WO2014109302A1 - 端末装置および基地局装置 - Google Patents

端末装置および基地局装置 Download PDF

Info

Publication number
WO2014109302A1
WO2014109302A1 PCT/JP2014/050036 JP2014050036W WO2014109302A1 WO 2014109302 A1 WO2014109302 A1 WO 2014109302A1 JP 2014050036 W JP2014050036 W JP 2014050036W WO 2014109302 A1 WO2014109302 A1 WO 2014109302A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
subframe
terminal
downlink
base station
Prior art date
Application number
PCT/JP2014/050036
Other languages
English (en)
French (fr)
Inventor
直紀 草島
寿之 示沢
智造 野上
公彦 今村
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2014556407A priority Critical patent/JP6139569B2/ja
Priority to US14/759,716 priority patent/US20150358133A1/en
Priority to EP14738318.6A priority patent/EP2945447A4/en
Priority to CN201480004307.7A priority patent/CN104919878B/zh
Publication of WO2014109302A1 publication Critical patent/WO2014109302A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present invention relates to a terminal device and a base station device.
  • 3GPP WCDMA (registered trademark) due to the (Third Generation Partnership Project) (Wideband Code Division Multiple Access), LTE (Long Term Evolution), Wireless LAN according to the LTE-A (LTE-Advanced) and IEEE (The Institute of Electrical and Electronics engineers)
  • WiMAX Worldwide Interoperability for Microwave Access
  • a base station base station apparatus, cell, transmitting station, transmitting apparatus, eNodeB
  • terminal terminal apparatus, mobile terminal, receiving station
  • Mobile station, receiving apparatus, UE User Equipment
  • MIMO Multi Input Multi Output
  • the orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing) method is used as the downlink communication method
  • the SC-FDMA (Single-Carrier Frequency Multiple Access) method is used as the uplink communication method.
  • a base station transmits downlink data (a transport block for a downlink shared channel (DL-SCH)) to a terminal.
  • the downlink data is mapped to a downlink data channel (PDSCH; Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the terminal transmits uplink data (transport block for uplink shared channel (UL-SCH)) to the base station.
  • uplink data is mapped to an uplink data channel (PUSCH; Physical Uplink Shared Channel).
  • FIG. 37 is a schematic diagram of a communication system using a conventional heterogeneous network arrangement.
  • the heterogeneous network includes a base station 3701 and an RRH 3711.
  • the base station 3701 constructs a cell 3700
  • the RRH 3711 constructs a cell 3710.
  • the base station 3701 is connected to the RRH 3711 through a line 3703.
  • the base station 3701 can transmit / receive a data signal and a control signal (control information) to / from the RRH 3711.
  • a wired line such as an optical fiber or a wireless line using a relay technology is used.
  • a part or all of the base stations 3701 and RRH 3711 use the same resource, so that the overall frequency use efficiency (transmission capacity) in the area of the cell 3700 can be improved.
  • the terminal 3712 when the terminal 3712 is located in the cell 3710, the terminal 3712 can perform single cell communication with the RRH 3711. Further, when the terminal 3712 is located near the end of the cell 3710 (cell edge), the RRH 3711 or the terminal 3712 needs to take measures against interference due to a channel using the same resource from the base station 3701.
  • a multi-cell communication cooperative communication
  • ICIC Inter-Cell Interference Coordination
  • CoMP Cooperative Multipoint
  • LTE supports both the FDD (Frequency Division Duplex) method and the TDD (Time Division Duplex) method.
  • LTE employing the TDD scheme is also referred to as TD-LTE or LTE TDD.
  • the FDD scheme is a technique of multiplexing using different frequencies in a band used for uplink communication and a band used for downlink communication.
  • the TDD scheme is a technique for time-division multiplexing uplink signals and downlink signals.
  • the TDD scheme is a technology that enables full-duplex communication in a single frequency band.
  • TD-LTE a traffic adaptation technique that dynamically changes the ratio of uplink communication resources to downlink communication resources according to uplink communication traffic and downlink communication traffic.
  • the amount of traffic (data communication) is not always constant, but changes according to the user's request.
  • the traffic of the uplink communication and the downlink communication are not limited to the same ratio, and a situation where the traffic of the downlink communication increases more than the traffic of the uplink communication according to a request and vice versa occurs.
  • the communication system can obtain a large improvement in packet throughput. This is referred to as a traffic adaptation technique (Non-patent Document 1).
  • interference mitigation technique interference avoidance technique; interference mitigation technique; interference cancellation technique; interference suppression technique
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a terminal device and a base station device capable of suppressing inter-cell interference in a communication system in which a base station and a terminal communicate. is there.
  • the present invention has been made to solve the above-described problem, and a terminal according to an aspect of the present invention is configured so that restriction information indicating a subframe for restricting transmission of an uplink signal is set by a base station. Transmission of an uplink signal is limited in a subframe that is a link subframe and is a subframe indicated by restriction information.
  • a terminal according to an aspect of the present invention is the terminal described above, wherein the uplink / downlink setting information is set by the base station, and the uplink subframe is set by the uplink / downlink setting information.
  • a terminal according to an aspect of the present invention is the terminal described above, and uplink / downlink setting information is reported from a base station.
  • a terminal according to an aspect of the present invention is the terminal described above, and uplink / downlink setting information is individually notified from a base station.
  • a terminal according to an aspect of the present invention is the above terminal, and is an uplink subframe, and does not transmit an uplink signal in a subframe that is a subframe indicated by restriction information.
  • a terminal according to an aspect of the present invention is the terminal described above, and is configured to postpone uplink signal transmission in a subframe that is an uplink subframe and is a subframe indicated by restriction information. It is characterized by.
  • a terminal according to an aspect of the present invention is the terminal described above, and is an uplink subframe and does not include a specific uplink physical channel in a subframe that is a subframe indicated by restriction information. It is characterized by transmitting an uplink signal.
  • a terminal according to an aspect of the present invention is the terminal described above, and is an uplink subframe and includes a subframe other than a specific uplink physical channel in a subframe indicated by restriction information. It is characterized by transmitting no uplink signal.
  • a base station notifies a terminal of restriction information indicating a subframe for restricting transmission of an uplink signal, is an uplink subframe, and is a subframe indicated by the restriction information. It is characterized by restricting transmission of an uplink signal by a terminal in a certain subframe.
  • a base station is the base station described above, wherein uplink / downlink setting information is set in a terminal, and an uplink subframe is set by the uplink / downlink setting information. .
  • a communication system is a communication system in which a base station and a terminal communicate.
  • the base station notifies the terminal of restriction information indicating a subframe for restricting uplink signal transmission.
  • the terminal sets restriction information indicating a subframe for restricting transmission of an uplink signal from the base station, is an uplink subframe, and is a subframe indicated by the restriction information. It is characterized by restricting transmission.
  • a communication method is a communication method for a terminal communicating with a base station.
  • the terminal sets restriction information indicating a subframe for restricting transmission of an uplink signal from the base station, is an uplink subframe, and is a subframe indicated by the restriction information. It is characterized by restricting transmission.
  • a communication method is a communication method of a base station that communicates with a terminal.
  • the base station notifies the terminal of restriction information indicating a subframe for restricting transmission of an uplink signal, and is uplinked to the terminal in a subframe that is an uplink subframe and is a subframe indicated by the restriction information. It is characterized by restricting signal transmission.
  • An integrated circuit is an integrated circuit realized by a terminal that communicates with a base station.
  • the terminal sets restriction information indicating a subframe for restricting transmission of an uplink signal from the base station, is an uplink subframe, and is a subframe indicated by the restriction information. It is characterized by realizing a function for limiting transmission.
  • An integrated circuit is an integrated circuit realized by a base station that communicates with a terminal.
  • the base station notifies the terminal of restriction information indicating a subframe for restricting transmission of an uplink signal, and is uplinked to the terminal in a subframe that is an uplink subframe and is a subframe indicated by the restriction information. It is characterized by realizing a function of restricting signal transmission.
  • inter-cell interference can be suppressed in a communication system in which a base station and a terminal communicate.
  • 7 is a combination table of valid / invalid information with respect to transition of a setting state of an uplink transmission restriction subframe according to the first embodiment of the present invention. It is a figure which shows an example of a radio
  • FIG. 10 is a relationship table between a downlink subframe that receives an uplink grant including an uplink signal transmission restriction request according to a fifth embodiment of the present invention and an uplink subframe corresponding to the downlink subframe. It is a figure which shows the outline
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal FDMA
  • SC-FDMA single carrier FDMA
  • IDMA interleave division multiple access
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE is a UMTS that uses E-UTRA, which employs OFDMA on the downlink and SC-FDMA on the uplink.
  • LTE-A is a system, radio technology, and standard improved from LTE.
  • a communication system includes a base station (transmitting device, transmission point, transmitting antenna group, transmitting antenna port group, component carrier, eNodeB, RRH (Remote Radio Head), distributed antenna) and a terminal (terminal).
  • a device a mobile terminal, a reception point, a reception terminal, a reception device, a reception antenna group, a reception antenna port group, and a UE (User Equipment).
  • the base station includes cells (macro cell, pico cell, femto cell, small cell, coverage, component carrier, primary cell, secondary cell).
  • the base stations are connected by a backhaul line (optical fiber, X2 interface, relay).
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present invention.
  • the base station 101 constitutes the cell 100, and the terminals 102 -A and 102 -B existing inside the cell 100 are wirelessly connected to the base station 101.
  • the terminal 102-A and the terminal 102-B are collectively referred to as the terminal 102.
  • the terminal 102 transmits control information, a reference signal, and information data via an uplink signal.
  • the base station 111 constitutes the cell 110, and the terminal 112 existing inside the cell 110 is wirelessly connected to the base station 111.
  • the base station 111 transmits control information, a reference signal, and information data via a downlink signal.
  • Cell 100 and cell 110 are adjacent to each other.
  • the base station 101 and the base station 111 are connected by a backhaul line 103, and information transmission / reception between the base stations is performed via the backhaul line 103.
  • the RRH 121 is arranged inside the cell 110, and the RRH 121 constitutes a cell 120 that is smaller than the cell 110.
  • the cell 120 is included in the cell 110 and forms a heterogeneous network.
  • the base station 111 and the RRH 121 are connected by a backhaul line 113, and transmission / reception of information between the base station and the RRH is performed via the backhaul line 113.
  • the base station and the terminal according to the first embodiment of the present invention communicate with each other via a component carrier (Component Carrier).
  • the component carrier is composed of a plurality of resource blocks (RB) continuous in the frequency direction.
  • the resource block is used to express mapping of a predetermined physical channel (such as a downlink data channel or an uplink data channel) to a resource element.
  • a virtual resource block (VRB) and a physical resource block (PRB) are defined as the resource block (RB), a virtual resource block (VRB) and a physical resource block (PRB) are defined.
  • a physical channel is first mapped to a virtual resource block. Thereafter, the virtual resource block is mapped to the physical resource block.
  • One physical resource block is defined by 7 consecutive OFDM symbols or SC-FDMA symbols in the time domain and 12 consecutive subcarriers in the frequency domain.
  • one physical resource block is composed of (7 ⁇ 12) resource elements.
  • One physical resource block corresponds to one slot in the time domain and corresponds to 180 kHz in the frequency domain.
  • Physical resource blocks are numbered from 0 (resource block numbers) in the frequency domain. The number of resource blocks included in the component carrier increases or decreases according to the bandwidth of the component carrier.
  • a physical resource block pair (RB pair) has the same resource block number and is defined by two physical resource blocks in one subframe.
  • LTE supports the FDD method and the TDD method, and the FDD method is also referred to as frame structure type 1 (Frame structure type 1), and the FDD method is also referred to as frame structure type 2 (Frame structure type 2).
  • the TDD method is assumed.
  • FIG. 2 shows a configuration of a TDD radio frame according to the first embodiment of the present invention.
  • Each radio frame is 10 ms long.
  • Each radio frame is composed of two half frames.
  • Each half frame is 5 ms long.
  • Each half frame is composed of 5 subframes.
  • Each subframe is 1 ms long and is defined by two consecutive slots.
  • the i-th subframe in the radio frame is composed of a (2 ⁇ i) th slot and a (2 ⁇ i + 1) th slot. That is, 10 subframes can be used in each 10 ms interval.
  • Each of the slots is 0.5 ms long.
  • Two resource blocks in each subframe are also referred to as resource block pairs.
  • the ten subframes are assigned subframe numbers 0 to 9 in order.
  • a specific subframe when a specific subframe is designated, it is represented by a subframe number n from 0 to 9 and a radio frame number m.
  • the subframe number n from 0 to 9 and the radio frame number m are combined and expressed by one subframe number (10 ⁇ m + n).
  • LTE Long Term Evolution
  • three types of subframes are used: an uplink subframe, a downlink subframe, and a special subframe.
  • the uplink subframe is a subframe prepared for performing uplink radio communication (uplink communication).
  • the uplink subframe is used for a terminal to transmit an uplink physical channel and an uplink reference signal.
  • the uplink physical channel is used for transmitting information output from an upper layer.
  • As the uplink reference signal a signal known to the base station is transmitted, and is mainly used for estimating a propagation path and measuring a channel state.
  • an uplink data channel (uplink shared channel, uplink shared channel, PUSCH: Physical Uplink Shared Channel), uplink control channel (PUCCH: Physical Uplink Control Channel), random access channel (PRACH: Physics: Physics: Physics)
  • An uplink physical channel such as (Channel) is used.
  • uplink reference signals such as uplink terminal-specific reference signals (Uplink DM-RS; Demodulation-Reference Signal) and sounding reference signals (SRS; Sounding Reference Signal) are used.
  • Uplink DM-RS Uplink terminal-specific reference signals
  • SRS Sounding reference signals
  • the downlink subframe is a subframe prepared for downlink radio communication (downlink communication).
  • the downlink subframe is used for the base station to transmit a downlink physical channel and a downlink reference signal.
  • the downlink physical channel is used for transmitting information output from an upper layer.
  • As the downlink reference signal a signal known to the terminal is transmitted, and is mainly used for estimating a propagation path and measuring a channel state.
  • a downlink data channel (downlink shared channel, downlink shared channel, PDSCH; Physical Downlink Shared Channel), downlink control channel (PDCCH; Physical Downlink Control Channel), extended downlink control channel (ePDCCH; ePDCCH; Physical Downlink Control Channel, Control Format Indication Channel (PCFICH; Physical Control Format Indicator Channel), HARQ Indication Channel (PHICH; Physical HybridreactiveCaution nnel), broadcast channel (PBCH; Physical Broadcast Channel) downlink physical channel or the like is used.
  • a cell-specific reference signal (CRS; Cell-Specific Reference Signal), a downlink terminal-specific reference signal (Downlink DM-RS; Demodulation-Reference Signal, UE-specific RS), an extended downlink control channel demodulation reference signal
  • CRS Cell-Specific Reference Signal
  • Downlink DM-RS Downlink DM-RS; Demodulation-Reference Signal, UE-specific RS
  • CSI-RS Channel State Information-Reference Signal
  • the cell-specific reference signal is associated with part or all of antenna ports 0 to 3.
  • the downlink terminal specific reference signal is associated with part or all of the antenna ports 7 to 14.
  • the extended downlink control channel demodulation reference signal is associated with some or all of the antenna ports 107-114.
  • the channel state information reference signal is associated with some or all of the antenna ports 15-22.
  • the downlink control channel is transmitted using a part or all of the antenna ports 0 to 3. Therefore, the terminal can demodulate or detect the downlink control channel using the cell-specific reference signal.
  • the extended downlink control channel is transmitted using part or all of the antenna ports 107-114. Therefore, the terminal can demodulate or detect the enhanced downlink control channel using the enhanced downlink control channel demodulation reference signal.
  • the downlink data channel is transmitted using a part or all of the antenna ports 7 to 14. Therefore, the terminal can demodulate the downlink data channel using the downlink terminal specific reference signal.
  • DwPTS Downlink Pilot Time Slot
  • UpPTS Uplink Pilot Time Slot
  • GP Guard Period
  • DwPTS is prepared for downlink communication. In DwPTS, it is used for transmission of an HARQ indication channel, a control format indication channel, a downlink control channel, a downlink data channel, and the like.
  • UpPTS is prepared for uplink communication. In UpPTS, it is used for transmitting a sounding reference signal and a random access channel. In GP, downlink transmission and uplink transmission are not performed. GP is provided to prevent interference between the downlink signal and the uplink signal.
  • the total length of DwPTS, GP, and UpPTS is 1 ms.
  • the TDD scheme can set the resource ratio (resource allocation, radio frame configuration) of uplink communication and downlink communication for each environment of the communication system.
  • FIG. 3 is a table of radio frame configurations corresponding to uplink / downlink setting information according to the embodiment of the present invention.
  • D indicates a downlink subframe
  • U indicates an uplink subframe
  • S indicates a special subframe.
  • the uplink / downlink configuration information uplink / downlink configuration information, uplink-downlink configuration
  • the number of uplink subframes and downlink subframes, and the subframe arrangement are different. That is, in the TDD scheme, the uplink subframe, the downlink subframe, and the special subframe are set by the uplink / downlink setting information.
  • the switching interval between the downlink communication and the uplink communication is 5 ms.
  • the uplink / downlink setting information is 3 to 5
  • the switching interval between the downlink communication and the uplink communication is 10 ms. It is.
  • the communication system and the base station set the uplink / downlink setting information to determine the uplink resource ratio and the downlink resource ratio used in the communication system.
  • the uplink data channel is a physical channel used for transmitting uplink information data (uplink shared data, UL-SCH; Uplink-Shared Channel). Also, the uplink data channel may be used for transmitting ACK (acknowledgement) / NACK (negative-acknowledgement) and / or downlink channel state information corresponding to the downlink data channel together with the uplink information data. . Also, the uplink data channel may be used to transmit only ACK / NACK and / or channel state information.
  • HARQ Hybrid Automatic Repeat reQuest
  • HARQ includes synchronous HARQ (synchronous HARQ) and asynchronous HARQ (asynchronous HARQ).
  • synchronous HARQ a HARQ process that performs HARQ processing at the time of retransmission is associated with a transmission subframe. Thereby, the retransmission data is uniquely determined from the transmission subframe, and the base station or the terminal does not need to explicitly notify the information indicating the retransmission data.
  • the time interval from the previous transmission to the next transmission is referred to as HARQ RTT (Round Trip Time).
  • the transmission subframe for retransmission can be arbitrarily set in the base station or the terminal, it is possible to transmit in a subframe in which the channel state between the base station and the terminal is good.
  • the uplink data channel can support synchronous HARQ.
  • the uplink control channel is a physical channel that is used to transmit uplink control information (UCI; Uplink Control Information).
  • the uplink control information includes ACK / NACK indicating success or failure of decoding of the downlink data channel, a scheduling request (SR; scheduling request) indicating a request for resources of the uplink data channel, and downlink channel state information (CSI; Channel). (State Information).
  • PUCCH format 1 is used to notify success or failure of downlink data channel decoding.
  • PUCCH format 2 is used to notify channel state information of downlink communication.
  • the random access channel is a physical channel used for transmitting a random access preamble.
  • the random access channel is used for initial connection establishment procedure, handover procedure, connection re-establishment procedure, synchronization for uplink transmission (timing adjustment), and request for resources of uplink data channel.
  • the uplink terminal specific reference signal is transmitted in order to perform propagation path correction of the uplink data channel or the uplink control channel.
  • the uplink terminal specific reference signal is included in the resources allocated to the uplink data channel and transmitted. Also, the uplink terminal specific reference signal is included in the resources allocated to the uplink control channel and transmitted.
  • the sounding reference signal is transmitted for purposes such as uplink channel state measurement.
  • the terminal device periodically transmits the first sounding reference signal.
  • the first sounding reference signal is also referred to as a periodic sounding reference signal (periodic SRS).
  • the terminal device receives information indicating that a sounding reference signal is requested, the terminal device transmits the second sounding reference signal once.
  • the second sounding reference signal is also referred to as an aperiodic sounding reference signal (aperiodic SRS).
  • the downlink data channel is a physical channel used for transmitting downlink information data (downlink shared data, DL-SCH; Downlink-Shared Channel).
  • the downlink data channel is mapped to a resource element defined as a downlink data channel region in a shared channel region shared by a plurality of terminals.
  • the downlink control channel and the extended downlink control channel are physical channels that are used to transmit downlink control information (DCI; Downlink Control Information).
  • the downlink control information includes a downlink grant (downlink assignment), and an uplink grant (uplink assignment).
  • the downlink grant is downlink control information used for scheduling a single downlink data channel within a single cell.
  • the uplink grant is used for scheduling a single uplink data channel within a single cell.
  • the downlink control channel is also referred to as a first downlink control channel
  • the extended downlink control channel is also referred to as a second downlink control channel.
  • the downlink control channel is allocated to a resource element defined as a downlink control channel region and transmitted.
  • the enhanced downlink control channel is allocated to a resource element defined as an enhanced downlink control channel region and transmitted.
  • a plurality of formats are defined in the downlink control information transmitted through the downlink control channel or the extended downlink control channel.
  • the format of the downlink control information is also referred to as a DCI format. That is, a field for each downlink control information is defined in the DCI format.
  • the control information notified by the downlink control channel or the extended downlink control channel is also referred to as PDCCH signaling.
  • DCI format 1 and DCI format 1A are defined. That is, DCI format 1 and DCI format 1A are used for transmission on the downlink data channel using one transmission antenna port.
  • the DCI format 1 and the DCI format 1A are also used for transmission on a downlink data channel by transmission diversity (TxD: Transmission Diversity) using a plurality of transmission antenna ports.
  • TxD Transmission Diversity
  • the DCI format for the downlink is used for scheduling one downlink data channel (up to two downlink data channel codewords, up to two downlink transport transmissions) in one cell.
  • DCI format 2, DCI format 2A, DCI format 2B, DCI format 2C, and DCI format 2D are defined. That is, DCI format 2, DCI format 2A, DCI format 2B, DCI format 2C, and DCI format 2D are downlink data channels based on a MIMO SDM (Multiple Input Multiple Output Multiplexing) transmission method using multiple transmit antenna ports. Used to send
  • the control format indication channel is a physical channel used for transmitting information indicating a downlink control channel area reserved for transmission of the downlink control channel. Specifically, the control format indication channel is used to notify the terminal of the downlink control channel region information as the number of leading OFDM symbols.
  • the HARQ indication channel is a physical channel used for notification of ACK / NACK for a predetermined uplink data channel transmitted from the terminal.
  • the broadcast channel is a physical channel used to broadcast master information (MI; Master Information) and system information (SI; System Information, broadcast information) commonly used by terminals.
  • MI Master Information
  • SI System Information, broadcast information
  • the system information may be notified by being included in the downlink data channel.
  • Cell-specific reference signals include downlink radio environment measurement, downlink received signal symbol synchronization, demodulation of signals not subjected to precoding processing, demodulation of signals subjected to precoding processing, and downlink in a predetermined transmission mode. It can be used for applications such as demodulation of a link data channel and demodulation of a downlink control channel.
  • any signal can be used as long as both the base station and the terminal communicating with the base station are known signals. For example, a random number or a pseudo noise sequence based on a parameter assigned in advance such as a number (cell ID) unique to the base station can be used.
  • the cell-specific reference signal may not be multiplexed in all subframes, and may be multiplexed only in some subframes.
  • the cell-specific reference signal is transmitted through some or all of the antenna ports 0 to 3.
  • the downlink terminal specific reference signal can be used to demodulate the downlink data channel.
  • the downlink terminal specific reference signal is associated with the downlink data channel.
  • a known signal is used by the base station that transmits the downlink terminal specific reference signal and the terminal that communicates with the base station.
  • the base station performs precoding processing on a downlink data channel
  • the terminal demodulates the downlink data channel
  • a downlink terminal-specific reference signal is transmitted between the base station and the terminal. It is possible to estimate channel conditions and precoding weight equalization channels in the link. That is, the base station does not need to notify the terminal of precoding weight, and can demodulate the precoded signal.
  • the downlink terminal-specific reference signal As a part of the downlink terminal-specific reference signal, a known signal is generated between the base station and the terminal based on the initial value of the input scramble code.
  • the downlink terminal-specific reference signal is set based on the associated downlink data channel, and is transmitted through the antenna port (layer) corresponding to the downlink data channel.
  • the downlink terminal specific reference signal is preferably orthogonal and / or quasi-orthogonal between antenna ports.
  • the downlink terminal-specific reference signal is transmitted through some or all of the antenna ports 7 to 14.
  • the downlink terminal specific reference signal is an effective reference for demodulating the downlink data channel, and is transmitted in a resource block pair or resource block to which the corresponding downlink data channel is mapped.
  • the extended downlink control channel demodulation reference signal can be used to demodulate the extended downlink control channel.
  • the enhanced downlink control channel demodulation reference signal is associated with the enhanced downlink control channel.
  • As the enhanced downlink control channel demodulation reference signal a known signal is used by the base station that transmits the enhanced downlink control channel demodulation reference signal and the terminal that communicates with the base station.
  • the base station performs precoding processing on the enhanced downlink control channel
  • the terminal demodulates the enhanced downlink control channel the enhanced downlink control channel demodulation reference signal is transmitted between the base station and the terminal. It is possible to estimate the channel condition in the downlink and the precoding weight equalization channel. That is, the base station does not need to notify the terminal of precoding weight, and can demodulate the precoded signal.
  • the extended downlink control channel demodulation reference signal As part of the extended downlink control channel demodulation reference signal, a known signal is generated between the base station and the terminal based on the initial value of the input scramble code.
  • the enhanced downlink control channel demodulation reference signal is set based on the associated enhanced downlink control channel, and is transmitted through the antenna port (layer) corresponding to the enhanced downlink control channel.
  • the enhanced downlink control channel demodulation reference signal is preferably orthogonal and / or quasi-orthogonal between antenna ports.
  • the extended downlink control channel demodulation reference signal is transmitted in a part or all of the antenna ports 107 to 114.
  • the enhanced downlink control channel demodulation reference signal is an effective reference for demodulating the enhanced downlink control channel, and is transmitted by an RB pair or RB to which the corresponding downlink data channel is mapped.
  • the channel state information reference signal can be used for downlink radio environment (channel state) measurement, symbol synchronization of downlink received signals, demodulation of signals not subjected to precoding processing, and the like.
  • the channel state information reference signal any signal (sequence) can be used as long as both the base station and the terminal communicating with the base station are known signals.
  • the channel state information reference signal includes a non-zero power channel state information reference signal that transmits a reference signal from the base station and a zero power channel state information reference signal that does not transmit a reference signal from the base station.
  • NCT New Carrier Type
  • SS synchronization signal
  • the NCT may include a detection reference signal (DRS; Detection RS) or eSS (enhanced SS) that allows the terminal to perform NCT detection, symbol detection, frequency synchronization, and / or time synchronization.
  • DRS detection reference signal
  • eSS enhanced SS
  • FIG. 4 is a schematic block diagram showing a configuration during uplink communication of the terminal according to the embodiment of the present invention.
  • communication between the base station 101 and the terminal 102 will be described as an example.
  • the configuration of the terminal 102 according to the present embodiment is similarly provided in the terminal 112, the terminal 122, the terminal 3502, the terminal 3512, and the terminal 3602. ing.
  • the terminal 102 includes an upper layer 400, an uplink transmission unit 410, a terminal transmission antenna unit 420, and an uplink signal processing method determination unit 430. Although not shown, the terminal 102 includes a terminal control unit, and the terminal control unit can control various processes in the terminal 102.
  • the upper layer 400 performs various processing of data related to communication.
  • the upper layer 400 includes a terminal information data processing unit 401, an RRC layer processing unit 402, a MAC layer processing unit 403, a subframe interpretation unit 404, and a scheduling information interpretation unit 405.
  • the terminal information data processing unit 401 generates uplink information data and / or uplink control information data for the base station.
  • the uplink information data can be a unit for performing error correction coding processing.
  • the uplink information data can be a unit for performing retransmission control such as HARQ.
  • the terminal 102 can transmit a plurality of uplink information data to a base station that communicates with the terminal 102.
  • the terminal information data processing unit 401 converts the downlink reception data transmitted from the base station into downlink information data and / or downlink control information.
  • the downlink information data can be a unit for performing error correction coding processing.
  • the downlink information data can be a unit for performing retransmission control such as HARQ.
  • the terminal 102 can receive a plurality of downlink information data from a base station that communicates with the terminal 102.
  • the upper layer 400 includes an RRC layer processing unit 402.
  • Base station 101 and terminal 102 transmit and receive signals in the upper layer.
  • the base station 101 and the terminal 102 are also referred to as a radio resource control signal (RRC signaling; RRC signaling; Radio Resource Control signal, RRC message; Radio Resource Control message, RRC information; Radio Resource control call) in the RRC layer (Layer 3).
  • RRC signaling RRC signaling; Radio Resource Control signal, RRC message; Radio Resource Control message, RRC information; Radio Resource control call
  • RRC layer a dedicated signal transmitted to a predetermined terminal by the base station 101 is also referred to as a dedicated signal (dedicated signal). That is, the setting (information) notified by the base station 101 using the dedicated signal is a unique (unique and individual) setting for a predetermined terminal.
  • the system information set in common by a plurality of terminals can be notified by RRC signaling.
  • the upper layer 400 includes a MAC layer processing unit 403.
  • Base station 101 and terminal 102 transmit and receive MAC control elements in a MAC (Media Access Control) layer (layer 2).
  • MAC Media Access Control
  • the RRC signaling and / or the MAC control element is also referred to as an upper layer signal (Higher signaling).
  • the upper layer 400 includes a subframe interpretation unit 404.
  • the subframe interpretation unit 404 recognizes a radio frame configuration including an uplink subframe, a downlink subframe, and / or a special subframe from the uplink / downlink setting information received from the base station 101. Further, the subframe interpretation unit 404 recognizes DwPTS, UpPTS, and GP from the special subframe setting information received from the base station 101. The subframe interpretation unit 404 controls uplink transmission processing and downlink reception processing based on the received uplink / downlink setting information and special subframe setting information. In the subframe recognized as the uplink subframe, the terminal performs uplink transmission processing and does not perform downlink reception processing.
  • the terminal performs downlink reception processing and does not perform uplink transmission processing.
  • the terminal further recognizes DwPTS, UpPTS, and GP from the special subframe.
  • DwPTS the terminal performs downlink reception processing and does not perform uplink transmission processing.
  • UpPTS the terminal performs uplink transmission processing and does not perform downlink reception processing.
  • GP the terminal does not perform uplink transmission processing and downlink reception processing.
  • the upper layer 400 includes a scheduling information interpretation unit 405.
  • the scheduling information interpretation unit 405 generates control information for controlling uplink transmission processing based on the scheduling information that notifies the scheduling of the uplink communication received from the base station 101.
  • the upper layer 400 generates uplink information data in the terminal information data processing unit 401 by the transmission timing based on the scheduling information.
  • the uplink transmission unit 410 performs transmission processing on the uplink transmission data input from the upper layer 400 and outputs the processed uplink radio frequency band signal to the terminal transmission antenna 420.
  • the uplink transmission unit 410 includes an uplink data generation unit 411, an uplink control channel generation unit 412, an uplink reference signal generation unit 413, an uplink transmission signal processing unit 414, and an uplink radio transmission unit 415. .
  • An uplink data generation unit (uplink data channel region allocation unit, uplink data channel mapping unit, uplink shared channel generation unit) 411 performs adaptive control on the uplink information data output by the upper layer 400, An uplink data channel for the base station 101 is generated. Specifically, the adaptive control in the uplink data channel generation unit 411 uses an encoding process for performing error correction encoding, a scramble process for applying a terminal-specific scramble code, a multi-level modulation method, and the like. A layer mapping process for performing spatial multiplexing such as modulation processing and MIMO is performed. The uplink data generation unit 411 outputs the generated uplink data channel to the uplink transmission signal generation unit 414.
  • An uplink control channel generation unit (uplink control channel region allocation unit, uplink control channel mapping unit) 412 uses the radio resources allocated from the base station 101 to the uplink control information data output by the higher layer 400. Then, an uplink control channel transmitted by the terminal 102 is generated. The uplink control channel generation unit 412 outputs the generated uplink control channel to the uplink transmission signal generation unit 414.
  • the uplink reference signal generation unit 413 generates an uplink reference signal.
  • the uplink reference signal generation unit 413 generates a sequence obtained according to a predetermined rule as an uplink reference signal.
  • the uplink reference signal generation unit 413 outputs the generated uplink reference signal to the uplink transmission signal generation unit 414.
  • the uplink transmission signal generation unit 414 receives the uplink data channel input from the uplink data generation unit 411 and / or the uplink control channel input from the uplink control channel generation unit 412 and / or the uplink reference signal.
  • the uplink reference signal input from the generation unit 413 is subjected to precoding processing and resource element mapping processing.
  • the precoding process is preferably performed so that the signal-to-noise ratio (SNR) of the received signal of the base station 101 is maximized.
  • SNR signal-to-noise ratio
  • processing by a predetermined precoding matrix CDD (Cyclic Delay Diversity), Transmit Diversity (SFBC (Spatial Frequency Block Code), STBC (Spatial Time Block Code), TSTDchSdDS Transmission Diversity) can be used, but is not limited thereto.
  • CDD Cyclic Delay Diversity
  • SFBC Spatial Frequency Block Code
  • STBC Spatial Time Block Code
  • TSTDchSdDS Transmission Diversity can be used, but is not limited thereto.
  • the terminal 102 can perform precoding processing on the base station 101.
  • the terminal 102 based on the scheduling information notified from the base station 101, the uplink data channel, the uplink control channel, and / or the uplink reference signal input to the uplink transmission signal processing unit 414 Is mapped (multiplexed) to each resource element to generate an uplink transmission signal.
  • the uplink transmission signal processing unit 414 outputs the uplink transmission signal subjected to the precoding process and the resource element mapping process to the uplink radio transmission unit 415.
  • the uplink radio transmission unit 415 performs an SC-FDMA conversion process using discrete Fourier transform and inverse discrete Fourier transform on the uplink transmission signal output from the uplink transmission signal processing unit 414, a guard interval addition process, and a radio from the baseband signal. Radio transmission processing such as frequency conversion processing is performed to generate an uplink radio frequency bandwidth signal. The uplink radio transmission unit 415 outputs the generated uplink radio frequency bandwidth signal to the terminal transmission antenna unit 420.
  • the terminal transmission antenna unit 420 transmits the radio frequency band signal input from the uplink transmission unit 410 to the base station 101 from one or more transmission antennas (the number of transmission antenna ports) on the carrier wave.
  • the uplink signal processing method determination unit 430 determines an uplink signal processing method to be described later using information input from the upper layer 400.
  • the uplink signal processing method determination unit 430 is a part of the function of controlling the terminal, and the terminal information data processing unit 401, uplink transmission is performed according to the uplink signal processing method determined by the uplink signal processing method determination unit 430.
  • the signal processing unit 414 and the uplink radio transmission unit 415 are controlled.
  • the information input from the higher layer 400 includes a subframe number for stopping or restricting uplink signal transmission and a criterion for determining an uplink signal processing method.
  • FIG. 5 is a schematic block diagram showing a configuration during uplink communication of the base station according to the embodiment of the present invention.
  • communication between the base station 101 and the terminal 102 will be described as an example, but the configuration of the base station 201 according to the present embodiment includes the base station 111, the base station 3501, the base station 3511, the base station 3601, and the RRH 121. Are also equipped.
  • the base station 101 includes a base station reception antenna unit 500, an uplink reception unit 510, and an upper layer 520. Although not shown, the base station 101 includes a base station control unit, and the base station control unit can control various processes in the base station 101.
  • the base station receiving antenna unit 500 receives the radio frequency band signal transmitted from the terminal 102 with one or a plurality of receiving antennas (the number of receiving antenna ports), and receives the radio frequency band signal as an uplink receiving unit. Output to 510.
  • the uplink reception unit 510 receives and processes the uplink radio frequency band signal input from the base station reception antenna unit 500 and outputs the processed uplink reception data to the upper layer 520.
  • the uplink reception unit 510 includes an uplink radio reception unit 511, an uplink reception signal processing unit 512, a propagation path estimation unit 513, an uplink data processing unit 514, and an uplink control channel processing unit 515.
  • the uplink radio reception unit 511 receives an uplink radio frequency band signal transmitted from the terminal 102 by the base station reception antenna unit 500 having one or a plurality of reception antennas, and generates a baseband signal from the radio frequency. Time-frequency conversion processing such as conversion to, removal of added guard interval, discrete Fourier transform, frequency domain equalization and inverse discrete Fourier transform.
  • the uplink radio reception unit 511 processes the uplink radio frequency band signal input from the base station reception antenna unit 500 and outputs the uplink radio frequency band signal to the uplink reception signal processing unit 512 as an uplink reception signal.
  • the uplink received signal processing unit 512 demaps (separates) the uplink received signal. Specifically, the uplink received signal processing section 512 demaps the uplink terminal specific reference signal from the uplink received signal and outputs it to the uplink propagation path estimation section 513. Also, the uplink received signal processing section 512 demaps the uplink data channel from the uplink received signal and outputs it to the uplink data processing section 514. Also, the uplink received signal processing section 512 demaps the uplink control channel from the uplink received signal and outputs it to the uplink control channel processing section 515. When a plurality of terminals are mapped, the uplink received signal processing section 512 performs demapping for each terminal.
  • the uplink channel estimation unit 513 performs channel estimation for the uplink resource of the uplink control channel and / or uplink data channel based on the uplink terminal specific reference signal.
  • the uplink propagation path estimation unit 513 outputs the estimation result of the propagation path estimation to the uplink control channel processing unit 514 and / or the uplink data channel processing unit 515.
  • the uplink propagation path estimation unit 513 uses the uplink data channel and / or the uplink terminal-specific reference signal multiplexed in the uplink control channel, in each resource element for each reception antenna port of each transmission antenna port. Fluctuations in amplitude and phase (frequency response, transfer function) are estimated (propagation path estimation) to obtain a propagation path estimation value.
  • the uplink propagation path estimation unit 513 performs propagation path estimation for the sounding reference signal. Based on the sounding reference signal, the uplink propagation path estimation unit 513 estimates amplitude and phase fluctuations in each resource element for each terminal and outputs the estimated fluctuation to the upper layer 520.
  • the uplink data channel processing unit 514 performs channel compensation processing (filtering) on the data channel input from the uplink reception signal processing unit 512 using the channel estimation result input from the uplink channel estimation unit 513. Processing), layer demapping processing, demodulation processing, descrambling processing, error correction decoding processing, and the like are performed and output to the upper layer 520.
  • the SC-FDMA symbol to which the uplink terminal-specific reference signal is not mapped is subjected to interpolation or averaging in the time direction based on the SC-FDMA symbol to which the uplink terminal-specific reference signal is mapped. Make an estimate.
  • propagation path compensation processing propagation path compensation is performed on the input data channel using the estimated propagation path estimation value, and a signal for each layer based on the information data is detected (restored).
  • detection method ZF (Zero Forcing) norm, MMSE (Minimum Mean Square Error) normization, turbo equalization, interference removal, or the like can be used.
  • layer demapping process the demapping process is performed on the signal for each layer to the respective information data. The subsequent processing is performed for each information data.
  • demodulation process demodulation is performed based on the modulation method used.
  • descrambling process the descrambling process is performed based on the used scramble code.
  • an error correction decoding process is performed based on the applied encoding method.
  • the uplink control channel processing unit 515 performs a channel compensation process using the channel estimation result input from the uplink channel estimation unit 513 for the uplink control channel input from the uplink received signal processing unit 512. Multiple demapping processing, demodulation processing, error correction decoding processing, and the like are performed and output to the upper layer 520.
  • the upper layer 520 performs various processing of data related to communication.
  • the upper layer 520 includes a base station information data processing unit 521, an RRC layer processing unit 522, a MAC layer processing unit 523, a subframe setting unit 524, and a scheduling information determination unit 525.
  • the base station information data processing unit 521 converts the uplink reception data transmitted from the terminal into uplink information data and / or uplink control information.
  • the uplink information data can be a unit for performing error correction coding processing.
  • the uplink information data can be a unit for performing retransmission control such as HARQ.
  • the base station 101 can receive a plurality of uplink information data from a terminal communicating with the base station 101.
  • the base station information data processing unit 521 generates downlink information data and / or downlink control information data for the terminal.
  • the downlink information data can be a unit for performing error correction coding processing.
  • the downlink information data can be a unit for performing retransmission control such as HARQ.
  • the base station 101 can transmit a plurality of downlink information data to a terminal communicating with the base station 101.
  • the upper layer 520 includes an RRC layer processing unit 522.
  • Base station 101 and terminal 102 transmit and receive signals in the upper layer.
  • the upper layer 520 includes a MAC layer processing unit 523.
  • Base station 101 and terminal 102 transmit and receive MAC control elements in the MAC layer.
  • the upper layer 520 includes a subframe setting unit 524.
  • the subframe setting unit 524 determines uplink / downlink setting information used by the base station 101.
  • the subframe setting unit 524 determines based on the traffic volume of uplink communication and downlink communication and information on surrounding base stations.
  • the base station 101 controls downlink transmission processing and uplink reception processing according to the uplink / downlink setting information determined by the subframe setting unit 524.
  • the upper layer 520 includes a scheduling information determination unit 525.
  • Scheduling information determination section 525 determines uplink channel and downlink channel resources used for communication with terminal 102 existing inside cell 100.
  • the scheduling information determination unit 525 determines the terminal 102 and the terminal 102 based on the state of the uplink channel of the terminal connected to the base station 101, the communication status of the terminal connected to the base station 101, and the scheduling information from the adjacent base station 111 and RRH 121. It is preferable that the resource used for the uplink communication is determined.
  • the scheduling information determination unit 525 determines the terminal 102 from the state of the downlink channel of the terminal connected to the base station 101, the communication status of the terminal connected to the base station 101, and the scheduling information from the adjacent base station 111 and RRH 121. It is preferable that a resource used for downlink communication with is determined.
  • FIG. 6 is a schematic block diagram showing a configuration during downlink communication of the base station according to the embodiment of the present invention.
  • communication between the base station 111 and the terminal 112 is described as an example.
  • the configuration of the base station 211 according to the present embodiment is as follows: the base station 101, the base station 3501, the base station 3511, the base station 3601, and the RRH 121. Are also equipped.
  • the base station 111 includes an upper layer 600, a downlink transmission unit 610, and a base station transmission antenna unit 620. Although not shown, the base station 111 includes a base station control unit, and the base station control unit can control various processes in the base station 111.
  • the upper layer 600 performs various processing of data related to communication.
  • the upper layer 600 includes a base station information data processing unit 601, an RRC layer processing unit 602, a MAC layer processing unit 603, a subframe setting unit 604, and a scheduling information determination unit 605, and is similar to the upper layer 520 in FIG. It has the function of.
  • the downlink transmission unit 610 performs transmission processing on downlink information data input from the upper layer 600 and outputs the processed downlink radio frequency band signal to the base station transmission antenna unit 620.
  • the downlink transmission unit 610 includes a downlink data generation unit 611, a downlink control channel generation unit 612, a downlink reference signal generation unit 613, a downlink transmission signal processing unit 614, and a downlink radio transmission unit 615. .
  • a downlink data channel generation unit (downlink data channel region allocation unit, downlink data channel mapping unit, downlink shared channel generation unit) 611 performs adaptive control on the downlink information data output by the upper layer 600.
  • a downlink data channel for the terminal 112 is generated.
  • the adaptive control in the downlink data channel generation unit 611 uses an encoding process for performing error correction encoding, a scramble process for applying a scramble code unique to the terminal, a multi-level modulation method, and the like. Modulation processing, layer mapping processing for spatial multiplexing such as MIMO, and the like are performed.
  • the layer mapping process in the downlink data channel generation unit 611 maps to one or more layers (streams) based on the number of ranks set for the terminal.
  • the downlink data generation unit 611 outputs the generated downlink data channel to the downlink transmission signal generation unit 614.
  • a downlink control channel generation unit (downlink control channel region allocation unit, downlink control channel mapping unit) 612 transmits the downlink control information to the terminal 112 via the control channel region when the base station 111 transmits the downlink control information to the terminal 112.
  • the downlink control channel generation unit 612 outputs the generated downlink control channel and / or the extended downlink control channel to the downlink transmission signal generation unit 614.
  • the downlink reference signal generation unit 613 generates a downlink reference signal.
  • the downlink reference signal generation unit 613 generates a sequence obtained by a predetermined rule as a downlink reference signal.
  • the downlink reference signal generation unit 613 outputs the generated downlink reference signal to the downlink transmission signal generation unit 614.
  • the downlink transmission signal processing unit 614 includes a downlink data channel input from the downlink data generation unit 611 and / or a downlink control channel and / or an extended downlink control channel input from the downlink control channel generation unit 612. And / or precoding processing and resource element mapping processing are performed on the downlink reference signal input from the downlink reference signal generation section 613.
  • the precoding process is performed on the downlink data channel, the downlink control channel, the enhanced downlink control channel, the downlink terminal specific reference signal, and / or the enhanced downlink control channel demodulation reference signal.
  • the downlink terminal specific reference signal and / or the extended downlink control channel demodulation reference signal is shared by a plurality of terminals, or the downlink terminal specific reference signal and / or the extended downlink control channel demodulation is performed.
  • the processing may be different depending on whether the reference signal is used by one terminal.
  • the precoding process preferably performs phase rotation and / or amplitude control on the input signal so that the terminal 112 can efficiently receive the precoding process.
  • the precoding process is preferably performed so that the reception power of the terminal 112 is maximized, interference from the adjacent cell is reduced, or interference to the adjacent cell is reduced.
  • processing using a predetermined precoding matrix, CDD, and transmission diversity can be used, but the present invention is not limited to this.
  • a precoding matrix process, CDD, and transmission diversity for the precoding process.
  • PMI Precoding Matrix Indicator
  • the base station 111 feeds back a plurality of types of PMI (Precoding Matrix Indicator) which is feedback information related to the precoding process from the terminal 112
  • the base station 111 Precoding processing can be performed based on the result of performing arithmetic operations such as multiplication on a plurality of PMIs.
  • the base station 111 determines each downlink data channel, downlink control channel, downlink reference signal, and / or input to the downlink transmission signal processing unit 614 based on the scheduling information of the higher layer 600.
  • the extended downlink control channel demodulation reference signal is mapped to the resource element of each antenna port to generate a downlink transmission signal.
  • the downlink transmission signal processing unit 614 maps the downlink data channel to the downlink data channel region of the shared channel region. Further, the downlink transmission signal processing unit 614 maps the downlink control channel to the downlink control channel region of the shared channel region. Further, the downlink transmission signal processing unit 614 maps the extended downlink control channel to the extended downlink control channel region of the shared channel region.
  • the base station 111 can map downlink control channels addressed to a plurality of terminals in the downlink control channel region.
  • the downlink transmission signal processing unit 614 outputs the downlink transmission signal subjected to the precoding process and the source element mapping process to the downlink radio transmission unit 615.
  • the downlink radio transmission unit 615 performs inverse fast Fourier transform (IFFT) processing on the downlink transmission signal output from the downlink transmission signal processing unit 614, guard interval addition processing, and radio frequency from the baseband signal A radio transmission process such as a conversion process is performed to generate a downlink radio frequency bandwidth signal.
  • the downlink radio transmission unit 615 outputs the generated downlink radio frequency bandwidth signal to the base station transmission antenna unit 620.
  • IFFT inverse fast Fourier transform
  • the base station transmission antenna unit 620 transmits the radio frequency band signal input from the downlink transmission unit 610 on a carrier wave and transmits it to the terminal 112 from one or more transmission antennas (the number of transmission antenna ports). Note that the antenna of the base station transmission antenna unit 620 preferably shares part or all of the antennas of the base station reception antenna unit 500 of FIG.
  • FIG. 7 is a schematic block diagram showing a configuration of the terminal according to the embodiment of the present invention during downlink communication.
  • communication between the base station 111 and the terminal 112 is described as an example, but the configuration of the base station according to the present embodiment is also provided in the terminal 102, the terminal 122, the terminal 3502, the terminal 3512, and the terminal 3602. ing.
  • the terminal 112 includes a terminal reception antenna unit 700, a downlink reception unit 710, and an upper layer 720. Although not shown, the terminal 112 includes a terminal control unit, and the terminal control unit can control various processes in the terminal 112.
  • the terminal receiving antenna unit 700 receives the radio frequency band signal transmitted from the base station 111 with one or a plurality of receiving antennas, and outputs the radio frequency band signal to the downlink receiving unit 710. Note that the antenna of the terminal receiving antenna unit 700 preferably shares part or all of the antennas of the terminal transmitting antenna unit 420 of FIG.
  • the downlink reception unit 710 receives and processes the downlink radio frequency band signal input from the terminal reception antenna unit 700 and outputs the processed downlink reception data to the upper layer 720.
  • the downlink reception unit 710 includes a downlink radio reception unit 711, a downlink reception signal processing unit 712, a downlink propagation path estimation unit 713, a downlink control channel processing unit 714, and a downlink data channel processing unit 715.
  • the downlink radio reception unit 711 receives a downlink radio frequency band signal transmitted from the base station 111 by the terminal reception antenna unit 700 having one or a plurality of reception antennas, and converts the radio frequency into a baseband signal. , Removal of the added guard interval, and time-frequency conversion processing such as fast Fourier transform (FFT).
  • the downlink radio reception unit 711 processes the input downlink radio frequency band signal input from the terminal reception antenna unit 700 and outputs the downlink radio frequency band signal to the downlink reception signal processing unit 712 as a downlink reception signal.
  • FFT fast Fourier transform
  • the downlink received signal processing unit 712 demaps (separates) the downlink received signal mapped by the base station 111. Specifically, the downlink received signal processing section 712 demaps the downlink reference signal from the downlink received signal, and outputs it to the downlink propagation path estimation section 713. Also, the downlink received signal processing unit 712 demaps the downlink control channel mapped to the downlink control channel region and / or the extended downlink control channel region from the downlink received signal, and the downlink control channel processing unit 714 Output to. Further, the downlink received signal processing section 712 demaps the downlink data channel from the downlink received signal, and outputs it to the downlink data processing section 715.
  • the downlink channel estimation unit 713 performs channel estimation for the downlink resource of the downlink data channel based on the downlink terminal specific reference signal. Moreover, the downlink propagation path estimation part 713 performs the propagation path estimation with respect to the downlink resource of a downlink control channel based on a cell specific reference signal. Also, the downlink propagation path estimation unit 713 performs propagation path estimation for the downlink resources of the enhanced downlink control channel based on the enhanced downlink control channel demodulation reference signal. The downlink propagation path estimation unit 713 outputs the estimation result of the propagation path estimation to the downlink control channel processing unit 714 and / or the downlink data channel processing unit 715.
  • the downlink propagation path estimation unit 713 uses each resource for each reception antenna port of each transmission antenna port based on the downlink terminal specific reference signal multiplexed on the downlink data channel and / or the downlink control channel. Estimate fluctuations in amplitude and phase in the element to obtain a propagation path estimation value.
  • the downlink channel estimation unit 713 performs channel estimation for the cell-specific reference signal and / or the channel state information reference signal.
  • the downlink propagation path estimation unit 713 estimates amplitude and phase fluctuations in each resource element for each reception antenna port of each transmission antenna port based on the cell-specific reference signal and / or the channel state information reference signal, Output to the upper layer 700.
  • the downlink control channel processing unit 714 receives a downlink addressed to the terminal 112 from a control channel addressed to a plurality of terminals included in the downlink control channel region and / or the extended downlink control channel region input from the downlink received signal processing unit 712. Search for control channel.
  • the downlink control channel processing unit 714 sets a downlink control channel region and / or an extended downlink control channel region as a downlink control channel region for searching for a downlink control channel addressed to the terminal 112.
  • the downlink control channel processing unit 714 searches for the downlink control channel addressed to the terminal 112 using the terminal-specific information of the terminal unique number (RNTI; Radio Network Temporary Identifier).
  • RNTI Radio Network Temporary Identifier
  • the downlink control channel processing unit 714 selects all or part of control channel candidates obtained based on the type of downlink control information, the location of the mapped resource, the size of the mapped resource, and the like. Are sequentially searched by performing demodulation and decoding processing.
  • the downlink control channel processing unit 714 uses an error detection code (for example, a CRC (Cyclic Redundancy Check) code) added to the downlink control information as a method of determining whether or not the downlink control information is addressed to the terminal 112. .
  • error detection code for example, a CRC (Cyclic Redundancy Check) code
  • Such a search method is also called blind decoding.
  • the downlink control channel processing unit 714 sends the downlink control information to the upper layer 720 or the terminal control unit.
  • the downlink data channel processing unit 715 is configured to perform channel compensation processing using the channel estimation result input from the downlink channel estimation unit 713 on the data channel input from the downlink received signal processing unit 712, a layer Demapping processing, demodulation processing, descrambling processing, error correction decoding processing, and the like are performed and output to the upper layer 720.
  • a resource element to which a downlink terminal-specific reference signal is not mapped is subjected to channel estimation by performing interpolation or averaging in the frequency direction and the time direction based on the resource element to which the downlink terminal-specific reference signal is mapped. I do.
  • propagation path compensation processing propagation path compensation is performed on the input data channel using the estimated propagation path estimation value, and a signal for each layer based on the information data is detected.
  • detection method equalization of ZF norm and MMSE norm, turbo equalization, interference removal, etc. can be used.
  • the layer demapping process the demapping process is performed on the signal for each layer to the respective information data.
  • the subsequent processing is performed for each information data.
  • demodulation demodulation is performed based on the modulation method used. Specifically, in the demodulation process, demodulation is performed based on the modulation code information included in the downlink control channel acquired by the downlink control channel processing unit 714.
  • the descrambling process is performed based on the used scramble code.
  • an error correction decoding process is performed based on the applied encoding method. Specifically, in the decoding process, the error correction decoding process is performed based on the modulation code information included in the downlink control channel acquired by the downlink control channel processing unit 714.
  • the upper layer 720 performs various processing of data related to communication.
  • the upper layer 720 includes a terminal information data processing unit 721, an RRC layer processing unit 722, a MAC layer processing unit 723, a subframe interpretation unit 724, and a scheduling information interpretation unit 725, and is similar to the upper layer 400 in FIG. It has a function.
  • the uplink data channel transmits new uplink information data (initial transmission)
  • the uplink data data transmitted last time when the information that cannot be received from the base station is received for the previously transmitted uplink information data.
  • SPS semi-persistent scheduling
  • TTI Transmission Time Interval
  • the uplink data channel at the time of initial transmission is transmitted in an uplink subframe that is four or more subframes after the subframe in which the terminal has received information indicating initial transmission by an uplink grant transmitted by the downlink control channel.
  • the resource block of the uplink data channel is notified by the uplink grant transmitted on the downlink control channel.
  • the uplink data channel at the time of retransmission is an uplink subchannel associated with the HARQ process from the subframe in which the terminal has received NACK on the HARQ indication channel or the subframe in which information indicating retransmission is received by the uplink grant. Sent in frames.
  • the resource block used in the uplink data channel at the time of retransmission can be set independently when NACK is received through the HARQ indication channel and when information indicating retransmission is included in the uplink grant.
  • the terminal When receiving the NACK on the HARQ indication channel, the terminal retransmits the uplink data channel using the resource block allocated in the previous uplink data channel transmission.
  • the terminal performs retransmission using the resource block indicated by the allocated resource block information included in the uplink grant.
  • the uplink data channel newly set by the semi-persistent scheduling is an uplink subchannel after 4 subframes or more after the subframe in which the terminal has received information indicating the semi-persistent scheduling by the uplink grant transmitted by the downlink control channel. Sent in frames. Thereafter, until the terminal receives an instruction to stop semi-persistent scheduling, the terminal transmits the subframe interval included in the information related to semi-persistent scheduling set in the higher layer and the uplink data channel set in the previous semi-persistent scheduling.
  • the uplink data channel is transmitted using the assigned resource block.
  • the uplink data channel set by TTI bundling is transmitted in an uplink subframe that is four or more subframes after the subframe in which the terminal has received information indicating transmission by the uplink grant transmitted in the downlink control channel. . Also, an uplink data channel is transmitted in four consecutive uplink subframes in order from the uplink subframe.
  • the uplink control channel individually assigns radio resources to be allocated according to the type of data included in the uplink control channel, that is, success / failure information on decoding of downlink information data, scheduling request for uplink data channel, and downlink channel state information. Can be set.
  • the uplink control channel When the uplink control channel includes the success / failure information of the downlink information data, the uplink control channel is transmitted using the resource block associated with the downlink assignment corresponding to the downlink information data.
  • the uplink control channel is transmitted using an uplink subframe that is four or more subframes after the downlink subframe in which the downlink information data is transmitted.
  • the uplink control channel When the uplink control channel includes an uplink data channel scheduling request, the uplink control channel is transmitted using a resource block set in an upper layer.
  • the uplink control channel is transmitted using a subframe in which a scheduling request can be transmitted.
  • a subframe in which an uplink data channel scheduling request can be transmitted is set in a time period.
  • a subframe in which a scheduling request can be transmitted is set by periodic information from an upper layer.
  • the uplink control channel When the uplink control channel includes downlink channel state information, the uplink control channel is transmitted using the resource block information set in the higher layer.
  • the uplink control channel is transmitted using subframe information set in the higher layer.
  • the transmission subframe of the uplink control channel including the downlink channel state information is set with a time period. Also, the transmission subframe of the uplink control channel including the downlink channel state information is set by the period information from the upper layer.
  • the uplink terminal-specific reference signal Since the uplink terminal-specific reference signal is included in the resources allocated in the uplink data channel and the uplink control channel and transmitted, the uplink terminal-specific reference signal is transmitted in the resource block and subframe in which the uplink data channel and the uplink control channel are transmitted. Sent.
  • the sounding reference signal can independently set radio resources allocated by the periodic sounding reference signal and the aperiodic sounding reference signal.
  • the periodic sounding reference signal is transmitted using the resource block information set in the upper layer.
  • the periodic sounding reference signal is transmitted using subframe information set in the upper layer.
  • the transmission subframe of the periodic sounding reference signal is set with a time period.
  • the transmission subframe of the periodic sounding reference signal is set by periodic information from an upper layer.
  • the aperiodic sounding reference signal is transmitted using resource block information set in the upper layer.
  • the aperiodic sounding reference signal is transmitted using subframe information set in the upper layer.
  • the uplink / downlink setting can be changed (reconfigured or changed) (TDD UL-DL reconfiguration), and subframes (flexible subframes) that can be flexibly set in both uplink and downlink subframes; There is a method of setting (flexible subframe).
  • the method for changing the uplink / downlink setting is to change the ratio of the number of uplink subframes and the number of downlink subframes in a radio frame by switching the uplink / downlink setting information based on the table of uplink / downlink settings in FIG. Is the method.
  • the base station is notified of the uplink / downlink setting information to the terminal by RRC signaling, and basically switches at an interval longer than the radio frame length (10 ms).
  • the terminal is individually notified of the uplink / downlink setting information by RRC signaling from the base station.
  • a method for setting a flexible subframe is a method in which a terminal sets a predetermined subframe as a flexible subframe, and the flexible subframe changes to an uplink subframe or a downlink subframe according to an instruction from a base station.
  • FIG. 8 is an example of a radio frame configuration including a flexible subframe.
  • “U” is an uplink subframe
  • “D” is a downlink subframe
  • “S” is a special subframe
  • U / D” is a flexible subframe.
  • subframes with subframe numbers 3, 4, 8, and 9 are flexible subframes.
  • the terminal acquires information on a radio frame configuration including the flexible subframe, and grasps the position of the flexible subframe in the radio frame.
  • the terminal performs uplink transmission processing or downlink reception processing.
  • the instruction from the base station is, for example, an instruction by uplink grant (PDCCH signaling).
  • the flexible subframe that has not received an instruction from the base station performs the operation of the initially set subframe.
  • the terminal regards a flexible subframe that has not received an instruction from the base station as an uplink subframe.
  • the base station broadcasts the uplink / downlink setting information based on the terminal using the system information. That is, in this method, the base radio frame configuration is set, and the uplink communication resource and the downlink communication resource are varied by the flexible subframe included in the radio frame configuration.
  • base station-base station interference and terminal-terminal interference which are types of inter-cell interference, occur. .
  • Base station-base station interference is interference that a downlink signal transmitted from a base station gives to an uplink of a base station in an adjacent cell.
  • the base station 101 performs an uplink signal reception process from the terminal 102.
  • the base station 111 performs downlink signal transmission processing on the terminal 112.
  • the downlink signal transmitted from the base station 111 enters the receiving apparatus of the base station 101, and the decoding accuracy of the uplink signal transmitted from the terminal 102 is lowered. That is, the downlink signal transmitted from the base station 111 becomes an interference signal with respect to the uplink signal transmitted from the terminal 102.
  • Terminal-terminal interference is interference that an uplink signal transmitted from a terminal gives to the downlink of a terminal in an adjacent cell.
  • the terminal 102 performs uplink signal transmission processing on the base station 101.
  • the terminal 112 performs a downlink signal reception process from the base station 111.
  • the uplink signal transmitted from the terminal 102 enters the reception apparatus of the terminal 112, and the decoding accuracy of the downlink signal transmitted from the base station 111 is lowered. That is, the uplink signal transmitted from the terminal 102 becomes an interference signal with respect to the downlink signal transmitted from the base station 111.
  • inter-terminal interference becomes more prominent. Since the RRH 121 is transmitted with lower power than the base station 111, the downlink communication coverage is narrow. On the other hand, since the uplink coverage mainly depends on the transmission power of the terminal, a wider coverage than the downlink communication coverage may be set. Therefore, there is a possibility that the base station connected in the uplink at the same terminal position and the base station connected in the downlink are different. In such a situation, there is a possibility that a terminal that performs uplink communication and a terminal that performs downlink communication coexist at the same position.
  • the base station 101 sets an uplink subframe or a special subframe that restricts transmission of an uplink signal to be transmitted from the terminal 102 to the terminal 102 communicating with the base station 101.
  • the uplink transmission restriction subframe is a subframe that restricts transmission of uplink signals.
  • the uplink transmission restriction subframe can be set to an uplink subframe or a special subframe.
  • an uplink subframe set as an uplink transmission restriction subframe is referred to as an uplink blank subframe or an uplink mute subframe
  • a special subframe set as an uplink transmission restriction subframe is referred to as an UpPTS blank. This is referred to as a subframe, an uplink blank special subframe, or an uplink mute special subframe.
  • the terminal 102 that performs uplink signal transmission sets an uplink transmission restriction subframe from the base station 101.
  • the terminal 102 in which the uplink transmission restriction subframe is set schedules transmission in the subframe in which the uplink transmission restriction subframe is set, to the terminal 112 that performs reception processing of the downlink signal belonging to the cell 110.
  • the uplink signal that has been limited is limited. Accordingly, the terminal 112 can receive the downlink signal from the base station 111 without receiving interference from the terminal 102. That is, it is possible to suppress terminal-to-terminal interference by setting an uplink transmission restriction subframe and restricting uplink signal transmission.
  • the base station performs information related to the setting of uplink transmission restriction subframes (uplink transmission restriction subframe setting information, uplink blank subframe setting information; uplink blank subframe configuration, uplink blank subframe configuration; uplink (blank subframeConfig, mute subframe setting information, restriction information).
  • the uplink transmission restriction subframe setting information indicates a subframe for restricting uplink signal transmission.
  • the terminal sets information related to the setting of the uplink transmission restriction subframe from the base station.
  • the terminal restricts transmission of the uplink signal. That is, it can be said that the uplink transmission restriction subframe is an uplink subframe and is a subframe indicated by the uplink transmission restriction subframe setting information.
  • the base station notifies the terminal through RRC signaling. That is, the uplink transmission restriction subframe can be set for each terminal.
  • the terminal 102-B that performs uplink transmission in the vicinity of the base station 101 is far away from the terminal 112 that receives the downlink signal existing in the adjacent cell 110, and therefore is less likely to cause terminal-terminal interference. .
  • the terminal 102-B sets the subframe for stopping or restricting the transmission of the uplink signal at a high frequency with respect to the total number of uplink subframes in which the terminal 102-B is set, the terminal 102-B performs uplink communication. Significantly reduce radio resources.
  • the rate at which the uplink transmission restriction subframe of terminal 102-B is set is preferably less frequent than the rate of uplink subframes.
  • the uplink transmission restriction subframe is set for the uplink subframe that may cause the terminal 112 to interfere with the terminal 102-A. Since the transmission of the uplink signal that the terminal 102-A is scheduled to transmit is restricted, the throughput of the uplink communication of the terminal 102-A is reduced.
  • the terminal 102-B having a low possibility of causing interference can transmit an uplink signal
  • the uplink communication throughput of the terminal 102-B does not decrease.
  • the throughput averaged in the terminal communicating with the base station 101 in the uplink can be communicated with a slight decrease. Therefore, by setting the uplink transmission restriction subframe specific to the terminal, it is possible to suppress a reduction in the throughput of the uplink communication compared to the case where the uplink transmission restriction subframe is set specific to the base station (cell specific).
  • the base station notifies uplink transmission restriction subframe setting information in a bitmap format as a subframe set indicating one or more subframes.
  • the bit map format is represented by a set of bits corresponding to each subframe, and the information related to the setting of the uplink transmission restriction subframe is uplink in each subframe corresponding to each bit in the bitmap. This information indicates whether the link transmission restriction subframe is valid or invalid.
  • the validity of the uplink transmission restriction subframe is that the subframe corresponding to the bit is regarded as an uplink transmission restriction subframe (for example, a subframe in which uplink transmission is not performed).
  • the invalidation of the uplink transmission restriction subframe refers to the subframe corresponding to the bit as an original subframe, that is, an uplink subframe (for example, a subframe for uplink transmission) or a special subframe.
  • 9 and 10 show examples of uplink transmission restriction subframe settings and bitmap representations corresponding to the subframes. “U” indicates an uplink subframe, “UB” indicates an uplink blank subframe, “D” indicates a downlink subframe, “S” indicates a special subframe, and “SB” indicates an UpPTS blank subframe.
  • the above-described bitmap format configuration includes an uplink subframe and a special subframe.
  • bitmap format configuration includes an uplink subframe and a special subframe.
  • an uplink subframe, a downlink subframe, or a special subframe corresponds to 0 in the bit information included in the bitmap format
  • an uplink blank subframe or an UpPTS blank subframe is included in the bitmap format.
  • the bit information is assigned so as to correspond to 1. That is, when the bit information included in the bitmap format is 1, it indicates that the uplink transmission limited subframe is valid, and when the bit information included in the bitmap format is 0, the uplink transmission limited subframe. Indicates that is invalid.
  • bit information included in the bitmap format is assigned to all subframes.
  • each subframe and each bit in the bitmap format are set in a one-to-one relationship.
  • subframes corresponding to bit values included in the bitmap format may be inverted. That is, 0 is associated with a subframe in which the uplink signal transmission restriction setting is valid, and 1 is associated with a subframe in which the uplink signal transmission restriction setting is invalid.
  • the base station 101 notifies the uplink transmission restriction subframe setting information to the terminal 102-A and the terminal 102-B via RRC signaling in the bitmap format of FIG.
  • the terminal 102 receives the setting information from the base station 101 and sends it to the subframe interpretation unit 404.
  • the subframe interpretation unit 404 assigns the first bitmap sequentially from the first subframe number based on the radio frame configuration already recognized by the subframe interpretation unit 404.
  • the subframe interpretation unit 404 recognizes it as a downlink subframe.
  • the terminal 102 recognizes the subframe set in the uplink transmission restriction subframe from the uplink transmission restriction subframe setting information received from the base station.
  • the configuration of the uplink transmission restriction subframe setting information as shown in FIG. 9 allocates bits to the downlink subframe, and therefore, the bit information is notified to the terminal, which may increase overhead.
  • An example of a bitmap format configuration in which no bits are assigned to the downlink subframe is shown in FIG. Specifically, in this configuration, the uplink subframe or special subframe is associated with 0, and the uplink transmission restriction subframe is associated with 1.
  • the feature of the example of FIG. 10 is that the bit information allocated to the downlink subframe that is unlikely to transmit an uplink signal is reduced and notified.
  • the example of FIG. 10 can reduce the amount of information necessary for notification by 2 bits compared to the example of FIG.
  • the base station 101 notifies the uplink transmission restriction subframe setting information of the bit map of FIG. 10 to the terminal 102-A and the terminal 102-B via RRC signaling.
  • the terminal 102 receives the setting information from the base station 101 and sends it to the subframe interpretation unit 404.
  • the subframe interpretation unit 404 assigns the first bitmap sequentially from the first subframe number based on the radio frame configuration already recognized by the subframe interpretation unit 404.
  • the subframe interpretation unit 404 recognizes the uplink subframe set in the uplink transmission restriction subframe by skipping the interpretation process to the next subframe.
  • the base station can notify the terminal of the uplink transmission restriction subframe setting information with little overhead.
  • the uplink signal transmitted by UpPTS has a smaller number of resource elements to be transmitted compared to the uplink signal transmitted in the uplink subframe and the influence amount that causes interference is small.
  • the UpPTS blank subframe need not be set.
  • the base station 101 sets an uplink subframe corresponding to 0 and an uplink blank subframe corresponding to 1, and notifies in a bitmap format configuration in which the downlink subframe and the special subframe are not included in the notification information. It is preferable to do.
  • the terminal 102 acquires uplink transmission restriction subframe setting information from the base station 101, and associates each bit included in the setting information with the uplink subframe, thereby setting the uplink blank subframe. Can be recognized.
  • the bit map format configuration in which only the uplink subframe and the uplink blank subframe are set is compared with the bit map format configuration of FIG. 10, and the total number of bits used for notification of the uplink transmission limited subframe is further increased. Can be reduced.
  • the configuration in which bits correspond to only the uplink subframe and the special subframe in FIG. 10 depends on the radio frame configuration set by the terminal. Therefore, when the base radio frame configuration changes due to re-notification of uplink / downlink setting information, etc., the terminal may set an uplink subframe or a special subframe that is not intended by the base station as an uplink transmission restriction subframe. There is. Therefore, in this configuration, when the radio frame configuration is changed, the base station preferably notifies the uplink transmission restriction subframe setting information simultaneously with the notification of the radio frame configuration. In addition, when the radio frame configuration is changed, the terminal preferably does not validate the setting of the uplink transmission restriction subframe until the uplink transmission restriction subframe setting information is notified. That is, when only the information on the radio frame configuration is received, the terminal changes the radio frame configuration and resets the uplink transmission restriction subframe setting of the terminal.
  • the terminal When the terminal reads information up to the last bit of the bitmap included in the notified uplink transmission restriction subframe setting information, it returns to the first bit and reads the information. For example, it is assumed that the terminal is notified of uplink transmission restriction subframe setting information in a 20-bit bitmap format. Subframe number 0 to subframe number 19 correspond to the first to twentieth bits from the beginning of the bitmap. Subframe number 20 to subframe number 39 correspond to the first bit to the twentieth bit from the top of the bitmap. Subsequent subframes correspond in order by repeating the bitmap.
  • the terminal sets subframes for limiting uplink signals from the base station. Also, the base station performs resource scheduling for uplink communication. Therefore, the base station can limit the transmission of the uplink signal by scheduling so that the uplink signal resource is not allocated to the uplink subframe in which the subframe for limiting the uplink signal is set.
  • uplink signal resources may be allocated to subframes that limit uplink signals. This is a case where an uplink signal that can be transmitted without receiving an uplink grant is assigned immediately before the uplink signal is transmitted. For example, the uplink signal is periodically transmitted.
  • An uplink signal to which resources are periodically allocated includes an uplink data channel set by semi-persistent scheduling, an uplink control channel including scheduling request information, and an uplink including downlink channel state information.
  • a link control channel and a periodic sounding reference signal are included.
  • An uplink signal to which resources are periodically allocated may be allocated to uplink transmission limited subframes.
  • first uplink signal processing method of discarding the uplink signal without transmitting the uplink signal scheduled to be transmitted in the uplink transmission restricted subframe.
  • FIG. 11 shows an overview of a first processing method when uplink signal resources are allocated to subframes that limit uplink signals.
  • the uplink signal resource of the terminal 102 is periodically assigned to subframes with subframe number 0, subframe number 5, and subframe number 10, and every five subframes.
  • uplink signal 1, uplink signal 2, and uplink signal 3 are scheduled to be transmitted, respectively.
  • the subframe of subframe number 5 is set as an uplink transmission restriction subframe.
  • the terminal 102 does not generate the uplink signal 2 before the subframe number 5 and does not transmit the uplink signal 2 in the subframe of the subframe number 5.
  • the terminal 102 generates the uplink signal 2 before the subframe number 5, but discards the uplink signal 2 without performing the transmission process of the uplink signal 2 in the subframe with the subframe number 5.
  • terminal 102 does not transmit uplink signal 2 even in subframes after subframe number 5.
  • the uplink signal processing method determination unit 430 instructs the terminal information data processing unit 401 to The terminal information data processing unit 401 does not generate uplink information data.
  • the uplink signal processing method determination unit 430 sends an instruction to the uplink radio transmission unit 415, and the uplink radio transmission unit 415 The uplink transmission signal is discarded without performing wireless transmission processing of the transmission signal.
  • the uplink signal scheduled to be transmitted is not transmitted, and the uplink signal that has not been transmitted is transmitted using a resource allocated in the next cycle (first method) 2 uplink signal processing methods).
  • FIG. 12 shows an overview of the second uplink signal processing method when uplink signal resources are allocated to subframes that limit uplink signals.
  • the uplink signal resources of the terminal 102 are periodically allocated to subframes with subframe number 0, subframe number 5, and subframe number 10, and every 5 subframes.
  • uplink signals 1, uplink signals 2, and uplink signals 3 are scheduled to be transmitted in subframes with subframe number 0, subframe number 5, and subframe number 10, respectively.
  • the subframe of subframe number 5 is set as an uplink transmission restriction subframe.
  • the terminal 102 does not generate the uplink signal 2 before the subframe number 5 and does not transmit the uplink signal 2 in the subframe of the subframe number 5.
  • the terminal 102 generates the uplink signal 2 before the subframe number 5 but discards the uplink signal 2 without performing the uplink signal 2 transmission process in the subframe of the subframe number 5.
  • the terminal 102 generates the uplink signal 2 before the subframe number 10 and uses the resource of the subframe with the subframe number 10 allocated in the next period to use the uplink signal 2.
  • the uplink signal 3 scheduled to be transmitted in the subframe of subframe number 10 is transmitted using resources allocated in the next cycle.
  • the uplink signal processing method determination unit 430 instructs the terminal information data processing unit 401 to The terminal information data processing unit 401 does not generate uplink information data.
  • the uplink signal processing method determination unit 430 sends an instruction to the uplink radio transmission unit 415, and the uplink radio transmission unit 415 The uplink transmission signal is discarded without performing wireless transmission processing of the transmission signal.
  • the uplink signal scheduled to be transmitted is not transmitted, and the uplink signal that has not been transmitted is transmitted using a resource that is different from the resources that are periodically allocated. (A third uplink signal processing method).
  • FIG. 13 shows an overview of a third uplink signal processing method when uplink signal resources are allocated to subframes that limit uplink signals.
  • the uplink signal resource of the terminal 102 is periodically allocated every 5 subframes, with subframe number 0, subframe number 5 and subframe number 10.
  • uplink signals 1, uplink signals 2, and uplink signals 3 are scheduled to be transmitted in subframes with subframe number 0, subframe number 5, and subframe number 10, respectively.
  • the subframe of subframe number 5 is set as an uplink transmission restriction subframe.
  • the terminal 102 does not generate the uplink signal 2 before the subframe number 5 and does not transmit the uplink signal 2 in the subframe of the subframe number 5. Alternatively, the terminal 102 generates the uplink signal 2 before the subframe number 5 but discards the uplink signal 2 without performing the uplink signal 2 transmission process in the subframe of the subframe number 5. In the third uplink signal processing method, the terminal 102 generates the uplink signal 2 before the subframe number 7 specified by the uplink grant of the uplink signal 2 received in the subframe number 3, and the subframe The uplink signal 2 is transmitted using the subframe of number 7.
  • the resources that are separate from the uplink signal resources that are periodically allocated are subframes that are allocated in advance.
  • the individual resource is allocated, for example, in the first uplink subframe in the subframe after the uplink transmission restriction subframe or in the uplink subframe designated through RRC signaling.
  • the individual resource is preferably set to a resource different from the resource of the uplink signal that is periodically assigned.
  • a subframe with subframe number 7 is allocated in advance as the individual resource.
  • the terminal 102 can transmit the uplink signal 2 without requiring an instruction by the uplink grant from the base station 101.
  • the resource block of the uplink signal 2 is the same resource block as the resource block allocated in the subframe of subframe number 5 that was scheduled for transmission.
  • the terminal 102 processes the uplink signal 2 using the first uplink signal processing method or the second uplink signal processing method. .
  • resources that are separate from the uplink signal resources that are periodically allocated are allocated in the uplink subframe allocated in the uplink grant associated with the uplink signal 2 or the HARQ indication channel.
  • the base station 101 transmits an uplink grant or HARQ indication channel associated with the uplink signal 2 to the terminal 102, and transmits an uplink grant to the terminal 102 in the downlink subframe of subframe number 3 in the example of FIG. To do.
  • the terminal 102 transmits the uplink signal 2 in the subframe of the subframe number 7 specified by the uplink grant or the HARQ indication channel.
  • the terminal 102 waits for reception of an uplink grant associated with the uplink signal 2 from the base station 101 during a predetermined period.
  • the terminal 102 processes the uplink signal using the first uplink signal processing method or the second uplink signal processing method.
  • the predetermined period is, for example, a period of five subframes before and after the subframe of subframe number 5 as the center. The predetermined period is notified to the terminal 102 by information of the upper layer.
  • the uplink signal processing method determination unit 430 instructs the terminal information data processing unit 401 to The terminal information data processing unit 401 does not generate uplink information data.
  • the uplink signal processing method determination unit 430 sends an instruction to the uplink radio transmission unit 415, and the uplink radio transmission unit 415 The uplink transmission signal is discarded without performing wireless transmission processing of the transmission signal.
  • the uplink signal is not transmitted in the subframe that was scheduled to be transmitted, and the transmission is performed in the subsequent uplink subframe. That is, it can be said that the second and third uplink signal processing methods are processes for postponing the transmission of the uplink signal scheduled to be transmitted in the uplink transmission restriction subframe.
  • a method (fourth uplink signal processing method) of transmitting an uplink signal with resource element arrangement that does not interfere with the downlink signal in the uplink transmission restricted subframe.
  • FIG. 14 shows an outline of the fourth processing method when uplink signal resources are allocated to subframes that limit uplink signals.
  • the uplink signal resources of the terminal 102 are periodically allocated every 5 subframes, ie, subframe number 0, subframe number 5, and subframe number 10.
  • Subframe number 0, subframe number 5, and subframe number 10 are scheduled to be transmitted by uplink signal 1, uplink signal 2, and uplink signal 3, respectively.
  • the subframe of subframe number 5 is set as an uplink transmission restriction subframe.
  • the terminal 102 In the fourth uplink signal processing method, the terminal 102 generates the uplink signal 2 ′ with the resource element arrangement that does not interfere with the downlink signal before the subframe number 5 and transmits the uplink signal in the subframe with the subframe number 5.
  • the link signal 2 ′ is transmitted after being transmitted.
  • FIG. 15 shows an example of the resource element configuration of the uplink signal 2 'that does not interfere with the downlink signal.
  • the first 3SC-FDMA symbol of the uplink data channel and the uplink control channel is the downlink control channel received by the terminal of the adjacent cell. May cause interference. Therefore, transmission of resource elements of uplink signals that may cause interference (regions that may interfere with downlink control channels) is stopped, and uplink signals are used using resource elements that are less likely to cause interference. Send.
  • the resource element that stops transmission includes, for example, the number of OFDM symbols of the downlink control channel used in the downlink subframe of the adjacent cell, the transmission timing of the uplink signal of the terminal 102, and the reception timing of the downlink signal of the terminal 112. And the time difference between the two.
  • the resource element that stops transmission is notified from the base station 101 through RRC signaling or PDCCH signaling.
  • the uplink signal 2 ' is generated by removing a bit string (puncturing) scheduled to be arranged in the resource element that stops transmission from the uplink information data.
  • the uplink signal 2 ′ adjusts the coding rate of the error correction code in accordance with the number of bits in which the resource element to be finally transmitted the uplink information data can be arranged (rate matching), Generated.
  • the fourth uplink signal processing method is not limited to the downlink control channel in the downlink subframe of the adjacent cell described above.
  • the extended downlink control channel, the HARQ indication channel, and the downlink reference of the adjacent cell are used. It is also possible to process as a configuration in which a part of the resource elements of the uplink signal is not transmitted so that the resource element does not overlap with a signal, a synchronization signal, or a detection reference signal that is assumed to be used in NCT.
  • the uplink signal processing method determination unit 430 sends an instruction to the uplink transmission signal processing unit 414, and the uplink transmission signal processing unit 414 receives the downlink signal.
  • the uplink data channel, the uplink control channel, and the uplink reference signal are mapped with a signal configuration that does not cause interference.
  • a method for transmitting an uplink signal whose transmission power is limited so as to reduce interference given to the downlink signal in the uplink transmission restricted subframe.
  • Transmitting an uplink signal with high transmission power causes a large interference with reception of a downlink signal of an adjacent cell.
  • transmitting an uplink signal with low transmission power can reduce the influence of interference on reception of the downlink signal.
  • a terminal located in the vicinity of the cell edge transmits with a transmission power lower than the transmission power set for the terminal.
  • the terminal 102 reduces the interference given to the downlink signal before subframe number 5
  • the uplink signal 2 with limited transmission power is generated, and the uplink signal 2 is transmitted in the subframe of subframe number 5 and transmitted.
  • the transmission power for reducing the interference given by the uplink signal is set in relation to the propagation path attenuation value obtained by propagation path estimation, for example. Specifically, when the propagation path attenuation value is high, since the terminal is located far from the base station to which the terminal is connected, the terminal is likely to be located near the cell edge. Therefore, when the propagation path attenuation value exceeds a predetermined threshold, the terminal sets the transmission power with a limit.
  • the method of setting with the restriction includes, for example, a method of setting an upper limit of power that can be transmitted by transmission limit power, a method of subtracting a certain value from the calculated power value to be transmitted, and calculated power to be transmitted There is a method of subtracting a value proportional to the propagation path attenuation value from the value.
  • the method of setting with the restriction can be individually set according to the type of the uplink signal. The predetermined threshold is notified from the base station to the terminal via the upper layer.
  • the transmission power that reduces the interference given by the uplink signal transmits the uplink signal with a transmission power lower than the transmission power set in the terminal. Therefore, there is a possibility that the uplink signal transmitted with low transmission power cannot be received by the base station. Therefore, the terminal can improve the reception quality at the base station by transmitting the same uplink signal multiple times in a plurality of subframes. For example, the terminal 102 transmits the uplink signal 2 with a transmission power lower than the transmission power set by the fifth uplink signal processing method in the subframe No. 5 in which the uplink transmission restriction subframe is set. To do. Next, terminal 102 transmits uplink signal 2 again with lower transmission power than the set transmission power in the subframe in which the subsequent uplink transmission restriction subframe is set.
  • the base station 101 can obtain reception quality equivalent to that of an uplink signal transmitted with normal transmission power by receiving and processing two received uplink signals 2 by, for example, maximum ratio combining.
  • the method of transmitting a plurality of times can be realized using the HARQ function.
  • a method of transmitting a plurality of times can be realized by setting the number of retransmissions in advance.
  • the base station 101 performs reception processing corresponding to each uplink signal processing method.
  • the base station 101 Since it is known that the uplink signal 2 from the terminal 102 is not transmitted in the subframe of the subframe number 5, the base station 101 does not perform the reception process of the uplink signal 2, and the uplink signal 2 When transmitted via the data channel, ACK / NACK for the uplink signal 2 is not transmitted using the uplink grant or the HARQ indication channel. Then, the base station 101 performs uplink signal 3 reception processing in the subframe of subframe number 10.
  • the second uplink signal processing method is used for the terminal 102. Since it is known that the uplink signal 2 from the terminal 102 is not transmitted in the subframe of the subframe number 5, the base station 101 does not perform the reception process of the uplink signal 2, and the uplink signal 2 When transmitted via the data channel, ACK / NACK for the uplink signal 2 is not transmitted using the uplink grant or the HARQ indication channel. Then, the base station 101 performs uplink signal 2 reception processing in the subframe of subframe number 10.
  • the third uplink signal processing method is used for the terminal 102. Since it is known that the uplink signal 2 from the terminal 102 is not transmitted in the subframe of subframe number 5, the base station 101 does not perform the uplink signal 2 reception process. In addition, the base station 101 allocates resources for the uplink signal 2 in a subframe having a subframe number 7 different from the subframe number 5 by using an uplink grant associated with the uplink signal 2 or a HARQ indication channel. The base station 101 performs reception processing of the uplink signal 2 in the subframe of the subframe 7 to which the resource is assigned.
  • the fourth uplink signal processing method is used for the terminal 102. Since the base station 101 is known that the uplink signal 2 from the terminal 102 is not transmitted in some resource elements in the subframe of subframe number 5, the uplink signal 2 is configured not to include the resource elements that are not transmitted. Receive processing. Specifically, the base station 101 knows the arrangement of the SC-FDMA symbols whose transmission is stopped at the terminal 102, and therefore recognizes the resource element configuration as not including the SC-FDMA symbols for which no signal is transmitted, and performs the decoding process. I do.
  • Base station 101 performs reception processing of uplink signal 2 from terminal 102 in a subframe of subframe number 5.
  • the terminal uses one of the above five types of uplink signal processing methods.
  • the terminal commonly uses one of the uplink signal processing methods as the uplink signal processing for the uplink signal scheduled to be transmitted in the uplink transmission restriction subframe.
  • the terminal uses a plurality of the above five types of uplink signal processing methods.
  • Uplink signal processing can be individually set for each terminal, for each uplink physical channel, and for each uplink information data.
  • Uplink signal processing is configured via RRC signaling.
  • VoIP Voice over Internet Protocol
  • the first uplink signal it is preferred that a processing method is applied.
  • uplink information data other than VoIP data is transmitted on an uplink data channel set by semi-persistent scheduling, it is necessary to send data so that all packet data is not lost, so the second uplink signal It is preferred that a processing method is applied.
  • the scheduling request information is transmitted on the uplink control channel having the PUCCH format 1 signal configuration
  • the fourth uplink signal processing method is preferably applied.
  • the first uplink signal processing method is preferably applied.
  • the first uplink signal processing method is preferably applied.
  • the first uplink signal processing method is preferably applied.
  • the application of uplink signal processing can be individually set for the uplink physical channel.
  • the base station configures the terminal to apply the first uplink signal processing only to the periodic sounding reference signal. Whether or not uplink signal processing is applied is set through RRC signaling. As a result, the terminal performs a process of not transmitting the periodic sounding reference signal using the first uplink signal processing method in the uplink transmission restriction subframe.
  • the terminal since uplink signal processing is not set for other uplink data channels and uplink control channels, the terminal uses other uplink data channels and uplink control channels as they are in the uplink transmission restriction subframe. Can be sent. That is, the terminal does not transmit a specific uplink physical channel by uplink signal processing in the uplink transmission restriction subframe, while the terminal transmits an uplink signal not including the specific uplink physical channel. can do.
  • the terminal can transmit only a specific uplink physical channel in the uplink transmission restriction subframe, Transmission of uplink physical channels other than uplink physical channels can be restricted.
  • the base station configures the terminal to apply the first uplink signal processing to the uplink physical channel other than the uplink control channel and the uplink reference signal.
  • the terminal performs a process of not transmitting the uplink physical channel other than the uplink control channel and the uplink reference signal by using the first uplink signal processing method in the uplink transmission restricted subframe.
  • uplink signal processing is not set for the uplink control channel, the terminal can transmit the uplink control channel as it is in the uplink transmission restriction subframe.
  • the terminal does not transmit an uplink physical channel other than the specific uplink physical channel by the uplink signal processing in the uplink transmission restriction subframe, while the terminal does not transmit the uplink physical channel other than the specific uplink physical channel.
  • An uplink signal not included can be transmitted.
  • the terminal is set with priority to the used uplink signal processing method by using a part or all of the above five types of uplink signal processing methods.
  • the terminal 102 uses part or all of the five types of uplink signal processing methods, and the uplink signal processing method determination unit 430 determines whether or not the processing is possible in order for the uplink signal processing method. Perform possible uplink signal processing methods.
  • FIG. 16 shows a flowchart for determining an uplink signal processing method.
  • the terminal 102 employs the first to fourth uplink signal processing methods, and the fourth uplink signal processing method, the third uplink signal processing method, the second uplink signal processing method, the first And an uplink signal processing method, and priorities are set.
  • the terminal 102 determines whether or not the fourth uplink signal processing method is possible (step S1601). If the fourth uplink signal processing method is possible (step S1601; acceptable), the fourth uplink signal processing method is applied (step S1602), and a problem occurs in the fourth uplink signal processing method (Step S1601; No), it is determined whether or not the third uplink signal processing method is possible (Step S1603). If the third uplink signal processing method is possible (step S1603; acceptable), the third uplink signal processing method is applied (step S1604), and the third uplink signal processing method causes a problem. (Step S1603; No), it is determined whether or not the second uplink signal processing method is possible (Step S1605).
  • step S1605 If the second uplink signal processing method is possible (step S1605; acceptable), the second uplink signal processing method is applied (step S1606), and the second uplink signal processing method causes a problem. (Step S1605; No), the first uplink signal processing method is applied (Step S1607).
  • the criteria for determining whether or not an uplink signal processing method is possible can individually set criteria corresponding to the uplink physical channel and the uplink information data in consideration of the importance of the data and the influence amount of the uplink signal causing interference. .
  • the criteria for determining whether or not to use the uplink signal processing method is fixedly determined in advance by the terminal. Alternatively, the criterion for determining whether or not the uplink signal processing method is possible is notified individually from the base station to the terminal through control information from the higher layer.
  • the terminal 102 sets the uplink transmission restriction subframe based on the received uplink transmission restriction subframe setting information. Is overwritten.
  • the base station When canceling the setting of the uplink transmission restriction subframe, the base station notifies the terminal of uplink transmission restriction subframe setting information that is not set in all subframes in a bitmap format. Specifically, the base station notifies information indicating that all bits in the bitmap do not arrange the uplink transmission restriction subframe.
  • the terminal When receiving the uplink transmission restriction subframe setting information in which the uplink transmission restriction subframe is not arranged in all subframes, the terminal overwrites the setting in which the uplink transmission restriction subframe is not arranged in all subframes.
  • the base station when canceling the setting of the uplink transmission restriction subframe, the base station notifies the terminal of 1-bit uplink transmission restriction subframe valid / invalid information.
  • the uplink transmission restriction subframe valid / invalid information is valid (TRUE, 1)
  • the uplink transmission restriction subframe notified by the uplink transmission restriction subframe setting information is valid (hereinafter referred to as valid state). Called).
  • the uplink transmission restriction subframe valid / invalid information is invalid (FALSE, 0)
  • the uplink transmission restriction subframe notified in the bitmap format becomes invalid, and the terminal transmits the original radio in all subframes. It is recognized as a frame configuration (hereinafter referred to as an invalid state).
  • FIG. 17 shows a combination table of uplink transmission restriction subframe valid / invalid information with respect to the transition of the setting state of the uplink transmission restriction subframe.
  • the base station When transitioning from the invalid state to the valid state, the base station does not notify the uplink transmission restriction subframe setting information, but notifies the terminal of the uplink transmission restriction subframe validity / invalid information indicating validity. Also, when transitioning from the valid state to the invalid state, the base station does not notify the uplink transmission restriction subframe setting information but notifies the terminal of the uplink transmission restriction subframe validity / invalidity information indicating invalidity.
  • the base station When the uplink transmission restriction subframe is reconfigured simultaneously with the transition from the invalid state to the valid state, the base station reconfigures the uplink transmission restriction subframe setting information and the valid uplink transmission restriction subframe valid / invalid information. At the same time. When only resetting the uplink transmission restriction subframe, the base station notifies the reset uplink transmission restriction subframe setting information. If the setting state does not change, the base station may not notify the uplink transmission restriction subframe valid / invalid information.
  • the first embodiment of the present invention has been described above. According to the first embodiment of the present invention, it is possible to reduce inter-cell interference due to uplink communication and improve the throughput of the entire communication system.
  • the arrangement of uplink transmission limited subframes is set as period information and arrangement information as subframe sets.
  • 18 and 19 illustrate an example of a radio frame configuration when uplink transmission restriction subframes are periodically set.
  • the subframe with subframe number 4 when the radio frame number is an even number is set as the uplink transmission restriction subframe.
  • the subframe of subframe number 7 when the radio frame number is a multiple of 3 is set as the uplink transmission restriction subframe.
  • the uplink transmission restriction subframe may be set by a subframe period and a subframe offset (shift) with respect to a predetermined reference subframe. In the example of FIG.
  • the uplink transmission limited subframe has a subframe period of 20 and a subframe offset of 4 with respect to a predetermined reference subframe.
  • the uplink transmission restricted subframe has a subframe period of 30 and a subframe offset of 7 with respect to a predetermined reference subframe.
  • the base station transmits uplink transmission restriction subframe period information (uplink blank subframe period information, uplink blank subframe periodity; uplink blank subframe period) and uplink transmission restriction subframe arrangement information (uplink blank subframe).
  • the terminal notifies the terminal of location information, uplink blank subframe offset (uplink blank subframe offset).
  • the uplink transmission restriction subframe period information and the uplink transmission restriction subframe arrangement information are reported uniquely to the terminal via RRC signaling.
  • the terminal recognizes the position of the uplink transmission restriction subframe from the acquired uplink transmission restriction subframe period information and uplink transmission restriction subframe arrangement information.
  • the terminal recognizes it as the downlink subframe.
  • the uplink transmission restriction subframe arrangement information is determined in combination with the uplink transmission restriction subframe period information. For example, in the case of 20 subframe periods, one of 20 subframes is specified as uplink transmission restriction subframe arrangement information. In the example of FIG. 18, the uplink transmission restriction subframe period information is 20, and the uplink transmission restriction subframe arrangement information is 4. Accordingly, since the uplink transmission restriction subframe arrangement information cannot be set to exceed the uplink transmission restriction subframe period information, the information amount of the uplink transmission restriction subframe arrangement information varies depending on the uplink transmission restriction subframe period information. .
  • FIG. 20 is a table showing a relationship between values of uplink transmission restriction subframe arrangement information and uplink transmission restriction subframe period information corresponding to one uplink transmission restriction subframe setting information value.
  • the uplink transmission restriction subframe setting information is reported uniquely to the terminal via RRC signaling.
  • the terminal receives the uplink transmission restriction subframe setting information, and acquires the uplink transmission restriction subframe arrangement information and the uplink transmission restriction subframe period information using the correspondence table of FIG. In this way, by combining the information in one uplink transmission restriction subframe setting information, fluctuation of the information amount of the uplink transmission restriction subframe arrangement information with respect to the uplink transmission restriction subframe period information is suppressed, and efficient notification is possible. It becomes.
  • a plurality of uplink transmission restriction subframe period information and uplink transmission restriction subframe arrangement information can be set for one terminal. For example, as in the configuration example illustrated in FIG. 19, two uplink transmission restriction subframes that are periodically assigned are set. As described above, even when the uplink transmission restriction subframe is arranged in a subframe other than the period, a plurality of uplink transmission restriction subframe period information and a plurality of uplink transmission restriction subframe arrangement information can be used flexibly. Enable setting.
  • an uplink transmission restriction that is periodically allocated from the one uplink transmission restriction subframe period information and a plurality of uplink transmission restriction subframe arrangement information.
  • Multiple subframes can be set.
  • the uplink transmission restriction subframe arrangement information is configured in the bitmap format described in the first embodiment, which can be said to be a plurality of uplink transmission restriction subframe arrangement information.
  • the uplink transmission restriction subframe setting is not repeatedly repeated, but repeatedly applied after waiting for the number of subframes indicated by the uplink transmission restriction subframe period information.
  • subframes with subframe numbers 0 to 19 are changed from the first to the 20th bit of the bitmap.
  • subframes with subframe numbers 20 to 39 do not correspond to the bits of the bitmap
  • subframes with subframe numbers 40 to 59 correspond to the 1st to 20th bits of the bitmap.
  • the base station When changing the setting of the uplink transmission restriction subframe, the base station sets the new uplink transmission restriction subframe setting information, or the new uplink transmission restriction subframe period information and the new uplink transmission restriction subframe. The location information is notified again to the terminal. The terminal overwrites the setting of the uplink transmission restriction subframe from the new uplink transmission restriction subframe period information and the new uplink transmission restriction subframe arrangement information.
  • the base station when canceling the setting of the uplink transmission restriction subframe, notifies the terminal as uplink transmission restriction subframe period information indicating the cancellation of the setting.
  • the uplink transmission restriction subframe cycle information indicating the cancellation of the setting is, for example, information of cycle 0.
  • the terminal receives the uplink transmission restriction subframe period information and recognizes the uplink transmission restriction subframe period information indicating the cancellation of the setting by the subframe interpretation unit 404, thereby setting the uplink transmission restriction subframe. Reset and recognize as the original radio frame configuration.
  • the base station when canceling the setting of the uplink transmission restriction subframe, notifies the terminal of uplink transmission restriction subframe arrangement information indicating the cancellation of the setting.
  • the uplink transmission restriction subframe arrangement information indicating the cancellation of the setting is, for example, information indicating that no arrangement is made anywhere, and all bits are 0 in the bitmap format.
  • the terminal receives the uplink transmission restriction subframe arrangement information, and recognizes the uplink transmission restriction subframe arrangement information indicating the cancellation of the setting by the subframe interpretation unit 404, thereby setting the uplink transmission restriction subframe. Is reset and recognized as the original radio frame configuration.
  • the base station when canceling the setting of the uplink transmission restriction subframe, notifies the terminal of uplink transmission restriction subframe setting information indicating the cancellation of the setting.
  • the terminal receives the uplink transmission restriction subframe setting information, and recognizes the uplink transmission restriction subframe setting information indicating the cancellation of the setting by the subframe interpretation unit 404, thereby setting the uplink transmission restriction subframe. Is reset and recognized as the original radio frame configuration.
  • the uplink transmission restriction subframe is set by notifying the uplink transmission restriction subframe setting information associated with the radio frame configuration.
  • parts different from the first embodiment are described, and parts not described are the same as those in the first embodiment.
  • the invention described in the third embodiment can also be applied to the second embodiment.
  • Terminal-terminal interference often occurs in a communication system environment where uplink subframes and downlink subframes are different between adjacent cells. That is, subframes in which terminal-to-terminal interference is likely to occur include subframe settings of a base station (own base station, connected base station, serving base station, serving cell) and a cell adjacent to the base station cell. It depends on the subframe setting of the base station (adjacent base station, adjacent cell, interfering base station, interfering cell).
  • an uplink transmission restriction subframe is set in association with a subframe in which an uplink subframe and a downlink subframe may be different between adjacent cells.
  • a case where a radio frame configuration including flexible subframes in FIG. 8 is set is assumed.
  • subframes in which uplink communication and downlink communication may be performed between adjacent cells in the same subframe are subframe numbers set as flexible subframes. 3, 4, 8, and 9. Therefore, it is preferable that uplink transmission restriction subframes are set in subframe numbers 3, 4, 8, and 9.
  • the flexible subframe is an uplink transmission restriction subframe candidate.
  • FIG. 21 is an example of a setting table of a radio frame configuration including an uplink transmission restriction subframe set in association with a flexible subframe.
  • “UB / D” is a subframe for switching between a downlink subframe and an uplink transmission restriction subframe by PDCCH signaling.
  • the uplink transmission restriction subframe setting information indicates a subframe arrangement of a flexible subframe and a subframe that switches between a downlink subframe and an uplink transmission restriction subframe.
  • the base station broadcasts information on the radio frame configuration including the flexible subframe shown in FIG. 8 in the system information to the terminal, and sets the base radio frame configuration to the terminals in the cell in common.
  • the base station notifies the uplink transmission restriction subframe setting information unique to the terminal through RRC signaling.
  • the terminal recognizes a subframe for switching between a downlink subframe and an uplink transmission restriction subframe corresponding to the radio frame configuration using the uplink transmission restriction subframe setting information. Before the uplink transmission restriction subframe setting information is notified, the terminal recognizes the original radio frame configuration in which no uplink transmission restriction subframe is set.
  • the base station When changing the setting of the uplink transmission restriction subframe, the base station sends new uplink transmission restriction subframe setting information indicating the setting of the uplink transmission restriction subframe to the terminal connected to the base station by RRC signaling. Notify via The terminal overwrites the setting of the uplink transmission restriction subframe of the terminal from the received new uplink transmission restriction subframe setting information.
  • the base station When changing the radio frame configuration set by the base station, the base station notifies the terminal connected to the base station of the information on the new radio frame configuration of the base station, including the system information or RRC signaling. New uplink transmission restriction subframe setting information reflected in a simple radio frame configuration is notified to the terminal via RRC signaling.
  • the terminal receives the new radio frame configuration information, overwrites the new radio frame configuration setting, and resets the uplink transmission restriction subframe setting of the terminal. That is, immediately after recognizing a new radio frame configuration, the terminal recognizes it as a new radio frame configuration in which no uplink transmission restriction subframe is arranged. Thereafter, the terminal arranges the uplink transmission restriction subframe of the terminal by the subframe interpretation unit 404 from the received uplink transmission restriction subframe setting information.
  • the base station When canceling the setting of the uplink transmission restriction subframe, the base station notifies the terminal using uplink transmission restriction subframe setting information indicating a radio frame configuration in which the uplink transmission restriction subframe is not arranged. As an example, in FIG. 21, the uplink transmission restriction subframe setting information is notified as 0.
  • the base station is the base station 101
  • the uplink / downlink setting information is set to 0
  • the adjacent base station is the base station 111
  • FIG. 22 shows an example of uplink transmission restriction subframe candidates when the uplink / downlink setting information of the own base station is set to 0 and the uplink / downlink setting information of the adjacent base station is set to 1. If the uplink / downlink setting information set by the base station 101 and the base station 111 is known from the correspondence table of the uplink / downlink setting information in FIG. 3, the base station 101 transmits an uplink sub-link between the base station 101 and the base station 111.
  • subframes 4 and 9 are subframes that communicate differently from the frame and the downlink subframe. That is, if the uplink / downlink setting information of the own base station and the uplink / downlink setting information of the adjacent base station can be acquired, the own base station can perform uplink transmission restriction subframe candidates that may cause terminal-to-terminal interference. Can be recognized.
  • the uplink transmission restriction subframe is set in association with the uplink / downlink setting information of the own base station and the uplink / downlink setting information of the adjacent base station.
  • the uplink and downlink setting information of the own base station is set to 0, 1, 2, 3, 4, 5, and 6, respectively.
  • An example of the setting of the uplink transmission restriction subframe corresponding to the uplink / downlink setting information of the adjacent base station in the case of 23, FIG. 24, FIG. 25, FIG. 26, FIG. 27, FIG. 28, and FIG. 29 are radio frame configurations obtained by extending the radio frame configuration table according to the uplink / downlink setting information of FIG. It represents a radio frame configuration including uplink transmission restriction subframes from uplink / downlink setting information, uplink / downlink setting information of adjacent base stations, and uplink transmission restriction subframe setting information.
  • an uplink transmission restriction subframe candidate determines a subframe in which terminal-to-terminal interference may occur.
  • the radio frame configuration in which the uplink transmission restriction subframe is set is determined by the uplink transmission restriction subframe setting information.
  • the base station 101 recognizes the uplink / downlink setting information set by the base station 101 and the uplink / downlink setting information set by the base station 111.
  • the base station 101 and the base station 111 are connected by a backhaul line 103, and the base station 101 acquires uplink / downlink setting information set by the base station 111 through the backhaul line 103.
  • the base station 101 uses, for example, the uplink / downlink setting information set by the base station 101 and the uplink / downlink setting information set by the base station 111, for example, FIG. 23, FIG. 24, FIG. 25, FIG.
  • An uplink transmission restriction subframe is set using the 29 correspondence table, and uplink transmission restriction subframe setting information is notified to the terminal 102.
  • the base station notifies the terminal of at least uplink / downlink setting information of the base station, uplink / downlink setting information of the adjacent base station, and uplink transmission restriction subframe setting information.
  • the uplink / downlink setting information of the adjacent base station and the uplink transmission restriction subframe setting information are notified to the terminal (individually) via RRC signaling.
  • the terminal recognizes as a radio frame configuration in which no uplink transmission restriction subframe is arranged.
  • the base station When changing the setting of the uplink transmission restriction subframe, the base station transmits new uplink transmission restriction subframe setting information indicating the setting of the uplink transmission restriction subframe to the terminal connected to the base station. Notification via RRC signaling.
  • the terminal overwrites the setting of the uplink transmission restriction subframe of the terminal from the received new uplink transmission restriction subframe setting information.
  • the own base station When the uplink / downlink setting information set by the own base station is changed, the own base station notifies the terminal connected to the own base station of the new uplink / downlink setting information included in the system information or RRC signaling. In addition, new uplink transmission restriction subframe setting information reflecting the new uplink / downlink setting information is notified to the terminal via RRC signaling.
  • the terminal receives the new uplink / downlink setting information, recognizes a new radio frame configuration, overwrites the setting, and resets the setting of the uplink transmission restriction subframe. That is, immediately after recognizing a new radio frame configuration, the terminal recognizes a radio frame configuration in which no uplink transmission restriction subframe is arranged. After that, the terminal sets an uplink transmission restriction subframe in the subframe interpretation unit 404 from the uplink / downlink setting information set by the adjacent base station and the received uplink transmission restriction subframe setting information.
  • the adjacent base station notifies the own base station of new uplink / downlink setting information set by the adjacent base station via the backhaul line. .
  • the own base station determines new uplink transmission restriction subframe setting information corresponding to the acquired uplink / downlink setting information set by the adjacent base station, and sets the uplink / downlink setting information set by the adjacent base station and the new uplink setting information.
  • the link transmission restriction subframe setting information is notified to the terminal connected to the base station via RRC signaling. The terminal performs the same operation as when the uplink transmission restriction subframe setting information is changed.
  • the base station When canceling the setting of the uplink transmission restriction subframe, the base station notifies the terminal using uplink transmission restriction subframe setting information indicating a radio frame configuration in which the uplink transmission restriction subframe is not arranged. As an example, in FIGS. 23, 24, 25, 26, 27, 28, and 29, the base station notifies the uplink transmission restriction subframe setting information as 0.
  • the base station when canceling the setting of the uplink transmission restriction subframe, notifies the terminal of the same uplink / downlink setting information as before the change as new uplink / downlink setting information.
  • the terminal overwrites the setting with new uplink / downlink setting information and resets the uplink transmission restriction subframe setting information. That is, the setting of the uplink transmission restriction subframe is reset without changing the radio frame configuration of the terminal.
  • the own base station has set the uplink transmission restriction subframe in association with the uplink / downlink setting information between the own base station and one adjacent base station.
  • the base station 111 in FIG. 1 may have a plurality of adjacent base stations so that the base station 101 and the RRH 121 are adjacent to each other.
  • the uplink / downlink configuration information of the adjacent base station referred to in the correspondence tables of FIGS. 23, 24, 25, 26, 27, 28, and 29 is the most downlink subframe.
  • the uplink / downlink setting information of an adjacent base station with a high ratio is applied.
  • the base station 111 sets the uplink of the base station 101 and the RRH 121.
  • Downlink setting information is acquired via the backhaul line 103 and the backhaul line 113.
  • the base station 111 compares the uplink / downlink configuration information of the base station 101 with the uplink / downlink configuration information of the RRH 121, and refers to the uplink / downlink configuration information of the RRH 121 having a large proportion of downlink subframes as the uplink / downlink configuration of the adjacent base station.
  • the base station 111 determines uplink transmission restriction subframe setting information using the setting table of FIG.
  • the base station 111 notifies the terminal 112 connected to the base station 111 of the uplink / downlink setting information of the base station 111, the uplink / downlink setting information of the RRH 121, and the uplink transmission restriction subframe setting information.
  • the terminal 112 sets an uplink transmission restriction subframe.
  • the communication system applies a radio frame configuration table including uplink transmission restriction subframes corresponding to the plurality of adjacent base stations.
  • the base station 101 that is an adjacent base station of the base station 111 is the adjacent base station 1
  • the other adjacent base station RRH 121 is the adjacent base station 2.
  • FIG. 30 shows an example of a radio frame configuration corresponding to the uplink / downlink setting information of the adjacent base station 2 when the uplink / downlink setting information of the own base station is set to 1 and the uplink / downlink setting information of the adjacent base station 1 is set to 2. Show.
  • the base station 111 acquires the uplink / downlink setting information of the base station 101 and the RRH 121 via the backhaul line 103 and the backhaul line 113.
  • the base station 111 determines uplink transmission restriction subframe setting information using the setting table of FIG.
  • the base station 111 notifies the terminal 112 connected to the base station 111 of the uplink / downlink setting information of the base station 111, the uplink / downlink setting information of the base station 101 and the RRH 121, and the uplink transmission restriction subframe setting information.
  • the terminal 112 uses the setting table of FIG. 30 to set the uplink transmission restriction subframe from the uplink / downlink setting information of the base station 111, the base station 101, and the RRH 121, and the uplink transmission restriction subframe setting information. Do.
  • the base station When it is known that the uplink transmission restriction subframe is always set in the subframe that is the uplink transmission restriction subframe candidate at the base station and the terminal, the base station notifies the uplink transmission restriction subframe candidate information. In addition, notification of uplink transmission restriction subframe setting information can be omitted. In the traffic adaptation method using the flexible subframe, the base station notifies the position of the flexible subframe, and the notification of the uplink transmission restriction subframe setting information can be omitted. In the case of a traffic adaptation method with variable uplink / downlink settings, the base station can notify the uplink / downlink setting information of its own base station and adjacent base station, and can omit the notification of the uplink transmission restriction subframe setting information.
  • the uplink transmission restriction subframe setting information is set by a number associated with the number of uplink transmission restriction subframes, but is not limited to the uplink transmission restriction subframe setting information and the radio frame configuration described above.
  • the uplink transmission restriction subframe setting information may be a bitmap corresponding to a subframe that is an uplink transmission restriction subframe candidate.
  • the base station broadcasts the system information including the uplink transmission restriction subframe setting information.
  • the terminal sets an uplink transmission restriction subframe using uplink transmission restriction subframe setting information included in system information transmitted by the base station.
  • all terminals in the cell configured by the base station apply the uplink transmission restriction subframe setting.
  • the base station uses the radio frame configuration information including the uplink transmission restriction subframe. It may be notified by including it in the system information.
  • the terminal sets the uplink transmission restriction subframe using the uplink transmission restriction subframe setting information included in the system information and the uplink transmission restriction subframe application determination.
  • the terminal can apply the setting of the uplink transmission restriction subframe to a predetermined terminal using the system information by using the uplink transmission restriction subframe application determination.
  • the communication system does not apply the uplink transmission restriction subframe to the terminal that does not apply the uplink transmission restriction subframe setting such as the terminal 102-B existing in the cell center by the uplink transmission restriction subframe application determination.
  • the uplink transmission restriction subframe can be applied to the terminal 102-A that is likely to cause terminal-terminal interference by the uplink transmission restriction subframe application determination.
  • the reference used for the uplink transmission restriction subframe application determination is notified from the base station to the terminal by the higher layer.
  • FIG. 31 is a flowchart of uplink transmission restriction subframe application determination when uplink transmission restriction subframe setting information included in the system information is received.
  • the terminal receives system information from the base station to which the terminal is connected, and acquires uplink transmission restriction subframe setting information (step S3101).
  • the terminal performs uplink transmission restriction subframe application determination (step S3102).
  • the terminal determines whether or not to stop transmission of an uplink signal or restrict transmission in a subframe indicated by the uplink transmission restriction subframe setting information.
  • a terminal compares the received power of a downlink signal with a threshold value with respect to a transmission signal from a base station to which the terminal is connected.
  • the received power of the downlink signal is, for example, the received power of the downlink reference signal (RSRP: Reference Signal Received Power). If the received power is higher than the threshold (step S3102; received power> threshold), the terminal determines that the terminal exists at the cell center, and sets up uplink transmission limited subframes in all subframes. Is not performed (step S3103).
  • step S3102 when the received power is lower than the threshold value (step S3102; threshold value> received power), the terminal determines that the terminal exists at the cell edge, and uses the acquired uplink transmission restriction subframe setting information. A link transmission restriction subframe is applied (step S3104).
  • the uplink transmission restriction subframe application determination performed by the terminal corresponds to the reception quality of the downlink signal and the reception quality instead of the reception power of the downlink signal for the transmission signal from the base station to which the terminal is connected.
  • a threshold value may be used.
  • the reception quality of the downlink signal is, for example, the reception quality (RSRQ: Reference Signal Received Quality) of the downlink reference signal.
  • the terminal when the uplink transmission restriction subframe application determination is used by adding the determination of the received power of the downlink signal to the transmission signal from the adjacent base station and the threshold corresponding to the received power, the terminal exists at the cell edge.
  • the accuracy of determining whether or not is improved.
  • the terminal if the received power of the downlink signal from the adjacent base station is higher than the threshold corresponding to the received power, the terminal is configured by the cell and the adjacent base station that are configured by the base station to which the terminal is connected. It is determined that it is located near the boundary with the cell to be operated.
  • the received power of the downlink signal from the adjacent base station is lower than the threshold corresponding to the received power, the terminal determines that it is located outside the vicinity of the boundary.
  • the threshold used for determining whether or not the terminal exists at the cell edge is acquired from the base station in advance.
  • the base station notifies a plurality of uplink transmission restriction subframe setting information.
  • the terminal can also select uplink transmission restriction subframe setting information suitable for the terminal from the uplink transmission restriction subframe application determination. In this case, the terminal needs at least one criterion that is one less than the number of uplink transmission restriction subframe setting information.
  • the base station notifies the terminal of criteria for applying the plurality of uplink transmission restriction subframes from an upper layer.
  • FIG. 32 shows a flowchart of uplink transmission restriction subframe application determination when two types of uplink transmission restriction subframe setting information are received.
  • the terminal acquires threshold value 1 and threshold value 2 as a reference for determining uplink transmission restriction subframe application from the base station in advance.
  • the terminal receives system information from the base station to which the terminal is connected, and acquires uplink transmission restriction subframe setting information 1 and uplink transmission restriction subframe setting information 2 (steps S3201 and S3202).
  • the terminal performs uplink transmission restriction subframe application determination (step S3203).
  • the uplink transmission restriction subframe application determination for example, the received power of the downlink signal with respect to the transmission signal from the base station is compared with the threshold value 1 and the threshold value 2.
  • step S3203 If the received power is higher than threshold 1 (step S3203; received power> threshold 1), no uplink transmission restriction subframe is arranged in all subframes (step S3204).
  • step S3203; threshold 1> received power> threshold 2 When the received power is lower than the threshold 1 and higher than the threshold 2 (step S3203; threshold 1> received power> threshold 2), the uplink transmission limited subframe using the acquired uplink transmission limited subframe setting information 1 is used. Is applied (step S3205).
  • step S3203; threshold 2> received power the uplink transmission restriction subframe is applied using the acquired uplink transmission restriction subframe setting information 2 (step S3206).
  • the terminal performs the above uplink transmission restriction subframe application determination when receiving the uplink transmission restriction subframe setting information.
  • the received power is calculated at the terminal before the above uplink transmission restriction subframe application determination is performed, and is held as information indicating the received power at the terminal.
  • the terminal uses the information indicating the held reception power.
  • the terminal performs the above uplink transmission restriction subframe application determination when calculating the received power of the downlink signal.
  • the uplink transmission restriction subframe setting information is received by the terminal and held by the terminal before performing the uplink transmission restriction subframe application determination.
  • the terminal uses the uplink transmission restriction subframe setting information.
  • the terminal periodically performs the uplink transmission restriction subframe application determination described above.
  • the terminal holds the uplink transmission restriction subframe setting information after receiving the system information including the uplink transmission restriction subframe setting information and the information indicating the period for performing the uplink transmission restriction subframe application determination.
  • the terminal recognizes the timing for performing the uplink transmission restriction subframe application determination from the received information indicating the period for performing the uplink transmission restriction subframe application determination, and performs the uplink transmission restriction subframe application determination at the timing.
  • the terminal performs uplink transmission restriction subframe application determination using the held uplink transmission restriction subframe setting information and the received power.
  • the interval for performing the uplink transmission restriction subframe application determination is preferably the same interval or longer than the reception power calculation interval. Period information for performing the uplink transmission restriction subframe application determination is reported from the base station to the terminal via the upper layer.
  • the base station When changing the setting of the uplink transmission restriction subframe, notifies the terminal of the new uplink transmission restriction subframe setting information included in the system information.
  • the terminal recognizes new uplink transmission restriction subframe setting information from the received system information, and overwrites the setting of the new uplink transmission restriction subframe through the uplink transmission restriction subframe application determination.
  • the base station When canceling the setting of the uplink transmission restriction subframe, the base station informs the terminal by including the uplink transmission restriction subframe setting information indicating the cancellation of the setting in the system information.
  • the terminal recognizes the cancellation of the uplink transmission restriction subframe setting from the received system information, resets the uplink transmission restriction subframe setting through the uplink transmission restriction subframe application determination, and returns to the original radio frame. Recognize as configuration.
  • the base station uses the uplink transmission restriction subframe application criterion selected when the terminal does not apply the uplink transmission restriction subframe in all cases as the terminal. Notify Through the uplink transmission restriction subframe application determination, the terminal recognizes the original radio frame configuration without arranging the uplink transmission restriction subframe.
  • the configuration of the uplink transmission restriction subframe setting information is not limited, and information regarding the setting of the uplink transmission restriction subframe associated with the bitmap format and uplink transmission restriction subframe candidate described in the above embodiment And uplink transmission restriction subframe period information and other information suitable for notifying the setting of the uplink transmission restriction subframe.
  • the first to fourth embodiments have been described on the assumption that uplink transmission restriction subframe setting information is included in RRC signaling and system information for notification. Notification using RRC signaling or system information can be said to be an interval in which the uplink transmission restriction subframe setting update interval is longer than the uplink signal resource allocation.
  • the base station notifies the uplink transmission restriction subframe setting information described above uniquely to the terminal via PDCCH signaling. That is, the uplink transmission restriction subframe setting information is included in the uplink grant and notified to the terminal. In the present embodiment, the uplink transmission restriction subframe setting information can be reported at intervals equal to or shorter than the uplink signal resource allocation.
  • the base station 101 transmits an uplink grant to the terminal 102 and requests to transmit an uplink data channel after 4 subframes.
  • the base station 111 allocates transmission of the downlink data channel to the terminal 112 in a subframe in which the terminal 102 is scheduled to transmit the uplink data channel.
  • the base station 111 requests the base station 101 to limit the transmission of the uplink data channel via the backhaul line 103.
  • the base station 101 requests the terminal 102 to restrict the transmission of the uplink data channel (uplink signal transmission).
  • the terminal 102 restricts the suspension or transmission of the uplink data channel. As a result, it is possible to request transmission of uplink signals at intervals shorter than radio resource scheduling, and it is possible to avoid terminal-to-terminal interference and perform efficient communication.
  • the uplink transmission restriction subframe can be set more dynamically, the uplink signal allocated for the scheduling of the uplink signal resource such as the uplink data channel of the initial transmission is also used.
  • the restriction setting is enabled.
  • FIG. 33 is an example of notification of a request for restriction on uplink signal transmission in the present embodiment.
  • the base station 101 transmits an uplink grant requesting transmission of an uplink signal to a subframe of subframe number 5 using a downlink subframe of subframe number 1 to the terminal 102.
  • the base station 101 An uplink grant including uplink transmission restriction subframe setting information is transmitted to terminal 102 in a subframe of subframe number 3 that is a downlink subframe.
  • the terminal 102 prepares for uplink signal transmission after acquiring the uplink grant in the subframe of subframe number 1, but includes a request for restriction on transmission of the uplink signal in the subframe of subframe number 3.
  • uplink signal transmission processing is performed so as not to interfere with the terminal 112 in the subframe of subframe number 5. It is assumed that the transmission process performs the uplink signal transmission process described in the first embodiment. In this example, the uplink signal transmission stop process is performed according to the first uplink transmission signal process. It was.
  • the uplink transmission restriction subframe setting information of this embodiment is notified by PDCCH signaling, it is preferable that it can be notified with a small amount of information.
  • the uplink transmission restriction subframe setting information of this embodiment is, for example, a 1-bit restriction request.
  • This setting information is associated with a downlink subframe that receives an uplink grant including a 1-bit uplink signal transmission restriction request in advance and an uplink transmission restriction subframe that restricts the uplink signal.
  • FIG. 34 shows a relationship table between a downlink subframe that receives an uplink grant including an uplink signal transmission restriction request and an uplink transmission restriction subframe.
  • the numbers in the table of FIG. 34 indicate downlink subframe numbers in which subframes with numbers written in uplink subframes and special subframes accept uplink signal transmission restriction requests corresponding to the subframes.
  • the base station uses a 1-bit uplink in the subframe of subframe number 0.
  • An uplink grant including a signal transmission restriction request is transmitted.
  • the base station includes an uplink grant including a 1-bit uplink signal transmission restriction request in the subframe of subframe number 1.
  • Send. The terminal recognizes the uplink transmission restriction subframe from the uplink grant including the 1-bit uplink signal transmission restriction request from the relationship table as shown in FIG. 34, and the subframe number in which the uplink transmission restriction subframe is set. To figure out.
  • the uplink grant including the uplink signal transmission restriction request is associated with a plurality of uplink subframes.
  • the downlink subframe of subframe number 1 corresponds to the uplink subframe of subframe number 3 and the uplink subframe of subframe number 4, and the subframe number 6
  • the downlink subframe corresponds to the uplink subframe with subframe number 8 and the uplink subframe with subframe number 9.
  • the uplink transmission restriction subframe setting information of the present embodiment is a subframe number.
  • the subframe number is directly This setting information to be notified is valid.
  • the terminal recognizes the uplink transmission restriction subframe from the uplink grant including the subframe number designated as the uplink transmission restriction subframe.
  • the subframe number may be a relative number from when the uplink grant is received or may be an absolute number composed of a radio frame number and a subframe number.
  • the uplink transmission restriction subframe setting information of this embodiment is a number associated with an uplink signal.
  • this setting information is effective when restricting transmission of uplink signals individually, such as stopping transmission of a specific uplink data channel and enabling transmission of a specific uplink control channel.
  • the number associated with the uplink signal is an uplink data channel
  • a HARQ process number is assumed. If the number is an uplink signal other than an uplink data channel, a new instruction number associated with the uplink signal is formed. Is assumed to be specified.
  • a plurality of uplink transmission restriction subframe setting information can be set simultaneously. For example, by simultaneously setting the subframe number and the number associated with the data transmitted in the uplink signal, the base station can transmit the designated uplink scheduled to be transmitted in the designated uplink subframe to the terminal. Only the link signal can be stopped.
  • an uplink transmission restriction subframe is set to solve inter-cell interference that occurs when an uplink subframe and a downlink subframe are set between adjacent cells at the same time. did.
  • the uplink transmission restriction subframe of the present invention is also effective for inter-cell interference between uplink signals.
  • FIG. 35 shows an outline of a communication system when both adjacent cells perform uplink communication.
  • the base station 3501 performs uplink communication with the terminal 3502, and at the same time, the base station 3511 performs uplink communication with the terminal 3512.
  • the uplink signal transmitted to the base station 3501 by the terminal 3502 existing at the end of the cell 3500 leaks into the base station 3511 constituting the cell 3510 adjacent to the cell 3500, and the terminal 3512 Interference is given to the uplink signal transmitted toward the station 3511.
  • the terminal 3502 stops the transmission of the uplink signal or restricts the transmission, or the terminal 3512 stops the transmission of the uplink signal or restricts the transmission. Can be avoided.
  • the base station sets up the uplink transmission restriction subframe in association with the uplink subframe set by the adjacent base station, so that the terminal transmits information related to the setting of the uplink transmission restriction subframe with a small amount of information. Can be notified.
  • the uplink transmission restriction subframe notification method and setting method, the base station and terminal setting process, and the uplink signal processing method in the terminal in the uplink transmission restriction subframe are the above-described embodiments.
  • the method described in the form is used.
  • the present invention is an effective avoidance means for inter-cell interference between uplink communications in the TDD scheme and the FDD scheme.
  • the present invention is also effective when communication is performed between terminals (terminal-to-terminal communication; Device to device communication) without going through a base station or a backhaul network.
  • FIG. 36 shows an outline of a communication system in which terminal-to-terminal communication according to this embodiment is performed.
  • Terminal 3602-A transmits a signal to terminal 3602-B, and terminal 3602-B receives the signal transmitted from terminal 3602-A.
  • Terminal 3602-A and terminal 3602-B communicate directly without going through the base station.
  • Terminal 3602-C transmits a signal to terminal 3602-D, and terminal 3602-D receives the signal transmitted from terminal 3602-C.
  • terminal 3602-C and terminal 3602-D communicate directly without going through the base station.
  • terminal 3602-A If the terminal-terminal communication between terminal 3602-A and terminal 3602-B and the resource blocks and subframes used between the terminals 3602-C and 3602-D are the same, terminal 3602-A
  • the transmitted signal leaks into the receiver of terminal 3602-D and causes interference. That is, terminal-terminal interference also occurs in a communication system in which terminal-terminal communication is performed.
  • the base station 3601 notifies the terminal 3602 of the uplink transmission restriction subframe.
  • the uplink transmission restriction subframe is set for each terminal, thereby reducing terminal-terminal interference.
  • different uplink transmission restriction subframes are set for the terminal-terminal communication between the terminal 3602-A and the terminal 3602-B and the terminal-terminal communication between the terminal 3602-C and the terminal 3602-D.
  • the terminal 3602-A cannot transmit a signal in the subframe in which the terminal 3602-D is performing reception processing.
  • terminal 3602-C cannot transmit the signal.
  • the present invention is also an effective avoidance measure for terminal-terminal interference in a communication system in which terminal-terminal communication is performed.
  • this invention can exhibit an effect similarly also in NCT mentioned above instead of the conventional component carrier.
  • the programs operating on the base station 101, base station 111, base station 3501, base station 3511, base station 3601, RRH 121, and terminal 102, terminal 112, terminal 122, terminal 3502, terminal 3512, and terminal 3602 related to the present invention are A program for controlling a CPU or the like (a program for causing a computer to function) so as to realize the functions of the above-described embodiments according to the present invention.
  • Information handled by these devices is temporarily stored in the RAM at the time of processing, then stored in various ROMs and HDDs, read out by the CPU as necessary, and corrected and written.
  • a semiconductor medium for example, ROM, nonvolatile memory card, etc.
  • an optical recording medium for example, DVD, MO, MD, CD, BD, etc.
  • a magnetic recording medium for example, magnetic tape, Any of a flexible disk etc.
  • the program when distributing to the market, can be stored and distributed on a portable recording medium, or transferred to a server computer connected via a network such as the Internet.
  • the storage device of the server computer is also included in the present invention.
  • a part or all of them may be realized as an LSI which is typically an integrated circuit.
  • Each functional block of the base station 101, base station 111, base station 3501, base station 3511, base station 3601, RRH 121, and terminal 102, terminal 112, terminal 122, terminal 3502, terminal 3512, and terminal 3602 is individually chipped. Alternatively, some or all of them may be integrated into a chip. Further, the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. In addition, when an integrated circuit technology that replaces LSI appears due to progress in semiconductor technology, an integrated circuit based on the technology can also be used.
  • the terminal of the present invention is not limited to application to a mobile station device, but is a stationary or non-movable electronic device installed indoors or outdoors, such as AV equipment, kitchen equipment, cleaning / washing equipment, Needless to say, it can be applied to air-conditioning equipment, office equipment, vending machines, and other daily life equipment.
  • the present invention is suitable for use in base stations, terminals, communication systems, and communication methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 基地局と端末が通信する通信システムにおいて、セル間干渉を低減する。基地局は、上りリンク信号の送信を制限するサブフレームを示す上りリンク送信制限サブフレーム設定情報を端末に通知する。端末は、前記上りリンク送信制限サブフレーム設定情報が前記基地局より設定され、上りリンクサブフレーム、かつ前記上りリンク送信制限サブフレーム設定情報で示されたサブフレームである上りリンク送信制限サブフレームにおいて、上りリンク信号の送信を制限する。端末は、前記上りリンク送信制限サブフレームにおいて、上りリンク信号の送信をしない動作、上りリンク信号の送信を延期する動作、特定の上りリンク物理チャネルを含まない前記上りリンク信号の送信をする動作、または特定の上りリンク物理チャネル以外を含まない前記上りリンク信号の送信をする動作を行う。

Description

端末装置および基地局装置
 本発明は、端末装置および基地局装置に関する。
 3GPP(Third Generation Partnership Project)によるWCDMA(登録商標)(Wideband Code Division Multiple Access)、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)やIEEE(The Institute of Electrical and Electronics engineers)によるWireless LAN、WiMAX(Worldwide Interoperability for Microwave Access)のような通信システムでは、基地局(基地局装置、セル、送信局、送信装置、eNodeB)および端末(端末装置、移動端末、受信局、移動局、受信装置、UE(User Equipment))は、複数の送受信アンテナをそれぞれ備え、MIMO(Multi Input Multi Output)技術を用いることにより、データ信号を空間多重し、高速なデータ通信を実現する。
 LTEでは、下りリンクの通信方式として、直交周波数分割多重(Orthogonal Frequency Division Multiplexing)方式が用いられ、上りリンクの通信方式として、SC-FDMA(Single-Carrier Frequency Division Multiple Access)方式が用いられる。
 このような通信システムにおいて、基地局は、端末に対して下りリンクデータ(下りリンク共用チャネル(DL-SCH;Downlink Shared Channel)に対するトランスポートブロック)を送信する。下りリンクデータは、下りリンクデータチャネル(PDSCH;Physical Downlink Shared Channel)にマップされる。
 また、このような通信システムにおいて、端末は、基地局に対して上りリンクデータ(上りリンク共用チャネル(UL-SCH;Uplink Shared Channel)に対するトランスポートブロック)を送信する。上りリンクデータは、上りリンクデータチャネル(PUSCH;Physical Uplink Shared Channel)にマップされる。
 ここで、3GPPでは、カバレッジの広い基地局と、その基地局よりもカバレッジの狭いRRH(Remote Radio Head)などによるヘテロジーニアスネットワーク配置(HetNet;Heterogeneous Network deployment)を用いた通信システムが検討されている。図37は、従来のヘテロジーニアスネットワーク配置を用いた通信システムの概要図である。図37に示すように、例えば、ヘテロジーニアスネットワークは、基地局3701、RRH3711によって構成される。
 図37において、基地局3701はセル3700を構築し、RRH3711はセル3710を構築している。また、基地局3701は、RRH3711と回線3703を通じて接続している。これにより、基地局3701は、RRH3711と、データ信号や制御信号(制御情報)を送受信することができる。ここで、例えば、バックホール回線3703には、光ファイバ等の有線回線やリレー技術を用いた無線回線が利用される。この際、基地局3701、RRH3711の一部または全てが、同一のリソースを用いることで、セル3700のエリア内の総合的な周波数利用効率(伝送容量)を向上することができる。
 また、端末3712は、セル3710の中に位置している場合、RRH3711とシングルセル通信を行うことができる。また、端末3712がセル3710の端付近(セルエッジ)に位置する場合、RRH3711または端末3712は、基地局3701からの同一のリソースを用いたチャネルによる干渉の対策が必要になる。ここで、基地局3701とRRH3711とのマルチセル通信(協調通信)として、隣接セル間で互いに協調する基地局間協調通信を行うことによって、セルエッジ領域の端末3712に対する干渉を軽減または抑圧する方法が検討されている。例えば、基地局間協調通信による干渉の軽減または抑圧する方式として、ICIC(Inter-Cell Interference Coordination)やCoMP(Cooperative Multipoint)伝送方式などが検討されている。
 ところで、LTEは、FDD(Frequency Division Duplex)方式とTDD(Time Division Duplex)方式の両方に対応している。TDD方式を採用したLTEをTD-LTEまたはLTE TDDとも称される。FDD方式は、上りリンクの通信で用いられる帯域と下りリンクの通信で用いられる帯域で異なる周波数を用いて多重する技術である。また、TDD方式は、上りリンク信号と下りリンク信号を時分割多重する技術である。TDD方式は、単一の周波数帯域において全二重通信を可能にする技術である。
 3GPPでは、上りリンク通信のトラフィックと下りリンク通信のトラフィックに応じて、上りリンク通信のリソースと下りリンク通信のリソースの比率を動的に変更するトラフィックアダプテーション技術をTD-LTEに適用することが検討されている。トラフィック(データ通信)量は、常に一定でなく、利用者の要求によって変化する。また、上りリンク通信と下りリンク通信のトラフィックは、同割合だけではなく、要求に応じて下りリンク通信のトラフィックが上りリンク通信のトラフィックよりも増える状況や、その逆の状況も発生する。トラフィックに対応して無線リソースを適宜変化させることで、通信システムは、大きなパケットスループットの改善を得ることができる。これは、トラフィックアダプテーション技術と称される(非特許文献1)。
3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA);Further enhancement to LTE Time Division Duplexx (TDD) for Downlink-Uplink (DL-UL) interference management and traffic adaptation (Release 11)、2012年6月、3GPP TR 36.828 V11.0.0 (2012-06)。
 しかしながら、FDD方式またはTDD方式において、セルの通信が隣接するセルの通信に対して悪影響を及ぼすセル間干渉が問題となる。その問題を解決するためには、セル間干渉を抑圧させる干渉緩和技術(干渉回避技術;interference mitigation、干渉除去技術;interference cancellation、干渉抑圧技術)の導入が必要となる。
 本発明は、上記問題を鑑みてなされたものであり、その目的は、基地局と端末が通信する通信システムにおいて、セル間干渉を抑圧することができる端末装置および基地局装置を提供することにある。
 (1)この発明は上述した課題を解決するためになされたもので、本発明の一態様による端末は、上りリンク信号の送信を制限するサブフレームを示す制限情報が基地局より設定され、上りリンクサブフレームであり、かつ制限情報で示されたサブフレームであるサブフレームにおいて、上りリンク信号の送信を制限することを特徴とする。
 (2)本発明の一態様による端末は、上記の端末であって、上り下り設定情報が基地局より設定され、上りリンクサブフレームは、上り下り設定情報により設定されることを特徴とする。
 (3)本発明の一態様による端末は、上記の端末であって、上り下り設定情報は、基地局より報知されることを特徴とする。
 (4)本発明の一態様による端末は、上記の端末であって、上り下り設定情報は、基地局より個別に通知されることを特徴とする。
 (5)本発明の一態様による端末は、上記の端末であって、上りリンクサブフレームであり、かつ制限情報で示されたサブフレームであるサブフレームにおいて、上りリンク信号の送信をしないことを特徴とする。
 (6)本発明の一態様による端末は、上記の端末であって、上りリンクサブフレームであり、かつ制限情報で示されたサブフレームであるサブフレームにおいて、上りリンク信号の送信を延期することを特徴とする。
 (7)本発明の一態様による端末は、上記の端末であって、上りリンクサブフレームであり、かつ制限情報で示されたサブフレームであるサブフレームにおいて、特定の上りリンク物理チャネルを含まない上りリンク信号の送信をすることを特徴とする。
 (8)本発明の一態様による端末は、上記の端末であって、上りリンクサブフレームであり、かつ制限情報で示されたサブフレームであるサブフレームにおいて、特定の上りリンク物理チャネル以外を含まない上りリンク信号の送信をすることを特徴とする。
 (9)本発明の一態様による基地局は、上りリンク信号の送信を制限するサブフレームを示す制限情報を端末に通知し、上りリンクサブフレームであり、かつ制限情報で示されたサブフレームであるサブフレームにおいて、端末に上りリンク信号の送信を制限させることを特徴とする。
 (10)本発明の一態様による基地局は、上記の基地局であって、上り下り設定情報を端末に設定し、上りリンクサブフレームは、上り下り設定情報により設定されることを特徴とする。
 (11)本発明の一態様による通信システムは、基地局と端末が通信する通信システムである。基地局は、上りリンク信号の送信を制限するサブフレームを示す制限情報を端末に通知することを特徴とする。端末は、上りリンク信号の送信を制限するサブフレームを示す制限情報が基地局より設定され、上りリンクサブフレームであり、かつ制限情報で示されたサブフレームであるサブフレームにおいて、上りリンク信号の送信を制限することを特徴とする。
 (12)本発明の一態様による通信方法は、基地局と通信する端末の通信方法である。端末は、上りリンク信号の送信を制限するサブフレームを示す制限情報が基地局より設定され、上りリンクサブフレームであり、かつ制限情報で示されたサブフレームであるサブフレームにおいて、上りリンク信号の送信を制限することを特徴とする。
 (13)本発明の一態様による通信方法は、端末と通信する基地局の通信方法である。基地局は、上りリンク信号の送信を制限するサブフレームを示す制限情報を端末に通知し、上りリンクサブフレームであり、かつ制限情報で示されたサブフレームであるサブフレームにおいて、端末に上りリンク信号の送信を制限させることを特徴とする。
 (14)本発明の一態様による集積回路は、基地局と通信する端末で実現される集積回路である。端末は、上りリンク信号の送信を制限するサブフレームを示す制限情報が基地局より設定され、上りリンクサブフレームであり、かつ制限情報で示されたサブフレームであるサブフレームにおいて、上りリンク信号の送信を制限する機能を実現することを特徴とする。
 (15)本発明の一態様による集積回路は、端末と通信する基地局で実現される集積回路である。基地局は、上りリンク信号の送信を制限するサブフレームを示す制限情報を端末に通知し、上りリンクサブフレームであり、かつ制限情報で示されたサブフレームであるサブフレームにおいて、端末に上りリンク信号の送信を制限させる機能を実現することを特徴とする。
 この発明によれば、基地局と端末が通信する通信システムにおいて、セル間干渉を抑圧することができる。
本発明の第1の実施形態に係る通信システムの概要を示す図である。 本発明の第1の実施形態に係るTDD方式の無線フレームの概要を示す図である。 本発明の第1の実施形態に係る上り下り設定情報に対応する無線フレーム構成の表である。 本発明の第1の実施形態に係る端末の上りリンク通信時の構成を示す概略ブロック図である。 本発明の第1の実施形態に係る基地局の上りリンク通信時の構成を示す概略ブロック図である。 本発明の第1の実施形態に係る基地局の下りリンク通信時の構成を示す概略ブロック図である。 本発明の第1の実施形態に係る端末の下りリンク通信時の構成を示す概略ブロック図である。 本発明の第1の実施形態に係るフレキシブルサブフレームを含んだ無線フレーム構成の一例を示す図である。 本発明の第1の実施形態に係る無線フレーム構成とビットマップの対応の例1を示す図である。 本発明の第1の実施形態に係る無線フレーム構成とビットマップの対応の例2を示す図である。 本発明の第1の実施形態に係る上りリンク送信制限サブフレームに上りリンク信号のリソースが割り当てられた場合の第1の処理方法の概要を示す図である。 本発明の第1の実施形態に係る上りリンク送信制限サブフレームに上りリンク信号のリソースが割り当てられた場合の第2の処理方法の概要を示す図である。 本発明の第1の実施形態に係る上りリンク送信制限サブフレームに上りリンク信号のリソースが割り当てられた場合の第3の処理方法の概要を示す図である。 本発明の第1の実施形態に係る上りリンク送信制限サブフレームに上りリンク信号のリソースが割り当てられた場合の第4の処理方法の概要を示す図である。 本発明の第1の実施形態に係る第4の処理方法における下りリンク信号に干渉を与えない上りリンク信号の構成の一例を示す図である。 本発明の第1の実施形態に係る端末の上りリンク信号処理方法を決定するフローチャートを示す図である。 本発明の第1の実施形態に係る上りリンク送信制限サブフレームの設定状態の遷移に対する有効/無効情報の組み合わせ表である。 本発明の第2の実施形態に係る1つの上りリンク送信制限サブフレームが周期的に設定される場合における無線フレーム構成の一例を示す図である。 本発明の第2の実施形態に係る2つの上りリンク送信制限サブフレームが周期的に設定される場合における無線フレーム構成の一例を示す図である。 本発明の第2の実施形態に係る上りリンク送信制限サブフレーム設定情報に対応する上りリンク送信制限サブフレーム配置情報および上りリンク送信制限サブフレーム周期情報の関係を示す表である。 本発明の第3の実施形態に係るフレキシブルサブフレームを含んだ無線フレーム構成に対応する上りリンク送信制限サブフレームの設定の一例を示す表である。 本発明の第3の実施形態に係る自基地局の上り下り設定情報を0、隣接基地局の上り下り設定情報を1と設定した場合における上りリンク送信制限サブフレーム候補の一例を示す表である。 本発明の第3の実施形態に係る自基地局の上り下り設定情報が0の場合における隣接基地局の上り下り設定情報に対応する上りリンク送信制限サブフレームの設定の一例を示す表である。 本発明の第3の実施形態に係る自基地局の上り下り設定情報が1の場合における隣接基地局の上り下り設定情報に対応する上りリンク送信制限サブフレームの設定の一例を示す表である。 本発明の第3の実施形態に係る自基地局の上り下り設定情報が2の場合における隣接基地局の上り下り設定情報に対応する上りリンク送信制限サブフレームの設定の一例を示す表である。 本発明の第3の実施形態に係る自基地局の上り下り設定情報が3の場合における隣接基地局の上り下り設定情報に対応する上りリンク送信制限サブフレームの設定の一例を示す表である。 本発明の第3の実施形態に係る自基地局の上り下り設定情報が4の場合における隣接基地局の上り下り設定情報に対応する上りリンク送信制限サブフレームの設定の一例を示す表である。 本発明の第3の実施形態に係る自基地局の上り下り設定情報が5の場合における隣接基地局の上り下り設定情報に対応する上りリンク送信制限サブフレームの設定の一例を示す表である。 本発明の第3の実施形態に係る自基地局の上り下り設定情報が6の場合における隣接基地局の上り下り設定情報に対応する上りリンク送信制限サブフレームの設定の一例を示す表である。 本発明の第3の実施形態に係る自基地局の上り下り設定情報が1、隣接基地局1の上り下り設定情報が2の場合における隣接基地局2の上り下り設定情報に対応する上りリンク送信制限サブフレームの設定の一例を示す表である。 本発明の第4の実施形態に係る端末における上りリンク送信制限サブフレーム適用判定のフローチャートを示す図である。 本発明の第4の実施形態に係る端末における2つの上りリンク送信制限サブフレーム設定情報を受信したときの上りリンク送信制限サブフレーム適用判定のフローチャートを示す図である。 本発明の第5の実施形態に係る上りリンク信号の送信に対する制限の要求の通知の一例を示す図である。 本発明の第5の実施形態に係る上りリンク信号送信制限要求を含む上りリンクグラントを受信する下りリンクサブフレームと、前記下りリンクサブフレームと対応する上りリンクサブフレームの関係表である。 本発明の第6の実施形態に係る隣接する両セルが上りリンク通信を行う通信システムの概要を示す図である。 本発明の第7の実施形態に係る端末-端末間通信が行われる通信システムの概要を示す図である。 従来方式のヘテロジーニアスネットワーク配置を用いた通信システムの概要を示す図である。
 本明細書で述べられる技術は、符号分割多重アクセス(CDMA)システム、時分割多重アクセス(TDMA)システム、周波数分割多重アクセス(FDMA)システム、直交FDMA(OFDMA)システム、シングルキャリアFDMA(SC-FDMA)システム、インタリーブ分割多重アクセス(IDMA)、およびその他のシステムの通信システムにおいて使用され得る。用語「システム」および「ネットワーク」は、しばしば同義的に使用され得る。第3世代パートナーシッププロジェクト(3GPP)は、LTE(Long Term Evolution)およびLTE-A(LTE-Advanced)と呼称される通信システムを規格化している。LTEは、ダウンリンク上でOFDMAを、アップリンク上でSC-FDMAを採用するE-UTRAを使用するUMTSである。LTE-Aは、LTEを改良したシステム、無線技術、規格である。以下で述べる技術は、LTEおよび/またはLTE-Aで用いられる場合を説明するが、他の通信システムにも適用することができる。また、以下の説明では、LTE規格で用いられる用語、LTE-A規格で用いられる用語、および3GPPで用いられる用語が、用いられる。
 (第1の実施形態)
 以下、本発明の第1の実施形態について説明する。本発明の第1の実施形態における通信システムは、基地局(送信装置、送信点、送信アンテナ群、送信アンテナポート群、コンポーネントキャリア、eNodeB、RRH(Remote Radio Head)、分散アンテナ)および端末(端末装置、移動端末、受信点、受信端末、受信装置、受信アンテナ群、受信アンテナポート群、UE(User Equipment))を備える。また、基地局はセル(マクロセル、ピコセル、フェムトセル、スモールセル、カバレッジ、コンポーネントキャリア、プライマリセル、セカンダリセル)を含む。また、基地局間はバックホール回線(光ファイバ、X2インターフェース、リレー)で接続される。
 図1は、本発明の実施形態に係る通信システムの概要図である。本発明の通信システムでは、基地局101はセル100を構成し、該セル100の内部に存在する端末102-A、端末102-Bは基地局101と無線接続する。以下、端末102-Aと端末102-Bを端末102と総称する。端末102は、基地局101とデータ通信を行うため、上りリンク信号を介して、制御情報、参照信号、および情報データを送信する。また本発明の通信システムでは、基地局111は、セル110を構成し、該セル110の内部に存在する端末112は基地局111と無線接続する。基地局111は、端末112とデータ通信を行うため、下りリンク信号を介して、制御情報、参照信号、および情報データを送信する。セル100とセル110は、互いに隣接する。基地局101と基地局111間は、バックホール回線103で接続され、基地局間の情報の送受信はバックホール回線103を介して行われる。また本発明の通信システムでは、セル110の内部にRRH121が配置され、RRH121はセル110よりも更に小さいセル120を構成する。セル120はセル110の内部に含まれ、ヘテロジーニアスネットワークを構成する。基地局111とRRH121間は、バックホール回線113で接続され、基地局-RRH間の情報の送受信はバックホール回線113を介して行われる。
 本発明の第1の実施形態に係る基地局および端末はコンポーネントキャリア(Component Carrier)を介して通信が行われる。コンポーネントキャリアは、周波数方向に連続した複数のリソースブロック(RB)で構成される。リソースブロックは、所定の物理チャネル(下りリンクデータチャネルまたは上りリンクデータチャネルなど)のリソースエレメントへのマッピングを表現するために用いられる。リソースブロック(RB)は、仮想リソースブロック(VRB)と物理リソースブロック(PRB)が定義される。ある物理チャネルは、まず仮想リソースブロックにマップされる。その後、仮想リソースブロックは、物理リソースブロックにマップされる。1つの物理リソースブロックは、時間領域において7個の連続するOFDMシンボルまたはSC-FDMAシンボルと周波数領域において12個の連続するサブキャリアとから定義される。ゆえに、1つの物理リソースブロックは、(7×12)個のリソースエレメントから構成される。また、1つの物理リソースブロックは、時間領域において1つのスロットに対応し、周波数領域において180kHzに対応する。物理リソースブロックは周波数領域において0から番号(リソースブロック番号)が付けられる。コンポーネントキャリアに含まれるリソースブロックの数は、コンポーネントキャリアの帯域幅に対応して増減する。また、物理リソースブロックペア(RBペア)は、同じリソースブロック番号であり、1つのサブフレームにおける2つの物理リソースブロックによって、定義される。
 LTEでは、FDD方式とTDD方式をサポートしており、FDD方式はフレーム構成タイプ1(Frame structure type 1)、FDD方式はフレーム構成タイプ2(Frame structure type 2)とも称される。本実施形態では、TDD方式を想定している。
 図2は、本発明の第1の実施形態のTDD方式の無線フレーム(radio frame)の構成を示す。無線フレームのそれぞれは、10ms長である。また、無線フレームのそれぞれは2つのハーフフレームから構成される。ハーフフレームのそれぞれは、5ms長である。ハーフフレームのそれぞれは、5のサブフレームから構成される。サブフレームのそれぞれは、1ms長であり、2つの連続するスロットによって定義される。無線フレーム内のi番目のサブフレームは、(2×i)番目のスロットと(2×i+1)番目のスロットとから構成される。つまり、10ms間隔のそれぞれにおいて、10個のサブフレームが利用できる。スロットのそれぞれは、0.5ms長である。また、それぞれのサブフレームにおける2つのリソースブロックは、リソースブロックペアとも呼称される。前記10個のサブフレームは、順番に0から9のサブフレーム番号が割り当てられる。なお、以下では、特定のサブフレームを指定する場合、0から9のサブフレーム番号nと無線フレーム番号mで表す。もしくは、以下では、0から9のサブフレーム番号nと無線フレーム番号mを組み合わせて、1つのサブフレーム番号(10×m+n)で表現する。
 LTEでは、上りリンクサブフレーム(uplink subframe)、下りリンクサブフレーム(downlink subframe)、スペシャルサブフレーム(special subframe)の3種類のサブフレームが用いられる。
 上りリンクサブフレームは、上りリンクの無線通信(上りリンク通信)を行うために用意されるサブフレームである。上りリンクサブフレームは、端末が上りリンク物理チャネルと上りリンク参照信号を送信するために用いられる。上りリンク物理チャネルは、上位レイヤーから出力された情報を送信するために使われる。上りリンク参照信号は、基地局にとって既知な信号が送信され、主に伝搬路の推定やチャネル状態の測定を行うために使われる。
 上りリンク通信では、上りリンクデータチャネル(上りリンク共用チャネル、上りリンク共有チャネル、PUSCH;Physical Uplink Shared Channel)、上りリンク制御チャネル(PUCCH;Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH;Physical Random Access Channel)等の上りリンク物理チャネルが用いられる。
 上りリンク通信では、上りリンク端末固有参照信号(Uplink DM-RS;Demodulation-Reference Signal)、サウンディング参照信号(SRS;Sounding Reference Signal)等の上りリンク参照信号が用いられる。
 下りリンクサブフレームは、下りリンクの無線通信(下りリンク通信)を行うために用意されるサブフレームである。下りリンクサブフレームは、基地局が下りリンク物理チャネルと下りリンク参照信号を送信するために用いられる。下りリンク物理チャネルは、上位レイヤーから出力された情報を送信するために使われる。下りリンク参照信号は、端末にとって既知な信号が送信され、主に伝搬路の推定やチャネル状態の測定を行うために使われる。
 下りリンク通信では、下りリンクデータチャネル(下りリンク共用チャネル、下りリンク共有チャネル、PDSCH;Physical Downlink Shared Channel)、下りリンク制御チャネル(PDCCH;Physical Downlink Control Channel)、拡張下りリンク制御チャネル(ePDCCH;enhanced Physical Downlink Control Channel)、制御フォーマット指示チャネル(PCFICH;Physical Control Format Indicator Channel)、HARQ指示チャネル(PHICH;Physical Hybrid automatic repeat Indicator Channel)、報知チャネル(PBCH;Physical Broadcast Channel)等の下りリンク物理チャネルが用いられる。
 下りリンク通信では、セル固有参照信号(CRS;Cell-Specific Reference Signal)、下りリンク端末固有参照信号(Downlink DM-RS;Demodulation-Reference Signal、UE-specific RS)、拡張下りリンク制御チャネル復調参照信号、チャネル状態情報参照信号(CSI-RS;Channel State Information-Reference Signal)の下りリンク参照信号が用いられる。
 セル固有参照信号は、アンテナポート0~3の一部または全部に関連付けられる。下りリンク端末固有参照信号は、アンテナポート7~14の一部または全部に関連付けられる。拡張下りリンク制御チャネル復調参照信号は、アンテナポート107~114の一部または全部に関連付けられる。チャネル状態情報参照信号は、アンテナポート15~22の一部または全部に関連付けられる。下りリンク制御チャネルは、アンテナポート0~3の一部または全部を用いて送信される。そのため、端末は、セル固有参照信号を用いて、下りリンク制御チャネルを復調または検出することができる。拡張下りリンク制御チャネルは、アンテナポート107~114の一部または全部を用いて送信される。そのため、端末は、拡張下りリンク制御チャネル復調参照信号を用いて、拡張下りリンク制御チャネルを復調または検出することができる。下りリンクデータチャネルは、アンテナポート7~14の一部または全部を用いて送信される。そのため、端末は、下りリンク端末固有参照信号を用いて、下りリンクデータチャネルを復調することができる。
 スペシャルサブフレームは、DwPTS(Downlink Pilot Time Slot)、UpPTS(Uplink Pilot Time Slot)、および、GP(Guard Period)で構成される。DwPTSは、下りリンク通信を行うために用意される。DwPTSでは、HARQ指示チャネル、制御フォーマット指示チャネル、下りリンク制御チャネル、下りリンクデータチャネル等の送信のために用いられる。UpPTSは、上りリンク通信を行うために用意される。UpPTSでは、サウンディング参照信号、ランダムアクセスチャネルの送信のために用いられる。GPは、下りリンク送信および上りリンク送信が行われない。GPは、下りリンク信号と上りリンク信号で干渉させないために設けられる。DwPTS、GP、およびUpPTSの合計の長さは1msである。
 以下では、TDD方式における無線フレーム内の上りリンクサブフレーム、下りリンクサブフレーム、およびスペシャルサブフレームが配置される無線フレーム構成について説明する。
 TDD方式は、上りリンク通信と下りリンク通信のリソース割合(リソース割り当て、無線フレーム構成)を通信システムの環境毎に設定することが可能である。図3は、本発明の実施形態に係る上り下り設定情報に対応する無線フレーム構成の表である。Dは下りリンクサブフレームを示し、Uは上りリンクサブフレームを示し、Sはスペシャルサブフレームを示す。上り下り設定情報(上りリンク/下りリンク設定情報、uplink-downlink configuration)によって上りリンクサブフレームと下りリンクサブフレームの数、およびサブフレーム配置は異なる。すなわち、TDD方式において、上りリンクサブフレーム、下りリンクサブフレーム、およびスペシャルサブフレームは、上り下り設定情報により設定される。上り下り設定情報が0から2、または6の時は下りリンク通信と上りリンク通信の切り替え間隔が5ms、上り下り設定情報が3から5の時は下りリンク通信と上りリンク通信の切り替え間隔が10msである。通信システムおよび基地局は上り下り設定情報を設定することで、通信システムで用いられる上りリンクのリソース割合と下りリンクのリソース割合が決定する。
 以下では、上りリンク物理チャネルおよび上りリンク参照信号について説明する。
 上りリンクデータチャネルは、上りリンク情報データ(上りリンク共用データ、UL-SCH;Uplink-Shared Channel)を送信するために用いられる物理チャネルである。また、上りリンクデータチャネルは、上りリンク情報データと共に下りリンクデータチャネルに対応するACK(acknowledgement)/NACK(negative-acknowledgement)および/または下りリンクのチャネル状態情報を送信するために用いられてもよい。また、上りリンクデータチャネルはACK/NACKおよび/またはチャネル状態情報のみを送信するために用いられてもよい。
 LTEでは、上りリンクデータチャネルおよび下りリンクデータチャネルの誤り訂正方法としてHARQ(Hybrid Automatic Repeat reQuest)がサポートされる。HARQには同期型HARQ(synchronous HARQ)と非同期型HARQ(asynchronous HARQ)がある。同期型HARQは、再送信時においてHARQ処理を行うHARQプロセスと送信サブフレームとが関連付けられる。これにより、再送信データは送信サブフレームから一意に決定され、基地局または端末は、再送信データを示す情報を明示的に通知しなくてもよい。なお、前回送信から次回送信までの時間間隔は、HARQ RTT(Round Trip Time)と称される。一方で、非同期型HARQは、HARQプロセスと送信サブフレームが関連付ける必要はない。再送信の送信サブフレームは、基地局または端末で任意に設定することができるため、基地局と端末間のチャネル状態がよいサブフレームで送信することが可能である。上りリンクデータチャネルは、同期型HARQがサポートできる。
 上りリンク制御チャネルは、上りリンク制御情報(UCI;Uplink Control Information)を送信するために用いられる物理チャネルである。上りリンク制御情報には、下りリンクデータチャネルの復号の成否を示すACK/NACK、上りリンクデータチャネルのリソースの要求を示すスケジューリング要求(SR;Scheduling Request)、下りリンクのチャネル状態情報(CSI;Channel State Information)を含む。
 また、上りリンク制御チャネルに対して、複数のフォーマットが定義される。ここで、上りリンク制御チャネルのフォーマットは、PUCCHフォーマットとも呼称される。PUCCHの信号構成および信号に含まれるデータの種類は、PUCCHフォーマットによって個別に規定される。例えば、PUCCH format 1は、下りリンクデータチャネルの復号の成否を通知するために用いられる。例えば、PUCCH format 2は、下りリンク通信のチャネル状態情報を通知するために用いられる。
 ランダムアクセスチャネルは、ランダムアクセスプリアンブルを送信するために用いられる物理チャネルである。ランダムアクセスチャネルは、初期コネクション確立プロシージャ、ハンドオーバプロシージャ、コネクション再確立プロシージャ、上りリンク送信に対する同期(タイミング調整)、および上りリンクデータチャネルのリソースの要求のために用いられる。
 上りリンク端末固有参照信号は、上りリンクデータチャネルまたは上りリンク制御チャネルの伝搬路補正を行うために送信される。上りリンク端末固有参照信号は、上りリンクデータチャネルに割り当てられたリソースに含まれて送信される。また、上りリンク端末固有参照信号は、上りリンク制御チャネルに割り当てられたリソースに含まれて送信される。
 サウンディング参照信号は、上りリンクのチャネル状態の測定等の用途で送信される。端末装置は、定期的に第1のサウンディング参照信号を送信する。第1のサウンディング参照信号は周期的サウンディング参照信号(periodic SRS)とも称される。さらに、端末装置は、サウンディング参照信号要求することを示す情報を受信した場合に、第2のサウンディング参照信号を1回送信する。第2のサウンディング参照信号は非周期的サウンディング参照信号(aperiodic SRS)とも称される。
 以下では、下りリンク物理チャネル、および、下りリンク参照信号について説明する。
 下りリンクデータチャネルは、下りリンク情報データ(下りリンク共用データ、DL-SCH;Downlink-Shared Channel)を送信するために用いられる物理チャネルである。下りリンクデータチャネルは、複数の端末で共用される共用チャネル領域の中の下りリンクデータチャネル領域として定義されたリソースエレメントにマッピングされる。
 下りリンク制御チャネルおよび拡張下りリンク制御チャネルは、下りリンク制御情報(DCI;Downlink Control Information)を送信するために用いられる物理チャネルである。下りリンク制御情報は、下りリンクグラント(downlink grant、下りリンクアサインメント;downlink assignment)、および上りリンクグラント(uplink grant、上りリンクアサインメント;uplink assignment)を含む。下りリンクグラントは、単一のセル内の単一の下りリンクデータチャネルのスケジューリングに用いられる下りリンク制御情報である。上りリンクグラントは、単一のセル内の単一の上りリンクデータチャネルのスケジューリングに用いられる。尚、以下では、下りリンク制御チャネルは第1の下りリンク制御チャネル、拡張下りリンク制御チャネルは第2の下りリンク制御チャネルとも称する。
 下りリンク制御チャネルは、下りリンク制御チャネル領域として定義されたリソースエレメントに割り当てられて送信される。また、拡張下りリンク制御チャネルは、拡張下りリンク制御チャネル領域として定義されたリソースエレメントに割り当てられて送信される。
 また、下りリンク制御チャネルまたは拡張下りリンク制御チャネルで送信される下りリンク制御情報には、複数のフォーマットが定義される。ここで、下りリンク制御情報のフォーマットは、DCIフォーマットとも呼称される。すなわち、DCIフォーマットに、下りリンク制御情報のそれぞれに対するフィールドが定義される。
 下りリンク制御チャネルまたは拡張下りリンク制御チャネルで通知される制御情報は、PDCCHシグナリングとも称される。
 例えば、下りリンクに対するDCIフォーマットとして、1つのセルにおける1つの下りリンクデータチャネル(1つの下りリンクデータチャネルのコードワード、1つの下りリンクトランスポートブロックの送信)のスケジューリング(リソース割り当て)に使用されるDCIフォーマット1およびDCIフォーマット1Aが定義される。すなわち、DCIフォーマット1およびDCIフォーマット1Aは、1つの送信アンテナポートを使用した下りリンクデータチャネルでの送信に使用される。また、DCIフォーマット1およびDCIフォーマット1Aは、複数の送信アンテナポートを使用した送信ダイバーシチ(TxD;Transmission Diversity)による下りリンクデータチャネルでの送信にも使用される。
 また、下りリンクに対するDCIフォーマットとしては、1つのセルにおける1つの下りリンクデータチャネル(2つまでの下りリンクデータチャネルのコードワード、2つまでの下りリンクトランスポートの送信)のスケジューリングに使用されるDCIフォーマット2、DCIフォーマット2A、DCIフォーマット2B、DCIフォーマット2CおよびDCIフォーマット2Dが定義される。すなわち、DCIフォーマット2、DCIフォーマット2A、DCIフォーマット2B、DCIフォーマット2CおよびDCIフォーマット2Dは、複数の送信アンテナポートを使用したMIMO SDM(Multiple Input Multiple Output Spatial Domain Multiplexing)送信方式による下りリンクデータチャネルでの送信に使用される。
 制御フォーマット指示チャネルは、下りリンク制御チャネルの送信のために予約される下りリンク制御チャネル領域を示す情報を送信するために用いられる物理チャネルである。具体的には、制御フォーマット指示チャネルは、下りリンク制御チャネル領域の情報を先頭OFDMシンボル数として端末に通知するために用いられる。
 HARQ指示チャネルは、端末から送信された所定の上りリンクデータチャネルに対するACK/NACKの通知のために用いられる物理チャネルである。
 報知チャネルは、端末で共通に用いられるマスター情報(MI;Master Information)やシステム情報(SI;System Information、報知情報)を報知するために用いられる物理チャネルである。なお、システム情報は、下りリンクデータチャネルに含まれて通知されてもよい。
 セル固有参照信号は、下りリンクの無線環境の測定、下りリンク受信信号のシンボル同期、プレコーディング処理がされていない信号の復調、プレコーディング処理がされている信号の復調、所定の送信モードにおける下りリンクデータチャネルの復調、下りリンク制御チャネルの復調等の用途に用いることができる。セル固有参照信号は、基地局および前記基地局と通信する端末が共に既知の信号であれば、任意の信号(系列)を用いることができる。例えば、基地局に固有の番号(セルID)などの予め割り当てられているパラメータに基づいた乱数や疑似雑音系列を用いることができる。また、アンテナポート間で直交させる方法として、セル固有参照信号をマッピングするリソースエレメントをアンテナポート間で互いにヌル(ゼロ)とする方法、疑似雑音系列を用いた符号分割多重する方法、またはそれらを組み合わせた方法などを用いることができる。なお、セル固有参照信号は、全てのサブフレームに多重しなくてもよく、一部のサブフレームのみに多重してもよい。セル固有参照信号は、アンテナポート0~3の一部または全部で送信される。
 下りリンク端末固有参照信号は、下りリンクデータチャネルの復調を行うために用いることができる。下りリンク端末固有参照信号は、下りリンクデータチャネルに関連付けられる。下りリンク端末固有参照信号は、下りリンク端末固有参照信号を送信する基地局および前記基地局と通信する端末で互いに既知の信号を用いられる。ここで、前記基地局は下りリンクデータチャネルにプレコーディング処理を行う場合、前記端末が下りリンクデータチャネルを復調するに際し、下りリンク端末固有参照信号は、前記基地局と前記端末との間の下りリンクにおける伝送路状況およびプレコーディング重みの等化チャネルを推定することができる。すなわち、前記基地局は、前記端末に対して、プレコーディング重みを通知する必要が無く、プレコーディング処理された信号を復調することができる。
 下りリンク端末固有参照信号の一部は、入力されたスクランブル符号の初期値に基づいて、基地局と端末で互いに既知の信号が生成される。ここで、下りリンク端末固有参照信号は、関連付けられる下りリンクデータチャネルに基づいて設定され、下りリンクデータチャネルに対応するアンテナポート(レイヤー)で送信される。なお、下りリンク端末固有参照信号は、アンテナポート間で直交および/または準直交することが好ましい。下りリンク端末固有参照信号は、アンテナポート7~14の一部または全部で送信される。下りリンク端末固有参照信号は、下りリンクデータチャネルを復調するための有効な参照であり、対応する下りリンクデータチャネルがマッピングされるリソースブロックペアまたはリソースブロックで送信される。
 拡張下りリンク制御チャネル復調参照信号は、拡張下りリンク制御チャネルの復調を行うために用いることができる。拡張下りリンク制御チャネル復調参照信号は、拡張下りリンク制御チャネルに関連付けられる。拡張下りリンク制御チャネル復調参照信号は、拡張下りリンク制御チャネル復調参照信号を送信する基地局および前記基地局と通信する端末で互いに既知の信号を用いられる。ここで、前記基地局は拡張下りリンク制御チャネルにプレコーディング処理を行う場合、前記端末が拡張下りリンク制御チャネルを復調するに際し、拡張下りリンク制御チャネル復調参照信号は、前記基地局と前記端末との間の下りリンクにおける伝送路状況およびプレコーディング重みの等化チャネルを推定することができる。すなわち、前記基地局は、前記端末に対して、プレコーディング重みを通知する必要が無く、プレコーディング処理された信号を復調することができる。
 拡張下りリンク制御チャネル復調参照信号の一部は、入力されたスクランブル符号の初期値に基づいて、基地局と端末で互いに既知の信号が生成される。ここで、拡張下りリンク制御チャネル復調参照信号は、関連付けられる拡張下りリンク制御チャネルに基づいて設定され、拡張下りリンク制御チャネルに対応するアンテナポート(レイヤー)で送信される。なお、拡張下りリンク制御チャネル復調参照信号は、アンテナポート間で直交および/または準直交することが好ましい。拡張下りリンク制御チャネル復調参照信号は、アンテナポート107~114の一部または全部で送信される。拡張下りリンク制御チャネル復調参照信号は、拡張下りリンク制御チャネルを復調するための有効な参照であり、対応する下りリンクデータチャネルがマッピングされるRBペアまたはRBで送信される。
 チャネル状態情報参照信号は、下りリンクの無線環境(チャネル状態)の測定、下りリンク受信信号のシンボル同期、プレコーディング処理がされていない信号の復調等の用途に用いることができる。チャネル状態情報参照信号は、基地局および前記基地局と通信する端末が共に既知の信号であれば、任意の信号(系列)を用いることができる。チャネル状態情報参照信号は、基地局から参照信号を送信する非ゼロ電力チャネル状態情報参照信号と、基地局から参照信号を送信しないゼロ電力チャネル状態情報参照信号がある。
 3GPPでは、上述のコンポーネントキャリアの構成とは異なる新しいキャリア構成(NCT;New Carrier Type)が提案されている。新しいキャリア構成は、例えば、上述したセル固有参照信号やセル検出、フレーム同期などに用いられる同期信号(SS;Synchronization Signal)が配置されないかもしれない。NCTは、端末がNCTの検出、シンボル検波、周波数同期、および/または時間同期を行うことができる検知参照信号(DRS;Detection RS)またはeSS(enhanced SS)などが配置されてもよい。
 図4は、本発明の実施形態に係る端末の上りリンク通信時の構成を示す概略ブロック図である。図4では、一例として基地局101と端末102との通信を説明するが、本実施形態に係る端末102の構成は、端末112、端末122、端末3502、端末3512、端末3602にも同様に備わっている。
 図4において、端末102は、上位レイヤー400、上りリンク送信部410、端末送信アンテナ部420、上りリンク信号処理方法決定部430を含んで構成される。なお、図示しないが、端末102は端末制御部も含んで構成され、端末制御部は端末102における様々な処理を制御することができる。
 上位レイヤー400は、通信に係るデータの様々な処理を行う。上位レイヤー400は、端末情報データ処理部401、RRC層処理部402、MAC層処理部403、サブフレーム解釈部404、スケジューリング情報解釈部405を含んで構成される。
 端末情報データ処理部401は、基地局に対する上りリンク情報データおよび/または上りリンク制御情報データを生成する。ここで、上りリンク情報データは、誤り訂正符号化処理を行う単位とすることができる。また、上りリンク情報データは、HARQ等の再送制御を行う単位とすることができる。また、端末102は、前記端末102と通信する基地局に複数の上りリンク情報データを送信することができる。
 また、端末情報データ処理部401は、基地局から送信された下りリンク受信データを下りリンク情報データおよび/または下りリンク制御情報に変換する。ここで、下りリンク情報データは、誤り訂正符号化処理を行う単位とすることができる。また、下りリンク情報データは、HARQ等の再送制御を行う単位とすることができる。また、端末102は、前記端末102と通信する基地局からの複数の下りリンク情報データを受信することができる。
 また上位レイヤー400は、RRC層処理部402を備える。基地局101と端末102は、上位レイヤーにおいて信号を送受信する。例えば、基地局101と端末102は、RRC層(レイヤ3)において、無線リソース制御信号(RRCシグナリング;Radio Resource Control signal、RRCメッセージ;Radio Resource Control message、RRC情報;Radio Resource Control informationとも呼称される)を送受信する。ここで、RRC層において、基地局101によって、所定の端末に対して送信される専用の信号は、dedicated signal(専用の信号)とも呼称される。すなわち、基地局101によって、dedicated signalを使用して通知される設定(情報)は、所定の端末に対して固有な(特有な、個別な)設定である。なお、複数の端末で共通に設定されるシステム情報は、RRCシグナリングでも通知することができる。
 また上位レイヤー400は、MAC層処理部403を備える。基地局101と端末102は、MAC(Mediam Access Control)層(レイヤ2)において、MACコントロールエレメントを送受信する。ここで、RRCシグナリングおよび/またはMACコントロールエレメントは、上位レイヤーの信号(Higher layer signaling)とも呼称される。
 また上位レイヤー400は、サブフレーム解釈部404を備える。サブフレーム解釈部404は、基地局101から受信した上り下り設定情報から上りリンクサブフレーム、下りリンクサブフレーム、および/または、スペシャルサブフレームを含んだ無線フレーム構成を認識する。また、サブフレーム解釈部404は、基地局101から受信したスペシャルサブフレーム設定情報からDwPTS、UpPTS、およびGPを認識する。サブフレーム解釈部404は、受信した上り下り設定情報およびスペシャルサブフレーム設定情報に基づいて上りリンク送信処理および下りリンク受信処理の制御を行う。上りリンクサブフレームと認識したサブフレームでは、端末は、上りリンク送信処理を行い、下りリンク受信処理を行わない。下りリンクサブフレームと認識したサブフレームでは、端末は、下りリンク受信処理を行い、上りリンク送信処理を行わない。スペシャルサブフレームと認識したサブフレームでは、端末は、更に前記スペシャルサブフレームからDwPTS、UpPTS、およびGPを認識する。DwPTSと認識した時間では、端末は、下りリンク受信処理を行い、上りリンク送信処理を行わない。UpPTSと認識した時間では、端末は、上りリンク送信処理を行い、下りリンク受信処理を行わない。GPと認識した時間では、端末は、上りリンク送信処理および下りリンク受信処理を行わない。
 また上位レイヤー400は、スケジューリング情報解釈部405を備える。スケジューリング情報解釈部405は、基地局101から受信した上りリンク通信のスケジューリングを通知するスケジューリング情報に基づき、上りリンク送信処理の制御を行うための制御情報を生成する。また、上位レイヤー400は、前記スケジューリング情報に基づく送信タイミングまでに端末情報データ処理部401で上りリンク情報データを生成する。
 上りリンク送信部410は、上位レイヤー400から入力された上りリンク送信データを送信処理し、処理された上りリンク無線周波数帯域信号を端末送信アンテナ420に出力する。上りリンク送信部410は、上りリンクデータ生成部411、上りリンク制御チャネル生成部412、上りリンク参照信号生成部413、上りリンク送信信号処理部414、上りリンク無線送信部415を含んで構成される。
 上りリンクデータ生成部(上りリンクデータチャネル領域割当部、上りリンクデータチャネルマッピング部、上りリンク共用チャネル生成部)411は、上位レイヤー400が出力した上りリンク情報データに対して、適応制御を行い、基地局101に対する上りリンクデータチャネルを生成する。具体的には、上りリンクデータチャネル生成部411における適応制御は、誤り訂正符号化を行うための符号化処理、端末固有のスクランブル符号を施すためのスクランブル処理、多値変調方式などを用いるための変調処理、MIMOなどの空間多重を行うためのレイヤーマッピング処理などを行う。上りリンクデータ生成部411は、生成した上りリンクデータチャネルを上りリンク送信信号生成部414に出力する。
 上りリンク制御チャネル生成部(上りリンク制御チャネル領域割当部、上りリンク制御チャネルマッピング部)412は、上位レイヤー400が出力した上りリンク制御情報データに対して、基地局101から割り当てられる無線リソースを介して端末102が送信する上りリンク制御チャネルを生成する。上りリンク制御チャネル生成部412は、生成した前記上りリンク制御チャネルを上りリンク送信信号生成部414に出力する。
 上りリンク参照信号生成部413は、上りリンク参照信号を生成する。上りリンク参照信号生成部413は、予め定められた規則で求まる系列を上りリンク参照信号として生成する。上りリンク参照信号生成部413は、生成した前記上りリンク参照信号を上りリンク送信信号生成部414に出力する。
 上りリンク送信信号生成部414は、上りリンクデータ生成部411から入力された上りリンクデータチャネル、および/または上りリンク制御チャネル生成部412から入力された上りリンク制御チャネル、および/または上りリンク参照信号生成部413から入力された上りリンク参照信号をプレコーディング処理、リソースエレメントマッピング処理を行う。プレコーディング処理が端末102によって用いられる場合、そのプレコーディング処理は、基地局101が効率よく受信できるように、入力された信号に対して位相回転および/または振幅制御などを行うことが好ましい。例えば、プレコーディング処理は、基地局101の受信信号の信号対雑音比(SNR;Signal to Noise Radio)が最大になるように行うことが好ましい。また、予め決められたプレコーディング行列による処理、CDD(Cyclic Delay Diversity)、送信ダイバーシチ(SFBC(Spatial Frequency Block Code)、STBC(Spatial Time Block Code)、TSTD(Time Switched Transmission Diversity)、FSTD(Frequency Switched Transmission Diversity)など)を用いることができるがこれに限るものではない。ここで、端末102は基地局101からプレコーディング処理に関する情報が通知された場合、端末102は、基地局101に対してプレコーディング処理を行うことができる。リソースエレメントマッピング処理では、端末102は、基地局101から通知されたスケジューリング情報に基づいて、上りリンク送信信号処理部414に入力された上りリンクデータチャネル、上りリンク制御チャネルおよび/または上りリンク参照信号をそれぞれのリソースエレメントにマッピング(多重)し、上りリンク送信信号を生成する。上りリンク送信信号処理部414は、プレコーディング処理およびリソースエレメントマッピング処理を行った前記上りリンク送信信号を上りリンク無線送信部415に出力する。
 上りリンク無線送信部415は、上りリンク送信信号処理部414から出力された上りリンク送信信号に離散フーリエ変換および逆離散フーリエ変換によるSC-FDMA変換処理、ガードインターバルの付加処理、ベースバンド信号から無線周波数への変換処理などによる無線送信処理を行い、上りリンク無線周波数帯域幅信号を生成する。上りリンク無線送信部415は、生成した上りリンク無線周波数帯域幅信号を端末送信アンテナ部420に出力する。
 端末送信アンテナ部420は、上りリンク送信部410から入力された無線周波数帯域信号を搬送波に載せて1つまたは複数の送信アンテナ数(送信アンテナポート数)の送信アンテナから基地局101に送信する。
 上りリンク信号処理方法決定部430は、上位レイヤー400から入力された情報を用いて、後述する上りリンク信号処理方法を決定する。上りリンク信号処理方法決定部430は、端末を制御する機能の一部であり、上りリンク信号処理方法決定部430で決定された上りリンク信号処理方法によって、端末情報データ処理部401、上りリンク送信信号処理部414、および、上りリンク無線送信部415が制御される。上位レイヤー400から入力された情報には、上りリンク信号の送信の停止もしくは送信の制限を行うサブフレームの番号、上りリンク信号処理方法を決定する基準が含まれる。
 図5は、本発明の実施形態に係る基地局の上りリンク通信時の構成を示す概略ブロック図である。図5では、一例として基地局101と端末102との通信を説明するが、本実施形態に係る基地局201の構成は、基地局111、基地局3501、基地局3511、基地局3601、RRH121にも同様に備わっている。
 図5において、基地局101は、基地局受信アンテナ部500、上りリンク受信部510、上位レイヤー520を含んで構成される。なお、図示しないが、基地局101は基地局制御部も含んで構成され、基地局制御部は基地局101における様々な処理を制御することができる。
 基地局受信アンテナ部500は、端末102から送信された無線周波数帯域信号を1つまたは複数の受信アンテナ数(受信アンテナポート数)の受信アンテナで受信し、前記無線周波数帯域信号を上りリンク受信部510に出力する。
 上りリンク受信部510は、基地局受信アンテナ部500から入力された上りリンク無線周波数帯域信号を受信処理し、処理された上りリンク受信データを上位レイヤー520に出力する。上りリンク受信部510は、上りリンク無線受信部511、上りリンク受信信号処理部512、伝搬路推定部513、上りリンクデータ処理部514、上りリンク制御チャネル処理部515を含んで構成される。
 上りリンク無線受信部511は、1つまたは複数の受信アンテナ数の受信アンテナを有する基地局受信アンテナ部500により、端末102が送信した上りリンク無線周波数帯域信号を受信し、無線周波数からベースバンド信号への変換処理、付加されたガードインターバルの除去、離散フーリエ変換、周波数領域等化および逆離散フーリエ変換などによる時間周波数変換処理を行う。上りリンク無線受信部511は、基地局受信アンテナ部500から入力された上りリンク無線周波数帯域信号を処理し、上りリンク受信信号として上りリンク受信信号処理部512に出力する。
 上りリンク受信信号処理部512は、上りリンク受信信号をデマッピング(分離)する。具体的には、上りリンク受信信号処理部512は、上りリンク受信信号から上りリンク端末固有参照信号をデマッピングし、上りリンク伝搬路推定部513に出力する。また、上りリンク受信信号処理部512は、上りリンク受信信号から上りリンクデータチャネルをデマッピングし、上りリンクデータ処理部514に出力する。また、上りリンク受信信号処理部512は、上りリンク受信信号から上りリンク制御チャネルをデマッピングし、上りリンク制御チャネル処理部515に出力する。複数の端末がマッピングされている場合、上りリンク受信信号処理部512は、端末個別にデマッピングを行う。
 上りリンク伝搬路推定部513は、上りリンク端末固有参照信号に基づいて、上りリンク制御チャネルおよび/または上りリンクデータチャネルの上りリンクリソースに対する伝搬路推定を行う。上りリンク伝搬路推定部513は、伝搬路推定の推定結果を、上りリンク制御チャネル処理部514および/または上りリンクデータチャネル処理部515に出力する。上りリンク伝搬路推定部513は、上りリンクデータチャネルおよび/または上りリンク制御チャネルに多重された上りリンク端末固有参照信号に基づいて、各送信アンテナポートの各受信アンテナポートに対する、それぞれのリソースエレメントにおける振幅と位相の変動(周波数応答、伝達関数)を推定(伝搬路推定)し、伝搬路推定値を求める。
 また、上りリンク伝搬路推定部513は、サウンディング参照信号に対する伝搬路推定を行う。上りリンク伝搬路推定部513は、サウンディング参照信号に基づいて、各端末に対する、それぞれのリソースエレメントにおける振幅と位相の変動を推定し上位レイヤー520に出力する。
 上りリンクデータチャネル処理部514は、上りリンク受信信号処理部512から入力されたデータチャネルに対して、上りリンク伝搬路推定部513から入力された伝搬路推定結果を用いた伝搬路補償処理(フィルタ処理)、レイヤーデマッピング処理、復調処理、デスクランブル処理、誤り訂正復号処理などを行い、上位レイヤー520に出力する。なお、上りリンク端末固有参照信号がマッピングされていないSC-FDMAシンボルは、上りリンク端末固有参照信号がマッピングされたSC-FDMAシンボルに基づいて、時間方向に補間または平均化等を行い、伝搬路推定を行う。伝搬路補償処理では、入力されたデータチャネルに対して、推定された伝搬路推定値を用いて、伝搬路補償を行い、情報データに基づくレイヤー毎の信号を検出(復元)する。その検出方法としては、ZF(Zero Forcing)規範やMMSE(Minimum Mean Square Error)規範の等化、ターボ等化、干渉除去などを用いることができる。レイヤーデマッピング処理では、レイヤー毎の信号をそれぞれの情報データにデマッピング処理を行う。以降の処理は情報データ毎に行われる。復調処理では、用いた変調方式に基づいて復調を行う。デスクランブル処理では、用いたスクランブル符号に基づいて、デスクランブル処理を行う。復号処理では、施した符号化方法に基づいて、誤り訂正復号処理を行う。
 上りリンク制御チャネル処理部515は、上りリンク受信信号処理部512から入力された上りリンク制御チャネルに対して、上りリンク伝搬路推定部513から入力された伝搬路推定結果を用いた伝搬路補償処理、多重デマッピング処理、復調処理、誤り訂正復号処理などを行い、上位レイヤー520に出力する。
 上位レイヤー520は、通信に係るデータの様々な処理を行う。上位レイヤー520は、基地局情報データ処理部521、RRC層処理部522、MAC層処理部523、サブフレーム設定部524、スケジューリング情報決定部525を含んで構成される。
 基地局情報データ処理部521は、端末から送信された上りリンク受信データを上りリンク情報データおよび/または上りリンク制御情報に変換する。ここで、上りリンク情報データは、誤り訂正符号化処理を行う単位とすることができる。また、上りリンク情報データは、HARQ等の再送制御を行う単位とすることができる。また、基地局101は、前記基地局101と通信する端末からの複数の上りリンク情報データを受信することができる。
 また、基地局情報データ処理部521は、端末に対する下りリンク情報データおよび/または下りリンク制御情報データを生成する。ここで、下りリンク情報データは、誤り訂正符号化処理を行う単位とすることができる。また、下りリンク情報データは、HARQ等の再送制御を行う単位とすることができる。また、基地局101は、前記基地局101と通信する端末に複数の下りリンク情報データを送信することができる。
 また上位レイヤー520は、RRC層処理部522を備える。基地局101と端末102は、上位レイヤーにおいて信号を送受信する。
 また上位レイヤー520は、MAC層処理部523を備える。基地局101と端末102は、MAC層において、MACコントロールエレメントを送受信する。
 上位レイヤー520は、サブフレーム設定部524を備える。サブフレーム設定部524は、基地局101が用いる上り下り設定情報を決定する。サブフレーム設定部524は、上りリンク通信および下りリンク通信のトラフィック量や、周囲の基地局の情報に基づいて決定する。基地局101は、サブフレーム設定部524で決定された上り下り設定情報に従って、下りリンク送信処理と上りリンク受信処理を制御する。
 上位レイヤー520は、スケジューリング情報決定部525を備える。スケジューリング情報決定部525は、セル100内部に存在する端末102との通信に用いられる上りリンクチャネルおよび下りリンクチャネルのリソースを決定する。スケジューリング情報決定部525は、基地局101と接続する端末の上りリンクチャネルの状態、基地局101と接続する端末の通信状況、および隣接する基地局111およびRRH121からのスケジューリングに関する情報から、端末102との上りリンク通信に用いられるリソースが決定されることが好ましい。またスケジューリング情報決定部525は、基地局101と接続する端末の下りリンクチャネルの状態、基地局101と接続する端末の通信状況、および隣接する基地局111およびRRH121からのスケジューリングに関する情報から、端末102との下りリンク通信に用いられるリソースが決定されることが好ましい。
 図6は、本発明の実施形態に係る基地局の下りリンク通信時の構成を示す概略ブロック図である。図6では、一例として基地局111と端末112との通信を説明するが、本実施形態に係る基地局211の構成は、基地局101、基地局3501、基地局3511、基地局3601、RRH121にも同様に備わっている。
 図6において、基地局111は、上位レイヤー600、下りリンク送信部610、基地局送信アンテナ部620を含んで構成される。なお、図示しないが、基地局111は基地局制御部も含んで構成され、基地局制御部は基地局111における様々な処理を制御することができる。
 上位レイヤー600は、通信に係るデータの様々な処理を行う。上位レイヤー600は、基地局情報データ処理部601、RRC層処理部602、MAC層処理部603、サブフレーム設定部604、スケジューリング情報決定部605を含んで構成され、図5の上位レイヤー520と同様の機能を備える。
 下りリンク送信部610は、上位レイヤー600から入力された下りリンク情報データを送信処理し、処理された下りリンク無線周波数帯域信号を基地局送信アンテナ部620に出力する。下りリンク送信部610は、下りリンクデータ生成部611、下りリンク制御チャネル生成部612、下りリンク参照信号生成部613、下りリンク送信信号処理部614、下りリンク無線送信部615を含んで構成される。
 下りリンクデータチャネル生成部(下りリンクデータチャネル領域割当部、下りリンクデータチャネルマッピング部、下りリンク共用チャネル生成部)611は、上位レイヤー600が出力した下りリンク情報データに対して、適応制御を行い、端末112に対する下りリンクデータチャネルを生成する。具体的には、下りリンクデータチャネル生成部611における適応制御は、誤り訂正符号化を行うための符号化処理、端末に固有のスクランブル符号を施すためのスクランブル処理、多値変調方式などを用いるための変調処理、MIMOなどの空間多重を行うためのレイヤーマッピング処理などを行う。ここで、下りリンクデータチャネル生成部611におけるレイヤーマッピング処理は、端末に対して設定するランク数に基づいて、1つ以上のレイヤー(ストリーム)にマッピングする。下りリンクデータ生成部611は、生成した前記下りリンクデータチャネルを下りリンク送信信号生成部614に出力する。
 下りリンク制御チャネル生成部(下りリンク制御チャネル領域割当部、下りリンク制御チャネルマッピング部)612は、基地局111が、端末112に対する下りリンク制御情報を送信する場合に、制御チャネル領域を介して送信する下りリンク制御チャネルおよび/または拡張下りリンク制御チャネルを生成する。下りリンク制御チャネル生成部612は、生成した前記下りリンク制御チャネルおよび/または前記拡張下りリンク制御チャネルを下りリンク送信信号生成部614に出力する。
 下りリンク参照信号生成部613は、下りリンク参照信号を生成する。下りリンク参照信号生成部613は、予め定められた規則で求まる系列を下りリンク参照信号として生成する。下りリンク参照信号生成部613は、生成した前記下りリンク参照信号を下りリンク送信信号生成部614に出力する。
 下りリンク送信信号処理部614は、下りリンクデータ生成部611から入力された下りリンクデータチャネル、および/または下りリンク制御チャネル生成部612から入力された下りリンク制御チャネルおよび/または拡張下りリンク制御チャネル、および/または下りリンク参照信号生成部613から入力された下りリンク参照信号に対して、プレコーディング処理、リソースエレメントマッピング処理が行われる。プレコーディング処理は、下りリンクデータチャネル、下りリンク制御チャネル、拡張下りリンク制御チャネル、下りリンク端末固有参照信号、および/または拡張下りリンク制御チャネル復調参照信号に対して行われる。ここで、プレコーディング処理は、下りリンク端末固有参照信号および/または拡張下りリンク制御チャネル復調参照信号が複数の端末によって共用されるか、下りリンク端末固有参照信号および/または拡張下りリンク制御チャネル復調参照信号が1つの端末によって用いられるかによって、処理が異なってもよい。プレコーディング処理が端末112によって用いられる場合、そのプレコーディング処理は、端末112が効率よく受信できるように、入力された信号に対して位相回転および/または振幅制御などを行うことが好ましい。例えば、プレコーディング処理は、端末112の受信電力が最大になるように、または隣接セルからの干渉が小さくなるように、または隣接セルへの干渉が小さくなるように行うことが好ましい。また、予め決められたプレコーディング行列による処理、CDD、送信ダイバーシチを用いることができるがこれに限るものではない。また、下りリンク端末固有参照信号が複数の端末によって供用される場合、そのプレコーディング処理は、予め決められたプレコーディング行列による処理、CDD、送信ダイバーシチを用いることが好ましい。ここで、基地局111は端末112からプレコーディング処理に関するフィードバック情報であるPMI(Precoding Matrix Indicator)として複数種類に分けられたものがフィードバックされた場合、基地局111は、端末112に対して、その複数のPMIを乗算などによる演算を行った結果に基づいて、プレコーディング処理を行うことができる。リソースエレメントマッピング処理では、基地局111は上位レイヤー600のスケジューリング情報に基づいて、下りリンク送信信号処理部614に入力されたそれぞれの下りリンクデータチャネル、下りリンク制御チャネル、下りリンク参照信号、および/または拡張下りリンク制御チャネル復調参照信号をそれぞれのアンテナポートのリソースエレメントにマッピングし、下りリンク送信信号を生成する。具体的には、下りリンク送信信号処理部614は、下りリンクデータチャネルは共用チャネル領域の下りリンクデータチャネル領域にマッピングする。さらに、下りリンク送信信号処理部614は、共用チャネル領域の下りリンク制御チャネル領域に下りリンク制御チャネルをマッピングする。さらに、下りリンク送信信号処理部614は、共用チャネル領域の拡張下りリンク制御チャネル領域に拡張下りリンク制御チャネルをマッピングする。ここで、基地局111は、下りリンク制御チャネル領域に、複数の端末宛の下りリンク制御チャネルをマッピングすることができる。下りリンク送信信号処理部614は、プレコーディング処理およびソースエレメントマッピング処理を行った前記下りリンク送信信号を下りリンク無線送信部615に出力する。
 下りリンク無線送信部615は、下りリンク送信信号処理部614から出力された下りリンク送信信号に逆高速フーリエ変換(IFFT;Inverse Fast Fourier Transform)処理、ガードインターバルの付加処理、ベースバンド信号から無線周波数への変換処理などによる無線送信処理を行い、下りリンク無線周波数帯域幅信号を生成する。下りリンク無線送信部615は、生成した前記下りリンク無線周波数帯域幅信号を基地局送信アンテナ部620に出力する。
 基地局送信アンテナ部620は、下りリンク送信部610から入力された無線周波数帯域信号を搬送波に載せて1つまたは複数の送信アンテナ数(送信アンテナポート数)の送信アンテナから端末112に送信する。なお、基地局送信アンテナ部620のアンテナは、図5の基地局受信アンテナ部500のアンテナの一部もしくは全部を共用することが好ましい。
 図7は、本発明の実施形態に係る端末の下りリンク通信時における構成を示す概略ブロック図である。図7では、一例として基地局111と端末112との通信を説明するが、本実施形態に係る基地局の構成は、端末102、端末122、端末3502、端末3512、端末3602にも同様に備わっている。
 図7において、端末112は、端末受信アンテナ部700、下りリンク受信部710、上位レイヤー720を含んで構成される。なお、図示しないが、端末112は端末制御部を含んで構成され、端末制御部は端末112における様々な処理を制御することができる。
 端末受信アンテナ部700は、基地局111から送信された無線周波数帯域信号を1つまたは複数の受信アンテナ数の受信アンテナで受信し、前記無線周波数帯域信号を下りリンク受信部710に出力する。なお、端末受信アンテナ部700のアンテナは、図4の端末送信アンテナ部420のアンテナの一部もしくは全部を共用することが好ましい。
 下りリンク受信部710は、端末受信アンテナ部700から入力された下りリンク無線周波数帯域信号を受信処理し、処理された下りリンク受信データを上位レイヤー720に出力する。下りリンク受信部710は、下りリンク無線受信部711、下りリンク受信信号処理部712、下りリンク伝搬路推定部713、下りリンク制御チャネル処理部714、下りリンクデータチャネル処理部715を含んで構成される。
 下りリンク無線受信部711は、1つまたは複数の受信アンテナ数の端末受信アンテナ部700により、基地局111が送信した下りリンク無線周波数帯域信号を受信し、無線周波数からベースバンド信号への変換処理、付加されたガードインターバルの除去、高速フーリエ変換(FFT;Fast Fourier Transform)などによる時間周波数変換処理を行う。下りリンク無線受信部711は、端末受信アンテナ部700から入力された入力された下りリンク無線周波数帯域信号を処理し、下りリンク受信信号として下りリンク受信信号処理部712に出力する。
 下りリンク受信信号処理部712は、基地局111でマッピングされた下りリンク受信信号をデマッピング(分離)する。具体的には、下りリンク受信信号処理部712は、下りリンク受信信号から下りリンク参照信号をデマッピングし、下りリンク伝搬路推定部713に出力する。また下りリンク受信信号処理部712は、下りリンク受信信号から下りリンク制御チャネル領域および/または拡張下りリンク制御チャネル領域にマッピングされている下りリンク制御チャネルをデマッピングし、下りリンク制御チャネル処理部714に出力する。また下りリンク受信信号処理部712は、下りリンク受信信号から下りリンクデータチャネルをデマッピングし、下りリンクデータ処理部715に出力する。
 下りリンク伝搬路推定部713は、下りリンク端末固有参照信号に基づいて、下りリンクデータチャネルの下りリンクリソースに対する伝搬路推定を行う。また、下りリンク伝搬路推定部713は、セル固有参照信号に基づいて、下りリンク制御チャネルの下りリンクリソースに対する伝搬路推定を行う。また、下りリンク伝搬路推定部713は、拡張下りリンク制御チャネル復調参照信号に基づいて、拡張下りリンク制御チャネルの下りリンクリソースに対する伝搬路推定を行う。下りリンク伝搬路推定部713は、伝搬路推定の推定結果を、下りリンク制御チャネル処理部714および/または下りリンクデータチャネル処理部715に出力する。下りリンク伝搬路推定部713は、前記下りリンクデータチャネルおよび/または前記下りリンク制御チャネルに多重された下りリンク端末固有参照信号に基づいて、各送信アンテナポートの各受信アンテナポートに対する、それぞれのリソースエレメントにおける振幅と位相の変動を推定し、伝搬路推定値を求める。
 また、下りリンク伝搬路推定部713は、セル固有参照信号および/またはチャネル状態情報参照信号に対する伝搬路推定を行う。下りリンク伝搬路推定部713は、セル固有参照信号および/またはチャネル状態情報参照信号に基づいて、各送信アンテナポートの各受信アンテナポートに対する、それぞれのリソースエレメントにおける振幅と位相の変動を推定し、上位レイヤー700に出力する。
 下りリンク制御チャネル処理部714は、下りリンク受信信号処理部712から入力された下りリンク制御チャネル領域および/または拡張下りリンク制御チャネル領域に含まれる複数端末宛の制御チャネルから端末112宛の下りリンク制御チャネルを探索する。ここで、下りリンク制御チャネル処理部714は、端末112宛の下りリンク制御チャネルを探索する下りリンク制御チャネル領域として、下りリンク制御チャネル領域および/または拡張下りリンク制御チャネル領域を設定する。下りリンク制御チャネル処理部714は、端末固有番号(RNTI;Radio Network Temporary Identifier)の端末固有の情報を用いて端末112宛の下りリンク制御チャネルを探索する。
 具体的には、下りリンク制御チャネル処理部714は、下りリンク制御情報の種類、マッピングされるリソースの位置、マッピングされるリソースの大きさ等に基づいて得られる制御チャネルの候補の全部または一部を、復調および復号処理を行い、逐次探索する。下りリンク制御チャネル処理部714は、端末112宛の下りリンク制御情報か否かを判定する方法として、下りリンク制御情報に付加される誤り検出符号(例えば、CRC(Cyclic Redundancy Check)符号)を用いる。また、このような探索方法は、ブラインドデコーディングとも呼称される。
 下りリンク制御チャネル処理部714は、検出された下りリンク制御チャネルに端末112宛の下りリンク制御情報がマッピングされていた場合、前記下りリンク制御情報を上位レイヤー720または端末制御部に送る。
 下りリンクデータチャネル処理部715は、下りリンク受信信号処理部712から入力されたデータチャネルに対して、下りリンク伝搬路推定部713から入力された伝搬路推定結果を用いた伝搬路補償処理、レイヤーデマッピング処理、復調処理、デスクランブル処理、誤り訂正復号処理などを行い、上位レイヤー720に出力する。なお、下りリンク端末固有参照信号がマッピングされていないリソースエレメントは、下りリンク端末固有参照信号がマッピングされたリソースエレメントに基づいて、周波数方向および時間方向に補間または平均化等を行い、伝搬路推定を行う。伝搬路補償処理では、入力されたデータチャネルに対して、推定された伝搬路推定値を用いて、伝搬路補償を行い、情報データに基づくレイヤー毎の信号を検出する。その検出方法としては、ZF規範やMMSE規範の等化、ターボ等化、干渉除去などを用いることができる。レイヤーデマッピング処理では、レイヤー毎の信号をそれぞれの情報データにデマッピング処理を行う。以降の処理は情報データ毎に行われる。復調処理では、用いた変調方式に基づいて復調を行う。具体的には、復調処理では、下りリンク制御チャネル処理部714で取得した下りリンク制御チャネルに含まれる変調符号情報に基づいて復調を行う。デスクランブル処理では、用いたスクランブル符号に基づいて、デスクランブル処理を行う。復号処理では、施した符号化方法に基づいて、誤り訂正復号処理を行う。具体的には、復号処理では、下りリンク制御チャネル処理部714で取得した下りリンク制御チャネルに含まれる変調符号情報に基づいて誤り訂正復号処理を行う。
 上位レイヤー720は、通信に係るデータの様々な処理を行う。上位レイヤー720は、端末情報データ処理部721、RRC層処理部722、MAC層処理部723、サブフレーム解釈部724、スケジューリング情報解釈部725を含んで構成され、図4の上位レイヤー400と同様の機能を備える。
 以下では、上りリンク物理チャネル、および、上りリンク参照信号の無線リソースの割当について説明する。
 上りリンクデータチャネルは、新しい上りリンク情報データを送信する(初回送信)時、前回送信した上りリンク情報データに対して基地局から受信不可の情報を受信した際に前回送信した上りリンク情報データを改めて送信する(再送信)時、半永続スケジューリング(SPS;Semi-Persistent Scheduling)で設定されて送信する時、TTI(Transmission Time Interval) bundlingで設定されて送信する時で、割り当てられる無線リソースを独立に設定できる。
 初回送信時の上りリンクデータチャネルは、下りリンク制御チャネルで送信される上りリンクグラントによって初回送信を示す情報を端末が受信したサブフレームから4サブフレーム以上後の上りリンクサブフレームで送信される。上りリンクデータチャネルのリソースブロックは、下りリンク制御チャネルで送信される上りリンクグラントによって通知される。
 再送信時の上りリンクデータチャネルは、HARQ指示チャネルでNACKを端末が受信したサブフレーム、もしくは上りリンクグラントによって再送信を示す情報を端末が受信したサブフレームからHARQプロセスに関連付けられた上りリンクサブフレームで送信される。再送信時の上りリンクデータチャネルで用いられるリソースブロックは、HARQ指示チャネルでNACKを受信した時と、上りリンクグラントによって再送信を示す情報が含まれた時と、で独立に設定できる。HARQ指示チャネルでNACKを受信した時は、端末は前回の上りリンクデータチャネルの送信で割り当てられたリソースブロックを用いて上りリンクデータチャネルの再送信を行う。一方で、上りリンクグラントによって再送信を示す情報が含まれた時は、端末は上りリンクグラントに含まれる割当リソースブロック情報で示されたリソースブロックを用いて再送信を行う。
 新たに半永続スケジューリングで設定された上りリンクデータチャネルは、下りリンク制御チャネルで送信される上りリンクグラントによって半永続スケジューリングを示す情報を端末が受信したサブフレームから4サブフレーム以上後の上りリンクサブフレームで送信される。以後、端末が半永続スケジューリングの停止指示を受信するまで、端末は上位レイヤーで設定された半永続スケジューリングに関する情報に含まれるサブフレーム間隔および前回の半永続スケジューリングで設定された上りリンクデータチャネルで送信されたリソースブロックを用いて上りリンクデータチャネルを送信する。
 TTI bundlingで設定された上りリンクデータチャネルは、下りリンク制御チャネルで送信される上りリンクグラントによって送信を示す情報を端末が受信したサブフレームから4サブフレーム以上後の上りリンクサブフレームで送信される。また、前記上りリンクサブフレームから順番に4つの連続した上りリンクサブフレームで上りリンクデータチャネルが送信される。
 上りリンク制御チャネルは、該上りリンク制御チャネルに含むデータの種類、つまり下りリンク情報データの復号の成否情報、上りリンクデータチャネルのスケジューリング要求、下りリンクのチャネル状態情報によって、割り当てられる無線リソースを個別に設定できる。
 上りリンク制御チャネルに下りリンク情報データの復号の成否情報を含む場合、上りリンク制御チャネルは、該下りリンク情報データに対応する下りリンクアサインメントに関連付けられたリソースブロックを用いて送信される。また上りリンク制御チャネルは、該下りリンク情報データが送信された下りサブフレームから4サブフレーム以上後の上りサブフレームを用いて送信される。
 上りリンク制御チャネルに上りリンクデータチャネルのスケジューリング要求を含む場合、上りリンク制御チャネルは、上位レイヤーで設定されたリソースブロックを用いて送信される。また上りリンク制御チャネルは、スケジューリング要求が送信可能なサブフレームを用いて送信される。上りリンクデータチャネルのスケジューリング要求が送信可能なサブフレームは、時間周期で設定される。またスケジューリング要求が送信可能なサブフレームは、上位レイヤーから周期情報で設定される。
 上りリンク制御チャネルに下りリンクのチャネル状態情報を含む場合、上りリンク制御チャネルは、上位レイヤーで設定されたリソースブロック情報を用いて送信される。また上りリンク制御チャネルは、上位レイヤーで設定されたサブフレーム情報を用いて送信される。下りリンクのチャネル状態情報を含む上りリンク制御チャネルの送信サブフレームは、時間周期で設定される。また下りリンクのチャネル状態情報を含む上りリンク制御チャネルの送信サブフレームは、上位レイヤーから周期情報で設定される。
 上りリンク端末固有参照信号は、上りリンクデータチャネルや上りリンク制御チャネルで割り当てられたリソースに含まれて送信されるため、上りリンクデータチャネルや上りリンク制御チャネルが送信されるリソースブロックとサブフレームで送信される。
 サウンディング参照信号は、周期的サウンディング参照信号と非周期的サウンディング参照信号で割り当てられる無線リソースを独立に設定できる。
 周期的サウンディング参照信号は、上位レイヤーで設定されたリソースブロック情報を用いて送信される。また周期的サウンディング参照信号は、上位レイヤーで設定されたサブフレーム情報を用いて送信される。周期的サウンディング参照信号の送信サブフレームは、時間周期で設定される。また周期的サウンディング参照信号の送信サブフレームは、上位レイヤーから周期情報で設定される。
 非周期的サウンディング参照信号は、上位レイヤーで設定されたリソースブロック情報を用いて送信される。また非周期的サウンディング参照信号は、上位レイヤーで設定されたサブフレーム情報を用いて送信される。
 次に、トラフィックアダプテーションの方法について説明する。トラフィックアダプテーションには、上り下り設定を可変(再設定、変更)する(TDD UL-DL reconfiguration)方法と、上りリンクサブフレームにも下りリンクサブフレームにも柔軟に設定できるサブフレーム(フレキシブルサブフレーム;frexible subframe)を設定する方法と、がある。
 上り下り設定を可変にする方法は、図3の上り下り設定の表を基に、上り下り設定情報を切り替えて、無線フレーム内における上りリンクサブフレーム数と下りリンクサブフレーム数の割合を変化させる方法である。
 上り下り設定を可変する方法では、基地局は端末に上り下り設定情報をRRCシグナリングで通知され、基本的には無線フレーム長(10ms)よりも長い間隔で切り替える。端末は、基地局より個別に上り下り設定情報をRRCシグナリングで通知される。
 一方で、フレキシブルサブフレームを設定する方法は、端末は所定のサブフレームがフレキシブルサブフレームとして設定され、基地局からの指示によって該フレキシブルサブフレームが上りリンクサブフレームや下りリンクサブフレームに変化する方法である。図8は、フレキシブルサブフレームを含んだ無線フレーム構成の一例である。「U」は上りリンクサブフレーム、「D」は下りリンクサブフレーム、「S」はスペシャルサブフレーム、「U/D」はフレキシブルサブフレームである。図8の例は、サブフレーム番号3、4、8、9のサブフレームがフレキシブルサブフレームである。初めに、端末は、フレキシブルサブフレームを含んだ無線フレーム構成の情報を取得し、無線フレーム内におけるフレキシブルサブフレームの位置を把握する。次に、端末は、基地局からの指示を受けて、上りリンク送信処理もしくは下りリンク受信処理を行う。基地局からの指示は、例えば、上りリンクグラント(PDCCHシグナリング)による指示である。基地局からの指示を受けなかったフレキシブルサブフレームは、初めに設定されたサブフレームの動作を行う。例えば、端末は、基地局からの指示を受けなかったフレキシブルサブフレームを上りリンクサブフレームとみなす。
 フレキシブルサブフレームを設定する方法では、基地局は端末に基となる上り下り設定情報をシステム情報で報知する。つまり、本方法は、基となる無線フレーム構成は設定され、無線フレーム構成に含まれているフレキシブルサブフレームによって、上りリンク通信のリソースと下りリンク通信のリソースを可変する。
 ここで、同じサブフレーム番号において隣接セル間で上りリンクサブフレームと下りリンクサブフレームが設定されると、セル間干渉の一種である基地局-基地局間干渉、端末-端末間干渉が発生する。
 基地局-基地局間干渉は、基地局から送信される下りリンクの信号が隣接セルの基地局の上りリンクに与える干渉である。具体的には、基地局101は端末102からの上りリンク信号の受信処理を行う。同時に、基地局111は端末112に対して下りリンク信号の送信処理を行う。この場合に、基地局111から送信された下りリンク信号は、基地局101の受信装置に入り込み、端末102から送信された上りリンク信号の復号精度を低下させる。すなわち、基地局111から送信された下りリンク信号は、端末102から送信された上りリンク信号に対して干渉信号となる。
 端末-端末間干渉は、端末から送信される上りリンクの信号が隣接セルの端末の下りリンクに与える干渉である。具体的には、端末102は基地局101に対して上りリンク信号の送信処理を行う。同時に、端末112は基地局111からの下りリンク信号の受信処理を行う。この場合に、端末102から送信された上りリンク信号は、端末112の受信装置に入り込み、基地局111から送信された下りリンク信号の復号精度を低下させる。すなわち、端末102から送信された上りリンク信号は、基地局111から送信された下りリンク信号に対して干渉信号となる。
 また、ヘテロジーニアスネットワークで上りリンク通信のカバレッジと下りリンク通信のカバレッジが異なる環境では、端末-端末間干渉は更に顕著となる。RRH121は、基地局111よりも低い電力で送信されるため、下りリンク通信のカバレッジが狭い。一方で、上りリンクのカバレッジは、主に端末の送信電力に依存するため、前記下りリンク通信のカバレッジよりも広いカバレッジが設定されることがある。そのため、同じ端末位置で上りリンクで接続する基地局と下りリンクで接続する基地局が異なる可能性がある。そのような状況において、同じ位置で上りリンク通信を行う端末と下りリンク通信を行う端末が共存する可能性が考えられる。
 以下では、上記のセル間干渉に対して効果を発揮する本実施形態の構成を説明する。
 本発明の第1の実施形態において、上りリンクサブフレームを設定する基地局101と前記基地局101と異なる基地局111が同じ帯域を用いて下りリンクサブフレームが設定された場合、セル間干渉が発生する。そこで、基地局101は、前記基地局101と通信する端末102に対して端末102が送信される予定の上りリンク信号の送信を制限する上りリンクサブフレームもしくはスペシャルサブフレームを設定する。
 上りリンク送信制限サブフレームは、上りリンク信号の送信を制限するサブフレームである。例えば、上りリンク送信制限サブフレームは、上りリンクサブフレームもしくはスペシャルサブフレームに設定することができる。以下では、上りリンク送信制限サブフレームとして設定された上りリンクサブフレームを上りリンクブランクサブフレームもしくは上りリンクミュートサブフレームと呼称し、上りリンク送信制限サブフレームとして設定されたスペシャルサブフレームを、UpPTSブランクサブフレーム、上りリンクブランクスペシャルサブフレーム、もしくは上りリンクミュートスペシャルサブフレームと呼称する。上りリンク送信制限サブフレームが設定された端末が上りリンク信号の送信の制限を行うことで、通信システムは、前記端末が位置するセルとは異なるセルで下りリンク通信を行っている端末に与える干渉を抑制することができる。
 上りリンク信号の送信を行う端末102は、基地局101から上りリンク送信制限サブフレームが設定される。上りリンク送信制限サブフレームが設定された端末102は、セル110に所属する下りリンク信号の受信処理を行う端末112に対して、上りリンク送信制限サブフレームが設定されたサブフレームで送信を予定していた上りリンク信号の制限を行う。これにより、端末112は端末102からの干渉を受けずに基地局111からの下りリンク信号を受信することができる。つまり、上りリンク送信制限サブフレームを設定し、上りリンク信号の送信を制限することにより、端末-端末間干渉を抑制することができる。
 本実施形態では、基地局は、上りリンク送信制限サブフレームの設定に関する情報(上りリンク送信制限サブフレーム設定情報、上りリンクブランクサブフレーム設定情報;uplink blank subframe configuration、上りリンクブランクサブフレームコンフィグ;uplink blank subframeConfig、ミュートサブフレーム設定情報、制限情報)を端末固有に通知する。上りリンク送信制限サブフレーム設定情報は、上りリンク信号の送信を制限するサブフレームを示す。端末は、前記上りリンク送信制限サブフレームの設定に関する情報を基地局から設定される。端末は、前記上りリンク送信制限サブフレームの設定に関する情報で示されたサブフレームが上りリンクサブフレームであった場合、上りリンク信号の送信を制限する。すなわち、上りリンク送信制限サブフレームは、上りリンクサブフレームであり、かつ前記上りリンク送信制限サブフレーム設定情報で示されたサブフレームであるサブフレームと言える。
 基地局は、RRCシグナリングを通じて端末に通知する。すなわち、上りリンク送信制限サブフレームは端末個別に設定できる。基地局101近傍で上りリンク送信を行う端末102-Bは、隣接セル110に存在する下りリンク信号を受信する端末112との距離が離れているため、端末-端末間干渉を与える可能性は低い。この場合において、端末102-Bは、上りリンク信号の送信を停止または制限するサブフレームを端末102-Bが設定された上りリンクサブフレームの総数に対して高頻度で設定すると、上りリンク通信の無線リソースを著しく減少する。そのため、端末102-Bの上りリンク送信制限サブフレームが設定される割合は上りリンクサブフレームの割合に対して少頻度が好ましい。一方で、基地局101の遠方に存在する端末102-Aは、隣接セルに存在する下りリンク信号を受信する端末112との距離が近いため、上りリンク信号が干渉として与える可能性がある。そのため、端末102-Aは、端末112に干渉を与える可能性がある上りリンクサブフレームに対して上りリンク送信制限サブフレームが設定される。端末102-Aは送信する予定であった上りリンク信号の送信が制限されるため、端末102-Aの上りリンク通信のスループットは低下する。一方で、干渉を与える可能性の低い端末102-Bは上りリンク信号を送信できるため、端末102-Bの上りリンク通信のスループットは、低下しない。基地局101と上りリンクで通信する端末で平均されたスループットは、僅かな低下で通信を行うことができる。ゆえに、上りリンク送信制限サブフレームを端末固有に設定することにより、上りリンク送信制限サブフレームを基地局固有(セル固有)に設定する場合と比べて、上りリンク通信のスループット低下が抑圧できる。
 また本実施形態では、基地局は、上りリンク送信制限サブフレーム設定情報を1つ以上のサブフレームを示すサブフレームセットとしてビットマップ形式で通知する。ビットマップ形式とは、各サブフレームに対応するビットの集合体で表され、上りリンク送信制限サブフレームの設定に関する情報は、前記ビットマップのうちのそれぞれのビットに対応するそれぞれのサブフレームにおいて上りリンク送信制限サブフレームの有効または無効を示す情報となる。上りリンク送信制限サブフレームの有効とは、前記ビットに対応するサブフレームを上りリンク送信制限サブフレーム(例えば、上りリンク送信しないサブフレーム)とみなす。また、上りリンク送信制限サブフレームの無効とは、前記ビットに対応するサブフレームを元のサブフレーム、つまり、上りリンクサブフレーム(例えば、上りリンク送信するサブフレーム)もしくはスペシャルサブフレームとみなす。上りリンク送信制限サブフレームの設定と、サブフレームに対応するビットマップの表現例を図9と図10に示す。「U」は上りリンクサブフレーム、「UB」は上りリンクブランクサブフレーム、「D」は下りリンクサブフレーム、「S」はスペシャルサブフレーム、「SB」はUpPTSブランクサブフレームを示す。TDD方式では、1つのコンポーネントキャリア内で、上りリンクサブフレームの他に、下りリンクサブフレーム、スペシャルサブフレームが設定されるため、上記ビットマップ形式の構成は、上りリンクサブフレームおよびスペシャルサブフレームの他に下りリンクサブフレームにもビットが対応する構成と、上りリンクサブフレームおよびスペシャルサブフレームのみにビットが対応する構成の二種類が存在する。
 図9では、上りリンクサブフレーム、下りリンクサブフレーム、またはスペシャルサブフレームをビットマップ形式に含まれるビットの情報で0に対応し、上りリンクブランクサブフレームまたはUpPTSブランクサブフレームをビットマップ形式に含まれるビットの情報で1に対応するように割り当てる。すなわち、ビットマップ形式に含まれるビットの情報が1のとき、上りリンク送信制限サブフレームが有効であることを示し、ビットマップ形式に含まれるビットの情報が0のとき、上りリンク送信制限サブフレームが無効であることを示す。
 図9の方式は、ビットマップ形式に含まれるビット情報が全てのサブフレームに割り当てられる。言い換えると、各サブフレームとビットマップ形式の各ビットが一対一で関連付けられて設定される。
 なお、前記ビットマップ形式に含まれるビットの値に対応するサブフレームは、反転してもよい。つまり、上りリンク信号の送信の制限の設定が有効なサブフレームと0を関連付け、上りリンク信号の送信の制限の設定が無効なサブフレームを1と関連付ける。
 基地局101は、上りリンク送信制限サブフレーム設定情報を図9のビットマップ形式で端末102-A、端末102-BにそれぞれRRCシグナリングを介して通知する。端末102は、前記設定情報を基地局101から受信し、サブフレーム解釈部404に送る。サブフレーム解釈部404は、既にサブフレーム解釈部404で認識された無線フレーム構成を基に、先頭サブフレーム番号から順番に先頭ビットマップを割り当てる。ここで、下りリンクサブフレームに上りリンク送信制限サブフレームの設定された場合は、サブフレーム解釈部404は下りリンクサブフレームとして認識する。これにより、端末102は、基地局から受信した上りリンク送信制限サブフレーム設定情報から、上りリンク送信制限サブフレームで設定されるサブフレームを認識する。
 図9のような上りリンク送信制限サブフレーム設定情報の構成は、下りリンクサブフレームに対してもビットを割り当てるため、端末に余分なビット情報を通知することになってオーバーヘッドの増加を招く可能性がある。そこで、下りリンクサブフレームにビットを割り当てないビットマップ形式の構成の一例を図10に示す。本構成は、具体的には、上りリンクサブフレームまたはスペシャルサブフレームを0、上りリンク送信制限サブフレームを1に対応させる。図10の例の特徴は、上りリンク信号が送信される可能性のない下りリンクサブフレームに割り当てられるビット情報を削減して通知することである。図10の例は、図9の例と比較して、通知に必要な情報量を2ビット削減することができる。
 基地局101は、上りリンク送信制限サブフレーム設定情報を図10のビットマップを端末102-A、端末102-BにそれぞれRRCシグナリングを介して通知する。端末102は、前記設定情報を基地局101から受信し、サブフレーム解釈部404に送る。サブフレーム解釈部404は、既にサブフレーム解釈部404で認識された無線フレーム構成を基に、先頭サブフレーム番号から順番に先頭ビットマップを割り当てる。サブフレームが下りリンクサブフレームである場合は、サブフレーム解釈部404は、解釈処理を次のサブフレームに飛ばすことで、上りリンク送信制限サブフレームで設定される上りリンクサブフレームを認識する。これにより、上りリンク送信制限サブフレームの設定に余分な情報は通知されないので、基地局は、少ないオーバーヘッドで上りリンク送信制限サブフレーム設定情報を端末に通知することができる。
 ここで、UpPTSで送信される上りリンク信号は、上りリンクサブフレームで送信される上りリンク信号と比較して送信されるリソースエレメント数が少なく、干渉を与える影響量が小さいので、通信システムによってはUpPTSブランクサブフレームの設定を行わなくてもよい場合もある。このとき、基地局101は、上りリンクサブフレームを0、上りリンクブランクサブフレームを1と対応して設定し、下りリンクサブフレームとスペシャルサブフレームを通知情報に含めないビットマップ形式の構成で通知することが好ましい。そして、端末102は、前記基地局101から上りリンク送信制限サブフレーム設定情報を取得し、前記設定情報に含まれる各ビットを上りリンクサブフレームと対応させることで、上りリンクブランクサブフレームの設定を認識することができる。上りリンクサブフレームと上りリンクブランクサブフレームのみを設定するビットマップ形式の構成は、図10のビットマップ形式の構成と比較して、更に上りリンク送信制限サブフレームの通知に用いられるビットの総数を削減できる。
 ただし、図10の上りリンクサブフレームおよびスペシャルサブフレームのみにビットが対応する構成は、端末が設定している無線フレーム構成に依存する。ゆえに、上り下り設定情報の再通知などによって基となる無線フレーム構成が変化した場合、端末は、基地局の意図しない上りリンクサブフレームもしくはスペシャルサブフレームを上りリンク送信制限サブフレームとして設定する可能性がある。そのため、本構成では、無線フレーム構成を変更する際に、基地局は、無線フレーム構成の通知と同時に上りリンク送信制限サブフレーム設定情報を通知することが好ましい。また、端末は、無線フレーム構成が変更した場合は、上りリンク送信制限サブフレーム設定情報が通知されるまで、上りリンク送信制限サブフレームの設定を有効にしないことが好ましい。すなわち、端末は、無線フレーム構成の情報のみを受信した場合、無線フレーム構成の変更を行い、前記端末の上りリンク送信制限サブフレームの設定をリセットする。
 端末は、通知された上りリンク送信制限サブフレーム設定情報に含まれるビットマップの最後のビットまで情報を読み込んだ場合、最初のビットに戻って情報を読み込む。例えば、端末は、20ビットのビットマップ形式で上りリンク送信制限サブフレーム設定情報が通知されたとする。サブフレーム番号0からサブフレーム番号19は前記ビットマップの先頭から1番目のビットから20番目のビットに対応する。また、サブフレーム番号20からサブフレーム番号39は前記ビットマップの先頭から1番目のビットから20番目のビットに対応する。以後のサブフレームは、前記ビットマップを繰り返して順番に対応する。
 端末は、上りリンク信号を制限するサブフレームを基地局から設定される。また、上りリンク通信のリソーススケジューリングは、基地局が行う。そのため、基地局は、上りリンク信号を制限するサブフレームが設定された上りリンクサブフレームに、上りリンク信号のリソースを割り当てないようにスケジューリングすることで、上りリンク信号の送信を制限できる。しかしながら、上りリンク信号を制限するサブフレームに上りリンク信号のリソースが割り当てられる場合がある。上りリンク信号が送信される直前に上りリンクグラントを受けずに送信できる上りリンク信号が割り当てられる場合であり、例えば、前記上りリンク信号が周期的に送信される場合が挙げられる。周期的にリソースが割り当てられる上りリンク信号(周期送信上りリンク信号)には、半永続スケジューリングで設定された上りリンクデータチャネル、スケジューリング要求情報を含む上りリンク制御チャネル、下りリンクチャネル状態情報を含む上りリンク制御チャネル、および周期的サウンディング参照信号が含まれる。周期的にリソースが割り当てられる上りリンク信号は、上りリンク送信制限サブフレームにリソースが割り当てられる可能性がある。以下では、上りリンク送信制限サブフレームに上りリンク信号のリソースが割り当てられた場合における上りリンク信号の処理方法を説明する。
 1つの方法として、上りリンク送信制限サブフレームにおいて、送信予定の上りリンク信号を送信せず、前記上りリンク信号を破棄する方法(第1の上りリンク信号処理方法)がある。
 図11は、上りリンク信号を制限するサブフレームに上りリンク信号のリソースが割り当てられた場合の第1の処理方法の概要を示す。図11より、端末102の上りリンク信号のリソースは、サブフレーム番号0、サブフレーム番号5、サブフレーム番号10のサブフレームと、5サブフレーム毎に周期的に割り当てられる。またサブフレーム番号0、サブフレーム番号5、サブフレーム番号10のサブフレームでは、それぞれ上りリンク信号1、上りリンク信号2、上りリンク信号3が送信予定である。このとき、サブフレーム番号5のサブフレームは、上りリンク送信制限サブフレームとして設定されたとする。
 第1の上りリンク信号処理方法では、端末102は、サブフレーム番号5以前で上りリンク信号2を生成せずにサブフレーム番号5のサブフレームで上りリンク信号2を送信しない。もしくは、端末102は、サブフレーム番号5以前で上りリンク信号2を生成するがサブフレーム番号5のサブフレームで上りリンク信号2の送信処理を行わずに上りリンク信号2を破棄する。第1の上りリンク信号処理方法では、端末102はサブフレーム番号5以後のサブフレームにおいても上りリンク信号2を送信しない。
 端末102が第1の上りリンク信号処理方法を行う場合、上位レイヤー400で上りリンク情報データが生成される前であれば、上りリンク信号処理方法決定部430は、端末情報データ処理部401に指示を送り、端末情報データ処理部401で上りリンク情報データを生成しない。もしくは、上位レイヤー400で上りリンク情報データが生成された後であれば、上りリンク信号処理方法決定部430は、上りリンク無線送信部415に指示を送り、上りリンク無線送信部415は、上りリンク送信信号の無線送信処理を行わず、上りリンク送信信号の破棄を行う。
 また、1つの方法として、上りリンク送信制限サブフレームにおいて、送信予定の上りリンク信号を送信せず、次の周期で割り当てられるリソースを用いて前記送信しなかった上りリンク信号を送信する方法(第2の上りリンク信号処理方法)がある。
 図12は、上りリンク信号を制限するサブフレームに上りリンク信号のリソースが割り当てられた場合の第2の上りリンク信号処理方法の概要を示す。図12より、端末102の上りリンク信号のリソースは、サブフレーム番号0、サブフレーム番号5、サブフレーム番号10のサブフレームと、5サブフレーム毎に周期的に割り当てられる。またサブフレーム番号0、サブフレーム番号5、サブフレーム番号10のサブフレームは、それぞれ上りリンク信号1、上りリンク信号2、上りリンク信号3が送信予定である。このとき、サブフレーム番号5のサブフレームは、上りリンク送信制限サブフレームとして設定されたとする。
 第2の上りリンク信号処理方法では、端末102は、サブフレーム番号5以前で上りリンク信号2を生成せずにサブフレーム番号5のサブフレームで上りリンク信号2を送信しない。もしくは、端末102は、サブフレーム番号5以前で上りリンク信号2を生成するがサブフレーム番号5のサブフレームで上りリンク信号2送信処理を行わずに上りリンク信号2を破棄する。第2の上りリンク信号処理方法では、端末102は、サブフレーム番号10以前で上りリンク信号2を生成し、次の周期で割り当てられるサブフレーム番号10のサブフレームのリソースを用いて上りリンク信号2を送信する。なお、サブフレーム番号10のサブフレームで送信予定であった上りリンク信号3は次の周期で割り当てられるリソースを用いて送信される。
 端末102が第2の上りリンク信号処理方法を行う場合、上位レイヤー400で上りリンク情報データが生成される前であれば、上りリンク信号処理方法決定部430は、端末情報データ処理部401に指示を送り、端末情報データ処理部401で上りリンク情報データを生成しない。もしくは、上位レイヤー400で上りリンク情報データが生成された後であれば、上りリンク信号処理方法決定部430は、上りリンク無線送信部415に指示を送り、上りリンク無線送信部415は、上りリンク送信信号の無線送信処理を行わず、上りリンク送信信号の破棄を行う。
 また、1つの方法として、上りリンク送信制限サブフレームにおいて、送信予定の上りリンク信号を送信せず、周期的に割り当てられるリソースとは個別のリソースを用いて前記送信しなかった上りリンク信号を送信する方法(第3の上りリンク信号処理方法)がある。
 図13は、上りリンク信号を制限するサブフレームに上りリンク信号のリソースが割り当てられた場合の第3の上りリンク信号処理方法の概要を示す。図13より、端末102の上りリンク信号のリソースは、サブフレーム番号0、サブフレーム番号5、サブフレーム番号10のサブフレームと、5サブフレーム毎に周期的に割り当てられる。またサブフレーム番号0、サブフレーム番号5、サブフレーム番号10のサブフレームは、それぞれ上りリンク信号1、上りリンク信号2、上りリンク信号3が送信予定である。このとき、サブフレーム番号5のサブフレームは、上りリンク送信制限サブフレームとして設定されたとする。
 第3の上りリンク信号処理方法では、端末102は、サブフレーム番号5以前で上りリンク信号2を生成せずにサブフレーム番号5のサブフレームで上りリンク信号2を送信しない。もしくは、端末102は、サブフレーム番号5以前で上りリンク信号2を生成するがサブフレーム番号5のサブフレームで上りリンク信号2送信処理を行わずに上りリンク信号2を破棄する。第3の上りリンク信号処理方法では、端末102は、サブフレーム番号3で受信した上りリンク信号2の上りリンクグラントで指定されたサブフレーム番号7以前で上りリンク信号2を生成し、前記サブフレーム番号7のサブフレームを用いて上りリンク信号2を送信する。
 周期的に割り当てられる上りリンク信号のリソースとは個別のリソースは、事前に割り当てられるサブフレームである。前記個別のリソースは、例えば、上りリンク送信制限サブフレーム以後のサブフレームで最初の上りリンクサブフレーム、もしくは、RRCシグナリングを介して指定された上りリンクサブフレームで割り当てられる。前記個別のリソースは、前記周期的に割り当てられる上りリンク信号のリソースとは異なるリソースを設定されることが好ましい。図13の例では、サブフレーム番号7のサブフレームが前記個別のリソースとして事前に割り当てられる。この場合は、端末102は、基地局101からの上りリンクグラントによる指示を必要とせずに上りリンク信号2を送信できる。また、上りリンク信号2のリソースブロックは、送信予定であったサブフレーム番号5のサブフレームで割り当てられたリソースブロックと同じリソースブロックである。上りリンク信号2のリソースと他の上りリンク信号とリソースが衝突した場合、端末102は、第1の上りリンク信号処理方法もしくは第2の上りリンク信号処理方法を用いて上りリンク信号2を処理する。
 もしくは、周期的に割り当てられる上りリンク信号のリソースとは個別のリソースは、上りリンク信号2に関連付けた上りリンクグラントもしくはHARQ指示チャネルで割り当てられた上りリンクサブフレームで割り当てられる。基地局101は、端末102に上りリンク信号2に関連付けた上りリンクグラントもしくはHARQ指示チャネルを送信し、図13の例では、サブフレーム番号3の下りリンクサブフレームで端末102に上りリンクグラントを送信する。端末102は、前記上りリンクグラントもしくはHARQ指示チャネルで指定されたサブフレーム番号7のサブフレームで上りリンク信号2を送信する。端末102は、定められた期間で基地局101からの上りリンク信号2に関連付けた上りリンクグラントの受信を待つ。前記定められた期間内に基地局101からの要求を受信しなかった場合、端末102は、第1の上りリンク信号処理方法もしくは第2の上りリンク信号処理方法を用いて上りリンク信号を処理する。前記定められた期間は、例えば、サブフレーム番号5のサブフレームを中心とした前後5サブフレームの期間である。前記定められた期間は、上位レイヤーの情報で端末102に通知される。
 端末102が第3の上りリンク信号処理方法を行う場合、上位レイヤー400で上りリンク情報データが生成される前であれば、上りリンク信号処理方法決定部430は、端末情報データ処理部401に指示を送り、端末情報データ処理部401で上りリンク情報データを生成しない。もしくは、上位レイヤー400で上りリンク情報データが生成された後であれば、上りリンク信号処理方法決定部430は、上りリンク無線送信部415に指示を送り、上りリンク無線送信部415は、上りリンク送信信号の無線送信処理を行わず、上りリンク送信信号の破棄を行う。
 第2および第3の上りリンク信号処理方法は、送信予定であったサブフレームで上りリンク信号が送信せず、以後の上りリンクサブフレームで送信する処理を行う。すなわち、第2および第3の上りリンク信号処理方法は、上りリンク送信制限サブフレームで送信予定であった上りリンク信号の送信を延期する処理であると言える。
 また、1つの方法として、上りリンク送信制限サブフレームにおいて、下りリンク信号に干渉を与えないリソースエレメント配置で上りリンク信号を送信する方法(第4の上りリンク信号処理方法)がある。
 図14は、上りリンク信号を制限するサブフレームに上りリンク信号のリソースが割り当てられた場合の第4の処理方法の概要を示す。図14より、端末102の上りリンク信号のリソースは、サブフレーム番号0、サブフレーム番号5、サブフレーム番号10と、5サブフレーム毎に周期的に割り当てられる。またサブフレーム番号0、サブフレーム番号5、サブフレーム番号10は、それぞれ上りリンク信号1、上りリンク信号2、上りリンク信号3が送信予定である。このとき、サブフレーム番号5のサブフレームは、上りリンク送信制限サブフレームとして設定されたとする。
 第4の上りリンク信号処理方法では、端末102はサブフレーム番号5以前で下りリンク信号に干渉を与えないリソースエレメント配置で上りリンク信号2’を生成して、サブフレーム番号5のサブフレームで上りリンク信号2’の送信処理を行って送信する。
 図15は、下りリンク信号に干渉を与えない上りリンク信号2’のリソースエレメント構成の一例を示す。例えば、隣接するセルの下りリンクサブフレームで下りリンク制御チャネルが用いられている場合、上りリンクデータチャネルおよび上りリンク制御チャネルの先頭3SC-FDMAシンボルは隣接するセルの端末が受信する下りリンク制御チャネルに干渉を与える可能性がある。そこで、干渉を与える可能性のある上りリンク信号のリソースエレメント(下りリンク制御チャネルと干渉する可能性のある領域)の送信は止めて、干渉を与える可能性の少ないリソースエレメントを用いて上りリンク信号の送信を行う。送信を止めるリソースエレメントは、例えば、隣接するセルの下りリンクサブフレームで用いられる下りリンク制御チャネルのOFDMシンボル数と、端末102の上りリンク信号の送信タイミングと端末112の下りリンク信号の受信タイミングとの時間差と、に基づいて決定される。送信を止めるリソースエレメントは、基地局101からRRCシグナリングもしくはPDCCHシグナリングを通じて通知される。
 上りリンク信号2’は、上りリンク情報データから送信を止めるリソースエレメントに配置される予定のビット列を抜いて(パンクチャリング;puncturing)、生成される。または上りリンク信号2’は、上りリンク情報データを最終的に送信される予定のリソースエレメントが配置できるビット数に合わせて誤り訂正符号の符号化率を調整して(レートマッチング;rate matching)、生成される。
 また、第4の上りリンク信号処理方法は、上述の隣接するセルの下りリンクサブフレームで下りリンク制御チャネルに限らず、例えば、隣接するセルの拡張下りリンク制御チャネル、HARQ指示チャネル、下りリンク参照信号、同期信号やNCTで用いられることが想定される検知参照信号とリソースエレメントが重ならないように、上りリンク信号のリソースエレメントの一部を送信しない構成として処理することもできる。
 端末102が第4の上りリンク信号処理方法を行う際に、上りリンク信号処理方法決定部430は、上りリンク送信信号処理部414に指示を送り、上りリンク送信信号処理部414は、下りリンク信号に干渉を与えない信号構成で上りリンクデータチャネル、上りリンク制御チャネル、および上りリンク参照信号のマッピングを行う。
 また、1つの方法として、上りリンク送信制限サブフレームにおいて、下りリンク信号に与える干渉を軽減するように送信電力を制限した上りリンク信号を送信する方法(第5の上りリンク信号処理方法)がある。
 上りリンク信号を高い送信電力で送信することは、隣接するセルの下りリンク信号の受信に対して大きな干渉を与えることになる。一方で、上りリンク信号を低い送信電力で送信することは、下りリンク信号の受信に対する干渉の影響を小さくすることができる。第5の上りリンク信号処理方法では、セル端の付近に位置する端末は、前記端末に設定された送信電力よりも更に低い送信電力で送信する。
 第5の上りリンク信号処理方法では、第4の上りリンク信号処理方法の概要と同様に、図14の例において、端末102はサブフレーム番号5以前で下りリンク信号に与える干渉を軽減するように送信電力を制限した上りリンク信号2を生成して、サブフレーム番号5のサブフレームで上りリンク信号2の送信処理を行って送信する。
 上りリンク信号が与える干渉を軽減する送信電力は、例えば伝搬路推定によって得られる伝搬路減衰値に関連して設定される。具体的には、伝搬路減衰値が高い場合、端末は前記端末が接続している基地局と遠方に位置するため、端末はセル端の付近に位置する可能性が高い。そのため、伝搬路減衰値が所定の閾値を超えた場合に、端末は、送信電力に制限を設けて設定する。前記制限を設けて設定する方法は、例えば、送信制限電力によって送信できる電力の上限を設定する方法、計算された送信予定の電力値から一定の値を減算する方法、計算された送信予定の電力値から伝搬路減衰値に比例した値を減算する方法、がある。前記制限を設けて設定する方法は、上りリンク信号の種類によって個別に設定できる。前記所定の閾値は、基地局から上位レイヤーを介して端末に通知される。
 上りリンク信号が与える干渉を軽減する送信電力は、端末に設定された送信電力よりも低い送信電力で上りリンク信号を送信する。そのため、低い送信電力で送信された前記上りリンク信号は、基地局で受信できない可能性がある。そこで、端末は、同じ上りリンク信号を複数のサブフレームで複数回送信する方法で基地局における受信品質を向上させることができる。例えば、端末102は、上りリンク送信制限サブフレームが設定されたサブフレーム5番のサブフレームにおいて、第5の上りリンク信号処理方法によって上りリンク信号2を設定された送信電力より低い送信電力で送信する。次に、端末102は、以後の上りリンク送信制限サブフレームが設定されたサブフレームにおいて、再度上りリンク信号2を設定された送信電力より低い送信電力で送信する。基地局101は、受信した2つの上りリンク信号2を例えば最大比合成によって受信処理することで、通常の送信電力で送信された上りリンク信号と同等の受信品質を得ることができる。上りリンクデータチャネルが第5の上りリンク信号処理方法によって処理されて送信された場合に、複数回送信する方法は、HARQの機能を用いて実現できる。上りリンクデータチャネル以外の上りリンク信号が第5の上りリンク信号処理方法によって処理されて送信された場合に、複数回送信する方法は、事前に再送信の回数を設定することで実現できる。
 基地局101は、それぞれの上りリンク信号処理方法に対応した受信処理を行う。
 端末102に第1の上りリンク信号処理方法が用いられた場合の一例を示す。基地局101は、サブフレーム番号5のサブフレームにおいて端末102からの上りリンク信号2が送信されないことが既知であるので、上りリンク信号2の受信処理を行わず、また上りリンク信号2が上りリンクデータチャネルを介して送信された場合には上りリンクグラントまたはHARQ指示チャネルを用いて上りリンク信号2に対するACK/NACKを送信しない。そして、基地局101は、サブフレーム番号10のサブフレームで上りリンク信号3の受信処理を行う。
 端末102に第2の上りリンク信号処理方法が用いられた場合の一例を示す。基地局101は、サブフレーム番号5のサブフレームにおいて端末102からの上りリンク信号2が送信されないことが既知であるので、上りリンク信号2の受信処理を行わず、また上りリンク信号2が上りリンクデータチャネルを介して送信された場合には上りリンクグラントまたはHARQ指示チャネルを用いて上りリンク信号2に対するACK/NACKを送信しない。そして、基地局101は、サブフレーム番号10のサブフレームで上りリンク信号2の受信処理を行う。
 端末102に第3の上りリンク信号処理方法が用いられた場合の一例を示す。基地局101は、サブフレーム番号5のサブフレームにおいて端末102からの上りリンク信号2が送信されないことが既知であるので、上りリンク信号2の受信処理を行わない。また、基地局101は、上りリンク信号2に関連付けられた上りリンクグラントもしくはHARQ指示チャネルによってサブフレーム番号5と異なるサブフレーム番号7のサブフレームで上りリンク信号2に対するリソースを割り当てる。基地局101は、前記リソースを割り当てたサブフレーム7のサブフレームで上りリンク信号2の受信処理を行う。
 端末102に第4の上りリンク信号処理方法が用いられた場合の一例を示す。基地局101は、サブフレーム番号5のサブフレームにおいて端末102からの上りリンク信号2は一部のリソースエレメントで送信されないことが既知であるので、送信されないリソースエレメントを含めない構成で上りリンク信号2の受信処理を行う。具体的には、基地局101は、端末102で送信を止めるSC-FDMAシンボルの配置が既知であるから、信号が送信されなかったSC-FDMAシンボルを含めないリソースエレメント構成と認識して復号処理を行う。
 端末102に第5の上りリンク信号処理方法が用いられた場合の一例を示す。基地局101は、サブフレーム番号5のサブフレームにおいて端末102からの上りリンク信号2の受信処理を行う。
 端末は、上記の5種類の上りリンク信号処理方法のうちの1つを用いる。端末は、上りリンク送信制限サブフレームで送信される予定の上りリンク信号に対する上りリンク信号処理として上りリンク信号処理方法の1つを共通に用いる。
 または端末は、上記の5種類の上りリンク信号処理方法のうちの複数を用いる。上りリンク信号処理は、端末ごと、上りリンク物理チャネルごと、および上りリンク情報データごとに個別に設定できる。上りリンク信号処理は、RRCシグナリングを介して設定される。
 例えば、VoIP(Voice over Internet Protocol)データが半永続スケジューリングで設定された上りリンクデータチャネルで送信される場合は、パケットデータの一部が欠損しても影響が小さいため、第1の上りリンク信号処理方法が適用されることが好ましい。VoIPデータ以外の上りリンク情報データが半永続スケジューリングで設定された上りリンクデータチャネルで送信される場合は、全てのパケットデータが欠損しないようにデータを送る必要があるため、第2の上りリンク信号処理方法が適用されることが好ましい。スケジューリング要求情報がPUCCH format 1の信号構成の上りリンク制御チャネルで送信される場合は、第4の上りリンク信号処理方法が適用されることが好ましい。下りリンクチャネル状態情報がPUCCH format 2の信号構成の上りリンク制御チャネルで送信される場合は、第1の上りリンク信号処理方法が適用されることが好ましい。周期的サウンディング参照信号が送信される場合は、第1の上りリンク信号処理方法が適用されることが好ましい。
 また、上りリンク信号処理の適用は、上りリンク物理チャネルに対して個別に設定できる。一例として、基地局は、端末に、周期的サウンディング参照信号のみに第1の上りリンク信号処理を適用する設定を行う。上りリンク信号処理の適用の有無は、RRCシグナリングを介して設定される。これにより、端末は、上りリンク送信制限サブフレームにおいて、第1の上りリンク信号処理方法を用いて周期的サウンディング参照信号を送信しない処理を行う。一方で、他の上りリンクデータチャネルや上りリンク制御チャネルは上りリンク信号処理が設定されていないので、端末は、上りリンク送信制限サブフレームにおいて、他の上りリンクデータチャネルや上りリンク制御チャネルをそのまま送信することができる。すなわち、端末は、上りリンク送信制限サブフレームにおいて、特定の上りリンク物理チャネルを上りリンク信号処理によって送信しないが、一方で、端末は、前記特定の上りリンク物理チャネルを含まない上りリンク信号を送信することができる。
 また、上りリンク信号処理の適用を上りリンク物理チャネルに対して個別に設定できることで、端末は、上りリンク送信制限サブフレームにおいて、特定の上りリンク物理チャネルのみを送信することができ、前記特定の上りリンク物理チャネル以外の上りリンク物理チャネルの送信を制限することができる。一例として、基地局は、端末に、上りリンク制御チャネル以外の上りリンク物理チャネルおよび上りリンク参照信号に第1の上りリンク信号処理を適用する設定を行う。これにより、端末は、上りリンク送信制限サブフレームにおいて、第1の上りリンク信号処理方法を用いて上りリンク制御チャネル以外の上りリンク物理チャネルおよび上りリンク参照信号を送信しない処理を行う。一方で、上りリンク制御チャネルは上りリンク信号処理が設定されていないので、端末は、上りリンク送信制限サブフレームにおいて、上りリンク制御チャネルをそのまま送信することができる。すなわち、端末は、上りリンク送信制限サブフレームにおいて、特定の上りリンク物理チャネル以外の上りリンク物理チャネルを上りリンク信号処理によって送信しないが、一方で、端末は、前記特定の上りリンク物理チャネル以外を含まない上りリンク信号を送信することができる。
 または端末は、上記の5種類の上りリンク信号処理方法のうちの一部または全部を用いて、前記用いられる上りリンク信号処理方法に優先順位を付けて設定される。端末102は、5種類の上りリンク信号処理方法のうちの一部または全部を用い、上りリンク信号処理方法決定部430で上りリンク信号の処理方法に対して順番に処理可否の判別を行い、処理可能な上りリンク信号の処理方法を行う。図16は、上りリンク信号処理方法を決定するフローチャートを示す。例えば、端末102は、第1から第4の上りリンク信号処理方法が採用され、第4の上りリンク信号処理方法、第3の上りリンク信号処理方法、第2の上りリンク信号処理方法、第1の上りリンク信号処理方法、と優先順位が付けて設定される。端末102は、第4の上りリンク信号処理方法の可否の判定を行う(ステップS1601)。第4の上りリンク信号処理方法が可能であれば(ステップS1601;可)、第4の上りリンク信号処理方法を適用し(ステップS1602)、第4の上りリンク信号処理方法では問題が発生する場合は(ステップS1601;否)、第3の上りリンク信号処理方法の可否の判定を行う(ステップS1603)。第3の上りリンク信号処理方法が可能であれば(ステップS1603;可)、第3の上りリンク信号処理方法を適用し(ステップS1604)、第3の上りリンク信号処理方法でも問題が発生する場合は(ステップS1603;否)、第2の上りリンク信号処理方法の可否の判定を行う(ステップS1605)。第2の上りリンク信号処理方法が可能であれば(ステップS1605;可)、第2の上りリンク信号処理方法を適用し(ステップS1606)、第2の上りリンク信号処理方法でも問題が発生する場合は(ステップS1605;否)、第1の上りリンク信号処理方法を適用する(ステップS1607)。
 上りリンク信号処理方法の可否の判定基準は、データの重要度や上りリンク信号が干渉を与える影響量を考慮して、上りリンク物理チャネルおよび上りリンク情報データに対応する基準がそれぞれ個別に設定できる。上りリンク信号処理方法の可否の判定基準は、予め端末で固定的に決定される。もしくは、上りリンク信号処理方法の可否の判定基準は、上位レイヤーからの制御情報を通じて基地局から端末個別に通知される。
 基地局101でビットマップ形式による上りリンク送信制限サブフレーム設定情報を端末102に再度通知すると、端末102は、受信した該上りリンク送信制限サブフレーム設定情報に基づいて上りリンク送信制限サブフレームの設定を上書きする。
 上りリンク送信制限サブフレームの設定を解除する場合は、基地局は、全てのサブフレームにおいて設定しない上りリンク送信制限サブフレーム設定情報をビットマップ形式で端末に通知する。具体的には、基地局は、ビットマップにおいて全てのビットが上りリンク送信制限サブフレームの配置をしないことを示す情報を通知する。端末は、全てのサブフレームにおいて上りリンク送信制限サブフレームを配置されない上りリンク送信制限サブフレーム設定情報を受信すると、全てのサブフレームにおいて上りリンク送信制限サブフレームが配置されない設定に上書きする。
 もしくは、上りリンク送信制限サブフレームの設定を解除する場合は、基地局は1ビットの上りリンク送信制限サブフレーム有効/無効情報を端末に通知する。上りリンク送信制限サブフレーム有効/無効情報が有効(TRUE、1)の場合は、前記上りリンク送信制限サブフレーム設定情報で通知された上りリンク送信制限サブフレームは、有効となる(以下、有効状態と呼称する)。上りリンク送信制限サブフレーム有効/無効情報が無効(FALSE、0)の場合は、前記ビットマップ形式で通知された上りリンク送信制限サブフレームは、無効となり、端末は全てのサブフレームにおいて元の無線フレーム構成と認識する(以下、無効状態と呼称する)。
 図17に、上りリンク送信制限サブフレームの設定状態の遷移に対する上りリンク送信制限サブフレーム有効/無効情報の組み合わせ表を示す。無効状態から有効状態に遷移させる場合、基地局は、上りリンク送信制限サブフレーム設定情報を通知せず、有効を示す上りリンク送信制限サブフレーム有効/無効情報を端末に通知する。また、有効状態から無効状態に遷移させる場合、基地局は、上りリンク送信制限サブフレーム設定情報を通知せず、無効を示す上りリンク送信制限サブフレーム有効/無効情報を端末に通知する。無効状態から有効状態に遷移させると同時に上りリンク送信制限サブフレームを再設定する場合、基地局は、再設定の上りリンク送信制限サブフレーム設定情報と有効の上りリンク送信制限サブフレーム有効/無効情報を同時に通知する。上りリンク送信制限サブフレームを再設定のみを行う場合、基地局は、再設定の上りリンク送信制限サブフレーム設定情報を通知する。設定状態が遷移しなければ、基地局は、上りリンク送信制限サブフレーム有効/無効情報は通知しなくてもよい。
 以上、本発明の第1の実施形態について説明した。本発明の第1の実施形態により、上りリンク通信に起因するセル間干渉を低減し、通信システム全体のスループットを向上することができる。
 (第2の実施形態)
 以下では、第2の実施形態について説明する。なお、以下では第1の実施形態と異なる部分が説明され、説明されない部分は第1の実施形態と同じである。
 本実施形態では、上りリンク送信制限サブフレームの配置は、サブフレームセットとして周期情報と配置情報で設定される。図18および図19は、上りリンク送信制限サブフレームが周期的に設定される場合における無線フレーム構成の一例を示す。図18では、上り下り設定情報が0の無線フレーム構成において、無線フレーム番号が偶数番号のときのサブフレーム番号4のサブフレームが上りリンク送信制限サブフレームとして設定される。また、図19では、図18の例に加えて無線フレーム番号が3の倍数のときのサブフレーム番号7のサブフレームが上りリンク送信制限サブフレームとして設定される。なお、上りリンク送信制限サブフレームは、サブフレームの周期と、所定の基準となるサブフレームに対するサブフレームのオフセット(シフト)とで設定されてもよい。図18の例では、上りリンク送信制限サブフレームは、サブフレームの周期が20であり、所定の基準となるサブフレームに対するサブフレームのオフセットが4である。図19の例では、上りリンク送信制限サブフレームは、サブフレームの周期が30であり、所定の基準となるサブフレームに対するサブフレームのオフセットが7である。
 基地局は、上りリンク送信制限サブフレーム周期情報(上りリンクブランクサブフレーム周期情報、上りリンクブランクサブフレームペリオディシティ;uplink blank subframe periodicity)と上りリンク送信制限サブフレーム配置情報(上りリンクブランクサブフレーム配置情報、上りリンクブランクサブフレームオフセット;uplink blank subframe offset)を端末に通知する。上りリンク送信制限サブフレーム周期情報と上りリンク送信制限サブフレーム配置情報は、RRCシグナリングを介して端末固有に通知される。前記端末は、取得した上りリンク送信制限サブフレーム周期情報および上りリンク送信制限サブフレーム配置情報によって上りリンク送信制限サブフレームの位置を認識する。ここで、下りリンクサブフレームが上りリンク送信制限サブフレームとして設定された場合は、端末は下りリンクサブフレームとして認識する。
 上りリンク送信制限サブフレーム配置情報は、上りリンク送信制限サブフレーム周期情報と組み合わせて情報が決定される。例えば、20サブフレーム周期の場合では、上りリンク送信制限サブフレーム配置情報として20サブフレームのうちの1つを指定する。図18の例では、上りリンク送信制限サブフレーム周期情報は20、上りリンク送信制限サブフレーム配置情報は4となる。これより、上りリンク送信制限サブフレーム配置情報は上りリンク送信制限サブフレーム周期情報を超える設定はできないので、上りリンク送信制限サブフレーム配置情報の情報量は上りリンク送信制限サブフレーム周期情報によって変化する。
 また、上りリンク送信制限サブフレーム配置情報と上りリンク送信制限サブフレーム周期情報は、前記上りリンク送信制限サブフレーム配置情報と前記上りリンク送信制限サブフレーム周期情報とを組み合わせて1つの上りリンク送信制限サブフレーム設定情報で構成することで、効率よく通知することができる。図20に、1つの上りリンク送信制限サブフレーム設定情報の値に対応する上りリンク送信制限サブフレーム配置情報および上りリンク送信制限サブフレーム周期情報の値の関係を示す表である。上りリンク送信制限サブフレーム設定情報は、RRCシグナリングを介して端末固有に通知される。端末は、上りリンク送信制限サブフレーム設定情報を受信し、図20の対応表を用いて上りリンク送信制限サブフレーム配置情報および上りリンク送信制限サブフレーム周期情報を取得する。このように、1つの上りリンク送信制限サブフレーム設定情報に纏めることによって、上りリンク送信制限サブフレーム周期情報に対する上りリンク送信制限サブフレーム配置情報の情報量の変動を抑え、効率のよい通知が可能となる。
 上りリンク送信制限サブフレーム周期情報と上りリンク送信制限サブフレーム配置情報は1つの端末に対して複数設定できる。例えば、図19に示す構成例のように、周期的に割り当てられる上りリンク送信制限サブフレームが2つ設定される。この様に、上りリンク送信制限サブフレームを周期以外のサブフレームに配置する場合においても、複数の上りリンク送信制限サブフレーム周期情報および複数の上りリンク送信制限サブフレーム配置情報を用いることで柔軟な設定を可能とする。
 1つの上りリンク送信制限サブフレーム周期情報を共有化することで、前記1つの上りリンク送信制限サブフレーム周期情報および複数の上りリンク送信制限サブフレーム配置情報から、周期的に割り当てられる上りリンク送信制限サブフレームを複数設定することができる。例えば、上りリンク送信制限サブフレーム配置情報は、複数の上りリンク送信制限サブフレーム配置情報であると言える第1の実施形態に記載したビットマップ形式で構成される。この場合は、上りリンク送信制限サブフレーム設定は、連続して繰り返さずに、上りリンク送信制限サブフレーム周期情報で示されたサブフレーム数を待って繰り返し適用される。具体的には、総数20ビットのビットマップと上りリンク送信制限サブフレーム周期情報が40と通知された場合、サブフレーム番号0から19のサブフレームは前記ビットマップの1番目から20番目のビットに対応し、サブフレーム番号20から39のサブフレームは前記ビットマップのビットに対応せず、サブフレーム番号40から59のサブフレームは前記ビットマップの1番目から20番目のビットに対応する。
 上りリンク送信制限サブフレームの設定を変更する場合は、基地局は、新たな上りリンク送信制限サブフレーム設定情報、または、新たな上りリンク送信制限サブフレーム周期情報および新たな上りリンク送信制限サブフレーム配置情報、を端末に対して再度通知する。端末は、前記新たな上りリンク送信制限サブフレーム周期情報および前記新たな上りリンク送信制限サブフレーム配置情報から上りリンク送信制限サブフレームの設定を上書きする。
 本実施形態において、上りリンク送信制限サブフレームの設定を解除する場合は、基地局は、設定の解除を示す上りリンク送信制限サブフレーム周期情報として端末に通知する。前記設定の解除を示す上りリンク送信制限サブフレーム周期情報は、例えば、周期0の情報である。端末は、前記上りリンク送信制限サブフレーム周期情報を受信し、サブフレーム解釈部404で設定の解除を示す上りリンク送信制限サブフレーム周期情報を認識することで、上りリンク送信制限サブフレームの設定をリセットし、元の無線フレーム構成として認識する。もしくは、上りリンク送信制限サブフレームの設定を解除する場合は、基地局は、設定の解除を示す上りリンク送信制限サブフレーム配置情報を端末に通知する。前記設定の解除を示す上りリンク送信制限サブフレーム配置情報は、例えば、どこにも配置しないことを示す情報であり、ビットマップ形式では全てのビットが0である。前記端末は、前記上りリンク送信制限サブフレーム配置情報を受信し、サブフレーム解釈部404で設定の解除を示す上りリンク送信制限サブフレーム配置情報を認識することで、上りリンク送信制限サブフレームの設定をリセットし、元の無線フレーム構成として認識する。もしくは、上りリンク送信制限サブフレームの設定を解除する場合は、基地局は、設定の解除を示す上りリンク送信制限サブフレーム設定情報を端末に通知する。前記端末は、前記上りリンク送信制限サブフレーム設定情報を受信し、サブフレーム解釈部404で設定の解除を示す上りリンク送信制限サブフレーム設定情報を認識することで、上りリンク送信制限サブフレームの設定をリセットし、元の無線フレーム構成として認識する。
 以上、本発明の第2の実施形態について説明した。
 (第3の実施形態)
 以下では、第3の実施形態について説明する。本実施形態は、無線フレーム構成に関連付けた上りリンク送信制限サブフレーム設定情報を通知することで、上りリンク送信制限サブフレームを設定する。なお、以下では第1の実施形態と異なる部分が説明され、説明されない部分は第1の実施形態と同じである。なお、第3の実施形態で説明する発明は、第2の実施形態にも適用できる。
 端末-端末間干渉は、多くの場合に隣接するセル間において上りリンクサブフレームと下りリンクサブフレームが異なる通信システム環境で発生する。すなわち、端末-端末間干渉が発生する可能性があるサブフレームは、基地局(自基地局、接続基地局、サービング基地局、サービングセル)のサブフレーム設定と前記基地局のセルと隣接するセルの基地局(隣接基地局、隣接セル、干渉基地局、干渉セル)のサブフレーム設定に依存する。本実施形態では、隣接セル間で上りリンクサブフレームと下りリンクサブフレームが異なる可能性があるサブフレームに対応付けて、上りリンク送信制限サブフレームを設定する。
 フレキシブルサブフレームによってトラフィックアダプテーションを行う場合と、上り下り設定を可変にしてトラフィックアダプテーションを行う場合と、で干渉を及ぼすサブフレームの想定が異なるため、それぞれのトラフィックアダプテーション方法での本実施形態について説明する。
 先ず、フレキシブルサブフレームによってトラフィックアダプテーションを行う場合について説明する。
 フレキシブルサブフレームによってトラフィックアダプテーションを行う場合の一例として、図8のフレキシブルサブフレームを含んだ無線フレーム構成が設定した場合を想定する。全てのセルで前記無線フレーム構成が用いられた場合、同じサブフレームにおいて隣接セル間で上りリンク通信と下りリンク通信が行われる可能性があるサブフレームは、フレキシブルサブフレームとして設定されたサブフレーム番号3、4、8、9である。ゆえに、サブフレーム番号3、4、8、9に上りリンク送信制限サブフレームが設定されることが好ましい。以下、端末-端末間干渉が発生する可能性のあるサブフレーム上りリンク送信制限サブフレーム候補と呼称する。この場合、フレキシブルサブフレームは、上りリンク送信制限サブフレーム候補であると言える。
 図21は、フレキシブルサブフレームに関連付けて設定された上りリンク送信制限サブフレームを含んだ無線フレーム構成の設定表の一例である。「UB/D」は、PDCCHシグナリングによって下りリンクサブフレームと上りリンク送信制限サブフレームを切り替えるサブフレームである。上りリンク送信制限サブフレーム設定情報は、フレキシブルサブフレームと、下りリンクサブフレームと上りリンク送信制限サブフレームを切り替えるサブフレームと、のサブフレーム配置を示す。
 基地局は、図8のフレキシブルサブフレームを含んだ無線フレーム構成の情報をシステム情報に含んで端末に報知し、セル内の端末へ共通に基となる無線フレーム構成を設定する。次に、基地局は、上りリンク送信制限サブフレーム設定情報をRRCシグナリングで端末固有に通知する。端末は、前記上りリンク送信制限サブフレーム設定情報を用いて前記無線フレーム構成に対応して下りリンクサブフレームと上りリンク送信制限サブフレームとを切り替えるサブフレームを認識する。なお、上りリンク送信制限サブフレーム設定情報が通知される前は、端末は上りリンク送信制限サブフレームが設定されない元の無線フレーム構成として認識する。
 上りリンク送信制限サブフレームの設定を変更する場合、基地局は、基地局と接続する端末に対して前記上りリンク送信制限サブフレームの設定を示す新たな上りリンク送信制限サブフレーム設定情報をRRCシグナリングを介して通知する。前記端末は、受信した新たな上りリンク送信制限サブフレーム設定情報から、前記端末の上りリンク送信制限サブフレームの設定を上書きする。
 基地局が設定する無線フレーム構成を変更する場合、基地局は、基地局の新たな無線フレーム構成の情報を前記基地局と接続する端末にシステム情報もしくはRRCシグナリングに含んで通知し、更に前記新たな無線フレーム構成に反映した新たな上りリンク送信制限サブフレーム設定情報を前記端末にRRCシグナリングを介して通知する。前記端末は、前記新たな無線フレーム構成の情報を受信し、新たな無線フレーム構成の設定を上書きし、前記端末の上りリンク送信制限サブフレームの設定をリセットする。すなわち、前記端末は、新たな無線フレーム構成を認識した直後は、上りリンク送信制限サブフレームが配置されない新たな無線フレーム構成として認識する。その後に、前記端末は、受信した前記上りリンク送信制限サブフレーム設定情報から、サブフレーム解釈部404で前記端末の上りリンク送信制限サブフレームの配置を行う。
 上りリンク送信制限サブフレームの設定を解除する場合、基地局は、上りリンク送信制限サブフレームが配置されない無線フレーム構成を示す上りリンク送信制限サブフレーム設定情報を用いて端末に通知する。一例として、図21において、上りリンク送信制限サブフレーム設定情報を0として通知する。
 次に、上り下り設定を可変にしてトラフィックアダプテーションを行う場合について説明する。
 上り下り設定を可変にしてトラフィックアダプテーションを行う場合の一例として、自基地局が基地局101であって、上り下り設定情報を0として設定し、隣接基地局は基地局111であって、上り下り設定情報を1として設定した場合を想定する。図22に、自基地局の上り下り設定情報を0、隣接基地局の上り下り設定情報を1と設定した場合における上りリンク送信制限サブフレーム候補の一例を示す。図3の上り下り設定情報の対応表より、基地局101と基地局111で設定される上り下り設定情報が既知であれば、基地局101は、基地局101と基地局111間で上りリンクサブフレームと下りリンクサブフレームと異なって通信するサブフレームがサブフレーム番号4とサブフレーム番号9であることを知ることができる。すなわち、自基地局の上り下り設定情報と隣接基地局の上り下り設定情報を取得することができれば、自基地局は、端末-端末間干渉が発生する可能性のある上りリンク送信制限サブフレーム候補を認知することができる。本実施形態では、上りリンク送信制限サブフレームは、自基地局の上り下り設定情報と隣接基地局の上り下り設定情報とに関連付けて設定する。
 図23、図24、図25、図26、図27、図28、および、図29は、自基地局の上り下り設定情報がそれぞれ0、1、2、3、4、5、6と設定された場合における隣接基地局の上り下り設定情報に対応する上りリンク送信制限サブフレームの設定の一例を示す。図23、図24、図25、図26、図27、図28、および、図29は、図3の上り下り設定情報による無線フレーム構成の表を拡張した無線フレーム構成であり、自基地局の上り下り設定情報、隣接基地局の上り下り設定情報、および上りリンク送信制限サブフレーム設定情報から上りリンク送信制限サブフレームを含めた無線フレーム構成を表す。自基地局の上り下り設定情報および隣接基地局の上り下り設定情報から、端末-端末間干渉が発生する可能性のあるサブフレームを上りリンク送信制限サブフレーム候補が決定する。次に、上りリンク送信制限サブフレームが設定される無線フレーム構成は、上りリンク送信制限サブフレーム設定情報によって決定される。上りリンク送信制限サブフレーム設定情報を変更することで、上りリンク信号の送信の制限を行うサブフレームの割合を変更できる。
 例えば、基地局101は、基地局101が設定する上り下り設定情報と、基地局111が設定する上り下り設定情報と、を認識する。基地局101と基地局111との間はバックホール回線103で接続されており、基地局101はバックホール回線103を通じて基地局111が設定する上り下り設定情報を取得する。基地局101は、基地局101が設定する上り下り設定情報と、基地局111が設定する上り下り設定情報から、例えば、図23、図24、図25、図26、図27、図28、図29の対応表を用いて上りリンク送信制限サブフレームを設定し、端末102に対して上りリンク送信制限サブフレーム設定情報を通知する。
 基地局は、端末に、少なくとも自基地局の上り下り設定情報と、隣接基地局の上り下り設定情報と、上りリンク送信制限サブフレーム設定情報と、を通知する。隣接基地局の上り下り設定情報と上りリンク送信制限サブフレーム設定情報は、RRCシグナリングを介して端末固有に(個別に)通知される。なお、隣接基地局の上り下り設定情報または上りリンク送信制限サブフレーム設定情報が通知される前は、端末は上りリンク送信制限サブフレームが配置されない無線フレーム構成として認識する。
 上りリンク送信制限サブフレームの設定を変更する場合、自基地局は、自基地局と接続する端末に対して前記上りリンク送信制限サブフレームの設定を示す新たな上りリンク送信制限サブフレーム設定情報をRRCシグナリングを介して通知する。前記端末は、受信した新たな上りリンク送信制限サブフレーム設定情報から、前記端末の上りリンク送信制限サブフレームの設定を上書きする。
 自基地局が設定する上り下り設定情報を変更する場合、自基地局は、自基地局の新たな上り下り設定情報を前記自基地局と接続する端末にシステム情報もしくはRRCシグナリングに含んで通知し、更に前記新たな上り下り設定情報を反映した新たな上りリンク送信制限サブフレーム設定情報を前記端末にRRCシグナリングを介して通知する。前記端末は、前記新たな上り下り設定情報を受信し、新たな無線フレーム構成を認識して設定を上書きし、上りリンク送信制限サブフレームの設定をリセットする。すなわち、前記端末は、新たな無線フレーム構成を認識した直後は、上りリンク送信制限サブフレームが配置されない無線フレーム構成として認識する。その後に、前記端末は、隣接基地局が設定する上り下り設定情報と受信した前記上りリンク送信制限サブフレーム設定情報から、サブフレーム解釈部404で上りリンク送信制限サブフレームの設定を行う。
 また、隣接基地局が設定する上り下り設定情報が変更される場合、隣接基地局は、自基地局に対してバックホール回線を介して隣接基地局が設定する新たな上り下り設定情報を通知する。自基地局は、取得した隣接基地局が設定する上り下り設定情報に対応した新たな上りリンク送信制限サブフレーム設定情報を決定し、前記隣接基地局が設定する上り下り設定情報および前記新たな上りリンク送信制限サブフレーム設定情報を自基地局に接続する端末にRRCシグナリングを介して通知する。前記端末は、上りリンク送信制限サブフレーム設定情報が変更された場合と同様の動作を行う。
 上りリンク送信制限サブフレームの設定を解除する場合、基地局は、上りリンク送信制限サブフレームが配置されない無線フレーム構成を示す上りリンク送信制限サブフレーム設定情報を用いて端末に通知する。一例として、図23、図24、図25、図26、図27、図28、図29において、基地局は、上りリンク送信制限サブフレーム設定情報を0として通知する。
 もしくは、上りリンク送信制限サブフレームの設定を解除する場合、基地局は、変更前と同じ上り下り設定情報を新たな上り下り設定情報として端末に通知する。前記端末は、新たな上り下り設定情報によって設定を上書きし、上りリンク送信制限サブフレーム設定情報をリセットする。すなわち、前記端末の無線フレーム構成は変化されずに、上りリンク送信制限サブフレームの設定がリセットされる。
 上記では、自基地局は、自基地局と1つの隣接基地局の間の上り下り設定情報に関連付けて上りリンク送信制限サブフレームを設定した。しかしながら、図1の基地局111は、基地局101とRRH121と隣接する関係にあるように、隣接基地局が複数存在する場合も考えられる。この様な場合においては、図23、図24、図25、図26、図27、図28、図29の対応表で参照される隣接基地局の上り下り設定情報は、最も下りリンクサブフレームの割合が多い隣接基地局の上り下り設定情報が適用される。
 例えば、基地局101の上り下り設定情報が0、基地局111の上り下り設定情報が1、RRH121の上り下り設定情報が2で設定した場合に、基地局111は、基地局101およびRRH121の上り下り設定情報をバックホール回線103およびバックホール回線113を介して取得する。基地局111は、基地局101の上り下り設定情報とRRH121の上り下り設定情報を比較し、下りリンクサブフレームの割合が多いRRH121の上り下り設定情報を隣接基地局の上り下り設定として参照する。そして、基地局111は、図23の設定表を用いて、上りリンク送信制限サブフレーム設定情報を決定する。基地局111は、基地局111の上り下り設定情報と、RRH121の上り下り設定情報と、前記上りリンク送信制限サブフレーム設定情報と、を基地局111に接続する端末112に通知する。端末112は、隣接基地局が1つの場合と同様に、上りリンク送信制限サブフレームの設定を行う。
 もしくは隣接基地局が複数存在する場合、通信システムは、複数の隣接基地局に対応した上りリンク送信制限サブフレームを含む無線フレーム構成表を適用する。例えば、基地局111の隣接基地局である基地局101を隣接基地局1、もう一方の隣接基地局であるRRH121を隣接基地局2とする。図30は、自基地局の上り下り設定情報が1、隣接基地局1の上り下り設定情報が2と設定された場合における隣接基地局2の上り下り設定情報に対応する無線フレーム構成の一例を示す。基地局111は、基地局101およびRRH121の上り下り設定情報をバックホール回線103およびバックホール回線113を介して取得する。基地局111は、図30の設定表を用いて、上りリンク送信制限サブフレーム設定情報を決定する。基地局111は、基地局111の上り下り設定情報と、基地局101およびRRH121の上り下り設定情報と、前記上りリンク送信制限サブフレーム設定情報と、を基地局111に接続する端末112に通知する。端末112は、図30の設定表を用いて、基地局111、基地局101、およびRRH121の上り下り設定情報、ならびに前記上りリンク送信制限サブフレーム設定情報、から上りリンク送信制限サブフレームの設定を行う。
 基地局および端末で上りリンク送信制限サブフレーム候補であるサブフレームにおいて常に上りリンク送信制限サブフレームが設定されることが既知である場合、基地局は、上りリンク送信制限サブフレーム候補の情報を通知し、上りリンク送信制限サブフレーム設定情報の通知を省略することができる。フレキシブルサブフレームによるトラフィックアダプテーション方法であれば、基地局は、フレキシブルサブフレームの位置を通知し、上りリンク送信制限サブフレーム設定情報の通知は省略することができる。上り下り設定の可変によるトラフィックアダプテーション方法であれば、基地局は、自基地局および隣接基地局の上り下り設定情報を通知し、上りリンク送信制限サブフレーム設定情報の通知は省略することができる。
 以上、本発明の第3の実施形態について説明した。本実施形態では、上りリンク送信制限サブフレーム設定情報は、上りリンク送信制限サブフレーム数と関連付けた番号で設定したが、上記の上りリンク送信制限サブフレーム設定情報および無線フレーム構成に限らない。例えば、上りリンク送信制限サブフレーム設定情報は、上りリンク送信制限サブフレーム候補となるサブフレームと対応するビットマップであってもよい。
 (第4の実施形態)
 以下では、第4の実施形態について説明する。なお、以下では第1から第3の実施形態と異なる部分が説明され、説明されない部分は第1から第3の実施形態と同じである。
 本実施形態では、基地局は、システム情報に上りリンク送信制限サブフレーム設定情報を含めて報知する。
 前記端末は、前記基地局が送信するシステム情報に含まれる上りリンク送信制限サブフレーム設定情報を用いて上りリンク送信制限サブフレームの設定を行う。本方式では、前記基地局が構成するセル内の全ての端末は、上りリンク送信制限サブフレームの設定を適用する。なお、上りリンク送信制限サブフレームの設定に関する情報と無線フレーム構成の情報とが同じシステム情報に含んで報知される場合、基地局は、上りリンク送信制限サブフレームを含んだ無線フレーム構成の情報をシステム情報に含めて報知してもよい。
 もしくは端末は、システム情報に含まれる上りリンク送信制限サブフレーム設定情報と上りリンク送信制限サブフレーム適用判定を用いて上りリンク送信制限サブフレームの設定を行う。本方式では、前記端末は上りリンク送信制限サブフレーム適用判定を用いることで、システム情報を用いながら所定の端末に上りリンク送信制限サブフレームの設定を適用させることができる。例えば、通信システムは、セル中心に存在する端末102-Bなどの上りリンク送信制限サブフレームの設定を適用しない端末に前記上りリンク送信制限サブフレーム適用判定によって上りリンク送信制限サブフレームを適用させず、また端末-端末間干渉を与える可能性の高い端末102-Aに前記上りリンク送信制限サブフレーム適用判定によって上りリンク送信制限サブフレームを適用させることができる。上りリンク送信制限サブフレーム適用判定に用いられる基準は、上位レイヤーにより基地局から端末に通知される。
 上りリンク送信制限サブフレーム適用判定は、サブフレーム解釈部404によって行われる。図31は、システム情報に含まれる上りリンク送信制限サブフレーム設定情報を受信したときの上りリンク送信制限サブフレーム適用判定のフローチャートを示す。端末は、該端末が接続している基地局からのシステム情報を受信し、上りリンク送信制限サブフレーム設定情報を取得する(ステップS3101)。次に、端末は、上りリンク送信制限サブフレーム適用判定を行う(ステップS3102)。前記上りリンク送信制限サブフレーム適用判定は、前記端末は前記上りリンク送信制限サブフレーム設定情報で示されたサブフレームにおいて上りリンク信号の送信の停止または送信の制限を行うか否かを判定する。例えば、上りリンク送信制限サブフレーム適用判定に用いられる基準として、端末は、該端末が接続している基地局からの送信信号に対する下りリンク信号の受信電力と閾値との比較を行う。前記下りリンク信号の受信電力は、例えば下りリンク参照信号の受信電力(RSRP;Reference Signal Received Power)である。前記受信電力が閾値よりも高い場合は(ステップS3102;受信電力>閾値)、端末は、該端末がセル中心に存在していると判断し、全てのサブフレームにおいて上りリンク送信制限サブフレームの設定は行わない(ステップS3103)。一方、前記受信電力が閾値よりも低い場合は(ステップS3102;閾値>受信電力)、端末は、該端末がセル端に存在すると判断し、取得した上りリンク送信制限サブフレーム設定情報を用いて上りリンク送信制限サブフレームを適用する(ステップS3104)。
 端末が行う前記上りリンク送信制限サブフレーム適用判定は、前記端末が接続している基地局からの送信信号に対する下りリンク信号の受信電力の代わりに、下りリンク信号の受信品質と該受信品質に対応する閾値を用いてもよい。前記下りリンク信号の受信品質は、例えば下りリンク参照信号の受信品質(RSRQ;Reference Signal Received Quality)である。
 また前記上りリンク送信制限サブフレーム適用判定は、隣接基地局からの送信信号に対する下りリンク信号の受信電力と該受信電力に対応する閾値との判定を加えて用いると、端末がセル端に存在するか否かの判定の精度が向上する。この場合、隣接基地局からの下りリンク信号の受信電力が該受信電力に対応する閾値よりも高い場合は、端末は、該端末が接続している基地局が構成するセルと隣接基地局が構成するセルとの境界付近に位置していると判断する。一方で、隣接基地局から下りリンク信号の受信電力が該受信電力に対応する閾値よりも低い場合は、端末は、境界付近以外に位置していると判断する。端末がセル端に存在するか否かの判定に用いられる閾値は、予め基地局から取得する。
 また、基地局は、上りリンク送信制限サブフレーム設定情報を複数通知する。端末は、上りリンク送信制限サブフレーム適用判定より、該端末に適した上りリンク送信制限サブフレーム設定情報を選択することもできる。この場合、端末は、少なくとも上りリンク送信制限サブフレーム設定情報の数より1つ少ない数の判定基準を必要とする。基地局は、前記複数の上りリンク送信制限サブフレーム適用判定の基準を上位レイヤーから前記端末に通知する。
 図32に、二種類の上りリンク送信制限サブフレーム設定情報を受信したときの上りリンク送信制限サブフレーム適用判定のフローチャートを示す。端末は、事前に基地局から上りリンク送信制限サブフレーム適用判定の基準として閾値1と閾値2を取得する。端末は、該端末が接続している基地局からシステム情報を受信し、上りリンク送信制限サブフレーム設定情報1および上りリンク送信制限サブフレーム設定情報2を取得する(ステップS3201、ステップS3202)。次に、端末は、上りリンク送信制限サブフレーム適用判定を行う(ステップS3203)。前記上りリンク送信制限サブフレーム適用判定は、例えば、基地局からの送信信号に対する下りリンク信号の受信電力と閾値1および閾値2との比較を行う。前記受信電力が閾値1よりも高い場合は(ステップS3203;受信電力>閾値1)、全てのサブフレームにおいて上りリンク送信制限サブフレームを配置しない(ステップS3204)。前記受信電力が閾値1よりも低く、閾値2より高い場合は(ステップS3203;閾値1>受信電力>閾値2)、取得した上りリンク送信制限サブフレーム設定情報1を用いて上りリンク送信制限サブフレームが適用される(ステップS3205)。前記受信電力が閾値2より低い場合は(ステップS3203;閾値2>受信電力)、取得した上りリンク送信制限サブフレーム設定情報2を用いて上りリンク送信制限サブフレームが適用される(ステップS3206)。
 端末は、上りリンク送信制限サブフレーム設定情報を受信した時に上記の上りリンク送信制限サブフレーム適用判定を行う。上記の受信電力は、上記の上りリンク送信制限サブフレーム適用判定を行う前に端末で計算され、前記端末で受信電力を示す情報として保持される。上記の上りリンク送信制限サブフレーム適用判定を行う際に、端末は、前記保持した受信電力を示す情報を用いる。
 また端末は、下りリンク信号の受信電力を計算した時に上記の上りリンク送信制限サブフレーム適用判定を行う。上りリンク送信制限サブフレーム設定情報は、上記の上りリンク送信制限サブフレーム適用判定を行う前に端末に受信され、前記端末で保持される。上記の上りリンク送信制限サブフレーム適用判定を行う際に、端末は、前記上りリンク送信制限サブフレーム設定情報を用いる。
 また端末は、定期的に上記の上りリンク送信制限サブフレーム適用判定を行う。端末は、上りリンク送信制限サブフレーム設定情報を含んだシステム情報と上りリンク送信制限サブフレーム適用判定を行う周期を示す情報を受信した後、上りリンク送信制限サブフレーム設定情報を保持する。端末は、受信した上りリンク送信制限サブフレーム適用判定を行う周期を示す情報から、上りリンク送信制限サブフレーム適用判定を行うタイミングを認識し、前記タイミングで上りリンク送信制限サブフレーム適用判定を行う。端末は、前記保持した上りリンク送信制限サブフレーム設定情報と受信電力を用いて上りリンク送信制限サブフレーム適用判定を行う。上記の上りリンク送信制限サブフレーム適用判定を行う間隔は、受信電力の計算間隔と比べて同間隔か長い間隔であることが好ましい。前記上りリンク送信制限サブフレーム適用判定を行う周期情報は、上位レイヤーを介して基地局から端末に通知される。
 上りリンク送信制限サブフレームの設定を変更する場合は、基地局は、新たな上りリンク送信制限サブフレーム設定情報をシステム情報に含めて端末に報知する。端末は受信した前記システム情報から新たな上りリンク送信制限サブフレーム設定情報を認識し、上りリンク送信制限サブフレーム適用判定を介して、新たな上りリンク送信制限サブフレームの設定を上書きする。
 上りリンク送信制限サブフレームの設定を解除する場合は、基地局は、設定の解除を示す上りリンク送信制限サブフレーム設定情報をシステム情報に含めて端末に報知する。端末は受信した前記システム情報から上りリンク送信制限サブフレームの設定の解除を認識し、上りリンク送信制限サブフレーム適用判定を介して、上りリンク送信制限サブフレームの設定をリセットし、元の無線フレーム構成と認識する。もしくは上りリンク送信制限サブフレームの設定を解除する場合は、基地局は、端末であらゆる場合において上りリンク送信制限サブフレームを適用しないと選択される上りリンク送信制限サブフレーム適用判定の基準を前記端末に通知する。端末は、上りリンク送信制限サブフレーム適用判定を介して、上りリンク送信制限サブフレームの配置を行わず、元の無線フレーム構成と認識する。
 本実施形態では、上りリンク送信制限サブフレーム設定情報の構成は限定せず、前記実施形態に記載したビットマップ形式、上りリンク送信制限サブフレーム候補に関連付けた上りリンク送信制限サブフレームの設定に関する情報、上りリンク送信制限サブフレーム周期情報や、その他上りリンク送信制限サブフレームの設定を通知するに相応しい情報を用いて構成される。
 以上、本発明の第4の実施形態について説明した。
 (第5の実施形態)
 以下では、第5の実施形態について説明する。なお、以下では第1から第4の実施形態と異なる部分が説明され、説明されない部分は第1から第4の実施形態と同じである。
 第1から第4の実施形態では、上りリンク送信制限サブフレーム設定情報をRRCシグナリングやシステム情報に含めて通知することを前提に説明した。RRCシグナリングやシステム情報で通知することは、上りリンク送信制限サブフレームの設定の更新間隔が上りリンク信号のリソース割当よりも長い間隔であると言える。
 本実施形態では、基地局は、PDCCHシグナリングを介して上記の上りリンク送信制限サブフレーム設定情報を端末固有に通知する。すなわち、上りリンク送信制限サブフレーム設定情報は、上りリンクグラントに含まれて端末に通知される。本実施形態は、上りリンク送信制限サブフレーム設定情報を上りリンク信号のリソース割当と同等か短い間隔で通知することができる。
 例えば、基地局101が端末102に対して上りリンクグラントを送信して4サブフレーム後に上りリンクデータチャネルを送信するように要求したとする。一方で、基地局111は、端末102が上りリンクデータチャネルを送信する予定のサブフレームで、端末112への下りリンクデータチャネルの送信を割り当てる。その際に、端末-端末間干渉を回避するため、基地局111は基地局101にバックホール回線103を介して上りリンクデータチャネルの送信の制限を要求する。基地局101の前記上りリンクグラントの送信から端末102の上りリンクデータチャネルの送信の間に、基地局101は、端末102に対して前記上りリンクデータチャネルの送信を制限する要求(上りリンク信号送信制限要求、上りリンク送信制限サブフレーム設定情報)を送信する。そして端末102は、前記上りリンク信号送信制限要求を受けて、上りリンクデータチャネルの送信の停止または送信を制限する。これより、無線リソースのスケジューリングよりも短い間隔で上りリンク信号の送信の制限を要求することが可能となり、端末-端末間干渉を回避して効率のよい通信が可能となる。
 本実施形態では、上りリンク送信制限サブフレームがより動的に設定することが可能であるため、初回送信の上りリンクデータチャネルなど上りリンク信号のリソースのスケジューリングで割り当てられる上りリンク信号に対しても制限する設定が有効となる。図33は、本実施形態における上りリンク信号の送信に対する制限の要求の通知の一例である。図33では、基地局101は、端末102に、サブフレーム番号1の下りリンクサブフレームを用いてサブフレーム番号5のサブフレームに上りリンク信号の送信を要求する上りリンクグラントを送信する。しかしながら、前記上りリンクグラントの送信後に基地局112からサブフレーム番号5のサブフレームで前記上りリンク信号の送信に対する制限の要求が届いた場合に、基地局101は、サブフレーム番号5よりも前の下りリンクサブフレームであるサブフレーム番号3のサブフレームで上りリンク送信制限サブフレーム設定情報を含んだ上りリンクグラントを端末102に送信する。端末102は、サブフレーム番号1のサブフレームで上りリンクグラントを取得後、上りリンク信号の送信の準備を行うが、サブフレーム番号3のサブフレームにおいて上りリンク信号の送信に対する制限の要求を含んだ上りリンクグラントを取得後、サブフレーム番号5のサブフレームで端末112に干渉を与えないように上りリンク信号の送信処理を行う。前記送信処理は、第1の実施形態に記載した上りリンク信号送信処理を行うことを想定しており、この例では、第1の上りリンク送信信号処理に従って上りリンク信号の送信の停止処理を行った。
 本実施形態の上りリンク送信制限サブフレーム設定情報は、PDCCHシグナリングで通知することを想定するので、少ない情報量で通知できることが好ましい。
 本実施形態の上りリンク送信制限サブフレーム設定情報は、例えば、1ビットの制限要求である。本設定情報は、事前に1ビットの上りリンク信号送信制限要求を含む上りリンクグラントを受信する下りリンクサブフレームと上りリンク信号を制限する上りリンク送信制限サブフレームが関連付けられる。図34に、上りリンク信号送信制限要求を含む上りリンクグラントを受信する下りリンクサブフレームと上りリンク送信制限サブフレームの関係表を示す。図34の表の番号は、上りリンクサブフレームおよびスペシャルサブフレームに書いてある番号のサブフレームが、そのサブフレームに対応して上りリンク信号送信制限要求を受け付ける下りリンクサブフレーム番号を示す。例えば、上り下り設定情報が0の場合、サブフレーム番号2の上りリンクサブフレームで割り当てられた上りリンク信号を制限するには、基地局は、サブフレーム番号0のサブフレームで1ビットの上りリンク信号送信制限要求を含む上りリンクグラントを送信する。また、サブフレーム番号4の上りリンクサブフレームで割り当てられた上りリンク信号を制限するには、基地局は、サブフレーム番号1のサブフレームで1ビットの上りリンク信号送信制限要求を含む上りリンクグラントを送信する。端末は、1ビットの上りリンク信号送信制限要求を含んだ上りリンクグラントから上りリンク送信制限サブフレームを図34のような関係表から認識し、上りリンク送信制限サブフレームが設定されるサブフレーム番号を把握する。
 下りリンクサブフレーム数が上りリンクサブフレーム数と比べて少ない場合、上りリンク信号送信制限要求を含んだ上りリンクグラントは、複数の上りリンクサブフレームと関連付けられる。例えば、上り下り設定情報が0の場合、サブフレーム番号1の下りリンクサブフレームは、サブフレーム番号3の上りリンクサブフレームとサブフレーム番号4の上りリンクサブフレームに対応し、サブフレーム番号6の下りリンクサブフレームは、サブフレーム番号8の上りリンクサブフレームとサブフレーム番号9の上りリンクサブフレームに対応する。上りリンク信号と上りリンクグラントを対応させることで、サブフレーム番号による情報よりも少ない情報で通知できる。
 もしくは、本実施形態の上りリンク送信制限サブフレーム設定情報は、サブフレーム番号である。例えば、下りリンクサブフレーム数が上りリンクサブフレーム数と比べて少ない場合などの一意に上りリンクグラントの受信サブフレームと上りリンク送信制限サブフレームと関連付けることができない場合においては、サブフレーム番号を直接通知する本設定情報が有効である。端末は、上りリンク送信制限サブフレームとして指定されるサブフレーム番号を含んだ上りリンクグラントから上りリンク送信制限サブフレームを認識する。前記サブフレーム番号は、上りリンクグラント受信時からの相対番号であっても、無線フレーム番号とサブフレーム番号からなる絶対番号であってもよい。
 もしくは、本実施形態の上りリンク送信制限サブフレーム設定情報は、上りリンク信号に関連付けられた番号である。例えば、特定の上りリンクデータチャネルの送信を停止し、特定の上りリンク制御チャネルの送信は可能にするなど、個別に上りリンク信号の送信を制限する場合には、本設定情報が有効である。上りリンク信号に関連付けられた番号は、例えば上りリンクデータチャネルであればHARQプロセス番号を想定し、上りリンクデータチャネル以外の上りリンク信号であれば前記上りリンク信号と関連付けた新たな指示番号を構成して指定することを想定する。
 上記の上りリンク送信制限サブフレーム設定情報は、複数を同時に設定できる。例えば、サブフレーム番号と上りリンク信号で送信されるデータに関連付けられた番号とを同時に設定することで、基地局は、端末に対して指定の上りリンクサブフレームで送信予定されていた指定の上りリンク信号のみを送信停止させることができる。
 以上、本発明の第5の実施形態について説明した。
 (第6の実施形態)
 以下では、第6の実施形態について説明する。なお、以下では第1から第5の実施形態と異なる部分が説明され、説明されない部分は第1から第5の実施形態と同じである。
 第1から第5の実施形態では、同時刻に隣接するセル間で上りリンクサブフレームと下りリンクサブフレームが設定されると発生するセル間干渉を解決するために上りリンク送信制限サブフレームを設定した。ところで、本発明の上りリンク送信制限サブフレームは、上りリンク信号同士のセル間干渉にも効果を発揮する。
 図35に、隣接する両セルが上りリンク通信を行うときの通信システムの概要を示す。基地局3501は端末3502と上りリンク通信を行っており、同時に基地局3511は端末3512と上りリンク通信を行っている。図35のように、セル3500の端に存在する端末3502が基地局3501に向けて送信する上りリンク信号は、セル3500と隣接するセル3510を構成する基地局3511に漏れ込み、端末3512が基地局3511に向けて送信している上りリンク信号に対して干渉を与える。上記の上りリンク信号同士のセル間干渉においても、端末3502が上りリンク信号の送信の停止または送信の制限、もしくは端末3512が上りリンク信号の送信の停止または送信の制限を行うことでセル間干渉を回避することができる。
 本実施形態において、基地局は、隣接基地局が設定する上りリンクサブフレームに関連付けて上りリンク送信制限サブフレームを設定することで、少ない情報量で上りリンク送信制限サブフレームの設定に関する情報を端末に通知することができる。
 また、本実施形態において、上りリンク送信制限サブフレームの通知方法および設定方法、基地局および端末の設定処理、ならびに、上りリンク送信制限サブフレームにおける端末での上りリンク信号の処理方法は、前記実施形態に記載する方法を用いる。これより、本発明は、TDD方式およびFDD方式における上りリンク通信同士のセル間干渉に対しても有効な回避手段となる。
 以上、本発明の第6の実施形態について説明した。
 (第7の実施形態)
 以下では、第7の実施形態について説明する。なお、以下では第1から第6の実施形態と異なる部分が説明され、説明されない部分は第1から第6の実施形態と同じである。
 本発明は、基地局やバックホールネットワークを介さずに端末と端末間で通信(端末-端末間通信;Device to device communication)を行う場合においても、有効である。
 図36は、本実施形態に係る端末-端末間通信が行われる通信システムの概要を示す。端末3602-Aは端末3602-Bに対して信号の送信を行い、端末3602-Bは端末3602-Aから送信された信号を受信する。端末3602-Aと端末3602-Bは、基地局を介さずに直接通信を行う。また端末3602-Cは端末3602-Dに対して信号の送信を行い、端末3602-Dは端末3602-Cから送信された信号を受信する。端末3602-Cと端末3602-Dは、上記と同様に、基地局を介さずに直接通信を行う。端末3602-Aと端末3602-Bの端末-端末間通信と、端末3602-Cと端末3602-Dの端末-端末間で用いられるリソースブロックおよびサブフレームが同一であれば、端末3602-Aが送信した信号は、端末3602-Dの受信機に漏れ込み、干渉を与える。すなわち、端末-端末間通信が行われる通信システムにおいても、端末-端末間干渉が発生する。
 本実施形態においても、端末に対して個別に上りリンク送信制限サブフレームを設定し、端末の信号の送信の制限を行う処理をすることで、端末-端末間干渉を抑圧することができる。基地局3601は、端末3602に対して上りリンク送信制限サブフレームを通知する。ここで上りリンク送信制限サブフレームは端末個別に設定されることで、端末-端末間干渉を軽減させる。例えば、端末3602-Aと端末3602-B間の端末-端末間通信と、端末3602-Cと端末3602-D間の端末-端末間通信とで異なる上りリンク送信制限サブフレームが設定される。これにより、端末3602-Dが受信処理を行っているサブフレームでは、端末3602-Aは信号を送信することができない。また端末3602-Aが信号を送信するサブフレームでは、端末3602-Cは信号を送信することができない。
 これより、端末-端末間通信が行われる通信システムにおける端末-端末間干渉に対しても、本発明は有効な回避手段となる。
 以上、本発明の第7の実施形態について説明した。
 なお、本発明は、従来のコンポーネントキャリアの代わりに上述したNCTにおいても効果を同様に発揮することができる。
 本発明に関わる基地局101、基地局111、基地局3501、基地局3511、基地局3601、RRH121、および、端末102、端末112、端末122、端末3502、端末3512、端末3602で動作するプログラムは、本発明に関わる上記実施形態の機能を実現するように、CPU等を制御するプログラム(コンピュータを機能させるプログラム)である。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAMに蓄積され、その後、各種ROMやHDDに格納され、必要に応じてCPUによって読み出し、修正・書き込みが行われる。プログラムを格納する記録媒体としては、半導体媒体(例えば、ROM、不揮発性メモリカード等)、光記録媒体(例えば、DVD、MO、MD、CD、BD等)、磁気記録媒体(例えば、磁気テープ、フレキシブルディスク等)等のいずれであってもよい。また、ロードしたプログラムを実行することにより、上述した実施形態の機能が実現されるだけでなく、そのプログラムの指示に基づき、オペレーティングシステムあるいは他のアプリケーションプログラム等と共同して処理することにより、本発明の機能が実現される場合もある。
 また市場に流通させる場合には、可搬型の記録媒体にプログラムを格納して流通させたり、インターネット等のネットワークを介して接続されたサーバコンピュータに転送したりすることができる。この場合、サーバコンピュータの記憶装置も本発明に含まれる。また、上述した実施形態における基地局101、基地局111、基地局3501、基地局3511、基地局3601、RRH121、および、端末102、端末112、端末122、端末3502、端末3512、端末3602の一部、または全部を典型的には集積回路であるLSIとして実現してもよい。基地局101、基地局111、基地局3501、基地局3511、基地局3601、RRH121、および、端末102、端末112、端末122、端末3502、端末3512、端末3602の各機能ブロックは個別にチップ化してもよいし、一部、または全部を集積してチップ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現してもよい。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。例えば、一連の処理のうち、一部の処理の順序を逆転させるような設計の変更を行ってもよい。また、本発明は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。
 なお、本願発明は上述の実施形態に限定されるものではない。本願発明の端末は、移動局装置への適用に限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、例えば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などに適用出来ることは言うまでもない。
 本発明は、基地局や端末や通信システムや通信方法に用いて好適である。
100、110、120、3500、3510、3600、3700、3710 セル
101、111、3501、3511、3601、3701 基地局
121、3711 RRH
102、112、122、3502、3512、3602、3702、3712 端末
103、113、3503、3703 バックホール回線
400、520、600、720 上位レイヤー
401、721 端末情報データ処理
402、522、602、722 RRC層処理部
403、523、603、723 MAC層処理部
404、724 サブフレーム解釈部
405、725 スケジューリング情報解釈部
410 上りリンク送信部
411 上りリンクデータチャネル生成部
412 上りリンク制御チャネル生成部
413 上りリンク参照信号生成部
414 上りリンク送信信号処理部
415 上りリンク無線送信部
420 端末送信アンテナ部
430 上りリンク信号処理方法決定部
500 基地局受信アンテナ部
510 上りリンク受信部
511 上りリンク無線受信部
512 上りリンク受信信号処理部
513 上りリンク伝搬路推定部
514 上りリンクデータチャネル処理部
515 上りリンク制御チャネル処理部
521、601 基地局情報データ処理
524、604 サブフレーム設定部
525、605 スケジューリング情報決定部
610 下りリンク送信部
611 下りリンクデータチャネル生成部
612 下りリンク制御チャネル生成部
613 下りリンク参照信号生成部
614 下りリンク送信信号処理部
615 下りリンク無線送信部
620 基地局送信アンテナ部
700 端末受信アンテナ部
710 下りリンク受信部
711 下りリンク無線受信部
712 下りリンク受信信号処理部
713 下りリンク伝搬路推定部
714 下りリンク制御チャネル処理部
715 下りリンクデータチャネル処理部

Claims (11)

  1.  基地局装置と通信する端末装置であって、
     上りリンク物理チャネルまたは上りリンク参照信号を生成する生成部と、
     前記上りリンク物理チャネルまたは前記上りリンク参照信号を送信する送信部と、
     下りリンク制御情報と上りリンク/下りリンク設定情報を含むRRCメッセージとを受信する受信部と、を有し、
     前記送信部は、前記上りリンク/下りリンク設定情報により上りリンクサブフレームとして指示されるサブフレームのうち、前記下りリンク制御情報により上りリンクサブフレームとして指示されるサブフレームにおいて、前記上りリンク物理チャネルまたは前記上りリンク参照信号を送信する端末装置。
  2.  前記送信部は、前記上りリンク/下りリンク設定情報により上りリンクサブフレームとして指示されるサブフレームのうち、前記下りリンク制御情報により上りリンクサブフレームとして指示されないサブフレームにおいて、前記上りリンク物理チャネルまたは前記上りリンク参照信号を送信しない請求項1に記載の端末装置。
  3.  前記上りリンク物理チャネルは、PUSCHである請求項1に記載の端末装置。
  4.  前記上りリンク物理チャネルは、PUCCHである請求項1に記載の端末装置。
  5.  前記上りリンク参照信号は、SRSである請求項1に記載の端末装置。
  6.  端末装置と通信する基地局装置であって、
     前記端末装置から送信された上りリンク物理チャネルまたは上りリンク参照信号を受信する受信部と、
     下りリンク制御情報と上りリンク/下りリンク設定情報を含むRRCメッセージとを前記端末装置に送信する送信部と、を有し、
     前記受信部は、前記上りリンク/下りリンク設定情報により上りリンクサブフレームとして指示されるサブフレームのうち、前記下りリンク制御情報により上りリンクサブフレームとして指示されるサブフレームにおいて、前記上りリンク物理チャネルまたは前記上りリンク参照信号を受信する基地局装置。
  7.  前記受信部は、前記上りリンク/下りリンク設定情報により上りリンクサブフレームとして指示されるサブフレームのうち、前記下りリンク制御情報により上りリンクサブフレームとして指示されないサブフレームにおいて、前記上りリンク物理チャネルまたは前記上りリンク参照信号を受信しない請求項6に記載の基地局装置。
  8.  前記下りリンク制御情報によって指示されるサブフレームを示す情報を、バックホールを介して前記基地局装置とは異なる基地局装置に通知する請求項6に記載の基地局装置。
  9.  前記上りリンク物理チャネルは、PUSCHである請求項6に記載の基地局装置。
  10.  前記上りリンク物理チャネルは、PUCCHである請求項6に記載の基地局装置。
  11.  前記上りリンク参照信号は、SRSである請求項6に記載の基地局装置。
PCT/JP2014/050036 2013-01-09 2014-01-06 端末装置および基地局装置 WO2014109302A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014556407A JP6139569B2 (ja) 2013-01-09 2014-01-06 ユーザ装置、通信方法、集積回路、および基地局装置
US14/759,716 US20150358133A1 (en) 2013-01-09 2014-01-06 User equipment, base station, and radio communication method
EP14738318.6A EP2945447A4 (en) 2013-01-09 2014-01-06 TERMINAL DEVICE AND BASE STATION DEVICE
CN201480004307.7A CN104919878B (zh) 2013-01-09 2014-01-06 终端装置以及基站装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-001524 2013-01-09
JP2013001524 2013-01-09

Publications (1)

Publication Number Publication Date
WO2014109302A1 true WO2014109302A1 (ja) 2014-07-17

Family

ID=51166950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050036 WO2014109302A1 (ja) 2013-01-09 2014-01-06 端末装置および基地局装置

Country Status (5)

Country Link
US (1) US20150358133A1 (ja)
EP (1) EP2945447A4 (ja)
JP (1) JP6139569B2 (ja)
CN (1) CN104919878B (ja)
WO (1) WO2014109302A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017529015A (ja) * 2014-09-25 2017-09-28 富士通株式会社 半2重通信システムにおけるサブフレームスケジューリング方法、データ送受信方法、装置及びシステム
JP2017532830A (ja) * 2014-08-22 2017-11-02 ゼットティーイー コーポレーションZte Corporation 信号処理方法、基地局及び端末
EP3214877A4 (en) * 2014-11-26 2017-12-13 Huawei Technologies Co. Ltd. Wireless communication method, equipment and system
JP2018509785A (ja) * 2015-01-29 2018-04-05 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 通信装置および通信方法
JPWO2017164142A1 (ja) * 2016-03-23 2019-02-07 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
JP2019533349A (ja) * 2016-09-22 2019-11-14 エルジー エレクトロニクス インコーポレイティド 上りリンク信号と下りリンク信号の間の干渉を減少する方法及びそのための装置

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015122733A1 (ko) * 2014-02-16 2015-08-20 엘지전자 주식회사 Fdr 전송을 지원하는 무선접속시스템에서 신호를 수신하는 방법 및 장치
US9775071B2 (en) * 2014-02-24 2017-09-26 Qualcomm Incorporated TDD configurations and eIMTA in LTE
US9942881B2 (en) 2014-03-14 2018-04-10 Telefonaktiebolaget Lm Ericsson (Publ) Uplink multi-TTI scheduling in TDD system
EP2924885B1 (en) * 2014-03-28 2020-09-16 Sony Corporation Method, base station and terminal for determining channel properties in a cellular multiple-input and multiple-output system
CN105323049A (zh) * 2014-06-13 2016-02-10 中兴通讯股份有限公司 一种非授权载波的调度方法、设备和系统
EP3169006B1 (en) * 2014-07-07 2023-04-19 LG Electronics Inc. Reference signal transmission method in unlicensed band in wireless communication system
EP4362369A3 (en) * 2014-08-15 2024-10-16 InterDigital Patent Holdings, Inc. Coverage enhancement for time division duplex and enhanced interference mitigation and traffic adaptation in long term evolution systems
US10348424B2 (en) * 2015-03-04 2019-07-09 Commscope Technologies Llc Intermodulation byproduct cancellation in one or more nodes of a distributed antenna system
US10292176B2 (en) * 2015-07-16 2019-05-14 Qualcomm Incorporated Subframe availability for machine type communications (MTC)
CN113411172A (zh) * 2015-08-13 2021-09-17 华为技术有限公司 上行参考信号传输方法、用户终端及基站
WO2017129227A1 (en) 2016-01-26 2017-08-03 Huawei Technologies Co., Ltd. An apparatus and a method for managing full-duplex communication between a base station and a plurality of user equipments
CN108476121B (zh) * 2016-02-03 2021-06-29 苹果公司 用于具有短传输时间间隔的物理下行共享信道传输的装置
WO2017146780A1 (en) * 2016-02-26 2017-08-31 Intel Corporation User equipment (ue) and method of sidelink data communication in fifth generation (5g) new radio (nr) things networks
WO2017146781A1 (en) * 2016-02-26 2017-08-31 Intel Corporation User equipment (ue) and method of sidelink communication in fifth generation (5g) new radio (nr) things networks
CN107295674B (zh) * 2016-04-01 2021-06-08 华为技术有限公司 一种资源分配方法、网络设备及终端设备
JP6670929B2 (ja) * 2016-05-13 2020-03-25 京セラ株式会社 無線端末及び基地局
WO2017215642A1 (zh) * 2016-06-16 2017-12-21 华为技术有限公司 一种资源分配方法、网络设备及终端设备
FR3053192A1 (fr) * 2016-06-23 2017-12-29 Orange Procede de transmission d'un signal numerique pour un systeme a au moins un relais half-duplex dynamique a logique selective, produit programme et dispositif relais correspondants
CN107889242B (zh) * 2016-09-30 2020-01-17 中国移动通信有限公司研究院 一种传输方法、移动通信终端及网络侧设备
US11246138B2 (en) * 2016-10-21 2022-02-08 Nokia Solutions And Networks Oy Resource allocation in cellular networks
CN108513358A (zh) * 2017-02-28 2018-09-07 华为技术有限公司 一种数据传输方法及装置
EP3598665A4 (en) * 2017-04-14 2020-03-18 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND DEVICE
CN109302274A (zh) * 2017-07-24 2019-02-01 展讯通信(上海)有限公司 Wlan全双工传输方法及装置、可读存储介质、终端
JP6953226B2 (ja) 2017-08-04 2021-10-27 ソニーセミコンダクタソリューションズ株式会社 通信装置、通信方法、プログラム、および、通信システム
JP7031961B2 (ja) * 2017-08-04 2022-03-08 ソニーセミコンダクタソリューションズ株式会社 通信装置、通信方法、プログラム、および、通信システム
CN110351867B (zh) * 2018-04-04 2022-01-14 华为技术有限公司 通信方法和通信装置
CN109462832B (zh) * 2018-10-26 2021-06-18 广东美的制冷设备有限公司 空气调节设备、信息传输方法、通信系统及通信方法
CN113424631B (zh) * 2019-02-15 2023-09-22 Lg 电子株式会社 执行上行链路传输的方法、用户设备、设备和存储介质以及执行上行链路接收的方法和基站
US20230098368A1 (en) * 2020-01-29 2023-03-30 Nokia Technologies Oy Communication Control Mechanism Using Full Duplex Communication Connection
US20230039328A1 (en) * 2021-08-06 2023-02-09 Qualcomm Incorporated Selective use of transmission diversity

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102404074B (zh) * 2010-09-17 2014-06-18 电信科学技术研究院 Tdd系统中的非周期srs的传输方法和设备
EP2679068B1 (en) * 2011-02-21 2017-04-05 Broadcom Corporation Dynamic uplink/downlink configuration for time division duplex
CN108811141B (zh) * 2011-03-31 2023-10-24 华为技术有限公司 时分双工系统中子帧配置的方法、基站及用户设备
CN102761968B (zh) * 2011-04-27 2017-03-01 艾利森电话股份有限公司 多用户设备的探测参考信号上行资源分配方法及基站
CN102811191B (zh) * 2011-05-31 2016-06-08 华为技术有限公司 一种数据传输方法和装置
CN102231643B (zh) * 2011-07-01 2014-03-12 电信科学技术研究院 载波聚合系统中的数据传输方法和设备
US9301292B2 (en) * 2011-09-05 2016-03-29 Lg Electronics Inc. Method of indicating a control channel in a wireless access system, base station for the same and user equipment for the same
US9143984B2 (en) * 2012-04-13 2015-09-22 Intel Corporation Mapping of enhanced physical downlink control channels in a wireless communication network
BR112015009898B1 (pt) * 2012-11-02 2022-12-20 Huawei Technologies Co., Ltd Método de transmissão de informações, equipamento de usuário, estação base e mídia de armazenamento legível por computador
CN103036663B (zh) * 2012-12-06 2015-09-09 北京北方烽火科技有限公司 一种lte系统中分配srs资源的方法、装置和基站
CN104885506B (zh) * 2012-12-30 2018-10-19 Lg电子株式会社 在多小区无线通信系统中共享无线电资源信息的方法和用于该方法的装置

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Further enhancement to LTE Time Division Duplexx (TDD) for Downlink-Uplink (DL-UL) interference management and traffic adaptation (Release 11", 3GPP TR 36. 828 V 11.0.0 (2012-06, June 2012 (2012-06-01)
ALCATEL -LUCENT SHANGHAI BELL ET AL.: "Un Subframe Allocation for TDD", R1-104411, 3GPP, 27 August 2010 (2010-08-27), XP050450098 *
CATT: "Draft TP for TR 36.828 section", R1- 122064, 3GPP, 25 May 2012 (2012-05-25), XP050600353 *
LG ELECTRONICS: "Un UL subframe configuration", R1-110887, 3GPP, 25 February 2011 (2011-02-25), XP050600626 *
RENESAS MOBILE EUROPE LTD.: "Discussion on Enhancements for Dynamic TDD UL-DL Configuration", RL-122363, 3GPP, 25 May 2012 (2012-05-25), XP050600626 *
See also references of EP2945447A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017532830A (ja) * 2014-08-22 2017-11-02 ゼットティーイー コーポレーションZte Corporation 信号処理方法、基地局及び端末
US10694515B2 (en) 2014-08-22 2020-06-23 Zte Corporation Signal processing method, base station and terminal
JP2017529015A (ja) * 2014-09-25 2017-09-28 富士通株式会社 半2重通信システムにおけるサブフレームスケジューリング方法、データ送受信方法、装置及びシステム
EP3214877A4 (en) * 2014-11-26 2017-12-13 Huawei Technologies Co. Ltd. Wireless communication method, equipment and system
RU2663818C1 (ru) * 2014-11-26 2018-08-10 Хуавэй Текнолоджиз Ко., Лтд. Способ, устройство и система беспроводной связи
US10411851B2 (en) 2014-11-26 2019-09-10 Huawei Technologies Co., Ltd. Wireless communication method, device and system
JP2018509785A (ja) * 2015-01-29 2018-04-05 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 通信装置および通信方法
JPWO2017164142A1 (ja) * 2016-03-23 2019-02-07 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
JP7227000B2 (ja) 2016-03-23 2023-02-21 株式会社Nttドコモ 端末、基地局、無線通信方法及びシステム
US11778624B2 (en) 2016-03-23 2023-10-03 Ntt Docomo, Inc. Terminal, radio communication method for a terminal, and base station
JP2019533349A (ja) * 2016-09-22 2019-11-14 エルジー エレクトロニクス インコーポレイティド 上りリンク信号と下りリンク信号の間の干渉を減少する方法及びそのための装置
US11012943B2 (en) 2016-09-22 2021-05-18 Lg Electronics Inc. Method for reducing interference between uplink signal and downlink signal, and device therefor

Also Published As

Publication number Publication date
US20150358133A1 (en) 2015-12-10
JPWO2014109302A1 (ja) 2017-01-19
CN104919878A (zh) 2015-09-16
EP2945447A4 (en) 2016-08-03
JP6139569B2 (ja) 2017-05-31
EP2945447A1 (en) 2015-11-18
CN104919878B (zh) 2019-07-02

Similar Documents

Publication Publication Date Title
JP6139569B2 (ja) ユーザ装置、通信方法、集積回路、および基地局装置
JP7163277B2 (ja) 無線通信システムにおいて上りリンク送信のための方法及びそのための装置
JP6254659B2 (ja) 無線通信システムにおいて下りリンク制御信号を受信又は送信するための方法及びそのための装置
JP6470803B2 (ja) 無線通信システムにおいて干渉除去のための方法及びそのための装置
JP7057347B2 (ja) 無線通信システムにおけるチャンネル状態報告のための方法及びその装置
JP6750133B2 (ja) 無線通信システムにおいて上りリンク信号を送信する方法及びそのための装置
KR102201751B1 (ko) 무선 통신 시스템에서 하향링크 제어 신호를 수신 또는 전송하기 위한 방법 및 이를 위한 장치
JP6286032B2 (ja) 無線通信システムにおいてチャネル状態報告のための方法及びそのための装置
CN109417455B (zh) 下行链路传输的配置
US9596014B2 (en) Method and apparatus for cancelling interference
JP2019528610A (ja) 無線通信システムにおけるチャネル態報告のための方法及びその装置
JP2020502936A (ja) 無線通信システムにおいて短い送信時間間隔を支援する端末のための上りリンク信号送信又は受信方法及びそのための装置
JP2018522474A (ja) 非周期的チャネル状態情報−参照信号を用いたチャネル状態報告のための方法及びそのための装置
EP3386243B1 (en) Base station device, terminal device, and communication method
JP2019532545A (ja) 無線通信システムにおいてチャンネル状態報告のための方法及びそのための装置
US20170086175A1 (en) Radio base station, user terminal and radio communication method
WO2019130858A1 (ja) 基地局装置、端末装置および通信方法
US20180109299A1 (en) Radio base station, user terminal, radio communication system and radio communication method
JP2020507981A (ja) 無線通信システムにおいて、複数の送信時間間隔、複数のサブキャリア間隔、又は複数のプロセシング時間を支援するための方法及びそのための装置
JP2019530368A (ja) 無線通信システムにおいて複数のプロセス時間又は複数の送信時間間隔のための方法及びそのための装置
KR102183478B1 (ko) 통신 디바이스, 네트워크 노드, 방법 및 컴퓨터
KR20160102476A (ko) 간섭 제거 성능이 반영된 채널 상태 보고를 위한 방법 및 이를 위한 장치
KR20150146431A (ko) 간섭 제거 또는 완화 동작을 위한 방법 및 이를 위한 장치
WO2017074298A1 (en) Base station and wireless device used in wireless communication system
US11677521B2 (en) User terminal, radio base station and radio communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14738318

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14759716

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014556407

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014738318

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201504783

Country of ref document: ID