WO2017140202A1 - 一种持续调度资源的分配及使用其传输数据的方法及装置 - Google Patents

一种持续调度资源的分配及使用其传输数据的方法及装置 Download PDF

Info

Publication number
WO2017140202A1
WO2017140202A1 PCT/CN2017/071943 CN2017071943W WO2017140202A1 WO 2017140202 A1 WO2017140202 A1 WO 2017140202A1 CN 2017071943 W CN2017071943 W CN 2017071943W WO 2017140202 A1 WO2017140202 A1 WO 2017140202A1
Authority
WO
WIPO (PCT)
Prior art keywords
persistent scheduling
terminal
scheduling resource
channel quality
network side
Prior art date
Application number
PCT/CN2017/071943
Other languages
English (en)
French (fr)
Inventor
谌丽
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to EP22184858.3A priority Critical patent/EP4096329B1/en
Priority to US15/998,968 priority patent/US11122588B2/en
Priority to JP2018543697A priority patent/JP6695439B2/ja
Priority to KR1020187027130A priority patent/KR102156207B1/ko
Priority to EP17752634.0A priority patent/EP3419358B1/en
Publication of WO2017140202A1 publication Critical patent/WO2017140202A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to the technical field of wireless communications, and in particular, to a method for continuously allocating resources and using the method and apparatus for transmitting data.
  • Continuous scheduling refers to the network side assigning persistent resources (such as time, frequency, code channel, etc.) to the terminal and specifying the determined transmission format (such as modulation and coding format).
  • the sender sends the data packet in the specified transmission format at the specified resource location. No need to send scheduling commands on the network side.
  • the purpose of continuous scheduling is mainly for small packets that arrive periodically, such as VoIP (Voice over IP, IP-based voice transmission) packets, which can save scheduling command resources to improve system capacity and improve resource efficiency.
  • the LTE system adopts semi-persistent scheduling, and the working mode is: continuous scheduling for the initial transmission of a specific data packet (such as a voice packet of a VoIP service), and retransmission of the data packet Dynamic scheduling is used with other data packets (such as SID packets for VoIP services).
  • a specific data packet such as a voice packet of a VoIP service
  • Dynamic scheduling is used with other data packets (such as SID packets for VoIP services).
  • FIG. 1 is a schematic diagram of a VoIP service model. As shown in Figure 1, the VoIP service is mainly divided into an activation period (talkspurt) and a silent period. The VoIP packet size during the activation period is basically fixed, and the arrival period is 20 ms. The SID of the silent period. (Silence Descriptor) The packet is smaller than the voice packet, and the arrival period is 160ms.
  • the base station allocates sufficient fixed resources (frequency, code channel, etc.) to the VoIP packet every certain period (20ms) during the activation period, that is, adopts persistent scheduling, and the dynamic transmission of the voice packet and the initial transmission and retransmission of the SID are dynamic.
  • Scheduling. Semi-persistent scheduling is a compromise between resource allocation flexibility and savings scheduling signaling.
  • Figure 2 is a schematic diagram of persistent scheduling resource allocation and transmission. The allocation and transmission of persistent scheduling data packets is shown in Figure 2.
  • the LTE system adopts a fixed frame structure.
  • 3 is a schematic structural diagram of an LTE TDD frame, taking LTE TDD (Time Division Duplex) as an example, and its frame structure is as shown in FIG. 3, and each radio frame is composed of two half-frames, each One field length is 5ms.
  • Each field includes 8 slots, each of which has a length of 0.5 ms; and three special time slots: DwPTS (Downlink Pilot Time Slot), GP (Guard Period). ) and UpPTS (Uplink Pilot Time slot).
  • the lengths of DwPTS and UpPTS are configurable, and the total length of DwPTS, GP, and UpPTS is required to be equal to 1 ms.
  • Subframe 1 and subframe 6 contain DwPTS, GP, and UpPTS, all other subframes contain two adjacent slots, where the i-th subframe consists of 2i and 2i+1 slots.
  • One subframe is a TTI (transmission time interval).
  • Subframe 0 and subframe 5 and DwPTS are always reserved for downlink transmission.
  • UpPTS UpPTS
  • subframe 2 In the case of a 5 ms switching period, UpPTS, subframe 2, and subframe 7 are reserved for uplink transmission.
  • the DwPTS exists in both fields, but the GP and UpPTS exist only in the first field, and the DwPTS length in the second field is 1 ms.
  • UpPTS and subframe 2 are reserved for uplink transmission.
  • uplink and downlink subframe configurations can be implemented.
  • the configuration of the uplink and downlink subframes supported by the current specification is as shown in Table 1.
  • the configuration 0 to 2 is the 5 ms uplink and downlink subframe transition point.
  • Configurations 3 to 6 are 10 ms subframe transition points.
  • TTI is the basic unit of time for scheduling and transmission.
  • the TTI is fixed at 1 ms.
  • the persistent allocation allocation resource always allocates a prescribed resource PRB (physical resource block) in the 1 ms subframe for continuously scheduling data packet transmission.
  • the shortcoming of the prior art is that, under variable TTI, the available resources of each TTI are different, and the RU size of the scheduling resource allocation is also different.
  • the LTE system has such a fixed time period, a fixed resource size, and a transmission format. Continuous scheduling is no longer applicable.
  • the prior art has not yet provided a solution for continuous scheduling under a variable TTI frame structure.
  • the present invention provides a method and apparatus for continuously scheduling resource allocation and using the same to transmit data, and to provide a scheme for continuously scheduling resource allocation under variable frame structure of a variable TTI and using the same for data transmission.
  • An embodiment of the present invention provides a method for allocating persistent scheduling resources, including:
  • the persistent scheduling resource allocation table includes a mapping relationship between each persistent scheduling resource and a TTI length and/or a channel condition
  • the terminal is a terminal that needs to transmit service data by using a persistent scheduling resource.
  • mapping relationship is determined according to one of the following factors or a combination thereof:
  • TTI length change requirement TTI length option
  • air interface resource for continuously scheduling resource allocation.
  • the persistent scheduling resource allocation table is sent to the terminal, which is sent by the terminal in a unicast manner, or is sent to a group of terminals in one or more control commands.
  • each persistent scheduling resource comprises one or a combination of the following:
  • a method for transmitting data by using a persistent scheduling resource including:
  • the persistent scheduling resource allocation table includes a mapping relationship between each persistent scheduling resource and a TTI length and/or a channel condition
  • determining a persistent scheduling resource After determining a TTI length and/or a channel condition to be used for transmitting data, determining a persistent scheduling resource according to a mapping relationship in the persistent scheduling resource allocation table;
  • each TTI length is semi-statically or dynamically configured by the network side.
  • the channel condition is determined as follows:
  • the terminal When determining the downlink transmission persistent scheduling resource from the network side to the terminal, the terminal determines according to the downlink channel quality CQI, and determines, according to the CQI fed back by the terminal, on the network side, or according to the uplink pilot sent by the network side to the terminal on the network side. Determining the downlink channel quality after the channel quality measurement performed by the signal or the uplink transmission is determined, and determining, by the terminal, the downlink channel quality measurement performed at the terminal;
  • the terminal determines the uplink channel quality according to the downlink channel quality measurement performed by the terminal, and determines, according to the CQI fed back by the terminal, on the network side; or Determining the estimated uplink channel quality after the downlink channel quality measurement performed by the terminal, and determining, by the network side, the channel quality measurement performed by the uplink pilot signal or the uplink transmission sent by the terminal on the network side; or, at the terminal according to the network side
  • the feedback to the terminal after the uplink channel quality measurement performed by the uplink pilot signal or the uplink transmission sent by the terminal is determined by the network side, and the channel quality measurement performed by the uplink pilot signal or the uplink transmission sent by the terminal on the network side is determined.
  • the channel condition is determined as follows:
  • the receiving end performs channel measurement on the transmitting end according to the receiving end.
  • the amount of feedback is determined;
  • the receiving end determined according to the channel quality measurement to the transmitting end, and determined by the channel reciprocity according to the channel quality measurement to the receiving end at the transmitting end.
  • each persistent scheduling resource comprises one or a combination of the following:
  • An apparatus for distributing persistent resources including:
  • a generating module configured to generate a persistent scheduling resource allocation table for the terminal, where the persistent scheduling resource allocation table includes a mapping relationship between each persistent scheduling resource and a TTI length and/or a channel condition;
  • a sending module configured to send the persistent scheduling resource allocation table to the terminal.
  • the generating module is further configured to generate a persistent scheduling resource allocation table for the terminal having the need to transmit the service data by using the persistent scheduling resource.
  • the generating module is further configured to determine the mapping relationship according to one of the following factors or a combination thereof:
  • TTI length change requirement TTI length option
  • air interface resource for continuously scheduling resource allocation.
  • the sending module is further configured to send the persistent scheduling resource allocation table to the terminal one by one in a unicast manner, or send the persistent scheduling resource allocation table to a group of terminals in one or more control commands.
  • each persistent scheduling resource comprises one or a combination of the following:
  • An embodiment of the present invention provides an apparatus for transmitting data by using a persistent scheduling resource, including:
  • An allocation table determining module configured to determine a persistent scheduling resource allocation table, where the persistent scheduling resource allocation table includes a mapping relationship between each persistent scheduling resource and a TTI length and/or a channel condition;
  • a resource determining module configured to determine, according to a mapping relationship in the persistent scheduling resource allocation table, a persistent scheduling resource after determining a TTI length and/or a channel condition to be used for transmitting data
  • a transmission module for transmitting data using the persistent scheduling resource.
  • the resource determining module is further configured to: when determining the persistent scheduling resource according to the mapping relationship in the persistent scheduling resource allocation table at a time corresponding to each persistent scheduling resource period, adopting each of the network side semi-static or dynamically configured TTI length.
  • the resource determining module is further configured to determine the channel condition in the following manner:
  • the terminal When determining the downlink transmission persistent scheduling resource from the network side to the terminal, the terminal determines according to the downlink channel quality CQI, and determines, according to the CQI fed back by the terminal, on the network side, or according to the uplink pilot sent by the network side to the terminal on the network side. Determining the downlink channel quality after the channel quality measurement performed by the signal or the uplink transmission is determined, and determining, by the terminal, the downlink channel quality measurement performed at the terminal;
  • the terminal determines the uplink channel quality according to the downlink channel quality measurement performed by the terminal, and determines, according to the CQI fed back by the terminal, on the network side; or Determining, by the terminal, the uplink channel quality that is estimated after the downlink channel quality measurement performed by the terminal, and determining, by the network side, the channel quality measurement performed by the uplink pilot signal or the uplink transmission sent by the terminal on the network side; or, at the terminal Determining the channel quality measurement according to the uplink pilot signal or the uplink transmission sent by the network side to the terminal on the network side according to the feedback of the uplink channel quality measurement performed by the network on the uplink pilot signal or the uplink transmission sent by the terminal. Make a decision.
  • the resource determining module is further configured to determine the channel condition as follows:
  • the receiving end determines, according to the channel quality measurement to the transmitting end, the feedback determined by the receiving end according to the receiving end to the channel measurement of the transmitting end;
  • the receiving end determined according to the channel quality measurement to the transmitting end, and determined by the channel reciprocity according to the channel quality measurement to the receiving end at the transmitting end.
  • each persistent scheduling resource comprises one or a combination of the following:
  • Another apparatus for distributing persistent resources includes: a processor for reading a program in a memory, and performing the following process:
  • the persistent scheduling resource allocation table includes a mapping relationship between each persistent scheduling resource and a TTI length and/or a channel condition
  • a transceiver for transmitting and receiving data under the control of a processor performing the following processes:
  • the processor is further configured to determine the mapping relationship according to one of the following factors or a combination thereof:
  • TTI length change requirement TTI length option
  • air interface resource for continuously scheduling resource allocation.
  • the transceiver is specifically used under the control of the processor:
  • the persistent scheduling resource allocation table is sent to a group of terminals in one or more control commands.
  • each persistent scheduling resource comprises one or a combination of the following:
  • Another apparatus for transmitting data using a persistent scheduling resource includes: a processor for reading a program in a memory, and performing the following process:
  • the persistent scheduling resource allocation table includes a mapping relationship between each persistent scheduling resource and a TTI length and/or a channel condition
  • determining a persistent scheduling resource After determining a TTI length and/or a channel condition to be used for transmitting data, determining a persistent scheduling resource according to a mapping relationship in the persistent scheduling resource allocation table;
  • a transceiver for transmitting and receiving data under the control of a processor performing the following processes:
  • the processor is further configured to: when determining the persistent scheduling resource according to the mapping relationship in the persistent scheduling resource allocation table at a time corresponding to each persistent scheduling resource period, adopting each TTI configured semi-statically or dynamically by the network side. length.
  • the processor is further configured to determine the channel condition in the following manner:
  • the terminal When determining the downlink transmission persistent scheduling resource from the network side to the terminal, the terminal determines according to the downlink channel quality CQI, and determines, according to the CQI fed back by the terminal, on the network side, or according to the uplink pilot sent by the network side to the terminal on the network side. Determining the downlink channel quality after the channel quality measurement performed by the signal or the uplink transmission is determined, and determining, by the terminal, the downlink channel quality measurement performed at the terminal;
  • the terminal determines the uplink channel quality according to the downlink channel quality measurement performed by the terminal, and determines, according to the CQI fed back by the terminal, on the network side; or Determining the estimated uplink channel quality after the downlink channel quality measurement performed by the terminal, and determining, by the network side, the channel quality measurement performed by the uplink pilot signal or the uplink transmission sent by the terminal on the network side; or, at the terminal according to the network side
  • the feedback to the terminal after the uplink channel quality measurement performed by the uplink pilot signal or the uplink transmission sent by the terminal is determined by the network side, and the channel quality measurement performed by the uplink pilot signal or the uplink transmission sent by the terminal on the network side is determined.
  • the processor is further configured to determine the channel condition as follows:
  • the receiving end determines, according to the channel quality measurement to the transmitting end, the feedback determined by the receiving end according to the receiving end to the channel measurement of the transmitting end;
  • the receiving end determined according to the channel quality measurement to the transmitting end, and determined by the channel reciprocity according to the channel quality measurement to the receiving end at the transmitting end.
  • each persistent scheduling resource comprises one or a combination of the following:
  • a persistent scheduling resource allocation table is generated for the terminal on the network side, and a mapping relationship between each persistent scheduling resource and the TTI length and/or channel status is included in the persistent scheduling resource allocation table;
  • the persistent scheduling resource allocation table is sent to the terminal.
  • the data transceiver can determine the persistent scheduling resource according to the mapping relationship in the persistent scheduling resource allocation table, and use the persistent scheduling resource transmission. data.
  • the scheme can also use persistent scheduling resources for data transmission, and realize effective allocation of persistent scheduling resources under variable TTI length.
  • FIG. 1 is a schematic diagram of a VoIP service model in the background art
  • FIG. 2 is a schematic diagram of persistent scheduling resource allocation and transmission in the background art
  • FIG. 3 is a schematic structural diagram of an LTE TDD frame in the background art
  • FIG. 4 is a schematic diagram of a variable TTI in an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of an implementation process of a method for allocating persistent scheduling resources according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a RU format in an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of a method for implementing data transmission using a persistent scheduling resource according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an example 1 of selecting persistent scheduling resources according to a TTI length according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of an example 2 of selecting a persistent scheduling resource according to a TTI length according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a device for allocating persistent scheduling resources according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of an apparatus for transmitting data by using a persistent scheduling resource according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a terminal in an embodiment of the present invention.
  • the 5G mobile communication system is an end-to-end ecosystem that includes various types of equipment. Need to have higher performance than 4G, support 0.1 to 1 Gbps user experience rate, one million connection density per square kilometer, millisecond end-to-end delay, tens of Tbps per square kilometer, per hour Mobility above 500Km and peak rate of tens of Gbps. Low latency and high reliability are important requirements for 5G. The technical challenge for low latency and high reliability typical scenarios is extremely low latency: air interface 1ms and end-to-end millisecond delay. To this end, 5G proposed the idea of variable length TTI. 4 is a schematic diagram of a variable TTI. As shown in FIG. 4, the abscissa represents the time domain and the ordinate represents the frequency domain.
  • TTI1 includes 1 symbol, which is a downlink TTI
  • TTI2 includes 1 symbol, which is an uplink TTI
  • TTI3 includes 2 symbols, which is a downlink TTI
  • TTI4 and TTI5 include 3 symbols, which are downlink TTIs.
  • the PRB is a resource allocation unit RU, and the PRB occupies the entire TTI length in time, and occupies part of the subcarriers in frequency.
  • 5G proposes a new frame structure, and the RU may be similar to the LTE PRB, occupying part of the subcarriers of the entire TTI length, and may also be shorter than the TTI.
  • variable TTI the available resources of each TTI are different, and the RU size of scheduling resource allocation may also be different.
  • the fixed time period of the LTE system, the fixed resource size and the continuous scheduling mode of the transmission format are no longer Be applicable.
  • 5G system services are similar, and more data packets need to be continuously scheduled.
  • the prior art does not provide a solution for continuous scheduling under the frame structure of a variable TTI.
  • a persistent scheduling resource allocation under the frame structure of the variable TTI is provided, and the same is used.
  • the network side allocates a persistent scheduling resource list to the terminal, wherein the resource occupation and transmission format of each persistent scheduling resource are related to the available TTI length and/or channel status.
  • the resource used by each data packet transmission is selected by the transmitting end and the receiving end to estimate the channel condition, and/or the resource used for the persistent scheduling transmission is selected according to the available TTI length at the time of transmission.
  • the implementation of the terminal and the network side entity will be respectively involved, and the process in the process of allocating resources on the network side will be explained, and the process of data transmission between the terminal and the terminal or the network side will be explained, and then they will be given implementation. Examples are given to better understand the implementation of the solutions presented in the embodiments of the invention. Such a description does not mean that they must be implemented together or must be implemented separately. In fact, when the terminal is implemented separately from the network side device, it also solves the problems on the terminal side and the network side, and when they are combined, Get better technical results.
  • FIG. 5 is a schematic diagram of an implementation process of a method for allocating persistent scheduling resources, as shown in the figure, which may include:
  • Step 501 Generate a persistent scheduling resource allocation table for the terminal, where the persistent scheduling resource allocation table includes a mapping relationship between each persistent scheduling resource and a TTI length and/or a channel condition.
  • Step 502 Send the persistent scheduling resource allocation table to the terminal.
  • the persistent scheduling resource is allocated on the network side, and when the network side determines that the terminal needs to perform persistent scheduling resource allocation, the network allocates multiple sets of persistent scheduling resources to form a persistent scheduling resource list, and each persistent scheduling resource allocation corresponds to one type. TTI length and / or channel conditions.
  • This list is referred to in the application as a persistent scheduling resource allocation table, but in implementation, it is obviously not limited to the form of only tabular, in fact, as long as it can contain each persistent scheduling resource and TTI length and/or channel conditions.
  • the expressions of the mapping relationship can be used. The table is only used to teach the person skilled in the art how to implement the present invention, but it does not mean that only one form can be used, and the corresponding expression can be determined in combination with the practical needs in the implementation process.
  • Table 2 Example of a persistent scheduling resource allocation list
  • TTI length (optional) Channel status (optional) 1 Resource 1 TTI length 1 2 Resource 2 TTI length 2 ;
  • each persistent scheduling resource may include one or a combination of the following:
  • Content may include a combination of some or all of the following to enable unique identification of transmission resources:
  • Transmission direction such as uplink; downlink; D2D (Device-to-Device, device-to-device) pairing between UE (User Equipment);
  • Period Generally matches the service time packet period, and may be configured as multiple periods. In a specific implementation, for TDD, if the TTI direction is inconsistent with the required transmission direction at a certain periodic point, the default may be transmitted on the next TTI that is consistent with the transmission direction;
  • Resource location related to the determined resource allocation format.
  • the specific resource location indication mode is related to the resource allocation unit RU.
  • FIG. 6 is a schematic diagram of the RU format. As shown in the figure, the example in the figure is three different RU formats, respectively indicated by a thick black frame, in the RU format. In the first time, all the TTIs are occupied by one RU time domain, and some subcarriers are occupied in the frequency domain. In RU format 2, one RU occupies part of the continuous resource unit RE in the time-frequency domain, but does not occupy all TTIs in the time domain; RU format In 3, one RU occupies one or more discrete REs, and the specific occupation pattern is determined.
  • the resource indication format may be a start position + an end position (such as RU format 1); a start position + RU number (such as RU format 1, continuous resource subcarrier allocation in format 2); an assigned RU position or number (eg, RU format 3).
  • MCS format modulation and coding format
  • Activation conditions If the service arrives automatically, send a specific indication, activate the command as follows, activate after the uplink scheduling request, and so on.
  • a TTI having a length of 1 symbol For example, a TTI having a length of 1 symbol; a TTI having a length of N symbols, and the like.
  • the channel quality threshold uses a corresponding transmission resource allocation within a specific channel quality range. For example, the better the channel quality, the higher the level (ie, the lesser physical resources are used when transmitting the same data).
  • the terminal is a terminal that needs to transmit service data by using a persistent scheduling resource.
  • mapping relationship is determined according to one of the following factors or a combination thereof:
  • TTI length change requirement TTI length option
  • air interface resource for continuously scheduling resource allocation.
  • the persistent scheduling resource allocation table is sent to the terminal, which is sent by the terminal in a unicast manner, or is sent to a group of terminals in one or more control commands.
  • This example is used to illustrate the implementation of assigning a persistent scheduling resource list on the network side.
  • Step 1 Determine, on the network side, a terminal that needs to perform persistent scheduling resource allocation, and determine that the terminal has service data that needs to be continuously scheduled resource transmission, such as periodic small data packets (for example, VoIP, MTC (Machine Type Communications, machine) Class communication) periodically reporting data, etc.). And determine the period, packet size, and transmission direction (downstream, uplink, D2D) of the service data to be transmitted using the persistent scheduling resource.
  • periodic small data packets for example, VoIP, MTC (Machine Type Communications, machine) Class communication
  • D2D Downstream, uplink, D2D
  • Step 2 The network side determines the TTI length change requirement and the TTI length option, and the air interface resource for continuously scheduling resource allocation. Forming a persistent scheduling resource allocation list, the table includes persistent scheduling resource allocation (scheduling period, resource location, transmission format, etc.), corresponding TTI length and/or channel quality.
  • Step 3 The terminal that is sent by the network side to allocate the persistent scheduling resource list is used for subsequent persistent scheduling resource transmission.
  • the sending manner may be one-to-one configuration for the terminal in a unicast manner, or configured for a group of terminals in one or more control commands.
  • the transmitting end transmits the transmission time corresponding to the persistent scheduling resource period according to the current TTI length.
  • the channel condition determines the specific transmission resource and the transmission format to transmit the data transmission, and the receiving end performs data reception according to the same rule.
  • the description process will separately describe the data transmission between the terminal and the network side, and between the terminal and the terminal.
  • FIG. 7 is a schematic flowchart of a method for implementing data transmission using a persistent scheduling resource, as shown in the figure, which may include:
  • Step 701 Determine a persistent scheduling resource allocation table, where the persistent scheduling resource allocation table includes a mapping relationship between each persistent scheduling resource and a TTI length and/or a channel condition.
  • Step 702 After determining a TTI length and/or a channel condition to be used for transmitting data, determining a persistent scheduling resource according to the mapping relationship in the persistent scheduling resource allocation table.
  • Step 703 Transmit data by using the persistent scheduling resource.
  • the following describes the implementation of determining the persistent scheduling resource according to the mapping relationship in the persistent scheduling resource allocation table after determining the TTI length when the data is transmitted in step 702.
  • each TTI length is semi-statically or dynamically configured by the network side.
  • the transmitting end and the receiving end determine, according to the correspondence between the TTI length and the transmission resource allocation in the persistent scheduling resource allocation table, the resources for performing persistent scheduling transmission.
  • Each TTI length is semi-statically or dynamically configured by the network side.
  • FIG. 8 is a schematic diagram of an example 1 of selecting a persistent scheduling resource according to a TTI length. As shown in the figure, a thick black frame in the figure is a resource used for each data transmission. In the figure, a persistent scheduling resource always occupies 6 REs as an example.
  • the following describes the implementation of determining the persistent scheduling resource according to the mapping relationship in the persistent scheduling resource allocation table after determining the channel status when the data is transmitted in step 702.
  • the transmitting end and the receiving end determine resources for performing persistent scheduling transmission in the persistent scheduling resource allocation table according to the channel quality.
  • the channel condition can be determined as follows:
  • the terminal determines according to the CQI, and the network side determines according to the CQI fed back by the terminal.
  • Step 1 The terminal performs downlink channel quality CQI (Channel Quality Indicator) feedback, and different CQI levels correspond to different resource allocation modes;
  • CQI Channel Quality Indicator
  • Step 2 The network side determines the specific resource and transmission format used by the downlink persistent scheduling transmission according to the terminal CQI feedback.
  • Step 3 The network side transmission point and the terminal perform data transmission and reception according to the selected persistent scheduling resource and transmission format.
  • the network side determines the downlink channel quality after the channel quality measurement performed on the uplink pilot signal or the uplink transmission sent by the terminal on the network side, at the terminal. The determination is made based on the downlink channel quality measurement performed at the terminal.
  • Step 1 The network side performs channel quality measurement on the uplink pilot signal or the uplink transmission sent by the terminal (the uplink pilot signal or the uplink transmission sent by the terminal is not necessarily for persistent scheduling), and utilizes channel reciprocity according to the uplink channel quality. Presuming the downlink channel quality, and searching for the persistent scheduling resource allocation corresponding to the channel quality in the persistent scheduling resource allocation list;
  • Step 2 The terminal searches for a persistent scheduling resource allocation corresponding to the channel quality in the persistent scheduling resource allocation list according to the downlink channel quality measurement.
  • Step 3 The network side transmission point and the terminal perform data transmission and reception according to the selected persistent scheduling resource and transmission format.
  • Step 1 The terminal performs downlink channel quality measurement, uses channel reciprocity, and estimates uplink channel quality, and accordingly performs persistent scheduling resource selection in the persistent scheduling resource allocation table;
  • Step 2 The network side performs persistent scheduling resource selection in the persistent scheduling resource allocation table according to the terminal CQI feedback and using channel reciprocity;
  • Step 3 The terminal and the network side transmission point perform data transmission and connection according to the selected persistent scheduling resource and transmission format. Received.
  • Step 1 The terminal performs downlink channel quality measurement, uses channel reciprocity, and estimates uplink channel quality, and accordingly performs persistent scheduling resource selection in the persistent scheduling resource allocation table;
  • Step 2 The network side performs channel quality measurement on the uplink pilot signal or the uplink transmission sent by the terminal, and accordingly performs persistent scheduling resource selection in the persistent scheduling resource allocation table.
  • Step 3 The terminal and the network side transmission point perform data transmission and reception according to the selected persistent scheduling resource and transmission format.
  • the terminal determines the feedback to the terminal according to the uplink channel quality measurement performed by the network side on the uplink pilot signal or the uplink transmission sent by the terminal, and is determined according to the network side.
  • the network side determines the channel quality measurement performed by the uplink pilot signal or the uplink transmission sent by the terminal.
  • the two sides of the transmission data may be further divided into a transmitting end and a receiving end according to actual conditions, such as transmission between the D2D terminal and the terminal, and transmission between the terminal and the base station.
  • the channel condition can be determined as follows:
  • the receiving end determines, according to the channel quality measurement to the transmitting end, the feedback determined by the receiving end according to the receiving end to the channel measurement of the transmitting end;
  • the receiving end determined according to the channel quality measurement to the transmitting end, and determined by the channel reciprocity according to the channel quality measurement to the receiving end at the transmitting end.
  • the following describes the implementation of determining the persistent scheduling resource according to the mapping relationship in the persistent scheduling resource allocation table after determining the TTI length and the channel status when the data is transmitted in step 702.
  • the transmitting end and the receiving end determine the amount of resources and the transmission format required for data transmission according to the channel quality measurement, and determine the transmission resource according to the TTI length of the transmission time.
  • This method is more suitable for the case where the TTI length is dynamically variable.
  • FIG. 9 is a schematic diagram of an example 2 of selecting a persistent scheduling resource according to a TTI length.
  • the length of the TTI1 is 3 symbols, and the transmission format MCS1 is selected according to the channel quality, occupying 6 RE resources;
  • the length of the TTI2 is For one symbol, the transmission format MCS2 is selected according to the channel quality, and 4 RE resources are occupied.
  • the length of the TTI3 is 2 symbols, and the transmission format MCS3 is selected according to the channel quality, occupying 2 RE resources.
  • Embodiment 2 describes the resource selection and data transmission and reception of D2D transmission between the network side and the terminal, and the D2D transmission between the terminal and the terminal. 4
  • the resource selection and data transmission and reception will be described only by the sender and the receiver.
  • Embodiment 2 is an example of selecting a persistent scheduling resource for transmission according to a TTI length.
  • Embodiment 3 is an example of selecting a persistent scheduling resource for transmission according to a channel quality
  • Embodiment 4 is selecting a persistent scheduling resource for transmission according to a TTI length and a channel quality. An example.
  • This example is an implementation in which a persistent scheduling resource is selected for transmission according to the TTI length.
  • the network side Before performing the persistent scheduling transmission, the network side has configured a persistent scheduling resource list for the terminal, and each persistent scheduling resource configuration corresponds to a different TTI length.
  • Step 1 The network side transmission point determines the transmission time point according to the persistent scheduling period. If the TTI of the period corresponding time point is not the downlink TTI, the next downlink TTI is used as the transmission TTI.
  • Step 2 The network side transmission point determines the length of the transmission TTI, and determines a persistent scheduling resource for transmission according to the correspondence between the TTI length and the persistent scheduling resource in the persistent scheduling resource list.
  • Step 3 The network side transmission point performs data transmission according to the determined persistent scheduling resource on the transmission TTI.
  • Step 1 The terminal determines the transmission time point according to the persistent scheduling period. If the TTI of the corresponding time point is not the downlink TTI, the next downlink TTI is used as the transmission TTI.
  • Step 2 The terminal determines the length of the transmission TTI, and determines a persistent scheduling resource for transmission according to the correspondence between the TTI length and the persistent scheduling resource in the persistent scheduling resource list.
  • the manner in which the terminal determines to transmit the TTI length is that the TTI length is static or semi-dynamically configured by the network side or dynamically configured and notified by the network side.
  • Step 3 The terminal performs data reception according to the determined persistent scheduling resource on the transmission TTI.
  • Step 1 The terminal determines the transmission time point according to the persistent scheduling period. If the TTI of the corresponding time point is not the uplink TTI, the last uplink TTI is used as the transmission TTI.
  • Step 2 The terminal determines the length of the transmission TTI, and determines a persistent scheduling resource for transmission according to the correspondence between the TTI length and the persistent scheduling resource in the persistent scheduling resource list.
  • the manner in which the terminal determines to transmit the TTI length is that the TTI length is static or semi-dynamically configured by the network side or dynamically configured and notified by the network side.
  • Step 3 The terminal performs data transmission according to the determined persistent scheduling resource on the transmission TTI.
  • Step 1 The network side transmission point determines the transmission time point according to the persistent scheduling period. If the TTI of the period corresponding time point is not the uplink TTI, the latest uplink TTI is used as the transmission TTI.
  • Step 2 The network side transmission point determines the length of the transmission TTI, and determines a persistent scheduling resource for transmission according to the correspondence between the TTI length and the persistent scheduling resource in the persistent scheduling resource list.
  • Step 3 The network side transmission point performs data reception on the transmission TTI according to the determined persistent scheduling resource.
  • Terminal 1 (sender):
  • Step 1 The terminal 1 determines the transmission time point according to the persistent scheduling period. If the TTI of the period corresponding time point is not the available D2D transmission TTI, the latest available D2D transmission TTI is used as the transmission TTI.
  • Step 2 The terminal 1 determines the length of the transmission TTI, and determines a persistent scheduling resource for transmission according to the correspondence between the TTI length and the persistent scheduling resource in the persistent scheduling resource list.
  • the manner in which the terminal determines to transmit the TTI length is that the TTI length is static or semi-dynamically configured by the network side or dynamically configured and notified by the network side.
  • Step 3 The terminal 1 performs data transmission according to the determined persistent scheduling resource on the transmission TTI.
  • Terminal 2 (receiver):
  • Step 1 The terminal 2 determines the transmission time point according to the persistent scheduling period. If the TTI of the period corresponding time point is not the available D2D transmission TTI, the latest available D2D transmission TTI is used as the transmission TTI.
  • Step 2 The terminal 2 determines the length of the transmission TTI, and determines a persistent scheduling resource for transmission according to the correspondence between the TTI length and the persistent scheduling resource in the persistent scheduling resource list.
  • the manner in which the terminal determines to transmit the TTI length is that the TTI length is static or semi-dynamically configured by the network side or dynamically configured and notified by the network side.
  • Step 3 The terminal 2 performs data transmission according to the determined persistent scheduling resource on the transmission TTI.
  • This example is an implementation that selects persistent scheduling resources for transmission based on channel quality.
  • the network side Before performing the persistent scheduling transmission, the network side has configured a persistent scheduling resource list for the terminal, and each persistent scheduling resource configuration corresponds to a different channel quality.
  • Step 1 The transmitting end determines the transmission time point according to the persistent scheduling period. If the TTI of the corresponding time point of the period is not the TTI corresponding to the transmission direction, the last available TTI is used as the transmission TTI.
  • Step 2 The transmitting end measures the quality of the transmission channel of the opposite end, and estimates the quality of the transmission channel sent to the opposite end by using the channel reciprocity; or determines the quality of the transmission channel according to the channel quality feedback of the opposite end.
  • Step 3 Determine persistent scheduling resources for transmission according to the correspondence between channel quality and persistent scheduling resource allocation in the persistent scheduling resource list.
  • Step 4 The transmitting end performs data transmission according to the determined persistent scheduling resource on the transmission TTI.
  • Step 1 The receiving end determines the transmission time point according to the persistent scheduling period. If the TTI of the corresponding time point of the period is not the TTI corresponding to the transmission direction, the last available TTI is used as the transmission TTI.
  • Step 2 The receiving end measures the quality of the opposite channel transmission channel; or, based on the channel quality feedback of the opposite end, estimates the transmission channel quality by using channel reciprocity.
  • Step 3 Determine persistent scheduling resources for transmission according to the correspondence between channel quality and persistent scheduling resource allocation in the persistent scheduling resource list.
  • Step 4 The receiving end performs data reception according to the determined persistent scheduling resource on the transmission TTI.
  • This example is an implementation that selects persistent scheduling resources for transmission in conjunction with TTI length and channel quality.
  • the network side Before performing the persistent scheduling transmission, the network side has configured a persistent scheduling resource list for the terminal, and each persistent scheduling resource configuration corresponds to a different channel quality and TTI length combination.
  • Step 1 The transmitting end determines the transmission time point according to the persistent scheduling period. If the TTI of the corresponding time point of the period is not the TTI corresponding to the transmission direction, the last available TTI is used as the transmission TTI.
  • Step 2 The transmitting end measures the quality of the transmission channel of the opposite end, and estimates the quality of the transmission channel sent to the opposite end by using the channel reciprocity; or determines the quality of the transmission channel according to the channel quality feedback of the opposite end.
  • the amount of resources and the transport format used for persistent scheduled transmissions can be determined by channel quality.
  • Step 3 The sender determines the TTI length of the transmission TTI, combines the channel quality information, searches for a persistent scheduling resource allocation list, and determines a persistent scheduling resource for transmission.
  • Step 4 The transmitting end performs data transmission according to the determined persistent scheduling resource on the transmission TTI.
  • Step 1 The receiving end determines the transmission time point according to the persistent scheduling period. If the TTI of the corresponding time point of the period is not the TTI corresponding to the transmission direction, the last available TTI is used as the transmission TTI.
  • Step 2 The receiving end measures the quality of the opposite channel transmission channel; or, based on the channel quality feedback of the opposite end, estimates the transmission channel quality by using channel reciprocity.
  • the amount of resources and the transport format used for persistent scheduled transmissions can be determined by channel quality.
  • Step 3 The receiving end determines the TTI length of the transmission TTI, and combines the channel quality information to find a persistent scheduling resource allocation list, and determines a persistent scheduling resource for transmission.
  • Step 4 The receiving end performs data reception according to the determined persistent scheduling resource on the transmission TTI.
  • an embodiment of the present invention further provides a device for continuously scheduling resource allocation, a device for transmitting data by using a persistent scheduling resource, and a method for solving the problem due to the device and a method for allocating persistent scheduling resources.
  • a method for transmitting data using a persistent scheduling resource is similar, so the implementation of these devices can be referred to the implementation of the method, and the details are not repeated here.
  • FIG. 10 is a schematic structural diagram of a device for continuously scheduling resource allocation, as shown in the figure, which may include:
  • a generating module 1001 configured to generate a persistent scheduling resource allocation table for the terminal, where the persistent scheduling resource allocation table includes a mapping relationship between each persistent scheduling resource and a TTI length and/or a channel condition;
  • the sending module 1002 is configured to send the persistent scheduling resource allocation table to the terminal.
  • the generating module is further configured to generate a persistent scheduling resource allocation table for the terminal that needs to transmit the service data by using the persistent scheduling resource.
  • the generating module is further configured to determine the mapping relationship according to one of the following factors or a combination thereof:
  • TTI length change requirement TTI length option
  • air interface resource for continuously scheduling resource allocation.
  • the sending module is further configured to send the persistent scheduling resource allocation table to the terminal one by one in a unicast manner, or send the persistent scheduling resource allocation table to a group of terminals in one or more control commands.
  • each persistent scheduling resource includes one or a combination of the following:
  • FIG. 11 is a schematic structural diagram of an apparatus for transmitting data by using a persistent scheduling resource, as shown in the figure, which may include:
  • the allocation table determining module 1101 is configured to determine a persistent scheduling resource allocation table, where the persistent scheduling resource allocation table includes a mapping relationship between each persistent scheduling resource and a TTI length and/or a channel condition;
  • a resource determining module 1102 configured to determine, according to a mapping relationship in the persistent scheduling resource allocation table, a persistent scheduling resource after determining a TTI length and/or a channel condition that the transmission data needs to use;
  • the transmission module 1103 is configured to use the persistent scheduling resource to transmit data.
  • the resource determining module is further configured to: when determining the persistent scheduling resource according to the mapping relationship in the persistent scheduling resource allocation table at a time corresponding to each persistent scheduling resource period, adopting each TTI configured semi-statically or dynamically by the network side. length.
  • the resource determination module is further configured to determine the channel condition in the following manner:
  • the terminal When determining the downlink transmission persistent scheduling resource from the network side to the terminal, the terminal determines according to the downlink channel quality CQI, and determines, according to the CQI fed back by the terminal, on the network side, or according to the uplink pilot sent by the network side to the terminal on the network side. Determining the downlink channel quality after the channel quality measurement performed by the signal or the uplink transmission is determined, and determining, by the terminal, the downlink channel quality measurement performed at the terminal;
  • the terminal determines the uplink channel quality according to the downlink channel quality measurement performed by the terminal, and determines, according to the CQI fed back by the terminal, on the network side; or Determining the estimated uplink channel quality after the downlink channel quality measurement performed by the terminal, and determining, by the network side, the channel quality measurement performed by the uplink pilot signal or the uplink transmission sent by the terminal on the network side; or, at the terminal according to the network side
  • the feedback to the terminal after the uplink channel quality measurement performed by the uplink pilot signal or the uplink transmission sent by the terminal is determined by the network side, and the channel quality measurement performed by the uplink pilot signal or the uplink transmission sent by the terminal on the network side is determined.
  • the resource determining module is further configured to determine the channel condition as follows:
  • the receiving end determines, according to the channel quality measurement to the transmitting end, the feedback determined by the receiving end according to the receiving end to the channel measurement of the transmitting end;
  • the receiving end determined according to the channel quality measurement to the transmitting end, and determined by the channel reciprocity according to the channel quality measurement to the receiving end at the transmitting end.
  • each persistent scheduling resource includes one or a combination of the following:
  • the base station includes:
  • the processor 1200 is configured to read a program in the memory 1220 and perform the following process:
  • the persistent scheduling resource allocation table includes a mapping relationship between each persistent scheduling resource and a TTI length and/or a channel condition
  • the transceiver 1210 is configured to send and receive data under the control of the processor 1200, and performs the following processes:
  • the terminal is a terminal that needs to transmit service data by using a persistent scheduling resource.
  • mapping relationship is determined according to one of the following factors or a combination thereof:
  • TTI length change requirement TTI length option
  • air interface resource for continuously scheduling resource allocation.
  • the persistent scheduling resource allocation table is sent to the terminal, which is sent by the terminal in a unicast manner, or is sent to a group of terminals in one or more control commands.
  • each persistent scheduling resource includes one or a combination of the following:
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1200 and various circuits of memory represented by memory 1220.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver 1210 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 1200 is responsible for managing the bus architecture and general processing, and the memory 1220 can store data used by the processor 1200 in performing operations.
  • the following describes a transmission device that uses a persistent scheduling resource to transmit data.
  • the following example is a terminal, but it is obvious that the network measurement device such as a base station can also adopt the scheme. In fact, as long as it has a persistent scheduling resource allocation table. Equipment can be implemented.
  • FIG. 13 is a schematic structural diagram of a terminal. As shown in the figure, the terminal includes:
  • the processor 1300 is configured to read a program in the memory 1320 and perform the following process:
  • each persistent scheduling is included in the persistent scheduling resource allocation table a mapping relationship between resources and TTI length and/or channel conditions;
  • determining a persistent scheduling resource After determining a TTI length and/or a channel condition to be used for transmitting data, determining a persistent scheduling resource according to a mapping relationship in the persistent scheduling resource allocation table;
  • the transceiver 1310 is configured to send and receive data under the control of the processor 1300, and performs the following processes:
  • each TTI length is semi-statically or dynamically configured by the network side.
  • the channel condition is determined as follows:
  • the terminal When determining the downlink transmission persistent scheduling resource from the network side to the terminal, the terminal determines according to the downlink channel quality CQI, and determines, according to the CQI fed back by the terminal, on the network side, or according to the uplink pilot sent by the network side to the terminal on the network side. Determining the downlink channel quality after the channel quality measurement performed by the signal or the uplink transmission is determined, and determining, by the terminal, the downlink channel quality measurement performed at the terminal;
  • the terminal determines the uplink channel quality according to the downlink channel quality measurement performed by the terminal, and determines, according to the CQI fed back by the terminal, on the network side; or Determining the estimated uplink channel quality after the downlink channel quality measurement performed by the terminal, and determining, by the network side, the channel quality measurement performed by the uplink pilot signal or the uplink transmission sent by the terminal on the network side; or, at the terminal according to the network side
  • the feedback to the terminal after the uplink channel quality measurement performed by the uplink pilot signal or the uplink transmission sent by the terminal is determined by the network side, and the channel quality measurement performed by the uplink pilot signal or the uplink transmission sent by the terminal on the network side is determined.
  • the channel condition is determined as follows:
  • the receiving end determines, according to the channel quality measurement to the transmitting end, the feedback determined by the receiving end according to the receiving end to the channel measurement of the transmitting end;
  • the receiving end determined according to the channel quality measurement to the transmitting end, and determined by the channel reciprocity according to the channel quality measurement to the receiving end at the transmitting end.
  • each persistent scheduling resource includes one or a combination of the following:
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1300 and various circuits of memory represented by memory 1320.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 1310 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 1330 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1300 is responsible for managing the bus architecture and general processing, and the memory 1320 can store data used by the processor 1300 in performing operations.
  • the terminal allocates a persistent scheduling resource list to the terminal, where the resource occupation and transmission format of each scheduling resource are related to the available TTI length and/or channel status.
  • the resource used by each data packet transmission is selected by the transmitting end to estimate the channel condition, or the resource used for the persistent scheduling transmission is selected according to the available TTI length at the time of transmission.
  • an implementation scheme for continuously scheduling resource list contents, performing resource determination according to TTI length or channel quality, and combining TTI length and channel quality is also provided. This scheme can achieve effective allocation of persistent scheduling resources under variable TTI length.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种持续调度资源的分配及使用其传输数据的方法及装置,包括:为终端生成持续调度资源分配表,其中,在所述持续调度资源分配表中包含有每个持续调度资源与传输时间间隔长度和/或信道状况的映射关系;将所述持续调度资源分配表发送给终端。在使用持续调度资源传输数据时,确定持续调度资源分配表;在确定传输数据时的传输时间间隔长度和/或信道状况后,根据所述持续调度资源分配表中的映射关系确定持续调度资源;使用该持续调度资源传输数据。采用本方案,即使传输时间间隔可变,也可以采用持续调度资源进行数据传输,实现可变传输时间间隔长度下持续调度资源的有效分配。

Description

一种持续调度资源的分配及使用其传输数据的方法及装置
本申请要求在2016年2月19日提交中国专利局、申请号为201610094451.5、发明名称为“一种持续调度资源的分配及使用其传输数据的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信领域技术领域,特别涉及一种持续调度资源的分配及使用其传输数据的方法及装置。
背景技术
持续调度是指网络侧为终端分配持续性的确定资源(如时间、频率、码道等)并指定确定的传输格式(如调制编码格式),发送端在指定资源位置以指定传输格式发送数据包,不需网络侧再发送调度命令。持续调度的目的主要是对于周期性到达的小数据包,如VoIP(Voice over IP,基于IP的语音传输)数据包,可以节省调度命令资源,以提升系统容量和提高资源效率。
以LTE(Long Term Evolution,长期演进)系统为例,LTE系统采用半持续调度,工作方式为:对特定数据包(如VoIP业务的话音包)的初始传输采用持续调度,该数据包的重传和其他数据包(如VoIP业务的SID包)采用动态调度。
下面以VoIP业务为例对半持续调度进行说明。图1为VoIP业务模型示意图,如图1所示,VoIP业务主要分为激活期(talkspurt)和静默期(silent period),激活期的VoIP包大小基本固定,到达周期为20ms;静默期的SID(Silence Descriptor,静音指示)包比话音包小,到达周期为160ms。
基站在激活期每隔一定周期(20ms)给VoIP包分配足够的固定资源(频率、码道等),即采用持续调度,而话音包的重传和SID的初始传输和重传时则采用动态调度。半持续调度是资源分配灵活性和节约调度信令的一种折中。图2为持续调度资源分配和传输示意图,持续调度数据包的分配和传输如图2所示。
LTE系统采用固定帧结构。图3为LTE TDD帧结构示意图,以LTE TDD(Time Division Duplex,时分双工)为例,其帧结构如图3所示,每一个无线帧由两个半帧(half-frame)构成,每一个半帧长度为5ms。每一个半帧包括8个时隙(slot),每一个的长度为0.5ms;以及三个特殊时隙:DwPTS(Downlink Pilot Time Slot,下行导频时隙)、GP(Guard Period,保护时隙)和UpPTS(Uplink Pilot Time slot,上行导频时隙)。DwPTS和UpPTS的长度是可配置的,并且要求DwPTS、GP以及UpPTS的总长度等于1ms。子帧1和子帧6包含 DwPTS、GP以及UpPTS,所有其他子帧包含两个相邻的时隙,其中第i个子帧由第2i个和2i+1个时隙构成。一个子帧即为一个TTI(transmission time interval,传输时间间隔)。
子帧0和子帧5以及DwPTS永远预留为下行传输。
支持5ms和10ms的切换点周期。
在5ms切换周期情况下,UpPTS、子帧2和子帧7预留为上行传输。
在10ms切换周期情况下,DwPTS在两个半帧中都存在,但是GP和UpPTS只在第一个半帧中存在,在第二个半帧中的DwPTS长度为1ms。UpPTS和子帧2预留为上行传输。
根据上下行子帧转换点的不同,可以实现不同的上下行子帧配置,目前规范确定支持的上下行子帧配置如表1所示,其中配置0~2是5ms上下行子帧转换点,配置3~6是10ms子帧转换点。
表1:上下行子帧配置
Figure PCTCN2017071943-appb-000001
TTI是调度和传输的基本时间单位,在LTE系统中TTI固定为1ms。则持续调度分配资源总是分配1ms子帧中的规定位置PRB(physical resource block,物理资源块)用于持续调度数据包传输。
但是,现有技术的不足在于:在可变TTI下,面临每个TTI的可用资源不同,调度资源分配的RU大小也不同时,LTE系统这种固定时间周期,固定资源量大小和传输格式的持续调度方式已不再适用。而同时,现有技术也还没有提供在可变TTI的帧结构下进行持续调度的解决方案。
发明内容
本发明提供了一种持续调度资源的分配及使用其传输数据的方法及装置,用以提供一种在可变TTI的帧结构下进行持续调度资源分配、及用其进行数据传输的方案。
本发明实施例中提供了一种持续调度资源的分配方法,包括:
为终端生成持续调度资源分配表,其中,在所述持续调度资源分配表中包含有每个持续调度资源与TTI长度和/或信道状况的映射关系;
将所述持续调度资源分配表发送给终端。
较佳地,所述终端是具有需要采用持续调度资源传输业务数据的终端。
较佳地,所述映射关系是根据以下因素之一或者其组合确定的:
TTI长度变化需求,TTI长度选项,进行持续调度资源分配的空口资源。
较佳地,将所述持续调度资源分配表发送给终端,是用单播方式为终端一一发送的,或者,是在一条或多条控制命令中为一组终端发送的。
较佳地,每个持续调度资源包括以下内容之一或者其组合:
传输方向,周期,资源位置,MCS格式,激活条件。
本发明实施例中提供了一种使用持续调度资源传输数据的方法,包括:
确定持续调度资源分配表,其中,在所述持续调度资源分配表中包含有每个持续调度资源与TTI长度和/或信道状况的映射关系;
在确定传输数据需要使用的TTI长度和/或信道状况后,根据所述持续调度资源分配表中的映射关系确定持续调度资源;
使用该持续调度资源传输数据。
较佳地,在每个持续调度资源周期对应的时刻根据所述持续调度资源分配表中的映射关系确定持续调度资源时,每个TTI长度是由网络侧半静态或动态配置的。
较佳地,所述信道状况按以下方式确定:
在确定网络侧到终端的下行传输持续调度资源时,在终端根据下行信道质量CQI确定,在网络侧根据终端反馈的CQI进行确定;或者,在网络侧根据在网络侧对终端发送的上行导频信号或上行传输进行的信道质量测量后推测的下行信道质量进行确定,在终端根据在终端进行的下行信道质量测量进行确定;
在确定终端到网络侧的上行传输持续调度资源时,在终端根据在终端进行的下行信道质量测量后推测的上行信道质量进行确定,在网络侧根据终端反馈的CQI进行确定;或者,在终端根据在终端进行的下行信道质量测量后推测的上行信道质量进行确定,在网络侧根据在网络侧对终端发送的上行导频信号或上行传输进行的信道质量测量进行确定;或者,在终端根据网络侧对终端发送的上行导频信号或上行传输进行的上行信道质量测量后对终端的反馈确定,在网络侧根据在网络侧对终端发送的上行导频信号或上行传输进行的信道质量测量进行确定。
较佳地,所述信道状况按如下方式确定:
在接收端根据对发送端的信道质量测量确定,在发送端根据接收端对发送端的信道测 量进行的反馈确定;
或,在接收端根据对发送端的信道质量测量确定,在发送端根据对接收端的信道质量测量利用信道互易性确定。
较佳地,每个持续调度资源包括以下内容之一或者其组合:
传输方向,周期,资源位置,MCS格式,激活条件。
本发明实施例中提供了一种持续调度资源的分配装置,包括:
生成模块,用于为终端生成持续调度资源分配表,其中,在所述持续调度资源分配表中包含有每个持续调度资源与TTI长度和/或信道状况的映射关系;
发送模块,用于将所述持续调度资源分配表发送给终端。
较佳地,生成模块进一步用于为具有需要采用持续调度资源传输业务数据的终端生成持续调度资源分配表。
较佳地,生成模块进一步用于根据以下因素之一或者其组合确定所述映射关系:
TTI长度变化需求,TTI长度选项,进行持续调度资源分配的空口资源。
较佳地,发送模块进一步用于用单播方式为终端一一发送所述持续调度资源分配表,或者,在一条或多条控制命令中为一组终端发送所述持续调度资源分配表。
较佳地,每个持续调度资源包括以下内容之一或者其组合:
传输方向,周期,资源位置,MCS格式,激活条件。
本发明实施例中提供了一种使用持续调度资源传输数据的装置,包括:
分配表确定模块,用于确定持续调度资源分配表,其中,在所述持续调度资源分配表中包含有每个持续调度资源与TTI长度和/或信道状况的映射关系;
资源确定模块,用于在确定传输数据需要使用的TTI长度和/或信道状况后,根据所述持续调度资源分配表中的映射关系确定持续调度资源;
传输模块,用于使用该持续调度资源传输数据。
较佳地,资源确定模块进一步用于在每个持续调度资源周期对应的时刻根据所述持续调度资源分配表中的映射关系确定持续调度资源时,采用由网络侧半静态或动态配置的每个TTI长度。
较佳地,资源确定模块进一步用于按以下方式确定所述信道状况:
在确定网络侧到终端的下行传输持续调度资源时,在终端根据下行信道质量CQI确定,在网络侧根据终端反馈的CQI进行确定;或者,在网络侧根据在网络侧对终端发送的上行导频信号或上行传输进行的信道质量测量后推测的下行信道质量进行确定,在终端根据在终端进行的下行信道质量测量进行确定;
在确定终端到网络侧的上行传输持续调度资源时,在终端根据在终端进行的下行信道质量测量后推测的上行信道质量进行确定,在网络侧根据终端反馈的CQI进行确定;或者, 在终端根据在终端进行的下行信道质量测量后推测的上行信道质量进行确定,在网络侧根据在网络侧对终端发送的上行导频信号或上行传输进行的信道质量测量进行确定;或者,在终端根据网络侧对终端发送的上行导频信号或上行传输进行的上行信道质量测量后对终端的反馈确定,在网络侧根据在网络侧对终端发送的上行导频信号或上行传输进行的信道质量测量进行确定。
较佳地,资源确定模块进一步用于按如下方式确定所述信道状况:
在接收端根据对发送端的信道质量测量确定,在发送端根据接收端对发送端的信道测量进行的反馈确定;
或,在接收端根据对发送端的信道质量测量确定,在发送端根据对接收端的信道质量测量利用信道互易性确定。
较佳地,每个持续调度资源包括以下内容之一或者其组合:
传输方向,周期,资源位置,MCS格式,激活条件。
本申请实施例提供的另一种持续调度资源的分配装置,包括:处理器,用于读取存储器中的程序,执行下列过程:
为终端生成持续调度资源分配表,其中,在所述持续调度资源分配表中包含有每个持续调度资源与TTI长度和/或信道状况的映射关系;
收发机,用于在处理器的控制下发送和接收数据,执行下列过程:
将所述持续调度资源分配表发送给终端。
较佳地,处理器进一步用于根据以下因素之一或者其组合确定所述映射关系:
TTI长度变化需求,TTI长度选项,进行持续调度资源分配的空口资源。
较佳地,收发机在处理器的控制下具体用于:
采用单播方式为终端一一发送所述持续调度资源分配表;或者,
在一条或多条控制命令中为一组终端发送所述持续调度资源分配表。
较佳地,每个持续调度资源包括以下内容之一或者其组合:
传输方向,周期,资源位置,MCS格式,激活条件。
本申请实施例提供的另一种使用持续调度资源传输数据的装置,包括:处理器,用于读取存储器中的程序,执行下列过程:
确定持续调度资源分配表,其中,在所述持续调度资源分配表中包含有每个持续调度资源与TTI长度和/或信道状况的映射关系;
在确定传输数据需要使用的TTI长度和/或信道状况后,根据所述持续调度资源分配表中的映射关系确定持续调度资源;
收发机,用于在处理器的控制下发送和接收数据,执行下列过程:
使用该持续调度资源传输数据。
较佳地,处理器进一步用于在每个持续调度资源周期对应的时刻根据所述持续调度资源分配表中的映射关系确定持续调度资源时,采用由网络侧半静态或动态配置的每个TTI长度。
较佳地,处理器进一步用于按以下方式确定所述信道状况:
在确定网络侧到终端的下行传输持续调度资源时,在终端根据下行信道质量CQI确定,在网络侧根据终端反馈的CQI进行确定;或者,在网络侧根据在网络侧对终端发送的上行导频信号或上行传输进行的信道质量测量后推测的下行信道质量进行确定,在终端根据在终端进行的下行信道质量测量进行确定;
在确定终端到网络侧的上行传输持续调度资源时,在终端根据在终端进行的下行信道质量测量后推测的上行信道质量进行确定,在网络侧根据终端反馈的CQI进行确定;或者,在终端根据在终端进行的下行信道质量测量后推测的上行信道质量进行确定,在网络侧根据在网络侧对终端发送的上行导频信号或上行传输进行的信道质量测量进行确定;或者,在终端根据网络侧对终端发送的上行导频信号或上行传输进行的上行信道质量测量后对终端的反馈确定,在网络侧根据在网络侧对终端发送的上行导频信号或上行传输进行的信道质量测量进行确定。
较佳地,处理器进一步用于按如下方式确定所述信道状况:
在接收端根据对发送端的信道质量测量确定,在发送端根据接收端对发送端的信道测量进行的反馈确定;
或,在接收端根据对发送端的信道质量测量确定,在发送端根据对接收端的信道质量测量利用信道互易性确定。
较佳地,每个持续调度资源包括以下内容之一或者其组合:
传输方向,周期,资源位置,MCS格式,激活条件。
本发明有益效果如下:
在本发明实施例提供的技术方案中,在网络侧为终端生成持续调度资源分配表,在持续调度资源分配表中包含有每个持续调度资源与TTI长度和/或信道状况的映射关系;然后将持续调度资源分配表发送给终端。
在需要进行数据传输时,数据收发方在确定传输数据需要使用的TTI长度和/或信道状况后,便可以根据持续调度资源分配表中的映射关系确定持续调度资源,并使用该持续调度资源传输数据。
可见,即使TTI可变,采用本方案也可以采用持续调度资源进行数据传输,实现可变TTI长度下持续调度资源的有效分配。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为背景技术中的VoIP业务模型示意图;
图2为背景技术中的持续调度资源分配和传输示意图;
图3为背景技术中的LTE TDD帧结构示意图;
图4为本发明实施例中的可变TTI示意图;
图5为本发明实施例中的持续调度资源的分配方法实施流程示意图;
图6为本发明实施例中的RU格式示意图;
图7为本发明实施例中的使用持续调度资源传输数据的方法实施流程示意图;
图8为本发明实施例中的依据TTI长度选择持续调度资源示例1示意图;
图9为本发明实施例中的依据TTI长度选择持续调度资源示例2示意图;
图10为本发明实施例中的持续调度资源的分配装置结构示意图;
图11为本发明实施例中的使用持续调度资源传输数据的装置结构示意图;
图12为本发明实施例中的基站结构示意图;
图13为本发明实施例中的终端结构示意图。
具体实施方式
发明人在发明过程中注意到:
5G移动通信系统是包括各类设备的端到端生态系统。需要具备比4G更高的性能,支持0.1~1Gbps的用户体验速率,每平方公里一百万的连接数密度,毫秒级的端到端时延,每平方公里数十Tbps的流量密度,每小时500Km以上的移动性和数十Gbps的峰值速率。低时延高可靠是5G的重要需求,对应低时延高可靠典型场景的技术挑战是极低时延:空口1ms和端到端毫秒级时延。为此,5G提出了可变长度TTI的思想。图4为可变TTI示意图,如图4所示,横坐标代表时域,纵坐标代表频域。每个小方格是一个最小资源单位RE(Resource Element,资源单元),资源分配以RU(Resource Unit,资源单位)为粒度。TTI长度为时域基本资源时长(如符号symbol)的整数倍。图4中TTI1包括1个符号,为下行TTI;TTI2包括1个符号,为上行TTI;TTI3包括2个符号,为下行TTI;TTI4和TTI5包括3个符号,为下行TTI。
在LTE,是以PRB为资源分配单位RU,PRB在时间上占用整个TTI长度,频率上占用部分子载波。5G提出新的帧结构,RU可能与LTE PRB类似,占用整个TTI长度的部分子载波,也可能长度小于TTI。
显然,在可变TTI下,每个TTI的可用资源是不同的,调度资源分配的RU大小也可能不同。LTE系统这种固定时间周期,固定资源量大小和传输格式的持续调度方式已不再 适用。而同时,5G系统业务同样化,需要进行持续调度的数据包将更多。然而,现有技术并没有提供在可变TTI的帧结构下进行持续调度的解决方案。
因此,如何在可变TTI的帧结构下进行持续调度是一个需要解决的问题,基于此,本发明实施例中将提供一种在可变TTI的帧结构下进行持续调度资源分配、及用其进行数据传输的方案,在提供的方案中,网络侧为终端分配持续调度资源列表,其中每个持续调度资源的资源占用、传输格式与可用的TTI长度和/或信道状况相关。由发送端与接收端估计信道状况选择每个数据包传输使用的资源,和/或根据传输时刻可用TTI长度选择持续调度传输使用的资源。下面结合附图对本发明的具体实施方式进行说明。
在说明过程中,将分别涉及终端以及网络侧实体的实施,其中将说明网络侧分配资源过程中的过程,将说明终端与终端或网络侧数据传输的过程,然后还将给出它们配合实施的实例以更好地理解本发明实施例中给出的方案的实施。这样的说明方式并不意味着它们必须配合实施、或者必须单独实施,实际上,当终端与网络侧设备分开实施时,其也各自解决终端侧、网络侧的问题,而它们结合使用时,会获得更好的技术效果。
图5为持续调度资源的分配方法实施流程示意图,如图所示,可以包括:
步骤501、为终端生成持续调度资源分配表,其中,在所述持续调度资源分配表中包含有每个持续调度资源与TTI长度和/或信道状况的映射关系;
步骤502、将所述持续调度资源分配表发送给终端。
实施中,将在网络侧分配持续调度资源,网络侧在确定终端需要进行持续调度资源分配的时候,为终端分配多组持续调度资源,形成持续调度资源列表,每种持续调度资源分配对应一种TTI长度和/或信道状况。该列表在申请中称为持续调度资源分配表,但是在实施中,显然并不仅限于只采用表格的形式,事实上,只要是能够包含有每个持续调度资源与TTI长度和/或信道状况的映射关系的表达形式均可,表格仅用于教导本领域技术人员具体如何实施本发明,但不意味仅能使用表格一种方式,实施过程中可以结合实践需要来确定相应的表达形式。
具体实施中,以列表格式示例可以如下表2所示。
表2:持续调度资源分配列表示例
资源编号 传输资源分配 TTI长度(可选) 信道状况(可选)
1 资源1 TTI长度1  
2 资源2 TTI长度2  
……      
实施中,每个持续调度资源可以包括以下内容之一或者其组合:
传输方向,周期,资源位置,MCS(Modulation and Coding Scheme,调制编码方式) 格式,激活条件。
以表2为例,表中各项具体可以如下:
1)传输资源分配栏
内容可以包括以下各项部分或全部的组合,使之能唯一确定传输资源:
传输方向:如上行;下行;D2D(Device-to-Device,设备到设备)配对UE(User Equipment,用户设备)间传输等;
周期:一般与业务时间包周期匹配,可能配置为多个周期。具体实施中,对于TDD,如果某周期点上TTI方向与所需传输方向不一致,可默认为在下一个与传输方向一致的TTI上传输;
资源位置:与确定的资源分配格式相关。
具体实施中,具体的资源位置指示方式与资源分配单位RU有关,图6为RU格式示意图,如图所示,图中示例为三种不同的RU格式,分别以粗黑框示意,在RU格式1中,一个RU时域上占用全部TTI,频域上占用部分子载波;RU格式2中,一个RU占用部分时频域上连续的资源单位RE,但时域上没有占用全部TTI;RU格式3中,一个RU占用离散的一个或多个RE,具体占用pattern是确定的。
因此,资源指示格式可以为起点位置+终点位置(如RU格式1);起点位置+RU个数(如RU格式1、格式2中的连续资源子载波分配);分配的RU位置或编号(如RU格式3)。
MCS格式:调制编码格式;
激活条件:如业务到达自动激活;发送特定指示,如下行激活命令,上行调度请求后激活等。
2)TTI长度栏
如长度为1个符号的TTI;长度为N个符号的TTI等。
3)信道状况
如信道质量门限,在特定信道质量范围内使用对应的传输资源分配,例如信道质量越好采用越高等级(即传输相同数据时使用物理资源更少)的MCS格式。
实施中,所述终端是具有需要采用持续调度资源传输业务数据的终端。
实施中,所述映射关系是根据以下因素之一或者其组合确定的:
TTI长度变化需求,TTI长度选项,进行持续调度资源分配的空口资源。
实施中,将所述持续调度资源分配表发送给终端,是用单播方式为终端一一发送的,或者,是在一条或多条控制命令中为一组终端发送的。
下面以实例进行说明。
实施例1
本例用以说明在网络侧分配持续调度资源列表的实施。
步骤一:在网络侧确定需要进行持续调度资源分配的终端,确定依据是该终端具有需要采用持续调度资源传输的业务数据,如周期性的小数据包(例如VoIP、MTC(Machine Type Communications,机器类通信)周期性上报数据等)。并确定使用持续调度资源传输业务数据的周期、数据包大小、传输方向(下行、上行、D2D)等。
步骤二:网络侧确定TTI长度变化需求和TTI长度选项,以及进行持续调度资源分配的空口资源。形成持续调度资源分配列表,表中包括持续调度资源分配(调度周期、资源位置、传输格式等),对应的TTI长度和/或信道质量。
步骤三:网络侧将分配的持续调度资源列表发送的终端,用于后续持续调度资源传输。发送方式可以是用单播方式为终端一一配置,或在一条或多条控制命令中为一组终端配置。
下面对根据上述持续调度资源分配表进行数据传输的实施过程进行说明,在持续调度数据传输过程中,根据持续调度资源分配周期,发送端在持续调度资源周期对应的传输时刻,根据当前TTI长度或信道状况确定具体传输资源和传输格式发送数据传输,接收端根据同样的规则进行数据接收。说明过程将分别对涉及的到终端与网络侧、终端与终端之间的数据传输进行说明。
图7为使用持续调度资源传输数据的方法实施流程示意图,如图所示,可以包括:
步骤701、确定持续调度资源分配表,其中,在所述持续调度资源分配表中包含有每个持续调度资源与TTI长度和/或信道状况的映射关系;
步骤702、在确定传输数据需要使用的TTI长度和/或信道状况后,根据所述持续调度资源分配表中的映射关系确定持续调度资源;
步骤703、使用该持续调度资源传输数据。
下面对步骤702中在确定传输数据时的TTI长度后,根据所述持续调度资源分配表中的映射关系确定持续调度资源的实施进行说明。
实施中,在每个持续调度资源周期对应的时刻根据所述持续调度资源分配表中的映射关系确定持续调度资源时,每个TTI长度是由网络侧半静态或动态配置的。
具体实施中,在每个持续调度资源周期对应的时刻,发送端和接收端根据持续调度资源分配表中TTI长度与传输资源分配的对应关系,确定进行持续调度传输的资源。每个TTI长度是由网络侧半静态或动态配置的。
图8为依据TTI长度选择持续调度资源示例1示意图,如图所示,图中粗黑框为每次传输数据使用的资源,图中以持续调度资源总是占用6个RE为例。
下面对步骤702中在确定传输数据时的信道状况后,根据所述持续调度资源分配表中的映射关系确定持续调度资源的实施进行说明。
实施中,在每个持续调度资源周期对应的时刻,发送端和接收端根据信道质量,在持续调度资源分配表中确定进行持续调度传输的资源。信道状况可以按以下方式确定:
1、网络侧到终端的下行传输
1)在确定网络侧到终端的下行传输持续调度资源时,在终端根据CQI确定,在网络侧根据终端反馈的CQI进行确定。
具体可以如下:
步骤一:终端进行下行信道质量CQI(Channel Quality Indicator,信道质量指示)反馈,不同CQI等级对应不同资源分配方式;
步骤二:网络侧根据终端CQI反馈,确定下行持续调度传输所使用的具体资源和传输格式;
步骤三:网络侧传输点和终端根据选定的持续调度资源及传输格式进行数据发送和接收。
2)在确定网络侧到终端的下行传输持续调度资源时,在网络侧根据在网络侧对终端发送的上行导频信号或上行传输进行的信道质量测量后推测的下行信道质量进行确定,在终端根据在终端进行的下行信道质量测量进行确定。
具体可以如下:
步骤一:网络侧对终端发送的上行导频信号或上行传输进行信道质量测量(终端发送的上行导频信号或上行传输不一定是针对持续调度),并利用信道互易性,根据上行信道质量推测下行信道质量,据此在持续调度资源分配列表中查找该信道质量对应的持续调度资源分配;
步骤二:终端根据下行信道质量测量,在持续调度资源分配列表中查找该信道质量对应的持续调度资源分配;
步骤三:网络侧传输点和终端根据选定的持续调度资源及传输格式进行数据发送和接收。
2、终端到网络侧的上行传输
1)在确定终端到网络侧的上行传输持续调度资源时,在终端根据在终端进行的下行信道质量测量后推测的上行信道质量进行确定,在网络侧根据终端反馈的CQI进行确定;
具体可以如下:
步骤一:终端进行下行信道质量测量,利用信道互易性,推测上行信道质量,并据此在持续调度资源分配表中进行持续调度资源选择;
步骤二:网络侧根据终端CQI反馈,利用信道互易性,在持续调度资源分配表中进行持续调度资源选择;
步骤三:终端和网络侧传输点根据选定的持续调度资源及传输格式进行数据发送和接 收。
2)在确定终端到网络侧的上行传输持续调度资源时,在终端根据在终端进行的下行信道质量测量后推测的上行信道质量进行确定,在网络侧根据在网络侧对终端发送的上行导频信号或上行传输进行的信道质量测量进行确定。
具体可以如下:
步骤一:终端进行下行信道质量测量,利用信道互易性,推测上行信道质量,并据此在持续调度资源分配表中进行持续调度资源选择;
步骤二:网络侧对终端发送的上行导频信号或上行传输进行信道质量测量,并据此在持续调度资源分配表中进行持续调度资源选择;
步骤三:终端和网络侧传输点根据选定的持续调度资源及传输格式进行数据发送和接收。
3)在确定终端到网络侧的上行传输持续调度资源时,在终端根据网络侧对终端发送的上行导频信号或上行传输进行的上行信道质量测量后对终端的反馈确定,在网络侧根据在网络侧对终端发送的上行导频信号或上行传输进行的信道质量测量进行确定。
在实施中,在传输时还可以根据实际情况将传输数据的双方区分为发送端与接收端,如D2D终端与终端间的传输、终端与基站间的传输。此时,信道状况可以按如下方式确定:
在接收端根据对发送端的信道质量测量确定,在发送端根据接收端对发送端的信道测量进行的反馈确定;
或,在接收端根据对发送端的信道质量测量确定,在发送端根据对接收端的信道质量测量利用信道互易性确定。
以发送端与接收端说明的具体实例实施方式可以参见下述利用持续调度资源列表进行传输的各实施例。
下面对步骤702中在确定传输数据时的TTI长度和信道状况后,根据所述持续调度资源分配表中的映射关系确定持续调度资源的实施进行说明。
在这种方式下,发送端和接收端根据信道质量测量,确定进行数据传输所需资源量和传输格式,并结合传输时刻的TTI长度,确定传输资源。这种方式更为适用于TTI长度动态可变的情况。
图9为依据TTI长度选择持续调度资源示例2示意图,如图所示,在时刻t1,TTI1长度为3个符号,根据信道质量选择传输格式MCS1,占用6个RE资源;在时刻t2,TTI2长度为1个符号,根据信道质量选择传输格式MCS2,占用4个RE资源;在时刻t3,TTI3长度为2个符号,根据信道质量选择传输格式MCS3,占用2个RE资源。
下面用实例进行说明如何利用持续调度资源列表进行传输。实施例2描述了网络侧与终端之间的下行、上行,终端与终端之间的D2D传输的资源选择和数据收发,实施例3、 4将只用发送端和接收端描述资源选择和数据收发,运用环境的细节内容参见实施例2。其中,实施例2是根据TTI长度选择持续调度资源进行传输的实例,实施例3是根据信道质量选择持续调度资源进行传输的实例,实施例4是结合TTI长度和信道质量选择持续调度资源进行传输的实例。
实施例2:
本例为根据TTI长度选择持续调度资源进行传输的实施。
在进行持续调度传输之前,网络侧已为终端配置持续调度资源列表,每个持续调度资源配置对应不同的TTI长度。
1、下行传输(网络侧到终端):
网络侧传输点侧:
步骤一:网络侧传输点根据持续调度周期确定传输时间点,如果周期对应时间点的TTI不是下行TTI,则将其后最近的一个下行TTI作为传输TTI。
步骤二:网络侧传输点确定传输TTI的长度,并根据持续调度资源列表中TTI长度与持续调度资源的对应关系确定用于传输的持续调度资源。
步骤三:网络侧传输点在传输TTI上根据确定的持续调度资源进行数据发送。
终端侧:
步骤一:终端根据持续调度周期确定传输时间点,如果周期对应时间点的TTI不是下行TTI,则将其后最近的一个下行TTI作为传输TTI。
步骤二:终端确定传输TTI的长度,并根据持续调度资源列表中TTI长度与持续调度资源的对应关系确定用于传输的持续调度资源。终端确定传输TTI长度的方式为该TTI长度静态或由网络侧半动态配置或由网络侧动态配置并通知。
步骤三:终端在传输TTI上根据确定的持续调度资源进行数据接收。
2、上行传输(终端到网络侧):
终端侧:
步骤一:终端根据持续调度周期确定传输时间点,如果周期对应时间点的TTI不是上行TTI,则将其后最近的一个上行TTI作为传输TTI。
步骤二:终端确定传输TTI的长度,并根据持续调度资源列表中TTI长度与持续调度资源的对应关系确定用于传输的持续调度资源。终端确定传输TTI长度的方式为该TTI长度静态或由网络侧半动态配置或由网络侧动态配置并通知。
步骤三:终端在传输TTI上根据确定的持续调度资源进行数据发送。
网络侧传输点侧:
步骤一:网络侧传输点根据持续调度周期确定传输时间点,如果周期对应时间点的TTI不是上行TTI,则将其后最近的一个上行TTI作为传输TTI。
步骤二:网络侧传输点确定传输TTI的长度,并根据持续调度资源列表中TTI长度与持续调度资源的对应关系确定用于传输的持续调度资源。
步骤三:网络侧传输点在传输TTI上根据确定的持续调度资源进行数据接收。
3、D2D传输(终端1到终端2):
终端1(发送端):
步骤一:终端1根据持续调度周期确定传输时间点,如果周期对应时间点的TTI不是可用的D2D传输TTI,则将其后最近的可用的D2D传输TTI作为传输TTI。
步骤二:终端1确定传输TTI的长度,并根据持续调度资源列表中TTI长度与持续调度资源的对应关系确定用于传输的持续调度资源。终端确定传输TTI长度的方式为该TTI长度静态或由网络侧半动态配置或由网络侧动态配置并通知。
步骤三:终端1在传输TTI上根据确定的持续调度资源进行数据发送。
终端2(接收端):
步骤一:终端2根据持续调度周期确定传输时间点,如果周期对应时间点的TTI不是可用的D2D传输TTI,则将其后最近的可用的D2D传输TTI作为传输TTI。
步骤二:终端2确定传输TTI的长度,并根据持续调度资源列表中TTI长度与持续调度资源的对应关系确定用于传输的持续调度资源。终端确定传输TTI长度的方式为该TTI长度静态或由网络侧半动态配置或由网络侧动态配置并通知。
步骤三:终端2在传输TTI上根据确定的持续调度资源进行数据发送
实施例3:
本例为根据信道质量选择持续调度资源进行传输的实施。
在进行持续调度传输之前,网络侧已为终端配置持续调度资源列表,每个持续调度资源配置对应不同的信道质量。
发送端:
步骤一:发送端根据持续调度周期确定传输时间点,如果周期对应时间点的TTI不是对应传输方向的TTI,则将其后最近的一个可用TTI作为传输TTI。
步骤二:发送端测量对端传输信道质量,利用信道互易性估计发送到对端的传输信道质量;或,根据对端的信道质量反馈确定传输信道质量。
步骤三:根据持续调度资源列表中信道质量与持续调度资源分配的对应关系,确定用于传输的持续调度资源。
步骤四:发送端在传输TTI上根据确定的持续调度资源进行数据发送。
接收端:
步骤一:接收端根据持续调度周期确定传输时间点,如果周期对应时间点的TTI不是对应传输方向的TTI,则将其后最近的一个可用TTI作为传输TTI。
步骤二:接收端测量对端传输信道质量;或,根据对端的信道质量反馈,利用信道互易性估计传输信道质量。
步骤三:根据持续调度资源列表中信道质量与持续调度资源分配的对应关系,确定用于传输的持续调度资源。
步骤四:接收端在传输TTI上根据确定的持续调度资源进行数据接收。
实施例4:
本例为结合TTI长度和信道质量选择持续调度资源进行传输的实施。
在进行持续调度传输之前,网络侧已为终端配置持续调度资源列表,每个持续调度资源配置对应不同的信道质量和TTI长度组合。
发送端:
步骤一:发送端根据持续调度周期确定传输时间点,如果周期对应时间点的TTI不是对应传输方向的TTI,则将其后最近的一个可用TTI作为传输TTI。
步骤二:发送端测量对端传输信道质量,利用信道互易性估计发送到对端的传输信道质量;或,根据对端的信道质量反馈确定传输信道质量。通过信道质量可确定用于持续调度传输的资源量和传输格式。
步骤三:发送端确定传输TTI的TTI长度,结合信道质量信息,查找持续调度资源分配列表,确定用于传输的持续调度资源。
步骤四:发送端在传输TTI上根据确定的持续调度资源进行数据发送。
接收端:
步骤一:接收端根据持续调度周期确定传输时间点,如果周期对应时间点的TTI不是对应传输方向的TTI,则将其后最近的一个可用TTI作为传输TTI。
步骤二:接收端测量对端传输信道质量;或,根据对端的信道质量反馈,利用信道互易性估计传输信道质量。通过信道质量可确定用于持续调度传输的资源量和传输格式。
步骤三:接收端确定传输TTI的TTI长度,结合信道质量信息,查找持续调度资源分配列表,确定用于传输的持续调度资源。
步骤四:接收端在传输TTI上根据确定的持续调度资源进行数据接收。
基于同一发明构思,本发明实施例中还提供了一种持续调度资源的分配装置、一种使用持续调度资源传输数据的装置,由于这些装置解决问题的原理与一种持续调度资源的分配方法、一种使用持续调度资源传输数据的方法相似,因此这些设备的实施可以参见方法的实施,重复之处不再赘述。
图10为持续调度资源的分配装置结构示意图,如图所示,可以包括:
生成模块1001,用于为终端生成持续调度资源分配表,其中,在所述持续调度资源分配表中包含有每个持续调度资源与TTI长度和/或信道状况的映射关系;
发送模块1002,用于将所述持续调度资源分配表发送给终端。
实施中,生成模块进一步用于为具有需要采用持续调度资源传输业务数据的终端生成持续调度资源分配表。
实施中,生成模块进一步用于根据以下因素之一或者其组合确定所述映射关系:
TTI长度变化需求,TTI长度选项,进行持续调度资源分配的空口资源。
实施中,发送模块进一步用于用单播方式为终端一一发送所述持续调度资源分配表,或者,在一条或多条控制命令中为一组终端发送所述持续调度资源分配表。
实施中,每个持续调度资源包括以下内容之一或者其组合:
传输方向,周期,资源位置,MCS格式,激活条件。
图11为使用持续调度资源传输数据的装置结构示意图,如图所示,可以包括:
分配表确定模块1101,用于确定持续调度资源分配表,其中,在所述持续调度资源分配表中包含有每个持续调度资源与TTI长度和/或信道状况的映射关系;
资源确定模块1102,用于在确定传输数据需要使用的TTI长度和/或信道状况后,根据所述持续调度资源分配表中的映射关系确定持续调度资源;
传输模块1103,用于使用该持续调度资源传输数据。
实施中,资源确定模块进一步用于在每个持续调度资源周期对应的时刻根据所述持续调度资源分配表中的映射关系确定持续调度资源时,采用由网络侧半静态或动态配置的每个TTI长度。
实施中,资源确定模块进一步用于按以下方式确定所述信道状况:
在确定网络侧到终端的下行传输持续调度资源时,在终端根据下行信道质量CQI确定,在网络侧根据终端反馈的CQI进行确定;或者,在网络侧根据在网络侧对终端发送的上行导频信号或上行传输进行的信道质量测量后推测的下行信道质量进行确定,在终端根据在终端进行的下行信道质量测量进行确定;
在确定终端到网络侧的上行传输持续调度资源时,在终端根据在终端进行的下行信道质量测量后推测的上行信道质量进行确定,在网络侧根据终端反馈的CQI进行确定;或者,在终端根据在终端进行的下行信道质量测量后推测的上行信道质量进行确定,在网络侧根据在网络侧对终端发送的上行导频信号或上行传输进行的信道质量测量进行确定;或者,在终端根据网络侧对终端发送的上行导频信号或上行传输进行的上行信道质量测量后对终端的反馈确定,在网络侧根据在网络侧对终端发送的上行导频信号或上行传输进行的信道质量测量进行确定。
实施中,资源确定模块进一步用于按如下方式确定所述信道状况:
在接收端根据对发送端的信道质量测量确定,在发送端根据接收端对发送端的信道测量进行的反馈确定;
或,在接收端根据对发送端的信道质量测量确定,在发送端根据对接收端的信道质量测量利用信道互易性确定。
实施中,每个持续调度资源包括以下内容之一或者其组合:
传输方向,周期,资源位置,MCS格式,激活条件。
为了描述的方便,以上所述装置的各部分以功能分为各种模块或单元分别描述。当然,在实施本发明时可以把各模块或单元的功能在同一个或多个软件或硬件中实现。
在实施本发明实施例提供的技术方案时,可以按如下方式实施。
图12为基站结构示意图,如图所示,基站中包括:
处理器1200,用于读取存储器1220中的程序,执行下列过程:
为终端生成持续调度资源分配表,其中,在所述持续调度资源分配表中包含有每个持续调度资源与TTI长度和/或信道状况的映射关系;
收发机1210,用于在处理器1200的控制下发送和接收数据,执行下列过程:
将所述持续调度资源分配表发送给终端。
实施中,所述终端是具有需要采用持续调度资源传输业务数据的终端。
实施中,所述映射关系是根据以下因素之一或者其组合确定的:
TTI长度变化需求,TTI长度选项,进行持续调度资源分配的空口资源。
实施中,将所述持续调度资源分配表发送给终端,是用单播方式为终端一一发送的,或者,是在一条或多条控制命令中为一组终端发送的。
实施中,每个持续调度资源包括以下内容之一或者其组合:
传输方向,周期,资源位置,MCS格式,激活条件。
其中,在图12中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1200代表的一个或多个处理器和存储器1220代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1210可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器1200负责管理总线架构和通常的处理,存储器1220可以存储处理器1200在执行操作时所使用的数据。
下面对具体使用持续调度资源传输数据的传输设备进行说明,下面示例的是终端,但显然,作为网络测设备如基站也是可以采用该方案的,事实上,只要是具有持续调度资源分配表的设备都可以实施。
图13为终端结构示意图,如图所示,终端包括:
处理器1300,用于读取存储器1320中的程序,执行下列过程:
确定持续调度资源分配表,其中,在所述持续调度资源分配表中包含有每个持续调度 资源与TTI长度和/或信道状况的映射关系;
在确定传输数据需要使用的TTI长度和/或信道状况后,根据所述持续调度资源分配表中的映射关系确定持续调度资源;
收发机1310,用于在处理器1300的控制下发送和接收数据,执行下列过程:
使用该持续调度资源传输数据。
实施中,在每个持续调度资源周期对应的时刻根据所述持续调度资源分配表中的映射关系确定持续调度资源时,每个TTI长度是由网络侧半静态或动态配置的。
实施中,所述信道状况按以下方式确定:
在确定网络侧到终端的下行传输持续调度资源时,在终端根据下行信道质量CQI确定,在网络侧根据终端反馈的CQI进行确定;或者,在网络侧根据在网络侧对终端发送的上行导频信号或上行传输进行的信道质量测量后推测的下行信道质量进行确定,在终端根据在终端进行的下行信道质量测量进行确定;
在确定终端到网络侧的上行传输持续调度资源时,在终端根据在终端进行的下行信道质量测量后推测的上行信道质量进行确定,在网络侧根据终端反馈的CQI进行确定;或者,在终端根据在终端进行的下行信道质量测量后推测的上行信道质量进行确定,在网络侧根据在网络侧对终端发送的上行导频信号或上行传输进行的信道质量测量进行确定;或者,在终端根据网络侧对终端发送的上行导频信号或上行传输进行的上行信道质量测量后对终端的反馈确定,在网络侧根据在网络侧对终端发送的上行导频信号或上行传输进行的信道质量测量进行确定。
实施中,所述信道状况按如下方式确定:
在接收端根据对发送端的信道质量测量确定,在发送端根据接收端对发送端的信道测量进行的反馈确定;
或,在接收端根据对发送端的信道质量测量确定,在发送端根据对接收端的信道质量测量利用信道互易性确定。
实施中,每个持续调度资源包括以下内容之一或者其组合:
传输方向,周期,资源位置,MCS格式,激活条件。
其中,在图13中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1300代表的一个或多个处理器和存储器1320代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1310可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口1330还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1300负责管理总线架构和通常的处理,存储器1320可以存储处理器1300在执行操作时所使用的数据。
综上所述,在本发明实施例提供的技术方案中,在网络侧为终端分配持续调度资源列表,其中每个调度资源的资源占用、传输格式与可用的TTI长度和/或信道状况相关。由发送端估计信道状况选择每个数据包传输使用的资源,或根据传输时刻可用TTI长度选择持续调度传输使用的资源。
进一步的,还提供了持续调度资源列表内容,根据TTI长度或信道质量,以及根据TTI长度与信道质量结合进行资源确定的实施方案等。采用本方案可实现可变TTI长度下持续调度资源的有效分配。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (27)

  1. 一种持续调度资源的分配方法,其特征在于,包括:
    为终端生成持续调度资源分配表,其中,在所述持续调度资源分配表中包含有每个持续调度资源与传输时间间隔TTI长度和/或信道状况的映射关系;
    将所述持续调度资源分配表发送给终端。
  2. 如权利要求1所述的方法,其特征在于,所述映射关系是根据以下因素之一或者其组合确定的:
    TTI长度变化需求,TTI长度选项,进行持续调度资源分配的空口资源。
  3. 如权利要求1所述的方法,其特征在于,将所述持续调度资源分配表发送给终端,具体包括:
    采用单播方式为终端一一发送所述持续调度资源分配表;或者,
    在一条或多条控制命令中为一组终端发送所述持续调度资源分配表。
  4. 如权利要求1至3任一所述的方法,其特征在于,每个持续调度资源包括以下内容之一或者其组合:
    传输方向,周期,资源位置,调制编码方式MCS格式,激活条件。
  5. 一种使用持续调度资源传输数据的方法,其特征在于,包括:
    确定持续调度资源分配表,其中,在所述持续调度资源分配表中包含有每个持续调度资源与TTI长度和/或信道状况的映射关系;
    在确定传输数据需要使用的TTI长度和/或信道状况后,根据所述持续调度资源分配表中的映射关系确定持续调度资源;
    使用该持续调度资源传输数据。
  6. 如权利要求5所述的方法,其特征在于,在每个持续调度资源周期对应的时刻根据所述持续调度资源分配表中的映射关系确定持续调度资源时,每个TTI长度是由网络侧半静态或动态配置的。
  7. 如权利要求5所述的方法,其特征在于,所述信道状况按以下方式确定:
    在确定网络侧到终端的下行传输持续调度资源时,在终端根据下行信道质量CQI确定,在网络侧根据终端反馈的CQI进行确定;或者,在网络侧根据在网络侧对终端发送的上行导频信号或上行传输进行的信道质量测量后推测的下行信道质量进行确定,在终端根据在终端进行的下行信道质量测量进行确定;
    在确定终端到网络侧的上行传输持续调度资源时,在终端根据在终端进行的下行信道质量测量后推测的上行信道质量进行确定,在网络侧根据终端反馈的CQI进行确定;或者,在终端根据在终端进行的下行信道质量测量后推测的上行信道质量进行确定,在网络侧根 据在网络侧对终端发送的上行导频信号或上行传输进行的信道质量测量进行确定;或者,在终端根据网络侧对终端发送的上行导频信号或上行传输进行的上行信道质量测量后对终端的反馈确定,在网络侧根据在网络侧对终端发送的上行导频信号或上行传输进行的信道质量测量进行确定。
  8. 如权利要求5所述的方法,其特征在于,所述信道状况按如下方式确定:
    在接收端根据对发送端的信道质量测量确定,在发送端根据接收端对发送端的信道测量进行的反馈确定;
    或,在接收端根据对发送端的信道质量测量确定,在发送端根据对接收端的信道质量测量利用信道互易性确定。
  9. 如权利要求5至8任一所述的方法,其特征在于,每个持续调度资源包括以下内容之一或者其组合:
    传输方向,周期,资源位置,MCS格式,激活条件。
  10. 一种持续调度资源的分配装置,其特征在于,包括:
    生成模块,用于为终端生成持续调度资源分配表,其中,在所述持续调度资源分配表中包含有每个持续调度资源与TTI长度和/或信道状况的映射关系;
    发送模块,用于将所述持续调度资源分配表发送给终端。
  11. 如权利要求10所述的装置,其特征在于,生成模块进一步用于根据以下因素之一或者其组合确定所述映射关系:
    TTI长度变化需求,TTI长度选项,进行持续调度资源分配的空口资源。
  12. 如权利要求10所述的装置,其特征在于,发送模块具体用于:
    采用单播方式为终端一一发送所述持续调度资源分配表;或者,
    在一条或多条控制命令中为一组终端发送所述持续调度资源分配表。
  13. 如权利要求10至12任一所述的装置,其特征在于,每个持续调度资源包括以下内容之一或者其组合:
    传输方向,周期,资源位置,MCS格式,激活条件。
  14. 一种使用持续调度资源传输数据的装置,其特征在于,包括:
    分配表确定模块,用于确定持续调度资源分配表,其中,在所述持续调度资源分配表中包含有每个持续调度资源与TTI长度和/或信道状况的映射关系;
    资源确定模块,用于在确定传输数据需要使用的TTI长度和/或信道状况后,根据所述持续调度资源分配表中的映射关系确定持续调度资源;
    传输模块,用于使用该持续调度资源传输数据。
  15. 如权利要求14所述的装置,其特征在于,资源确定模块进一步用于在每个持续调度资源周期对应的时刻根据所述持续调度资源分配表中的映射关系确定持续调度资源 时,采用由网络侧半静态或动态配置的每个TTI长度。
  16. 如权利要求14所述的装置,其特征在于,资源确定模块进一步用于按以下方式确定所述信道状况:
    在确定网络侧到终端的下行传输持续调度资源时,在终端根据下行信道质量CQI确定,在网络侧根据终端反馈的CQI进行确定;或者,在网络侧根据在网络侧对终端发送的上行导频信号或上行传输进行的信道质量测量后推测的下行信道质量进行确定,在终端根据在终端进行的下行信道质量测量进行确定;
    在确定终端到网络侧的上行传输持续调度资源时,在终端根据在终端进行的下行信道质量测量后推测的上行信道质量进行确定,在网络侧根据终端反馈的CQI进行确定;或者,在终端根据在终端进行的下行信道质量测量后推测的上行信道质量进行确定,在网络侧根据在网络侧对终端发送的上行导频信号或上行传输进行的信道质量测量进行确定;或者,在终端根据网络侧对终端发送的上行导频信号或上行传输进行的上行信道质量测量后对终端的反馈确定,在网络侧根据在网络侧对终端发送的上行导频信号或上行传输进行的信道质量测量进行确定。
  17. 如权利要求14所述的装置,其特征在于,资源确定模块进一步用于按如下方式确定所述信道状况:
    在接收端根据对发送端的信道质量测量确定,在发送端根据接收端对发送端的信道测量进行的反馈确定;
    或,在接收端根据对发送端的信道质量测量确定,在发送端根据对接收端的信道质量测量利用信道互易性确定。
  18. 如权利要求14至17任一所述的装置,其特征在于,每个持续调度资源包括以下内容之一或者其组合:
    传输方向,周期,资源位置,MCS格式,激活条件。
  19. 一种持续调度资源的分配装置,其特征在于,包括:处理器,用于读取存储器中的程序,执行下列过程:
    为终端生成持续调度资源分配表,其中,在所述持续调度资源分配表中包含有每个持续调度资源与TTI长度和/或信道状况的映射关系;
    收发机,用于在处理器的控制下发送和接收数据,执行下列过程:
    将所述持续调度资源分配表发送给终端。
  20. 如权利要求19所述的装置,其特征在于,处理器进一步用于根据以下因素之一或者其组合确定所述映射关系:
    TTI长度变化需求,TTI长度选项,进行持续调度资源分配的空口资源。
  21. 如权利要求19所述的装置,其特征在于,收发机在处理器的控制下具体用于:
    采用单播方式为终端一一发送所述持续调度资源分配表;或者,
    在一条或多条控制命令中为一组终端发送所述持续调度资源分配表。
  22. 如权利要求19至21任一所述的装置,其特征在于,每个持续调度资源包括以下内容之一或者其组合:
    传输方向,周期,资源位置,MCS格式,激活条件。
  23. 一种使用持续调度资源传输数据的装置,其特征在于,包括:处理器,用于读取存储器中的程序,执行下列过程:
    确定持续调度资源分配表,其中,在所述持续调度资源分配表中包含有每个持续调度资源与TTI长度和/或信道状况的映射关系;
    在确定传输数据需要使用的TTI长度和/或信道状况后,根据所述持续调度资源分配表中的映射关系确定持续调度资源;
    收发机,用于在处理器的控制下发送和接收数据,执行下列过程:
    使用该持续调度资源传输数据。
  24. 如权利要求23所述的装置,其特征在于,处理器进一步用于在每个持续调度资源周期对应的时刻根据所述持续调度资源分配表中的映射关系确定持续调度资源时,采用由网络侧半静态或动态配置的每个TTI长度。
  25. 如权利要求23所述的装置,其特征在于,处理器进一步用于按以下方式确定所述信道状况:
    在确定网络侧到终端的下行传输持续调度资源时,在终端根据下行信道质量CQI确定,在网络侧根据终端反馈的CQI进行确定;或者,在网络侧根据在网络侧对终端发送的上行导频信号或上行传输进行的信道质量测量后推测的下行信道质量进行确定,在终端根据在终端进行的下行信道质量测量进行确定;
    在确定终端到网络侧的上行传输持续调度资源时,在终端根据在终端进行的下行信道质量测量后推测的上行信道质量进行确定,在网络侧根据终端反馈的CQI进行确定;或者,在终端根据在终端进行的下行信道质量测量后推测的上行信道质量进行确定,在网络侧根据在网络侧对终端发送的上行导频信号或上行传输进行的信道质量测量进行确定;或者,在终端根据网络侧对终端发送的上行导频信号或上行传输进行的上行信道质量测量后对终端的反馈确定,在网络侧根据在网络侧对终端发送的上行导频信号或上行传输进行的信道质量测量进行确定。
  26. 如权利要求23所述的装置,其特征在于,处理器进一步用于按如下方式确定所述信道状况:
    在接收端根据对发送端的信道质量测量确定,在发送端根据接收端对发送端的信道测量进行的反馈确定;
    或,在接收端根据对发送端的信道质量测量确定,在发送端根据对接收端的信道质量测量利用信道互易性确定。
  27. 如权利要求23至26任一所述的装置,其特征在于,每个持续调度资源包括以下内容之一或者其组合:
    传输方向,周期,资源位置,MCS格式,激活条件。
PCT/CN2017/071943 2016-02-19 2017-01-20 一种持续调度资源的分配及使用其传输数据的方法及装置 WO2017140202A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP22184858.3A EP4096329B1 (en) 2016-02-19 2017-01-20 Method and device for allocating continuous scheduling resource and transmitting data using the continuous scheduling resource
US15/998,968 US11122588B2 (en) 2016-02-19 2017-01-20 Method and device for allocating continuous scheduling resource and transmitting data using the continuous scheduling resource
JP2018543697A JP6695439B2 (ja) 2016-02-19 2017-01-20 パーシステントスケジューリング可能なリソースの割り当て及び当該リソースにおけるデータ伝送方法及び装置
KR1020187027130A KR102156207B1 (ko) 2016-02-19 2017-01-20 가변적인 tti 길이 경우에 적용되는 퍼시스턴트 스케쥴링 리소스의 할당 및 퍼시스턴트 스케쥴링 리소스에서 데이터를 전송하는 방법 및 장치
EP17752634.0A EP3419358B1 (en) 2016-02-19 2017-01-20 Method and device for allocating continuous scheduling resource and transmitting data using the continuous scheduling resource

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610094451.5 2016-02-19
CN201610094451.5A CN107105502B (zh) 2016-02-19 2016-02-19 一种持续调度资源的分配及使用其传输数据的方法及装置

Publications (1)

Publication Number Publication Date
WO2017140202A1 true WO2017140202A1 (zh) 2017-08-24

Family

ID=59625595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071943 WO2017140202A1 (zh) 2016-02-19 2017-01-20 一种持续调度资源的分配及使用其传输数据的方法及装置

Country Status (6)

Country Link
US (1) US11122588B2 (zh)
EP (2) EP4096329B1 (zh)
JP (1) JP6695439B2 (zh)
KR (1) KR102156207B1 (zh)
CN (1) CN107105502B (zh)
WO (1) WO2017140202A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114205913A (zh) * 2017-11-17 2022-03-18 华为技术有限公司 一种数据上报方法、接收方法和相关装置
WO2019119448A1 (zh) * 2017-12-22 2019-06-27 北京小米移动软件有限公司 在半静态调度方式下传输数据的方法、基站、终端和系统
US11469814B2 (en) * 2019-02-28 2022-10-11 Qualcomm Incorporated Beam management of a layer-1 millimeter wave repeater using wideband signal
CN114008943A (zh) * 2019-08-16 2022-02-01 以伊索电子股份有限公司名义经营的阿维科斯天线股份有限公司 基于接收信号信道质量指示符估计发射信号信道质量指示符的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101500311A (zh) * 2008-01-31 2009-08-05 大唐移动通信设备有限公司 一种持续调度资源的分配方法、系统及装置
CN101646243A (zh) * 2008-08-07 2010-02-10 大唐移动通信设备有限公司 一种持续调度资源周期分配的方法和装置
CN101730250A (zh) * 2008-11-03 2010-06-09 大唐移动通信设备有限公司 一种资源的半持续调度方法、基站和用户终端
CN102076104A (zh) * 2011-02-24 2011-05-25 大唐移动通信设备有限公司 一种半持续调度的数据包处理方法及基站

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2608420B1 (en) 2003-01-23 2016-06-22 Qualcomm Incorporated Methods and apparatus of providing transmit diversity in a multiple access wireless communication system
KR100896206B1 (ko) * 2006-08-08 2009-05-12 삼성전자주식회사 광대역 무선통신시스템에서 자원 할당 장치 및 방법
PT2070241T (pt) * 2006-09-29 2019-10-31 Nokia Technologies Oy Alocações de ligação ascendente para confirmação de receção de dados de ligação descendente
CN101820670B (zh) * 2007-01-31 2013-11-06 夏普株式会社 基站装置及其通信方法
ES2949260T3 (es) * 2007-06-18 2023-09-27 Optis Wireless Technology Llc Procedimiento y disposición en una red de telecomunicaciones móviles para Solicitud de Repetición Automática Híbrida HARQ con agrupación de intervalos de tiempo de transmisión TTI y con redundancia incremental
WO2010025604A1 (zh) 2008-09-03 2010-03-11 中兴通讯股份有限公司 基站内载波切换方法和系统
KR20110101236A (ko) * 2009-01-04 2011-09-15 알까뗄 루슨트 리소스를 요청하기 위한 방법, 디바이스 및 통신 시스템
WO2010123299A2 (ko) * 2009-04-22 2010-10-28 엘지전자 주식회사 광대역 무선 접속시스템에서의 자원할당 방법 및 그를 수행하기 위한 장치
US20100316007A1 (en) * 2009-06-12 2010-12-16 Samsung Electronics Co. Ltd. Apparatus and method for supporting simultaneous transmission of plural broadcast management messages in a wireless communication system
KR20100133874A (ko) * 2009-06-12 2010-12-22 삼성전자주식회사 무선통신 시스템에서 복수개의 방송 관리 메시지의 동시 전송을 지원하기 위한 장치 및 방법
KR101636398B1 (ko) * 2010-05-17 2016-07-05 삼성전자주식회사 광대역 무선통신 시스템에서 상향링크 자원할당 지시 장치 및 방법
CN102316592B (zh) * 2010-07-01 2014-06-18 电信科学技术研究院 一种持续调度的方法、装置
CN102045861B (zh) * 2011-01-04 2013-09-18 大唐移动通信设备有限公司 上行控制信息的调度及上报方法、系统和设备
KR20130021865A (ko) * 2011-08-24 2013-03-06 삼성전자주식회사 이동통신 시스템의 고정자원 할당 방법 및 장치
KR101191220B1 (ko) * 2011-10-27 2012-10-15 엘지전자 주식회사 지속적 스케줄링 변경 정보를 전송 및 수신하는 방법 및 이를 위한 장치
KR101169285B1 (ko) * 2011-12-08 2012-08-02 엘지전자 주식회사 지속적 스케줄링 정보를 전송 및 수신하는 방법 및 이를 위한 장치
US10305626B2 (en) * 2013-04-05 2019-05-28 Qualcomm Incorporated Enhanced transmission time interval bundling design for machine type communications
US11357022B2 (en) * 2014-05-19 2022-06-07 Qualcomm Incorporated Apparatus and method for interference mitigation utilizing thin control
CN104468030B (zh) * 2014-08-26 2018-06-05 上海华为技术有限公司 一种数据传输方法、用户设备及基站
US10594652B2 (en) * 2014-10-16 2020-03-17 Qualcomm Incorporated Wireless communication utilizing a unified air interface
US10750494B2 (en) * 2015-03-31 2020-08-18 Qualcomm Incorporated Management of dynamic transmission time interval scheduling for low latency communications
US10772114B2 (en) * 2015-10-20 2020-09-08 Telecom Italia S.P.A. Scheduling method and system
WO2017135745A1 (ko) * 2016-02-04 2017-08-10 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어 정보의 맵핑, 전송, 또는 수신 방법 및 이를 위한 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101500311A (zh) * 2008-01-31 2009-08-05 大唐移动通信设备有限公司 一种持续调度资源的分配方法、系统及装置
CN101646243A (zh) * 2008-08-07 2010-02-10 大唐移动通信设备有限公司 一种持续调度资源周期分配的方法和装置
CN101730250A (zh) * 2008-11-03 2010-06-09 大唐移动通信设备有限公司 一种资源的半持续调度方法、基站和用户终端
CN102076104A (zh) * 2011-02-24 2011-05-25 大唐移动通信设备有限公司 一种半持续调度的数据包处理方法及基站

Also Published As

Publication number Publication date
KR20180114179A (ko) 2018-10-17
CN107105502B (zh) 2019-12-13
EP4096329B1 (en) 2023-08-30
US20190313427A1 (en) 2019-10-10
EP3419358A1 (en) 2018-12-26
KR102156207B1 (ko) 2020-09-15
EP4096329A1 (en) 2022-11-30
JP2019509675A (ja) 2019-04-04
CN107105502A (zh) 2017-08-29
US11122588B2 (en) 2021-09-14
EP3419358A4 (en) 2019-02-13
EP3419358B1 (en) 2022-08-24
JP6695439B2 (ja) 2020-05-20

Similar Documents

Publication Publication Date Title
CN113574825B (zh) 用于多发送和接收点传输的下行链路资源分配的方法和装置
CN109995497B (zh) 下行控制信息传输方法
US10856317B2 (en) System and method for uplink communications
CN111435878B (zh) 一种信息传输方法、终端及网络设备
TWI674016B (zh) 通信方法、通信設備及電腦程式
WO2017118229A1 (zh) 一种资源调度方法、装置及系统
WO2018228590A1 (zh) 控制信息传输方法、装置和计算机存储介质
WO2014176967A1 (zh) 一种解调参考信号图样信息的选取方法、系统及装置
JP2016515350A (ja) 適応的に構成されたtdd通信システムのためのサウンディング参照信号の送信
WO2017132810A1 (zh) 上行控制信息的传输方法、装置
WO2017132811A1 (zh) 上行信息传输的方法、装置
WO2019154051A1 (zh) 上行控制信息的发送方法及装置、存储介质、用户设备
WO2017140202A1 (zh) 一种持续调度资源的分配及使用其传输数据的方法及装置
CN102438319A (zh) 一种上行控制信道资源分配方法及其装置
US8509171B2 (en) Resource allocation in two domains
WO2017054545A1 (zh) 一种数据传输方法及装置
WO2017133479A1 (zh) 一种下行控制信息传输方法及装置
WO2016045053A1 (zh) 半双工系统下的子帧调度方法、数据收发方法、装置和系统
WO2018137715A1 (zh) 一种上行调度请求传输方法、终端及基站
WO2017193409A1 (zh) 一种信道状态信息csi反馈和指示方法、装置和系统
WO2011137854A1 (zh) 信道状态信息上报指示方法、上报方法、服务站点和终端
WO2019165937A1 (zh) 一种数据传输方法、装置及设备
WO2023031876A1 (en) Methods and devices for semi-persistently scheduled transmission
CN115278895A (zh) 一种数据转发方法、装置、存储介质及电子设备
CN115707014A (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17752634

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018543697

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020187027130

Country of ref document: KR

Ref document number: 2017752634

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017752634

Country of ref document: EP

Effective date: 20180919