WO2018137715A1 - 一种上行调度请求传输方法、终端及基站 - Google Patents

一种上行调度请求传输方法、终端及基站 Download PDF

Info

Publication number
WO2018137715A1
WO2018137715A1 PCT/CN2018/075651 CN2018075651W WO2018137715A1 WO 2018137715 A1 WO2018137715 A1 WO 2018137715A1 CN 2018075651 W CN2018075651 W CN 2018075651W WO 2018137715 A1 WO2018137715 A1 WO 2018137715A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
tti
length
corresponds
terminal
Prior art date
Application number
PCT/CN2018/075651
Other languages
English (en)
French (fr)
Inventor
高雪娟
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2018137715A1 publication Critical patent/WO2018137715A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an uplink scheduling request transmission method, a terminal, and a base station.
  • LTE Long Term Evolution
  • SR uplink scheduling request
  • the base station needs to send an uplink scheduling request (SR) to the base station.
  • the physical uplink shared channel (PUSCH) resource is allocated to the terminal for the terminal to perform uplink service transmission.
  • the PUSCH is transmitted according to the length of one subframe (that is, the transmission time interval (TTI) length is 1 ms).
  • the SR is only used to notify the base station whether The uplink resource needs to be scheduled for the terminal for the PUSCH transmission, that is, the SR is only used for scheduling the PUSCH transmitted for 1 ms length.
  • the transmission opportunity of the SR is determined according to a pre-configured period and an offset value, wherein the period and the offset value are all defined in units of subframes, that is, the minimum transmission period of the SR is 1 subframe. That is, the transmission opportunity of the SR may be in each subframe, and of course, the transmission opportunity of the SR may occur once in multiple subframes.
  • the SRs are all transmitted on the PUCCH transmitted in the length of 1 subframe (that is, the TTI is equal to 1 ms).
  • the prior art proposes a new mobile communication system in which PUSCH transmission supporting 1 ms and shorter than 1 ms is defined, that is, the uplink service of the terminal can have multiple types, and different types of delays (latency) The requirements are different. If the demand for latency is not high, it can be performed on the PUSCH that uses the 1ms TTI length transmission.
  • the latency is high, it can be performed on the PUSCH (that is, sPUSCH) that is shorter than the 1ms TTI (that is, sTTI) length.
  • the SR feedback mechanism in the prior art is no longer applicable, and there is no clear method for how to perform SR transmission.
  • the embodiment of the invention provides an uplink scheduling request transmission method, a terminal and a base station, which are used to provide a new SR transmission method, which is suitable for a short user delay communication system.
  • the method of the present invention includes an uplink scheduling request transmission method, and the method includes:
  • the terminal determines a combined state of the first uplink scheduling request SR and the second SR, where the first SR corresponds to a first time interval TTI length, the second SR corresponds to a second TTI length, and the first TTI length and the first The length of the two TTIs is different;
  • the terminal transmits the modulation symbol using a physical uplink control channel PUCCH.
  • the first SR corresponds to the first TTI length
  • the second SR corresponds to the second TTI length, which specifically includes:
  • the first SR corresponds to the first uplink shared channel or the first service that is transmitted by using the first TTI length
  • the second SR corresponds to the second uplink shared channel or the second service that is transmitted by using the second TTI length
  • the first SR corresponds to the first service
  • the second SR corresponds to the second service
  • the service parameters of the first service and the second service are different
  • the first SR transmits using a first TTI length
  • the second SR transmits using a second TTI length
  • the transmission period and/or offset value of the first SR is configured based on the first TTI length
  • the transmission period and/or offset value of the second SR is configured based on the second TTI length.
  • the different states of the modulation symbols respectively correspond to different combinations of the first SR and the second SR, and specifically include:
  • One state of the modulation mode corresponds to a first SR in which only an affirmative state exists, and the other state of the modulation mode corresponds to a second SR in which a positive state exists.
  • one state of the modulation mode corresponds to a first SR having only an affirmative state
  • another state of the modulation mode corresponds to a second SR having only an affirmative state
  • another state of the modulation mode corresponds to a positive state at the same time.
  • the first SR and the second SR of the affirmative state corresponds to a first SR having only an affirmative state
  • one state of the modulation mode corresponds to a first SR having only an affirmative state
  • another state of the modulation mode corresponds to a second SR having only an affirmative state
  • another state of the modulation mode corresponds to a positive state at the same time.
  • the first SR and the second SR of the positive state, the other state of the modulation mode corresponds to the first SR of the negative state and/or the second SR of the negative state.
  • the PUCCH is transmitted according to the second TTI length; or the PUCCH is transmitted according to the first TTI length when there is only the first SR in the positive state, and is transmitted according to the second TTI length when there is the second SR in the positive state.
  • the PUCCH includes a symbol for transmitting a pilot; and/or the PUCCH carries a modulation symbol.
  • the terminal transmits the modulation symbol on the resources of the PUCCH after being subjected to time domain spreading and/or frequency domain spreading.
  • the length of the first TTI is 1 ms
  • the length of the second TTI is M symbols
  • the M is a positive integer less than 14;
  • the length of the first TTI is 1 ms, and the length of the second TTI is a length of TTI less than 1 ms; or
  • the length of the first TTI is less than 1 ms, and the length of the second TTI is less than the length of the first TTI;
  • the length of the first TTI is M1 symbols
  • the length of the second TTI is M2 symbols
  • the M1 and M2 are positive integers less than 14
  • the M2 is smaller than the M1.
  • the modulation symbol is obtained by using one of xPSK or xQAM, where x is 2 N and N is an integer greater than or equal to 1.
  • the embodiment of the present invention provides an uplink scheduling request transmission method from the base station side, and the method includes:
  • the base station receives the modulation symbol using a physical uplink control channel PUCCH;
  • the first SR corresponds to the first TTI length
  • the second SR corresponds to the second TTI length, which specifically includes:
  • the first SR corresponds to the first uplink shared channel or the first service that is transmitted by using the first TTI length
  • the second SR corresponds to the second uplink shared channel or the second service that is transmitted by using the second TTI length
  • the first SR corresponds to the first service
  • the second SR corresponds to the second service
  • the service parameters of the first service and the second service are different
  • the first SR transmits using a first TTI length
  • the second SR transmits using a second TTI length
  • the transmission period and/or offset value of the first SR is configured based on the first TTI length
  • the transmission period and/or offset value of the second SR is configured based on the second TTI length.
  • the one state of the modulation mode corresponds to the first SR in which only the positive state exists, and the other state of the modulation mode corresponds to the second SR in which the positive state exists.
  • one state of the modulation mode corresponds to a first SR having only an affirmative state
  • another state of the modulation mode corresponds to a second SR having only an affirmative state
  • another state of the modulation mode corresponds to a positive state at the same time.
  • the first SR and the second SR of the affirmative state corresponds to a first SR having only an affirmative state
  • the different states of the modulation symbols respectively correspond to different combinations of the first SR and the second SR, and specifically include:
  • One state of the modulation mode corresponds to a first SR having only an affirmative state
  • another state of the modulation mode corresponds to a second SR having only an affirmative state
  • another state of the modulation mode corresponds to a first state in which a positive state exists simultaneously
  • An SR and a second SR of the positive state the other state of the modulation mode corresponds to a first SR of a negative state and/or a second SR of a negative state.
  • the base station further includes:
  • the base station When the base station determines that the modulation symbol corresponds to the first SR of the positive state, the base station sends a UL grant to the terminal, where the UL grant is used to schedule the terminal to transmit an uplink shared channel according to the first TTI length. ;or,
  • the base station When the base station determines that the modulation symbol corresponds to the second SR of the affirmative state, the base station sends a UL grant to the terminal, where the UL grant is used to schedule the terminal to transmit an uplink shared channel according to the second TTI length. ;or,
  • the base station determines that the modulation symbol corresponds to the first SR of the negative state, the base station does not send, to the terminal, a UL grant for scheduling the terminal to transmit an uplink shared channel according to the first TTI length;
  • the base station determines that the modulation symbol corresponds to a second SR of a negative state, the base station does not send, to the terminal, a UL grant for scheduling the terminal to transmit an uplink shared channel according to the second TTI length;
  • the base station performs energy detection on the resource used for transmitting the SR, and if the detection result is lower than the threshold, the base station does not send the UL grant to the terminal.
  • the base station receives the PUCCH according to a second TTI length; or the base station blindly detects the PUCCH according to a first TTI length and a second TTI length.
  • the PUCCH includes a symbol for transmitting a pilot; and/or the PUCCH carries a modulation symbol.
  • the base station receives information on the resources of the PUCCH, and obtains the modulation symbols by performing time domain despreading and/or frequency domain despreading.
  • the length of the first TTI is 1 ms
  • the length of the second TTI is M symbols
  • the M is a positive integer less than 14;
  • the length of the first TTI is 1 ms, and the length of the second TTI is a length of TTI less than 1 ms; or
  • the length of the first TTI is less than 1 ms, and the length of the second TTI is less than the length of the first TTI;
  • the length of the first TTI is M1 symbols
  • the length of the second TTI is M2 symbols
  • the M1 and M2 are positive integers less than 14
  • the M2 is smaller than the M1.
  • the modulation symbol is obtained by using one of xPSK or xQAM, where x is 2 N and N is an integer greater than or equal to 1.
  • an embodiment of the present invention further provides a terminal, where the terminal includes:
  • Determining a combined state unit configured to determine a combined state of the first uplink scheduling request SR and the second SR, where the first SR corresponds to a first time interval TTI length, and the second SR corresponds to a second TTI length, the first The TTI length is different from the second TTI length;
  • Determining a modulation symbol unit configured to determine a modulation symbol according to a combined state of the first SR and the second SR, where different states of the modulation symbol respectively correspond to different combinations of the first SR and the second SR;
  • a transmitting unit configured to transmit the modulation symbol by using a physical uplink control channel PUCCH.
  • the first SR corresponds to a first uplink shared channel or a first service that is transmitted by using a first TTI length
  • the second SR corresponds to a second uplink shared channel or a second service that is transmitted by using a second TTI length
  • the first SR corresponds to the first service
  • the second SR corresponds to the second service
  • the service parameters of the first service and the second service are different
  • the first SR transmits using a first TTI length
  • the second SR transmits using a second TTI length
  • the transmission period and/or offset value of the first SR is configured based on the first TTI length
  • the transmission period and/or offset value of the second SR is configured based on the second TTI length.
  • one state of the modulation mode corresponds to a first SR in which only an affirmative state exists
  • another state of the modulation mode corresponds to a second SR in which a positive state exists.
  • one state of the modulation mode corresponds to a first SR having only an affirmative state
  • another state of the modulation mode corresponds to a second SR having only an affirmative state
  • another state of the modulation mode corresponds to a positive state at the same time.
  • the first SR and the second SR of the affirmative state corresponds to a first SR having only an affirmative state
  • one state of the modulation mode corresponds to a first SR having only an affirmative state
  • another state of the modulation mode corresponds to a second SR having only an affirmative state
  • another state of the modulation mode corresponds to a positive state at the same time.
  • the first SR and the second SR of the positive state, the other state of the modulation mode corresponds to the first SR of the negative state and/or the second SR of the negative state.
  • the PUCCH is transmitted according to the second TTI length; or the PUCCH is transmitted according to the first TTI length when there is only the first SR in the positive state, and is transmitted according to the second TTI length when there is the second SR in the positive state. .
  • the PUCCH includes a symbol for transmitting a pilot; and/or, the PUCCH carries a modulation symbol.
  • the transmitting unit is specifically configured to: after the modulation symbol is subjected to time domain spreading and/or frequency domain spreading, and transmitted on the PUCCH resource.
  • the length of the first TTI is 1 ms
  • the length of the second TTI is M symbols
  • the M is a positive integer less than 14;
  • the length of the first TTI is 1 ms, and the length of the second TTI is a length of TTI less than 1 ms; or
  • the length of the first TTI is less than 1 ms, and the length of the second TTI is less than the length of the first TTI;
  • the length of the first TTI is M1 symbols
  • the length of the second TTI is M2 symbols
  • the M1 and M2 are positive integers less than 14
  • the M2 is smaller than the M1.
  • the modulation symbol is obtained by using one of xPSK or xQAM, where x is 2 N and N is an integer greater than or equal to 1.
  • an embodiment of the present invention further provides a base station, where the base station includes:
  • a receiving unit configured to receive a modulation symbol by using a physical uplink control channel PUCCH;
  • a determining unit configured to determine, according to the modulation symbol, a combined state of the first SR and the second SR, where different states of the modulation symbol respectively correspond to different combinations of the first SR and the second SR, the first SR Corresponding to the first time interval TTI length, the second SR corresponds to the second TTI length, and the first TTI length is different from the second TTI length.
  • the first SR corresponds to a first uplink shared channel or a first service that is transmitted by using a first TTI length
  • the second SR corresponds to a second uplink shared channel or a second service that is transmitted by using a second TTI length
  • the first SR corresponds to the first service
  • the second SR corresponds to the second service
  • the service parameters of the first service and the second service are different
  • the first SR transmits using a first TTI length
  • the second SR transmits using a second TTI length
  • the transmission period and/or offset value of the first SR is configured based on the first TTI length
  • the transmission period and/or offset value of the second SR is configured based on the second TTI length.
  • the one state of the modulation mode corresponds to the first SR in which only the positive state exists, and the other state of the modulation mode corresponds to the second SR in which the positive state exists.
  • one state of the modulation mode corresponds to a first SR having only an affirmative state
  • another state of the modulation mode corresponds to a second SR having only an affirmative state
  • another state of the modulation mode corresponds to a positive state at the same time.
  • the first SR and the second SR of the affirmative state corresponds to a first SR having only an affirmative state
  • one state of the modulation mode corresponds to a first SR having only an affirmative state
  • another state of the modulation mode corresponds to a second SR having only an affirmative state
  • another state of the modulation mode corresponds to a positive state at the same time.
  • the first SR and the second SR of the positive state, the other state of the modulation mode corresponds to the first SR of the negative state and/or the second SR of the negative state.
  • the base station further includes: a sending unit, configured to: when the determining unit determines that the modulation symbol corresponds to a first SR of a positive state, send a UL grant to the terminal, where the UL grant is used to schedule the terminal Transmitting an uplink shared channel according to the first TTI length; or
  • the determining unit determines that the modulation symbol corresponds to the first SR of the negative state, the UL grant for scheduling the terminal to transmit the uplink shared channel according to the first TTI length is not sent to the terminal; or
  • the determining unit determines that the modulation symbol corresponds to the second SR of the negative state, the UL grant for scheduling the terminal to transmit the uplink shared channel according to the second TTI length is not sent to the terminal; or
  • the determining unit When the determining unit performs energy detection on the resource for transmitting the SR, if the detection result is lower than the threshold, the UL grant is not sent to the terminal.
  • the receiving unit is further configured to: receive the PUCCH according to a second TTI length; or blindly check the PUCCH according to a first TTI length and a second TTI length.
  • the PUCCH includes a symbol for transmitting a pilot; and/or, the PUCCH carries a modulation symbol.
  • the receiving unit is specifically configured to: receive information on a resource of the PUCCH, and obtain the modulation symbol by performing time domain despreading and/or frequency domain despreading.
  • the length of the first TTI is 1 ms
  • the length of the second TTI is M symbols
  • the M is a positive integer less than 14;
  • the length of the first TTI is 1 ms, and the length of the second TTI is a length of TTI less than 1 ms; or
  • the length of the first TTI is less than 1 ms, and the length of the second TTI is less than the length of the first TTI;
  • the length of the first TTI is M1 symbols
  • the length of the second TTI is M2 symbols
  • the M1 and M2 are positive integers less than 14
  • the M2 is smaller than the M1.
  • the modulation symbol is obtained by using one of xPSK or xQAM, where x is 2 N and N is an integer greater than or equal to 1.
  • the embodiment of the present invention defines an SR transmission scheme, and the base station and the terminal follow the transmission scheme to transmit the SR.
  • the terminal When transmitting the SR, the terminal first determines the combined state of the first SR and the second SR, and then according to the first SR and The combined state of the second SR determines the modulation symbol and then transmits the modulation symbol on the PUCCH resource. Because the different states of the modulation symbols respectively correspond to different combinations of the first SR and the second SR, the embodiment of the present invention supports the terminal to correctly transmit the SRs corresponding to different TTI lengths, so that the base station determines the services of the terminal according to the received SRs. Type and demand, reasonable uplink scheduling, suitable for communication systems with shorter user plane delays.
  • FIG. 1 is a schematic diagram of a frame structure used by an LTE FDD system provided by the prior art
  • FIG. 2 is a schematic diagram of a frame structure used by an LTE TDD system provided by the prior art
  • FIG. 3 is a schematic flowchart of a method for transmitting an uplink scheduling request performed by a terminal side according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a PUCCH resource configuration according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram 1 of a terminal transmitting a preset symbol by using a PUCCH according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram 2 of a terminal transmitting a preset symbol by using a PUCCH according to an embodiment of the present disclosure
  • FIG. 7 is a schematic flowchart of a method for transmitting an uplink scheduling request performed by a base station according to an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a physical structure of a terminal according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a physical structure of a base station according to an embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • the user equipment includes but is not limited to a mobile station (Mobile Station, MS), a mobile terminal (Mobile Terminal), a mobile phone (Mobile Telephone), a mobile phone (handset). And portable devices, etc., the user equipment can communicate with one or more core networks via a Radio Access Network (RAN), for example, the user equipment can be a mobile phone (or "cellular"
  • RAN Radio Access Network
  • the user equipment can be a mobile phone (or "cellular"
  • the telephone device, the computer with wireless communication function, etc., the user equipment can also be a mobile device that is portable, pocket-sized, handheld, built-in, or in-vehicle.
  • a base station may refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a Base Transceiver Station (BTS) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station in LTE (NodeB or eNB or e-NodeB, evolutional Node B), the invention is not limited.
  • BTS Base Transceiver Station
  • NodeB base station
  • NodeB evolved base station
  • LTE Long Term Evolutional Node B
  • a terminal a device that provides voice and/or data connectivity to a user, including a wireless terminal or a wired terminal.
  • the wireless terminal can be a handheld device with wireless connectivity, or other processing device connected to a wireless modem, and a mobile terminal that communicates with one or more core networks via a wireless access network.
  • the wireless terminal can be a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • the wireless terminal can also be a portable, pocket, handheld, computer built-in or in-vehicle mobile device.
  • the wireless terminal may be part of a mobile station (mobile station), an access point (English: access point), or a user equipment (English: user equipment, referred to as UE).
  • the existing LTE FDD system uses a frame structure (frame structure type 1, FS1 for short), and its structure is as shown in FIG. 1.
  • frame structure type 1, FS1 for short the uplink and downlink transmissions use different carrier frequencies, and both the uplink and downlink transmissions use the same frame structure.
  • a 10ms-length radio frame contains 10 1ms subframes, each of which is divided into two 0.5ms long slots.
  • the TTI duration of uplink and downlink data transmission is 1 ms.
  • the existing LTE TDD system uses a frame structure type 2 (FS2), as shown in FIG. 2.
  • FS2 frame structure type 2
  • uplink and downlink transmissions use different subframes or different time slots on the same frequency.
  • Each 10 ms radio frame in FS2 consists of two 5 ms half frames, each of which contains five subframes of 1 ms length.
  • the sub-frames in FS2 are classified into three types: downlink sub-frames, uplink sub-frames, and special sub-frames.
  • Each special sub-frame consists of a downlink transmission time slot (DwPTS, Downlink Pilot Time Slot), a guard interval (GP, Guard Period), and
  • the uplink transmission time slot (UpPTS, Uplink Pilot Time Slot) is composed of three parts.
  • the DwPTS can transmit downlink pilot, downlink service data and downlink control signaling; the GP does not transmit any signal; the UpPTS only transmits random access and sounding reference symbols (SRS, Sounding Reference Symbol), and cannot transmit uplink service or uplink control information.
  • SRS random access and sounding reference symbols
  • Each field includes at least one downlink subframe and at least one uplink subframe, and at most one special subframe.
  • the DL:UL ratio mode of the seven uplink and downlink subframes supported in FS2 is shown in Table 1.
  • the PUSCH is transmitted according to the length of one subframe (that is, the length of the TTI (Transmission Time Interval) is 1 ms). Therefore, when the terminal sends the SR, the SR is only used to notify the base station whether The uplink resource needs to be scheduled for the terminal for the PUSCH transmission, that is, the SR is only used for scheduling the PUSCH transmitted for 1 ms length.
  • the embodiment of the present invention provides a schematic flowchart of the uplink scheduling request transmission method. As shown in FIG. 3, the specific implementation method includes:
  • Step S101 The terminal determines a combined state of the first uplink scheduling request SR and the second SR, where the first SR corresponds to a first time interval TTI length, the second SR corresponds to a second TTI length, and the first TTI length is The second TTI has a different length.
  • Step S102 The terminal determines, according to a combined state of the first SR and the second SR, a modulation symbol, where different states of the modulation symbol respectively correspond to different combinations of the first SR and the second SR.
  • Step S103 the terminal transmits the modulation symbol by using a physical uplink control channel PUCCH.
  • the terminal uses the PUCCH to transmit the SR, and the different states of the modulation mode used by the PUCCH respectively correspond to different combinations of the first SR and the second SR, where the first SR corresponds to the first TTI length or a first service, where the second SR corresponds to a second TTI length or a second service, where the first TTI length is different from the second TTI length, and the first service is different from the second service.
  • Service parameters refer to parameters such as priority, Qos (quality of service) or latency (delay).
  • the first SR corresponds to the first TTI length
  • the second SR corresponds to the second TTI length, which specifically includes:
  • the first SR corresponds to a first uplink shared channel or a first service that is transmitted by using a first TTI length
  • the second SR corresponds to a second uplink shared channel or a second service that is transmitted by using a second TTI length
  • the first The SR is configured to perform scheduling request on the first uplink shared channel or the first service transmission using the first TTI length transmission
  • the second SR is used to use the second uplink shared channel or the second transmission using the second TTI length
  • the transmission of the service is scheduled to be dispatched; or,
  • the first SR corresponds to the first service
  • the second SR corresponds to the second service
  • the service parameters of the first service and the second service are different
  • the first SR is transmitted using a first TTI length
  • the second SR is transmitted using a second TTI length; for example, the TTI length of the sPUCCH transmitting the first SR is a first TTI length, and the second SR is transmitted.
  • the TTI length of the sPUCCH is the second TTI length; or,
  • the transmission period and/or offset value of the first SR is configured based on the first TTI length
  • the transmission period and/or offset value of the second SR is configured based on the second TTI length.
  • the modulation symbols corresponding to different modulation modes are also different, wherein one state of the modulation mode corresponds to the first SR in which only the positive state exists (ie, the positive first SR, that is, the first SR) In the case of positive, the second SR is negative or there is no second SR at this time (ie, the current transmission opportunity is not the transmission opportunity of the second SR, the same below), and the other state of the modulation mode corresponds to the second SR having the positive state (ie, Positive second SR).
  • one state of the modulation mode corresponds to only the positive first SR (ie, there is no second SR at this time, or the second SR is negative), and another state of the modulation mode corresponds to There is a positive second SR (that is, there is no first SR at this time (that is, the current transmission opportunity is not the transmission opportunity of the first SR, the same below), or the first SR is negative, or the first SR is positive, but due to the first service If the priority/Qos/latency is lower than the second TTI, the second service is considered to have a scheduling request, that is, when the first SR collides with the second SR, the second SR is considered to exist.
  • the terminal does not transmit the SR; for example, when the modulation mode is BPSK or 2QAM, the correspondence is as shown in Table 2 below.
  • Table 2 The following table is only an example, and the correspondences in the table can be exchanged and changed. Within the scope of protection of the embodiments of the present invention.
  • the corresponding modulation state is different.
  • one state of the modulation mode corresponds to the first SR having only a positive state (ie, the first SR, that is, the first SR).
  • the second SR is negative or no second SR at this time
  • another state of the modulation mode corresponds to a second SR having only a positive state (ie, a positive second SR, ie, the second SR is positive, first
  • the SR is negative or there is no first SR at this time
  • the other state of the modulation mode corresponds to the first SR in which the positive state exists and the second SR in the positive state.
  • the terminal does not transmit the SR; for example, when the modulation mode is QPSK or 4QAM, the correspondence is as shown in Table 3.
  • the modulation mode is QPSK or 4QAM
  • the correspondence is as shown in Table 3.
  • the following table is only an example, and the correspondence in the table may be Exchanges and changes are within the scope of the invention.
  • the corresponding QPSK or 4QAM modulation mode in the above example may further correspond to a modulation symbol.
  • one state of the modulation mode corresponds to a first SR having only a positive state (ie, a positive first SR, ie, a first SR).
  • the second SR is negative or no second SR at this time
  • another state of the modulation mode corresponds to a second SR having only a positive state (ie, a positive second SR, ie, the second SR is positive, first SR is negative or no first SR at this time
  • another state of the modulation mode corresponds to a first SR in which a positive state exists simultaneously and a second SR in a positive state
  • another state of the modulation mode corresponds to a negative state SR
  • the SR of the negative state includes a first SR of a negative state and/or a second SR of a negative state.
  • a first SR of a negative state and/or a second SR of a negative state that is, if it is a transmission opportunity of both the first SR and the second SR, then a negative first SR and a negative second SR if In the transmission opportunity only for the first SR, it is a negative first SR, and if it is only a transmission opportunity of the second SR, it is a negative second SR.
  • the modulation mode is QPSK or 4QAM
  • the corresponding relationship is shown in Table 4.
  • the following table is only an example, and the correspondences in the table may be exchanged and changed, which are all within the protection scope of the embodiment of the present invention.
  • the PUCCH is transmitted according to the second TTI length; or the PUCCH is transmitted according to the first TTI length when there is only the first SR in the positive state, and according to the second TTI length when there is the second SR in the positive state. transmission.
  • the PUCCH has a symbol for transmitting a pilot; the terminal determines a modulation symbol according to a combined state of different first SRs and second SRs in the current TTI, and performs frequency-domain spreading on the modulation symbol (multiplied by an orthogonal sequence) And / or frequency domain spread spectrum (multiplied by CAZAC or ZC sequence or CAZAC or ZC sequence after cyclic shift), the mapping is transmitted on the resources of the PUCCH: the base station side is the inverse process of the terminal side, Receiving information on the resource of the PUCCH, performing time domain despreading and/or frequency domain despreading on the received information to obtain a modulation symbol, and determining, according to the modulation symbol, different first SRs that the terminal feeds back in the current TTI.
  • the combined state with the second SR determines that the uplink shared channel/service corresponding to the first SR and/or the uplink shared channel/service corresponding to the second SR are scheduled.
  • the foregoing PUCCH resource used for transmitting the SR is configured by the base station to the terminal through high-layer signaling or indicated to the terminal by using a downlink control channel, or is pre-agreed.
  • the PUCCH reuses the transmission format of the PUCCH format 1a/1b (ie, except that the modulation symbol d(0) is determined in the above manner, Processing the same PUCCH format 1a/1b);
  • the modulation symbol is obtained by using one of xPSK or xQAM, where x is 2 N and N is an integer greater than or equal to 1.
  • xPSK ie BPSK
  • 4PSK ie QPSK
  • 8PSK 2QAM
  • 4QAM 4QAM
  • 16QAM 16QAM
  • 64QAM 64QAM
  • the length of the first TTI is 1 ms
  • the length of the second TTI is M symbols
  • the M is a positive integer less than 14, for example, the second TTI is 2 symbols, 4 symbols, 7 symbols, etc. ;or,
  • the length of the first TTI is 1 ms, and the length of the second TTI is a length of TTI less than 1 ms; or
  • the length of the first TTI is less than 1 ms, and the length of the second TTI is less than the length of the first TTI;
  • the length of the first TTI is M1 symbols
  • the length of the second TTI is M2 symbols
  • the M1 and M2 are positive integers less than 14
  • the M2 is smaller than the M1, for example, the second TTI It is 10 symbols
  • the second TTI is 4 symbols or the like.
  • the foregoing implementation method may be applied only to transmission opportunities that are both the first SR and the second SR.
  • the terminal needs to determine the first SR and the second according to the period and/or offset configuration of the first SR and the second SR.
  • the modulation symbol is selected according to the mapping table of the modulation symbol and the SR combination state. If it is negative, it is not sent; in the transmission opportunity only for the second SR, it is determined whether the second SR is positive or negative, and if it is positive, it is directly transmitted.
  • the foregoing implementation method may also be applied to all the SR transmission opportunities.
  • the terminal needs to determine the transmission opportunities of the first SR and the second SR according to the period and/or the offset configuration of the first SR and the second SR.
  • the transmission opportunity of the first SR determining whether the first SR is positive or negative, and then querying a mapping table of the corresponding modulation symbol and the SR combined state, and selecting an appropriate modulation symbol for transmission; in the transmission opportunity only for the second SR, Determining whether the second SR is positive or negative, and then querying a mapping table of the corresponding modulation symbol and the SR combined state, selecting an appropriate modulation symbol for transmission; and determining the first SR in the transmission opportunity of the first SR and the second SR at the same time Whether it is positive or negative and judge whether the second SR is positive or negative, then query the mapping table of the corresponding modulation symbol and SR combination state, and select an appropriate modulation symbol for transmission.
  • the embodiment of the present invention provides a schematic diagram of the SR transmission shown in FIG. 4, and details the transmission method of the SR. It is assumed that the first TTI length is 1 ms in FIG. 4, and the second TTI length is 7 symbols (ie, one time slot, The symbol may be an access symbol such as an SC-FDMA symbol or an OFDM symbol, and the PUCCH is transmitted using a second TTI length, and the modulation method is QPSK or 4QAM, and the first SR may perform period and offset value configuration in units of subframes, thereby Determining that the transmission opportunity of the first SR is subframe #i, i+2, i+4, . . .
  • the first SR may be transmitted once every two subframes, and the second SR may be in units of time slots (7 symbols).
  • the first SR; the terminal side and the base station side respectively perform the transmission process of the uplink scheduling request according to the following method.
  • the transmission process is as follows:
  • the transmission opportunity of the first SR and the second SR is determined; the terminal determines whether the first SR and the first SR are present according to the actual demand of the uplink data transmission.
  • the second SR assumes that there is a positive first SR (for example, the first service needs to be transmitted in the terminal buffer) and a positive second SR (for example, the second service needs to be transmitted in the terminal buffer), according to Table 2 or Table 3,
  • the modulation symbol d(0) is "1"
  • the terminal correspondingly transmits d(0) in the first time slot (slot #j) in the subframe #i after time domain spreading and/or frequency domain spreading. Transmitted on the PUCCH resource, for example, the d(0) may be sent according to the PUCCH as shown in FIG. 5;
  • the terminal determines whether the second SR exists according to the actual demand of the uplink data transmission of the terminal. Assuming that there is a positive second SR, according to Table 2 or Table 3, it is determined that the modulation symbol d(0) is "j", and the terminal passes d(0) through time domain spreading and/or frequency domain spreading in the subframe #
  • the first time slot (slot #j+2) in i+1 is sent on the corresponding PUCCH resource, for example, the d(0) may be sent according to the PUCCH as shown in FIG. 5;
  • the transmission opportunity of the first SR and the second SR is determined at the same time; the terminal determines whether the existence exists according to the actual demand of the uplink data transmission of the terminal.
  • the first SR and the second SR assuming that there is only a positive first SR, according to Table 2 or Table 3, determining that the modulation symbol d(0) is "-j", the terminal passes d(0) through time domain spreading and/ Or the frequency domain spread spectrum is transmitted on the corresponding resource in the first time slot (slot #j+4) in the subframe #i+2, for example, the d may be sent according to the PUCCH as shown in FIG.
  • the terminal may also perform time domain spreading and/or frequency domain spreading after the d(0) in the subframe #i+2.
  • the transmission is performed on the corresponding PUCCH resource in the medium (ie, transmitted according to the 1 subframe length), and the d(0) may be transmitted, for example, according to the PUCCH as shown in FIG. 6.
  • the embodiment of the present invention provides a schematic diagram of a method for transmitting an uplink scheduling request from a base station side. As shown in FIG. 7, the specific implementation method includes:
  • step S201 the base station receives the modulation symbol by using the physical uplink control channel PUCCH.
  • Step S202 the base station determines, according to the modulation symbol, a combined state of the first SR and the second SR, where different states of the modulation symbols respectively correspond to different combinations of the first SR and the second SR, where the first The SR corresponds to a first time interval TTI length, and the second SR corresponds to a second TTI length, and the first TTI length is different from the second TTI length.
  • the first SR corresponds to the first TTI length
  • the second SR corresponds to the second TTI length, which specifically includes:
  • the first SR corresponds to the first uplink shared channel or the first service that is transmitted by using the first TTI length
  • the second SR corresponds to the second uplink shared channel or the second service that is transmitted by using the second TTI length
  • the first SR corresponds to the first service
  • the second SR corresponds to the second service
  • the service parameters of the first service and the second service are different
  • the first SR transmits using a first TTI length
  • the second SR transmits using a second TTI length
  • the transmission period and/or offset value of the first SR is configured based on the first TTI length
  • the transmission period and/or offset value of the second SR is configured based on the second TTI length.
  • the different states of the modulation symbols respectively correspond to different combinations of the first SR and the second SR, and specifically include:
  • One state of the modulation mode corresponds to a first SR in which only an affirmative state exists, and the other state of the modulation mode corresponds to a second SR in which a positive state exists.
  • the different states of the modulation symbols respectively correspond to different combinations of the first SR and the second SR, and specifically include:
  • One state of the modulation mode corresponds to a first SR having only an affirmative state
  • another state of the modulation mode corresponds to a second SR having only an affirmative state
  • another state of the modulation mode corresponds to a first state in which a positive state exists simultaneously An SR and a second SR of a positive state.
  • the different states of the modulation symbols respectively correspond to different combinations of the first SR and the second SR, and specifically include:
  • One state of the modulation mode corresponds to a first SR having only an affirmative state
  • another state of the modulation mode corresponds to a second SR having only an affirmative state
  • another state of the modulation mode corresponds to a first state in which a positive state exists simultaneously
  • An SR and a second SR of the positive state the other state of the modulation mode corresponds to a first SR of a negative state and/or a second SR of a negative state.
  • the base station when the base station determines that the modulation symbol corresponds to the first SR of the positive state, the base station sends a UL grant to the terminal, where the UL grant is used to schedule the terminal according to the foregoing.
  • the first TTI length transmits an uplink shared channel.
  • the base station determines that the modulation symbol corresponds to the second SR of the positive state, the base station sends a UL grant to the terminal, where the UL grant is used to schedule the terminal to transmit according to the second TTI length.
  • Uplink shared channel when the base station determines that the modulation symbol corresponds to the second SR of the positive state, the base station sends a UL grant to the terminal, where the UL grant is used to schedule the terminal to transmit according to the second TTI length.
  • the base station when the base station determines that the modulation symbol corresponds to the first SR of the negative state, the base station does not send the terminal to schedule the terminal to transmit uplink sharing according to the first TTI length.
  • the UL grant of the channel or, when the base station determines that the modulation symbol corresponds to the second SR of the negative state, the base station does not send the terminal to schedule the terminal to transmit uplink sharing according to the second TTI length.
  • the UL grant of the channel when the base station determines that the modulation symbol corresponds to the second SR of the negative state, the base station does not send the terminal to schedule the terminal to transmit uplink sharing according to the second TTI length.
  • the base station performs energy detection on the resource used for transmitting the SR, and if the detection result is lower than the threshold, the base station does not send the UL grant to the terminal. That is, the base station determines whether the terminal transmits the PUCCH on the resource for transmitting the SR by using the energy detection. If the energy detection result is lower than the threshold, it is determined that the terminal does not send the PUCCH, that is, the terminal does not have a positive SR (the first SR).
  • the terminal is not required to be scheduled; when the energy detection result is higher than the threshold, the modulation symbol carried on the PUCCH is further parsed, and the terminal is sent according to the modulation symbol.
  • the base station receives the PUCCH according to a second TTI length; or the base station blindly detects the PUCCH according to a first TTI length and a second TTI length.
  • the PUCCH includes a symbol for transmitting a pilot; and/or the PUCCH carries a modulation symbol.
  • the base station receives information on the resources of the PUCCH, and obtains the modulation symbols by performing time domain despreading and/or frequency domain despreading.
  • the length of the first TTI is 1 ms
  • the length of the second TTI is M symbols
  • the M is a positive integer less than 14;
  • the length of the first TTI is 1 ms, and the length of the second TTI is a length of TTI less than 1 ms; or
  • the length of the first TTI is less than 1 ms, and the length of the second TTI is less than the length of the first TTI;
  • the length of the first TTI is M1 symbols
  • the length of the second TTI is M2 symbols
  • the M1 and M2 are positive integers less than 14
  • the M2 is smaller than the M1.
  • the modulation symbol is obtained by using one of xPSK or xQAM, where x is 2 N and N is an integer greater than or equal to 1.
  • the foregoing implementation method may be applied only to transmission opportunities that are both the first SR and the second SR.
  • the base station needs to determine the first SR and the second according to the period and/or offset configuration of the first SR and the second SR.
  • the foregoing implementation method may also be applied to all the SR transmission opportunities.
  • the base station needs to determine the transmission opportunities of the first SR and the second SR according to the period and/or the offset configuration of the first SR and the second SR.
  • the transmission opportunity of the first SR in the transmission opportunity of only the second SR, in the transmission opportunity of both the first SR and the second SR, the corresponding behavior in the example similar to that shown in FIG. 4 is performed.
  • the transmission opportunity only for the first SR there is a certain a priori information that can be used by the base station to determine that the expected received modulation symbol is a subset of all possible modulation symbols, ie, there is no state including the positive second SR.
  • the embodiment of the present invention further illustrates the uplink scheduling request transmission process performed by the base station side through FIG. Specifically, the base station side performs a transmission process according to the following method, and the transmission process is as follows:
  • the base station determines, according to the periodic configuration of the SR, the transmission opportunities of the first SR and the second SR, in each of the transmission opportunities of the first SR and the second SR (in FIG. 4, the first slot in each subframe) And receiving d(0) according to the PUCCH on the corresponding PUCCH resource, and determining the SR situation transmitted by the terminal according to the received d(0) lookup table, as follows:
  • the transmission opportunity of the first SR and the second SR is determined at the same time, and the received d(0) may correspond to Table 2 or Table 3
  • the terminal sends a UL grant for scheduling the first TTI length and the second TTI length transmission, and the scheduling terminal performs the first TTI length and The uplink shared channel or service transmission of the second TTI length; when it is determined that only the first active SR exists, the terminal sends a UL grant for scheduling the first TTI length transmission, and the scheduling terminal performs the uplink shared channel or service of the first TTI length.
  • the terminal sends a UL grant for scheduling the second TTI length transmission, and the scheduling terminal performs an uplink shared channel or service transmission of the second TTI length; when using Table 2, the base station if If the received d(0) is not in any of the states in Table 2, it indicates that the receiving error, the base station does not perform any uplink scheduling, and waits for the next SR transmission opportunity to further detect. If the base station determines that there is no corresponding PUCCH resource.
  • the base station may not perform energy detection or DTX detection, and always assumes that the terminal transmits the PUCCH, and determines whether it is a negative SR according to d(0);
  • the second SR is considered as the negative second SR, and no uplink scheduling is performed.
  • the second SR does not perform any uplink scheduling.
  • the base station may determine whether to receive the PUCCH without performing any energy detection or DTX detection, and always assume that the terminal sends the PUCCH;
  • the transmission opportunity of the first SR and the second SR is determined, and the processing is the same as the subframe #i.
  • the base station needs to blindly check whether the terminal is sent on the SR resource pre-configured to the terminal.
  • Information such as energy detection
  • no information for example, the energy detection result is lower than the threshold
  • BPSK or 2QAM works in a similar manner, and the second TTI is replaced with other symbol lengths.
  • 2 symbols or 4 symbols or other values work in a similar manner, and the first TTI is used.
  • the second TTI is replaced with two short TTIs of different lengths (TTIs less than 1 ms)
  • TTIs TTIs less than 1 ms
  • the operation is similar, and the structure of the PUCCH is similar to that of FIG. 5 or FIG. 6 when the second TTI is of other lengths.
  • the length and/or position of the symbols of the transmitted data and the transmitted pilots vary, and the length of the time-domain orthogonal spreading sequence may vary.
  • an embodiment of the present invention further provides a terminal, where the terminal can perform the foregoing method embodiments.
  • the terminal provided by the embodiment of the present invention includes: a combination state unit 301, a modulation symbol unit 302, and a transmission unit 303, wherein:
  • Determining a combination state unit 301 configured to determine a combined state of the first uplink scheduling request SR and the second SR, where the first SR corresponds to a first time interval TTI length, and the second SR corresponds to a second TTI length, where the a TTI length is different from the second TTI length;
  • Determining a modulation symbol unit 302 configured to determine a modulation symbol according to a combined state of the first SR and the second SR, where different states of the modulation symbol respectively correspond to different combinations of the first SR and the second SR;
  • the transmitting unit 303 is configured to transmit the modulation symbol by using a physical uplink control channel PUCCH.
  • the first SR corresponds to the first uplink shared channel or the first service that is transmitted by using the first TTI length
  • the second SR corresponds to the second uplink shared channel or the second service that is transmitted by using the second TTI length
  • the first SR corresponds to the first service
  • the second SR corresponds to the second service
  • the service parameters of the first service and the second service are different
  • the first SR transmits using a first TTI length
  • the second SR transmits using a second TTI length
  • the transmission period and/or offset value of the first SR is configured based on the first TTI length
  • the transmission period and/or offset value of the second SR is configured based on the second TTI length.
  • one state of the modulation mode corresponds to a first SR in which only an affirmative state exists
  • the other state of the modulation mode corresponds to a second SR in which a positive state exists.
  • one state of the modulation mode corresponds to a first SR having only an affirmative state
  • another state of the modulation mode corresponds to a second SR having only an affirmative state
  • another state of the modulation mode corresponds to a positive state at the same time.
  • the first SR and the second SR of the affirmative state corresponds to a first SR having only an affirmative state
  • one state of the modulation mode corresponds to a first SR having only an affirmative state
  • another state of the modulation mode corresponds to a second SR having only an affirmative state
  • another state of the modulation mode corresponds to a positive affirmation
  • the other state of the modulation mode corresponds to the first SR of the negative state and/or the second SR of the negative state.
  • the PUCCH is transmitted according to the second TTI length; or the PUCCH is transmitted according to the first TTI length when there is only the first SR in the positive state, and according to the second TTI length when there is the second SR in the positive state. transmission.
  • the PUCCH includes a symbol for transmitting a pilot; and/or the PUCCH carries a modulation symbol.
  • the transmitting unit 303 is specifically configured to: after the modulation symbol is subjected to time domain spreading and/or frequency domain spreading, and transmitted on the PUCCH resource.
  • the length of the first TTI is 1 ms
  • the length of the second TTI is M symbols
  • the M is a positive integer less than 14;
  • the length of the first TTI is 1 ms, and the length of the second TTI is a length of TTI less than 1 ms; or
  • the length of the first TTI is less than 1 ms, and the length of the second TTI is less than the length of the first TTI;
  • the length of the first TTI is M1 symbols
  • the length of the second TTI is M2 symbols
  • the M1 and M2 are positive integers less than 14
  • the M2 is smaller than the M1.
  • the modulation symbol is obtained by using one of xPSK or xQAM, where x is 2 N and N is an integer greater than or equal to 1.
  • the embodiment of the present invention further provides a base station, and the processing procedure performed by the base station corresponds to the method step of the base station side.
  • the terminal provided by the embodiment of the present invention includes: a receiving unit. 401. Determine unit 402, where:
  • the receiving unit 401 is configured to receive a modulation symbol by using a physical uplink control channel PUCCH;
  • a determining unit 402 configured to determine, according to the modulation symbol, a combined state of the first SR and the second SR, where different states of the modulation symbol respectively correspond to different combinations of the first SR and the second SR, where the first The SR corresponds to a first time interval TTI length, and the second SR corresponds to a second TTI length, and the first TTI length is different from the second TTI length.
  • the first SR corresponds to a first uplink shared channel or a first service that is transmitted by using a first TTI length
  • the second SR corresponds to a second uplink shared channel or a second service that is transmitted by using a second TTI length
  • the first SR corresponds to the first service
  • the second SR corresponds to the second service
  • the service parameters of the first service and the second service are different
  • the first SR transmits using a first TTI length
  • the second SR transmits using a second TTI length
  • the transmission period and/or offset value of the first SR is configured based on the first TTI length
  • the transmission period and/or offset value of the second SR is configured based on the second TTI length.
  • the one state of the modulation mode corresponds to the first SR in which only the positive state exists, and the other state of the modulation mode corresponds to the second SR in which the positive state exists.
  • one state of the modulation mode corresponds to a first SR having only an affirmative state
  • another state of the modulation mode corresponds to a second SR having only an affirmative state
  • another state of the modulation mode corresponds to a positive state at the same time.
  • the first SR and the second SR of the affirmative state corresponds to a positive state at the same time.
  • one state of the modulation mode corresponds to a first SR having only an affirmative state
  • another state of the modulation mode corresponds to a second SR having only an affirmative state
  • another state of the modulation mode corresponds to a positive state at the same time.
  • the first SR and the second SR of the positive state, the other state of the modulation mode corresponds to the first SR of the negative state and/or the second SR of the negative state.
  • the base station further includes a sending unit 403, configured to: when the determining unit 402 determines that the modulation symbol corresponds to the first SR of the positive state, send a UL grant to the terminal, where the UL grant is used to schedule the Transmitting, by the terminal, the uplink shared channel according to the first TTI length; or
  • the UL grant is sent to the terminal, where the UL grant is used to schedule the terminal to transmit the uplink shared channel according to the second TTI length;
  • the determining unit 402 determines that the modulation symbol corresponds to the first SR of the negative state, the UL grant for scheduling the terminal to transmit the uplink shared channel according to the first TTI length is not sent to the terminal; or
  • the determining unit 402 determines that the modulation symbol corresponds to the second SR of the negative state, does not send, to the terminal, a UL grant for scheduling the terminal to transmit the uplink shared channel according to the second TTI length;
  • the determining unit 402 When the determining unit 402 performs energy detection on the resource for transmitting the SR, if the detection result is lower than the threshold, the UL grant is not sent to the terminal.
  • the receiving unit 401 is further configured to: receive the PUCCH according to a second TTI length; or blindly check the PUCCH according to a first TTI length and a second TTI length.
  • the PUCCH includes a symbol for transmitting a pilot; and/or, the PUCCH carries a modulation symbol.
  • the receiving unit 401 is specifically configured to: receive information on a resource of the PUCCH, and obtain the modulation symbol by performing time domain despreading and/or frequency domain despreading.
  • the length of the first TTI is 1 ms
  • the length of the second TTI is M symbols
  • the M is a positive integer less than 14;
  • the length of the first TTI is 1 ms, and the length of the second TTI is a length of TTI less than 1 ms; or
  • the length of the first TTI is less than 1 ms, and the length of the second TTI is less than the length of the first TTI;
  • the length of the first TTI is M1 symbols
  • the length of the second TTI is M2 symbols
  • the M1 and M2 are positive integers less than 14
  • the M2 is smaller than the M1.
  • the modulation symbol is obtained by using one of xPSK or xQAM, where x is 2 N and N is an integer greater than or equal to 1.
  • a terminal in an embodiment of the present invention, includes at least a processor 1000 and a transceiver 1010, where
  • the processor 1000 is configured to read a program in the memory and perform the following process:
  • the first SR corresponds to a first time interval TTI length
  • the second SR corresponds to a second TTI length
  • the first TTI length and the second TTI length is different;
  • the transceiver 1010 is configured to receive and transmit data under the control of the processor 1000.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1000 and various circuits of memory represented by the memory.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver 1010 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1000 is responsible for managing the bus architecture and the usual processing, and the memory can store data used by the processor 1000 in performing operations.
  • the first SR corresponds to a first uplink shared channel or a first service that is transmitted by using a first TTI length
  • the second SR corresponds to a second uplink shared channel or a second service that is transmitted by using a second TTI length
  • the first SR corresponds to the first service
  • the second SR corresponds to the second service
  • the service parameters of the first service and the second service are different
  • the first SR transmits using a first TTI length
  • the second SR transmits using a second TTI length
  • the transmission period and/or offset value of the first SR is configured based on the first TTI length
  • the transmission period and/or offset value of the second SR is configured based on the second TTI length.
  • one state of the modulation mode corresponds to a first SR that only has an affirmative state
  • another state of the modulation mode corresponds to a second SR that has an affirmative state
  • one state of the modulation mode corresponds to a first SR that only has an affirmative state
  • another state of the modulation mode corresponds to a second SR that only has an affirmative state
  • another state of the modulation mode corresponds to the simultaneous existence.
  • one state of the modulation mode corresponds to a first SR that only has an affirmative state
  • another state of the modulation mode corresponds to a second SR that only has an affirmative state
  • another state of the modulation mode corresponds to the simultaneous existence.
  • the other state of the modulation mode corresponds to the first SR of the negative state and/or the second SR of the negative state.
  • the PUCCH is transmitted according to the second TTI length; or the PUCCH is transmitted according to the first TTI length when there is only the first SR in the positive state, and according to the second TTI when there is the second SR in the positive state. Length transfer.
  • the PUCCH includes a symbol for transmitting a pilot; and/or, the PUCCH carries a modulation symbol.
  • the transceiver 1010 is specifically configured to:
  • the modulation symbols are transmitted on the resources of the PUCCH after being subjected to time domain spreading and/or frequency domain spreading.
  • the length of the first TTI is 1 ms
  • the length of the second TTI is M symbols
  • the M is a positive integer less than 14;
  • the length of the first TTI is 1 ms, and the length of the second TTI is a length of TTI less than 1 ms; or
  • the length of the first TTI is less than 1 ms, and the length of the second TTI is less than the length of the first TTI;
  • the length of the first TTI is M1 symbols
  • the length of the second TTI is M2 symbols
  • the M1 and M2 are positive integers less than 14
  • the M2 is smaller than the M1.
  • the modulation symbol is obtained by using one of xPSK or xQAM, where x is 2N, and N is an integer greater than or equal to 1.
  • a base station is provided, where the base station includes at least a processor 1100 and a transceiver 1110.
  • the processor 1100 is configured to read a program in the memory and perform the following process:
  • the transceiver 1110 is configured to receive and transmit data under the control of the processor 1100.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1100 and various circuits of memory represented by the memory.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver 1110 can be a plurality of components, including a transmitter and a transceiver, provided for transmission
  • the processor 1100 is responsible for managing the bus architecture and general processing, and the memory can store data used by the processor 1100 in performing operations.
  • the first SR corresponds to a first uplink shared channel or a first service that is transmitted by using a first TTI length
  • the second SR corresponds to a second uplink shared channel or a second service that is transmitted by using a second TTI length
  • the first SR corresponds to the first service
  • the second SR corresponds to the second service
  • the service parameters of the first service and the second service are different
  • the first SR transmits using a first TTI length
  • the second SR transmits using a second TTI length
  • the transmission period and/or offset value of the first SR is configured based on the first TTI length
  • the transmission period and/or offset value of the second SR is configured based on the second TTI length.
  • one state of the modulation mode corresponds to a first SR that only has an affirmative state
  • another state of the modulation mode corresponds to a second SR that has an affirmative state
  • one state of the modulation mode corresponds to a first SR that only has an affirmative state
  • another state of the modulation mode corresponds to a second SR that only has an affirmative state
  • another state of the modulation mode corresponds to the simultaneous existence.
  • one state of the modulation mode corresponds to a first SR that only has an affirmative state
  • another state of the modulation mode corresponds to a second SR that only has an affirmative state
  • another state of the modulation mode corresponds to the simultaneous existence.
  • the other state of the modulation mode corresponds to the first SR of the negative state and/or the second SR of the negative state.
  • the transceiver is further configured to:
  • the UL grant is sent to the terminal, where the UL grant is used to schedule the terminal to transmit an uplink shared channel according to the first TTI length; or ,
  • the determining unit determines that the modulation symbol corresponds to the first SR of the negative state, the UL grant for scheduling the terminal to transmit the uplink shared channel according to the first TTI length is not sent to the terminal; or
  • the determining unit determines that the modulation symbol corresponds to the second SR of the negative state, the UL grant for scheduling the terminal to transmit the uplink shared channel according to the second TTI length is not sent to the terminal; or
  • the determining unit When the determining unit performs energy detection on the resource for transmitting the SR, if the detection result is lower than the threshold, the UL grant is not sent to the terminal.
  • the transceiver 1110 is further configured to:
  • the PUCCH includes a symbol for transmitting a pilot; and/or,
  • the PUCCH carries a modulation symbol.
  • the transceiver 1110 is specifically configured to:
  • the length of the first TTI is 1 ms
  • the length of the second TTI is M symbols
  • the M is a positive integer less than 14;
  • the length of the first TTI is 1 ms, and the length of the second TTI is a length of TTI less than 1 ms; or
  • the length of the first TTI is less than 1 ms, and the length of the second TTI is less than the length of the first TTI;
  • the length of the first TTI is M1 symbols
  • the length of the second TTI is M2 symbols
  • the M1 and M2 are positive integers less than 14
  • the M2 is smaller than the M1.
  • the modulation symbol is obtained by using one of xPSK or xQAM, where x is 2 N and N is an integer greater than or equal to 1.
  • the embodiment of the present invention defines an SR transmission scheme, and the base station and the terminal follow the transmission scheme to transmit the SR.
  • the terminal sends the SR
  • the terminal first determines the combined state of the first SR and the second SR, and then The modulation symbol is determined according to a combined state of the first SR and the second SR, and then transmitted on a PUCCH resource of a current period.
  • the embodiment of the present invention supports the terminal to correctly transmit the SRs corresponding to different TTI lengths, so that the base station determines the services of the terminal according to the received SRs. Type and demand, reasonable uplink scheduling, suitable for communication systems with shorter user plane delays.
  • embodiments of the present invention can be provided as a method, system, or computer program product.
  • the present invention can take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware.
  • the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种上行调度请求传输方法、终端及基站,该方法包括:终端确定第一上行调度请求SR和第二SR的组合状态,第一SR对应第一时间间隔TTI长度,第二SR对应第二TTI长度,第一TTI长度与第二TTI长度不同;终端根据第一SR和第二SR的组合状态,确定调制符号,其中,调制符号的不同状态分别对应第一SR和第二SR的不同组合;终端使用物理上行链路控制信道PUCCH,传输调制符号,用以提供一种新的SR传输方法,以适用于短用户时延的通信系统。

Description

一种上行调度请求传输方法、终端及基站
本申请要求在2017年1月25日提交中国专利局、申请号为201710061298.0、发明名称为“一种上行调度请求传输方法、终端及基站”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种上行调度请求传输方法、终端及基站。
背景技术
在长期演进(Long Term Evolution,LTE)系统中,终端接入系统后,若要发起上行业务传输(即上行业务信道传输),需要首先向基站发送一个上行调度请求(Scheduling Request,SR),基站接收到该SR后,才会分配合适的物理上行链路共享信道(Physical Uplink Shared Channel,PUSCH)资源给终端,以供终端进行上行业务传输。在现有技术中,PUSCH都是按照1个子帧(即传输时间间隔(Transmission Time Interval,TTI)长度为1ms)的长度传输的,因此当终端发送了SR时,该SR仅用于通知基站是否需要对终端调度上行资源,用于PUSCH传输,即SR仅用于对1ms长度传输的PUSCH进行调度请求。在现有技术中,SR的传输机会是根据预先配置的周期和偏移值确定的,其中周期和偏移值都是以子帧为单位定义的,即SR的最小传输周期为1个子帧,即可以每个子帧中都为SR的传输机会,当然可以是多个子帧中才出现一次SR的传输机会。现有技术中每次SR的传输机会中,SR都是在按照1个子帧(即TTI等于1ms)的长度传输的PUCCH上进行传输的。
随着移动通信业务需求的发展变化,国际电信联盟(International Telecommunication Union,ITU)等多个组织对未来移动通信系统都定义了更高的用户面时延性能要求。缩短用户面时延的主要方法是降低TTI的长度。为此,现有技术提出一种新的移动通信系统,在该系统中定义了支持1ms和短于1ms的PUSCH传输,即终端的上行业务可以有多种类型,不同类型对时延(latency)的需求不同,对latency需求不高的,可以在使用1ms TTI长度传输的PUSCH上进行,对latency要求高的,可以在使用短于1ms TTI(即sTTI)长度传输的PUSCH(即sPUSCH)上进行。当终端支持两种不同latency需求的上行业务传输时,现有技术中的SR反馈机制不再适用,如何进行SR传输还没有明确方法。
发明内容
本发明实施例提供一种上行调度请求传输方法、终端及基站,用以提供一种新的SR传输方法,以适用于短用户时延的通信系统。
本发明方法包括一种上行调度请求传输方法,该方法包括:
终端确定第一上行调度请求SR和第二SR的组合状态,所述第一SR对应第一时间间隔TTI长度,所述第二SR对应第二TTI长度,所述第一TTI长度与所述第二TTI长度不同;
所述终端根据所述第一SR和第二SR的组合状态,确定调制符号,其中,所述调制符号的不同状态分别对应第一SR和第二SR的不同组合;
所述终端使用物理上行链路控制信道PUCCH,传输所述调制符号。
其中,所述第一SR对应第一TTI长度,所述第二SR对应第二TTI长度,具体包括:
所述第一SR对应使用第一TTI长度传输的第一上行共享信道或第一业务,所述第二SR对应使用第二TTI长度传输的第二上行共享信道或第二业务;或者,
所述第一SR对应第一业务,所述第二SR对应第二业务,所述第一业务与所述第二业务的业务参数不同;或者,
所述第一SR使用第一TTI长度传输,所述第二SR使用第二TTI长度传输;或者,
所述第一SR的传输周期和/或偏移值是基于所述第一TTI长度配置的,所述第二SR的传输周期和/或偏移值是基于第二TTI长度配置的。
进一步地,所述调制符号的不同状态分别对应第一SR和第二SR的不同组合,具体包括:
所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态对应存在肯定状态的第二SR。
或者,所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态对应仅存在肯定状态的第二SR,所述调制方式的另一个状态对应同时存在肯定状态的第一SR和肯定状态的第二SR。
或者,所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态对应仅存在肯定状态的第二SR,所述调制方式的另一个状态对应同时存在肯定状态的第一SR和肯定状态的第二SR,所述调制方式的另一个状态对应为否定状态的第一SR和/或否定状态的第二SR。
其中,所述PUCCH按照第二TTI长度传输;或者,所述PUCCH在仅存在肯定状态的第一SR时按照第一TTI长度传输,在存在肯定状态的第二SR时,按照第二TTI长度传输。所述PUCCH中包含用于传输导频的符号;和/或,所述PUCCH承载一个调制符号。
进一步地,终端将所述调制符号经过时域扩频和/或频域扩频后,在所述PUCCH的资源上传输。
进一步地,所述第一TTI的长度为1ms,所述第二TTI的长度为M个符号,所述M为小于14的正整数;或者,
所述第一TTI的长度为1ms,所述第二TTI的长度为小于1ms的TTI长度;或者,
所述第一TTI的长度小于1ms,所述第二TTI的长度小于所述第一TTI的长度;或者,
所述第一TTI的长度为M1个符号,所述第二TTI的长度为M2个符号,所述M1和M2为小于14的正整数,且所述M2小于所述M1。
需要说明的是,所述调制符号为使用xPSK或xQAM中的一种调制方式得到的,其中,x为2 N,N为大于或等于1的整数。
基于同样的发明构思,本发明实施例从基站侧出发提供一种上行调度请求传输方法,该方法包括:
基站使用物理上行链路控制信道PUCCH,接收调制符号;
所述基站根据所述调制符号,确定第一SR和第二SR的组合状态,其中,所述调制符号的不同状态分别对应第一SR和第二SR的不同组合,所述第一SR对应第一时间间隔TTI长度,所述第二SR对应第二TTI长度,所述第一TTI长度与所述第二TTI长度不同。
其中,所述第一SR对应第一TTI长度,所述第二SR对应第二TTI长度,具体包括:
所述第一SR对应使用第一TTI长度传输的第一上行共享信道或第一业务,所述第二SR对应使用第二TTI长度传输的第二上行共享信道或第二业务;或者,
所述第一SR对应第一业务,所述第二SR对应第二业务,所述第一业务与所述第二业务的业务参数不同;或者,
所述第一SR使用第一TTI长度传输,所述第二SR使用第二TTI长度传输;或者,
所述第一SR的传输周期和/或偏移值是基于所述第一TTI长度配置的,所述第二SR的传输周期和/或偏移值是基于第二TTI长度配置的。
其中,所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态对应存在肯定状态的第二SR。
或者,所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态对应仅存在肯定状态的第二SR,所述调制方式的另一个状态对应同时存在肯定状态的第一SR和肯定状态的第二SR。
或者,所述调制符号的不同状态分别对应第一SR和第二SR的不同组合,具体包括:
所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态对应仅存在肯定状态的第二SR,所述调制方式的另一个状态对应同时存在肯定状态的第一SR和肯定状态的第二SR,所述调制方式的另一个状态对应为否定状态的第一SR和/或否定状态的第二SR。
进一步地,所述基站根据所述调制符号,确定第一SR和第二SR的组合状态之后, 还包括:
当所述基站确定所述调制符号对应肯定状态的第一SR时,所述基站向所述终端发送UL grant,所述UL grant用于调度所述终端按照所述第一TTI长度传输上行共享信道;或者,
当所述基站确定所述调制符号对应肯定状态的第二SR时,所述基站向所述终端发送UL grant,所述UL grant用于调度所述终端按照所述第二TTI长度传输上行共享信道;或者,
当所述基站确定所述调制符号对应否定状态的第一SR时,所述基站不向所述终端发送用于调度所述终端按照所述第一TTI长度传输上行共享信道的UL grant;或者,
当所述基站确定所述调制符号对应否定状态的第二SR时,所述基站不向所述终端发送用于调度所述终端按照所述第二TTI长度传输上行共享信道的UL grant;或者,
所述基站在用于传输SR的资源上进行能量检测,若检测结果低于门限值,则所述基站不向所述终端发送UL grant。
其中,所述基站按照第二TTI长度接收所述PUCCH;或者,所述基站按照第一TTI长度和第二TTI长度盲检所述PUCCH。
另外,所述PUCCH中包含用于传输导频的符号;和/或,所述PUCCH承载一个调制符号。
进一步地,所述基站在所述PUCCH的资源上接收信息,将接收到的信息经过时域解扩频和/或频域解扩频后得到所述调制符号。
进一步地,所述第一TTI的长度为1ms,所述第二TTI的长度为M个符号,所述M为小于14的正整数;或者,
所述第一TTI的长度为1ms,所述第二TTI的长度为小于1ms的TTI长度;或者,
所述第一TTI的长度小于1ms,所述第二TTI的长度小于所述第一TTI的长度;或者,
所述第一TTI的长度为M1个符号,所述第二TTI的长度为M2个符号,所述M1和M2为小于14的正整数,且所述M2小于所述M1。
需要说明的是,所述调制符号为使用xPSK或xQAM中的一种调制方式得到的,其中,x为2 N,N为大于或等于1的整数。
基于同样的发明构思,本发明实施例进一步提供一种终端,该终端包括:
确定组合状态单元,用于确定第一上行调度请求SR和第二SR的组合状态,所述第一SR对应第一时间间隔TTI长度,所述第二SR对应第二TTI长度,所述第一TTI长度与所述第二TTI长度不同;
确定调制符号单元,用于根据所述第一SR和第二SR的组合状态,确定调制符号,其中,所述调制符号的不同状态分别对应第一SR和第二SR的不同组合;
传输单元,用于使用物理上行链路控制信道PUCCH,传输所述调制符号。
进一步地,所述第一SR对应使用第一TTI长度传输的第一上行共享信道或第一业务,所述第二SR对应使用第二TTI长度传输的第二上行共享信道或第二业务;或者,
所述第一SR对应第一业务,所述第二SR对应第二业务,所述第一业务与所述第二业务的业务参数不同;或者,
所述第一SR使用第一TTI长度传输,所述第二SR使用第二TTI长度传输;或者,
所述第一SR的传输周期和/或偏移值是基于所述第一TTI长度配置的,所述第二SR的传输周期和/或偏移值是基于第二TTI长度配置的。
进一步地,所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态对应存在肯定状态的第二SR。
或者,所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态对应仅存在肯定状态的第二SR,所述调制方式的另一个状态对应同时存在肯定状态的第一SR和肯定状态的第二SR。
或者,所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态对应仅存在肯定状态的第二SR,所述调制方式的另一个状态对应同时存在肯定状态的第一SR和肯定状态的第二SR,所述调制方式的另一个状态对应为否定状态的第一SR和/或否定状态的第二SR。
其中,所述PUCCH按照第二TTI长度传输;或者,所述PUCCH在仅存在肯定状态的第一SR时按照第一TTI长度传输,在存在肯定状态的第二SR时,按照第二TTI长度传输。
其中,所述PUCCH中包含用于传输导频的符号;和/或,所述PUCCH承载一个调制符号。
其中,所述传输单元具体用于:将所述调制符号经过时域扩频和/或频域扩频后,在所述PUCCH的资源上传输。
进一步地,所述第一TTI的长度为1ms,所述第二TTI的长度为M个符号,所述M为小于14的正整数;或者,
所述第一TTI的长度为1ms,所述第二TTI的长度为小于1ms的TTI长度;或者,
所述第一TTI的长度小于1ms,所述第二TTI的长度小于所述第一TTI的长度;或者,
所述第一TTI的长度为M1个符号,所述第二TTI的长度为M2个符号,所述M1和M2为小于14的正整数,且所述M2小于所述M1。
需要说明的是,所述调制符号为使用xPSK或xQAM中的一种调制方式得到的,其中,x为2 N,N为大于或等于1的整数。
基于同样的发明构思,本发明实施例进一步地提供一种基站,该基站包括:
接收单元,用于使用物理上行链路控制信道PUCCH,接收调制符号;
确定单元,用于根据所述调制符号,确定第一SR和第二SR的组合状态,其中,所述调制符号的不同状态分别对应第一SR和第二SR的不同组合,所述第一SR对应第一时间间隔TTI长度,所述第二SR对应第二TTI长度,所述第一TTI长度与所述第二TTI长度不同。
进一步地,所述第一SR对应使用第一TTI长度传输的第一上行共享信道或第一业务,所述第二SR对应使用第二TTI长度传输的第二上行共享信道或第二业务;或者,
所述第一SR对应第一业务,所述第二SR对应第二业务,所述第一业务与所述第二业务的业务参数不同;或者,
所述第一SR使用第一TTI长度传输,所述第二SR使用第二TTI长度传输;或者,
所述第一SR的传输周期和/或偏移值是基于所述第一TTI长度配置的,所述第二SR的传输周期和/或偏移值是基于第二TTI长度配置的。
其中,所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态对应存在肯定状态的第二SR。
或者,所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态对应仅存在肯定状态的第二SR,所述调制方式的另一个状态对应同时存在肯定状态的第一SR和肯定状态的第二SR。
或者,所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态对应仅存在肯定状态的第二SR,所述调制方式的另一个状态对应同时存在肯定状态的第一SR和肯定状态的第二SR,所述调制方式的另一个状态对应为否定状态的第一SR和/或否定状态的第二SR。
进一步地,所述基站还包括发送单元,用于当所述确定单元确定所述调制符号对应肯定状态的第一SR时,向所述终端发送UL grant,所述UL grant用于调度所述终端按照所述第一TTI长度传输上行共享信道;或者,
当所述确定单元确定所述调制符号对应肯定状态的第二SR时,向所述终端发送UL grant,所述UL grant用于调度所述终端按照所述第二TTI长度传输上行共享信道;或者,
当所述确定单元确定所述调制符号对应否定状态的第一SR时,不向所述终端发送用于调度所述终端按照所述第一TTI长度传输上行共享信道的UL grant;或者,
当所述确定单元确定所述调制符号对应否定状态的第二SR时,不向所述终端发送用于调度所述终端按照所述第二TTI长度传输上行共享信道的UL grant;或者,
当所述确定单元在用于传输SR的资源上进行能量检测,若检测结果低于门限值,则不向所述终端发送UL grant。
其中,所述接收单元还用于:按照第二TTI长度接收所述PUCCH;或者,按照第一 TTI长度和第二TTI长度盲检所述PUCCH。
其中,所述PUCCH中包含用于传输导频的符号;和/或,所述PUCCH承载一个调制符号。
其中,所述接收单元具体用于:在所述PUCCH的资源上接收信息,将接收到的信息经过时域解扩频和/或频域解扩频后得到所述调制符号。
进一步地,所述第一TTI的长度为1ms,所述第二TTI的长度为M个符号,所述M为小于14的正整数;或者,
所述第一TTI的长度为1ms,所述第二TTI的长度为小于1ms的TTI长度;或者,
所述第一TTI的长度小于1ms,所述第二TTI的长度小于所述第一TTI的长度;或者,
所述第一TTI的长度为M1个符号,所述第二TTI的长度为M2个符号,所述M1和M2为小于14的正整数,且所述M2小于所述M1。
需要说明的是,所述调制符号为使用xPSK或xQAM中的一种调制方式得到的,其中,x为2 N,N为大于或等于1的整数。
本发明实施例通过定义一种SR传输方案,基站和终端遵循这一传输方案传输SR,终端在发送SR时,先确定自身第一SR和第二SR的组合状态,然后再根据第一SR和第二SR的组合状态确定调制符号,然后在PUCCH资源上传输该调制符号。因为调制符号的不同状态分别对应第一SR和第二SR的不同组合,所以,本发明实施例支持终端对对应不同TTI长度的SR的正确传输,从而使基站根据接收到的SR确定终端的业务类型和需求,进行合理的上行调度,适用于较短用户面时延的通信系统。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术提供的一种LTE FDD系统使用帧结构示意图;
图2为现有技术提供的一种LTE TDD系统使用帧结构示意图;
图3为本发明实施例提供的一种终端侧执行的上行调度请求传输方法流程示意图;
图4为本发明实施例提供的一种PUCCH资源配置示意图;
图5为本发明实施例提供的一种终端采用PUCCH发送所述调整符号的示意图一;
图6为本发明实施例提供的一种终端采用PUCCH发送所述调整符号的示意图二;
图7为本发明实施例提供的一种基站侧执行的上行调度请求传输方法流程示意图;
图8为本发明实施例提供的一种终端结构示意图;
图9为本发明实施例提供的一种基站结构示意图。
图10为本发明实施例提供的一种终端的实体结构示意图;
图11为本发明实施例提供的一种基站的实体结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应理解,本发明的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)等。
还应理解,在本发明实施例中,用户设备(User Equipment,UE)包括但不限于移动台(Mobile Station,MS)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、手机(handset)及便携设备(portable equipment)等,该用户设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,用户设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,用户设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
在本发明实施例中,基站(例如,接入点)可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),本发明并不限定。
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部份实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本文中结合终端和/或基站来描述各种方面。终端,指向用户提供语音和/或数据连通性的设备(device),包括无线终端或有线终端。无线终端可以是具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备,经无线接入网与一个或多个核心网进行通信的移动终端。例如,无线终端可以是移动电话(或称为“蜂窝”电话)和具有移动终端的计算机。又如,无线终端也可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。再如,无线终端可以为移动站(英文为:mobile station)、接入点(英文为:access point)、或用户设备(英文为:user equipment,简称UE)的一部分。
现有LTE FDD系统使用帧结构(frame structure type 1,简称FS1),其结构如图1所示。在FDD系统中,上行和下行传输使用不同的载波频率,上行和下行传输均使用相同的帧结构。在每个载波上,一个10ms长度的无线帧包含有10个1ms子帧,每个子帧内由分为两个0.5ms长的时隙。上行和下行数据发送的TTI时长为1ms。
现有LTE TDD系统使用帧结构(frame structure type 2,简称FS2),如图2所示。在TDD系统中,上行和下行传输使用相同的频率上的不同子帧或不同时隙。FS2中每个10ms无线帧由两个5ms半帧构成,每个半帧中包含5个1ms长度的子帧。FS2中的子帧分为三类:下行子帧、上行子帧和特殊子帧,每个特殊子帧由下行传输时隙(DwPTS,Downlink Pilot Time Slot)、保护间隔(GP,Guard Period)和上行传输时隙(UpPTS,Uplink Pilot Time Slot)三部分构成。其中DwPTS可以传输下行导频,下行业务数据和下行控制信令;GP不传输任何信号;UpPTS仅传输随机接入和探测参考信号(SRS,Sounding Reference Symbol),不能传输上行业务或上行控制信息。每个半帧中包含至少1个下行子帧和至少1个上行子帧,以及至多1个特殊子帧。FS2中支持的7种上下行子帧DL:UL配比方式,如表1所示。
表1:
Figure PCTCN2018075651-appb-000001
在现有技术中,PUSCH都是按照1个子帧(即TTI(传输时间间隔,Transmission Time Interval)长度为1ms)的长度传输的,因此当终端发送了SR时,该SR仅用于通知基站是否需要对终端调度上行资源,用于PUSCH传输,即SR仅用于对1ms长度传输的PUSCH进行调度请求。当终端支持两种不同latency需求的上行业务传输时,本发明实施例提供一种上行调度请求传输方法流程示意图,参见图3所示,具体地实现方法包括:
步骤S101,终端确定第一上行调度请求SR和第二SR的组合状态,所述第一SR对应第一时间间隔TTI长度,所述第二SR对应第二TTI长度,所述第一TTI长度与所述第二TTI长度不同。
步骤S102,所述终端根据所述第一SR和第二SR的组合状态,确定调制符号,其中,所述调制符号的不同状态分别对应第一SR和第二SR的不同组合。
步骤S103,所述终端使用物理上行链路控制信道PUCCH,传输所述调制符号。
也就是说,在本发明实施例中终端使用PUCCH传输SR,所述PUCCH使用的调制方式的不同状态分别对应第一SR和第二SR的不同组合,所述第一SR对应第一TTI长度或第一业务,所述第二SR对应第二TTI长度或第二业务,所述第一TTI长度与所述第二TTI长度不同,所述第一业务与所述第二业务的业务参数不同,业务参数指的是优先级、Qos(服务质量)或latency(时延)等参数。
具体地,本发明实施例中所述第一SR对应第一TTI长度,所述第二SR对应第二TTI长度,具体包括:
所述第一SR对应使用第一TTI长度传输的第一上行共享信道或第一业务,所述第二SR对应使用第二TTI长度传输的第二上行共享信道或第二业务;例如,第一SR是用于对使用第一TTI长度传输的第一上行共享信道或第一业务的传输进行调度请求的;第二SR是用于对使用第二TTI长度传输的第二上行共享信道或第二业务的传输进行调度请求的;或者,
所述第一SR对应第一业务,所述第二SR对应第二业务,所述第一业务与所述第二业务的业务参数不同;或者,
所述第一SR使用第一TTI长度传输,所述第二SR使用第二TTI长度传输;例如,传输所述第一SR的sPUCCH的TTI长度为第一TTI长度,传输所述第二SR的sPUCCH的TTI长度为第二TTI长度;或者,
所述第一SR的传输周期和/或偏移值是基于所述第一TTI长度配置的,所述第二SR的传输周期和/或偏移值是基于第二TTI长度配置的。
由于终端的调制方式有很多种,所以不同的调制方式对应的调制符号也不同,其中,所述调制方式的一个状态对应仅存在肯定状态的第一SR(即positive第一SR,即第一SR为positive,第二SR为negative或此时无第二SR(即当前传输机会不是第二SR的传输机 会,下同),所述调制方式的另一个状态对应存在肯定状态的第二SR(即positive第二SR)。具体来说,所述调制方式的一个状态对应仅存在positive第一SR(即此时无第二SR,或第二SR为negative),所述调制方式的另一个状态对应存在positive第二SR(即此时无第一SR(即当前传输机会不是第一SR的传输机会,下同),或第一SR为negative,或第一SR为positive,但由于第一业务的优先级/Qos/latency低于第二TTI,则与第二业务同时存在时,认为优先对第二业务进行调度请求,即当第一SR与第二SR碰撞时,认为仅存在第二SR);此时,如果为negative第一SR且negative第二SR,终端不传输SR;例如,当所述调制方式为BPSK或2QAM时,对应关系如下表2所示,下表仅为示例,表中的对应关系可以交换和改变,都在本发明实施例保护范围内。
表2:
BPSK或2QAM调制符号d(0) 对应指示内容
1 仅positive第一SR
-1 存在positive第二SR
当终端采用其它进制的调制方式进行调制时,对应的调制状态是不同的,例如,所述调制方式的一个状态对应仅存在肯定状态的第一SR(即positive第一SR,即第一SR为positive,第二SR为negative或此时无第二SR),所述调制方式的另一个状态对应仅存在肯定状态的第二SR(即positive第二SR,即第二SR为positive,第一SR为negative或此时无第一SR),所述调制方式的另一个状态对应同时存在肯定状态的第一SR和肯定状态的第二SR。如果为negative第一SR且negative第二SR,终端不传输SR;例如,当所述调制方式为QPSK或4QAM时,对应关系如表3所示,下表仅为示例,表中的对应关系可以交换和改变,都在本发明保护范围内;
表3:
Figure PCTCN2018075651-appb-000002
进一步地,上述例子中对应的QPSK或4QAM调制方式还可以对应如下调制符号,具 体地,所述调制方式的一个状态对应仅存在肯定状态的第一SR(即positive第一SR,即第一SR为positive,第二SR为negative或此时无第二SR),所述调制方式的另一个状态对应仅存在肯定状态的第二SR(即positive第二SR,即第二SR为positive,第一SR为negative或此时无第一SR),所述调制方式的另一个状态对应同时存在肯定状态的第一SR和肯定状态的第二SR,所述调制方式的另一个状态对应为否定状态的SR,该否定状态的SR包括否定状态的第一SR和/或否定状态的第二SR。所谓否定状态的第一SR和/或否定状态的第二SR,也就是说,如果在同时为第一SR和第二SR的传输机会中,则为negative第一SR且negative第二SR,如果在仅为第一SR的传输机会中,则为negative第一SR,如果在仅为第二SR的传输机会中,则为negative第二SR。
例如,当所述调制方式为QPSK或4QAM时,对应关系如表4所示,下表仅为示例,表中的对应关系可以交换和改变,都在本发明实施例保护范围内。
表4:
Figure PCTCN2018075651-appb-000003
进一步地,所述PUCCH按照第二TTI长度传输;或者,所述PUCCH在仅存在肯定状态的第一SR时按照第一TTI长度传输,在存在肯定状态的第二SR时,按照第二TTI长度传输。
所述PUCCH存在用于传输导频的符号;终端根据当前TTI中不同第一SR和第二SR的组合状态,确定调制符号,将所述调制符号经过时域扩频(与正交序列相乘)和/或频域扩频(与CAZAC或ZC序列或进行循环移位后的CAZAC或ZC序列相乘)后映射在所述PUCCH的资源上传输:基站侧则为终端侧的逆过程,在所述PUCCH的资源上接收信息, 对接收到的信息进行时域解扩频和/或频域解扩频后得到调制符号,根据所述调制符号确定终端在当前TTI中反馈的不同第一SR和第二SR的组合状态,从而确定对第一SR对应的上行共享信道/业务和/或第二SR对应的上行共享信道/业务进行调度。上述用于传输SR的PUCCH资源为基站通过高层信令配置给终端的或者通过下行控制信道指示给终端的,或者为预先约定的。
当所述PUCCH使用第一TTI长度传输,且所述第一TTI长度为1ms时,所述PUCCH重用PUCCH format 1a/1b的传输格式(即除了按照上述方式确定调制符号d(0)以外,其他处理同PUCCH format 1a/1b);
另外,所述调制符号为使用xPSK或xQAM中的一种调制方式得到的,其中,x为2 N,N为大于或等于1的整数。例如2PSK(即BPSK)、4PSK(即QPSK)、8PSK、2QAM、4QAM、8QAM、16QAM、64QAM等;
进一步地,所述第一TTI的长度为1ms,所述第二TTI的长度为M个符号,所述M为小于14的正整数,例如,第二TTI为2符号、4符号、7符号等;或者,
所述第一TTI的长度为1ms,所述第二TTI的长度为小于1ms的TTI长度;或者,
所述第一TTI的长度小于1ms,所述第二TTI的长度小于所述第一TTI的长度;或者,
所述第一TTI的长度为M1个符号,所述第二TTI的长度为M2个符号,所述M1和M2为小于14的正整数,且所述M2小于所述M1,例如,第二TTI为10符号,第二TTI为4符号等。
上述实现方法可以仅应用于同时为第一SR和第二SR的传输机会中,此时:终端需要根据第一SR和第二SR的周期和/或偏移配置,确定第一SR和第二SR的传输机会,在仅为第一SR的传输机会中,判断第一SR为positive还是negative,如果为positive,则直接传输一个预先定义的调整符号,例如d(0)=1(即不需要根据调制符号与SR组合状态的映射表格选择调制符号),如果为negative,则不发送;在仅为第二SR的传输机会中,判断第二SR为positive还是negative,如果为positive,则直接传输一个预先定义的调整符号,例如d(0)=1(即不需要根据调制符号与SR组合状态的映射表格选择调制符号),如果为negative,则不发送;在同时为第一SR和第二SR的传输机会中,判断第一SR为positive还是negative并且判断第二SR为positive还是negative,然后查询相应的调制符号与SR组合状态的映射表格,选择合适的调制符号进行发送。
上述实现方法也可以应所有的SR传输机会中,此时:终端需要根据第一SR和第二SR的周期和/或偏移配置,确定第一SR和第二SR的传输机会,在仅为第一SR的传输机会中,判断第一SR为positive还是negative,然后查询相应的调制符号与SR组合状态的映射表格,选择合适的调制符号进行发送;在仅为第二SR的传输机会中,判断第二SR为positive还是negative,然后查询相应的调制符号与SR组合状态的映射表格,选择合适 的调制符号进行发送;在同时为第一SR和第二SR的传输机会中,判断第一SR为positive还是negative并且判断第二SR为positive还是negative,然后查询相应的调制符号与SR组合状态的映射表格,选择合适的调制符号进行发送。
例如,本发明实施例给出图4所示的SR传输示意图,详细地阐述SR的传输方法,假设图4中第一TTI长度为1ms,第二TTI长度为7个符号(即一个时隙,符号可以为例如SC-FDMA符号或OFDM符号等接入符号),PUCCH使用第二TTI长度传输,调制方式为QPSK或4QAM,第一SR可以按照子帧为单位进行周期和偏移值配置,从而确定第一SR的传输机会为子帧#i、i+2,i+4….,即第一SR可以每两个子帧传输1次,第二SR可以按照时隙(7个符号)为单位进行周期和偏移值配置,从而确定第二SR的传输机会为时隙#j、j+2,j+4….,即第二SR在每个子帧中传输1次,在每个子帧中的第一个时隙(前7个符号)传输,预先配置给终端用于发送SR的PUCCH的PUCCH资源,预先定义在第一SR的传输机会中的第一个第二TTI长度的TTI中传输第一SR;则终端侧和基站侧分别按照如下方法执行上行调度请求的传输过程。
一方面,终端侧按照如下方法执行传输过程,传输过程如下:
在子帧#i中的第一个时隙(时隙#j)中,确定同时为第一SR和第二SR的传输机会;终端根据自身上行数据传输的实际需求确定是否存在第一SR和第二SR,假设同时存在positive第一SR(例如终端buffer中存在第一业务需要传输)和positive第二SR(例如终端buffer中存在第二业务需要传输),则根据表2或表3,确定调制符号d(0)为“1”,终端将d(0)经过时域扩频和/或频域扩频后在子帧#i中的第一个时隙(时隙#j)中相应的PUCCH资源上发送,例如可以按照如图5所示的PUCCH发送所述d(0);
在子帧#i+1中的第一个时隙(时隙#j+2)中,确定仅为第二SR的传输机会;终端根据自身上行数据传输的实际需求确定是否存在第二SR,假设存在positive第二SR,则根据表2或表3,确定调制符号d(0)为“j”,终端将d(0)经过时域扩频和/或频域扩频后在子帧#i+1中的第一个时隙(时隙#j+2)中相应的PUCCH资源上发送,例如可以按照如图5所示的PUCCH发送所述d(0);
在子帧#i+2中的第一个时隙(时隙#j+4)中,确定同时为第一SR和第二SR的传输机会;终端根据自身上行数据传输的实际需求确定是否存在第一SR和第二SR,假设仅存在positive第一SR,则根据表2或表3,确定调制符号d(0)为“-j”,终端将d(0)经过时域扩频和/或频域扩频后在子帧#i+2中的第一个时隙(时隙#j+4)中相应的资源上发送,例如可以按照如图5所示的PUCCH发送所述d(0);当然,作为另一种实现方法,由于此时仅存在positive第一SR,终端还可以将d(0)经过时域扩频和/或频域扩频后在子帧#i+2中(即按照1子帧长度发送)中相应的PUCCH资源上发送,例如可以按照如图6所示的PUCCH发送所述d(0)。
基于相同的技术构思,本发明实施例从基站侧还提供上行调度请求传输方法流程示意图,参见图7所示,具体地实现方法包括:
步骤S201,基站使用物理上行链路控制信道PUCCH,接收调制符号。
步骤S202,所述基站根据所述调制符号,确定第一SR和第二SR的组合状态,其中,所述调制符号的不同状态分别对应第一SR和第二SR的不同组合,所述第一SR对应第一时间间隔TTI长度,所述第二SR对应第二TTI长度,所述第一TTI长度与所述第二TTI长度不同。
其中,所述第一SR对应第一TTI长度,所述第二SR对应第二TTI长度,具体包括:
所述第一SR对应使用第一TTI长度传输的第一上行共享信道或第一业务,所述第二SR对应使用第二TTI长度传输的第二上行共享信道或第二业务;或者,
所述第一SR对应第一业务,所述第二SR对应第二业务,所述第一业务与所述第二业务的业务参数不同;或者,
所述第一SR使用第一TTI长度传输,所述第二SR使用第二TTI长度传输;或者,
所述第一SR的传输周期和/或偏移值是基于所述第一TTI长度配置的,所述第二SR的传输周期和/或偏移值是基于第二TTI长度配置的。
第一种情况,所述调制符号的不同状态分别对应第一SR和第二SR的不同组合,具体包括:
所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态对应存在肯定状态的第二SR。
第二种情况,所述调制符号的不同状态分别对应第一SR和第二SR的不同组合,具体包括:
所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态对应仅存在肯定状态的第二SR,所述调制方式的另一个状态对应同时存在肯定状态的第一SR和肯定状态的第二SR。
第三种情况,所述调制符号的不同状态分别对应第一SR和第二SR的不同组合,具体包括:
所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态对应仅存在肯定状态的第二SR,所述调制方式的另一个状态对应同时存在肯定状态的第一SR和肯定状态的第二SR,所述调制方式的另一个状态对应为否定状态的第一SR和/或否定状态的第二SR。
进一步地,对应三种情况,当所述基站确定所述调制符号对应肯定状态的第一SR时,所述基站向所述终端发送UL grant,所述UL grant用于调度所述终端按照所述第一TTI长度传输上行共享信道。或者是,当所述基站确定所述调制符号对应肯定状态的第二SR时, 所述基站向所述终端发送UL grant,所述UL grant用于调度所述终端按照所述第二TTI长度传输上行共享信道。
进一步地,对应三种情况,当所述基站确定所述调制符号对应否定状态的第一SR,所述基站不向所述终端发送用于调度所述终端按照所述第一TTI长度传输上行共享信道的UL grant;或者,当所述基站确定所述调制符号对应否定状态的第二SR时,所述基站不向所述终端发送用于调度所述终端按照所述第二TTI长度传输上行共享信道的UL grant。
进一步地,对应第一种情况和第二种情况,所述基站在用于传输SR的资源上进行能量检测,若检测结果低于门限值,则所述基站不向所述终端发送UL grant;即此时,基站通过能量检测判断终端在用于传输SR的资源上是否发送了PUCCH,如果能量检测结果低于门限,则判断终端没有发送PUCCH,即判断终端不存在positive SR(第一SR和/或第二SR),即为negative SR,则不需要对终端进行调度;当能量检测结果高于门限值时,才进一步解析PUCCH上承载的调制符号,根据调制符号确定终端发送的第一SR和第二SR的组合状态,从而发送UL grant对positive SR对应的业务进行调度。
进一步地,所述基站按照第二TTI长度接收所述PUCCH;或者,所述基站按照第一TTI长度和第二TTI长度盲检所述PUCCH。
另外,所述PUCCH中包含用于传输导频的符号;和/或,所述PUCCH承载一个调制符号。
进一步地,所述基站在所述PUCCH的资源上接收信息,将接收到的信息经过时域解扩频和/或频域解扩频后得到所述调制符号。
进一步地,所述第一TTI的长度为1ms,所述第二TTI的长度为M个符号,所述M为小于14的正整数;或者,
所述第一TTI的长度为1ms,所述第二TTI的长度为小于1ms的TTI长度;或者,
所述第一TTI的长度小于1ms,所述第二TTI的长度小于所述第一TTI的长度;或者,
所述第一TTI的长度为M1个符号,所述第二TTI的长度为M2个符号,所述M1和M2为小于14的正整数,且所述M2小于所述M1。
另外,所述调制符号为使用xPSK或xQAM中的一种调制方式得到的,其中,x为2 N,N为大于或等于1的整数。
上述实现方法可以仅应用于同时为第一SR和第二SR的传输机会中,此时:基站需要根据第一SR和第二SR的周期和/或偏移配置,确定第一SR和第二SR的传输机会,在仅为第一SR的传输机会中,在SR资源上判断是否接收到信息(例如假定待接收的调制符号为d(0)=1进行能量检测),如果判断接收到信息(即能量检测结果大于门限值),则确定第一SR为positive,对终端调度与第一SR对应的上行业务传输,如果判断没有接收到信息(即能量检测结果不超过门限值),则确定第一SR为negative,不要进行上行调度;在仅 为第二SR的传输机会中,在SR资源上判断是否接收到信息(例如假定待接收的调制符号为d(0)=1进行能量检测),如果判断接收到信息(即能量检测结果大于门限值),则确定第二SR为positive,对终端调度与第二SR对应的上行业务传输,如果判断没有接收到信息(即能量检测结果不超过门限值),则确定第二SR为negative,不要进行上行调度;在同时为第一SR和第二SR的传输机会中,按照上述图4所示的实例中的相应行为进行。
上述实现方法也可以应所有的SR传输机会中,此时:基站需要根据第一SR和第二SR的周期和/或偏移配置,确定第一SR和第二SR的传输机会,在仅为第一SR的传输机会中,在仅为第二SR的传输机会中,在同时为第一SR和第二SR的传输机会中,都是按照类似图4所示的实例中的相应行为进行,只不过在仅为第一SR的传输机会中,存在一定的先验信息可以供基站判断预期接收到的调制符号为所有可能调制符号中的一个子集,即不存在包含positive第二SR的状态,同理,在仅为第二SR的传输机会中,存在一定的先验信息可以供基站判断预期接收到的调制符号为所有可能调制符号中的一个子集,即不存在包含positive第一SR的状态。
接续图4中例子,本发明实施例进一步地通过图4对基站侧执行的上行调度请求传输过程进行阐述。具体地,基站侧按照如下方法执行传输过程,传输过程如下:
基站根据SR的周期配置,确定第一SR和第二SR的传输机会,在每个第一SR和第二SR的传输机会中(图4中即为在每个子帧中的第一个时隙中),在相应的PUCCH资源上按照PUCCH接收d(0),并根据接收到的d(0)查表确定终端传输的SR情况,具体如下:
在子帧#i中的第一个时隙(时隙#j)中,确定同时为第一SR和第二SR的传输机会,此时接收到的d(0)可能对应表2或表3中的任意一个状态;当确定同时存在positive第一SR和positive第二SR时,分别对终端发送用于调度第一TTI长度和第二TTI长度传输的UL grant,调度终端进行第一TTI长度和第二TTI长度的上行共享信道或业务传输;当确定仅存在positive第一SR时,对终端发送用于调度第一TTI长度传输的UL grant,调度终端进行第一TTI长度的上行共享信道或业务传输;当确定仅存在positive第二SR时,对终端发送用于调度第二TTI长度传输的UL grant,调度终端进行第二TTI长度的上行共享信道或业务传输;当使用表2时,基站如果收到的d(0)不是表2中的任何一个状态,则表明接收错误,基站不做任何上行调度,等待下一次SR传输机会进一步进行检测,基站如果判断在相应PUCCH资源上没有收到信息(例如能量检测或DTX检测结果低于门限),则认为终端没有发送PUCCH,进而判断终端没有传送SR,即第一SR和第二SR都是negative的,不需要进行上行调度;当使用表3时,基站可以不进行能量检测或DTX检测,总是假设终端发送了PUCCH,根据d(0)判断是否为negative SR;
在子帧#i+1中的第一个时隙(时隙#j+2)中,确定仅为第二SR的传输机会,此时接收到的d(0)应仅对应表2中的d(0)=“j”或表3中d(0)=“j”或“-1”;如果基站接收到的 d(0)不是上述情况,则表明接收错误,基站不做任何上行调度,等待下一次SR传输机会进一步进行检测;当使用表2时,如果正确接收到d(0)=“j”,则确定终端传输了positive第二SR,对终端发送用于调度第二TTI长度传输的UL grant,调度终端进行第二TTI长度的上行共享信道或业务传输,如果接收错误或者通过能量检测或DTX检测判断没有收到PUCCH,则认为为negative第二SR,不做任何上行调度;当使用表3时,如果接收到d(0)=“j”,则确定终端传输了positive第二SR,对终端发送用于调度第二TTI长度传输的UL grant,调度终端进行第二TTI长度的上行共享信道或业务传输,如果接收到d(0)=“-1”,则认为为negative第二SR,不做任何上行调度,使用表3时,基站可以不做任何能量检测或DTX检测来判断是否收到PUCCH,而总是假设终端发送了PUCCH;
在子帧#i+2中的第一个时隙(时隙#j+4)中,确定同时为第一SR和第二SR的传输机会,处理过程同子帧#i。
在上面阐述的例子中,如果在子帧#i中的第一个时隙(时隙#j)中或子帧#i+2中的第一个时隙(时隙#j+4)中确定为negative第一SR且negative第二SR,则:如果使用表2所示的映射关系,此时终端不传输SR,则基站需要先在预先配置给终端的SR资源上盲检终端是否发送了信息(例如能量检测),如果没有检测到任何信息(例如能量检测结果低于门限值),则判断终端此时没有发送SR,即第一SR和第二SR都为negative,不需要对终端进行上行调度,如果判断发送了信息(例如能量检测结果高于门限值),则进一步接收调制符号,根据调制符号查表确定接收到的SR的具体情况;如果使用表3所示的映射关系,此时确定d(0)为“-1”,则按照上述方式发送d(0)即可,基站通过检测到d(0)为“-1”,可以知道终端此时没有发送SR,即第一SR和第二SR都为negative,不需要对终端进行上行调度;若上述例子中,将调制方式替换为其他方式,例如BPSK或2QAM的工作方式类似,将第二TTI替换为其他符号长度,如2个符号或4个符号或其他值的工作方式类似,将第一TTI和第二TTI替换为两种不同长度的短TTI(小于1ms的TTI)时的工作方式类似,不再赘述;当第二TTI长度为其他长度时,PUCCH的结构与图5或图6类似,只不过传输数据的符号和传输导频的符号个数和/或位置发生变化,时域正交扩频序列的长度可能发生变化。
基于相同的技术构思,本发明实施例还提供一种终端,该终端可执行上述方法实施例。本发明实施例提供的终端如图8所示,包括:确定组合状态单元301、确定调制符号单元302、传输单元303,其中:
确定组合状态单元301,用于确定第一上行调度请求SR和第二SR的组合状态,所述第一SR对应第一时间间隔TTI长度,所述第二SR对应第二TTI长度,所述第一TTI长度与所述第二TTI长度不同;
确定调制符号单元302,用于根据所述第一SR和第二SR的组合状态,确定调制符号, 其中,所述调制符号的不同状态分别对应第一SR和第二SR的不同组合;
传输单元303,用于使用物理上行链路控制信道PUCCH,传输所述调制符号。
其中,所述第一SR对应使用第一TTI长度传输的第一上行共享信道或第一业务,所述第二SR对应使用第二TTI长度传输的第二上行共享信道或第二业务;或者,
所述第一SR对应第一业务,所述第二SR对应第二业务,所述第一业务与所述第二业务的业务参数不同;或者,
所述第一SR使用第一TTI长度传输,所述第二SR使用第二TTI长度传输;或者,
所述第一SR的传输周期和/或偏移值是基于所述第一TTI长度配置的,所述第二SR的传输周期和/或偏移值是基于第二TTI长度配置的。
另外,所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态对应存在肯定状态的第二SR。
或者,所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态对应仅存在肯定状态的第二SR,所述调制方式的另一个状态对应同时存在肯定状态的第一SR和肯定状态的第二SR。
又或者,所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态对应仅存在肯定状态的第二SR,所述调制方式的另一个状态对应同时存在肯定状态的第一SR和肯定状态的第二SR,所述调制方式的另一个状态对应为否定状态的第一SR和/或否定状态的第二SR。
再有,所述PUCCH按照第二TTI长度传输;或者,所述PUCCH在仅存在肯定状态的第一SR时按照第一TTI长度传输,在存在肯定状态的第二SR时,按照第二TTI长度传输。
另外,所述PUCCH中包含用于传输导频的符号;和/或,所述PUCCH承载一个调制符号。
进一步地,所述传输单元303具体用于:将所述调制符号经过时域扩频和/或频域扩频后,在所述PUCCH的资源上传输。
进一步地,所述第一TTI的长度为1ms,所述第二TTI的长度为M个符号,所述M为小于14的正整数;或者,
所述第一TTI的长度为1ms,所述第二TTI的长度为小于1ms的TTI长度;或者,
所述第一TTI的长度小于1ms,所述第二TTI的长度小于所述第一TTI的长度;或者,
所述第一TTI的长度为M1个符号,所述第二TTI的长度为M2个符号,所述M1和M2为小于14的正整数,且所述M2小于所述M1。
进一步地,所述调制符号为使用xPSK或xQAM中的一种调制方式得到的,其中,x为2 N,N为大于或等于1的整数。
基于同样的发明构思,本发明实施例进一步地提供一种基站,该基站执行的处理步骤与上述基站侧的方法步骤相对应,本发明实施例提供的终端如图9所示,包括:接收单元401、确定单元402,其中:
接收单元401,用于使用物理上行链路控制信道PUCCH,接收调制符号;
确定单元402,用于根据所述调制符号,确定第一SR和第二SR的组合状态,其中,所述调制符号的不同状态分别对应第一SR和第二SR的不同组合,所述第一SR对应第一时间间隔TTI长度,所述第二SR对应第二TTI长度,所述第一TTI长度与所述第二TTI长度不同。
进一步地,所述第一SR对应使用第一TTI长度传输的第一上行共享信道或第一业务,所述第二SR对应使用第二TTI长度传输的第二上行共享信道或第二业务;或者,
所述第一SR对应第一业务,所述第二SR对应第二业务,所述第一业务与所述第二业务的业务参数不同;或者,
所述第一SR使用第一TTI长度传输,所述第二SR使用第二TTI长度传输;或者,
所述第一SR的传输周期和/或偏移值是基于所述第一TTI长度配置的,所述第二SR的传输周期和/或偏移值是基于第二TTI长度配置的。
其中,所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态对应存在肯定状态的第二SR。
另外,所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态对应仅存在肯定状态的第二SR,所述调制方式的另一个状态对应同时存在肯定状态的第一SR和肯定状态的第二SR。
或者,所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态对应仅存在肯定状态的第二SR,所述调制方式的另一个状态对应同时存在肯定状态的第一SR和肯定状态的第二SR,所述调制方式的另一个状态对应为否定状态的第一SR和/或否定状态的第二SR。
进一步地,该基站还包括发送单元403,用于当所述确定单元402确定所述调制符号对应肯定状态的第一SR时,向所述终端发送UL grant,所述UL grant用于调度所述终端按照所述第一TTI长度传输上行共享信道;或者,
当所述确定单元402确定所述调制符号对应肯定状态的第二SR时,向所述终端发送UL grant,所述UL grant用于调度所述终端按照所述第二TTI长度传输上行共享信道;或者,
当所述确定单元402确定所述调制符号对应否定状态的第一SR时,不向所述终端发送用于调度所述终端按照所述第一TTI长度传输上行共享信道的UL grant;或者,
当所述确定单元402确定所述调制符号对应否定状态的第二SR时,不向所述终端发 送用于调度所述终端按照所述第二TTI长度传输上行共享信道的UL grant;或者,
当所述确定单元402在用于传输SR的资源上进行能量检测,若检测结果低于门限值,则不向所述终端发送UL grant。
进一步地,所述接收单元401还用于:按照第二TTI长度接收所述PUCCH;或者,按照第一TTI长度和第二TTI长度盲检所述PUCCH。
进一步地,所述PUCCH中包含用于传输导频的符号;和/或,所述PUCCH承载一个调制符号。
进一步地,所述接收单元401具体用于:在所述PUCCH的资源上接收信息,将接收到的信息经过时域解扩频和/或频域解扩频后得到所述调制符号。
进一步地,所述第一TTI的长度为1ms,所述第二TTI的长度为M个符号,所述M为小于14的正整数;或者,
所述第一TTI的长度为1ms,所述第二TTI的长度为小于1ms的TTI长度;或者,
所述第一TTI的长度小于1ms,所述第二TTI的长度小于所述第一TTI的长度;或者,
所述第一TTI的长度为M1个符号,所述第二TTI的长度为M2个符号,所述M1和M2为小于14的正整数,且所述M2小于所述M1。
进一步地,所述调制符号为使用xPSK或xQAM中的一种调制方式得到的,其中,x为2 N,N为大于或等于1的整数。
参阅图10所示,本发明实施例中,提供一种终端,该终端至少包括处理器1000和收发机1010,其特征在于,
处理器1000,用于读取存储器中的程序,执行下列过程:
确定第一上行调度请求SR和第二SR的组合状态,所述第一SR对应第一时间间隔TTI长度,所述第二SR对应第二TTI长度,所述第一TTI长度与所述第二TTI长度不同;
根据所述第一SR和第二SR的组合状态,确定调制符号,其中,所述调制符号的不同状态分别对应第一SR和第二SR的不同组合;
通过收发机1010使用物理上行链路控制信道PUCCH,传输所述调制符号;
收发机1010,用于在处理器1000的控制下接收和发送数据。
其中,在图10中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1000代表的一个或多个处理器和存储器代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1010可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1000负责管理总线架构和通常的处理,存储器可以存储处理器1000在执行操作时所使用的数据。
可选的,所述第一SR对应使用第一TTI长度传输的第一上行共享信道或第一业务,所述第二SR对应使用第二TTI长度传输的第二上行共享信道或第二业务;或者,
所述第一SR对应第一业务,所述第二SR对应第二业务,所述第一业务与所述第二业务的业务参数不同;或者,
所述第一SR使用第一TTI长度传输,所述第二SR使用第二TTI长度传输;或者,
所述第一SR的传输周期和/或偏移值是基于所述第一TTI长度配置的,所述第二SR的传输周期和/或偏移值是基于第二TTI长度配置的。
可选的,所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态对应存在肯定状态的第二SR。
可选的,所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态对应仅存在肯定状态的第二SR,所述调制方式的另一个状态对应同时存在肯定状态的第一SR和肯定状态的第二SR。
可选的,所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态对应仅存在肯定状态的第二SR,所述调制方式的另一个状态对应同时存在肯定状态的第一SR和肯定状态的第二SR,所述调制方式的另一个状态对应为否定状态的第一SR和/或否定状态的第二SR。
可选的,所述PUCCH按照第二TTI长度传输;或者,所述PUCCH在仅存在肯定状态的第一SR时按照第一TTI长度传输,在存在肯定状态的第二SR时,按照第二TTI长度传输。
可选的,所述PUCCH中包含用于传输导频的符号;和/或,所述PUCCH承载一个调制符号。
可选的,所述收发机1010具体用于:
将所述调制符号经过时域扩频和/或频域扩频后,在所述PUCCH的资源上传输。
所述第一TTI的长度为1ms,所述第二TTI的长度为M个符号,所述M为小于14的正整数;或者,
所述第一TTI的长度为1ms,所述第二TTI的长度为小于1ms的TTI长度;或者,
所述第一TTI的长度小于1ms,所述第二TTI的长度小于所述第一TTI的长度;或者,
所述第一TTI的长度为M1个符号,所述第二TTI的长度为M2个符号,所述M1和M2为小于14的正整数,且所述M2小于所述M1。
可选的,所述调制符号为使用xPSK或xQAM中的一种调制方式得到的,其中,x为2N,N为大于或等于1的整数。
参阅图11所示,本发明实施例中,提供一种基站,该基站至少包括处理器1100和收发机1110,
处理器1100,用于读取存储器中的程序,执行下列过程:
通过收发机1110使用物理上行链路控制信道PUCCH,接收调制符号;
根据所述调制符号,确定第一SR和第二SR的组合状态,其中,所述调制符号的不同状态分别对应第一SR和第二SR的不同组合,所述第一SR对应第一时间间隔TTI长度,所述第二SR对应第二TTI长度,所述第一TTI长度与所述第二TTI长度不同;
收发机1110,用于在处理器1100的控制下接收和发送数据。
其中,在图11中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1100代表的一个或多个处理器和存储器代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1110可以是多个元件,即包括发送机和收发机,提供用于在传
输介质上与各种其他装置通信的单元。处理器1100负责管理总线架构和通常的处理,存储器可以存储处理器1100在执行操作时所使用的数据。
可选的,所述第一SR对应使用第一TTI长度传输的第一上行共享信道或第一业务,所述第二SR对应使用第二TTI长度传输的第二上行共享信道或第二业务;或者,
所述第一SR对应第一业务,所述第二SR对应第二业务,所述第一业务与所述第二业务的业务参数不同;或者,
所述第一SR使用第一TTI长度传输,所述第二SR使用第二TTI长度传输;或者,
所述第一SR的传输周期和/或偏移值是基于所述第一TTI长度配置的,所述第二SR的传输周期和/或偏移值是基于第二TTI长度配置的。
可选的,所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态对应存在肯定状态的第二SR。
可选的,所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态对应仅存在肯定状态的第二SR,所述调制方式的另一个状态对应同时存在肯定状态的第一SR和肯定状态的第二SR。
可选的,所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态对应仅存在肯定状态的第二SR,所述调制方式的另一个状态对应同时存在肯定状态的第一SR和肯定状态的第二SR,所述调制方式的另一个状态对应为否定状态的第一SR和/或否定状态的第二SR。
可选的,所述收发机还用于:
当所述确定单元确定所述调制符号对应肯定状态的第一SR时,向所述终端发送UL  grant,所述UL grant用于调度所述终端按照所述第一TTI长度传输上行共享信道;或者,
当所述确定单元确定所述调制符号对应肯定状态的第二SR时,向所述终端发送UL grant,所述UL grant用于调度所述终端按照所述第二TTI长度传输上行共享信道;或者,
当所述确定单元确定所述调制符号对应否定状态的第一SR时,不向所述终端发送用于调度所述终端按照所述第一TTI长度传输上行共享信道的UL grant;或者,
当所述确定单元确定所述调制符号对应否定状态的第二SR时,不向所述终端发送用于调度所述终端按照所述第二TTI长度传输上行共享信道的UL grant;或者,
当所述确定单元在用于传输SR的资源上进行能量检测,若检测结果低于门限值,则不向所述终端发送UL grant。
可选的,收发机1110还用于:
按照第二TTI长度接收所述PUCCH;或者,按照第一TTI长度和第二TTI长度盲检所述PUCCH。
可选的,所述PUCCH中包含用于传输导频的符号;和/或,
所述PUCCH承载一个调制符号。
可选的,收发机1110具体用于:
在所述PUCCH的资源上接收信息,将接收到的信息经过时域解扩频和/或频域解扩频后得到所述调制符号。
所述第一TTI的长度为1ms,所述第二TTI的长度为M个符号,所述M为小于14的正整数;或者,
所述第一TTI的长度为1ms,所述第二TTI的长度为小于1ms的TTI长度;或者,
所述第一TTI的长度小于1ms,所述第二TTI的长度小于所述第一TTI的长度;或者,
所述第一TTI的长度为M1个符号,所述第二TTI的长度为M2个符号,所述M1和M2为小于14的正整数,且所述M2小于所述M1。
所述调制符号为使用xPSK或xQAM中的一种调制方式得到的,其中,x为2 N,N为大于或等于1的整数。
综上所述,本发明实施例通过定义一种SR传输方案,基站和终端遵循这一传输方案传输SR,终端在发送SR时,先确定自身第一SR和第二SR的组合状态,然后再根据第一SR和第二SR的组合状态确定调制符号,然后在当前周期的PUCCH资源上传输该调制符号。因为调制符号的不同状态分别对应第一SR和第二SR的不同组合,所以,本发明实施例支持终端对对应不同TTI长度的SR的正确传输,从而使基站根据接收到的SR确定终端的业务类型和需求,进行合理的上行调度,适用于较短用户面时延的通信系统。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实 施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (42)

  1. 一种上行调度请求传输方法,其特征在于,该方法包括:
    终端确定第一上行调度请求SR和第二SR的组合状态,所述第一SR对应第一时间间隔TTI长度,所述第二SR对应第二TTI长度,所述第一TTI长度与所述第二TTI长度不同;
    所述终端根据所述第一SR和第二SR的组合状态,确定调制符号,其中,所述调制符号的不同状态分别对应第一SR和第二SR的不同组合;
    所述终端使用物理上行链路控制信道PUCCH,传输所述调制符号。
  2. 如权利要求1所述的方法,其特征在于,所述第一SR对应第一TTI长度,所述第二SR对应第二TTI长度,具体包括:
    所述第一SR对应使用第一TTI长度传输的第一上行共享信道或第一业务,所述第二SR对应使用第二TTI长度传输的第二上行共享信道或第二业务;或者,
    所述第一SR对应第一业务,所述第二SR对应第二业务,所述第一业务与所述第二业务的业务参数不同;或者,
    所述第一SR使用第一TTI长度传输,所述第二SR使用第二TTI长度传输;或者,
    所述第一SR的传输周期和/或偏移值是基于所述第一TTI长度配置的,所述第二SR的传输周期和/或偏移值是基于第二TTI长度配置的。
  3. 如权利要求1所述的方法,其特征在于,所述调制符号的不同状态分别对应第一SR和第二SR的不同组合,具体包括:
    所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态对应存在肯定状态的第二SR。
  4. 如权利要求1所述的方法,其特征在于,所述调制符号的不同状态分别对应第一SR和第二SR的不同组合,具体包括:
    所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态对应仅存在肯定状态的第二SR,所述调制方式的另一个状态对应同时存在肯定状态的第一SR和肯定状态的第二SR。
  5. 如权利要求1所述的方法,其特征在于,所述调制符号的不同状态分别对应第一SR和第二SR的不同组合,具体包括:
    所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态对应仅存在肯定状态的第二SR,所述调制方式的另一个状态对应同时存在肯定状态的第一SR和肯定状态的第二SR,所述调制方式的另一个状态对应为否定状态的第一SR和/或否定状态的第二SR。
  6. 如权利要求1所述的方法,其特征在于,
    所述PUCCH按照第二TTI长度传输;或者,所述PUCCH在仅存在肯定状态的第一SR时按照第一TTI长度传输,在存在肯定状态的第二SR时,按照第二TTI长度传输。
  7. 如权利要求1所述的方法,其特征在于,所述PUCCH中包含用于传输导频的符号;和/或,
    所述PUCCH承载一个调制符号。
  8. 如权利要求1所述的方法,其特征在于,
    终端将所述调制符号经过时域扩频和/或频域扩频后,在所述PUCCH的资源上传输。
  9. 如权利要求1至8任一项所述的方法,其特征在于,所述第一TTI的长度为1ms,所述第二TTI的长度为M个符号,所述M为小于14的正整数;或者,
    所述第一TTI的长度为1ms,所述第二TTI的长度为小于1ms的TTI长度;或者,
    所述第一TTI的长度小于1ms,所述第二TTI的长度小于所述第一TTI的长度;或者,
    所述第一TTI的长度为M1个符号,所述第二TTI的长度为M2个符号,所述M1和M2为小于14的正整数,且所述M2小于所述M1。
  10. 如权利要求1至8任一项所述的方法,其特征在于,所述调制符号为使用xPSK或xQAM中的一种调制方式得到的,其中,x为2 N,N为大于或等于1的整数。
  11. 一种上行调度请求传输方法,其特征在于,该方法包括:
    基站使用物理上行链路控制信道PUCCH,接收调制符号;
    所述基站根据所述调制符号,确定第一SR和第二SR的组合状态,其中,所述调制符号的不同状态分别对应第一SR和第二SR的不同组合,所述第一SR对应第一时间间隔TTI长度,所述第二SR对应第二TTI长度,所述第一TTI长度与所述第二TTI长度不同。
  12. 如权利要求11所述的方法,其特征在于,所述第一SR对应第一TTI长度,所述第二SR对应第二TTI长度,具体包括:
    所述第一SR对应使用第一TTI长度传输的第一上行共享信道或第一业务,所述第二SR对应使用第二TTI长度传输的第二上行共享信道或第二业务;或者,
    所述第一SR对应第一业务,所述第二SR对应第二业务,所述第一业务与所述第二业务的业务参数不同;或者,
    所述第一SR使用第一TTI长度传输,所述第二SR使用第二TTI长度传输;或者,
    所述第一SR的传输周期和/或偏移值是基于所述第一TTI长度配置的,所述第二SR的传输周期和/或偏移值是基于第二TTI长度配置的。
  13. 如权利要求11所述的方法,其特征在于,所述调制符号的不同状态分别对应第一SR和第二SR的不同组合,具体包括:
    所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态 对应存在肯定状态的第二SR。
  14. 如权利要求11所述的方法,其特征在于,所述调制符号的不同状态分别对应第一SR和第二SR的不同组合,具体包括:
    所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态对应仅存在肯定状态的第二SR,所述调制方式的另一个状态对应同时存在肯定状态的第一SR和肯定状态的第二SR。
  15. 如权利要求11所述的方法,其特征在于,所述调制符号的不同状态分别对应第一SR和第二SR的不同组合,具体包括:
    所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态对应仅存在肯定状态的第二SR,所述调制方式的另一个状态对应同时存在肯定状态的第一SR和肯定状态的第二SR,所述调制方式的另一个状态对应为否定状态的第一SR和/或否定状态的第二SR。
  16. 如权利要求11所述的方法,其特征在于,所述基站根据所述调制符号,确定第一SR和第二SR的组合状态之后,还包括:
    当所述基站确定所述调制符号对应肯定状态的第一SR时,所述基站向所述终端发送UL grant,所述UL grant用于调度所述终端按照所述第一TTI长度传输上行共享信道;或者,
    当所述基站确定所述调制符号对应肯定状态的第二SR时,所述基站向所述终端发送UL grant,所述UL grant用于调度所述终端按照所述第二TTI长度传输上行共享信道;或者,
    当所述基站确定所述调制符号对应否定状态的第一SR时,所述基站不向所述终端发送用于调度所述终端按照所述第一TTI长度传输上行共享信道的UL grant;或者,
    当所述基站确定所述调制符号对应否定状态的第二SR时,所述基站不向所述终端发送用于调度所述终端按照所述第二TTI长度传输上行共享信道的UL grant;或者,
    所述基站在用于传输SR的资源上进行能量检测,若检测结果低于门限值,则所述基站不向所述终端发送UL grant。
  17. 如权利要求11所述的方法,其特征在于,
    所述基站按照第二TTI长度接收所述PUCCH;或者,所述基站按照第一TTI长度和第二TTI长度盲检所述PUCCH。
  18. 如权利要求11所述的方法,其特征在于,所述PUCCH中包含用于传输导频的符号;和/或,
    所述PUCCH承载一个调制符号。
  19. 如权利要求11所述的方法,其特征在于,
    所述基站在所述PUCCH的资源上接收信息,将接收到的信息经过时域解扩频和/或频域解扩频后得到所述调制符号。
  20. 如权利要求11至19任一项所述的方法,其特征在于,所述第一TTI的长度为1ms,所述第二TTI的长度为M个符号,所述M为小于14的正整数;或者,
    所述第一TTI的长度为1ms,所述第二TTI的长度为小于1ms的TTI长度;或者,
    所述第一TTI的长度小于1ms,所述第二TTI的长度小于所述第一TTI的长度;或者,
    所述第一TTI的长度为M1个符号,所述第二TTI的长度为M2个符号,所述M1和M2为小于14的正整数,且所述M2小于所述M1。
  21. 如权利要求11至19任一项所述的方法,其特征在于,所述调制符号为使用xPSK或xQAM中的一种调制方式得到的,其中,x为2 N,N为大于或等于1的整数。
  22. 一种终端,其特征在于,该终端包括:
    确定组合状态单元,用于确定第一上行调度请求SR和第二SR的组合状态,所述第一SR对应第一时间间隔TTI长度,所述第二SR对应第二TTI长度,所述第一TTI长度与所述第二TTI长度不同;
    确定调制符号单元,用于根据所述第一SR和第二SR的组合状态,确定调制符号,其中,所述调制符号的不同状态分别对应第一SR和第二SR的不同组合;
    传输单元,用于使用物理上行链路控制信道PUCCH,传输所述调制符号。
  23. 如权利要求22所述的终端,其特征在于,所述第一SR对应使用第一TTI长度传输的第一上行共享信道或第一业务,所述第二SR对应使用第二TTI长度传输的第二上行共享信道或第二业务;或者,
    所述第一SR对应第一业务,所述第二SR对应第二业务,所述第一业务与所述第二业务的业务参数不同;或者,
    所述第一SR使用第一TTI长度传输,所述第二SR使用第二TTI长度传输;或者,
    所述第一SR的传输周期和/或偏移值是基于所述第一TTI长度配置的,所述第二SR的传输周期和/或偏移值是基于第二TTI长度配置的。
  24. 如权利要求22所述的终端,其特征在于,所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态对应存在肯定状态的第二SR。
  25. 如权利要求22所述的终端,其特征在于,所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态对应仅存在肯定状态的第二SR,所述调制方式的另一个状态对应同时存在肯定状态的第一SR和肯定状态的第二SR。
  26. 如权利要求22所述的终端,其特征在于,所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态对应仅存在肯定状态的第二SR,所述调制方式的另一个状态对应同时存在肯定状态的第一SR和肯定状态的第二SR,所述调制方 式的另一个状态对应为否定状态的第一SR和/或否定状态的第二SR。
  27. 如权利要求22所述的终端,其特征在于,所述PUCCH按照第二TTI长度传输;或者,所述PUCCH在仅存在肯定状态的第一SR时按照第一TTI长度传输,在存在肯定状态的第二SR时,按照第二TTI长度传输。
  28. 如权利要求22所述的终端,其特征在于,所述PUCCH中包含用于传输导频的符号;和/或,所述PUCCH承载一个调制符号。
  29. 如权利要求22所述的终端,其特征在于,所述传输单元具体用于:
    将所述调制符号经过时域扩频和/或频域扩频后,在所述PUCCH的资源上传输。
  30. 如权利要求22至29任一项所述的终端,其特征在于,所述第一TTI的长度为1ms,所述第二TTI的长度为M个符号,所述M为小于14的正整数;或者,
    所述第一TTI的长度为1ms,所述第二TTI的长度为小于1ms的TTI长度;或者,
    所述第一TTI的长度小于1ms,所述第二TTI的长度小于所述第一TTI的长度;或者,
    所述第一TTI的长度为M1个符号,所述第二TTI的长度为M2个符号,所述M1和M2为小于14的正整数,且所述M2小于所述M1。
  31. 如权利要求22至29任一项所述的终端,其特征在于,所述调制符号为使用xPSK或xQAM中的一种调制方式得到的,其中,x为2 N,N为大于或等于1的整数。
  32. 一种基站,其特征在于,该基站包括:
    接收单元,用于使用物理上行链路控制信道PUCCH,接收调制符号;
    确定单元,用于根据所述调制符号,确定第一SR和第二SR的组合状态,其中,所述调制符号的不同状态分别对应第一SR和第二SR的不同组合,所述第一SR对应第一时间间隔TTI长度,所述第二SR对应第二TTI长度,所述第一TTI长度与所述第二TTI长度不同。
  33. 如权利要求32所述的基站,其特征在于,所述第一SR对应使用第一TTI长度传输的第一上行共享信道或第一业务,所述第二SR对应使用第二TTI长度传输的第二上行共享信道或第二业务;或者,
    所述第一SR对应第一业务,所述第二SR对应第二业务,所述第一业务与所述第二业务的业务参数不同;或者,
    所述第一SR使用第一TTI长度传输,所述第二SR使用第二TTI长度传输;或者,
    所述第一SR的传输周期和/或偏移值是基于所述第一TTI长度配置的,所述第二SR的传输周期和/或偏移值是基于第二TTI长度配置的。
  34. 如权利要求32所述的基站,其特征在于,所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态对应存在肯定状态的第二SR。
  35. 如权利要求32所述的基站,其特征在于,所述调制方式的一个状态对应仅存在 肯定状态的第一SR,所述调制方式的另一个状态对应仅存在肯定状态的第二SR,所述调制方式的另一个状态对应同时存在肯定状态的第一SR和肯定状态的第二SR。
  36. 如权利要求32所述的基站,其特征在于,所述调制方式的一个状态对应仅存在肯定状态的第一SR,所述调制方式的另一个状态对应仅存在肯定状态的第二SR,所述调制方式的另一个状态对应同时存在肯定状态的第一SR和肯定状态的第二SR,所述调制方式的另一个状态对应为否定状态的第一SR和/或否定状态的第二SR。
  37. 如权利要求32所述的基站,其特征在于,还包括:
    发送单元,用于当所述确定单元确定所述调制符号对应肯定状态的第一SR时,向所述终端发送UL grant,所述UL grant用于调度所述终端按照所述第一TTI长度传输上行共享信道;或者,
    当所述确定单元确定所述调制符号对应肯定状态的第二SR时,向所述终端发送UL grant,所述UL grant用于调度所述终端按照所述第二TTI长度传输上行共享信道;或者,
    当所述确定单元确定所述调制符号对应否定状态的第一SR时,不向所述终端发送用于调度所述终端按照所述第一TTI长度传输上行共享信道的UL grant;或者,
    当所述确定单元确定所述调制符号对应否定状态的第二SR时,不向所述终端发送用于调度所述终端按照所述第二TTI长度传输上行共享信道的UL grant;或者,
    当所述确定单元在用于传输SR的资源上进行能量检测,若检测结果低于门限值,则不向所述终端发送UL grant。
  38. 如权利要求32所述的基站,其特征在于,所述接收单元还用于:
    按照第二TTI长度接收所述PUCCH;或者,按照第一TTI长度和第二TTI长度盲检所述PUCCH。
  39. 如权利要求32所述的基站,其特征在于,所述PUCCH中包含用于传输导频的符号;和/或,
    所述PUCCH承载一个调制符号。
  40. 如权利要求32所述的基站,其特征在于,所述接收单元具体用于:
    在所述PUCCH的资源上接收信息,将接收到的信息经过时域解扩频和/或频域解扩频后得到所述调制符号。
  41. 如权利要求32至40任一项所述的基站,其特征在于,所述第一TTI的长度为1ms,所述第二TTI的长度为M个符号,所述M为小于14的正整数;或者,
    所述第一TTI的长度为1ms,所述第二TTI的长度为小于1ms的TTI长度;或者,
    所述第一TTI的长度小于1ms,所述第二TTI的长度小于所述第一TTI的长度;或者,
    所述第一TTI的长度为M1个符号,所述第二TTI的长度为M2个符号,所述M1和M2为小于14的正整数,且所述M2小于所述M1。
  42. 如权利要求32至40任一项所述的基站,其特征在于,所述调制符号为使用xPSK或xQAM中的一种调制方式得到的,其中,x为2 N,N为大于或等于1的整数。
PCT/CN2018/075651 2017-01-25 2018-02-07 一种上行调度请求传输方法、终端及基站 WO2018137715A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710061298.0A CN108347786B (zh) 2017-01-25 2017-01-25 一种上行调度请求传输方法、终端及基站
CN201710061298.0 2017-01-25

Publications (1)

Publication Number Publication Date
WO2018137715A1 true WO2018137715A1 (zh) 2018-08-02

Family

ID=62963376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075651 WO2018137715A1 (zh) 2017-01-25 2018-02-07 一种上行调度请求传输方法、终端及基站

Country Status (2)

Country Link
CN (1) CN108347786B (zh)
WO (1) WO2018137715A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024092610A1 (en) * 2022-11-03 2024-05-10 Shenzhen Tcl New Technology Co., Ltd. Wireless communication method and related devices

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11678322B2 (en) 2018-08-17 2023-06-13 Beijing Xiaomi Mobile Software Co., Ltd. Scheduling request transmission method and apparatus, and storage medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104412624A (zh) * 2012-07-05 2015-03-11 Lg电子株式会社 提供用于公共安全的基于邻近的服务的方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101878143B1 (ko) * 2010-09-19 2018-07-13 엘지전자 주식회사 제어 정보를 전송하는 방법 및 이를 위한 장치
CN104468030B (zh) * 2014-08-26 2018-06-05 上海华为技术有限公司 一种数据传输方法、用户设备及基站
US10764912B2 (en) * 2014-10-13 2020-09-01 Qualcomm Incorporated Scheduling request modes for enhanced component carriers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104412624A (zh) * 2012-07-05 2015-03-11 Lg电子株式会社 提供用于公共安全的基于邻近的服务的方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Handling Collision between PUCCH and sPUCCH", 3GPP TSG RAN WG1 MEETING #87 R1-1611164, 18 November 2016 (2016-11-18), XP051189737, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_87/Docs/> *
HUAWEI ET AL.: "The Co-Existence Consideration of Legacy TTI and sTTI in One Carrier", 3GPP TSG RAN WG1 MEETING #85 R1-164068, 23 May 2016 (2016-05-23), Nanjing, China, XP051096616, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_85/Docs/> *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024092610A1 (en) * 2022-11-03 2024-05-10 Shenzhen Tcl New Technology Co., Ltd. Wireless communication method and related devices

Also Published As

Publication number Publication date
CN108347786B (zh) 2019-09-17
CN108347786A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
JP6940914B2 (ja) Fdd‐tddジョイントキャリアアグリゲーションのためのアップリンク制御シグナリング
US11483820B2 (en) Data transmission method, terminal device, and network device
US9549397B2 (en) Method and device for transmitting data
US8755806B2 (en) Transmission of feedback information on PUSCH in wireless networks
CA3030456C (en) Method and terminal device for transmitting data
JP2016534638A (ja) キャリアアグリゲーションを使用するharqフィードバック
WO2017193996A1 (zh) 一种上行共享信道的导频传输方法及相关设备
TW201804836A (zh) 基於無線網絡的通信方法、終端設備和網絡設備
WO2017113339A1 (zh) 下行反馈信息的传输方法、基站以及终端设备
JP2020523902A (ja) 通信方法、ネットワークデバイス、およびユーザ機器
WO2018201902A1 (zh) 一种数据传输方法及装置
CN107046719B (zh) 用于减少时分双工的传输时延的方法、装置和系统
EP3113537B1 (en) Terminal device, integrated circuit, and radio communication method
EP3509369A1 (en) Signal sending method and device
WO2015032057A1 (zh) 上报信道状态信息、确定调制编码方式的方法及装置
WO2018137715A1 (zh) 一种上行调度请求传输方法、终端及基站
WO2017140202A1 (zh) 一种持续调度资源的分配及使用其传输数据的方法及装置
WO2016169479A1 (zh) 一种数据传输方法及设备
WO2018228044A1 (zh) 一种上行控制信道传输方法、终端、基站及装置
WO2018028454A1 (zh) 信息的传输方法及相关装置
JP2020509637A (ja) 無線通信方法、端末装置とネットワーク装置
US20200022158A1 (en) Data transmission method, terminal device, and access network device
US20180139013A1 (en) Method, User Equipment, and Base Station for Transmitting Data
WO2018233640A1 (zh) 一种指示、确定时隙结构的方法及装置
WO2018072180A1 (zh) 传输上行数据的方法、网络侧设备和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18744651

Country of ref document: EP

Kind code of ref document: A1