second UE in the subframe i, from the determined actual initial moment.
  • the data signal transmitted by the second UE in the subframe i is started to be received.
  • each subframe indicated by the subframe information in step 405 corresponds to a first time adjustment amount
  • each subframe indicated by the subframe information in step 306 corresponds to the same.
  • a first time adjustment not to repeat here.
  • the first UE determines the first time adjustment amount of the subframe i according to the time adjustment amount included in the SA signal sent by the second UE and the maximum value of the time adjustment amount included in the at least one first SA signal, The first time adjustment amount is not less than the maximum value, and the first UE determines, according to the reference time of the subframe i and the first time adjustment amount of the subframe i, that the first UE receives the data signal sent by the second UE in the subframe i.
  • the actual initial moment, the data signal transmitted by the second UE in the subframe i is received from the determined actual initial moment. Therefore, for each subframe in which the second UE transmits the data signal, the first UE transmits according to the subframe.
  • the present invention also provides an embodiment of a UE.
  • the UE can serve as either a receiving end or a transmitting end.
  • the UE 500 includes: an obtaining unit 510, a determining unit 520, and a receiving unit 530;
  • the acquiring unit 510 is configured to acquire a SA signal sent by the second UE and the at least one third UE, where the second UE is a UE that performs D2D communication with the first UE;
  • a determining unit 520 configured to determine, according to a time adjustment amount included in the SA signal acquired by the acquiring unit 510, a first time adjustment amount, where the first time adjustment amount is not less than a time included in the SA signal sent by the second UE Adjustment amount
  • the receiving unit 530 is configured to receive the second UE according to the first time adjustment amount determined by the determining unit 520 and the subframe information included in the SA signal sent by the second UE acquired by the acquiring unit 510.
  • the determining unit 520 is specifically configured to: determine, according to the maximum value of the time adjustment amounts included in the acquired SA signal, the first time adjustment amount, where the first time adjustment amount is not less than the maximum value.
  • the determining unit 520 may include:
  • a reading subunit configured to read subframe information from an SA signal sent by the second UE, where the subframe information indicates N subframes used by the second UE to send a data signal, where N is not less than 1.
  • An integer sub-unit configured to determine a first time adjustment amount of the subframe i according to a time adjustment amount included in the SA signal sent by the second UE and a maximum value of the time adjustment amount included in the at least one first SA signal, The first time adjustment quantity is not less than the maximum value, the first SA signal is an SA signal sent by the third UE, and the subframe indicated by the subframe information included in the first SA signal includes a subframe.
  • the value of i, i is one or more of integers from 1 to N.
  • the first UE when the first UE acquires the SA signal, it not only acquires the second D2D communication with the first UE.
  • the SA signal sent by the UE also acquires the SA signal sent by the at least one third UE.
  • the data signal sent by the second UE is received, the data is not received according to the time adjustment amount included in the SA signal sent by the second UE, but is based on The time adjustment amount included in all the obtained SA signals determines the first time adjustment amount, so that the first time adjustment amount is not less than the time adjustment amount included in the SA signal sent by the second UE, and receives the second time according to the first time adjustment amount.
  • the data signal sent by the UE is extended by the first UE to the time adjustment amount of the SA signal sent by the second UE, so that if other UEs and the second UE transmit data signals in the same subframe, the information can be reduced or even avoided.
  • the interference problem caused by the data signal sent by the UE with a relatively large amount of time adjustment to the reception of the data signal sent by the second UE, the transmission effect of the data signal transmitted by the second UE, and the data received by the first UE by the second UE are received.
  • the accuracy of the signal is described in order.
  • FIG. 6 is a schematic structural diagram of a UE according to an embodiment of the present invention, where the UE can serve as a receiving end; the UE 600 includes: a processor 610, a memory 620, a transceiver 630, and a bus 640.
  • the processor 610, the memory 620, and the transceiver 630 are connected to each other through a bus 640.
  • the bus 640 can be an ISA bus, a PCI bus, or an EISA bus.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 6, but it does not mean that there is only one bus or one type of bus.
  • the memory 620 is configured to store a program.
  • the program can include program code, the program code including computer operating instructions.
  • Memory 620 may include high speed RAM memory and may also include non-volatile memory, such as at least one disk memory.
  • the transceiver 630 is used to connect to other devices and to communicate with other devices.
  • the transceiver 630 is configured to: acquire an SA signal sent by the second UE and the at least one third UE; the second UE is a UE that performs D2D communication with the first UE; and the first time determined by the processor 610
  • the adjustment amount and the subframe information included in the SA signal sent by the second UE receive the data signal sent by the second UE.
  • the processor 610 executes the program code, where the first time adjustment amount is determined according to a time adjustment amount included in the SA signal acquired by the transceiver 630, where the first time adjustment amount is not less than that sent by the second UE. The amount of time adjustment included in the SA signal.
  • the processor 610 is specifically configured to: determine, according to a maximum value of time adjustment amounts in the SA signal acquired by the transceiver 630, the first time adjustment amount is not less than The maximum value.
  • the processor 620 is specifically configured to: read subframe information from an SA signal sent by the second UE, where the subframe information indicates N subframes used by the second UE to send a data signal.
  • N is an integer of not less than 1; determining a first time adjustment amount of the subframe i according to a time adjustment amount included in the SA signal sent by the second UE and a maximum value of the time adjustment amount included in the at least one first SA signal, The first time adjustment quantity is not less than the maximum value, the first SA signal is an SA signal sent by the third UE, and the subframe indicated by the subframe information included in the first SA signal includes a subframe.
  • the value of i, i is one or more of integers from 1 to N.
  • the first UE when acquiring the SA signal, acquires not only the SA signal sent by the second UE with which the D2D communication is performed, but also the SA signal sent by the at least one third UE, when the data signal is sent by the second UE. And not only receiving according to the time adjustment amount included in the SA signal sent by the second UE, but determining the first time adjustment amount according to the time adjustment amount included in all the acquired SA signals, so that the first time adjustment amount is not less than The time adjustment amount included in the SA signal sent by the second UE is received by the second UE according to the first time adjustment amount, and the time adjustment included by the SA signal sent by the second UE by the first UE is extended.
  • the other UE transmits the data signal in the same subframe as the second UE, the interference problem caused by the data signal sent by the UE with a relatively large time adjustment amount to the reception of the data signal sent by the second UE can be reduced or even avoided. And improving the transmission effect of the data signal sent by the second UE and the accuracy rate of the first UE receiving the data signal sent by the second UE. It will be apparent to those skilled in the art that the techniques in the embodiments of the present invention can be implemented by means of software plus a necessary general hardware platform.
  • the technical solution in the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product, and the computer software product may be stored in a storage medium such as a ROM/RAM. , a diskette, an optical disk, etc., comprising instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods described in various embodiments of the present invention or in certain portions of the embodiments.
  • a computer device which may be a personal computer, server, or network device, etc.

Abstract

本发明实施例提供一种传输数据信号的方法及用户设备,方法包括:第一用户设备获取第二用户设备以及至少一个第三用户设备发送的调度分配信号;所述第二用户设备是与所述第一用户设备进行D2D通信的用户设备;所述第一用户设备根据获取到的调度分配信号包含的时间调整量确定第一时间调整量,所述第一时间调整量不小于所述第二用户设备发送的调度分配信号包含中的时间调整量;所述第一用户设备根据所述第一时间调整量以及所述第二用户设备发送的调度分配信号包含的子帧信息接收所述第二用户设备发送的数据信号。本发明实施例能够降低甚至避免多个用户设备在相同子帧发送数据信号时相互之间的干扰,提高数据信号的传输效果和接收准确率。

Description

传输数据信号的方法及用户设备
技术领域 本发明涉及通信技术领域, 特别涉及传输数据信号的方法及用户设备 (英文 全称: User Equipment, 英文缩写: UE)。 背景技术 近年来无线通信技术获得了巨大的发展, 现有常用的无线通信网络包括蜂窝 网络。 在蜂窝网络中, 当两个传输距离较远的 UE之间传输数据包时, 该数据包 需要从发送端传输到基站, 再从基站传输到接收端, 上述传输过程需要占用两次 空口资源。 当两个 UE之间传输距离较近时, 为了节省空口传输资源, 减少基站 控制信令的开销, 可以通过设备到设备(英文全称: Device to Device, 英文缩写: D2D) 方式进行通信, 即 UE之间直接通信, 而无需基站转发。
UE之间进行 D2D通信时, 一般需要发送两类信号, 第一类信号是调度分配 (英文全称: Scheduling Assignment, 英文缩写: SA) 信号, 第二类信号是数据 (英文: Data) 信号。 SA 信号用于指示数据信号所使用的资源以及接收数据信 号时的时间调整量。
一般的, 两个 UE之间进行 D2D通信时, 发送端先发送 SA信号给接收端, 向接收端指示发送端发送数据信号使用的子帧以及时间调整量; 接收端根据 SA 信号中指示的发送端发送数据信号使用的子帧以及时间调整量确定接收数据信 号的初始时刻, 从确定的初始时刻开始接收发送端发送的数据信号。
但是, 这种传输数据信号的方法中, 如果有多个 UE在相同的子帧上发送数 据信号时, 多个 UE发送的数据信号之间容易产生干扰, 从而影响接收端接收数 据信号的准确率。 发明内容 本发明实施例中提供了传输数据信号的方法及用户设备, 能够多个用户设备 在相同子帧上发送数据信号时相互之间的干扰, 提高用户设备接收数据信号的准 确率。
为了解决上述技术问题, 本发明实施例公开了如下技术方案: 第一方面, 本发明实施例提供一种传输数据信号的方法, 包括:
第一用户设备获取第二用户设备以及至少一个第三用户设备发送的调度分 配信号; 所述第二用户设备是与所述第一用户设备进行设备到设备通信的用户设 备;
所述第一用户设备根据获取到的调度分配信号包含的时间调整量确定第一 时间调整量, 所述第一时间调整量不小于所述第二用户设备发送的调度分配信号 包含的时间调整量;
所述第一用户设备根据所述第一时间调整量以及所述第二用户设备发送的 调度分配信号包含的子帧信息接收所述第二用户设备发送的数据信号。
结合第一方面, 在第一方面第一种可能的实现方式中, 所述第一用户设备根 据获取到的调度分配信号包含的时间调整量确定第一时间调整量, 包括:
所述第一用户设备根据获取到的调度分配信号包含的时间调整量中的最大 值确定所述第一时间调整量, 所述第一时间调整量不小于所述最大值。
结合第一方面, 在第一方面第二种可能的实现方式中, 所述第一用户设备根 据获取到的调度分配信号包含的时间调整量确定第一时间调整量, 包括:
所述第一用户设备从所述第二用户设备发送的调度分配信号中读取子帧信 息, 所述子帧信息指示所述第二用户设备发送数据信号使用的 N个子帧, N为不 小于 1的整数;
所述第一用户设备根据所述第二用户设备发送的调度分配信号包含的时间 调整量和至少一个第一调度分配信号包含的时间调整量中的最大值确定子帧 i的 所述第一时间调整量, 所述第一时间调整量不小于所述最大值, 所述第一调度分 配信号是所述第三用户设备发送的调度分配信号, 并且所述第一调度分配信号包 含的子帧信息指示的子帧包括子帧 i,i的取值为从 1到 N的整数中的一个或多个。
第二方面, 本发明实施例提供一种用户设备, 包括:
获取单元, 用于获取第二用户设备以及至少一个第三用户设备发送的调度分 配信号; 所述第二用户设备是与所述第一用户设备进行设备到设备通信的用户设 备;
确定单元, 用于根据所述获取单元获取到的调度分配信号包含的时间调整量 确定第一时间调整量, 所述第一时间调整量不小于所述第二用户设备发送的调度 分配信号包含的时间调整量;
接收单元, 用于根据所述确定单元确定的所述第一时间调整量以及所述获取 单元获取到的所述第二用户设备发送的调度分配信号包含的子帧信息接收所述 第二用户设备发送的数据信号。
结合第二方面, 在第二方面第一种可能的实现方式中, 所述确定单元具体用 于:
根据获取到的调度分配信号包含的时间调整量中的最大值确定所述第一时 间调整量, 所述第一时间调整量不小于所述最大值。
结合第二方面, 在第二方面第二种可能的实现方式中, 所述确定单元包括: 读取子单元, 用于从所述第二用户设备发送的调度分配信号中读取子帧信 息, 所述子帧信息指示所述第二用户设备发送数据信号使用的 N个子帧, N为不 小于 1的整数;
处理子单元, 用于根据所述第二用户设备发送的调度分配信号包含的时间调 整量和至少一个第一调度分配信号包含的时间调整量中的最大值确定子帧 i的所 述第一时间调整量, 所述第一时间调整量不小于所述最大值, 所述第一调度分配 信号是所述第三用户设备发送的调度分配信号, 并且所述第一调度分配信号包含 的子帧信息指示的子帧包括子帧 i, i的取值为从 1到 N的整数中的一个或多个。
第三方面, 提供一种用户设备, 包括:
收发器, 用于获取第二用户设备以及至少一个第三用户设备发送的调度分配 信号; 所述第二用户设备是与所述第一用户设备进行设备到设备通信的用户设 备;
处理器, 用于根据所述收发器获取到的调度分配信号包含的时间调整量确定 第一时间调整量, 所述第一时间调整量不小于所述第二用户设备发送的调度分配 信号包含的时间调整量;
所述收发器, 还用于根据所述处理器确定的所述第一时间调整量以及所述第 二用户设备发送的调度分配信号包含的子帧信息接收所述第二用户设备发送的 数据信号。
结合第三方面,在第三方面第一种可能的实现方式中,所述处理器具体用于: 根据所述收发器获取到的调度分配信号包含的时间调整量中的最大值确定所述 第一时间调整量, 所述第一时间调整量不小于所述最大值。
结合第三方面,在第三方面第二种可能的实现方式中,所述处理器具体用于: 从所述第二用户设备发送的调度分配信号中读取子帧信息, 所述子帧信息指示所 述第二用户设备发送数据信号使用的 N个子帧, N为不小于 1的整数; 根据所述 第二用户设备发送的调度分配信号包含的时间调整量和至少一个第一调度分配 信号包含的时间调整量中的最大值确定子帧 i的所述第一时间调整量, 所述第一 时间调整量不小于所述最大值, 所述第一调度分配信号是所述第三用户设备发送 的调度分配信号, 并且所述第一调度分配信号包含的子帧信息指示的子帧包括子 帧 i, i的取值为从 1到 N的整数中的一个或多个。
本发明实施例中, 第一 UE获取 SA信号时, 不仅获取与之进行 D2D通信的 第二 UE发送的 SA信号, 还获取至少一个第三 UE发送的 SA信号, 在第二 UE 发送的数据信号时, 不再仅根据第二 UE发送的 SA信号包含的时间调整量来接 收, 而是根据获取到的所有 SA信号包含的时间调整量确定出第一时间调整量, 使得第一时间调整量不小于第二 UE发送的 SA信号包含的时间调整量, 根据第 一时间调整量来接收第二 UE发送的数据信号, 由于第一 UE对第二 UE发送的 SA信号包含的时间调整量进行了延长,从而如果存在其他 UE与第二 UE在相同 子帧发送数据信号的情况, 能够降低甚至避免时间调整量相对较大的 UE发送的 数据信号对第二 UE发送的数据信号的接收所造成的干扰问题, 提高第二 UE发 送的数据信号的传输效果以及第一 UE接收第二 UE发送的数据信号的准确率。 附图说明 为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例或现有技术 描述中所需要使用的附图作简单地介绍, 显而易见地, 对于本领域普通技术人员 而言, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1A为子帧划分方法示例;
图 1B为两个 UE之间进行 D2D通信示例图;
图 1C为多个 UE之间数据信号干扰原理示意图;
图 2为本发明传输数据信号的方法的一个实施例示意图;
图 3为本发明传输数据信号的方法另一个实施例示意图;
图 4为本发明传输数据信号的方法另一个实施例示意图;
图 5为本发明 UE的一个实施例示意图;
图 6为本发明 UE的另一个实施例示意图。 具体实施方式
如图 1A所示, 目前一般将子帧划分为 SA资源池和数据资源池, 其中, SA 资源池与数据资源池交替出现, 每个 SA资源池和数据资源池中所包括的子帧数 量不限定。 一般的, 由网络侧 (例如, 基站) 进行子帧的划分, 并将划分结果发 送至各个 UE。 在图 1A至图 1C中, 以 SA资源池和数据资源池分别包括 3个子 帧为例, 但图 1A至图 1C仅为示例, 并不用以限定 SA资源池和数据资源池中包 括的子帧数量。 发送端使用 SA资源池中的子帧向接收端发送 SA信号, 发送端 使用数据资源池中的子帧向接收端发送数据信号。
例如图 1B所示, 发送端在 SA资源池中的一个子帧(图 1B中所示为子帧 X ) 发送 SA信号, 通过 SA信号向接收端指示发送端发送数据信号使用的子帧 (图 1B中所示为子帧 y ) 以及时间调整量 t, 发送端发送数据信号使用的子帧应位于 数据资源池中, 发送端在数据资源池中的相应子帧发送数据信号; 相应的, 接收 端接收 SA信号, 根据 SA信号中指示的发送端发送数据信号使用的子帧以及时 间调整量确定接收发送端发送的数据信号的初始时刻, 从确定的初始时刻开始接 收发送端发送的数据信号。 如图 1B所示, 初始时刻 ta与子帧 y的参考时刻 tb之 间的时间差即为所述时间调整量 t。
但是, 如图 1C所示, 如果有 UE1和 UE3、 UE2和 UE4两对进行 D2D通信 的 UE时, 发送端假设为 UE1和 UE2, UE1发送 SA信号 1给 UE3, 向 UE3指 示 UE1发送数据信号使用的子帧以及时间调整量 tl,UE2发送 SA信号 2给 UE4, 向 UE4指示 UE2发送数据信号使用的子帧以及时间调整量 t2, 假设 UE1和 UE2 发送数据信号使用的子帧相同, 通过例如频分复用的方式分别发送数据信号, t2>tl , 那么, UE3在相应子帧按照时间调整量 tl接收 UE1发送的数据信号时, 由于 UE2的时间调整量 t2大于 UE1的时间调整量 tl,所以 UE2发送的数据信号 不能够完全落入 UE3的接收窗中, 如图 1C中所示 t2与 tl之间的部分即未落入 UE3的接收窗中, UE2发送的数据信号将会对 UE3接收 UE1发送的数据信号产 生载波间干扰, 从而降低 UE3接收 UE1发送的数据信号的准确率。
基于图 1C所示的举例并将其延伸到多个 UE在相同子帧发送数据信号的场 景可知, 目前当多个 UE在相同子帧发送数据信号时, 时间调整量相对较大的 UE 发送的数据信号会对时间调整量相对较小的 UE 发送的数据信号的接收造成干 扰,影响时间调整量相对较小的 UE发送的数据信号的传输效果以及接收准确率。
为了解决该问题, 本发明实施例提供了传输数据信号的方法及用户设备, 在 多个 UE在相同子帧发送数据信号的情况下, 能够降低甚至避免时间调整量相对 较大的 UE发送的数据信号对时间调整量相对较小的 UE发送的数据信号的接收 所造成的干扰问题, 提高时间调整量相对较小的 UE发送的数据信号的传输效果 以及接收准确率。
为了使本技术领域的人员更好地理解本发明实施例中的技术方案, 并使本发 明实施例的上述目的、 特征和优点能够更加明显易懂, 下面结合附图对本发明实 施例中技术方案作进一步详细的说明。
参见图 2, 为本发明传输数据信号的方法的一个实施例流程图, 该实施例从 进行 D2D通信的接收端 (第一 UE) 侧进行描述:
步骤 201 : 第一 UE获取第二 UE以及至少一个第三 UE发送的 SA信号, 所 述第二 UE是与第一 UE进行 D2D通信的 UE。
其中, 第一 UE和第二 UE进行 D2D通信时, 第一 UE为接收端, 第二 UE 为发送端。
其中, 第三 UE表示除第一 UE和第二 UE之外的其他 UE。 本步骤中, 第一 UE在 SA资源池中不仅获取与之进行 D2D通信的第二 UE发送的 SA信号,还获 取除第一 UE和第二 UE之外的至少一个第三 UE发送的 SA信号。本实施例中关 注于第一 UE如何接收第二 UE发送的数据信号, 所述第三 UE可以是与第一 UE 进行 D2D通信的 UE, 也可以不是与第一 UE进行 D2D通信的 UE, 这里并不限 定。
其中, 所述第三 UE发送的 SA信号是可以被第一 UE接收到的 SA信号, 例 如第三 UE采用广播的方式发送 SA信号, 则其发送的 SA信号可以被任一个 UE (包括第一 UE) 接收到。
一般的, 本步骤中第一 UE可以尽量在 SA资源池中获取其能够获取到的所 有 SA信号。
步骤 202:第一 UE根据获取到的 SA信号包含的时间调整量确定第一时间调 整量, 所述第一时间调整量不小于第二 UE发送的 SA信号包含的时间调整量。
步骤 203 :第一 UE根据所述第一时间调整量以及第二 UE发送的 SA信号包 含的子帧信息接收第二 UE发送的数据信号。
其中, 步骤 202和步骤 203的可能实现方式在图 3和图 4所示的实施例中分 别进行了举例说明, 这里不赘述。
其中, 第二 UE发送的 SA信号包含的子帧信息用于指示第二 UE发送数据 信号所使用的 N个子帧, N为不小于 1的整数。所述子帧信息如何指示所述子帧, 本发明并不限制, 例如可以通过子帧的标识等。 本实施例中, 第一 UE获取 SA信号时, 不仅获取与之进行 D2D通信的第二 UE发送的 SA信号, 还获取至少一个第三 UE发送的 SA信号, 在接收第二 UE 发送的数据信号时, 不再仅根据第二 UE发送的 SA信号包含的时间调整量来接 收, 而是根据获取到的所有 SA信号包含的时间调整量确定出第一时间调整量, 使得第一时间调整量不小于第二 UE发送的 SA信号包含的时间调整量, 根据第 一时间调整量来接收第二 UE发送的数据信号, 由于第一 UE对第二 UE发送的 SA信号包含的时间调整量进行了延长,从而如果存在其他 UE与第二 UE在相同 子帧发送数据信号的情况, 能够降低甚至避免时间调整量相对较大的 UE发送的 数据信号对第二 UE发送的数据信号的接收所造成的干扰问题, 提高第二 UE发 送的数据信号的传输效果以及第一 UE接收第二 UE发送的数据信号的准确率。 参见图 3, 为本发明传输数据信号的方法的一个实施例流程图, 本实施例示 出了一种进行 D2D通信的第一 UE和第二 UE之间进行数据信号传输的过程; 本 实施例中假设第一 UE与第二 UE之间已经建立了直通链路,可以进行 D2D通信。
步骤 301 : 第二 UE在 SA资源池的一个或多个子帧上发送 SA信号, SA信 号中包含子帧信息以及时间调整量, 所述子帧信息用于指示第二 UE发送数据信 号所使用的子帧。
步骤 302: 第一 UE获取第二 UE以及至少一个第三 UE发送的 SA信号。 其中, 在实际应用中除了第一 UE和第二 UE这一对进行 D2D通信的 UE对 之外, 一般还可以存在其他进行 D2D通信的 UE对, 其中的发送端也可以在相同 的 SA资源池中发送自身的 SA信号, SA信号中指示发送 SA信号的发送端发送 数据信号使用的子帧以及时间调整量。
举例来说, 假设具有 UE1~UE5共 5个 UE, UE1与 UE2是进行 D2D通信的 UE对, UE3与 UE2是进行 D2D通信的 UE对, UE4与 UE5是进行 D2D通信的 UE对, UE1、 UE3、 UE4分别为发送端, UE2、 UE5分别为接收端。 UE1、 UE3、 UE4可以在同一 SA资源池的相同或不同子帧分别发送 SA信号, 例如假设 SA 资源池中有 3个子帧, UE1可以在 SA资源池的第一个子帧发送了 SA信号 1, UE3可以在 SA资源池的第二个子帧发送了 SA信号 2, UE4可以在 SA资源池的 第三个子帧发送了 SA信号 3。
如果 UE1为所述第二 UE, UE2为所述第一 UE, 则在步骤 302中 UE2既获 取 UE1发送的 SA信号 1, 还获取 UE3发送的 SA信号 2, 在接收条件允许的情 况下, UE2还可以获取 UE4发送的 SA信号 3。 其中的 UE3和 UE4即为本文中 所提及的第三 UE。
步骤 303 : 第一 UE从获取到的 SA信号中分别读取时间调整量。
参考步骤 302中的例子, UE2获取到 SA信号 1、 SA信号 2和 SA信号 3, 则本步骤中 UE2将从 SA信号 1中读取时间调整量, 假设为 tl, 从 SA信号 2中 读取时间调整量假设为 t2, 从 SA信号 3中读取时间调整量假设为 t3。
步骤 304: 第一 UE根据读取到的时间调整量中的最大值确定第一时间调整 量, 所述第一时间调整量不小于所述最大值。
参考步骤 303中的例子, 假设时间调整量 t3>t2>tl, 则 UE2根据时间调整量 t3确定第一时间调整量, 具体的, 可以将第一时间调整量确定为 t3, 也可以将第 一时间调整量确定为大于 t3的任一数值。在一种可能的实现方式中, 可以将第一 时间调整量确定为最大值 t3加上一个预设的时间量 t0, 这个预设的时间量 t0的 取值可以基于 UE实现的非理想因素比如定时偏差等。 其中, 在第一时间调整量 不小于 t3的条件下, 将第一时间调整量确定的数值相对越小, 可以相对越节省第 一 UE的接收资源。
步骤 305 : 第一 UE从第二 UE发送的 SA信号中读取子帧信息, 所述子帧信 息指示第二 UE发送数据信号的 N个子帧, N为不小于 1的整数。
本步骤与步骤 303和步骤 304之间的执行顺序不限制。
其中, 子帧信息中指示的子帧个数 N的具体数值本发明并不限制。
步骤 306: 对于所述子帧信息指示的 N个子帧中的子帧 i, 第一 UE根据子帧 i的参考时刻与所述第一时间调整量确定第一 UE接收第二 UE在子帧 i发送的数 据信号的实际初始时刻, 从确定的实际初始时刻开始接收第二 UE在子帧 i发送 的数据信号。
其中, i的取值为从 1到 N的整数, 也即本步骤中, 第一 UE需要分别确定 子帧信息指示的每一个子帧所对应的实际初始时刻。 举例来说, 假设子帧信息指 示了数据资源池中的第 1~3个子帧以及第 5个子帧, 贝 1」, 对于第 1个子帧, 第一 UE根据第 1个子帧的参考时刻与第一时间调整量确定一个实际初始时刻, 从确 定的实际初始时刻开始接收第二 UE在第 1个子帧上发送的数据信号; 对于第 2 个子帧, 第一 UE根据第 2个子帧的参考时刻与第一时间调整量确定一个实际初 始时刻, 从确定的实际初始时刻开始接收第二 UE在第 2个子帧上发送的数据信 号; 以此类推, 在分别确定在第 3个子帧上和在第 5个子帧上接收数据信号的实 际初始时刻, 从而实现在每一个子帧上准确接收数据信号。
其中, 一般可以由网络侧 (例如, 基站) 在本步骤执行之前向各个 UE同步 各个子帧的参考时刻等时间信息发送各个子帧的参考时刻等时间信息, 以使得基 站和各个 UE之间各个子帧的参考时刻等时间信息保持一致。
本实施例中, 第一 UE从获取到的 SA信号中分别读取时间调整量, 根据读 取到的时间调整量中的最大值确定第一时间调整量, 使得第一时间调整量不小于 所述最大值,从而如果存在其他 UE与第二 UE在相同子帧发送数据信号的情况, 能够降低甚至避免时间调整量相对较大的 UE发送的数据信号对第二 UE发送的 数据信号的接收所造成的干扰问题, 提高第二 UE发送的数据信号的传输效果以 及第一 UE接收第二 UE发送的数据信号的准确率。 参见图 4, 为本发明的传输数据信号的方法的另一个实施例流程图, 本实施 例示出了一种进行 D2D通信的第一 UE和第二 UE之间进行数据信号传输的过程; 本实施例中假设第一 UE与第二 UE之间已经建立了直通链路, 可以进行 D2D通 信。
步骤 401〜步骤 402与步骤 301〜步骤 302相同, 这里不赘述。
步骤 403 : 第一 UE从第二 UE发送的 SA信号中读取子帧信息, 所述子帧信 息指示第二 UE发送数据信号的 N个子帧, N为不小于 1的整数。
步骤 404: 对于所述子帧信息指示的 N个子帧中的子帧 i, 第一 UE根据所述 第二 UE发送的 SA信号包含的时间调整量和至少一个第一 SA信号包含的时间调 整量中的最大值确定子帧 i的第一时间调整量, 所述第一时间调整量不小于所述 最大值, 所述第一 SA信号是第三 UE发送的 SA信号, 并且第一 SA信号包含的 子帧信息指示的子帧包括子帧 i。
其中, i的取值为从 1到 N的整数中的一个或多个, 例如, N等于 3 (包括 子帧 1, 子帧 2以及子帧 3 ), 假设第一 SA信号包含的子帧信息指示的子帧包括 子帧 1和子帧 2,那么第一 UE根据所述第二 UE发送的 SA信号包含的时间调整 量和至少一个第一 SA信号包含的时间调整量中的最大值确定子帧 i的第一时间 调整量, 此时, i的取值为 1和 2。
在一种可能的实现方式中, 第一 UE根据所述第二 UE发送的 SA信号包含 的时间调整量和至少一个第一 SA信号包含的时间调整量中的最大值确定子帧 i 的第一时间调整量, 可以包括: 第一 UE从获取到的至少一个第三 UE发送的 SA信号中选择至少一个第一 SA信号, 所述第一 SA信号是包含子帧信息指示的子帧包括所述子帧 i的 SA信 号;第一 UE从第二 UE发送的 SA信号以及选择出的第一 SA信号中分别读取时 间调整量, 根据读取到的时间调整量中的最大值确定子帧 i的第一时间调整量, 所述第一时间调整量不小于所述最大值。
举实例说明本步骤中选择处理的实现。 假设步骤 403中读取的子帧信息中包 括数据资源池中的子帧 X和子帧 (x+1 ); 对于子帧 x, 如果第一 UE获取的至少 一个第三 UE发送的 SA信号为 SA信号 1 SA信号 5, 其中的 SA信号 1~3的子 帧信息中包括子帧 x, 为第一 SA信号, 则可以从 SA信号 1~3中选择一个或多个 第一 SA信号, 选择的具体数量本发明并不限制,但是理论上来说从 SA信号 1~3 中选择的第一 SA信号相对越多, 本发明实施例降低所述干扰问题的效果相对越 好; 同样的, 对于子帧 (x+l ), 如果第一 UE获取的至少一个第三 UE发送的 SA 信号为 SA信号 1 SA信号 5,其中的 SA信号 2~5的子帧信息中包括子帧(x+1 ), 为第一 SA信号, 则可以从 SA信号 2~5中选择一个或多个第一 SA信号,选择的 具体数量本发明并不限制。
本步骤中读取时间调整量以及确定第一时间调整量的实现可以参考步骤 303 和步骤 304,区别仅在于本步骤中仅从第二 UE发送的 SA信号以及选择出的第一 SA信号中读取时间调整量, 且本步骤中确定的第一时间调整量与子帧信息指示 的子帧之间具有对应关系。
步骤 405 :第一 UE根据子帧 i的参考时刻与子帧 i的第一时间调整量确定第 一 UE接收第二 UE在子帧 i发送的数据信号的实际初始时刻, 从确定的实际初 始时刻开始接收第二 UE在子帧 i发送的数据信号。
本步骤的实现与步骤 306相似, 区别仅在于步骤 405中子帧信息指示的每一 个子帧分别对应着一个第一时间调整量, 而步骤 306中子帧信息指示的每一个子 帧对应着同一个第一时间调整量, 这里不赘述。
本实施例中, 第一 UE根据所述第二 UE发送的 SA信号包含的时间调整量 和至少一个第一 SA信号包含的时间调整量中的最大值确定子帧 i的第一时间调 整量, 所述第一时间调整量不小于所述最大值, 第一 UE根据子帧 i的参考时刻 与子帧 i的第一时间调整量确定第一 UE接收第二 UE在子帧 i发送的数据信号的 实际初始时刻, 从确定的实际初始时刻开始接收第二 UE在子帧 i发送的数据信 号。 从而对于第二 UE发送数据信号的每一个子帧, 第一 UE根据在该子帧发送 数据信号的至少一个第三 UE的时间调整量以及第二 UE的时间调整量来确定该 子帧的第一时间调整量, 使得第一时间调整量不小于其中的最大值, 从而在第二 UE与其他 UE在相同子帧发送数据信号的情况下, 能够降低甚至避免时间调整 量相对较大的 UE发送的数据信号对第二 UE发送的数据信号的接收所造成的干 扰问题, 提高第二 UE发送的数据信号的传输效果以及第一 UE接收第二 UE发 送的数据信号的准确率。 与本发明传输数据信号的方法的实施例相对应, 本发明还提供了 UE的实施 例。 该 UE可以作为接收端也可以作为发送端。
参见图 5, 为本发明 UE的一个实施例框图: 该 UE500包括: 获取单元 510、 确定单元 520和接收单元 530; 其中,
获取单元 510, 用于获取第二 UE以及至少一个第三 UE发送的 SA信号; 所 述第二 UE是与所述第一 UE进行 D2D通信的 UE;
确定单元 520, 用于根据所述获取单元 510获取到的 SA信号包含的时间调 整量确定第一时间调整量, 所述第一时间调整量不小于所述第二 UE发送的 SA 信号包含的时间调整量;
接收单元 530, 用于根据所述确定单元 520确定的所述第一时间调整量以及 所述获取单元 510获取到的所述第二 UE发送的 SA信号包含的子帧信息接收所 述第二 UE发送的数据信号。
可选地, 所述确定单元 520具体可以用于: 根据获取到的 SA信号包含的时 间调整量中的最大值确定所述第一时间调整量, 所述第一时间调整量不小于所述 最大值。
可选地, 所述确定单元 520可以包括:
读取子单元, 用于从所述第二 UE发送的 SA信号中读取子帧信息, 所述子 帧信息指示所述第二 UE发送数据信号使用的 N个子帧, N为不小于 1的整数; 处理子单元, 用于根据所述第二 UE发送的 SA信号包含的时间调整量和至 少一个第一 SA信号包含的时间调整量中的最大值确定子帧 i的第一时间调整量, 所述第一时间调整量不小于所述最大值, 所述第一 SA信号是所述第三 UE发送 的 SA信号, 并且所述第一 SA信号包含的子帧信息指示的子帧包括子帧 i, i的 取值为从 1到 N的整数中的一个或多个。
本实施例中, 第一 UE获取 SA信号时, 不仅获取与之进行 D2D通信的第二 UE发送的 SA信号, 还获取至少一个第三 UE发送的 SA信号, 在第二 UE发送 的数据信号时, 不再仅根据第二 UE发送的 SA信号包含的时间调整量来接收, 而是根据获取到的所有 SA信号包含的时间调整量确定出第一时间调整量, 使得 第一时间调整量不小于第二 UE发送的 SA信号包含的时间调整量, 根据第一时 间调整量来接收第二 UE发送的数据信号,由于第一 UE对第二 UE发送的 SA信 号包含的时间调整量进行了延长, 从而如果存在其他 UE与第二 UE在相同子帧 发送数据信号的情况, 能够降低甚至避免时间调整量相对较大的 UE发送的数据 信号对第二 UE发送的数据信号的接收所造成的干扰问题, 提高第二 UE发送的 数据信号的传输效果以及第一 UE接收第二 UE发送的数据信号的准确率。 参见图 6,为本发明实施例 UE结构示意图,该 UE可以作为接收端;该 UE600 包括: 处理器 610、 存储器 620、 收发器 630和总线 640;
处理器 610、 存储器 620、 收发器 630通过总线 640相互连接; 总线 640可 以是 ISA总线、 PCI总线或 EISA总线等。 所述总线可以分为地址总线、 数据总 线、 控制总线等。 为便于表示, 图 6中仅用一条粗线表示, 但并不表示仅有一根 总线或一种类型的总线。
存储器 620, 用于存放程序。 具体地, 程序可以包括程序代码, 所述程序代 码包括计算机操作指令。 存储器 620可能包含高速 RAM存储器, 也可能还包括 非易失性存储器 (non- volatile memory) , 例如至少一个磁盘存储器。
收发器 630用于连接其他设备, 并与其他设备进行通信。 收发器 630用于: 获取第二 UE以及至少一个第三 UE发送的 SA信号;所述第二 UE是与所述第一 UE进行 D2D通信的 UE; 根据处理器 610确定的所述第一时间调整量以及所述 第二 UE发送的 SA信号包含的子帧信息接收所述第二 UE发送的数据信号。
所述处理器 610执行所述程序代码, 用于根据收发器 630获取到的 SA信号 包含的时间调整量确定第一时间调整量, 所述第一时间调整量不小于所述第二 UE发送的 SA信号包含的时间调整量。
可选地, 所述处理器 610具体可以用于: 根据收发器 630获取到的 SA信号 中的时间调整量中的最大值确定所述第一时间调整量, 所述第一时间调整量不小 于所述最大值。
可选地, 所述处理器 620具体可以用于: 从所述第二 UE发送的 SA信号中 读取子帧信息, 所述子帧信息指示所述第二 UE发送数据信号使用的 N个子帧, N为不小于 1 的整数; 根据所述第二 UE发送的 SA信号包含的时间调整量和至 少一个第一 SA信号包含的时间调整量中的最大值确定子帧 i的第一时间调整量, 所述第一时间调整量不小于所述最大值, 所述第一 SA信号是所述第三 UE发送 的 SA信号, 并且所述第一 SA信号包含的子帧信息指示的子帧包括子帧 i, i的 取值为从 1到 N的整数中的一个或多个。
本实施例中, 第一 UE获取 SA信号时, 不仅获取与之进行 D2D通信的第二 UE发送的 SA信号, 还获取至少一个第三 UE发送的 SA信号, 在第二 UE发送 的数据信号时, 不再仅根据第二 UE发送的 SA信号包含的时间调整量来接收, 而是根据获取到的所有 SA信号包含的时间调整量确定出第一时间调整量, 使得 第一时间调整量不小于第二 UE发送的 SA信号包含的时间调整量, 根据第一时 间调整量来接收第二 UE发送的数据信号,由于第一 UE对第二 UE发送的 SA信 号包含的时间调整量进行了延长, 从而如果存在其他 UE与第二 UE在相同子帧 发送数据信号的情况, 能够降低甚至避免时间调整量相对较大的 UE发送的数据 信号对第二 UE发送的数据信号的接收所造成的干扰问题, 提高第二 UE发送的 数据信号的传输效果以及第一 UE接收第二 UE发送的数据信号的准确率。 本领域的技术人员可以清楚地了解到本发明实施例中的技术可借助软件加 必需的通用硬件平台的方式来实现。 基于这样的理解, 本发明实施例中的技术方 案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来, 该 计算机软件产品可以存储在存储介质中, 如 ROM/RAM、 磁碟、 光盘等, 包括若 干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等) 执行本发明各个实施例或者实施例的某些部分所述的方法。
本说明书中的各个实施例均采用递进的方式描述, 各个实施例之间相同相似 的部分互相参见即可, 每个实施例重点说明的都是与其他实施例的不同之处。 尤 其, 对于系统实施例而言, 由于其基本相似于方法实施例, 所以描述的比较简单, 相关之处参见方法实施例的部分说明即可。
以上所述的本发明实施方式, 并不构成对本发明保护范围的限定。 任何在本 发明的精神和原则之中所作的修改、 等同替换和改进等, 均应包含在本发明的保 护范围之中。

Claims

权 利 要 求
1、 一种传输数据信号的方法, 其特征在于, 包括:
第一用户设备获取第二用户设备以及至少一个第三用户设备发送的调度分 配信号; 所述第二用户设备是与所述第一用户设备进行设备到设备通信的用户 设备;
所述第一用户设备根据获取到的调度分配信号包含的时间调整量确定第一 时间调整量, 所述第一时间调整量不小于所述第二用户设备发送的调度分配 信号包含的时间调整量;
所述第一用户设备根据所述第一时间调整量以及所述第二用户设备发送 的调度分配信号包含的子帧信息接收所述第二用户设备发送的数据信号。
2、 根据权利要求 1所述的方法, 其特征在于, 所述第一用户设备根据获取 到的调度分配信号包含的时间调整量确定第一时间调整量, 包括:
所述第一用户设备根据获取到的调度分配信号包含的时间调整量中的最大 值确定所述第一时间调整量, 所述第一时间调整量不小于所述最大值。
3、 根据权利要求 1所述的方法, 其特征在于, 所述第一用户设备根据获取 到的调度分配信号包含的时间调整量确定第一时间调整量, 包括:
所述第一用户设备从所述第二用户设备发送的调度分配信号中读取子帧信 息, 所述子帧信息指示所述第二用户设备发送数据信号使用的 N个子帧, N为 不小于 1的整数;
所述第一用户设备根据所述第二用户设备发送的调度分配信号包含的时 间调整量和至少一个第一调度分配信号包含的时间调整量中的最大值确定子帧 i 的所述第一时间调整量, 所述第一时间调整量不小于所述最大值, 所述第一调度 分配信号是所述第三用户设备发送的调度分配信号,并且所述第一调度分配信号 包含的子帧信息指示的子帧包括子帧 i, i的取值为从 1到 N的整数中的一个或 多个。
4、 一种用户设备, 其特征在于, 包括:
获取单元,用于获取第二用户设备以及至少一个第三用户设备发送的调度分 配信号; 所述第二用户设备是与所述第一用户设备进行设备到设备通信的用户 设备; 确定单元,用于根据所述获取单元获取到的调度分配信号包含的时间调整量 确定第一时间调整量,所述第一时间调整量不小于所述第二用户设备发送的调 度分配信号包含的时间调整量;
接收单元, 用于根据所述确定单元确定的所述第一时间调整量以及所述 获取单元获取到的所述第二用户设备发送的调度分配信号包含的子帧信息接 收所述第二用户设备发送的数据信号。
5、 根据权利要求 4所述的用户设备, 其特征在于, 所述确定单元具体用于: 根据获取到的调度分配信号包含的时间调整量中的最大值确定所述第一时 间调整量, 所述第一时间调整量不小于所述最大值。
6、 根据权利要求 4所述的用户设备, 其特征在于, 所述确定单元包括: 读取子单元, 用于从所述第二用户设备发送的调度分配信号中读取子帧信 息, 所述子帧信息指示所述第二用户设备发送数据信号使用的 N个子帧, N为 不小于 1的整数;
处理子单元, 用于根据所述第二用户设备发送的调度分配信号包含的时间 调整量和至少一个第一调度分配信号包含的时间调整量中的最大值确定子帧 i的 所述第一时间调整量, 所述第一时间调整量不小于所述最大值, 所述第一调度分 配信号是所述第三用户设备发送的调度分配信号,并且所述第一调度分配信号包 含的子帧信息指示的子帧包括子帧 i, i的取值为从 1到 N的整数中的一个或多 个。
7、 一种用户设备, 其特征在于, 包括:
收发器, 用于获取第二用户设备以及至少一个第三用户设备发送的调度分 配信号; 所述第二用户设备是与所述第一用户设备进行设备到设备通信的用户 设备;
处理器, 用于根据所述收发器获取到的调度分配信号包含的时间调整量确 定第一时间调整量, 所述第一时间调整量不小于所述第二用户设备发送的调 度分配信号包含的时间调整量;
所述收发器, 还用于根据所述处理器确定的所述第一时间调整量以及所 述第二用户设备发送的调度分配信号包含的子帧信息接收所述第二用户设备 发送的数据信号。
8、 根据权利要求 7所述的用户设备, 其特征在于, 所述处理器具体用于: 根据所述收发器获取到的调度分配信号包含的时间调整量中的最大值确定所述 第一时间调整量, 所述第一时间调整量不小于所述最大值。
9、 根据权利要求 7所述的用户设备, 其特征在于, 所述处理器具体用于: 从所述第二用户设备发送的调度分配信号中读取子帧信息,所述子帧信息指 示所述第二用户设备发送数据信号使用的 N个子帧, N为不小于 1 的整数; 根 据所述第二用户设备发送的调度分配信号包含的时间调整量和至少一个第一 调度分配信号包含的时间调整量中的最大值确定子帧 i的所述第一时间调整量, 所述第一时间调整量不小于所述最大值,所述第一调度分配信号是所述第三用户 设备发送的调度分配信号,并且所述第一调度分配信号包含的子帧信息指示的子 帧包括子帧 i, i的取值为从 1到 N的整数中的一个或多个。
PCT/CN2014/081024 2014-06-27 2014-06-27 传输数据信号的方法及用户设备 WO2015196478A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201480001904.4A CN104620658B (zh) 2014-06-27 2014-06-27 传输数据信号的方法及用户设备
EP14870644.3A EP2988558B1 (en) 2014-06-27 2014-06-27 Data signal transmission method and user device
KR1020157018665A KR101673963B1 (ko) 2014-06-27 2014-06-27 데이터 신호를 송신하는 방법 및 사용자 장비
PCT/CN2014/081024 WO2015196478A1 (zh) 2014-06-27 2014-06-27 传输数据信号的方法及用户设备
JP2016528321A JP6484238B2 (ja) 2014-06-27 2014-06-27 データ信号およびユーザ装置を送信するための方法
US14/792,362 US9603154B2 (en) 2014-06-27 2015-07-06 Method for transmitting data signal and user equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/081024 WO2015196478A1 (zh) 2014-06-27 2014-06-27 传输数据信号的方法及用户设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/792,362 Continuation US9603154B2 (en) 2014-06-27 2015-07-06 Method for transmitting data signal and user equipment

Publications (1)

Publication Number Publication Date
WO2015196478A1 true WO2015196478A1 (zh) 2015-12-30

Family

ID=53153369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/081024 WO2015196478A1 (zh) 2014-06-27 2014-06-27 传输数据信号的方法及用户设备

Country Status (6)

Country Link
US (1) US9603154B2 (zh)
EP (1) EP2988558B1 (zh)
JP (1) JP6484238B2 (zh)
KR (1) KR101673963B1 (zh)
CN (1) CN104620658B (zh)
WO (1) WO2015196478A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210337518A1 (en) * 2019-05-23 2021-10-28 Shanghai Langbo Communication Technology Company Limited Method and device for use in communication node for wireless communication

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105682230B (zh) * 2014-12-04 2019-08-23 财团法人工业技术研究院 资源选择方法及无线装置
WO2017160111A1 (ko) * 2016-03-17 2017-09-21 엘지전자 주식회사 무선 통신 시스템에서 sa 및 데이터 송수신 방법 및 장치
CN111741533B (zh) * 2016-04-01 2022-04-01 大唐移动通信设备有限公司 资源调度的指示消息的处理方法及装置
EP3445109B1 (en) 2016-05-10 2020-02-05 Huawei Technologies Co., Ltd. V2v communication method, device and terminal
CN108631912B (zh) * 2017-03-23 2021-09-28 大唐移动通信设备有限公司 一种传输方法和装置
CN108632780B (zh) * 2017-03-23 2019-09-17 电信科学技术研究院 一种数据传输方法及终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101547033A (zh) * 2008-03-25 2009-09-30 中兴通讯股份有限公司 一种用于干扰抵消合并的主分集联合同步方法及装置
WO2010148532A1 (zh) * 2009-06-22 2010-12-29 上海贝尔股份有限公司 实现上行链路同步的方法及其设备
CN103108389A (zh) * 2011-11-15 2013-05-15 中兴通讯股份有限公司 设备到设备的通信方法和系统、用户设备
CN103874187A (zh) * 2012-12-11 2014-06-18 普天信息技术研究院有限公司 一种设备对设备传输中的上下行定时确定方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101233711B (zh) * 2005-10-24 2012-11-21 松下电器产业株式会社 干扰信号特征量存储方法和装置、干扰信号特征量获取方法和装置、干扰信号抑制方法和装置
JP5454123B2 (ja) * 2009-12-16 2014-03-26 ソニー株式会社 ハンドオーバのための方法、端末装置及び無線通信システム
CN102647783B (zh) * 2012-04-19 2015-02-18 北京创毅讯联科技股份有限公司 一种上行时间提前量的控制方法及基站、终端
TWI620459B (zh) * 2012-05-31 2018-04-01 內數位專利控股公司 在蜂巢式通訊系統中賦能直鏈通訊排程及控制方法
KR101975483B1 (ko) * 2012-06-20 2019-05-07 삼성전자주식회사 디바이스 간 직접 통신을 수행하는 시스템에서 패킷 전송 방법 및 장치
US9001760B2 (en) * 2012-09-27 2015-04-07 Qualcomm Incorporated Scheduling assignment and ACK/NACK reporting to facilitate centralized D2D scheduling
CN104380644B (zh) * 2014-05-23 2018-03-09 华为技术有限公司 一种传输信息的方法,基站和用户设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101547033A (zh) * 2008-03-25 2009-09-30 中兴通讯股份有限公司 一种用于干扰抵消合并的主分集联合同步方法及装置
WO2010148532A1 (zh) * 2009-06-22 2010-12-29 上海贝尔股份有限公司 实现上行链路同步的方法及其设备
CN103108389A (zh) * 2011-11-15 2013-05-15 中兴通讯股份有限公司 设备到设备的通信方法和系统、用户设备
CN103874187A (zh) * 2012-12-11 2014-06-18 普天信息技术研究院有限公司 一种设备对设备传输中的上下行定时确定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2988558A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210337518A1 (en) * 2019-05-23 2021-10-28 Shanghai Langbo Communication Technology Company Limited Method and device for use in communication node for wireless communication

Also Published As

Publication number Publication date
KR101673963B1 (ko) 2016-11-08
US20150382366A1 (en) 2015-12-31
KR20160015191A (ko) 2016-02-12
US9603154B2 (en) 2017-03-21
EP2988558B1 (en) 2019-08-14
EP2988558A1 (en) 2016-02-24
CN104620658B (zh) 2018-09-28
JP6484238B2 (ja) 2019-03-13
CN104620658A (zh) 2015-05-13
JP2016529798A (ja) 2016-09-23
EP2988558A4 (en) 2016-02-24

Similar Documents

Publication Publication Date Title
WO2015196478A1 (zh) 传输数据信号的方法及用户设备
WO2016177162A1 (zh) 一种资源分配方法和装置
JP6219960B2 (ja) リソース再構成方法、基地局、およびユーザー装置
WO2017070842A1 (zh) 一种设备到设备d2d通信方法、装置及系统
WO2016049890A1 (zh) 数据传输方法和设备
WO2012163192A1 (zh) 一种数据传输方法和装置
WO2016155113A1 (zh) 一种群组通信的方法、用户设备、基站设备及系统
CN106664714B (zh) 蜂窝网络中周期性上行链路许可对准
TWI556678B (zh) D2d發現信號的發送方法和發送裝置
WO2017197949A1 (zh) 一种数据传输的控制方法及相关设备
US20210360651A1 (en) Uplink data transmission method and apparatus, device, and system
WO2013166670A1 (zh) 上行信道资源配置方法和设备
JP2020506590A (ja) データパケット伝送方法および端末
TW201728211A (zh) 一種資源調度和碰撞指示的方法及設備
JP6130970B2 (ja) 情報送信方法及び装置
WO2019062151A1 (zh) 一种资源指示方法、通信装置及网络设备
WO2015066915A1 (zh) 非授权频谱的使用方法和设备
JP2017529794A (ja) 装置間(d2d)通信のための協調分散スケジューリング
WO2018090317A1 (zh) 一种资源调度方法及相关设备、系统
JP7027327B2 (ja) 装置間(d2d)通信方法及びd2d装置
KR20230154980A (ko) 충돌을 처리하기 위한 방법 및 장치
JP6526764B2 (ja) リソース再構成方法、基地局、およびユーザー装置
WO2015139254A1 (zh) 一种数据传输方法及站点
CN111447026A (zh) 处理数据的方法和处理数据的装置
WO2018086232A1 (zh) 一种子帧调度方法及基站

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2014870644

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157018665

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016528321

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14870644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE