WO2012163192A1 - 一种数据传输方法和装置 - Google Patents

一种数据传输方法和装置 Download PDF

Info

Publication number
WO2012163192A1
WO2012163192A1 PCT/CN2012/074373 CN2012074373W WO2012163192A1 WO 2012163192 A1 WO2012163192 A1 WO 2012163192A1 CN 2012074373 W CN2012074373 W CN 2012074373W WO 2012163192 A1 WO2012163192 A1 WO 2012163192A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
protection time
time level
base station
resource
Prior art date
Application number
PCT/CN2012/074373
Other languages
English (en)
French (fr)
Inventor
王力
甄斌
赵盟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12793599.7A priority Critical patent/EP2717641B1/en
Publication of WO2012163192A1 publication Critical patent/WO2012163192A1/zh
Priority to US14/080,207 priority patent/US9155084B2/en
Priority to US14/838,038 priority patent/US9549397B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • H04L43/0864Round trip delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0069Allocation based on distance or geographical location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0085Timing of allocation when channel conditions change

Definitions

  • each radio frame includes 10 subframes, according to a sub-frame.
  • the subframe may be a downlink subframe, an uplink subframe, or a special subframe.
  • the special subframe is composed of three special time slots, namely, a downlink pilot time slot DwPTS (Downlink Pilot Time Slot), a guard time GP (Guard period), and an uplink pilot time slot UpPTS (Uplink Pilot Time Slot).
  • the length of the DwPTS can be configured as 3 to 12 Orthogonal Frequency Division Multiplexing (OFDM) symbols for downlink transmission.
  • the length of UpPTS can be configured as 1 ⁇ 2 OFDM symbols for uplink transmission.
  • GP is the guard interval between downlink transmission and uplink transmission, mainly by "round-trip time RTT (Round-trip Time)" and “device transceiving conversion”. Delay" constitutes.
  • the “device transmission and reception conversion delay” generally does not exceed the length of one OFDM symbol, and the main influence on the GP length is the RTT corresponding to the cell coverage radius.
  • the GP length should satisfy the sum of the maximum RTT of the cell and the conversion delay of the device.
  • the GP resource occupies more system resources.
  • a larger GP needs to be configured, and for a user equipment (UE, User Equipment) that is close to the base station, because the RTT is small, the base station is received. After the downlink data, it needs to wait for a while to send the uplink data, so the system resources cannot be effectively utilized.
  • An aspect of the present invention provides a data transmission method, including: receiving, by a UE, downlink data that is sent by a base station through a downlink resource of a special subframe; the UE determining a corresponding protection time level, the protection time level, and the The round-trip delay of the UE corresponds to the OFDM symbol length of the protection time corresponding to the UE in the special subframe; the UE determines the special subframe according to its corresponding protection time level.
  • the uplink resource corresponding to the UE sends uplink data to the base station.
  • a data transmission method including: transmitting, by a base station, downlink data to a UE by using a downlink resource of a special subframe; and determining, by the base station, a protection time level corresponding to the UE, the protection time level Corresponding to the round-trip delay of the UE, the guard time level indicates an OFDM symbol length of a guard time corresponding to the UE in the special subframe; and the base station determines according to a guard time level corresponding to the UE.
  • a UE is further provided, including: a receiving unit, configured to receive a base a downlink data sent by the downlink resource of the special subframe; a determining unit, configured to determine a protection time level corresponding to the UE, and determining, according to the protection time level corresponding to the UE, the special inter-level and the UE Corresponding to the round-trip delay, the guard time level indicating the OFDM symbol length of the guard time corresponding to the UE in the special subframe, and the sending unit, configured to pass the UE in the guard time resource of the special subframe
  • the corresponding uplink resource sends uplink data to the base station.
  • a base station including: a sending unit, configured to send downlink data to a UE by using a downlink resource of a special subframe; and a determining unit, configured to determine a protection time level corresponding to the UE, and Determining, according to the protection time level corresponding to the UE, that the special sub-level corresponds to a round-trip delay of the UE, where the protection time level indicates an OFDM symbol of a protection time corresponding to the UE in the special subframe. Length; a receiving unit, configured to pass the line data.
  • Another aspect of the present invention provides a data transmission method, including: determining, by a base station, a protection time level corresponding to a UE, where the protection time level corresponds to a round-trip delay of the UE, where the protection time level indicates The OFDM symbol length of the protection time corresponding to the UE in the special subframe; the base station determining, according to the protection time level corresponding to the UE, the location of the downlink resource corresponding to the UE in the protection time resource of the special subframe; The base station passes the special subframe
  • Another aspect of the present invention provides a data transmission method, including: determining, by a UE, a corresponding protection time level, where the protection time level corresponds to a round-trip delay of the UE, where the protection time level indicates The OFDM symbol length of the protection time corresponding to the UE in the special subframe; the UE determines the location of the downlink resource corresponding to the UE in the protection time resource of the special subframe according to the corresponding protection time level; The UE
  • a protection time level Determining, by the UE, a protection time level, determining a location of the downlink resource corresponding to the UE in the protection time resource of the special subframe, where the protection time level corresponds to a round-trip delay of the UE, where the protection time is The level indicates the OFDM symbol length of the protection time corresponding to the UE in the special subframe, and the sending unit is configured to send downlink data to the UE by using the downlink resource corresponding to the UE in the protection time resource of the special subframe.
  • a determining unit configured to determine a corresponding protection time level, where the protection time level corresponds to a round-trip delay of the UE, and the indication
  • the guard time level corresponds to a round-trip delay of the UE, where the guard time level indicates an OFDM symbol length of a guard time corresponding to the UE in the special subframe;
  • the downlink data sent by the base station is received by the downlink resource corresponding to the UE in the protection time resource of the special subframe.
  • FIG. 1 is a flowchart of a data transmission method according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 5 is a structural block diagram of a UE according to an embodiment of the present disclosure.
  • FIG. 6 is a structural block diagram of a base station according to an embodiment of the present invention.
  • FIG. 7 is a structural block diagram of a base station according to an embodiment of the present invention.
  • FIG. 8 is a structural block diagram of a UE according to an embodiment of the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The technical solutions in the embodiments of the present invention will be clearly and completely described in the following with reference to the accompanying drawings.
  • GSM Global System for Mobile Communications
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDM Frequency Division Multiple Addressing
  • OFDMA Orthogonal Frequency OFDMA (Orthogonal Frequency-Division Multiple Access) system
  • SC-FDMA single carrier FDMA
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • the terminal which may be a wireless terminal or a wired terminal, may be a device that provides voice and/or data connectivity to the user, a handheld device with wireless connectivity, or other processing device connected to the wireless modem.
  • the wireless terminal can communicate with one or more core networks via a radio access network (eg, RAN, Radio Access Network), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and with a mobile terminal
  • a radio access network eg, RAN, Radio Access Network
  • the computers for example, can be portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile devices that exchange language and/or data with the wireless access network.
  • a wireless terminal may also be called a system, a Subscriber Unit, a Subscriber Station, a Mobile Station, a Mobile, a Remote Station, an Access Point, Remote Terminal, Access Terminal, User Terminal, User Agent, User Device, or User Equipment.
  • a base station can refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface.
  • the base station can be used to convert the received air frame and the IP packet into a router between the wireless terminal and the rest of the access network, where the access network
  • the rest of the network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station in LTE (NodeB or eNB or e-NodeB, evolutional Node B), the invention is not limited.
  • the base station controller may be a base station controller (BSC) in GSM or CDMA, or a radio network controller (RNC) in WCDMA, which is not limited in the present invention.
  • BSC base station controller
  • RNC radio network controller
  • the special subframe is composed of three special time slots, DwPTS, GP, and UpPTS.
  • DwPTS is used to transmit downlink data
  • UpPTS Used to transmit downlink data
  • GP is the time interval between downlink data transmission and uplink data transmission.
  • the length of the GP resource of the special subframe should meet the maximum RTT of the cell and the transceiving of the device. The sum of delays.
  • the embodiment of the present invention provides a data transmission method, based on the UE, including:
  • the UE receives downlink data that is sent by the base station by using a downlink resource of the special subframe.
  • the UE is located in a cell served by the base station.
  • the UE determines a corresponding protection time level, where the protection time level corresponds to a round-trip delay of the user equipment, where the protection time level indicates a protection time corresponding to the UE in the special subframe.
  • OFDM symbol length Since the cell served by the base station has multiple UEs, and each UE has a different distance from the base station in the physical location, that is, the RTT is different, therefore, the uplink transmission required when each UE and the base station perform data transmission through the special subframe The time interval between the transmission and the downlink transmission, that is, the protection time can be different.
  • the fixed GP resource is set, that is, the time length of the GP resource is fixed. Therefore, in the embodiment of the present invention, the uplink data may be sent by using the GP resource of the special subframe, that is, the equivalent. The time interval between the uplink transmission and the downlink transmission of the UE is adjusted.
  • the protection time corresponding to the UE refers to a time interval between downlink transmission and uplink transmission of the UE
  • GP refers to a protection time set in a cell frame structure. The GP is greater than or equal to the protection time of the UE.
  • the protection time is allocated for the UE according to the round-trip delay of each UE in the cell, where the protection time level indicates the OFDM symbol length of the protection time corresponding to the UE in the special subframe.
  • the LTE TDD system is taken as an example. Assume that the maximum supported cell coverage radius is 107 km, and the GP resource length set in the cell frame structure is 10 OFDM symbols. The length of the two OMDM symbols is granularity, which is divided into 1st. Level 5 to 5 protection time levels, the protection time length corresponding to the 1st level is 2 OFDM symbols, the protection time length corresponding to the 2nd level is 4 OFDM symbols, and so on.
  • Each UE in the cell corresponds to the same or different protection time level according to its round-trip delay. For example, if the round-trip delay of UE1 is less than 2 OFDM symbols, the protection time level of UE1 is the first level, and the guard time length is 2 OFDM. The symbol, the round-trip delay of UE2 is 3 OFDM symbols, and the protection time level of UE2 is the second level, and the guard time length is 4 OFDM symbols.
  • the first two OFDM symbols of the GP resource will serve as the protection time of the downlink data transmission and the uplink data transmission of the UE1, and the remaining GP resources are used.
  • the first 4 OFDM symbols of the GP resource will serve as the protection time of the downlink data transmission and the uplink data transmission of the UE2, and the remaining GP resources are used.
  • Send upstream data for the same reason, for UE2,
  • the first 4 OFDM symbols of the GP resource will serve as the protection time of the downlink data transmission and the uplink data transmission of the UE2, and the remaining GP resources are used.
  • the base station may obtain a round-trip delay of the UE, and determine a protection time level of the UE according to a round-trip delay of the UE, where the base station may separately use the UE according to the previous time.
  • the RTT of the data transmission obtains the RTT of the UE, and may also calculate the RTT of the UE according to the preamble sequence sent by the UE, and may also calculate the RTT of the UE according to the broadcast timing message, and may obtain other access points.
  • the method for describing the RTT of the UE is not limited in the present invention.
  • the base station Notifying, by the base station, the frequency location of the uplink resource corresponding to the UE in the GP resource of the special subframe to the UE in a broadcast or scheduling manner, so that the UE is in the GP resource of the special subframe
  • the frequency location of the uplink resource corresponding to the UE in the GP resource of the special subframe is determined.
  • the embodiment of the present invention provides a data transmission method, based on the base station, including:
  • the protection time of the UE is exemplified according to the round-trip delay of each UE in the cell, and the LTE TDD system is taken as an example, and the GP resource length set in the cell frame structure is assumed to be the maximum supported cell coverage radius of the system.
  • the length of the two OMDM symbols is granularity, and is divided into 5 protection time levels from the first level to the fifth level, and the protection time length corresponding to the first level is 2 OFDM symbols, and the second level corresponds to The guard time is 4 OFDM symbols, and so on.
  • Each UE in the cell corresponds to the same or different protection time level according to its round-trip delay.
  • the base station determines, according to a protection time level corresponding to the UE, a location of a downlink resource corresponding to the UE in a GP resource of the special subframe.
  • the UE determines the corresponding protection time level, that is, determines the length of the protection time, and determines the location of the downlink resource corresponding to the UE in the GP resource of the special subframe.
  • the protection time level of UE1 is the first level
  • the protection time length is 2 OFDM symbols.
  • the downlink resources corresponding to UE1 in the GP resources of the special subframe include all OFDMs before the last 2 OFDM symbols of the GP resource. symbol.
  • the location of the resource includes the time location and the frequency location of the resource.
  • the UE determines, according to the corresponding protection time level, the UE corresponding to the GP resource of the special subframe.
  • the time position of the uplink resource the UE determines the frequency location of the uplink resource corresponding to the UE in the GP resource of the special subframe by using the broadcast or scheduling of the base station, for example, the PDCCH message sent by the base station.
  • the UE may further determine, according to a preset, a frequency location of an uplink resource corresponding to the UE in the GP resource of the special subframe.
  • the downlink data sent by the base station may be a physical downlink shared channel PDSCH message, and may be other messages, which is not limited in the present invention.
  • the sending unit 12 is configured to send uplink data to the base station by using the uplink resource corresponding to the UE in the GP resource of the special subframe.
  • the UE provided by the embodiment of the present invention effectively improves the transmission performance of the system by dividing the protection time level so that different UEs are separated from the uplink and downlink transmissions of the UE close to the base station.
  • the UE can utilize the GP.
  • the resource sends uplink data, thus increasing the resources available to the system and effectively improving the resource utilization of the system.
  • the determining unit 11 may be configured to receive a notification of the protection time level corresponding to the UE sent by the base station, determine a protection time level corresponding to the UE according to the notification, or receive, by the base station, And determining, according to the division manner of the protection time level and the round-trip delay of the UE, a protection time level corresponding to the UE; or determining, according to a preset, the UE Corresponding protection time level.
  • the base station provided by the embodiment of the present invention can effectively improve the transmission performance of the system by dividing the protection time level for the UE, so that the uplink and downlink transmission waiting times of the UEs that are close to the base station are different, and the UE can utilize the UE.
  • the GP resource sends uplink data, thus increasing the resources available to the system and effectively improving the resource utilization of the system.
  • the sending unit 20 is further configured to send, to the UE, a notification of a protection time level of the UE.
  • the sending unit 20 is further configured to send, to the UE, a notification of a division manner of the protection time level.
  • the uplink data sent by the receiving unit and received by the UE includes at least one of the following messages:
  • the base station provided by the embodiment of the present invention effectively improves the transmission performance of the system by dividing the protection time level for the UE, so that the uplink and downlink transmission times of the UEs that are close to the base station are different, and the base station can utilize the GP resources.
  • the downlink data is sent, thus increasing the resources available to the system and effectively improving the resource utilization of the system.
  • the determining unit 30 is specifically configured to:
  • the sending unit 31 is further configured to: send a notification of the protection time level of the UE to the UE.
  • the sending unit 31 is further configured to: send, to the UE, a notification of a division manner of the protection time level.
  • the determining unit 40 is configured to determine a corresponding protection time level, and determine, according to the corresponding protection time level, a location of the downlink resource corresponding to the UE in the GP resource of the special subframe, where the protection time level Corresponding to the round-trip delay of the UE, indicating an orthogonal frequency division multiplexing OFDM symbol length of a guard time corresponding to the UE in the special subframe.
  • the receiving unit 41 is configured to receive downlink data sent by the base station by using the downlink resource corresponding to the UE in the GP resource of the special subframe.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. You can choose which one according to your actual needs. Some or all of the units implement the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Abstract

一种数据传输方法和装置,涉及通信技术领域,能够有效提高系统的资源利用率。所述数据传输方法包括:用户设备接收基站通过特殊子帧的下行资源发送的下行数据(101);所述用户设备确定其对应的保护时间等级,所述保护时间等级与所述用户设备的往返时延相对应,所述保护时间等级指示了所述特殊子帧中所述用户设备对应的保护时间的正交频分复用(OFDM)符号长度(102);所述用户设备根据其对应的保护时间等级,确定所述特殊子帧的保护时间资源中所述用户设备对应的上行资源的位置(103);所述用户设备通过所述特殊子帧的保护时间资源中所述用户设备对应的上行资源向基站发送上行数据(104)。本发明实施例可用于无线通信系统中。

Description

一种数据传输方法和装置
本申请要求于 2011 年 05 月 31 日提交中国专利局、 申请号为 201110144690.4、发明名称为"一种数据传输方法和装置"的中国专利申请的 优先权, 其全部内容通过引用结合在本申请中。
技术领域 本发明涉及通信技术领域, 尤其涉及一种数据传输方法和装置。 背景技术 在长期演进 LTE ( Long Term Evolution ) /增强的长期演进 LTE-A ( LTE Advanced )的时分双工 TDD ( Time Division Duplexing )无线通信系统中, 每个无线帧包含了 10个子帧,根据子帧的业务使用,子帧可以为下行子帧、 上行子帧、 特殊子帧。 其中, 特殊子帧由三个特殊时隙组成, 分别为下行 导频时隙 DwPTS ( Downlink Pilot Time Slot ) ,保护时间 GP ( Guard period ) 和上行导频时隙 UpPTS(Uplink Pilot Time Slot )。
在 LTE TDD系统的帧结构中, DwPTS的长度可配置为 3 ~ 12个正交 频分复用 OFDM (Orthogonal Frequency Division Multiplexing)符号 , 用于下 行传输。 UpPTS 的长度可配置为 1 ~ 2个 OFDM符号, 用于上行传输, GP 是下行传输和上行传输之间的保护间隔,主要由 "往返时延 RTT( Round-trip Time )" 和 "设备收发转换时延" 构成。 其中 "设备收发转换时延" 一般不 会超过 1个 OFDM符号的长度, 主要影响 GP长度的是小区覆盖半径对应 的 RTT。
现有技术中, 通常为了保证在小区边缘的用户能够正常切换下行和上 行信号, GP长度应满足大于等于小区最大 RTT和设备收发转换时延之和。 GP资源占用了较多的系统资源, 而且, 对于较大半径的小区, 需要配置较 大的 GP, 而对于距离基站近的用户设备(UE, User Equipment ), 由于其 RTT较小, 在接收基站的下行数据后, 需要白白等待一段时间才能发送上 行数据, 因此无法有效利用系统资源。 发明内容
本发明的各个方面, 提供一种数据传输方法和装置, 能够有效提高系 统的资源利用率。 本发明的一方面, 提供了一种数据传输方法, 包括: UE接收基站通过 特殊子帧的下行资源发送的下行数据; 所述 UE确定其对应的保护时间等 级,所述保护时间等级与所述 UE的往返时延相对应, 所述保护时间等级指 示了所述特殊子帧中所述 UE对应的保护时间的 OFDM符号长度;所述 UE 根据其对应的保护时间等级, 确定所述特殊子帧的保护时间资源中所述 UE
UE对应的上行资源向基站发送上行数据。 本发明的另一方面, 还提供了一种数据传输方法, 包括: 基站通过特 殊子帧的下行资源向 UE发送下行数据;所述基站确定所述 UE对应的保护 时间等级,所述保护时间等级与所述 UE的往返时延相对应, 所述保护时间 等级指示了所述特殊子帧中所述 UE对应的保护时间的 OFDM符号长度; 所述基站根据所述 UE对应的保护时间等级,确定所述特殊子帧的保护时间 资源中所述 UE对应的上行资源的位置;所述基站通过所述特殊子帧的保护 时间资源中所述 UE对应的上行资源接收所述 UE发送的上行数据。 本发明的另一方面, 还提供了一种 UE, 包括: 接收单元, 用于接收基 站通过特殊子帧的下行资源发送的下行数据; 确定单元, 用于确定所述 UE 对应的保护时间等级, 并根据所述 UE对应的保护时间等级,确定所述特殊 间等级与所述 UE的往返时延相对应,所述保护时间等级指示了所述特殊子 帧中所述 UE对应的保护时间的 OFDM符号长度; 发送单元, 用于通过所 述特殊子帧的保护时间资源中所述 UE对应的上行资源向基站发送上行数 据。 本发明的另一方面, 还提供了一种基站, 包括: 发送单元, 用于通过 特殊子帧的下行资源向 UE发送下行数据; 确定单元, 用于确定所述 UE对 应的保护时间等级, 并根据所述 UE对应的保护时间等级,确定所述特殊子 等级与所述 UE的往返时延相对应,所述保护时间等级指示了所述特殊子帧 中所述 UE对应的保护时间的 OFDM符号长度; 接收单元, 用于通过所述 行数据。 采用上述技术方案后, 能够有效提高系统的资源利用率。 本发明的另一方面, 又提供了一种数据传输方法, 包括: 基站确定 UE 对应的保护时间等级, 所述保护时间等级与所述 UE的往返时延相对应, 所 述保护时间等级指示了特殊子帧中所述 UE对应的保护时间的 OFDM符号 长度; 所述基站根据所述 UE对应的保护时间等级,确定所述特殊子帧的保 护时间资源中所述 UE对应的下行资源的位置;所述基站通过所述特殊子帧 本发明的另一方面, 又提供了一种数据传输方法, 包括: UE确定其对 应的保护时间等级, 所述保护时间等级与所述 UE的往返时延相对应,所述 保护时间等级指示了所述特殊子帧中所述 UE对应的保护时间的 OFDM符 号长度; 所述 UE根据其对应的保护时间等级,确定所述特殊子帧的保护时 间资源中所述 UE对应的下行资源的位置;所述 UE通过所述特殊子帧的保 护时间资源中所述 UE对应的下行资源接收基站发送的下行数据。 本发明的另一方面, 又提供一种基站, 包括: 确定单元, 用于确定 UE 对应的保护时间等级, 所述保护时间等级与所述 UE的往返时延相对应,指
UE对应的保护时间等级, 确定所述特殊子帧的保护时间资源中所述 UE对 应的下行资源的位置,其中, 所述保护时间等级与所述 UE的往返时延相对 应 ,所述保护时间等级指示了特殊子帧中所述 UE对应的保护时间的 OFDM 符号长度; 发送单元, 用于通过所述特殊子帧的保护时间资源中所述 UE 对应的下行资源向所述 UE发送下行数据。 本发明的另一方面, 又提供一种 UE, 包括: 确定单元, 用于确定其对 应的保护时间等级, 所述保护时间等级与所述 UE的往返时延相对应,指示
下行资源的位置, 其中, 所述保护时间等级与所述 UE的往返时延相对应, 所述保护时间等级指示了所述特殊子帧中所述 UE 对应的保护时间的 OFDM符号长度; 接收单元, 用于通过所述特殊子帧的保护时间资源中所 述 UE对应的下行资源接收基站发送的下行数据。 采用上述技术方案后, 能够有效提高系统的资源利用率。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的 附图。
图 1为本发明实施例提供的数据传输方法的一种流程图;
图 2为本发明实施例提供的数据传输方法的一种流程图;
图 3为本发明实施例提供的数据传输方法的一种流程图;
图 4为本发明实施例提供的数据传输方法的一种流程图;
图 5为本发明实施例提供的 UE的一种结构框图;
图 6为本发明实施例提供的基站的一种结构框图;
图 7为本发明实施例提供的基站的一种结构框图;
图 8为本发明实施例提供的 UE的一种结构框图。 具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进 行清楚、 完整地描述。
应当明确, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部 的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本文中描述的各种技术可用于各种无线通信系统, 例如当前 2G, 3G 通信系统和下一代通信系统,例如全球移动通信系统( GSM, Global System for Mobile communications ), 码分多址 ( CDMA, Code Division Multiple Access ) 系统, 时分多址(TDMA, Time Division Multiple Access ) 系统, 宽带码分多址 ( WCDMA , Wideband Code Division Multiple Access Wireless ), 频分多址 ( FDMA, Frequency Division Multiple Addressing ) 系 统,正交频分多址( OFDMA, Orthogonal Frequency-Division Multiple Access ) 系统,单载波 FDMA ( SC-FDMA )系统,通用分组无线业务( GPRS , General Packet Radio Service ) 系统, 长期演进(LTE, Long Term Evolution ) 系统, 以及其他此类通信系统, 尤其适用于上述系统下的 TDD系统。
本文中结合终端(即 UE )和 /或基站和 /或基站控制器来描述各种方面。 终端, 可以是无线终端也可以是有线终端, 无线终端可以是指向用户 提供语音和 /或数据连通性的设备, 具有无线连接功能的手持式设备、 或连 接到无线调制解调器的其他处理设备。 无线终端可以经无线接入网 (例如, RAN, Radio Access Network ) 与一个或多个核心网进行通信, 无线终端可 以是移动终端,如移动电话(或称为"蜂窝"电话)和具有移动终端的计算机, 例如, 可以是便携式、 袖珍式、 手持式、 计算机内置的或者车载的移动装 置, 它们与无线接入网交换语言和 /或数据。 例如, 个人通信业务(PCS , Personal Communication Service )电话、 无绳电话、 会话发起十办议 ( SIP )话 机、 无线本地环路(WLL, Wireless Local Loop )站、 个人数字助理(PDA, Personal Digital Assistant ) 等设备。 无线终端也可以称为系统、 订户单元 ( Subscriber Unit )、 订户站( Subscriber Station ), 移动站( Mobile Station )、 移动台 ( Mobile )、 远程站 ( Remote Station )、 接入点( Access Point )、 远程 终端 (Remote Terminal ), 接入终端 (Access Terminal ), 用户终端 (User Terminal ), 用户代理( User Agent )、 用户设备( User Device )、 或用户装备 ( User Equipment )。
基站 (例如, 接入点)可以是指接入网中在空中接口上通过一个或多 个扇区与无线终端通信的设备。 基站可用于将收到的空中帧与 IP分组进行 相互转换, 作为无线终端与接入网的其余部分之间的路由器, 其中接入网 的其余部分可包括网际协议(IP )网络。基站还可协调对空中接口的属性管 理。 例如, 基站可以是 GSM或 CDMA中的基站 (BTS, Base Transceiver Station ), 也可以是 WCDMA中的基站 ( NodeB ), 还可以是 LTE中的演进 型基站( NodeB或 eNB或 e-NodeB, evolutional Node B ),本发明并不限定。
基站控制器,可以是 GSM或 CDMA中的基站控制器( BSC, base station controller ),也可以是 WCDMA中的无线网络控制器( RNC, Radio Network Controller ) , 本发明并不限定。
另夕卜, 本文中术语"系统,,和"网络"在本文中常被可互换使用。本文中术 语"和 /或", 仅仅是一种描述关联对象的关联关系, 表示可以存在三种关系, 例如, Α和 /或 B, 可以表示: 单独存在 A, 同时存在 A和 B, 单独存在 B 这三种情况。 另外, 本文中字符 "/" , 一般表示前后关联对象是一种 "或" 的关系。
由前文背景技术所述, 在 LTE TDD系统的帧结构中, 特殊子帧依次由 DwPTS、 GP和 UpPTS三个特殊时隙组成, 通过特殊子帧进行数据传输时, DwPTS用于传输下行数据, UpPTS用于传输下行数据, GP是下行数据传 输和上行数据传输之间的时间间隔。
需要说明的是, 为了保证在小区边缘的用户能够正常切换下行和上行 信号, 本发明实施例中, 小区帧结构中, 特殊子帧的 GP资源的长度应满足 大于等于小区最大 RTT和设备收发转换时延之和。
在特殊子帧的 GP资源用于发送上行数据的场景下,如图 1所示, 本发 明的实施例提供了一种数据传输方法, 基于 UE, 包括:
101 , UE接收基站通过特殊子帧的下行资源发送的下行数据。
其中, 所述 UE位于基站服务的小区中。
102, 所述 UE确定其对应的保护时间等级, 所述保护时间等级与所述 用户设备的往返时延相对应, 所述保护时间等级指示了所述特殊子帧中所 述 UE对应的保护时间的 OFDM符号长度。 由于基站服务的小区中具有多个 UE, 且各 UE在物理位置上与基站之 间的距离不同, 即 RTT不同, 因此, 各个 UE与基站通过特殊子帧进行数 据传输时, 所需要的上行传输和下行传输之间的时间间隔, 即保护时间可 以不同。 而在小区帧结构中, 设置了固定的 GP资源, 即 GP资源的时间长 度是固定不变的, 由此, 本发明实施例中, 可使用特殊子帧的 GP资源发送 上行数据, 即相当于调整了所述 UE 的上行传输和下行传输之间的时间间 隔。
需要说明的是,本发明的全部实施例中, 所述 UE对应的保护时间是指 所述 UE的下行传输和上行传输之间的时间间隔, 而 GP是指小区帧结构中 所设置的保护时间, GP大于等于所述 UE对应的保护时间。
本发明实施例中, 根据小区内各 UE的往返时延, 为 UE划分保护时间 其中 ,所述保护时间等级指示了所述特殊子帧中所述 UE对应的保护时间的 OFDM符号长度。
举例说明, 以 LTE TDD系统为例, 假设系统最大支持小区覆盖半径为 107km, 小区帧结构中设置的 GP资源长度为 10个 OFDM符号, 按照两个 OMDM符号的长度为颗粒度, 划分为第 1等级至第 5等级 5个保护时间等 级, 第 1等级对应的保护时间长度为 2个 OFDM符号, 第 2等级对应的保 护时间长度为 4个 OFDM符号, 以此类推。 小区内各 UE根据其往返时延, 对应相同或不同的保护时间等级, 例如, UE1的往返时延小于 2个 OFDM 符号, 则 UE1的保护时间等级为第 1等级, 保护时间长度为 2个 OFDM符 号, UE2的往返时延为 3个 OFDM符号, 则 UE2的保护时间等级为第 2 等级, 保护时间长度为 4个 OFDM符号。
在 UE1与基站通过特殊子帧进行数据传输时,根据 UE1的保护时间等 级, GP资源的前 2个 OFDM符号将作为 UE1的下行数据传输和上行数据 传输的保护时间,而剩余的 GP资源则用于发送上行数据; 同理,对于 UE2, 在 UE2与基站通过特殊子帧进行数据传输时, 根据 UE2的保护时间等级, GP资源的前 4个 OFDM符号将作为 UE2的下行数据传输和上行数据传输 的保护时间, 而剩余的 GP资源则用于发送上行数据。
需要说明的是, UE对应的保护时间等级的划分方式不限, 例如, 按照 1个或几个 OMDM符号的长度为颗粒度, 划分保护时间等级。
当然, 可以理解的是, 在本发明的一个实施例中, UE对应的保护时间 等级即为 UE对应的保护时间的 OFDM符号长度, 所述 UE确定其对应的 保护时间等级, 即为确定其对应的保护时间的 OFDM符号长度。
可选的, UE对应的保护时间等级可以基站通知给所述 UE的, 也可以 是 UE自行通过计算等方式确定的。
例如, 基站可根据所述 UE对应的 RTT, 以及预先设定的或根据系统 时延要求等实际情况所确定的保护时间等级的划分方式, 确定出所述 UE 对应的保护时间等级, 然后,通过广播或者调度的方式向所述 UE发送所述 UE对应的保护时间等级的通知, 所述通知中携带有所述 UE对应的保护时 间等级指示, 所述 UE接收所述基站发送的、 所述 UE对应的保护时间等级 的通知, 根据所述通知确定所述 UE对应的保护时间等级。 例如, 基站可以 通过广播无线资源控制 RRC ( Radio Resource Control )消息对所述 UE进行 配置, 即将 UE 对应的保护时间等级通知给所述 UE; 基站还可以通过 PDCCH ( Physical Downlink Control Channel , 物理下行控制信道 )消息对所 述 UE进行调度,以将所述 UE对应的保护时间等级通知给所述 UE。
在本发明的另一实施例中, 基站可以直接将保护时间等级的划分方式 通知给所述 UE , 所述 UE接收所述基站发送的、 所述保护时间等级的划分 方式的通知, 然后, 自行根据所述保护时间等级的划分方式和自身的往返 时延, 确定所述 UE对应的保护等级;
其中,保护时间等级的划分方式可包括小区的 GP资源长度以及保护时 间等级的颗粒度等, 即相邻保护时间等级对应的 OFDM符号长度的差。 根 据保护时间等级的划分方式,所述 UE能够确定出所述 UE对应的保护时间 在本发明的另一实施例中, 所述 UE还可以根据预先设定, 确定所述 UE对应的 GP等级。 例如, 针对在一定时间内位置固定的非移动 UE, 如 智能抄表 Smart Meter, 馈线终端装置 FTU ( Feeder Terminal Unit )等, 其 到达基站的 RTT是变化范围极小, 可认为不变, 因此, 可以预先设定各 UE 对应的保护时间等级, 或者还可以预先保存各 UE的 RTT,使各 UE根据所 保存的 RTT确定各 UE所分别对应的保护时间等级。
需要说明的是, 所述 UE对应的保护时间等级可以直接指示出所述 UE 对应的保护时间的 OFDM符号长度, 也可以以第 1等级或第 2等级这种方 式指示, UE 可本地预先配置有与所述保护时间等级对应的保护时间的 OFDM符号长度, 还可通过接收基站关于保护时间等级的颗粒度的通知, 从而获得与所述保护时间等级对应的保护时间的 OFDM符号长度。
还需要说明的是, 本发明实施例中, 步骤 101和步骤 102的顺序不限, 步骤 102可在步骤 101之前或之后进行。
103 , 所述 UE根据其对应的保护时间等级, 确定所述特殊子帧的 GP 资源中所述 UE对应的上行资源的位置。
在所述 UE 确定出其对应的保护时间等级, 即确定出其保护时间的 OFSM符号长度,从而确定出所述特殊子帧的 GP资源中所述 UE对应的上 行资源的位置。 举例说明, UE1 的保护时间等级为第 1等级, 保护时间长 度为 2个 OFDM符号, 则所述特殊子帧的 GP资源中 UE1对应的上行资源 的位置由 GP资源的第 3个 OFDM符号开始。
当然, 众所周知的是, 资源的位置包括资源的时间位置和频率位置, 本步骤中, UE根据其对应的保护时间等级, 能够确定出所述特殊子帧的 GP资源中所述 UE对应的上行资源的时间位置, 至于所述特殊子帧的 GP 资源中所述 UE对应的上行资源的频率位置,所述 UE可以通过基站的广播 或调度而确定,例如,基站下发 PDCCH( Physical Downlink Control Channel , 物理下行控制信道)消息进行调度, 即, 本步骤中, 所述 UE具体可根据其 对应的保护时间等级以及基站下发的 PDCCH, 确定所述特殊子帧的 GP资 源中所述 UE对应的上行资源的时间和频率位置。 另外, 所述 UE还可以根 据预先设定而确定所述特殊子帧的 GP资源中所述 UE对应的上行资源的频 率位置。
以所述 UE发起随机接入的场景为例, 在 UE发起随机接入之前, 基站 以广播的方式将各保护时间等级对应的 PRACH 资源频率分配方式通知给 所述 UE, 其中, PRACH资源频率分配方式指示了所述特殊子帧的 GP资 源中 PRACH使用的频率位置, 所述 UE确定自己的保护时间等级后, 将根 据自己的保护时间等级和基站关于 PRACH资源频率分配方式的通知,确定 所述特殊子帧的 GP资源中所述 UE对应的 PRACH资源的时间位置和频率 位置, 进而使用该 PRACH资源发起随机接入。 需要说明的是, PRACH资 源的频率位置与所述 UE 的保护时间资源等级对应, 不同保护时间等级的 UE , PRACH资源的频率位置不同。 所述 UE对应的上行资源的频率位置。
104, 所述 UE通过所述特殊子帧的 GP资源中所述 UE对应的上行资 源向基站发送上行数据。
所述 UE确定出所述特殊子帧的 GP资源中所述 UE对应的上行资源的 位置后,通过所述特殊子帧的 GP资源中所述 UE对应的上行资源向基站发 送上行数据。
其中, 这部分上行资源可以配置为物理随机接入信道 PRACH(Physical Random Access Channel),物理上行共享信道 PUSCH( Physical Uplink Shared Channel ), 物理上行控制信道 PUCCH ( Physical Uplink Control Channel ) 和探测参考信号 SRS ( Sounding Reference Signal ) 消息之中的至少一种, 即所述 UE可通过所述特殊子帧的 GP资源中所述 UE对应的上行资源向基 站发送 PRACH、 PUSCH、 PUCCH、 SRS等消息, 当然还可以是其他消息, 本发明对此不做限定。 所述 UE通过所述特殊子帧的 GP资源中所述 UE对 应的上行资源发送何种上行数据可以是预先设定的, 也可以是基站为 UE 配置并通知给 UE的, 本发明对此不做限定。
本发明实施例提供的数据传输方法,通过为 UE划分保护时间等级,使 有效减小了距离基站近的 UE的上下行传输的等待时间,有效提高了系统的 传输性能; 另一方面, UE能够利用 GP资源发送上行数据, 因此, 增加了 系统可利用的资源, 有效提高了系统的资源利用率。 与图 1所示的方法相对应,在特殊子帧的 GP资源用于发送上行数据的 场景下, 如图 2所示, 本发明实施例还提供了一种数据传输方法, 基于基 站, 包括:
201 , 基站通过特殊子帧的下行资源向 UE发送下行数据。
202, 所述基站确定所述 UE对应的保护时间等级, 所述保护时间等级 与所述 UE的往返时延相对应,所述保护时间等级指示了所述特殊子帧中所 述 UE对应的保护时间的 OFDM符号长度。
本步骤中, 可选的, 所述基站可以获得所述 UE的往返时延, 根据所述 UE的往返时延, 确定所述 UE的保护时间等级; 其中, 基站可以分别根据 所述 UE前次数据传输时的 RTT获得所述 UE的 RTT,还可以根据所述 UE 发送的前导序列计算出所述 UE的 RTT, 还可以根据广播定时消息计算出 所述 UE的 RTT, 以及可以采用其他获得所述 UE的 RTT的方法, 本发明 对此不做限定。
所述基站还可以根据预先设定, 确定所述 UE的保护时间等级。 例如, 针对在一定时间内位置固定的非移动 UE,如智能抄表 Smart Meter,馈线终 端装置 FTU ( Feeder Terminal Unit )等, 其到达基站的 RTT是变化范围极 小, 可认为不变, 因此, 基站中可以预先设定各 UE对应的保护时间等级, 或者还可以预先保存各 UE的 RTT,使基站根据所保存的 RTT确定所述 UE 所对应的保护时间等级。
需要说明的是, 本发明实施例中, 步骤 201和步骤 202的顺序不限, 步骤 202可在步骤 101之前或之后进行。
203 , 所述基站根据所述 UE对应的保护时间等级, 确定所述特殊子帧 的 GP资源中所述 UE对应的上行资源的位置;
基站确定出所述 UE对应的保护时间等级后,即确定出所述 UE对应的 保护时间的长度,从而确定出所述特殊子帧的 GP资源中所述 UE对应的上 行资源的位置。 举例说明, UE1 的保护时间等级为第 1等级, 保护时间长 度为 2个 OFDM符号, 则所述特殊子帧的 GP资源中 UE1对应的上行资源 的位置由 GP资源的第 3个 OFDM符号开始。
204, 所述基站通过所述特殊子帧的 GP资源中所述 UE对应的上行资 源接收所述 UE发送的上行数据。
其中, 所接收的上行数据可以是 PRACH、 PUSCH、 PUCCH和 SRS消 息之中的至少一种, 当然还可以是其他消息, 本发明对此不做限定。 其中, 所述 UE通过所述特殊子帧的 GP资源中所述 UE对应的上行资源发送何种 上行数据可以是预先设定的, 也可以是基站为 UE配置的, 当为基站为 UE 配置时, 基站需要将所配置的上行数据的类型通知给所述 UE, 即本发明实 施例的数据传输方法还包括:
所述基站向所述 UE发送所述 UE通过所述特殊子帧的 GP资源中所述 UE对应的上行资源发送的上行数据的类型的通知。
本发明实施例提供的数据传输方法,通过为 UE划分保护时间等级,使 有效减小了距离基站近的 UE的上下行传输的等待时间,有效提高了系统的 传输性能; 另一方面, UE能够利用 GP资源发送上行数据, 因此, 增加了 系统可利用的资源, 有效提高了系统的资源利用率。
在本发明的另一实施例中, 本发明实施例提供的数据传输方法, 还可 包括以下内容:
所述基站向所述 UE发送所述 UE的保护时间等级的通知。 例如, 在无 线资源控制 RRC建立后, 所述基站将所述 UE对应的保护时间等级指示比 特发送给所述 UE, 以使所述 UE确定所述 UE对应的保护时间等级。
在本发明的另一实施例中, 本发明实施例提供的数据传输方法, 还可 包括以下内容:
所述基站向所述 UE发送所述保护时间等级的划分方式的通知,以使所 述 UE根据所述保护时间等级的划分方式确定所述 UE对应的保护时间等 级。 具体的, 所述基站可通过系统消息将所述保护时间等级的划分方式通 知给所述 UE。
在本发明的另一实施例中, 本发明实施例提供的数据传输方法, 还可 包括以下内容:
所述基站以广播或调度的方式将所述特殊子帧的 GP资源中所述 UE对 应的上行资源的频率位置通知给所述 UE, 以使所述 UE在所述特殊子帧的 GP资源中发起上行传输时, 确定所述特殊子帧的 GP资源中所述 UE对应 的上行资源的频率位置。 在特殊子帧的 GP资源用于发送下行数据的场景下,如图 3所示, 本发 明的实施例提供了一种数据传输方法, 基于基站, 包括:
301 ,基站确定 UE对应的保护时间等级,所述保护时间等级与所述 UE 的往返时延相对应,所述保护时间等级指示了特殊子帧中所述 UE对应的保 护时间的 OFDM符号长度。
其中,所述 UE位于基站服务的小区中。 由于基站服务的小区中具有多 个 UE,且各 UE在物理位置上与基站之间的距离不同,即 RTT不同, 因此, 各个 UE与基站通过特殊子帧进行数据传输时,所需要的上行传输和下行传 输之间的时间间隔, 即保护时间可以不同。 而在小区帧结构中, 设置了固 定的 GP资源, 即 GP资源的时间长度是固定不变的, 由此, 本发明实施例 中, 可使用特殊子帧的 GP资源发送下行数据, 即相当于调整了所述 UE的 上行传输和下行传输之间的时间间隔。
本发明实施例中, 根据小区内各 UE的往返时延, 为 UE划分保护时间 举例说明, 以 LTE TDD系统为例, 假设系统最大支持小区覆盖半径为 107km, 小区帧结构中设置的 GP资源长度为 10个 OFDM符号, 按照两个 OMDM符号的长度为颗粒度, 划分为第 1等级至第 5等级 5个保护时间等 级, 第 1等级对应的保护时间长度为 2个 OFDM符号, 第 2等级对应的保 护时间长度为 4个 OFDM符号, 以此类推。 小区内各 UE根据其往返时延, 对应相同或不同的保护时间等级, 例如, UE1的往返时延小于 2个 OFDM 符号, 则 UE1的保护时间等级为第 1等级, 保护时间长度为 2个 OFDM符 号, UE2的往返时延为 3个 OFDM符号, 则 UE2的保护时间等级为第 2 等级, 保护时间长度为 4个 OFDM符号。
在 UE1与基站通过特殊子帧进行数据传输时,根据 UE1的保护时间等 级, GP资源的后 2个 OFDM符号将作为 UE1的下行数据传输和上行数据 传输的保护时间, 而之前剩余的 GP资源则用于发送下行数据; 同理, 对于 UE2, 在 UE2与基站通过特殊子帧进行数据传输时, 根据 UE2的保护时间 等级, GP资源的后 4个 OFDM符号将作为 UE2的下行数据传输和上行数 据传输的保护时间, 而剩余的 GP资源则用于发送下行数据。
本步骤中, 可选的, 所述基站可以获得所述 UE的往返时延, 根据所述 UE的往返时延, 确定所述 UE的保护时间等级; 其中, 基站可以分别根据 所述 UE前次数据传输时的 RTT获得所述 UE的 RTT,还可以根据所述 UE 发送的前导序列计算出所述 UE的 RTT, 还可以根据广播定时消息计算出 所述 UE的 RTT, 以及可以采用其他获得所述 UE的 RTT的方法, 本发明 对此不做限定。
所述基站还可以根据预先设定, 确定所述 UE的保护时间等级。 例如, 针对在一定时间内位置固定的非移动 UE,如智能抄表 Smart Meter,馈线终 端装置 FTU ( Feeder Terminal Unit )等, 其到达基站的 RTT是变化范围极 小, 可认为不变, 因此, 基站中可以预先设定各 UE对应的保护时间等级, 或者还可以预先保存各 UE的 RTT,使基站根据所保存的 RTT确定所述 UE 所对应的保护时间等级。
302, 所述基站根据所述 UE对应的保护时间等级, 确定所述特殊子帧 的 GP资源中所述 UE对应的下行资源的位置;
所述基站确定出所述 UE对应的保护时间等级后, 即确定出所述 UE对 应的保护时间的长度,从而确定出所述特殊子帧的 GP资源中所述 UE对应 的下行资源的位置。 举例说明, UE1的保护时间等级为第 1等级, 保护时 间长度为 2个 OFDM符号, 则所述特殊子帧的 GP资源中 UE1对应的下行 资源包括 GP资源的最后 2个 OFDM符号之前的所有 OFDM符号。
当然, 众所周知的是, 资源的位置包括资源的时间位置和频率位置, 本步骤中, 具体的, 基站根据所述 UE对应的保护时间等级, 确定所述特殊 子帧的 GP资源中所述 UE对应的下行资源的时间位置,基站还将根据系统 当前的频域分配状态等实际情况或预先设定,确定所述特殊子帧的 GP资源 中所述 UE对应的下行资源的频率位置,本发明实施例中,基站可以以广播 或者调度的方式, 例如, 基站通过 PDCCH的调度, 将所述特殊子帧的 GP 资源中所述 UE对应的下行资源的频率位置通知给 UE。
303 , 所述基站通过所述特殊子帧的 GP资源中所述 UE对应的下行资 源向所述 UE发送下行数据。
其中, 所述基站向所述 UE发送的下行数据可以为物理下行共享信道 PDSCH ( Physical Downlink Shared Channel ) 消息, 当然也可为其他消息, 本发明对此不做限定。
本发明实施例提供的数据传输方法,通过为 UE划分保护时间等级,使 有效减小了距离基站近的 UE的上下行传输的等待时间,有效提高了系统的 传输性能; 另一方面, 基站能够利用 GP资源发送下行数据, 因此, 增加了 系统可利用的资源, 有效提高了系统的资源利用率。
在本发明的另一实施例中, 本发明实施例提供的数据传输方法, 还可 包括以下内容:
所述基站向所述 UE发送所述 UE的保护时间等级的通知。 例如, 在 RRC建立后, 所述基站将所述 UE对应的保护时间等级指示比特发送给所 述 UE, 以使所述 UE确定所述 UE对应的保护时间等级, 并通过 PDCCH 进行频域调度。
在本发明的另一实施例中, 本发明实施例提供的数据传输方法, 还可 包括以下内容:
所述基站向所述 UE发送所述保护时间等级的划分方式的通知,以使所 述 UE根据所述保护时间等级的划分方式确定所述 UE对应的保护时间等 级。 具体的, 所述基站可通过系统消息将所述保护时间等级的划分方式通 知给所述 UE。 与图 3所示的方法相对应,在特殊子帧的 GP资源用于发送下行数据的 场景下,如图 4所示,本发明实施例还提供了一种数据传输方法,基于 UE, 包括:
401 , UE确定其对应的保护时间等级, 所述保护时间等级与所述 UE 的往返时延相对应,所述保护时间等级指示了所述特殊子帧中所述 UE对应 的保护时间的正交频分复用 OFDM符号长度; 可选的, UE对应的保护时间等级可以基站通知给所述 UE的, 也可以 是 UE自行通过计算等方式确定的。
具体的, 基站可根据所述 UE对应的 RTT, 以及预先设定的或根据系 统时延要求等实际情况所确定的保护时间等级的划分方式,确定出所述 UE 对应的保护时间等级, 然后,通过广播或者调度的方式向所述 UE发送所述 UE对应的保护时间等级的通知, 所述 UE接收所述基站发送的、 所述 UE 对应的保护时间等级的通知,根据所述通知确定所述 UE对应的保护时间等 级;
基站还可以直接将保护时间等级的划分方式通知给所述 UE, 所述 UE 接收所述基站发送的、 所述保护时间等级的划分方式的通知, 然后, 自行 根据所述保护时间等级的划分方式和自身的往返时延,确定所述 UE对应的 保护等级;
其中,保护时间等级的划分方式可包括小区的 GP资源长度以及保护时 间等级的颗粒度等, 即相邻保护时间等级对应的 OFDM符号长度的差。 根 据保护时间等级的划分方式,所述 UE能够确定出所述 UE对应的保护时间 另外, 所述 UE还可以根据预先设定, 确定所述 UE对应的 GP等级。 例如, 针对在一定时间内位置固定的非移动 UE, 如智能抄表 Smart Meter, 馈线终端装置 FTU ( Feeder Terminal Unit )等, 其到达基站的 RTT是变化 范围极小, 可认为不变, 因此, 可以预先设定各 UE对应的保护时间等级, 或者还可以预先保存各 UE的 RTT,使各 UE根据所保存的 RTT确定各 UE 所分别对应的保护时间等级。
402, 所述 UE根据其对应的保护时间等级, 确定所述特殊子帧的 GP 资源中所述 UE对应的下行资源的位置;
在所述 UE确定出其对应的保护时间等级, 即确定出其保护时间的长 度,从而确定出所述特殊子帧的 GP资源中所述 UE对应的下行资源的位置。 举例说明, UE1的保护时间等级为第 1等级, 保护时间长度为 2个 OFDM 符号,则所述特殊子帧的 GP资源中 UE1对应的下行资源包括 GP资源的最 后 2个 OFDM符号之前的所有 OFDM符号。
当然, 可以理解的是, 资源的位置包括资源的时间位置和频率位置, 具体的, 本步骤中, UE根据其对应的保护时间等级, 确定出所述特殊子帧 的 GP资源中所述 UE对应的上行资源的时间位置, UE通过基站的广播或 调度, 例如, 基站下发的 PDCCH消息, 确定出所述特殊子帧的 GP资源中 所述 UE对应的上行资源的频率位置。 另外, 所述 UE还可以根据预先设定 而确定所述特殊子帧的 GP资源中所述 UE对应的上行资源的频率位置。
403 , 所述 UE通过所述特殊子帧的 GP资源中所述 UE对应的下行资 源接收基站发送的下行数据。
其中, 所述基站发送的下行数据可以为物理下行共享信道 PDSCH 消 息, 当然也可为其他消息, 本发明对此不做限定。
本发明实施例提供的数据传输方法,通过为 UE划分保护时间等级,使 有效减小了距离基站近的 UE的上下行传输的等待时间,有效提高了系统的 传输性能; 另一方面, 基站能够利用 GP资源发送下行数据, 因此, 增加了 系统可利用的资源, 有效提高了系统的资源利用率。 与前述方法相对应, 本发明实施例还提供了一种 UE, 所述 UE用于所 述 UE包括: 接收单元 10, 确定单元 11和发送单元 12。
接收单元 10,用于接收基站通过特殊子帧的下行资源发送的下行数据。 确定单元 11 ,用于确定 UE对应的保护时间等级,并根据所述 UE对应 的保护时间等级,确定所述特殊子帧的 GP资源中所述 UE对应的上行资源 的位置; 其中, 所述保护时间等级与所述 UE的往返时延相对应, 所述保护 时间等级指示了所述特殊子帧中所述 UE对应的保护时间的正交频分复用
OFDM符号长度。
发送单元 12,用于通过所述特殊子帧的 GP资源中所述 UE对应的上行 资源向基站发送上行数据。
本发明实施例提供的 UE, 通过划分保护时间等级, 使得不同的 UE根 离基站近的 UE的上下行传输的等待时间,有效提高了系统的传输性能; 另 一方面, 所述 UE能够利用 GP资源发送上行数据, 因此, 增加了系统可利 用的资源, 有效提高了系统的资源利用率。
其中, 确定单元 11可具体用于接收所述基站发送的、 所述 UE对应的 保护时间等级的通知,根据所述通知确定所述 UE对应的保护时间等级; 或 者, 接收所述基站发送的、 所述保护时间等级的划分方式的通知, 根据所 述保护时间等级的划分方式和所述 UE的往返时延,确定所述 UE对应的保 护时间等级; 或者, 根据预先设定, 确定所述 UE对应的保护时间等级。
进一步的,发送单元 10发送的上行数据可包括以下消息中的至少一种:
PRACH, PUSCH, PUCCH和 SRS。 与前述方法相对应, 本发明实施例还提供了一种基站, 所述基站用于 所述特殊子帧的 GP资源用于发送上行数据的场景下,如图 6所示, 所述基 站包括: 发送单元 20、 确定单元 21和接收单元 22。
发送单元 20, 用于通过特殊子帧的下行资源向 UE发送下行数据。 确定单元 21 , 用于确定 UE对应的保护时间等级, 并根据所述 UE对 应的保护时间等级,确定所述特殊子帧的 GP资源中所述 UE对应的上行资 源的位置, 其中, 所述保护时间等级与所述 UE的往返时延相对应, 所述保 护时间等级指示了所述特殊子帧中所述 UE对应的保护时间的 OFDM符号 长度。 接收单元 22,用于通过所述特殊子帧的 GP资源中所述 UE对应的上行 资源接收所述 UE发送的上行数据。
本发明实施例提供的基站,通过为 UE划分保护时间等级,使得不同的 了距离基站近的 UE 的上下行传输的等待时间, 有效提高了系统的传输性 能; 另一方面, 所述 UE能够利用 GP资源发送上行数据, 因此, 增加了系 统可利用的资源, 有效提高了系统的资源利用率。
其中,确定单元 21可具体用于获得所述 UE的往返时延,根据所述 UE 的往返时延, 确定所述 UE的保护时间等级; 或者, 根据预先设定, 确定所 述 UE的保护时间等级。
进一步的, 在本发明的一个实施例中, 发送单元 20还用于向所述 UE 发送所述 UE的保护时间等级的通知。
进一步的, 在本发明的另一个实施例中, 发送单元 20还用于向所述 UE发送所述保护时间等级的划分方式的通知。
具体的, 接收单元 22接收的、 所述 UE发送的上行数据包括以下消息 中的至少一种:
PRACH, PUSCH, PUCCH和 SRS。 与前述方法相对应, 本发明实施例还提供了一种基站, 所述基站用于 所述特殊子帧的 GP资源用于发送下行数据的场景下,如图 7所示, 所述基 站包括: 确定单元 30和发送单元 31。
确定单元 30, 用于确定 UE对应的保护时间等级, 并根据所述 UE对 应的保护时间等级,确定所述特殊子帧的 GP资源中所述 UE对应的下行资 源的位置, 其中, 所述保护时间等级与所述 UE的往返时延相对应, 所述保 发送单元 31 ,用于通过所述特殊子帧的 GP资源中所述 UE对应的下行 资源向所述 UE发送下行数据。
本发明实施例提供的基站,通过为 UE划分保护时间等级,使得不同的 了距离基站近的 UE 的上下行传输的等待时间, 有效提高了系统的传输性 能; 另一方面, 基站能够利用 GP资源发送下行数据, 因此, 增加了系统可 利用的资源, 有效提高了系统的资源利用率。
其中, 确定单元 30具体用于:
获得所述 UE的往返时延, 根据所述 UE的往返时延, 确定所述 UE的 保护时间等级; 或者, 根据预先设定, 确定所述 UE的保护时间等级。
进一步的, 在本发明的一个实施例中, 发送单元 31 还用于: 向所述 UE发送所述 UE的保护时间等级的通知。
进一步的, 在本发明的另一个实施例中, 发送单元 31还用于: 向所述 UE发送所述保护时间等级的划分方式的通知。
具体的, 发送单元 31向所述 UE发送的下行数据可包括 PDSCH消息。 与前述方法相对应, 本发明实施例还提供了一种 UE, 所述 UE用于所 述特殊子帧的 GP资源用于发送下行数据的场景下, 如图 8所示, 所述 UE 包括: 确定单元 40和接收单元 41。
确定单元 40, 用于确定其对应的保护时间等级, 并根据其对应的保护 时间等级,确定所述特殊子帧的 GP资源中所述 UE对应的下行资源的位置, 其中, 所述保护时间等级与所述 UE的往返时延相对应,指示了所述特殊子 帧中所述 UE对应的保护时间的正交频分复用 OFDM符号长度。
接收单元 41 ,用于通过所述特殊子帧的 GP资源中所述 UE对应的下行 资源接收基站发送的下行数据。
其中, 确定单元 40具体用于: 接收所述基站发送的、 所述 UE对应的 保护时间等级的通知,根据所述通知确定所述 UE对应的保护时间等级; 或 者, 接收所述基站发送的、 所述保护时间等级的划分方式的通知, 根据所 述保护时间等级的划分方式和所述 UE的往返时延,确定所述 UE对应的保 护时间等级; 或者, 根据预先设定, 确定所述 UE对应的保护时间等级。
具体的,接收单元 41接收的、所述基站发送的下行数据可包括 PDSCH 消息。 本发明的另一实施例, 还公开一种通信系统, 包括前述的 UE和基站。 需要说明的是, 虽然本发明实施例是以 LTE TDD无线通信系统为例进 行说明的,但本发明不限于此,本发明实施例同样适用 WiMAX, TD-SCDMA 等 TDD系统。 另外, 在本发明实施例适用的其他无线通信系统中, 本发明 实施例用于上行传输和下行传输的保护时间间隔 GP 资源的名称可能有所 变化, 例如, 称之为往返时延保护时间, 本发明对 GP资源的名称此不做限 定, 同样属于本发明的保护范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述 描述的系统, 装置和单元的具体工作过程, 可以参考前述方法实施例中的 对应过程, 在此不再贅述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统, 装置 和方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅 是示意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实 现时可以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成 到另一个系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论 的相互之间的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单 元的间接耦合或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的, 作为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地 方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的 部分或者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在 一个单元中。 上述集成的单元既可以采用硬件的形式实现, 也可以采用软 件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销 售或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方 案的全部或部分可以以软件产品的形式体现出来, 该计算机软件产品存储 在一个存储介质中, 包括若干指令用以使得一台计算机设备(可以是个人 计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全 部或部分步骤。而前述的存储介质包括: U盘、移动硬盘、只读存储器( ROM, Read-Only Memory ), 随机存取存储器 ( RAM, Random Access Memory )、 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述, 以上实施例仅用以说明本发明的技术方案, 而非对其限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术人员 应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或者 对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权利要求书
1、 一种数据传输方法, 其特征在于, 包括:
用户设备接收基站通过特殊子帧的下行资源发送的下行数据; 所述用户设备确定其对应的保护时间等级, 所述保护时间等级与所述 用户设备的往返时延相对应, 所述保护时间等级指示了所述特殊子帧中所 述用户设备对应的保护时间的正交频分复用 OFDM符号长度;
所述用户设备根据其对应的保护时间等级, 确定所述特殊子帧的保护 时间资源中所述用户设备对应的上行资源的位置; 的上行资源向基站发送上行数据。
2、 根据权利要求 1所述的数据传输方法, 其特征在于, 所述用户设备 确定其对应的保护时间等级包括:
所述用户设备接收所述基站发送的、 所述用户设备对应的保护时间等 级的通知;
所述用户设备根据所述通知确定所述用户设备对应的保护时间等级; 或者
所述用户设备接收所述基站发送的、 所述保护时间等级的划分方式的 通知;
所述用户设备根据所述保护时间等级的划分方式和所述用户设备的往 返时延, 确定所述用户设备对应的保护时间等级;
或者
所述用户设备根据预先设定, 确定所述用户设备对应的保护时间等级。
3、 根据权利要求 1或 2所述的数据传输方法, 其特征在于, 所述用户 设备发送的上行数据包括以下消息中的至少一种:
物理随机接入信道 PRACH, 物理上行共享信道 PUSCH、 物理上行控 制信道 PUCCH和探测参考信号 SRS。
4、 一种数据传输方法, 其特征在于, 包括:
基站通过特殊子帧的下行资源向用户设备发送下行数据;
所述基站确定用户设备对应的保护时间等级, 所述保护时间等级与所 述用户设备的往返时延相对应, 所述保护时间等级指示了所述特殊子帧中 所述用户设备对应的保护时间的正交频分复用 OFDM符号长度;
所述基站根据所述用户设备对应的保护时间等级, 确定所述特殊子帧 的保护时间资源中所述用户设备对应的上行资源的位置; 行资源接收所述用户设备发送的上行数据。
5、 根据权利要求 4所述的数据传输方法, 其特征在于, 所述基站确定 用户设备对应的保护时间等级包括:
所述基站获得所述用户设备的往返时延;
所述基站根据所述用户设备的往返时延, 确定所述用户设备的保护时 间等级; 或者
所述基站根据预先设定, 确定所述用户设备的保护时间等级。
6、 根据权利要求 4所述的数据传输方法, 其特征在于, 所述方法还包 括:
所述基站向所述用户设备发送所述用户设备的保护时间等级的通知。
7、 根据权利要求 4所述的数据传输方法, 其特征在于, 所述方法还包 括:
所述基站向所述用户设备发送所述保护时间等级的划分方式的通知。
8、 根据权利要求 4至 7任一项所述的数据传输方法, 其特征在于, 所 述基站接收的、 所述用户设备发送的上行数据包括以下消息中的至少一种: 物理随机接入信道 PRACH, 物理上行共享信道 PUSCH、 物理上行控 制信道 PUCCH和探测参考信号 SRS。
9、 一种数据传输方法, 其特征在于, 包括:
基站确定用户设备对应的保护时间等级, 所述保护时间等级与所述用 户设备的往返时延相对应, 所述保护时间等级指示了特殊子帧中所述用户 设备对应的保护时间的 OFDM符号长度;
所述基站根据所述用户设备对应的保护时间等级, 确定所述特殊子帧 的保护时间资源中所述用户设备对应的下行资源的位置; 行资源向所述用户设备发送下行数据。
10、 根据权利要求 9所述的数据传输方法, 其特征在于, 所述基站确 定用户设备对应的保护时间等级包括:
所述基站获得所述用户设备的往返时延;
所述基站根据所述用户设备的往返时延, 确定所述用户设备的保护时 间等级; 或者
所述基站根据预先设定, 确定所述用户设备的保护时间等级。
11、 根据权利要求 9所述的数据传输方法, 其特征在于, 所述方法还 包括:
所述基站向所述用户设备发送所述用户设备的保护时间等级的通知。
12、 根据权利要求 9所述的数据传输方法, 其特征在于, 所述方法还 包括:
所述基站向所述用户设备发送所述保护时间等级的划分方式的通知。
13、 根据权利要求 9至 12任一项所述的数据传输方法, 其特征在于, 所述基站向所述用户设备发送的下行数据包括物理下行共享信道 PDSCH 消息。
14、 一种数据传输方法, 其特征在于, 包括: 用户设备确定其对应的保护时间等级, 所述保护时间等级与所述用户 设备的往返时延相对应, 所述保护时间等级指示了所述特殊子帧中所述用 户设备对应的保护时间的正交频分复用 OFDM符号长度;
所述用户设备根据其对应的保护时间等级, 确定所述特殊子帧的保护 时间资源中所述用户设备对应的下行资源的位置; 的下行资源接收基站发送的下行数据。
15、 根据权利要求 14所述的数据传输方法, 其特征在于, 所述用户设 备确定其对应的保护时间等级包括:
所述用户设备接收所述基站发送的、 所述用户设备对应的保护时间等 级的通知;
所述用户设备根据所述通知确定所述用户设备对应的保护时间等级; 或者
所述用户设备接收所述基站发送的、 所述保护时间等级的划分方式的 通知;
所述用户设备根据所述保护时间等级的划分方式和所述用户设备的往 返时延, 确定所述用户设备对应的保护时间等级;
或者
所述用户设备根据预先设定, 确定所述用户设备对应的保护时间等级。
16、 根据权利要求 14或 15所述的数据传输方法, 其特征在于, 所述 基站发送的下行数据包括物理下行共享信道 PDSCH消息。
17、 一种用户设备, 其特征在于, 包括:
接收单元, 用于接收基站通过特殊子帧的下行资源发送的下行数据; 确定单元, 用于确定用户设备对应的保护时间等级, 并根据所述用户 设备对应的保护时间等级, 确定所述特殊子帧的保护时间资源中所述用户 设备对应的上行资源的位置, 其中, 所述保护时间等级与所述用户设备的 往返时延相对应, 所述保护时间等级指示了所述特殊子帧中所述用户设备 对应的保护时间的正交频分复用 OFDM符号长度; 应的上行资源向基站发送上行数据。
18、 根据权利要求 17所述的用户设备, 其特征在于, 所述确定单元具 体用于:
接收所述基站发送的、 所述用户设备对应的保护时间等级的通知, 根 据所述通知确定所述用户设备对应的保护时间等级;
或者
接收所述基站发送的、 所述保护时间等级的划分方式的通知, 根据所 述保护时间等级的划分方式和所述用户设备的往返时延, 确定所述用户设 备对应的保护时间等级;
或者
根据预先设定, 确定所述用户设备对应的保护时间等级。
19、 根据权利要求 17或 18所述的用户设备, 其特征在于, 所述发送 单元发送的上行数据包括以下消息中的至少一种:
物理随机接入信道 PRACH, 物理上行共享信道 PUSCH、 物理上行控 制信道 PUCCH和探测参考信号 SRS。
20、 一种基站, 其特征在于, 包括:
发送单元, 用于通过特殊子帧的下行资源向用户设备发送下行数据; 确定单元, 用于确定用户设备对应的保护时间等级, 并根据所述用户 设备对应的保护时间等级, 确定所述特殊子帧的保护时间资源中所述用户 设备对应的上行资源的位置, 其中, 所述保护时间等级与所述用户设备的 往返时延相对应, 所述保护时间等级指示了所述特殊子帧中所述用户设备 对应的保护时间的正交频分复用 OFDM符号长度; 应的上行资源接收所述用户设备发送的上行数据。
21、 根据权利要求 20所述的基站, 其特征在于, 所述确定单元具体用 于:
获得所述用户设备的往返时延, 根据所述用户设备的往返时延, 确定 所述用户设备的保护时间等级; 或者
根据预先设定, 确定所述用户设备的保护时间等级。
22、 根据权利要求 20所述的基站, 其特征在于, 所述发送单元还用于 向所述用户设备发送所述用户设备的保护时间等级的通知。
23、 根据权利要求 20所述的基站, 其特征在于, 所述发送单元还用于 向所述用户设备发送所述保护时间等级的划分方式的通知。
24、 根据权利要求 20至 23任一项所述的基站, 其特征在于, 所述接 收单元接收的、 所述用户设备发送的上行数据包括以下消息中的至少一种: 物理随机接入信道 PRACH, 物理上行共享信道 PUSCH、 物理上行控 制信道 PUCCH和探测参考信号 SRS。
25、 一种基站, 其特征在于, 包括:
确定单元, 用于确定用户设备对应的保护时间等级, 并根据所述用户 设备对应的保护时间等级, 确定所述特殊子帧的保护时间资源中所述用户 设备对应的下行资源的位置, 其中, 所述保护时间等级与所述用户设备的 往返时延相对应, 所述保护时间等级指示了特殊子帧中所述用户设备对应 的保护时间的 OFDM符号长度; 应的下行资源向所述用户设备发送下行数据。
26、 根据权利要求 25所述的基站, 其特征在于, 所述确定单元具体用 于:
获得所述用户设备的往返时延, 根据所述用户设备的往返时延, 确定 所述用户设备的保护时间等级; 或者, 根据预先设定, 确定所述用户设备 的保护时间等级。
27、根据权利要求 25所述的基站, 其特征在于, 所述发送单元还用于: 向所述用户设备发送所述用户设备的保护时间等级的通知。
28、根据权利要求 25所述的基站, 其特征在于, 所述发送单元还用于: 向所述用户设备发送所述保护时间等级的划分方式的通知。
29、 根据权利要求 25至 28任一项所述的基站, 其特征在于, 所述发 送单元向所述用户设备发送的下行数据包括物理下行共享信道 PDSCH 消 息。
30、 一种用户设备, 其特征在于, 包括:
确定单元, 用于确定其对应的保护时间等级, 并根据其对应的保护时 间等级, 确定所述特殊子帧的保护时间资源中所述用户设备对应的下行资 源的位置, 其中, 所述保护时间等级与所述用户设备的往返时延相对应, 指示了所述特殊子帧中所述用户设备对应的保护时间的正交频分复用 OFDM符号长度; 应的下行资源接收基站发送的下行数据。
31、 根据权利要求 30所述的用户设备, 其特征在于, 所述确定单元具 体用于:
接收所述基站发送的、 所述用户设备对应的保护时间等级的通知, 根 据所述通知确定所述用户设备对应的保护时间等级;
或者
接收所述基站发送的、 所述保护时间等级的划分方式的通知, 根据所 述保护时间等级的划分方式和所述用户设备的往返时延, 确定所述用户设 备对应的保护时间等级;
或者
根据预先设定, 确定所述用户设备对应的保护时间等级。
32、 根据权利要求 30或 31所述的用户设备, 其特征在于, 所述接收 单元接收的、 所述基站发送的下行数据包括物理下行共享信道 PDSCH 消 東
PCT/CN2012/074373 2011-05-31 2012-04-19 一种数据传输方法和装置 WO2012163192A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12793599.7A EP2717641B1 (en) 2011-05-31 2012-04-19 Data transmission method and device
US14/080,207 US9155084B2 (en) 2011-05-31 2013-11-14 Methods and devices for transmitting data
US14/838,038 US9549397B2 (en) 2011-05-31 2015-08-27 Method and device for transmitting data

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110144690.4 2011-05-31
CN201110144690.4A CN102811191B (zh) 2011-05-31 2011-05-31 一种数据传输方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/080,207 Continuation US9155084B2 (en) 2011-05-31 2013-11-14 Methods and devices for transmitting data

Publications (1)

Publication Number Publication Date
WO2012163192A1 true WO2012163192A1 (zh) 2012-12-06

Family

ID=47234770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074373 WO2012163192A1 (zh) 2011-05-31 2012-04-19 一种数据传输方法和装置

Country Status (4)

Country Link
US (2) US9155084B2 (zh)
EP (1) EP2717641B1 (zh)
CN (1) CN102811191B (zh)
WO (1) WO2012163192A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019014865A1 (zh) * 2017-07-19 2019-01-24 北京小米移动软件有限公司 传输信息的方法及装置

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103906261B (zh) * 2012-12-28 2018-06-05 中兴通讯股份有限公司 随机接入前导处理方法及装置
WO2014109302A1 (ja) * 2013-01-09 2014-07-17 シャープ株式会社 端末装置および基地局装置
CN107431610A (zh) * 2013-12-25 2017-12-01 华为技术有限公司 半双工频分双工的通信方法、基站和终端
CN106465364B (zh) * 2015-01-19 2020-02-14 华为技术有限公司 一种gp长度确定、上行数据包发送方法及装置
EP3273731A4 (en) * 2015-03-20 2019-03-06 NTT DoCoMo, Inc. USER DEVICE AND BASE STATION
US11722287B2 (en) * 2015-09-02 2023-08-08 Qualcomm Incorporated Flexible time division duplexing subframe structure with latency reduction
CN106506423B (zh) * 2015-09-07 2020-01-31 普天信息技术有限公司 一种数据的传输方法和基站
CN106603207B (zh) * 2015-10-14 2018-03-23 中国移动通信集团公司 一种信号传输方法及装置
US20170135078A1 (en) * 2015-11-10 2017-05-11 Electronics And Telecommunications Research Institute Method and apparatus for configuring subframe in mobile communication system
WO2017113425A1 (zh) * 2015-12-31 2017-07-06 华为技术有限公司 传输数据的方法和用户设备
WO2017135991A1 (en) * 2016-02-03 2017-08-10 Intel IP Corporation Dynamic resource allocations and transmission schemes for xpucch (5g pucch)
WO2017160051A1 (ko) * 2016-03-15 2017-09-21 엘지전자 주식회사 무선 통신 시스템에서 기지국과 단말이 신호를 송수신하는 방법 및 이를 지원하는 장치
CN107306450A (zh) * 2016-04-20 2017-10-31 中国移动通信有限公司研究院 一种确定保护时隙的方法及设备、终端
US11265894B2 (en) * 2016-05-23 2022-03-01 Qualcomm Incorporated Uplink transmission gaps in eMTC
CN107426818B (zh) * 2016-05-24 2020-05-01 中国移动通信有限公司研究院 一种信号传输方法、基站、终端设备及系统
WO2018039034A1 (en) * 2016-08-24 2018-03-01 Google Llc Line rate ethernet traffic testing
KR102317735B1 (ko) 2016-11-03 2021-10-26 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 사용자 장비, 기지국, 및 무선 통신 시스템
CN108024356B (zh) * 2016-11-04 2021-12-28 华为技术有限公司 一种传输方法和装置
CN106535230B (zh) * 2016-12-08 2019-07-09 西安烽火电子科技有限责任公司 基于ofdm技术的vhf无线通信组网路由协议设计方法
GB2559382B (en) * 2017-02-03 2021-10-20 Tcl Communication Ltd Systems and methods for cell range extension
US9867190B1 (en) * 2017-03-09 2018-01-09 Verizon Patent And Licensing Inc. System and method for signal boost in an LTE network
CN117715230A (zh) * 2017-11-17 2024-03-15 华为技术有限公司 随机接入信号的发送方法、接收方法和相关装置
CN108513359B (zh) * 2018-02-09 2022-06-24 京信网络系统股份有限公司 一种空口资源分配方法和装置
US11546103B2 (en) * 2018-10-19 2023-01-03 Qualcomm Incorporated Physical layer aspects of round-trip time and observed time difference of arrival based positioning
US11184872B2 (en) 2019-04-04 2021-11-23 Qualcomm Incorporated Reference timing delivery to user equipment with propagation delay compensation
WO2021058852A1 (en) * 2019-09-23 2021-04-01 Raniot Technologies Oy (Ltd) Transmission management
CN113543332B (zh) * 2020-12-24 2022-10-28 中兴通讯股份有限公司 帧结构的配置方法、装置、电子设备和可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1909691A (zh) * 2005-07-21 2007-02-07 三菱电机株式会社 包括至少一个用来与终端通信的基站的无线电信系统
CN101425844A (zh) * 2007-11-02 2009-05-06 大唐移动通信设备有限公司 一种时分双工系统的数据传输方法和系统
CN101682397A (zh) * 2007-01-15 2010-03-24 艾利森电话股份有限公司 用于在无线接入tdd系统中的增强的性能的方法和设备
CN101997600A (zh) * 2009-08-27 2011-03-30 上海贝尔股份有限公司 减小移动通信系统中保护时间间隔的方法和基站

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101430462B1 (ko) 2007-08-09 2014-08-19 엘지전자 주식회사 Rach 프리엠블 구성방법 및 전송방법
CN101394648B (zh) 2007-09-17 2012-05-23 中兴通讯股份有限公司 一种时分双工系统中终端前导的发送方法
US8457032B2 (en) * 2007-11-02 2013-06-04 China Academy Of Telecommunications Technology Method and apparatus for data transmission in a time division duplexing system
US8576900B2 (en) * 2008-06-15 2013-11-05 Lg Electronics Inc. Method and apparatus for transmitting and receiving signal from relay station in radio communication system
CN103051437B (zh) * 2008-08-01 2015-08-12 中兴通讯股份有限公司 一种时分双工系统上行信道测量参考信号的发送方法
KR101619446B1 (ko) * 2008-12-02 2016-05-10 엘지전자 주식회사 하향링크 mimo시스템에 있어서 rs 전송 방법
GB0903517D0 (en) * 2009-03-03 2009-04-08 Vodafone Plc L2 transparent relay
WO2010134749A2 (ko) * 2009-05-19 2010-11-25 엘지전자 주식회사 무선 통신 시스템에서 백홀 하향링크 제어 정보 송수신 방법 및 장치
CN102137500B (zh) 2010-01-26 2013-10-02 华为技术有限公司 传输数据的方法、基站和系统
CN103039014B (zh) * 2010-04-08 2015-07-08 Lg电子株式会社 在支持多天线的无线通信系统中使用码本的信号传输方法和装置
US9167596B2 (en) * 2010-04-12 2015-10-20 Lg Electronics Inc. Method and apparatus for transmitting and receiving scheduling request using shared resource based filtering in radio communication system
ES2624277T3 (es) * 2010-12-20 2017-07-13 Telefonaktiebolaget Lm Ericsson (Publ) Métodos y nodos para ajustar valores de parámetros del sistema usados en un sistema de comunicación inalámbrica
CN102811494B (zh) * 2011-05-31 2015-09-09 华为技术有限公司 一种数据传输方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1909691A (zh) * 2005-07-21 2007-02-07 三菱电机株式会社 包括至少一个用来与终端通信的基站的无线电信系统
CN101682397A (zh) * 2007-01-15 2010-03-24 艾利森电话股份有限公司 用于在无线接入tdd系统中的增强的性能的方法和设备
CN101425844A (zh) * 2007-11-02 2009-05-06 大唐移动通信设备有限公司 一种时分双工系统的数据传输方法和系统
CN101997600A (zh) * 2009-08-27 2011-03-30 上海贝尔股份有限公司 减小移动通信系统中保护时间间隔的方法和基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2717641A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019014865A1 (zh) * 2017-07-19 2019-01-24 北京小米移动软件有限公司 传输信息的方法及装置

Also Published As

Publication number Publication date
EP2717641A1 (en) 2014-04-09
CN102811191B (zh) 2016-06-08
CN102811191A (zh) 2012-12-05
EP2717641A4 (en) 2014-05-21
US9155084B2 (en) 2015-10-06
US20150373697A1 (en) 2015-12-24
US9549397B2 (en) 2017-01-17
US20140092880A1 (en) 2014-04-03
EP2717641B1 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
WO2012163192A1 (zh) 一种数据传输方法和装置
CN110417521B (zh) 异步上行传输的方法、设备和存储介质
EP2932638B1 (en) A network node, a wireless device and methods therein for enabling and performing harq transmissions in a d2d communication between wireless devices in a wireless telecommunications network
WO2018059307A1 (zh) 通信方法、基站和终端设备
KR101851544B1 (ko) 사이클릭 프리픽스 길이를 설정하기 위한 시스템 및 방법
EP2704463B1 (en) Data transmission method and device
JP6019005B2 (ja) 無線基地局、ユーザ端末及び無線通信方法
JP2019083577A (ja) サイクリック・プレフィックスの長さを設定するためのシステムおよび方法
JP6910483B2 (ja) 通信方法、ネットワークデバイス、およびユーザ機器
US10893541B2 (en) Clear channel assesment (CCA) in unlicensed wireless spectrum
WO2018126417A1 (zh) 用于随机接入的方法和设备
WO2013107214A1 (zh) 无线通信方法及装置
WO2019024756A1 (zh) 通信方法、网络设备和中继设备
US11464000B2 (en) Information indication method, terminal device, and network device
WO2014166122A1 (zh) 一种专用信道数据传输的方法和装置
US20170135101A1 (en) Method and Apparatus for Determining Data Transmission
TW201838466A (zh) 處理量測間距的裝置及方法
CN112020144B (zh) 确定异步物理上行共享信道的资源的方法及设备
WO2016058469A1 (zh) 一种数据传输方法及装置
WO2015042887A1 (zh) 用户设备直连通信的信号传输方法和用户设备
WO2016149875A1 (zh) 一种载波配置方法及设备
WO2016154922A1 (zh) 一种时分双工系统中的通信方法及基站、用户设备
WO2013044764A1 (zh) 上行信号的发送时间确定方法及设备
WO2018137715A1 (zh) 一种上行调度请求传输方法、终端及基站
WO2014071615A1 (zh) 传输信息的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12793599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE